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Preface

This volume contains the papers presented at GD 2024, the 32nd International Symposium
on Graph Drawing and Network Visualization, held during September 18–20, 2024 in Vienna,
Austria. Graph Drawing is concerned with the geometric representation of graphs and
constitutes the algorithmic core of Network Visualization. Graph Drawing and Network
Visualization are motivated by applications where it is crucial to visually analyze and interact
with relational datasets. Examples of such application areas include data science, social
sciences, web computing, information systems, biology, geography, business intelligence,
information security and software engineering.

The symposium on Graph Drawing and Network Visualization has been the main annual
event in this area for more than 30 years. Its focus is on combinatorial and algorithmic
aspects of graph drawing as well as the design of network visualization systems and interfaces.
Information about the conference series and past symposia is maintained at http://www.
graphdrawing.org.

A total of 125 participants from 20 different countries attended the conference. Regular
papers could be submitted to one of two distinct tracks: Track 1 for papers on fundamental
theoretical graph drawing advances, such as on combinatorial and algorithmic aspects, and
Track 2 for papers on practical aspects of graph drawing, such as experimental, applied,
and network visualization aspects. Short papers were given a separate category, which
welcomed both theoretical and applied contributions. An additional track was devoted to
poster submissions, and short abstracts were invited for describing software participating in
the software exhibition.

All the tracks were handled by a single Program Committee. As in previous editions
of GD, the papers in the different tracks did not compete directly with each other, but all
program committee members were invited to review papers from either track in a “light-weight
double-blind” process.

In response to the call for papers, the Program Committee received a total of 108
submissions, consisting of 94 papers (77 in Track 1, 17 in Track 2, and 21 in the short
paper category) and 14 posters. Close to 300 reviews were provided, almost half having
been contributed by external sub-reviewers. After extensive electronic discussions by the
Program Committee via EasyChair, interspersed with virtual meetings of the Program Chairs
producing incremental accept/reject proposals, 31 long papers, 7 short papers, and 13 posters
were selected for inclusion in the scientific program of GD 2024. This resulted in an overall
paper acceptance rate (not considering posters) of 40% (41% in Track 1, 35% in Track 2,
and 33% in the short paper category). As is common in GD, some hard choices had to be
made in particular during the final acceptance/rejection round, where several papers that
clearly had merit still did not make the cut. However, the number of submitted high-quality
papers speaks for the community.

For the first time in GD history, the proceedings are published by LIPIcs, creating an
additional challenge for authors and editors as the established schedule and workflow for
the creation of the proceedings had to be changed. The generous support by the Dagstuhl
LIPIcs team helped to ease efforts in this transition.

There were two invited talks at GD 2024. Otfried Cheong from SCALGO (Denmark) gave
answers to the question “How Can Biclique Covers Help in Matching Problems” and Monika
Henzinger from the Institute of Science and Technology Austria discussed the question “How
Can Algorithms Help in Protecting our Privacy”. Abstracts of both invited talks are included
in these proceedings.
32nd International Symposium on Graph Drawing and Network Visualization (GD 2024).
Editors: Stefan Felsner and Karsten Klein

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.graphdrawing.org
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0:xii Preface

The conference gave out best paper awards in Track 1 and Track 2, as well as a best
presentation award and a best poster award. The award for the best paper in Track 1 was
given to “The Density Formula: One Lemma to Bound Them All” by Michael Kaufmann,
Boris Klemz, Kristin Knorr, Meghana M. Reddy, Felix Schröder and Torsten Ueckerdt (Paper
7 in this volume), and the award for the best paper in Track 2 was given to “GraphTrials:
Visual Proofs of Graph Properties” by Henry Förster, Felix Klesen, Tim Dwyer, Peter Eades,
Seok-Hee Hong, Stephen Kobourov, Giuseppe Liotta, Kazuo Misue, Fabrizio Montecchiani,
Alexander Pastukhov and Falk Schreiber (Paper 16). Based on a majority vote of the
conference participants, the best presentation award was given to Soeren Terziadis for the
presentation of “Boundary Labeling in a Circular Orbit” (Paper 22) and the best poster
award was given to Simon D. Fink, Matthias Pfretzschner, Ignaz Rutter, and Peter Stumpf
for the poster titled “Level Planarity Is More Difficult Than We Thought” (Paper 50).

A PhD School was held on the two days prior to the conference. Four half-day sessions
led by Philipp Kindermann, Tamara Mchedlidze, Thekla Hamm, and Manfred Scheucher
covered both theoretical and practical topics in graph drawing and network visualization.

As is traditional, the 31st Annual Graph Drawing Contest was held during the conference.
The contest was divided into two parts, creative topics and the live challenge. The creative
topics task featured a single graph that represents the history of medal wins by countries
at the Olympic games. The live challenge focused on minimizing the number of crossings
on point set embeddings. There were two categories: manual and automatic. We thank
the Contest Committee, chaired by Fabian Klute, for preparing interesting and challenging
contest problems. A report on the contest is included in these proceedings.

Many people and organizations contributed to the success of GD 2024. We would like
to thank all members of the Program Committee and the external reviewers for carefully
reviewing and discussing the submitted papers and posters; this was crucial for putting
together a strong and interesting program. We would also like to thank all authors who chose
GD 2024 as the publication venue for their research and the participants that showcased
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How Can Biclique Covers Help in Matching
Problems
Otfried Cheong # Ñ
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Abstract
In several settings one encounters assignment or matching problems between objects of two different
types, and needs to run a computation on a bipartite graph. While this graph can potentially be
dense, it can sometimes be represented compactly using a biclique cover. This is in particular often
the case when the objects are geometric – we will look at examples, and see how recent progress on
maximum flow can be combined with such biclique covers to obtain faster algorithms.
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Abstract
Decisions are increasingly automated using rules that were learnt from personal data. Thus, it is
important to guarantee that the privacy of the data is protected during the learning process. To
formalize the notion of an algorithm that protects the privacy of its data, differential privacy was
introduced by Dwork, McSherry, Nissim, and Smith in 2006. It is a rigorous mathematical definition
to analyze the privacy properties of an algorithm – or the lack thereof. In this talk I will give an
introduction to differential privacy with an emphasis on differential private algorithms that can
handle dynamically changing input data.
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Abstract
Given a finite set, A ⊆ R2, and a subset, B ⊆ A, the MST-ratio is the combined length of the
minimum spanning trees of B and A \ B divided by the length of the minimum spanning tree of A.
The question of the supremum, over all sets A, of the maximum, over all subsets B, is related to
the Steiner ratio, and we prove this sup-max is between 2.154 and 2.427. Restricting ourselves to
2-dimensional lattices, we prove that the sup-max is 2, while the inf-max is 1.25. By some margin
the most difficult of these results is the upper bound for the inf-max, which we prove by showing
that the hexagonal lattice cannot have MST-ratio larger than 1.25.
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1 Introduction

The recent development of measuring the interaction between two or more sets of points
with methods from topological data analysis motivates the discrete geometric question about
minimum spanning trees studied in this paper; see [1, 7] for background in this general area.
We refer to the measured interaction as mingling, in which higher values corresponding to
more mingling. The ambiguity of the term is deliberate and leaves the concrete meaning to
the geometric and algebraic constructions described in [5]. As explained in the appendix of
the current paper, one of these measurements can be expressed in elementary terms:

▶ Definition. Given a finite set, A ⊆ R2, we write MST(A) for the (Euclidean) minimum
spanning tree of the complete graph on A, with edge weights equal to the distances between
the points. For B ⊆ A, the MST-ratio of A and B is the combined length of the minimum
spanning trees of B and A \B, divided by the length of the minimum spanning tree of A:

µ(A,B) = |MST(B)| + |MST(A \B)|
|MST(A)| . (1)
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3:2 The Euclidean MST-Ratio of Bi-Colored Lattices

To make use of this measure for statistical or other purposes, we ought to know how small
and how large the ratio can get (the extremal question), and how it behaves for random data.
A first result in the latter direction can be found in [6], who prove that for points chosen
uniformly at random in the unit square, the expected MST-ratio for a random partition
into two subsets is at least

√
2 − ε, for any ε > 0. In the non-random setting, we study the

maximum MST-ratio, over all partitions of A into two sets, and consider both the infimum
and supremum of the maximum, over all sets in a class of point sets. If these sets are infinite,
like for example 2-dimensional lattices, then we talk about the supremum rather than the
maximum MST-ratio.

Given any set, A, the minimum MST-ratio is achieved by removing the longest edge
from MST(A) and letting B and A \ B be the vertices of the resulting two trees, so it is
less than 1. Indeed, any other partition of A would produce two minimum spanning trees
that together are at least as long as MST(B) and MST(A \B). More interestingly, the
maximum MST-ratio is related to the Steiner ratio of the Euclidean plane [8, 10], and we
exploit this connection to prove that the supremum is between 2.154 and 2.427 (Theorem 2.1
in Section 2). The infimum of the maximum is again less interesting: allowing ourselves to
pick points arbitrarily close to each other, and one far away, this infimum can be seen to be
arbitrarily close to 1.

This motivates us to study the MST-ratio for a restricted class of sets, and our choice are
the (Euclidean) lattices, which are well studied objects with many applications in mathematics
and beyond; see e.g. [12]. Since we optimize over subsets of an infinite set, we talk about the
supremum rather than the maximum, and taking a sequence of progressively larger but finite
portions of such a lattice, we have well defined minimum spanning trees and can study the
asymptotic behavior of the MST-ratio. Our main result is that the supremum MST-ratio
of the hexagonal lattice is 1.25 (Theorem 4.2 in Section 4). Observe that this is an upper
bound on the infimum, over all lattices, of the supremum MST-ratio. We complement this
with a matching lower bound (Claim 3.5 in Section 3), and with matching lower and upper
bounds for the supremum, over all lattices, of the supremum MST-ratio, which we establish
is 2 (Claims 3.2 and 3.4 in Section 3).

2 The Maximum MST-ratio for Finite Sets

The main question we ask is to what extent two minimum spanning trees can be longer than
a single minimum spanning tree of the same points; see the definition of the MST-ratio of
a set A ⊆ R2 and a subset B ⊆ A in the introduction. We are interested in the maximum
MST-ratio, over all subsets B ⊆ A, and in the supremum and infimum of this maximum,
over all finite sets A ⊆ R2.

The supremum is related to the well-studied Steinter tree problem. Given a finite set,
X ⊆ R2, the Steiner tree of X is the minimum spanning tree of X ∪B, in which B = B(X)
is chosen to minimize the length of this tree. The Steiner ratio of the Euclidean plane is the
infimum of the length ratio, |MST(X ∪B)|/|MST(X)|, over all finite sets X and B in the
plane. There are sets X ⊆ R2 for which the ratio is only

√
3/2 = 0.866 . . .; take for example

the vertices of an equilateral triangle as X and the barycenter of this triangle as the sole
point in B. It is conjectured that

√
3/2 is the Steiner ratio of the Euclidean plane [8], but

the current best lower bound proved in [2] is only 0.824 . . .. We use this bound to prove
upper and lower bounds for the supremum maximum MST-ratio:

▶ Theorem 2.1. The supremum, over all finite A ⊆ R2, of the maximum, over all subsets
B ⊆ A, of the MST-ratio satisfies 2.154 ≤ supA maxB µ(A,B) ≤ 2.427.
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Proof. We first prove the upper bound. Since B is a subset of A, the MST of A cannot
be shorter than the Steiner tree of B. Similarly, the MST of A cannot be shorter than
the Steiner tree of A \ B. Hence, |MST(A)| ≥ 0.824 . . . · |MST(B)| and |MST(A)| ≥
0.824 . . . · |MST(A \B)|. It follows that the ratio satisfies

µ(A,B) ≤ 2 · [|MST(B)| + |MST(A \B)|]
0.824 . . . · [|MST(B)| + |MST(A \B)|] = 2.426 . . . . (2)

This inequality holds for every B ⊆ A. We second prove the lower bound for the sup-
max by constructing a set A of seven points that implies the inequality. Let B ⊆ A be
the three vertices of an equilateral triangle with unit length edges, and let A \ B be the
vertices of another equilateral triangle with unit length edges, but this time together with
the barycenter. Hence, |MST(B)| = 2 and |MST(A \B)| =

√
3. Assuming the distance

between corresponding vertices of the two equilateral triangles is less than ε > 0, we have
|MST(A)| <

√
3 + 3ε. This implies

µ(A,B) > 2 +
√

3√
3 + 3ε

> 2.154 . . .− 4ε. (3)

Since we can make ε > 0 arbitrarily small, this implies the claimed lower bound. ◀

The example used to establish the lower bound can be extended to larger numbers of
points, e.g. the following disjoint union of three lattices: B is the hexagonal lattice (to be
defined shortly), and A \B is a slightly shifted copy of the hexagonal lattice, together with
the barycenters of the triangles in every fourth row, which is a rectangular lattice with
distances 1 and

√
3 between consecutive rows and columns.

The question about the infimum of the maximum MST-ratio turns out to be less interesting,
with 1 as answer. To see the lower bound, set B = A, in which case |MST(B)| = |MST(A)|
and |MST(A \B)| = 0. The ratio is therefore 1. We get the upper bound by constructing a
set A of n ≥ 2 points. It contains the origin, n − 2 points each at distance at most ε > 0
from the origin, and another point, which we call b, at unit distance from the origin. Assume
b ∈ B, and consider the case in which B contains at least one other point of A. Then

1 ≤ |MST(A)| ≤ 1 + 2(n− 2)ε, (4)
1 − ε ≤ |MST(B)| ≤ 1 + 2(n− 2)ε, (5)

0 ≤ |MST(A \B)| ≤ 2(n− 3)ε. (6)

For any given δ > 0, we can choose ε > 0 sufficiently small such that the ratio is smaller
than 1 + δ. In the other case, in which B = {b}, we have |MST(B)| = 0 and |MST(A \B)| ≤
2(n− 2)ε, so we can make the ratio arbitrarily small and certainly smaller than 1.

3 Two-dimensional Lattices

Motivated by the triviality of the infimum maximum MST-ratio for general finite sets, we
aim for a restriction that disallows extremely unbalanced distributions. There are many
choices, and we opt for a maximally restricted setting in which the MST-ratio is still an
interesting question. Specifically, we focus on 2-dimensional lattices.

▶ Definition. The (Euclidean) lattice spanned by two linearly independent vectors, u,v ∈ R2,
consists of all integer combinations of these vectors: Λ(u,v) = {iu + jv | i, j ∈ Z}.

GD 2024



3:4 The Euclidean MST-Ratio of Bi-Colored Lattices

By definition, lattices are infinite. To cope with the difficulty of constructing the minimum
spanning tree of infinitely many points, we take progressively larger but finite portions of a
lattice and monitor the sequence of MST-ratios. Specifically, we fix a partition of the infinite
lattice, take rhombi centered at the origin and spanned by the vectors of the shortest basis
of the lattice, for each rhombus get the MST-ratio for the points inside the rhombus, and
consider the sequence of MST-ratios as the size of the rhombus increases. If this sequence
converges, we call the limit the MST-ratio of the chosen partition of the lattice.

Figure 1 Left: a portion of the hexagonal lattice and all its shortest edges. Middle: a partition
into one and two thirds of the points, with MST-ratio converging to (2 +

√
3)/3 = 1.245 . . .. Right:

a partition into one and three quarters of the points, with MST-ratio converging to 1.25.

A particularly interesting lattice is the triangular or hexagonal lattice, which is spanned
by u = (1, 0) and v = 1

2 (1,
√

3); see the left panel in Figure 1. The minimum distance
between its points is 1, so all edges of the MST have length 1. The two partitions illustrated
in the middle and right panels of Figure 1 have MST-ratios 1.245 . . . and 1.25, respectively.
In one way or another, we use this lattice to prove all four bounds claimed in the following
theorem.

▶ Theorem 3.1. The supremum and infimum, over all 2-dimensional lattices, Λ, of the
supremum, over all subsets, B ⊆ Λ, of the MST-ratio are C0 = supΛ supB µ(Λ, B) = 2 and
c0 = infΛ supB µ(Λ, B) = 1.25.

Each of the subsequent subsections restates and proves one of the four bounds, except for the
last subsection, which only sketches the proof strategy, with the proof presented in Section 4.

3.1 Lower Bound for Sup-Sup
This subsection exhibits a lattice, and a partition of this lattice into two sets, such that the
MST-ratio of progressively larger finite portions of the lattice approaches the supremum of
the supremum MST-ratio claimed in Theorem 3.1 from below.

▷ Claim 3.2. C0 ≥ 2.

Proof. Let Λ be the hexagonal lattice horizontally stretched by a factor 9, and let B ⊆ Λ
be the one third of the points drawn blue in Figure 2. The (vertical) distance between
neighboring points in a column of Λ is

√
3, and the (horizontal) distance between two

neighboring columns is 9
2 . For each r ≥ 0, let Λr ⊆ Λ and Br ⊆ B be the points in

[−r, r]2. Hence, Λr consists of pr = 2⌊2r/9⌋ + 1 vertical columns, which alternate between
qr = 2⌊r/

√
3⌋ + 1 and qr − 1 or qr + 1 points. Observe that pr and qr are both odd, and that

nr = qrpr ± (pr − 1)/2 is the cardinality of Λr. The number of points of Br in the columns
alternates between br = 2⌊r/(3

√
3)⌋ + 1 and br − 1 or br + 1, so mr = brpr ± (pr − 1) is the

cardinality of Br. It is easy to see that nr − 2pr ≤ 3mr ≤ nr + 2pr.
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Figure 2 The portion of the horizontally stretched hexagonal lattice, Λ, and the subset of blue
points, B, inside a square centered at the origin. The edges show the union of all possible minimum
spanning trees of the blue points.

By choice of the stretch factor, B is a hexagonal lattice with distance 3
√

3 between closest
points. Hence, |MST(Br)| = 3

√
3(mr − 1). Compare this with a minimum spanning tree of

Λr, which first connects the points in each column and second connects neighboring columns
with one edge for each pair. Hence,

|MST(Λr)| =
√

3(nr − pr) +
√

21(pr − 1), (7)

because every point, except the last in each column, has a neighbor at distance
√

3 below,
and any two neighboring columns have points at distance

√
21 from each other. Similarly,

any minimum spanning tree of Λr \Br first connects the points in each column and second
connects neighboring columns with one edge for each pair. Its length is therefore the same
as that of MST(Λr). Using 3mr = nr + o(nr), this implies

|MST(Br)| + |MST(Λr \Br)|
|MST(Λr)| = 3

√
3(mr − 1) +

√
3(nr − pr) +

√
21(pr − 1)√

3(nr − pr) +
√

21(pr − 1)
(8)

= 2
√

3nr + o(nr)√
3nr + o(nr)

r→∞−→ 2. (9)

For any ε > 0, we can choose r sufficiently large such that the MST-ratio exceeds 2 − ε,
which implies the claimed lower bound. ◁

3.2 Upper Bound for Sup-Sup
This subsection proves the upper bound that matched the lower bound established in the
preceding subsection. Given any lattice and any partition of this lattice into two sets, we
show that for any ε > 0, the MST-ratio cannot exceed 2 + ε. We begin with a bound for the
length of the minimum spanning tree of any finite set in a square.

▶ Lemma 3.3. The length of the minimum spanning tree of any n or fewer points in [0, n]2
is at most 2n

√
n.

Proof. Assuming the number of points is k ≤ n, the minimum spanning tree has k− 1 edges,
and we write ℓ1, ℓ2, . . . , ℓk−1 for their lengths. The sum of the squares of these lengths is at
most 4n2, as proved in [8]. By the Cauchy–Schwarz inequality, the sum of the ℓi is maximized
when all terms are the same, namely ℓ2

i = 4n2/(k − 1) for all i. This implies∑k−1

i=1
ℓi ≤ (k − 1)

√
4n2/(k − 1) = 2n

√
k − 1, (10)

from which the claimed bound follows. ◀
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3:6 The Euclidean MST-Ratio of Bi-Colored Lattices

Lemma 3.3 will provide a crucial step in the proof of the upper bound for the supremum
maximum MST-ratio, which we present next.

▷ Claim 3.4. C0 ≤ 2.

Proof. We show that the MST-ratio of any lattice Λ ⊆ R2 and any subset B ⊆ Λ is at most
the claimed upper bound. Let u be the shortest non-zero vector in Λ, and v the shortest
non-zero vector that is not a multiple of u, breaking ties arbitrarily if necessary. Suppose
their lengths satisfy 1 = ∥u∥ ≤ ∥v∥ = ν. To simplify language, we call the points on a line
parallel to u a row of Λ. For every positive integer, n, let Λn ⊆ Λ contain all points αu + βv,
with 0 ≤ α, β ≤ n. The minimum spanning tree of Λn first connects the points in each row
and then the neighboring rows, so

|MST(Λn)| = (n+ 1)n+ nν. (11)

Set Bn = B∩ Λn. We construct a spanning tree, T (Bn), by first connecting the points within
the rows. This allows for the possibility that some rows do not contain any points of Bn.
In each of the other rows, we choose an arbitrary but fixed point of Bn, write B′

n ⊆ Bn for
the chosen points, construct MST(B′

n), and add its edges to T (Bn). Since T (Bn) spans Bn

but is not necessarily the shortest such tree, so |MST(Bn)| ≤ |T (Bn)|. To bound the latter,
recall that there are n+ 1 rows, each of length at most n. Furthermore, B′

n consists of at
most n+ 1 points that fit inside a square of side length n(ν + 1), in which ν is independent
of n. Lemma 3.3 implies |MST(B′

n)| ≤ 2(ν + 1)
√
ν + 1 · n

√
n. Hence,

|MST(Bn)| ≤ (n+ 1)n+ 2(ν + 1)
√
ν + 1 · n

√
n. (12)

By symmetry, we have the same upper bound for the length of MST(Λn \Bn). Comparing
this with the minimum spanning tree of Λn, we get

|MST(Bn)| + |MST(Λn \Bn)|
|MST(Λn)| ≤ 2n2 + 2n+ 4(ν + 1)3/2 · n

√
n

n2 + n+ νn

n→∞−→ 2. (13)

For every ε > 0, we can choose n large enough so that the MST-ratio is less than 2 + ε. This
works for every lattice and partition, which implies the claimed upper bound. ◁

3.3 Lower Bound for Inf-Sup
This subsection establishes the lower bound for the infimum, over all lattices, of the supremum
MST-ratio. We do this by establishing a partition into one and three quarters that can be
defined for any lattice and has MST-ratio at least as large as claimed in Theorem 3.1.

▷ Claim 3.5. c0 ≥ 1.25.

Proof. Let u and v be two vectors spanning Λ, and let B be the sublattice spanned by 2u
and 2v. Assuming the minimum distance between two points in Λ is 1, most edges of MST(Λ)
have length 1, while most edges of MST(B) have length 2. Write Λn ⊆ Λ for the points
iu + jv, with −2n ≤ i, j ≤ 2n + 1, and Bn ⊆ Λn for the points with even i and j. Since
Bn contains only a quarter of the points, this implies limn→∞ |MST(Bn)|/|MST(Λn)| = 1

2 .
The complement of Bn contains three quarters of the points, and the edges in its minimum
spanning tree have length at least 1, which implies limn→∞ |MST(Λn \Bn)|/|MST(Λn)| ≥ 3

4 .
Hence, the MST-ratio of B ⊆ Λ is at least 1

2 + 3
4 = 1.25. ◁
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3.4 Upper Bound for Inf-Sup
The upper bound for the infimum of the supremum MST-ratio will be proved in Section 4.
This proof is carefully constructed from a network of inequalities that require attention
to detail. This subsection makes an argument why it is not unreasonable to believe that
significant short-cuts may be difficult to find.

Figure 3 Four partitions of the hexagonal lattice into two sets, in which we draw each (blue)
point of the smaller set with its hexagonal neighborhood. The proportions of blue versus white
points are 1 : 2 in the upper middle, 1 : 3 on the left, 1 : 6 on the right, and 1 : 8 in the lower middle.
The corresponding MST-ratios are approximately 1.245, 1.25, 1.236, and 1.222, in this sequence.

The lattice that is most resistant to large MST-ratios is the hexagonal lattice, Λ, of which
four different subsets, B ⊆ Λ, are illustrated as packings of hexagonal neighborhoods in
Figure 3. Starting at the upper middle, then left, then right, and finally the lower middle,
the density of the packing decreases monotonically as the minimum distance between points
of B increases from

√
3 to 2, to

√
7, and finally to 3. Correspondingly, B contains one third,

one quarter, one seventh, and one ninth of the points. Perhaps surprisingly, the MST-ratio
does not vary monotonically and attains the largest value for the subset B that contains one
quarter of the points. The purpose of Section 4 is to prove that no other subset of Λ achieves
a larger MST-ratio; that is: 1.25 is the supremum MST-ratio of the hexagonal lattice.

▷ Claim 3.6. c0 ≤ 1.25.

Because the value matches the lower bound stated in Claim 3.5, this implies that 1.25 is
indeed the infimum, over all 2-dimensional lattices, of the supremum MST-ratio. Prior
to studying the hexagonal lattice, the authors of this paper proved that the supremum
MST-ratio of the integer lattice is

√
2 – which happens to match the ratio found for random

sets [6] – and the optimizing subset are the points whose coordinates add up to even integers.
The proof is similar to the one for the hexagonal lattice presented in Section 4, and almost
as long. If instead we consider the points whose coordinates add up to odd integers, we get
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the same MST-ratio, so the integer lattice has at least two globally optimal partitions that
are far from each other if the difference is measured in terms of the color changes needed to
turn one into the other. Similarly, the hexagonal lattice has at least four globally optimal
partitions, and moving from one to the other (by flipping colors) means walking a path along
which the MST-ratio is sometimes barely below 1.25. To support the hypothesis of a rugged
but shallow landscape, we conducted computational experiments for finite subsets of the
integer lattice, which identified many local maxima that prevent local improvement strategies
from reaching any global maximum. We feel that these findings justify the exhaustive case
analysis in Section 4, and the many delicate inequalities in that section give evidence for
how close the paths get to the supremum MST-ratio.

4 Hexagonal Lattice on Torus

In this section, we prove Claim 3.6 for the hexagonal lattice on the torus. We begin by
constructing this lattice from a portion of the hexagonal lattice in the plane and proving
that the minimum spanning trees in the two topologies are not very different in length. In
the remaining subsections, we give a precise statement of the theorem that implies Claim 3.6
and prove the theorem with a packing argument in six steps.

4.1 Plane versus Torus
We consider the hexagonal lattice on the torus rather than in R2 in order to eliminate
boundary effects, which appear when we study a finite portion of the hexagonal lattice. Let
u and v be two unit vectors with a 60◦ degree angle between them, and write Λ ⊆ R2 for
the hexagonal lattice they span. For every positive n ∈ Z, let Λn ⊆ Λ contain the n2 points
a = αu + βv with 0 ≤ α, β ≤ n − 1. We write Λ′

n for the same n2 points but with the
topology of the torus, which we get by identifying a with a+ inu + jnv for all i, j ∈ Z, and
defining the distance as the minimum Euclidean distance between any two representatives.
Equivalently, consider the rhombus of points φu +ψv for real coefficients − 1

2 ≤ φ,ψ ≤ n− 1
2 ,

Figure 4 The hexagonal lattice of 36 points on the torus, obtained by gluing opposite sides of
the rhombus. The sublattice with twice the distance between neighboring points in shown in blue.

and glue this rhombus along opposite sides as illustrated for n = 6 in Figure 4. Call the
boundary of this rhombus the seam. Its length is 4n in the plane but only 2n on the torus
since the sides are glued in pairs. Note also that every point of Λ has distance at least

√
3/4

from the nearest point in the seam.

▶ Lemma 4.1. Let Λ ⊆ R2 be the hexagonal lattice, Λn ⊆ Λ the subset of n2 points, and
Λ′

n the same n2 points but on the torus, as described above. For any subset Bn ⊆ Λn and
the corresponding subset B′

n ⊆ Λ′
n on the torus, the lengths of the minimum spanning trees

satisfy |MST(B′
n)| ≤ |MST(Bn)| ≤ |MST(B′

n)| + 32
√

2 · n
√
n.
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Proof. Fix two minimum spanning trees, T of Bn in R2 and T ′ of B′
n on the torus. Since

the distances on the torus are smaller than or equal to those in R2, we have |T ′| ≤ |T |, which
is the first claimed inequality. Let E′ be the edges of T ′ that have the same length in both
topologies, and let E′′ be the other edges of T ′, which are shorter on the torus than in R2.
To draw an edge of E′′ in the plane so its length matches the length on the torus, we need to
connect representatives of the endpoints that lie in different rhombi. Assuming one endpoint
is in Λn, this edge crosses the seam. In contrast, every edge in E′ can be drawn between
two points of Λn, so without crossing the seam. We will prove shortly that the distance
between two crossings measured along the seam is at least 1

2 . Since the length of the seam is
2n, this implies that E′′ contains at most 4n edges. Let V ′′ ⊆ Λn be the set of at most 8n
endpoints of the edges in E′′, and let T ′′ be a minimum spanning tree of V ′′, with distances
measured in R2. Since Λn easily fits inside a square with sides of length 8n, Lemma 3.3
implies |T ′′| ≤ 32

√
2 · n

√
n. The edges in E′ together with the edges of T ′′ form a connected

graph with vertices Λn. Hence,

|T | ≤ |T ′| + |T ′′| ≤ |T ′| + 32
√

2 · n
√
n, (14)

which is the second claimed inequality. It remains to show that the distance between two
crossings along the seam is at least 1

2 . Let ab and xy be two edges in E′′, and recall that
the greedy construction of the minimum spanning tree prohibits x and y to lie inside the
smallest circle that passes through a and b, and vice versa. If the edges share an endpoint,
then the angle between them is at least 60◦. Since the common endpoint is at distance at
least

√
3/4 from the seam, this implies the claimed lower bound on the distance between the

two crossings. So assume a, b, x, y are distinct, and let c ∈ ab and z ∈ xy be the points that
minimize the distance between the edges, and observe that ∥c− z∥ is a lower bound for the
distance between the crossings. At least one of c and z must be an endpoint, so suppose
z = x. But since x lies outside the smallest circle of a and b, and outside the unit circles
centered at a and b, the distance of x to any point of ab is at least 1. ◀

The inequalities in Lemma 3.3 generalize to all 2-dimensional lattices. Letting u and
v be two shortest vectors that span a lattice, and assuming 1 = ∥u∥ ≤ ∥v∥ = ν, we get
2(4 + 4ν)3/2 · n

√
n as an upper bound for the difference in length, in which we compare a

rhombus of n× n points in R2 and on the torus, as before.

4.2 Statement of Theorem
We fix n to an even integer and write ∆ = Λ′

n for the hexagonal lattice on the torus. Since
n is even, ∆1 = {2x | x ∈ ∆} is a hexagonal sublattice of ∆, and we set ∆3 = ∆ \ ∆1; see
Figure 4. The lengths of the three minimum spanning trees are easy to determine because
they use only the shortest available edges, which have length 1 for ∆ and ∆3, and length 2
for ∆1. The MST-ratio is therefore

µ(∆,∆1) = |MST(∆1)| + |MST(∆3)|
|MST(∆)| =

2
(
n2/4 − 1

)
+

(
3n2/4 − 1

)
n2 − 1

n→∞−→ 1.25. (15)

Call an edge short if its length is 1. All other edges have length larger than the desired
average, which is 5

4 = 1.25, so we call them long. While MST(∆3) has only short edges, and
MST(∆1) uses only the shortest edges connecting its points, we claim that their combined
length is as large as it can be.

▶ Theorem 4.2. Let ∆ be a hexagonal lattice on the torus. Then the maximum MST-ratio
of ∆ converges to 5

4 = 1.25 from below.
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The proof consists of six steps, which are presented in the same number of subsections: 4.3
introduces the hexagonal distance, compares its MST with the Euclidean MST, and uses the
former to formulate the proof strategy; 4.4 introduces the main tool, which are hexagonal-
neighborhoods of the lattice points; 4.5 constructs a hierarchy of such neighborhoods aimed
at counting the short edges; 4.6 introduces so-called satellites, which provide additional short
edges needed in the proof; 4.7 forms loop-free subgraphs of short edges and bounds their
sizes; and 4.8 does the final accounting while paying special attention to the cases in which
all long edges have length between

√
3 and 3. Throughout this proof, we use the fact that

the minimum spanning tree can be computed by greedily adding the shortest available edge
that does not form a cycle to the tree [9, 11].

4.3 Hexagonal Distance and Proof Strategy
It is convenient to write the points in ∆ with three integer coordinates. To explain this, let

x = 1√
3 (0, 1) , y = 1√

3

(
−

√
3

2 ,−
1
2

)
, z = 1√

3

( √
3

2 ,−
1
2

)
(16)

be three vectors, each of length
√

3/3, that mutually enclose an angle of 120◦. These are
the projections of the unit coordinate vectors of R3 onto the plane normal to the diagonal
direction, scaled such that the three points are mutually one unit of distance apart. The
plane consists of all points u = ax + by + cz for which a+ b+ c = 0, and such a point belongs
to the hexagonal lattice iff a, b, c ∈ Z; see Figure 5. Given a second point, v = αx + βy + γz,
we write i = a− α, j = b− β, k = c− γ to compute the squared Euclidean distance between
u and v. Since x2 = y2 = z2 = 1

3 and xy = yz = zx = − 1
6 , we get

∥u− v∥2 = ∥ix + jy + kz∥2 = 1
3 (i2 + j2 + k2) − 1

3 (ij + ik + jk) = i2 + ij + j2, (17)

in which we get the final expression using k = −(i+ j). For points of the hexagonal lattice, i
and j are integers, and so is the squared Euclidean distance between them. It follows that
the minimum distance between two points in ∆ is 1.

z − x

x

y z

y − z z − y

x − yx − z

y − x

Figure 5 The unit disk under the hexagonal distance in the plane. The edges that connect the
origin to the corners at ±(x − y), ±(y − z), ±(z − x) decompose the hexagon into six equilateral
triangles, whose barycenters are ±x, ±y, ±z.

We adapt the notion of distance to construct neighborhoods in the hexagonal lattice. By
definition, the hexagonal distance between points u = ax + by + cz and v = αx + βy + γz is

∥u− v∥hex = max{|a− α|, |b− β|, |c− γ|} = max{|i|, |j|, |i+ j|}. (18)

The unit disk under this distance consists of all points with hexagonal distance at most 1
from the origin: H = {u ∈ R2 | ∥u− 0∥hex ≤ 1}. It is the regular hexagon with unit length
sides that is the convex hull of the points ±(x − y), ±(y − z), ±(z − x); see Figure 5. For
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B ⊆ ∆, we write MSThex(B) for the spanning tree that minimizes the hexagonal length. We
construct it by adding the edges in sequence of non-decreasing hexagonal length, breaking
ties with Euclidean length, and breaking the remaining ties arbitrarily. Since MSThex(B) is
a spanning tree but not necessarily the one that minimizes Euclidean length, we have

|MST(B)| ≤ |MSThex(B)|, (19)

in which we measure the Euclidean length on both sides. To prove Theorem 4.2, we show
that for every B ⊆ ∆, the average (Euclidean) length of the long edges in MSThex(B) and
the short edges in MSThex(∆ \B) is at most 5

4 . Interchanging B and ∆ \B, we get the same
relation by symmetry. Using (19), this implies

|MST(B)| + |MST(∆ \B)| ≤ |MSThex(B)| + |MSThex(∆ \B)| ≤ 5
4 (n2 − 2). (20)

Compare this with (15), which establishes |MST(∆1)|+|MST(∆3)| = 5
4n

2−3 for the partition
∆ = ∆1 ⊔ ∆3. The right-hand side differs from the upper bound in (20) by only a small
additive constant. We thus conclude that the maximum MST-ratio of ∆ converges to 5

4 from
below, as claimed by Theorem 4.2.

4.4 Hierarchy of Habitats
Let Tℓ be the subset of edges in MSThex(B) whose hexagonal lengths are at most ℓ, together
with the endpoints of these edges. For example, T0 has zero edges, T1 consist of all short
edges, and Tℓ = MSThex(B) for sufficiently large ℓ. All edges connecting points in different
components of Tℓ have hexagonal length ℓ+ 1 or larger. We thus write kH for the scaled
copy of the unit disk and call

Dk(B) =
⋃

u∈B
(kH + u) (21)

the k-th thickening of B, in which kH + u is the translate of kH whose center is u. As
illustrated in Figure 6, the k-th thickenings of points u and v overlap, touch, are disjoint if
the hexagonal distance between u and v is less than, equal to, larger than 2k, respectively.

The boundary of kH passes through 6k points of the hexagonal lattice, which we call
the vertices of kH. Furthermore, we call the 6k (short) edges that connect these points in
cyclic order the edges of kH. Let Bk ⊆ B be the vertex set of a component of T2k−1, and
observe that for all u, v ∈ Bk there is a sequence of points u = x1, x2, . . . , xm = v in Bk such
that kH + xi and kH + xi+1 overlap for all 1 ≤ i ≤ m − 1. We define the frontier of the
component, denoted ∂Dk(Bk), as the lattice points and the connecting (short) edges in the
boundary of Dk(Bk). Furthermore, ∂Dk(B) is the union of frontiers of the components of
T2k−1. These notions are illustrated in Figure 6, which shows ∂D1(B) and ∂D2(B) for six
marked points. Note that the edge shared by H + a and H + b is part of ∂D1(B).

4.5 Subdivided Foreground and Background
Consider the 1-st thickening of B, which for the time being we call the foreground. Letting
B1 ⊆ B2 be the vertex sets of two nested components of T1 and T2, we call D1(B1) a room
and D1(B2) a block of the foreground. We say two rooms are adjacent if they share at least
one edge. In Figure 6, there are five rooms, two of which are adjacent, and three blocks, one
of which contains three rooms.

To make a finer distinction, observe that for any edge, its Euclidean length is smaller
than or equal to the hexagonal length. The two notions agree on edges with slope 0,

√
3,

and −
√

3. Consider T2 and T3 after removing all edges whose Euclidean length equals 2

GD 2024



3:12 The Euclidean MST-Ratio of Bi-Colored Lattices

c

b

fe

a

d

Figure 6 The blue 1-st thickening and the pink 2-nd thickening of B = {a, b, c, d, e, f} in the
hexagonal lattice. H + a and H + b share an edge and therefore form two rooms in a common house,
while H + e and H + f overlap and thus form a one-room house in D1(B). These two houses form a
block, and together with H + d, they form a compound of two blocks. H + c is a room, a house, a
block, and a compound by itself. The two compounds lie in the interior of a room in D2(B).

and 3, respectively, and let B′
2 and B′

3 be the vertex sets of the components that satisfy
B1 ⊆ B′

2 ⊆ B2 ⊆ B′
3. Observe that any two rooms in D1(B′

2) have a sequence of pairwise
adjacent rooms connecting them. We therefore call D1(B′

2) a house. For comparison, any two
rooms in D1(B2) have a sequence of rooms connecting them such that any two consecutive
rooms share at least a vertex but not necessarily a full edge. Similarly, for any two blocks in
D1(B′

3), there is a sequence of blocks connecting them such that the channel separating any
two consecutive blocks at its narrowest place is only

√
3/2 wide. We therefore call D1(B′

3)
a compound; see Figure 6 for examples. For comparison, the channel that separates two
compounds is at its narrowest place at least one unit of distance wide. A few observations:

(i) all vertices of ∂D1(B) are points in ∆ \B;
(ii) all edges of ∂D1(B) are short;
(iii) the frontier of a room consists of at least six (short) edges.

We call the complement of the foreground the background, and the components of the
background its backyards. We say a backyard is adjacent to a house if the two share a
non-empty portion of their boundary. There are configurations in which the number of
backyards is twice the number of houses; see Figure 3 on the left, where each backyard
is adjacent to three houses, and each house is adjacent to six backyards. In general, we
distinguish between backyards adjacent to at most two and at least three houses, denoting
their numbers α1 and β1, respectively. We prove an upper bound for β1 in terms of the
number of houses and blocks.

▶ Lemma 4.3. Given h1 houses arranged in b1 blocks, the number of backyards adjacent to
three or more houses satisfies β1 ≤ 2h1 − 2b1 + 2.

Proof. We construct a graph G = G(B) on the torus by placing a node inside each house,
and whenever two houses meet at a boundary vertex, we connect the corresponding nodes
with a curved arc that passes through the shared vertex. This can be done such that no
two of the arcs cross and each face of G contains one backyard. A face bounded by a single
arc (loop) or two arcs (multi-arcs) contains a backyard adjacent to at most two houses and
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thus does not count toward β1. We remove this face by deleting the loop or one of the
two multi-arcs. The resulting graph has h1 nodes, b1 components, and β1 faces. Write a1
for the number of arcs. If the graph is connected and all faces are bounded by three arcs,
we have h1 − a1 + β1 = 0 because the Euler characteristic of the torus is 0. Whenever we
remove an arc from this graph, we either merge two faces or split a component, but it is also
possible that the removal of the arc has neither of those two side-effects. Hence, we have
h1 − a1 + β1 ≥ b1 − 1 in the general case. Since 2a1 ≥ 3β1, this implies β1 ≤ 2h1 − 2b1 + 2,
as claimed. ◀

4.6 Satellites
By definition, compounds cannot be packed as tightly as blocks; see Figure 3 with lattice
points between the compounds in the lower middle but no such points between the blocks on
the right. Recall that each component of D1(B) is contained in a room of D2(B). For each
such room, we single out the largest compound it contains – breaking ties arbitrarily – and
call this the big compound of the room. All others are small compounds of the room. We
refer to certain lattice points close to one or more compounds as satellites. The targeted
lattice points are at distance

√
3/2 outside D1(B) and either on the boundary or in the

interior of D2(B).

Figure 7 From left to right: a single, a double, another double, and a triple satellite in red. In
the left two cases, the satellite belongs to the frontier of a room of the 2-nd thickening of B, while
in the right two cases, the satellite lies in the interior of such a room.

The difference between small and large compounds influences which lattice points we
call satellites. For each small compound we find three satellites as follows: sandwich the
compound between three lines with slopes 0,±

√
3, choose a (short) edge as the basis of an

equilateral triangle outside the compound on each line, and pick the vertex of this triangle
opposite to the basis as a satellite. Observe that the Euclidean distance between any two
satellites of the same compound is at least 3. In contrast, we pick six lattice points as the
satellites of the big compound by sandwiching it between six lines, two each of slope 0,±

√
3,

choosing one basis on each line, and picking the vertex of the equilateral triangle opposite to
the basis as a satellite. The Euclidean distance between any two such satellites is at least

√
3.

As illustrated in Figure 7, a lattice point can be a satellite of one, two, or three compounds
in the same room. Accordingly, we call the point a single, double, or triple satellite of the
room, respectively. A single satellite is necessarily a vertex on the frontier of the room, a
triple satellite is necessarily in the interior of the room, and a double satellite can be one
or the other. For a room, R, we write s(R) and d(R) for the number of single and double
satellites on its frontier, and e(R) and t(R) for the number of double and triple satellites in its
interior. Summing over all rooms in D2(B), we set s1 =

∑
s(R), d1 =

∑
d(R), e1 =

∑
e(R),

t1 =
∑
t(R), and refer to s1, d1, e1, t1 as the satellite sums of D2(B). Furthermore, let

c1 be the number of compounds of D1(B) and r2 the number of rooms of D2(B). Since
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s(R) + 2d(R) + 2e(R) + 3t(R) is three times the number of small compounds in R plus six
for the big compound, the satellite sums satisfy a linear relation, which we state together
with a property of short edges connecting satellites in the interior:

(iv) if c1 > 1, then the satellite sums of D2(B) satisfy s1 + 2d1 + 2e1 + 3t1 = 3c1 + 3r2;
(v) any unit length edge connecting blocks of D1(B) inside a room of D2(B) with each

other or to satellites in the interior of this room is contained in the interior of this room.

By construction, there are s(R) + d(R) satellites that are vertices of R. We prove a stronger
lower bound on the number of vertices, which also strengthens Claim (iii).

▶ Lemma 4.4. Assume r2 ≥ 2 and let R be a room of D2(B). Then the frontier of R has at
least 6 + 2

3s(R) + 4
3d(R) vertices.

Proof. Let p, s, d be the number of non-satellite lattice points, single satellites, double
satellites, and write per(R) for the perimeter, which is the length of or the number of (short)
edges in the frontier of R. To begin note that a satellite in the frontier of R is in the boundary
of at most one backyard. This is because the external angle is 180◦ at a single satellite and
60◦ at a double satellite. The internal angle at any vertex of another room is at least 120◦,
so there is not enough space for two backyards around a satellite; see the left two panels
in Figure 7. This implies that we may assume that the frontier of R is a simple polygon,
or a collection of such. Indeed, if the polygon touches itself at a vertex, this must be a
non-satellite, which we can duplicate, and if the polygon touches itself along a sequence of
edges, we can remove these edges and their shared vertices. This operation neither changes
the number of single and double satellites, nor does it increase the perimeter. A room that
contains only one compound can have perimeter as small as 12, but a room with at least
two compounds has significantly larger perimeter, certainly larger than 15. For per(R) ≤ 15,
we thus get only one compound and, by construction, only 6 single and no double satellites.
This implies the claimed inequality. We therefore assume (22), aim at proving (23), and note
that (24) follows as the convex combination of (22) and (23) with coefficients 1

3 and 2
3 :

per(R) ≥ 16; (22)
per(R) ≥ 1 + s+ 2d; (23)
per(R) ≥ 1

3 16 + 2
3 (1 + d+ 2d) = 6 + 2

3s+ 4
3d. (24)

It remains to prove (23). Call the endpoints of an edge in the frontier of R neighbors. Two
neighbors cannot both be double satellites, else they would belong to a common compound,
which contradicts that the distance between them is at least

√
3. Furthermore, if a double

satellite neighbors a single satellite, then this is only possible if they are vertices of an
equilateral triangle bounding a backyard, as in Figure 8 on the left. For lack of space around
this triangle, its third vertex is a non-satellite. The contribution of these three vertices to
the right-hand side of (23) is 2 + 1 + 0 = 3. Hence, we can remove the three edges from the
left-hand side and the three vertices from the right-hand side of (23) without affecting the
validity of the inequality. As illustrated in Figure 8 on the left, two such triangles may touch
at a non-satellite vertex, but this does not matter and we can remove the edges and vertices
of both triangles from (23).

We can therefore assume that both neighbors of a double satellite are non-satellites.
Hence, between any two double satellites there is at least one non-satellite, which implies
p ≥ d. But p = d only if p = d = 0 or there is strict alternation between double satellites
and non-satellites. It is not possible that all vertices in the frontier are single satellites,
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because this contradicts that the distance between any two of them is at least
√

3. Strict
alternation is possible, but only for the polygon of 12 edges shown in Figure 8 on the right.
By assumption, D2(B) has at least two rooms, so not all backyards of R can be bounded by
such 12-gons. But this implies p ≥ d+ 1, so per(R) = p+ s+ d ≥ 1 + s+ 2d, as claimed. ◀

To generalize the above concepts to k ≥ 1, we let B2k−1 ⊆ B2k be the vertex sets of
two nested components of T2k−1 and T2k, and call Dk(B2k−1) a room and Dk(B2k) a block
of Dk(B). The rooms that share edges join to form houses, and the blocks separated by
channels that are only

√
3/2 wide join to form compounds. Write rk, hk, bk, ck for the number

of rooms, houses, blocks, compounds of Dk(B), αk, βk for the number of backyards adjacent
to at most 2, at least 3 houses, and sk, dk, ek, tk for the satellite sums of Dk+1(B). We can
now extend Claims (i) to (v) and Lemmas 4.3 and 4.4 merely by substituting Dk(B) for
D1(B), βk for β1, ck for c1, etc. In particular, the extension of Claim (iv) to

sk + 2dk + 2ek + 3tk = 3ck + 3rk+1 (25)

assuming ck > 1 will be needed shortly. We note that (25) and the extension of Lemma 4.4
can be strengthened, but it is not necessary for the purpose of proving Theorem 4.2.

4.7 Loop-free Subgraphs
Let Vk be the vertices of Dk(B) together with all double and triple satellites that lie in the
interior of rooms in Dk+1(B), and note that Vj ∩ Vk = ∅ whenever j ≠ k. Let V ′

k be Vk

together with the remaining satellites of Dk(B), and note that Vj ∩ V ′
k = ∅ if j < k, but V ′

k

and Vk+1 may share points. To account for this difference, let ℓ be the smallest integer such
that rℓ+1 = 1, and define

V =


V1 if ℓ = 0;
V1 ⊔ . . . ⊔ Vℓ−1 ⊔ Vℓ if ℓ ≥ 1 and cℓ = 1;
V1 ⊔ . . . ⊔ Vℓ−1 ⊔ V ′

ℓ if ℓ ≥ 1 and cℓ > 1.
(26)

By construction, all points in V belong to ∆ \B, and all unit length edges connecting these
points are candidates for MSThex(∆ \B). We therefore let U be a maximal loop-free graph
whose vertices are the points in V and whose edges all have unit length. Since U has no
loops, there is an MSThex(∆ \B) that contains U as a subgraph. We are therefore motivated
to study the number of edges in U . Using a slight abuse of notation, we denote this number
#U . For every k, let Uk and U ′

k be the subgraphs of U induced by Vk and V ′
k, respectively.

We first count the edges in U1 and U ′
1 in Lemma 4.5.

Figure 8 Left: two touching triangular backyards. Their shared vertex is a non-satellite, the
two red vertices are double satellites, and the two pink vertices are single satellites. Right: unique
polygon with strictly alternating double satellites and non-satellites. On both sides, all (partially
drawn) blue compounds are different and belong to the same (partially drawn) pink room.
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▶ Lemma 4.5. Let r1 ≥ h1 ≥ b1 ≥ c1 be the number of rooms, houses, blocks, and compounds
of D1(B), and s1, d1, e1, t1 the satellite sums of D2(B). Then

#U1 ≥ 2r1 + h1 + 3b1 + (e1 + t1) − r2 − 4; (27)
#U ′

1 ≥ 2r1 + h1 + 3b1 + (s1 + d1 + e1 + t1) − 5, (28)

in which we assume c1 > r2 = 1 for the second inequality.

Proof. We argue in three steps: first counting edges in ∂D1(B), second counting edges
connecting blocks, and third counting edges connecting the satellites. In each case, we count
only unit length edges, and we make sure that the edges we count do not form loops.

For the first step, it is convenient to count half-edges, which are the two sides of an edge.
These two sides either face two rooms, or one faces a room and the other faces the background.
For a house, H, we make its r(H) rooms accessible from the outside by removing r(H) − 1
edges shared by adjacent rooms plus 1 edge shared with the background. By (iii), each room
was originally faced by at least 6 half-edges, so we still have at least 4r(H) + 1 of them left.
Doing this for each house, we make all r1 rooms accessible from the background, and we
have at least 4r1 + h1 half-edges left facing these rooms.

Observe that the convex hull of a house contains at least six of the (short) edges that
bound the house. One may have been removed, so we still have at least 5 half-edges facing
the background. Keeping in mind that the cycles that bound backyards still need to be
opened, we now have at least 4r1 +h1 + 5h1 half-edges and therefore at least 2r1 + 3h1 edges.
If a backyard is adjacent to at most two houses, then it has two consecutive (short) edges
that enclose an angle less than π and that are both shared with the same house. Hence, the
complementary angle on the side of the house is larger than π, which implies that these two
edges cannot belong to the convex hull of the house. We remove one of them and use the
half-edge facing the backyard of the other to compensate for the removed half-edge facing
the room. Since both edges have not yet been accounted for, we still have at least 2r1 + 3h1
edges. If a backyard is adjacent to three or more houses, we also remove one edge, but this
time count one less. Recalling that β1 is the number of such backyards, we still have at
least 2r1 + 3h1 − β1 ≥ 2r1 + h1 + 2b1 − 2 edges, in which we get the right-hand side from
Lemma 4.3.

For the second step, we connect the b(R) blocks inside a common room of D2(B) with
b(R) − 1 short edges. A total of b1 blocks are hierarchically organized in r2 rooms, so we add
b1 − r2 short edges to those counted in the first step. Similarly, we add e1 + t1 short edges
that connect the double and triple satellites in the interiors of the rooms to the vertices in the
frontier of D1(B). Finally, we remove two edges to open the meridian and longitudinal cycles
of the graph, if they exist. The final count is therefore at least 2r1 +h1 +3b1 +(e1 +t1)−r2 −4,
which is the claimed lower bound for #U1.

For the third step, we assume c1 > r2 = 1. Since there is only one room, there are no
shared satellites between different rooms, and we can connect them to the frontier of D1(B)
with s1 + d1 short edges without creating any loop. This implies that the number of edges in
U ′

1 is at least 2r1 + h1 + 3b1 + (s1 + d1 + e1 + t1) − 5, as claimed. ◀

The bounds in Lemma 4.5 generalize to k > 1, but there are differences. Most important
is the existence of a loop-free graph for thickness k − 1. In particular, we have satellites that
affect the structure and size of Uk and U ′

k.
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▶ Lemma 4.6. Let rk ≥ hk ≥ bk ≥ ck be the number of rooms, houses, blocks, compounds of
Dk(B), and sk, dk, ek, tk the satellite sums of Dk+1(B). Then for k ≥ 2, we have

#Uk ≥ (3rk + 1
3sk−1 + 2

3dk−1) + 4hk + 3bk + (ek + tk) − rk+1 − 4; (29)
#U ′

k ≥ (3rk + 1
3sk−1 + 2

3dk−1) + 4hk + 3bk + (sk + dk + ek + tk) − 5, (30)

in which we assume ck > rk+1 = 1 for the second inequality.

Proof. We argue again in three steps: first counting edges in ∂Dk(B), second counting edges
connecting blocks, and third counting edges connecting to the satellites. Each of these three
steps is moderately more involved than the corresponding step in the proof of Lemma 4.5,
and we emphasize the differences.

The first step starts the construction with Lemma 4.4, which implies that the rooms
in Dk(B) are faced by a total of at least 6rk + 2

3sk−1 + 4
3dk−1 half-edges. After making

all rooms accessible to the background, we still have at least (4rk + 2
3sk−1 + 4

3dk−1) + hk

half-edges. Adding the at least 11 half-edges per house facing the background, we have at
least (4rk + 2

3sk−1 + 4
3dk−1) + 12hk half-edges and thus at least (2rk + 1

3sk−1 + 2
3dk−1) + 6hk

edges. Let αk and βk be the number of backyards adjacent to at most two and at least three
houses, respectively. By extension of Lemma 4.3, we have βk ≤ 2hk − 2bk + 2. We remove an
edge per backyard, which for the first type does not affect the current edge count, while the
backyards of the second type reduce the count to (2rk + 1

3sk−1 + 2
3dk−1) + 4hk + 2bk − 2.

For the second step, we connect the blocks of Dk(B) inside a common room of Dk+1(B)
with bk − rk+1 edges. Furthermore, we add rk edges to connect the blocks of Dk−1(B) inside
a common room of Dk(B) – which inductively are already connected to each other – to the
frontier of this room, and we add at least ek + tk edges connecting to the triple satellites
of compounds inside the rooms of Dk+1(B). After removing two additional edges to break
the meridian and longitudinal loops, if they exist, we arrive at a lower bound of at least
(3rk + 1

3sk−1 + 2
3dk−1) + 4hk + 3bk + (ek + tk) − rk+1 − 4 edges in Uk.

For the third step, we assume ck > rk+1 = 1, in which case we can add at least sk + dk

edges connecting to the single and double satellites. This implies #U ′
k ≥ (3rk + 1

3sk−1 +
2
3dk−1) + 4hk + 3bk + (sk + dk + ek + tk) − 5. ◀

4.8 Book-keeping
The goal is to show that the average (Euclidean) length of the long edges in MSThex(B)
and the short edges in MSThex(∆ \B) is at most 5

4 . We thus assign a credit of α = 1
4 to

every short edge and set the cost of a long edge to be its Euclidean length minus 5
4 . For

convenience, we set the value of α to 1 Euro and convert the costs into Euros; see Table 1.

Table 1 The Euclidean lengths of the edges with hexagonal lengths 2 to 5, and their costs in
Euros, each truncated beyond the first two digits after the decimal point.

hex 2 2 3 3 4 4 4 5 5 5
L2

√
3

√
4

√
7

√
9

√
12

√
13

√
16

√
19

√
21

√
25

cost 1.92 3.00 5.58 7.00 8.85 9.42 11.00 12.43 13.33 15.00

For the accounting, we need the costs of the last two edges for each hexagonal length.
Letting wk, xk and yk, zk be the costs of the two longest edges with hexagonal length 2k and
2k + 1, respectively, we have
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wk = 1
α

[√
4k2 − 2k + 1 − 5

4

]
, xk = 1

α

[
2k − 5

4
]
, (31)

yk = 1
α

[√
4k2 + 2k + 1 − 5

4

]
, zk = 1

α

[
(2k + 1) − 5

4
]

; (32)

see Table 1, which shows the values of w1, x1, y1, z1, w2, x2, y2, z2 in boldface. Listing the
edges in sequence, we need bounds for the cost differences between consecutive edges:

2 ≤ wk − zk−1 ≤ 2.928 . . . ; 1.071 . . . ≤ xk − wk ≤ 2; (33)
2 ≤ yk − xk ≤ 2.583 . . . ; 1.414 . . . ≤ zk − yk ≤ 2, (34)

which are not difficult to prove using elementary computations. We use accounting with
credits and costs to prove that the average (Euclidean) edge length of the two minimum
spanning trees is less than 5

4 . Note that the hexagonal lattice on the torus is obtained by
gluing a regular hexagonal portion of the Euclidean hexagonal lattice along opposite sides. If
we choose 12n2 points, then this hexagon has 2n+ 1 vertices and therefore 2n edges per side.
Taking only every other point – so 3n2 of the 12n2 – we still get an integer number of edges
per side. It follows that the 3n2 points are the minority color in a 1 : 3 coloring of the 12n2

points.

▶ Lemma 4.7. Let ∆ be the hexagonal lattice with 12n2 points and unit minimum distance
on the torus, and B ⊆ ∆. Then |MST(B)| + |MST(∆ \B)| ≤ 15n2 − 5

2 .

Proof. By (19), it suffices to prove the inequality for MSThex(B) and MSThex(∆ \B). For
k ≥ 1, we compare the edges of hexagonal length 2k and 2k + 1 in MSThex(B) with the
(short) edges in Uk or possibly in U ′

k. Since T2k+1 \ T2k−1 is the set of these long edges, we
can do this in one step by comparing T2ℓ+1 with U , for sufficiently large ℓ and U as defined
right after the definition of V in (26). Recall that rk is the number of components of T2k−1
or, equivalently, the number of rooms of Dk(B). These rooms are organized hierarchically
into hk houses, bk blocks, and ck compounds. Hence, r1 ≥ h1 ≥ b1 ≥ c1 ≥ r2, etc. This
implies that there are

r1 − h1 edges of hexagonal length 2 and Euclidean length less than 2 that connect the
rooms pairwise inside the h1 houses;
h1 − b1 edges of hexagonal and Euclidean length 2 that connect the houses pairwise inside
the b1 blocks;
b1 − c1 edges of hexagonal length 3 and Euclidean length less than 3 that connect the
blocks pairwise inside the c1 compounds;
c1 − r2 edges of hexagonal and Euclidean length 3 that connect the compounds pairwise
inside the r2 rooms of D2(B), etc.

The costs for these edges are w1, x1, y1, z1, respectively. Setting z0 = 0, and generalizing to
k ≥ 1, we observe that the total cost satisfies

cost ≤
∑

k≥1
[wk(rk − hk) + xk(hk − bk) + yk(bk − ck) + zk(ck − rk+1)] (35)

=
∑

k≥1
[(wk − zk−1)rk + (xk − wk)hk + (yk − xk)bk + (zk − yk)ck] (36)

≤ [2r1 + h1 + 3b1 + c1 − 7] +
∑

k≥2
[3rk + hk + 3bk + ck − 8]. (37)

To see how (37) derives from (36), we first make the sums finite by letting ℓ be the smallest
integer such that rℓ+1 = 1. Then the last non-zero term in (35) is zℓ(cℓ − rℓ+1) and,
correspondingly, the last term in (36) is zℓrℓ+1 = zℓ, which by (32) is equal to 8ℓ−1. But this is
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the same as the sum of constants in (37). Furthermore, we note that if rk = hk = bk = ck = 1,
for every k, then (36) vanishes because (35) vanishes, and (37) vanishes because for any k the
corresponding sum of four terms minus the constant vanishes. Hence, the difference between
(37) and (36) vanishes. To prove the inequality, we reintroduce the variables, which satisfy
r1 ≥ h1 ≥ . . . ≥ cℓ, and look at their coefficients. The first is 2 − w1 + z0, which is positive
because w1 < 2 and z0 = 0. Indeed, using the inequalities in (33) and (34), we observe
that the coefficients alternate between positive and negative. For example, 3 − wk + zk−1
is positive because wk − zk−1 < 3, and 1 − xk + wk is negative because xk − wk > 1. This
implies that the difference is non-negative, so (37) follows.

The difficult cases are the edges of hexagonal lengths 2 and 3. We therefore consider the
special cases in which all edges in MSThex(B) have Euclidean length at most

√
3,

√
4,

√
7,

√
9,

so h1 = 1, b1 = 1, c1 = 1, r2 = 1, respectively; see Figure 3. From (37), we get

cost ≤


2r1 − 2 if r1 > h1 = 1;
2r1 + h1 − 3 if h1 > b1 = 1;
2r1 + h1 + 3b1 − 6 if b1 > c1 = 1;
2r1 + h1 + 3b1 + c1 − 7 if c1 > r2 = 1.

(38)

The cost needs to be paid from the credit contributed by the (short) edges in U , which
in these four cases is either U1 or U ′

1. Recall that after the conversion, each short edge
contributes one Euro of credit, so Lemma 4.5 provides lower bounds:

credit ≥


2r1 − 1 if r1 > h1 = 1;
2r1 + h1 − 2 if h1 > b1 = 1;
2r1 + h1 + 3b1 − 5 if b1 > c1 = 1;
2r1 + h1 + 3b1 + (s1 + d1 + e1 + t1) − 5 if c1 > r2 = 1.

(39)

Comparing (39) with (38), we get cost ≤ credit trivially in the first three cases. Using
Claim (iv), we get use s1 + d1 + e1 + t1 ≥ c1 ≥ (s1 + 2d1 + 2e1 + 3t1) − r2 = c1, which
supports the same in the fourth case. To compare the cost with the credit in the remaining
cases, we use Lemmas 4.5 and 4.6 to compute a lower bound for the latter, assuming that
ℓ > 1 is the smallest integer for which rℓ+1 = 1:

credit ≥ #U1 +
∑ℓ−1

k=2
#Uk + #U ′

ℓ (40)

≥
[
2r1 + h1 + 3b1 + ( 1

3s1 + 2
3d1 + e1 + t1) − r2 − 4

]
+

∑ℓ−1

k=2

[
3rk + 4hk + 3bk + ( 1

3sk + 2
3dk + ek + tk) − rk+1 − 4

]
+ [3rℓ + 4hℓ + 3bℓ + (sℓ + dℓ + eℓ + tℓ) − 5] , (41)

in which we group the terms with index k − 1 that appear in the bounds for #Uk and #U ′
k

with the terms that have the same index. Using the extension of Claim (iv) to k ≥ 1 stated
in (25), we get 1

3sk + 2
3dk + ek + tk ≥ 1

3 (sk + 2dk + 2ek + 3tk) = ck + rk+1, so the lower
bound in (41) exceeds the upper bound in (37). Hence, cost ≤ credit. In other words, the
average Euclidean length of the edges in MSThex(B) and MSThex(∆ \B) is at most 5

4 . It
follows that their total Euclidean length is at most 5

4 (n2 − 2), which by (19) implies the same
for MST(B) and MST(∆ \B). ◀

By Lemma 4.7, the average Euclidean length of the edges in MST(B) and MST(∆ \B)
is less than 5

4 . Together with (15), this implies Theorem 4.2.

GD 2024



3:20 The Euclidean MST-Ratio of Bi-Colored Lattices

5 Discussion

This paper proves bounds on the supremum and infimum of the maximum MST-ratio for
finite sets, as well as of the supremum MST-ratio for lattices in the plane. There are many
directions of generalization, and their connection to the topological analysis of colored point
sets started in [5] provides a potential path to relevance outside of mathematics.

What about sets in the plane that are less restrictive than lattices but still disallow
arbitrarily dense clusters of points, such as periodic sets or Delone sets? A first result in
this direction is the lower bound of 1 + 1/(11(2c+ 1)2) for the maximum MST-ratio of a
set of n points with spread at most c

√
n proved in [6].

What about partitions of A ⊆ R2 into three or more sets? For example, is it true that
the supremum MST-ratio of the hexagonal lattice partitioned into three subsets is

√
3, as

realized by the unique partition into three congruent hexagonal grids? Is
√

3 the infimum,
over all lattices in R2, of the supremum, over all partitions into three subsets?
What about three and higher dimensions? Consider for example the FCC lattice in
R3 (all integer points whose sums of coordinates are even), and partition it into 2FCC
and the rest. The MST-ratio of this example is 9

8 = 1.125. Is it true that this is the
supremum MST-ratio of the FCC lattice? Is 1.125 the infimum, over all lattices in R3, of
the supremum, over all partitions into two subsets?

Beyond these extensions in discrete geometry, it would be interesting to study the MST-ratio
stochastically, to determine the computational complexity of the maximum MST-ratio, and
to frame notions of mingling as measured by homology classes of dimension 1 and higher in
elementary geometric terms.
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A Connection to Chromatic Persistence

As mentioned in the introduction, the study of the MST-ratio is motivated by a recent topolo-
gical data analysis method for measuring the “mingling” of points in a colored configuration;
see Figure 9, which shows six persistence diagrams measuring various aspects of the mingling
in a bi-colored configuration. This appendix addresses the meaning of some of these diagrams
and explains the connection to the MST-ratio, while referring to [5] for a detailed account of
the method. In particular, we short-cut the description by ignoring the discrete structures
that are necessary for the algorithm. We first sketch the general background from [7] and [4],
and then explain the specific setting that motivates the MST-ratio.

Let A ⊆ R2 be a finite set of points, χ : A → {0, 1} a bi-coloring, and write B = χ−1(0)
and C = A \ B = χ−1(1). Let a : R2 → R be the function that maps every x ∈ R2 to
the minimum Euclidean distance between x and the points in A, and let b : R2 → R and
c : R2 → R be the similarly defined functions for B and C. Furthermore, write Ar = a−1[0, r],
Br = b−1[0, r], and Cr = c−1[0, r] for the sublevel sets at distance threshold r ≥ 0. Each is a
union of disks with radius r centered at the points of A, B, and C, respectively. The inclusions
Br ⊆ Ar and Cr ⊆ Ar induce homomorphisms in p-th homology, br : Hp(Br) → Hp(Ar) and
cr : Hp(Cr) → Hp(Ar), for each dimension p ∈ Z and every threshold r ≥ 0. Assuming field
coefficients in the construction of the homology groups, the latter are vector spaces and the
homomorphisms are linear maps.

We also have Ar ⊆ As whenever r ≤ s, so there are also linear maps from Hp(Ar) to
Hp(As). By now it is tradition in the field to consider the filtration of the Ar, for r from 0
to ∞, and the corresponding sequence of homology groups together with the linear maps
between them. Reading this sequence from left to right, we see homology classes being born
and dying. There is a unique way to pair the births with the deaths that regards the identity
of the classes, and the persistence diagram summarizes this information by drawing a point
(r, s) ∈ R2 for every homology class that is born at Ar and dies entering As; see e.g. [7,
Chapter VII]. Every death is paired with a birth, but it is possible that a birth remains
unpaired – when the homology class is of the domain – in which case the corresponding point
is at infinity. We write Dgmp(a) for the persistence diagram defined by the sublevel sets of
a, noting that it is a multi-set of points vertically above the diagonal.

Besides Dgmp(a), we consider Dgmp(b) and Dgmp(c), which are the persistence diagrams
of the sublevel sets of b and c, respectively, and work with the disjoint union, Br ⊔ Cr.
Conveniently, the p-th persistence diagram of b ⊔ c : R2 ⊔ R2 → R is the disjoint union
of Dgmp(b) and Dgmp(c), for all p. Write br ⊕ cr : Hp(Br) ⊕ Hp(Cr) → Hp(Ar) for the
corresponding map in homology. As proved in [4], the sequence of images of the br ⊕ cr

admit linear maps between them and thus define another persistence diagram, denoted
Dgmp(im b ⊔ c → a). Similarly, the kernels of the br ⊕ cr define a persistence diagram,
denoted Dgmp(ker b ⊔ c → a). To simplify the notation, we write κr = br ⊕ cr and use
mnemonic notation to indicate whether a persistence diagram belongs to the domain, image,
or kernel of the map:

GD 2024

https://doi.org/10.2307/2033241
https://doi.org/10.2307/2033241
http://library.oapen.org/handle/20.500.12657/25012
http://library.oapen.org/handle/20.500.12657/25012


3:22 The Euclidean MST-Ratio of Bi-Colored Lattices

Domp(κ) = Dgmp(b ⊔ c), (42)
Imp(κ) = Dgmp(im b ⊔ c → a), (43)

Kerp(κ) = Dgmp(ker b ⊔ c → a). (44)

The 1-norm of a persistence diagram, D, is the sum of the absolute differences between birth-
and death-coordinates over all points in D, denoted ∥D∥1. To cope with points at infinity,
we use a cut-off – e.g. the maximum finite homological critical value, denoted ω0 – so that
the contribution of a point at infinity to the 1-norm is finite.

#pts 1-norm fin
dim 0 25 12.000
dim 1 48 11.713
total 73 23.713

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6
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Figure 9 The six-pack for the 10 × 10 portion of the hexagonal lattice with coloring as in Figure 4.
Important for the current discussion are the diamond-shaped points in the domain, image, and kernel
diagrams. To get the MST-ratio, the 1-norms of the diagrams are computed while ignoring the points at
infinity, giving 61.0 and 49.5 for the domain and the image diagrams, respectively. Compare the ratio of
1.232 . . . with the upper bound of 1.25 proved in Theorem 4.2.

The kernel, domain, and image form a short exact sequence that splits, which implies
∥Imp(κ)∥1 + ∥Kerp(κ)∥1 = ∥Domp(κ)∥1; see [5, Theorem 5.3]. For dimension p = 0, all
three 1-norms can be rewritten in terms of minimum spanning trees. Indeed, ∥Dgm0(b)∥1 =
1
2 |MST(B)| + ω0 because every edge in the minimum spanning tree of B marks the death of
a connected component in the sublevel set, and ω0 is contributed by the one component that
never dies. Similarly, ∥Dgm0(c)∥1 = 1

2 |MST(C)| + ω0, which implies (45):

∥Dom0(κ)∥1 = ∥Dgm0(b)∥1 + ∥Dgm0(c)∥1 = 1
2 |MST(B)| + 1

2 |MST(C)| + 2ω0; (45)
∥Im0(κ)∥1 = 1

2 |MST(A)| + ω0. (46)

Since persistence diagrams are stable, as originally proved in [3], these relations imply that
minimum spanning trees are similarly stable. (46) deserves a proof. There are two ways
a connected component of Br can die in the image: by merging with a component of Cr



S. Cultrera di Montesano et al. 3:23

or with another component of Br. In the first case, the death corresponds to an edge of
MST(A) that connects a point in B with a point in C, and in the second case, it corresponds
to an edge of MST(A) that connects two points in B. There is also the symmetric case in
which the edge connects two points in C. This establishes a bijection between the deaths in
Im0(κ) and the edges of MST(A). There is one component that never dies, which accounts
for the extra cut-off term and implies (46).

The 1-norm of the kernel diagram is the difference between the 1-norms of the domain
diagram and the image diagram: ∥Ker0(κ)∥1 = ∥Dom0(κ)∥1 − ∥Im0(κ)∥1. It thus makes
sense to call ∥Im0(κ)∥1/∥Dom0(κ)∥1 and ∥Ker0(κ)∥1/∥Dom0(κ)∥1 the image share and kernel
share, respectively. Observe that both are real numbers between 0 and 1 and that they add
up to 1. The intuition is that the kernel share is a measure of the amount of “0-dimensional
mingling” of B and C. In other words, the smaller the image share, the more the two colors
mingle. We therefore get

µ(A,B) = |MST(B)| + |MST(C)|
|MST(A)| =

∥Dom0(κ)∥1 − 2ω0

∥Im0(κ)∥1 − ω0
, (47)

for the MST-ratio, which besides the cut-off terms is the reciprocal of the image share. Hence,
the larger the MST-ratio the more the two colors mingle. In this interpretation, Theorem 3.1
says that among all lattices in R2, the hexagonal lattice is most restrictive to mingling as it
does not permit MST-ratios larger than the inf-max, which for 2-dimensional lattices is 1.25.
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1 Introduction

The intersection graph of a collection C of sets has vertex set C and two sets in C are adjacent
if and only if they have nonempty intersection. A curve is a subset of the plane which is
homeomorphic to the interval [0, 1]. A string graph is the intersection graph of a collection
of curves. It is straightforward to show the intersection graph of any collection of arcwise
connected sets in the plane is a string graph. A collection of curves in the plane is called
a collection of pseudo-segments if every pair of them have at most one point in common.
Finally, we say that a curve in the plane is x-monotone if every vertical line intersects it in
at most one point.

For a family F of simple geometric objects (namely those that can be defined by semi-
algebraic relations of bounded description complexity), such as segments or disks in the
plane, Warren’s theorem [24] can be used to show that the number of labelled graphs on n

vertices which can be obtained as the intersection graph of a collection of n objects from F is
2O(n log n) (see [16, 15]). Moreover, for many simple geometric objects, a result of Sauermann
[19] shows that these bounds are essentially tight. Unfortunately, for general curves, Warren’s
theorem cannot be applied. In this paper, we estimate the number of graphs which can be
obtained as the intersection graph of curves in the plane under various constraints.

© Jacob Fox, János Pach, and Andrew Suk;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Graph Drawing and Network Visualization (GD 2024).
Editors: Stefan Felsner and Karsten Klein; Article No. 4; pp. 4:1–4:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jacobfox@stanford.edu
mailto:pach@cims.nyu.edu
mailto:asuk@ucsd.edu
https://doi.org/10.4230/LIPIcs.GD.2024.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


4:2 Enumeration of Intersection Graphs of x-Monotone Curves

In [17], Pach and Tóth showed that the number of intersection graphs of n labelled pseudo-
segments is at most 2o(n2). This bound was later improved by Kynčl [13] to 2O(n3/2 log n). It
was noted in both papers that the best known lower bound on the number of intersection
graphs of n labelled pseudo-segments is 2Ω(n log n), the number of different labellings of the
vertex set. Our first result significantly improves this bound.

▶ Theorem 1. There are at least 2Ω(n4/3) labelled n-vertex intersection graphs of x-monotone
pseudo-segments.

In the other direction, we prove the following.

▶ Theorem 2. There is an absolute constant ε ∈ (0, 1) such that the following holds. There
are at most 2O(n3/2−ε) labelled n-vertex intersection graphs of x-monotone pseudo-segments
in the plane.

The ε in the theorem above can be taken to be roughly 1/D, where D is the VC-dimension of
intersection graphs of pseudo-segments in the plane. A result of result of Pach and Tóth [17]
states that D is at most a tower of 2’s of height 8.

In the case of small clique number, we obtain the following.

▶ Theorem 3. There are at most 2O(kn log2 n) labelled n-vertex intersection graphs of x-
monotone pseudo-segments with clique number at most k. Moreover, for k < n1/3, this bound
is tight up to a polylogarithmic factor in the exponent.

In [17], Pach and Tóth showed that the number of string graphs on n labelled vertices is
2

3
4 (n

2)+o(n2). Moreover, their result holds for x-monotone curves. Our next result shows that
there are far fewer bipartite intersection graphs of x-monotone curves in the plane.

▶ Theorem 4. There are at most 2O(n log2 n) labelled n-vertex bipartite intersection graphs
of x-monotone curves in the plane.

Let us remark that the x-monotone condition in the theorem above cannot be removed.
An interesting construction due to Keszegh and Pálvölgyi [12] implies that the number of
n-vertex bipartite string graphs is at least 2Ω(n4/3).

For the non-bipartite case, suppose G is an n-vertex intersection of graph of x-monotone
curves, such that G has chromatic number q ≥ 3. Then we can partition V (G) into q parts
such that each part is an independent set. By further partitioning each part, arbitrarily,
such that the size of each remaining part is at most n/q, we end up with at most 2q parts.
By applying Theorem 4 to each pair of parts, we obtain the following corollary.

▶ Corollary 5. There are at most 2O(qn log2 n) labelled n-vertex intersection graphs of x-
monotone curves with chromatic number at most q.

Two drawings of a graph are isomorphic if the intersection graphs of their edges (with
edges labelled by their endpoints) are the same. A topological graph is a graph drawn in the
plane with possibly intersecting edges, and it is called simple if every pair of edges intersect
at most once. A topological graph is k-quasiplanar if it has no k pairwise crossing edges
with distinct endpoints.

The above results can be used to get upper bounds on the number of non-isomorphic
drawings of a graph with certain properties. The next result is an immediate corollary of
Theorem 3, combined with the theorem of Valtr [23] stating that the number of edges of a
k-quasiplanar simple topological graph on n vertices with x-monotone edges is Ok(n log n).
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▶ Corollary 6. Given any n-vertex graph G, the number of non-isomorphic drawings of G as
a k-quasiplanar simple topological graph with x-monotone edges is 2Ok(n log3 n).

In Theorems 3 and 4 and Corollaries 5 and 6, we conjecture that one of the logarithmic
factors in the exponent can be removed. (In the case of Corollary 6, perhaps a factor log2 n

in the exponent can removed). We discuss what is known from below at the end of the paper.
Our paper is organized as follows. In the next section, we prove Theorem 1. In Section 3,

we establish a bound on the number of set systems of size m on a ground set of size n with
VC-dimension d. After completing this work, we learned that Alon, Moran, and Yehudayoff [3]
also found a proof of this result. Together with the well-known cutting lemma, we prove
Theorem 2 in Section 4. In Section 5, we prove Theorem 4. We conclude the paper with
some remarks.

2 Proof of Theorem 1

The proof of Theorem 1 is based on a well-known construction from incidence geometry. We
prove the following more general result.

▶ Theorem 7. For k ≤ n1/3, there are at least 2Ω(kn) n-vertex labelled intersection graphs
of x-monotone pseudo-segments with clique number at most k.

Proof. Let k and n be integers such that k ≤ n1/3. Take

P = {(a, b) ∈ N2 : a < n1/3, b < n2/3}

and

L = {a′x + b′ = y : a′, b′ ∈ N, a′ < k, b′ < n2/3/2}.

Then we have |P | ≤ n and |L| ≤ kn2/3/2 ≤ n, and each line in L is incident to at
least n1/3/4 points from P . For each point p = (a, b) in P , we replace p with a very short
horizontal segment p with endpoints (a, b) and (a + ϵ, b). Let H be the resulting set of
horizontal segments.

For each line ℓ ∈ L, we modify ℓ in a small neighborhood of each point in P that is
incident to ℓ as follows. Let ℓ : y = a′x + b′ and p ∈ ℓ. Inside the circle C centered at p with
radius ϵ

2a′ , we modify ℓ so that it is a half-circle along C that lies either above or below p.
After performing this operation at each point p on ℓ, and performing a small perturbation,
we obtain an x-monotone curve ℓ̃. Moreover, any two resulting x-monotone curves will cross
at most once. See Figure 1. Let Lx be the resulting set of x-monotone curves, and note that
H ∪ Lx is a set of x-monotone pseudo-segments.

We now count the number of intersection graphs between H and Lx. Since each line
ℓ ∈ L was incident to at least n1/3/4 points in P , the number of different neighborhoods that
can be generated for ℓ̃ is 2Ω(n1/3). Moreover, two x-monotone curves ℓ̃, ℓ̃′ ∈ Lx cross if and
only if their original line configuration ℓ, ℓ′ ∈ L have distinct slope. Thus, the intersection
graph of H ∪ Lx has clique number at most k, and number of such intersection graphs we
can create between H and Lx is at least 2Ω(kn). This completes the proof of Theorem 7. ◀
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p

Figure 1 Modifying lines through p.

3 Tools from VC-dimension theory

In this section, we recall and prove results related to the notion of VC-dimension. The
VC-dimension of a set system F on a ground set V is the largest integer d for which there
exists a d-element set S ⊂ V such that for every subset B ⊂ S, one can find a member A ∈ F
with A ∩ S = B. Note that for a multiset system (which allows for the sets to necessarily be
distinct), the VC-dimension is the same as for the set system where we include each set that
appears once.

Given a graph G = (V, E), we define the VC-dimension of G to be the VC-dimension
of the set system formed by the neighborhoods of the vertices, where the neighborhood of
v ∈ V is N(v) = {u ∈ V : uv ∈ E}. In [2], Alon et al. proved that the number of bipartite
graphs with parts of size n and VC-dimenison at most d is at most

2O(n2−1/d(log n)d+2).

They further asked if the logarithmic factors can be removed. We make progress on this
question, obtaining a better bound for a more general problem. By following their proof but
using the Haussler packing lemma [11] (stated below) instead of Lemma 26 in [2], one can
obtain a stronger and more general bound. In addition to this, we use a different counting
strategy that further removes an additional logarithmic factor.

For the sake of completeness, we include the short proof below. First, we will need some
definitions. Given two sets A, B ∈ F , the distance between A and B is d(A, B) := |A △ B|,
where A △ B = (A ∪ B) \ A ∩ B) is the symmetric difference of A and B. We say that the
set system F is δ-separated if the distance between any two members in F is at least δ. The
following packing lemma was proved by Haussler in [11].

▶ Lemma 8 ([11]). Let δ > 0 and F be a set system on an n-element ground set V such
that F has VC-dimension d. If F is δ-separated, then |F| ≤ c1(n/δ)d where c1 = c1(d).

Let hd(m, n) denote the number of multiset systems consisting of m subsets of [n] that
have VC-dimension at most d. Let h′

d(m, n) denote the number of set systems of m subsets
of [n] that have VC-dimension at most d. Clearly, h′

d(m, n) ≤ hd(m, n). For simplicity, we let(
n

≤d

)
:=

∑d
i=0

(
n
i

)
. The Sauer-Shelah lemma [18, 21] says that any set system with ground

set [n] and VC-dimension d has size at most
(

n
≤d

)
. It follows that h′

d(m, n) = 0 if m >
(

n
≤d

)
.

Further, we can relate the two as follows. If we pick a multiset system consisting of m sets
that has VC-dimension at most d, then by throwing out repeated sets, we get a set system
on the same ground set consisting of m′ ≤ m sets. We then have to fill out these m′ sets to
m sets with repeats, including each set at least once. We thus have

hd(m, n) =
∑

m′≤m

h′
d(m′, n)

(
m − 1
m′ − 1

)
. (1)
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In what follows, d is fixed and the implicit constant in the big-O depends on d.

▶ Theorem 9. Let d ≥ 2 be fixed and n, m ≥ 2. Then the number hd(m, n) of multiset
systems of m subsets of [n] with VC-dimension at most d satisfies

hd(m, n) = 2O(m1−1/dn log m).

Furthermore, if m > nd, then

hd(m, n) = 2O(nd log m).

Proof. Consider a linear ordering of the subsets of [n]. Let F be a multiset system of m

subsets of [n]. Let S1 be the first set in F by the linear ordering. We will order the sets in
F as S1, S2, . . . , Sm as follows. After picking S1, . . . , Si−1, let

δi = max
S∈F\{S1,...,Si−1}

min
1≤j≤i−1

d(S, Sj),

and Si be a set S that obtains the maximum, and ji be a j that obtains the minimum
d(Si, Sj). By our choice of the sets, we have the minimum of d(Sa, Sb) over all 1 ≤ a < b ≤ i

is d(Sji
, Si). By the Haussler packing lemma, we thus have i = O((n/δi)d), or equivalently,

δi = O(i−1/dn).
We now upper bound the number of choices of F . There are at most 2n choices of S1.

Each ji is a positive integer at most i − 1, so there are at most (m − 1)! ≤ mm choices
of j2, . . . , jm. Having picked out this sequence of ji’s, and having picked S1, . . . , Si−1, we
know Si must have symmetric difference at most ti := O(i−1/dn) from Sji

. Thus given this
information, the number of choices for Si is at most

(
n

≤ti

)
. Thus we get the number of choices

of F is at most

2nmm
m∏

i=2

(
n

≤ ti

)
≤ 2nmm

m∏
i=2

(O(i1/d))O(i−1/dn)

= 2nmm2n
∑m

i=2
O(i−1/d log i)

= 2nmm2O(m1−1/dn log m).

Note that the 2n factor is at most the last factor. Hence we get that the count is at most
mm2O(m1−1/dn log m). If m ≤ nd, then the last factor is largest and this gives the desired
bound.

So we may assume we are in the case m > nd >
(

n
≤d

)
. In this case, by equation (1), the

fact that h′
d(m′, n) = 0 for m′ > nd and h′

d(m′, n) ≤ hd(nd, n), we get

hd(m, n) ≤ hd(nd, n)
∑

m′≤nd

(
m − 1
m′ − 1

)
= 2O(nd log m).

Notice that in this case, the first bound still holds, as m1−1/dn log m ≥ nd log m. ◀

4 Intersection graphs of x-monotone pseudo-segments

In this section, we prove Theorem 2. We will need the following lemmas. Recall that
a pseudoline is a two-way infinite x-monotone curve in the plane. An arrangement of
pseudolines is a finite collection of pseudolines such that any two members have at most one
point in common, at which they cross, and each intersection point has a unique x-coordinate.
Given an arrangement A of n pseudolines, we obtain a sequence of permutations of 1, . . . , n
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Figure 2 Vertical decomposition of A.

by sweeping a directed vertical line across A. This sequence of permutations is often referred
to as an allowable sequence of permutations, which starts with the identity permutation
(1, . . . , n), such that i) the move from one permutation to the next consists of swapping
two adjacent elements, and ii) each pair of elements switch exactly once. We say that two
pseudoline arrangements A1 and A2 are x-isomorphic if they give rise to the same sequence
of permutations, that is, a sweep with a vertical line meets the crossings in the same order.

▶ Lemma 10 ([22]). The number of arrangements of m pseudolines, up to x-isomorphism,
is at most 2Θ(m2 log m).

We will also need the following result, known as the zone lemma for pseudolines.

▶ Lemma 11 ([8]). Let A be an arrangement of m pseudolines. Then for any α ∈ A, the
sum of the numbers of sides in all the cells in the arrangement of A that are supported by α

is at most O(m).

The next lemma we will need is the following result due to Pach and Tóth.

▶ Lemma 12 ([17]). Let G be the intersection graph of a collection of pseudo-segments in
the plane. Then the VC-dimension of G is at most an absolute constant d.

We say that a collection A of x-monotone pseudo-segments in the plane is double grounded
if there are vertical lines ℓ1 and ℓ2 (called grounds) such that each curve in A has its left
endpoint on ℓ1 and its right endpoint on ℓ2. We start by bounding the number of intersection
graphs between a family A of double grounded x-monotone curves and a family B of
x-monotone curves such that A ∪ B is a collection of pseudo-segments.

Let A be a collection of double grounded x-monotone pseudo-segments in the plane. The
vertical decomposition of the arrangement of A is obtained by drawing a vertical segment
from each crossing point and endpoint in the arrangement, in both directions, and extend it
until it meets the arrangement of A, else to ±∞. Since A is double grounded, the grounds
will appear in the vertical decomposition. The vertical decomposition of A partitions the
plane into cells called generalized trapezoids, where each generalized trapezoid is bounded
by at most two curves from A from above or below, and at most two vertical segments on
the sides. See Figure 2. By applying standard random sampling arguments (e.g., see [6] or
Lemma 4.6.1 in [14]), we obtain the following result known as the weak cutting lemma.

▶ Lemma 13 ([6, 14]). Let A be a collection of m double grounded x-monotone pseudo-
segments in the plane. Then for any parameter r, where 1 ≤ r ≤ m, there is a set of at most
s = 6r log m curves in A whose vertical decomposition partitions the plane R2 = ∆1 ∪· · ·∪∆t

into t generalized trapezoids, such that t = O(s2), and the interior of each ∆i crosses at most
m/r members in A.
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Let f(m, n) denote the number of labelled intersection graphs between a collection A
of m double grounded x-monotone curves whose grounds are the vertical lines at x = 0
and x = 1, and a collection B of n x-monotone curves whose endpoints lie inside the strip
S = [0, 1] × R such that A ∪ B is a collection of pseudo-segments. By Lemma 12, there is an
absolute constant d such that the VC-dimension of any intersection graph of pseudo-segments
in the plane is at most d. We now prove the following.

▶ Lemma 14. For m, n ≥ 1, we have

f(m, n) ≤ 2O(nd/(2d−1)m(2d−2)/(2d−1) log2 m) + 2O(n3/2−1/d log n) + 2O(m log3 m).

Proof. We can assume that m, n are sufficiently large. Let A ∪ B be a collection of pseudo-
segments where A and B are as above.

Suppose n > m2. Then by the first part of Theorem 9, the number of intersection graphs
between A and B is at most

hd(n, m) ≤ 2O(mn1−1/d log n) ≤ 2O(n3/2−1/d log n). (2)

If n < m1/d log2 m, then by the second part of Theorem 9, the number of intersection graphs
between A and B is at most

hd(m, n) ≤ 2O(m1−1/dn log m) ≤ 2O(m log3 m). (3)

Let us assume that m1/d < n < m2. Set r = nd/(2d−1)

(m log2d m)1/(2d−1) and s = 6r log m. Since
m and n are sufficiently large, we have 1 ≤ r < s ≤ m. For a set of m double grounded
x-monotone curves whose grounds are on the vertical lines x = 0 and x = 1, there are (m!)2

ways to order the left and right endpoints. Let us fix such an ordering.
Let A′ ⊂ A be a set of at most s = 6r log m curves from A whose arrangement gives

rise to a vertical decomposition satisfying Lemma 13 with parameter r. Note that there are
at most ms choices for A′, and by Lemma 10, there are at most 2O(s2 log s) ways to fix the
arrangement, up to x-isomorphism, for A′. Once the arrangement of A′ is fixed, the vertical
decomposition of A′ is determined.

Let R2 = ∆1 ∪· · ·∪∆t be the vertical decomposition corresponding to A′, where t = O(s2).
Let Ai ⊂ A be the curves in A that cross the cell ∆i. For each curve α ∈ A′, by Lemma
11, at most O(s) vertical segments from the vertical decomposition have an endpoint on α.
Moreover, at most m curves from A cross α. Among these O(s + m) points along α, let us
fix the order in which they appear along α, from left to right. Since there are at most s2

vertical segments, there are at most (s2 + m)O(s+m) = mO(m) ways to fix this ordering, and
therefore, there are at most mO(sm) ways to fix such an ordering for each curve α ∈ A′.

Let β ∈ B. Then there are O(s4) choices for the cells ∆i for which the endpoints of β

lie in. Suppose that the left endpoint of β lies in cell ∆i and the right endpoint lies in ∆j ,
and consider the vertical lines ℓ1 and ℓ2 that goes through the left and right endpoint of β

respectively. Then for each α′ ∈ A \ (Ai ∪ Aj), we have already determined if α′ crosses β.
Indeed, let us consider the left endpoint of β and the cell ∆i. By the vertical decomposition,
∆i is bounded either above or below by some curve α ∈ A′. Without loss of generality, let
us assume that ∆i is bounded from above by α. Let p be the point on α that intersects
the left side of ∆i. Then for any α′ ∈ A \ (Ai ∪ Aj), we have already determined if the left
endpoint of α′ is above or below the left endpoint of α along the ground x = 0. Moreover,
we have already determined if α′ crosses α to the left of point p. Since α′ does not cross ∆i,
we have determined if α′ crosses ℓ1 above or below β. See Figure 3. By the same argument,
we have determined if α′ crosses ℓ2 above or below the right endpoint of β. Therefore, by
the pseudo-segment condition, we have determined if α′ crosses β.
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i∆

p

l1

α

β

Figure 3 Cell ∆i bounded above by α and contains the left endpoint of β.

It remains to determine how many ways β can cross the curves in Ai and Aj . By
Lemma 13, |Ai| ≤ m/r. Let Bi denote the curves in B that has at least one endpoint in the
cell ∆i. Set ni = |Bi|. By Theorem 9, there are at most

hd(|Ai|, |Bi|) ≤ 2O((m/r)1−1/dni log m)

ways the curves in Ai cross the curves in Bi. Putting everything together, the number of
ways the curves in A cross the curves in B is at most

(m!)2ms2O(s2 log s)mO(sm) (
s4)n

t∏
i=1

2O((m/r)1−1/dni log m).

Since t = O(s2), r = nd/(2d−1)

(m log2d m)1/(2d−1) , and s = 6r log m ≤ m, this quantity is at most

2O((m/r)1−1/dn log m+s2(m/r) log m) ≤ 2O(nd/(2d−1)m(2d−2)/(2d−1) log2 m). (4)

Combining (2), (3), and (4), we have

f(m, n) ≤ 2O(nd/(2d−1)m(2d−2)/(2d−1) log2 m) + 2O(n3/2−1/d log n) + 2O(m log3 m). ◀

Hence, we have f(n, n) ≤ 2O(n3/2−1/(4d−2) log2 n), where d is the absolute constant from
Lemma 12.

Proof of Theorem 2. Let d be the absolute constant from Lemma 12. Let g(n; p) be the
number of labeled intersection graphs of at most n x-monotone pseudo-segments in the
vertical strip [0, 1] × R, such that there are at most p endpoints with x-coordinate in (0, 1).
Note that some pseudo-segments may contribute two endpoints to p. Then we have the
following recurrence.

▷ Claim 15. We have

g(n; p) ≤ 2O(n3/2−1/(4d−2) log2 n)g2(⌈p/2⌉; ⌈p/2⌉).

Proof. For n x-monotone curves in the strip S = [0, 1] × R, with p endpoints in the interior
of S, we can assume that these p endpoints have distinct x-coordinates. We partition the
interval [0, 1] into two parts I1, I2, so that the interior of each strip Si = Ii × R has at most
⌈p/2⌉ endpoints. Next, we upper bound the number of labeled intersection graphs of the
curves restricted to the strip Si. Note that there are n! ways to label the curves.
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Among the curves restricted to the strip Si, let Ai denote the set of curves that go
entirely through Si, and let Bi be the curve what at least one endpoint in the interior of Si.
There are at most n! ways to determine the intersection graph among the curves in Ai. By
Lemma 14, there are at most

f(|Ai|, |Bi|) ≤ f(n, n) ≤ 2O(n3/2−1/(4d−2) log2 n)

ways to determine the intersection graph between Ai and Bi. Finally, there are at most
g(⌈p/2⌉; ⌈p/2⌉) ways to determine the intersection graph among the curves in Bi. Putting
everything above together gives the desired recurrence. ◁

Since p ≤ 2n, the recurrence above gives

g(n; 2n) ≤ 2

log n∑
i=1

2iO((n/2i)3/2−1/(4d−2) log2(n/2i))
g(1; 1) ≤ 2O(n3/2−1/(4d−2) log2 n). ◀

Intersection graphs with small clique number
In this subsection, we prove Theorem 3.

Proof of Theorem 3. Next, we prove Theorem 3. Let gk(n; p) be the number of labeled
intersection graphs of at most n x-monotone pseudosegments with clique number at most k

in the vertical strip [0, 1] × R, such that there are at most p endpoints with x-coordinate in
(0, 1). Similar to above, we will show

gk(n; p) ≤ n6n+2kpg2
k(⌈p/2⌉; ⌈p/2⌉).

Indeed, for n x-monotone pseudosegments in the strip S = [0, 1] × R, with p endpoints
in the interior of S, we can assume that these p endpoints have distinct x-coordinate. We
partition the interval [0, 1] into two parts I1, I2, so that the interior of each strip Si = Ii × R
has at most ⌈p/2⌉ endpoints. We now bound the number of labeled intersection graphs of
the curves restricted to S1.

There are at most n! ways to label the curves in S1. There are at most 2n ways to choose
the set A of pseudo-segments that goes entirely through S1. Let GA denote its intersection
graph of A, restricted to S1. Then GA depends entirely on the permutation of the endpoints
of A. Hence, there are at most n! ways to determine GA. Since GA has clique number at
most k, by Dilworth’s theorem [7], GA has has chromatic number at most k. Thus, there
are at most kn ways to properly color the vertices of GA. After fixing such a coloring, let
A1, . . . , Ak denote the color classes. Since the curves in Ai are pairwise disjoint and goes
through S1, for each curve γ with an endpoint in the interior of S1, there are at most n2 ways
γ can intersect the curves in Ai. Therefore, there are at most (n2)k ways γ can intersect the
curves in A. Since k ≤ n, there are at most

n!2nn!kn(n2)kp/2gk(⌈p/2; p/2⌉) ≤ n4n+kpgk(⌈p/2⌉; ⌈p/2⌉)

labeled intersection graphs among the curves restricted to S1. A similar argument holds for
the curves restricted to S2. Hence,

gk(n; p) ≤ n8n+2kpg2
k(⌈p/2⌉; ⌈p/2⌉).

Iterating the inequality above t times gives

gk(n; p) ≤ n8n+2kp
(p

2

)8p+2kp ( p

22

)8p+2kp

· · ·
( p

2t−1

)8p+2kp

g2t

(⌈p/2t⌉; ⌈p/2t⌉).
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Hence for t = ⌈log2 n⌉, we have

gk(n; p) ≤ n8n+2kpp(8p+2kp)t.

By setting p = 2n, we have

gk(n; 2n) ≤ 2O(kn log2 n),

and Theorem 3 follows. ◀

5 Bipartite intersection graphs of x-monotone curves

In this section, we prove Theorem 4. The proof is very similar to the proof of Theorem 3
above. Let w(n; p) be the number of labeled bipartite intersection graphs of at most n

x-monotone curves in the vertical strip [0, 1] × R, such that there are at most p endpoints
with x-coordinate in (0, 1). We establish the following recurrence.

▶ Lemma 16. We have

w(n; p) ≤ n6nw2(⌈p/2⌉; ⌈p/2⌉).

Proof. For n x-monotone curves in the strip S = [0, 1] × R, with p endpoints in the interior
of S, we can assume that these p endpoints have distinct x-coordinate. We partition the
interval [0, 1] into two parts I1, I2, so that the interior of each strip Si = Ii × R has at most
⌈p/2⌉ endpoints. Next, we upper bound the number of labeled intersection graphs of the
curves restricted to the strip Si. Note that there are n! ways to label the curves.

For each curve γ, as the graph is bipartite, let us count the number of ways γ intersects
the set of pairwise disjoint curves that go entirely through Si. By ordering these pairwise
disjoint curves vertically, this intersection set is an interval with respect to this vertical
ordering. Hence, γ has at most n2 ways to intersect the family of curves that goes entirely
through Si. This gives a total of at most n!(n2)n < n3n ways of determining the intersection
graph in Si, apart from the induced subgraph on the curves with at least one endpoint in the
interior of Si. Since there are p/2 such endpoints, there are at most p/2 such curves. Thus
we have at most w(⌈p/2⌉; ⌈p/2⌉) possible such intersection graphs of the curves with one end
point in Si. Thus we have at most n3nw(⌈p/2⌉, ⌈p/2⌉) possible intersection graphs restricted
to Si. Since the intersection graph of all n curves is the union of the intersection graphs on
S1 and S2, we get in total at most (n3nw(⌈p/2⌉; ⌈p/2⌉))2 such choices. ◀

Proof of Theorem 4. It suffices to bound w(n; 2n) as the original n curves have 2n endpoints.
Iterating the recurrence in Lemma 16 t times gives

w(n; p) ≤ n6n
(p

2

)6p ( p

22

)6p

· · ·
( p

2t−1

)6p

w2t

(⌈p/2t⌉; ⌈p/2t⌉).

Thus for t = ⌈log2 n⌉, we get

w(n; p) ≤ n6np6pt.

Hence,

w(n; 2n) ≤ 2O(n log2 n). ◀

Let us remark that in [9], the first two authors showed that there is an absolute constant
c > 0 such that every n-vertex string graph with clique number k has chromatic number at
most (C log n

log k )c log k. Together with Corollary 5, we obtain the following.

▶ Corollary 17. For every ϵ > 0, there is δ > 0 such that the number of intersection graphs
of n x-monotone curves with clique number at most nδ is at most 2n1+ϵ .
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6 Concluding remarks

An important motivation for enumerating intersection graphs of curves of various kinds
came from a question in graph drawing [17]: How many ways can one draw a graph? The
number of different (non-isomorphic) drawings of Kn, a complete graph of n vertices, can
be upper-bounded by the number intersection graphs of

(
n
2
)

curves. By [17], this is at most
2(3/25+o(1))n4 .

The number of non-isomorphic straight-line drawings of Kn cannot exceed the the
number of different intersection graphs of

(
n
2
)

segments in the plane, which is 2(4+o(1))n2 log n;
see [19, 16]. However, the true order of magnitude of the number of straight-line drawings
of Kn is much smaller. As was pointed out in [17], this quantity is equal to the number of
order types of n points in general position in the plane. The latter quantity is 2(4+o(1))n log n,
according to seminal results of Goodman–Pollack [10] and Alon [1], based on Warren’s
theorem in real algebraic geometry [24].

Recall that Theorem 9 in Section 3 shows that for d ≥ 2 fixed and m, n ≥ 2, the number
h′

d(m, n) of set systems of m subsets of [n] that have VC-dimension at most d is at most
2O(nm1−1/d log m). It would be interesting to remove the logarithmic factor in the exponent,
which would answer the question of Alon et al. [2] mentioned in the beginning of Section 3.
A natural approach, which has worked for similar enumerative problems, is to recast the
problem as counting independent sets in an auxiliary hypergraph and use the hypergraph
container method. Consider the 2d+1-uniform hypergraph H with vertex set 2[n] (so the
vertices are just the subsets of [n]) and a 2d+1-tuple of vertices forms an edge if they shatter
a subset of the ground set of size d + 1. The function h′

d(m, n) then just counts the number
of independent sets of size m in H . The hypergraph container method (introduced in [4, 20],
see also [5]) is a powerful tool that is useful for counting independent sets in similar settings.
It would be interesting if one could adapt these techniques to give better bounds on h′

d(m, n).

The last five results in the introduction give upper bounds on the number of intersection
graphs or the number of non-isomorphic drawings of graphs under various constraints. It
would be interesting to close the gap between these upper bounds and lower bounds.

The following simple construction shows that there are 2Ω(n log n) unlabelled bipartite
graphs on n vertices that are intersection graphs of segments. One can fix the first k = n/ log n

segments to be vertical and cross the x-axis, and then have the freedom to choose the remaining
n − k segments to be horizontal, deciding which interval of vertical segments (ordered by
x-axis intersection point) to intersect. By having, for i ∈ [k], a horizontal segment that
intersects precisely the first i of the vertical segments, we can fix the underlying ordering of
the vertical segments, up to reversing the order, and use the remaining n − 2k horizontal
segments to pick any interval of the vertical segments to intersect. One gets 2(2−o(1))n log2 n

labelled bipartite intersection graphs (and hence at least 2(1−o(1))n log2 n unlabelled bipartite
intersection graphs). This shows that Theorem 4 is tight up to a single logarithmic factor in
the exponent.

Viewing the same construction as a drawing of a matching (with the endpoints of
segments as vertices of the matching), gives 2Ω(n log n) non-isomorphic straight-line drawings
of a matching on n vertices whose edge-intersection graph is bipartite, providing a lower
bound for Corollary 6.
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Abstract
Gons and holes in point sets have been extensively studied in the literature. For simple drawings of
the complete graph a generalization of the Erdős–Szekeres theorem is known and empty triangles
have been investigated. We introduce a notion of k-holes for simple drawings and study their
existence with respect to the convexity hierarchy. We present a family of simple drawings without
4-holes and prove a generalization of Gerken’s empty hexagon theorem for convex drawings. A crucial
intermediate step will be the structural investigation of pseudolinear subdrawings in convex drawings.
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1 Introduction

A classic theorem from combinatorial geometry is the Erdős–Szekeres theorem [15]. It states
that for every k ∈ N every sufficiently large point set in general position (i.e., no three points
on a line) contains a subset of k points that are the vertices of a convex polygon, a so called
k-gon. In this article we will focus on a prominent variant of the Erdős–Szekeres theorem
suggested by Erdős himself [14], which asks for the existence of empty k-gons, also known as
k-holes. A k-hole H in a point set P is a k-gon with the property that there are no points
of P in the interior of the convex hull of H . It is known that every sufficiently large point set
contains a 6-hole [18, 23] and that there are arbitrarily large point sets without 7-holes [21].

Point sets in general position are in correspondence with geometric drawings of the
complete graph where vertices are mapped to points and edges are drawn as straight-line
segments between the vertices. In this article we generalize the notion of holes to simple
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drawings of the complete graph Kn. In a simple drawing, vertices are mapped to distinct
points in the plane (or on the sphere) and edges are mapped to simple curves connecting the
two corresponding vertices such that two edges have at most one point in common, which is
either a common vertex or a proper crossing. In the course of this article, we will see that
many important properties do not depend on the full drawing but only on the underlying
combinatorics, more specifically on the isomorphism class of a drawing. We call two simple
drawings of the same graph isomorphic1 if there is a bijection between their vertex sets such
that the corresponding pairs of edges cross. Note that this isomorphism is independent of
the choice of the outer cell and thus only encodes the simple drawing on the sphere.

To study k-holes, we first extend the notion of k-gons to simple drawings of Kn. A k-gon
Ck is a subdrawing isomorphic to the geometric drawing on k points in convex position; see
Figure 1(a). In terms of crossings, a k-gon Ck is a (sub)drawing with vertices v1, . . . , vk

such that {vi, vℓ} crosses {vj , vm} exactly if i < j < ℓ < m. In contrast to the geometric
setting where every sufficiently large geometric drawing contains a k-gon, simple drawings of
complete graphs do not necessarily contain k-gons [19]. For example, the twisted drawing
Tn depicted in Figure 1(b) does not contain any 5-gon. In terms of crossings, Tn can be
characterized as a drawing of Kn with vertices v1, . . . , vn such that {vi, vm} crosses {vj , vℓ}
exactly if i < j < ℓ < m. A theorem by Pach, Solymosi and Tóth [24] states that, for every k,
every sufficiently large simple drawing of Kn contains Ck or Tk. The currently best known
estimate is due to Suk and Zeng [28] who showed that every simple drawing of Kn with
n > 29·log2(a) log2(b)a2b2 contains Ca or Tb. Convex drawings, which we define in the next
paragraph, are a class of drawings nested between geometric drawings and simple drawings.
In particular, convex drawings do not contain T5 as a subdrawing. Hence every convex
drawing of Kn contains a k-gon Ck with k = (log n)1/2−o(1).

i

n− 1

2

1

n

Cn :

(a)

i n− 121 ... n...

Tn :

(b)

Figure 1 A drawing of (a) an n-gon Cn and (b) a twisted Tn for n ≥ 4.

In the last decades, holes were intensively studied for the setting of point sets. Our focus
will be on determining the existence of holes in various layers of the convexity hierarchy
introduced by Arroyo et al. [5], which give a more fine-grained layering between geometric
drawings and simple drawings. The basis to define convexity are triangles, which are

1 This isomorphism is often referred to as “weak isomorphism” since there also exist stronger notions.
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subdrawings induced by three vertices. Since in a simple drawing incident edges do not cross,
a triangle separates the plane (resp. the sphere) into two connected components. The closure
of each of the components is called a side of the triangle. A side S is convex if, for every pair
of vertices in S, the connecting edge is fully contained in S. A simple drawing D of Kn is

convex if every triangle in D has a convex side;
h-convex (hereditarily convex) if there is a choice of a convex side ST for every triangle T

such that, for every triangle T ′ contained in ST , it holds ST ′ ⊆ ST ;
f-convex (face convex) if there is a marking face F in the plane such that for all triangles
the side not containing F is convex.

The class of f-convex drawings is related to pseudolinear drawings. A pseudolinear drawing
is a simple drawing in the plane such that the edges can be extended to an arrangement
of pseudolines. A pseudoline is a simple curve partitioning the plane into two unbounded
components and in an arrangement each pair of pseudolines has exactly one point in common,
which is a proper crossing. As shown by Arroyo et al. [4], a simple drawing of Kn is
pseudolinear if and only if it is f-convex and the marking face F is the unbounded face. For
more information about the convexity hierarchy we refer the reader to [4, 5, 6, 10].

Before we define k-holes, consider the case of 3-holes, also known as empty triangles. A
triangle is empty if one of its two sides does not contain any vertex in its interior. Harborth [19]
proved that every simple drawing of Kn contains at least two empty triangles and conjectured
that the minimum among all simple drawings of Kn is 2n − 4. While 2n − 4 is obtained
by Tn and all generalized twisted drawings [17], the best known lower bound is n [3].

In the geometric setting, the number of empty triangles behaves differently: every point
set has Ω(n2) empty triangles, and this bound is asymptotically optimal [8]. Note that the
notion of empty triangles in point sets slightly differs from the one in simple drawings since
the complement of the convex hull of a point set can be an empty triangle. The class of
convex drawings behaves similarly to the geometric setting: the minimum number of empty
triangles is asymptotically quadratic [4, Theorem 5].

In the drawing Ck with k ≥ 4, all triangles have exactly one empty side, which is the
unique convex side. The convex side of Ck is the union of convex sides of its triangles; see
the grey shaded regions in Figure 1. Given a k-gon Ck in a simple drawing of Kn, we call
vertices in the interior of the convex side of Ck interior vertices. A k-hole in a simple drawing
of Kn is a k-gon that has no interior vertices. For example, the vertices 1, 2, n − 1, n form a
4-hole in Tn; marked grey in Figure 1(b). In convex drawings, as in the geometric setting,
edges from an interior vertex to a vertex of Ck and edges between two interior vertices are
contained in the convex side of Ck [5, Lemma 3.5]. For more details see the full version [11].

In this paper, using the notion of k-holes in simple drawings defined above, we resolve
the questions of existence of 4-, 5- and 6-holes in simple and convex drawings of Kn. In
particular, we show the existence of 6-holes in sufficiently large convex drawings (Theorem 2.1),
generalizing Gerken’s empty hexagon theorem [18]. The key ingredient of the proof is
that any subdrawing induced by a minimal k-gon together with its interior vertices is
f-convex (Lemma 2.2). This allows to transfer various existential results from the geometric,
pseudolinear, and f-convex settings to convex drawings. Besides the existence of 6-holes, we
also show the existence of monochromatic generalized 4-holes in two-colored convex drawings
(Corollary 3.1), generalizing a result by Aichholzer et al. [2]. For this we discuss two variants
of generalized holes (Section 3) in the setting of simple drawings of Kn and show the existence
of plane cycles of length 4 such that one side does not contain other vertices (Theorem 3.3).

GD 2024



5:4 Holes in Convex and Simple Drawings

2 Holes in convex drawings

In this section, we show that convex drawings behave similarly to geometric point sets when
it comes to the existence of holes. We show that every sufficiently large convex drawing
contains a 6-hole and hence a 5-hole and a 4-hole. This is tight, as the construction by
Horton [21] gives arbitrarily large point sets, that is geometric drawings, without 7-holes.

▶ Theorem 2.1 (Empty Hexagon theorem for convex drawings). For every sufficiently large n,
every convex drawing of Kn contains a 6-hole.

For the proof we use the existence of k-gons in sufficiently large convex drawings [24, 28].
Our key lemma is that the subdrawing induced by a minimal k-gon together with its interior
vertices is f-convex, a fact that had been known only for h-convex drawings [5, Lemma 4.7].
A k-gon is minimal if its convex side does not contain the convex side of another k-gon.

▶ Lemma 2.2. Let Ck be a minimal k-gon in a convex drawing D of Kn with n ≥ k ≥ 5.
Then the subdrawing D′ induced by the vertices in the convex side of Ck is f-convex.

Proof. Let v1, . . . , vk be the vertices of the minimal k-gon Ck in D and F be a face contained
in the non-convex side of Ck. We show that for every triangle spanned by three vertices of
the convex side of Ck, the side not containing F is convex and hence D′ is f-convex. Suppose
towards a contradiction that there exists a triangle spanned by vertices t1, t2, t3 from the
convex side of Ck, such that the side not containing F is not convex. The non-convex side SN

is the side contained in the convex side of Ck. Since D is convex, the other side containing F

and all vertices v1, . . . , vk is convex and is denoted by SC . If we additionally assume that
SN is not contained in (the closure of) a single cell of the subdrawing induced by Ck, then
some edge {vi, vj} has a crossing with one of the edges {tℓ, tm}. This shows that SC is not
convex; a contradiction. Hence, SN lies in (the closure of) a cell of Ck.

Since Ck is minimal, there are no interior vertices in the convex side of a triangle
{vi, vi+1, vi+2}. For details see the full version [11].

Since all cells in the convex side of Ck incident to the vertex vi+1 are inside this triangle,
the vertex vi+1 is not part of the triangle spanned by t1, t2, t3. This holds for every i = 1, . . . , k

and hence the vertices t1, t2, t3 are interior vertices of Ck and SN lies in a cell of the convex
side of Ck that is not covered by the convex side of any triangle {vi, vi+1, vi+2}. Since SN is
not convex, there exists a vertex z in the interior of SN such that the subdrawing induced
by {t1, t2, t3, z} has a crossing [5, Corollary 2.5]. We assume without loss of generality that
the edge {t1, z} crosses {t2, t3}. Moreover, exactly one of the following two conditions holds:
Either the triangle {t1, t3, z} separates t2 and F or the triangle {t1, t2, z} separates t3 and F .
We assume that the former holds as otherwise we exchange the roles of t2 and t3. Figure 2
gives an illustration.

Now we consider all edges from t2 to the vertices v1, . . . , vk of Ck. Since SC is convex
and contains v1, . . . , vk, the edges {t2, vi} are contained in SC . This shows that none of the
edges {t2, vi} crosses any of the triangle edges and, in particular, they do not cross {t1, t3}.

The edges {t2, v1}, . . . , {t2, vk} partition the convex side of Ck into triangles t2, vi, vi+1.
Hence there is an index i such that the three vertices t1, t3, z lie in the convex side of
the triangle {t2, vi, vi+1}. However, the edge {t1, z} is not fully contained in this side; a
contradiction to convexity. This completes the proof of Lemma 2.2. ◀

Recently, Heule and Scheucher [20] used SAT to show that every set of 30 points has a
6-hole. Since their result is about the more general case of pseudoconfigurations of points, it
holds for pseudolinear drawings. To prove Theorem 2.1, we combine this fact with Lemma 2.2.
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zt1

t3

t2
vi+1

vi
F

Figure 2 Illustration of the proof of Lemma 2.2.

Proof of Theorem 2.1. Let D be a convex drawing of Kn with n > 2225 log2(5)·302 log2(30).
Since convex drawings do not contain the twisted drawing T5, it follows from [28] that D
contains a 30-gon. To find a 6-hole in D, we choose a minimal 30-gon G. By Lemma 2.2, the
subdrawing D′ induced by G and its interior vertices is f-convex. Since the existence of holes
is invariant under the choice of the outer cell, we can assume without loss of generality that
D′ is pseudolinear as we may otherwise choose the face F as the unbounded face. According
to [7], D′ corresponds to a pseudoconfiguration of points, and hence there exists a 6-hole H

in D′ [20]. Hence the convex side of H does not contain any vertex of D′. Moreover, every
vertex of D in the convex side of H would be an interior vertex of G and therefore belong
to D′. This shows that H is a 6-hole in D. ◀

The existence of 6-holes further implies the existence of 4- and 5-holes. However, it
remains a challenging task to determine the smallest integer n(k) such that every convex
drawing of Kn with n ≥ n(k) contains a k-hole for k = 4, 5, 6.

For 6-holes, one can slightly improve the estimate from Theorem 2.1 by utilizing the fact
that every 9-gon in a point set yields a 6-hole [18]. As shown in [27] this result transfers to
pseudolinear drawings. It follows from Lemma 2.2 that every convex drawing of Kn with
n > 2225 log2(5)·92 log2(9) contains a 6-hole.

A similar improvement is possible for 5-holes: as the textbook proof for the existence
of 5-holes in every 6-gon of a point set (see e.g. Section 3.2 in [22]) applies to pseudolinear
drawings, every convex drawing with more than 2225 log2(5)·62 log2(6) vertices contains a 5-hole.

For 4-holes, we can combine the proof of Bárány and Füredi [8, Theorem 3.3] for the
quadratic number of empty 4-holes in point sets and the proof of Arroyo et al. [4, Theorem 5]
for the quadratic number of empty triangles in convex drawings to obtain:

▶ Lemma 2.3. Every crossed edge in a convex drawing of Kn is a chord of a 4-hole, that is,
it is one of the crossing edges of a 4-hole.

Since the number of uncrossed edges in drawings of Kn is at most 2n − 2 [26], Lemma 2.3
implies that there are Ω(n2) empty 4-holes in every convex drawing of Kn. A detailed proof
is provided in the full version [11]. Since every drawing of K5 contains a crossing, Lemma 2.3
also implies that every convex drawing of Kn with n ≥ 5 contains a 4-hole. In contrast to
the convex setting, 4-holes can be avoided in simple drawings as we show in the next section.

3 Generalized Holes

Devillers et al. [13] showed that sufficiently large two-colored point sets in general position
contain a monochromatic 3-hole and constructed arbitrarily large two-colored sets without
monochromatic 5-holes. The existence of monochromatic 4-holes, however, remains a
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5:6 Holes in Convex and Simple Drawings

longstanding open problem [12, Problem 8.2.7]. A weaker version was shown by Aichholzer et
al. [2]. They showed that every two-colored point set P = A ∪̇ B contains a monochromatic
generalized 4-hole. A generalized k-hole is a simple polygon (not necessarily convex) which is
spanned by k points of P and does not contain any point of P in its interior. Apparently,
their proof transfers to the pseudolinear setting, which allows us to generalize this result to
convex drawings in the same way as the Empty Hexagon theorem 2.1 using Lemma 2.2.

▶ Corollary 3.1. Every sufficiently large convex drawing on vertices V = A ∪̇ B has an
empty 4-triangulation induced only by vertices from A or only by vertices from B.

To define generalized k-holes in simple drawings we consider plane cycles. A plane cycle
divides the plane into two components whose closures we call sides. An empty k-cycle
in a simple drawing is a plane cycle of length k such that one of its sides is empty. For
k = 3 this definition coincides with empty triangles. Since polygons in point sets can be
triangulated, we say that an empty k-cycle is an empty k-triangulation if its empty side is
the disjoint union of empty triangles. As the following construction (Figure 3) shows, there
are simple drawings of Kn without empty 4-triangulations. For the construction, we start
with the twisted drawing Tn and reroute some edges such that the drawing is still crossing
maximal. The resulting drawing T ′

n does not contain 4-holes. A precise description and proof
of Proposition 3.2 is given in the full version [11].

▶ Proposition 3.2. For n ≥ 6 the simple drawing T ′
n contains no empty 4-triangulation.

. . .
1 2

3
4 n

Figure 3 The drawing T ′
n without empty 4-triangulations for n ≥ 6.

If instead of empty 4-triangulations we only ask for empty 4-cycles, then we can actually
guarantee their existence in all simple drawings of Kn.

▶ Theorem 3.3. Let D be a simple drawing of Kn with n ≥ 4 and let v be a vertex of D.
Then D contains an empty 4-cycle passing through v.
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This resolves one case of a recent conjecture by Bergold et al. [9]. They showed that
every convex drawing contains an empty k-cycle for all 3 ≤ k ≤ n and conjectured that this
holds for simple drawings.

▶ Conjecture 3.4 ([9]). Every simple drawing of Kn contains an empty k-cycle for each
3 ≤ k ≤ n.

While the case k = 3 follows by Harborth’s result [19], the k = n case coincides with Rafla’s
conjecture concerning the existence of plane Hamiltonian cycles in all simple drawings of
Kn [25]. For the proof of the case k = 4 of Conjecture 3.4 (Theorem 3.3), we use results on
plane subdrawings by García, Pilz, and Tejel [16].

Proof of Theorem 3.3. For a fixed vertex v, we consider the spanning star Sv centered at v.
By [16, Corollary 3.4], there is a plane subdrawing D′ of D that consists of the star Sv and
some spanning tree T on the other n − 1 vertices. Note that D′ has exactly 2n − 3 edges and
n − 1 faces. Every face F of D′ contains v on its boundary because the tree T is cycle-free
and since D′ is 2-connected [16, Theorem 3.1], F is bounded by exactly two edges of Sv.

If there is a face of D′ with exactly 4 boundary edges or if there are two adjacent triangular
faces, we obtain an empty 4-cycle passing through v and the statement follows. Otherwise
we count the number of edges |E| in D′: At most half of the n − 1 faces are triangles so that
none of them are adjacent. All other faces have at least 5 boundary edges. Since every edge
is incident to exactly two faces, we have |E| ≥ 1

2
(
5(n − 1) − 2

⌊
n−1

2
⌋)

≥ 2n − 2. This is a
contradiction to the fact that D′ contains exactly 2n − 3 edges. ◀

The above theorem implies a linear lower bound on the number of empty 4-cycles. This is
similar to the minimum number of empty triangles which is asymptotically linear as well [3].

▶ Corollary 3.5. Every simple drawing of Kn with n ≥ 4 contains at least n
4 empty 4-cycles.

While the twisted drawing Tn is conjectured to minimize the number of empty triangles,
it contains Θ(n3) empty 4-cycles. This is certainly not minimal as there exist drawings with
Θ(n2) empty 4-cycles; see Figure 4 and the full version [11].

This seems to be in contrast to the geometric setting, where the number of empty k-cycles
with k ≥ 4 is conjectured to be super-quadratic [1].

n

n− 2 n− 1

n+ 1

n+ 2

1

2

3 4

5

67

Figure 4 Constructing the drawing Dn of Kn, n odd, with few empty 4-cycles from K5.
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Abstract
A matchstick graph is a plane graph with edges drawn as unit distance line segments. This class of
graphs was introduced by Harborth who conjectured that a matchstick graph on n vertices can have
at most ⌊3n −

√
12n − 3⌋ edges. Recently his conjecture was settled by Lavollée and Swanepoel.

In this paper we consider 1-planar unit distance graphs. We say that a graph is a 1-planar unit
distance graph if it can be drawn in the plane such that all edges are drawn as unit distance line
segments while each of them are involved in at most one crossing. We show that such graphs on n

vertices can have at most 3n − 4√n/10 edges.
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1 Introduction

A graph is called a matchstick graph if it can be drawn in the plane with no crossings such
that all edges are drawn as unit segments. This graph class was introduced by Harborth in
1981 [7, 9]. He conjectured that the maximum number of edges of a matchstick graph with n

vertices is ⌊3n −
√

12n − 3⌋. He managed to prove it in a special case where the unit distance
is also the smallest distance among the points [8]. Recently his conjecture was settled by
Lavollée and Swanepoel [12].

Other interesting classes of graphs are the k-planar graphs. For any k ≥ 0, a graph G is
called k-planar if it can be drawn in the plane such that each edge is involved in at most k

crossings. Let ek(n) denote the maximum number of edges of a k-planar graph on n vertices.
Since 0-planar graphs are the well known planar graphs, e0(n) = 3n − 6 for n ≥ 3. We have
e1(n) = 4n − 8 for n ≥ 4 [19], e2(n) ≤ 5n − 10, which is tight for infinitely many n [19],
e3(n) ≤ 5.5n − 11, which is tight up to an additive constant [17] and e4(n) ≤ 6n − 12, which
is also tight up to an additive constant [1]. For general k we have ek(n) ≤ c

√
kn for some

constant c, which is tight apart from the value of c [19, 1].
A k-planar unit distance graph is a graph that can be drawn in the plane such that each

edge is a unit segment and involved in at most k crossings. Let uk(n) be the maximum number
of edges of a k-planar unit distance graph. Since 0-planar unit distance graphs are exactly the
matchstick graphs, by the result of Lavollée and Swanepoel we have u0(n) = ⌊3n−

√
12n − 3⌋.

We do not have any better lower bound for u1(n) than the value of u0(n). That is, allowing
to use one crossing on each edge does not seem to help, still a proper piece of the triangular
grid is the best known construction. Somewhat surprisingly, we prove an almost matching
upper bound.

© Panna Gehér and Géza Tóth;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Graph Drawing and Network Visualization (GD 2024).
Editors: Stefan Felsner and Karsten Klein; Article No. 6; pp. 6:1–6:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:geherpanni@student.elte.hu
mailto:geza@renyi.hu
https://doi.org/10.4230/LIPIcs.GD.2024.6
https://arxiv.org/abs/2310.00940
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


6:2 1-Planar Unit Distance Graphs

Figure 1 An edge in E1 can be partitioned into two halfedges, α1 and α2.

▶ Theorem 1. For the maximum number of edges of a 1-planar unit distance graph, u1(n),
we have ⌊3n −

√
12n − 3⌋ ≤ u1(n) ≤ 3n − 4

√
n/10.

For general k, the best known lower bound is due to Günter Rote (personal communication,
2023).

▶ Theorem 2 (Rote). For the maximum number of edges of a k-planar unit distance graph,
uk(n), we have uk(n) ≥ 2Ω(log k/ log log k)n.

We have the following upper bound.

▶ Theorem 3. For any n, k ≥ 0 we have uk(n) ≤ c 4
√

kn for some constant c > 0.

2 1-planar unit distance graphs

Proof of Theorem 1. The lower bound follows directly from Harborth’s construction for
matchstick graphs [8]. We prove the upper bound. Let G be a 1-planar unit distance graph
with n vertices and consider a 1-plane unit distance drawing of G. Let E be the set of edges,
|E| = e. Let G0 be a plane subgraph of G with maximum number of edges, and among those
one with the minimum number of triangular faces. Let E0 ⊂ E denote the set of edges of
G0 and E1 = E \ E0 denote the set of remaining edges, |E0| = e0, |E1| = e1. Let f be the
number of faces of G0, including the unbounded face and let Φ1, Φ2 . . . Φf be the faces of G0.
For any face Φi, |Φi| is the number of bounding edges of it, counted with multiplicity. That
is, if an edge bounds Φi from both sides, then it is counted twice. Due to the maximality of
G0 and 1-planarity of G, every edge α ∈ E1 crosses an edge in E0 and connects two vertices
that belong to neighbouring faces of G0. Therefore, we can partition every edge α ∈ E1 into
two halfedges, α1 and α2 at the unique crossing point on α. See Figure 1. Each halfedge
is contained in a face Φ, one of its endpoints is a vertex of Φ and the other endpoint is an
interior point of a bounding edge.

▷ Claim 4. A triangular face of G0 does not contain any halfedge.

Proof. Let Φ = uvw be a triangular face of G0 that contains a halfedge α1, which is part
of the edge α = ux. Then α crosses the edge vw. Replace the edge vw by α in G0. See
Figure 2. Since vw is the only edge of G that crosses α, we obtain another plane subgraph
of G. It has the same number of edges.
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Figure 2 The number of triangles in G0 can be reduced by edge flips.

Figure 3 A quadrilateral can have at most two halfedges.

We claim that it has fewer triangular faces. The triangular face Φ disappeared. Suppose
that we have created a new triangular face. Then α should be a side of it. But then either
uv or uw is also a side, suppose without loss of generality that it is uv. But then uvx is also
a unit equilateral triangle. If the two equilateral triangles uvw and uvx are on the same side
of uv then x = w, if they are on opposite sides then vw and ux can not cross. ◁

Assign weight 1/2 to each halfedge. For any face Φi, let s(Φi) be the sum of the weights
of its halfedges. Clearly, we have

∑f
i=1 s(Φi) = |E1|. For any face Φ of G0, let t(Φ) denote

the number of edges in a triangulation of Φ. A straightforward consequence of Euler’s
formula is the following statement. If the boundary of Φi has m connected components, then
t(Φi) = |Φi| + 3m − 6.

▷ Claim 5. For any face Φ of G0 we have (a) s(Φ) ≤ t(Φ), and if |Φ| ≥ 5 then (b)
s(Φ) ≤ t(Φ) − |Φ|/10.

Proof. Suppose first that the boundary of Φ is not connected, that is, m ≥ 2. Each of the
|Φi| edges on the boundary of Φi is crossed by at most one halfedge, therefore, s(Φ) ≤ |Φ|/2.
On the other hand, t(Φ) ≥ |Φ|. Therefore, t(Φ) ≥ |Φ| ≥ |Φ|/2 + |Φ|/10 ≥ s(Φ) + |Φ|/10 and
we are done in this case.

Suppose now that the boundary of Φi is connected, that is, m = 1. If |Φ| = 3, then Φ is
a triangle. Then t(Φ) = 0 and by Claim 4, s(Φ) = 0. If |Φ| = 4, then Φ is a quadrilateral
(actually, a rhombus). Then t(Φ) = 1. Figure 3 shows all possible cases when Φ has two
halfedges. On the other hand, it is shown in [19] by an easy case analysis that no more
halfedges can be added. Therefore, s(Φ) ≤ 1 = t(Φ). This finishes part (a).

Suppose that |Φi| ≥ 5. We can assume that Φi has at least two halfedges, otherwise we
are done. A halfedge α in Φ divides Φ into two parts. Let a(α) and b(α) be the number of
vertices of Φ in the two parts. If a vertex appears on the boundary more than once, then
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Figure 4 Halfedges α and β are minimal, edges a and b are uncrossed.

it is counted with multiplicity. Since the halfedges in Φ do not cross each other, all other
halfedges are entirely in one of these two parts. If one part does not contain any halfedge,
then α is called a minimal halfedge. Let α be a halfedge for which M = min{a(α), b(α)} is
minimal. Then there are M vertices of Φi on one side of α. Clearly, this part cannot contain
any halfedge, so α is minimal. Now for any other halfedge β ̸= α, let c(β) be the number of
vertices of Φi on the side of β not containing α. Take a halfedge β for which c(β) is minimal.
Then β is also a minimal halfedge. So, we can conclude that there are at least two minimal
halfedges in Φ, say, α and β.

Then α and β together partition Φ into three parts, two parts contain no other halfedges
but both contain an edge of Φ. So, at most |Φ| − 2 edges of Φ are crossed by a halfedge,
therefore, there are at most |Φ| − 2 halfedges in Φ, consequently s(Φ) ≤ (|Φ| − 2)/2. See
Figure 4.

On the other hand, t(Φ) = |Φ| − 3. Since |Φ| ≥ 5, we have t(Φ) = |Φ| − 3 ≥ (|Φ| − 2)/2 +
|Φ|/10 ≥ s(Φ) + |Φ|/10. This concludes the proof of the Claim. ◁

Return to the proof of Theorem 1. For i ≥ 3, let fi denote the number of faces Φ of G0
with |Φ| = i. By definition,

∑∞
i=3 fi = f and

∑∞
i=3 ifi = 2e0. Let F≥5 =

∑∞
i=5 ifi. By the

maximality of G0, every edge in E1 crosses an edge in E0, and by 1-planarity, every edge in
E0 is crossed by at most one edge in E1. Consequently, |E0| = e0 ≥ |E1| = e1.

If e0 ≤ n, then e = e0 + e1 ≤ 2e0 ≤ 2n < 3n − c 4
√

n, so we are done. Therefore, for the
rest of the proof we can assume that e0 ≥ n. It follows that 3f3 + 4f4 + F≥5 = 2e0 ≥ 2n.

▷ Claim 6. Suppose that F≥5 ≥ p. Then e = e0 + e1 ≤ 3n − p/10.

Proof. By the previous observations,

e = e0 + e1 = e0 +
∑

α is a
halfedge

1/2 = e0 +
f∑

i=1
s(Φi) = e0 +

∑
|Φ|=3

s(Φ) +
∑

|Φ|=4

s(Φ) +
∑

|Φ|≥5

s(Φ)

≤ e0 +
∑

|Φ|=3

t(Φ) +
∑

|Φ|=4

t(Φ) +
∑

|Φ|≥5

(t(Φ) − |Φ|/10)

≤ e0 +
∑
|Φ|

t(Φ) −
∑

|Φ|≥5

|Φ|/10 ≤ 3n − 6 − F≥5/10 ≤ 3n − p/10. ◁
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▷ Claim 7. Suppose that f3 ≥ p. Then e = e0 + e1 ≤ 3n − √
p/5.

Proof. We can assume that Ψ, the unbounded face of G0 has at least 5 edges. If not, the
statement holds trivially. Since we have p equilateral triangles in G0, the union of all bounded
faces, R, has area at least

√
3p/4. The Isoperimetric inequality states that if a polygon

has perimeter l and area A, then l2 ≥ 4πA [5]. It implies that R has perimeter at least
4
√

3√
πp > 2√

p. That is |Ψ| ≥ 2√
p. Therefore,

e = e0 + e1 = e0 +
∑

α is a
halfedge

1/2 = e0 +
f∑

i=1
s(Φi) = e0 +

∑
Φ̸=Ψ

s(Φ) + s(Ψ)

≤ e0 +
∑
Φ ̸=Ψ

t(Φ) + t(Ψ) − |Ψ|/10 = 3n − 6 − |Ψ|/10 ≤ 3n − 6 − √
p/5. ◁

We can assume that n ≥ 5, otherwise Theorem 1 holds trivially. If F≥5 ≥ n/2, then
by Claim 6, e ≤ 3n − n/20 ≤ 3n − 4

√
n/10 and we are done. If f3 ≥ n/9, then by Claim 7,

e ≤ 3n −
√

n/15 ≤ 3n − 4
√

n/10 and we are done again. So, we can assume that F≥5 ≤ n/2,
f3 ≤ n/9. Since 3f3 + 4f4 + F≥5 = 2e0 ≥ 2n, it follows that f4 ≥ n/4.

Suppose without loss of generality that none of the edges of G are vertical. Otherwise
apply a rotation. Define an auxiliary graph H as follows. The vertices represent the
quadrilateral faces of G0. Since all edges are of unit length, all these faces are rhombuses.
Two vertices are connected by an edge if the corresponding rhombuses have a common edge.
The edges of H correspond to the edges of G0 with a rhombus face on both sides. For every
edge of H define its weight as the slope of the corresponding edge of G0. A path in H, such
that all of its edges have the same weight w, is called a w-chain, or briefly a chain. A chain
corresponds to a sequence of rhombuses such that the consecutive pairs share a side and all
these sides are parallel. A chain, with at least two vertices (rhombuses) is called maximal
if it cannot be extended. With one-vertex chains we have to be careful. Suppose that v is
a vertex of H, R is the corresponding rhombus, and let w1, w2 be the slopes of its sides.
The one-vertex chain v is maximal if it cannot be extended to a larger w1-chain or a larger
w2-chain. Each vertex of H is in exactly two maximal chains.

▷ Claim 8. The intersection of two chains is empty or forms a chain.

Proof. If the intersection is just one vertex then the statement clearly holds. Suppose that A

and B are chains with at least two common vertices, and their intersection is not a chain.
Let A = v1, v2, . . . va. We can assume without loss of generality that v1, va ∈ B but no other
vertex of A is in B. Otherwise we can delete some vertices of A to obtain this situation.
Delete all vertices of B which are not between v1 and va. Now B = u1, u2, . . . ub where
v1 = u1, va = ub and these are the only common points of A and B. Let R be the rhombus
that represents v1 = u1 in G0. Its sides have slopes w1 and w2 such that A is a w1-chain, B

is a w2-chain. Apply an affine transformation so that R is a unit square, w1 is the horizontal,
w2 is the vertical direction. Suppose that Q is the rhombus that represents va = ub. Then
its sides also have slopes w1 and w2, so Q is also an axis-parallel unit square. Represent each
vertex v1, v2, . . . va, u1, u2, . . . ub by the center of the corresponding rhombus. For simplicity
we call these points also v1, v2, . . . va, u1, u2, . . . ub, respectively. Assume without loss of
generality that the point va = ub has larger x and y coordinates, than v1 = u1. Connect the
consecutive points in both chains by straight line segments. Since A is a w1-chain and w1 is
the horizontal direction, the polygonal chain PA = v1, v2, . . . va is y-monotone, and similarly,
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Figure 5 The intersection of two chains is empty or forms a chain.

the polygonal chain PB = u1, v2, . . . vb is x-monotone. Let l1 be the horizontal halfline from
v1 = u1, pointing to the left and let l2 be the horizontal halfline from va = ub, pointing to
the right. The bi-infinite curve l1 ∪ PB ∪ l2 is simple, because PB is x-monotone. It divides
the plane into two regions, Rdown, which is below it and its complement, Rup, see Figure 5.

Observe that the initial part of PA, near v1 = u1 is in Rup, while the final part, near
va = ub is in Rdown. On the other hand, PA does not intersect the boundary of Rdown and
Rup. Indeed, it does not intersect l1 and l2 since it is y-monotone, and does not intersect PB

by assumption. This is clearly a contradiction which proves the Claim. ◁

▷ Claim 9. There are at least
√

n/
√

2 disjoint maximal chains.

Proof. For any vertex of H (that is, for any rhombus face in G0) there are exactly two
maximal chains containing it. Therefore, the total length of all the maximal chains is
2f4 ≥ n/2. If there are less than

√
n/

√
2 disjoint maximal chains, then one of them has

length at least
√

n/
√

2. Through each of its vertices, there is another maximal chain and by
Claim 8 all of these chains are different. ◁

By Claim 9, we have at least
√

n/
√

2 disjoint maximal chains. Each of them has two
ending rhombuses with sides that bound a face of size different than 4. All of these bounding
edges are different, therefore, 3f3 + F≥5 ≥

√
2
√

n, which implies that either 3f3 ≥
√

n/
√

2,
or F≥5 ≥

√
n/

√
2.

In the first case, by Claim 7 we have e ≤ 3n − 4
√

n/10. In the second case, by Claim 6 we
have e ≤ 3n −

√
n/10. This concludes the proof of Theorem 1. ◀

3 k-planar unit distance graphs

Proof of Theorem 2. Suppose that n, k > 100. The following is a well known result in
number theory (see [14], [16]). For any m, there is an r < m such that r can be written as
a2 + b2 in 2Ω(log m/ log log m) different ways where a and b are integers. For any fixed m let r

be the product of the first l primes congruent to 1 mod 4, such that l is maximal with the
property that r < m. This r satisfies the requirements.
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Erdős [6] used it to construct a set of n points that determine n2Ω(log n/ log log n) unit
distances. Clearly, r is square-free, therefore, whenever r = a2 + b2, (a, b) = 1.

Apply the above result for m =
√

k/5. We obtain r <
√

k/5 that can be written as
the sum of two integer squares, r = a2 + b2 in 2Ω(log m/ log log m) = 2Ω(log k/ log log k) different
ways. Take a

√
n ×

√
n unit square grid and connect two points by a straight line segment

if they are at distance
√

r. Then each vertex has degree 2Ω(log k/ log log k), so our graph has
n2Ω(log k/ log log k) edges. Observe that no edge contains a vertex in its interior.

Let uv be an edge. Consider all vertices adjacent to an edge that crosses uv. All these
vertices are at distance at most

√
r from uv. This region has area (2 + π)r, so the number of

vertices in this region is less than 6r. Each of these vertices have degree at most 4r, so uv is
crossed by at most 24r2 < k edges. Scale the picture by a factor of 1/

√
r and we obtain a

k-planar unit distance graph of n vertices and 2Ω(log k/ log log k) edges. ◀

For the proof of Theorem 3 we need some introduction. Let cr(G) denote the crossing
number of graph G, that is, the minimum number of edge crossing over all drawings of G

in the plane. According to the Crossing Lemma [3, 13], for every graph G with n vertices
and e ≥ 4n edges, cr(G) ≥ 1

64
e3

n2 . It is asymptotically tight in general for simple graphs [19].
However, there are better bounds for graphs satisfying some monotone property [15], or for
monotone drawing styles [10].

A drawing style D is a subset of all drawings of a graph G. so some drawings belong to
D, others do not. It is monotone if removing edges retains the drawing style. A vertex split
is the following operation. (a) Replace a vertex v of G by two vertices, v1 and v2, both very
close to v. Connect each edge of G incident to v either to v1 or v2 by locally modifying them
such that no additional crossing is created. Or as an extreme or limiting case, (b) place both
v1 and v2 to the same point where v was, connect each edge incident to v either to v1 or v2
without modifying them, such that the edges incident to v in G that are connected to v1
(resp. v2) after the split form an interval in the clockwise order from v. A drawing style D is
split-compatible if performing vertex splits retains the drawing style.

The bisection width b(G) of a graph G is the smallest number of edges whose removal
splits G into two graphs, G1 and G2, such that |V (G1)|, |V (G2)| ≥ |V (G)|/5. For a drawing
style D the D-bisection width bD(G) of a graph G in drawing style D is the smallest number of
edges whose removal splits G into two graphs, G1 and G2, both in drawing style D such that
|V (G1)|, |V (G2)| ≥ |V (G)|/5. Let ∆(G) denote the maximum degree in G. The following
result is a generalization of the Crossing Lemma.

▶ Theorem 10 (Kaufmann-Pach-Tóth-Ueckerdt [10]). Suppose that D is a monotone and
split-compatible drawing style, and there are constants k1, k2, k3 > 0 and b > 1 such that
each of the following holds for every n-vertex e-edge graph G in drawing style D:
1. If crD(G) = 0, then e ≤ k1 · n.
2. The D-bisection width satisfies bD(G) ≤ k2

√
crD(G) + ∆(G) · e + n.

3. e ≤ k3 · nb.

Then there exists a constant α > 0 such that for any n-vertex e-edge graph G in drawing
style D we have crD(G) ≥ α e1/(b−1)+2

n1/(b−1)+1 provided e > (k1 + 1)n.

In [10] only vertex split of type (a) was allowed, but the proof works also for type (b).

▶ Theorem 11 (Spencer-Szemerédi-Trotter [20]). Let G be a unit distance graph on n verices.
The number of edges in G is at most cn4/3 where c > 0 is a constant.
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Proof of Theorem 3. Consider now the following drawing style D for a graph G.
1. Vertices are represented by not necessarily distinct points.
2. Edges are represented by unit segments between the corresponding points.
3. The intersection of two edges is empty or a point, that is, they cannot overlap.
4. If a point p represents more than one vertex, say, v1, . . . , vm, then the sets of edges

incident to v1, . . . , vm, respectively, form an interval in the clockwise order from point p.

Clearly, D satisfies the following properties.
1. The drawing style D is monotone and split-compatible.
2. If cr(G) = 0, then e ≤ 3n − 6. In fact, by [12], e ≤ ⌊3n −

√
12n − 3⌋.

3. For any graph G, we have b(G) ≤ 10
√

cr(G) + ∆(G) · e + n by the result of Pach,
Shahrokhi and Szegedy [18]. But if G is drawn in drawing style D, then all of its subgraphs
are also drawn in drawing style D. Therefore, bD(G) ≤ 10

√
cr(G) + ∆(G) · e + n.

4. By [2], any n-vertex graph in drawing style D has less than 1.94n4/3 edges.

Summarizing, we can apply Theorem 10 with k1 = 3, k2 = 10, k3 = 1.94, b = 4/3 and
obtain the following. For any graph G in drawing style D with n vertices and e > 4n edges
we have crD(G) ≥ α e1/(b−1)+2

n1/(b−1)+1 = α e5

n4 for some α > 0.
Consider now a k-plane drawing of a unit distance graph G with n vertices and e edges.

If e ≤ 4n, we are done, suppose that e ≥ 4n. Since each edge contains at most k crossings,
the total number of crossings c(G) satisfies c(G) ≤ ek/2. On the other hand, we have
c(G) ≥ α e5

n4 . Therefore, ek/2 ≥ α e5

n4 so e ≤ β 4
√

kn for some β > 0. ◀

4 Open questions

In this paper we proved that a 1-planar unit distance graph on n vertices can have at most
u1(n) ≤ 3n − 4

√
n/10 edges. However, the best known lower bound construction for u1(n) is

the same as for u0(n).

▶ Problem 12. Is it true that u0(n) = u1(n)?

For k = 2 there is a slightly better construction by Dániel Simon (personal communication,
2023) of roughly 3n −

√
192
23 n edges and for k = 3 there is an easy construction (a piece of a

unit triangular grid and its shifted copy by a unit vector) with 3.5n − c
√

n edges.
For a larger k our lower and upper bounds for uk(n) are very far from each other.

▶ Problem 13. Determine the maximum number of edges of a k-planar unit distance graph.

There are r-regular matchstick graphs for r ≤ 4 [9, 21] and there are no r-regular
matchstick graphs for r ≥ 5 [4, 11]. It follows from Theorem 1 that there are no r-regular
1-planar unit distance graphs for r ≥ 6.

▶ Problem 14. Are there 5-regular 1-planar unit distance graphs?
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Abstract
We introduce the Density Formula for (topological) drawings of graphs in the plane or on the
sphere, which relates the number of edges, vertices, crossings, and sizes of cells in the drawing. We
demonstrate its capability by providing several applications: we prove tight upper bounds on the
edge density of various beyond-planar graph classes, including so-called k-planar graphs with k = 1, 2,
fan-crossing / fan-planar graphs, k-bend RAC-graphs with k = 0, 1, 2, quasiplanar graphs, and
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graphs), we thereby obtain the first tight upper bounds on the edge density of the respective graph
classes. In other cases, we give new streamlined and significantly shorter proofs for bounds that
were already known in the literature. Thanks to the Density Formula, all of our proofs are mostly
elementary counting and mostly circumvent the typical intricate case analysis found in earlier proofs.
Further, in some cases (simple and non-homotopic quasiplanar graphs), our alternative proofs using
the Density Formula lead to the first tight lower bound examples.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Mathematics of
computing → Graphs and surfaces

Keywords and phrases beyond-planar, density, fan-planar, fan-crossing, right-angle crossing, quasi-
planar

Digital Object Identifier 10.4230/LIPIcs.GD.2024.7

Related Version Full Version: https://arxiv.org/abs/2311.06193 [15]

Funding Felix Schröder : supported by the Czech Science Foundation grant GAČR 23-04949X.
Torsten Ueckerdt: supported by the Deutsche Forschungsgemeinschaft – 520723789.

1 Introduction

Topological Graph Theory is concerned with the analysis of graphs drawn in the plane R2

or the sphere S2 such that the drawing has a certain property often related to forbidden
crossing configurations. The most prominent example is the class of planar graphs, which
admit drawings without any crossings. Other well-studied examples include k-planar graphs
where every edge can have up to k crossings, RAC-graphs where edges are straight line

© Michael Kaufmann, Boris Klemz, Kristin Knorr, Meghana M. Reddy, Felix Schröder, and
Torsten Ueckerdt;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Graph Drawing and Network Visualization (GD 2024).
Editors: Stefan Felsner and Karsten Klein; Article No. 7; pp. 7:1–7:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michael.kaufmann@uni-tuebingen.de
https://orcid.org/0000-0001-9186-3538
mailto:firstname.lastname@uni-wuerzburg.de
https://orcid.org/0000-0002-4532-3765
mailto:knorrkri@inf.fu-berlin.de
https://orcid.org/0000-0003-4239-424X
mailto:meghana.mreddy@inf.ethz.ch
https://orcid.org/0000-0001-9185-1246
mailto:schroder@kam.mff.cuni.cz
https://orcid.org/0000-0001-8563-3517
mailto:torsten.ueckerdt@kit.edu
https://orcid.org/0000-0002-0645-9715
https://doi.org/10.4230/LIPIcs.GD.2024.7
https://arxiv.org/abs/2311.06193
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


7:2 The Density Formula

segments and every crossing happens at a right angle, or quasiplanar graphs where no three
edges are allowed to pairwise cross each other. As all these include planar graphs as a special
case, they are commonly known as beyond-planar graph classes. See [14] for a recent survey.

When studying a beyond-planar graph class G, one of the most natural and important
questions is to determine how many edges a graph in G can have. The edge density of G is the
function giving the maximum number of edges over all n-vertex graphs in G. For example,
planar graphs with at least three vertices have edge density 3n − 6. All the beyond-planar
graph classes mentioned above have linear edge density, i.e., their edge density is in O(n).
Proofs of precise linear upper bounds for the edge density of a specific class G are often times
involved and very tailored to the specific drawing style that defines G. In particular, getting
a tight bound (even only up to an additive constant) was achieved only in a couple of cases.
A particularly simple case is the class of planar graphs, whose edge density of 3n − 6 can be
easily derived from Euler’s Formula. However, a comparable formula for general drawings
(with crossings) that can be used to easily derive tight upper bounds for the edge density of
beyond-planar graph classes was not known – until now.

Our Contribution. In this paper, we introduce a new tool, called the Density Formula
(Lemma 3.1), which can be used to derive upper bounds on edge densities for many beyond-
planar graph classes. It is an equation that relates the number of edges, vertices, crossings,
and sizes1 of cells1 in a connected drawing of a graph and is parameterized by a real-valued
parameter t. Intuitively, the Density Formula allows us to obtain density bounds by counting
the cells of small size in a drawing, which is often times quite an elementary task. The
parameter t is chosen in accordance with the desired density bound, e.g., when aiming for a
bound of roughly 5n, where n is the number of vertices, we might set t = 5, in which case the
Density Formula states that the number of edges in the drawing is 5n−10−

∑
c∈C(∥c∥−5)−x,

where x is the number of crossings, C is the set of cells, and ∥c∥ denotes the size of a cell c.
Thus, any upper bound on −(

∑
c∈C(∥c∥ − 5) + x) yields an upper bound on the number

of edges. Since the quantity (∥c∥ − 5) is non-negative for cells of size at least 5, such a
bound can indeed be obtained by counting the cells of small sizes (here, at most 4) and
cross-charging them with the crossings.

We give the precise, more general, statement of the Density Formula in Section 3, where
we also develop some general tools that help with the required counting / charging arguments.
Before that, in Section 2, we formally define some basic notions, such as (connected) drawings,
cells, cell sizes, etc., and discuss some further preliminaries. We demonstrate the capabilities
of the Density Formula by providing several applications, which are discussed next.

Applications
k-Bend RAC-Drawings. For an integer k ≥ 0, a drawing Γ in the plane R2 of some graph G

is k-bend RAC, which stands for right-angle crossing, if every edge of Γ is a polyline with
at most k bends and every crossing in Γ happens at a right angle, and in this case G is
called a k-bend RAC-graph. The k-bend RAC-graphs were introduced by Didimo, Eades,
and Liotta [13], who prove that n-vertex 0-bend RAC-graphs have at most 4n − 10 edges
(and this is tight), while every graph is a 3-bend RAC-graph. The best known upper bound

1 Loosely speaking, a cell of a drawing is a connected region of the plane (or sphere) after removing the
drawing; its size is the number of vertex and edge segment occurrences along its boundary, see Figure 3
for examples.
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Table 1 Overview of edge density bounds, i.e., the maximum number of edges in connected
n-vertex (n large enough) graphs in that graph class. In particular, the third column lists previous
work on upper bounds and the fourth column lists the upper bounds we obtain using the Density
Formula. Previously unknown bounds are highlighted with boxes. Results from the literature that
are written in light red rely on incomplete proofs as they use an incorrect statement from [16,17], as
we discuss in more detail in Section 5.1.

beyond-planar variant upper bound lower boundgraph class

0-bend RAC no constraint 4n − 10 4n − 8 4n − 10
[13] full version [15] [13]

1-bend RAC non-homotopic 5.4n − 10.8 5n − 10 5n − 10
[5] Theorem 4.2 [5]

2-bend RAC non-homotopic 20n − 24 10n − 19 10n − 54
[21] Theorem 4.2 Theorem 4.3

fan-crossing / simple 5n − 10 5n − 10 5n − 10
fan-planar [11,12,16,17] Theorem 5.2 [16,17]

fan-cr. / fan-pl. simple 4n − 12 4n − 10 4n − 16
+ bipartite [7, 12] full version [15] [7]

quasiplanar
simple 6.5n − 20 6.5n − 20 6.5n − 20

[4] full version [15] Theorem 6.2

non-homotopic 8n − 20 8n − 20 8n − 20
[4] full version [15] Theorem 6.1

1+-real face non-homotopic 5n − 10 5n − 10 5n − 10
[10] full version [15] [10]

2+-real face non-homotopic 4n − 8 4n − 8 4n − 8
[10] full version [15] [10]

k+-real face no constraint
k

k−2 (n − 2) k
k−2 (n − 2) k

k−2 (n − 2)
k ≥ 3 [10] full version [15] [10]

1-planar non-homotopic 4n − 8 4n − 8 4n − 8
[20] full version [15] [20]

2-planar non-homotopic 5n − 10 5n − 10 5n − 10
[20] full version [15] [20]

previous work Density Formula

for simple2 1-bend RAC-drawings is 5.4n − 10.8 [5], while the lower bound is 5n − 10 [5].
By means of the Density Formula, we give an improved upper bound of 5n − 10 for the
connected case, which is best-possible. Very recently, Tóth [21] established an upper bound
of 20n − 24 for simple graphs admitting 2-bend RAC-drawings, thereby improving the long

2 Loosely speaking, in a simple drawing, every pair of edges intersects in at most one point, thereby
forbidding digons formed by segments of two edges. In non-homotopic drawings, such digons are allowed
as long as both regions bounded by a digon contain at least one vertex or crossing.
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7:4 The Density Formula

standing previous best upper bound of 74.2n [8]. Using the Density Formula, we derive a
significantly improved upper bound of 10n − 19 for simple drawings. We also show that this
bound is tight up to an additive constant by constructing an infinite family of simple 2-bend
RAC-drawings with 10n − 54 edges. (A similiar construction of 2-bend RAC-drawings with
10n − 46 edges was presented by Angelini et al. [6], but their drawings are not simple.) Both
of our upper bound results in fact apply even to the non-homotopic2 case. We prove these
results in Section 4. For completeness, in the full version [15], we also apply the Density
Formula to reprove the known upper bound for 0-bend RAC-graphs.

Fan-Crossing Drawings. A drawing Γ on the sphere S2 of some graph G is fan-crossing if
for every edge e of G, the edges crossing e in Γ form a star in G, and in this case G is called a
fan-crossing graph. A simple drawing is fan-crossing if and only if there is no configuration I
and no triangle-crossing, as shown in Figure 1. Fan-crossing drawings generalize fan-planar
drawings; but the story about fan-planar graphs is problematic and tricky. In a preprint from
2014, Kaufmann and Ueckerdt [16] introduced fan-planar drawings as the simple drawings
in R2 without configuration I and II, as shown in Figure 1. These are today known as weakly
fan-planar and they show that n-vertex weakly fan-planar graphs have at most 5n − 10
edges [16]. However, recently, a first flaw in this proof was discovered [18]. It was fixed in the
journal version [17] of [16] from 2022 by additionally forbidding configuration III, as shown
in Figure 1. These, more restricted, graphs are today known as strongly fan-planar graphs,
and it is known that this indeed is a different graph class [12]. However, for each n-vertex
weakly fan-planar graph, there is a strongly fan-planar graph on the same number of vertices
and edges [12]. So any density result could be lifted. As every triangle-crossing contains
configuration II, weakly fan-planar graphs are also fan-crossing, while again these are indeed
different graph classes [11]. However again, for each n-vertex fan-crossing graph, there is a
weakly fan-planar graph on the same number of vertices and edges [11], and thus the density
can be lifted to fan-crossing graphs.

configuration I config. II config. III triangle-crossings

Figure 1 Simple fan-planar drawings have neither configuration I, nor II, nor III. Simple fan-
crossing drawings have no configuration I and no triangle-crossings.

In Section 5, we prove an upper bound of 5n − 10 for simple n-vertex connected fan-
crossing drawings by applying the Density Formula. We also briefly describe in Section 5.1
another issue in the (updated) proof from [17] by providing a counterexample to one of their
crucial statements. As all previous density results rest on [17], our result on fan-crossing
drawings is the first complete proof for fan-crossing, weakly fan-planar, and strongly fan-
planar drawings. Moreover, our proof is significantly simpler than the strategy used in [17].
In the full version [15], we discuss the special case of fan-crossing drawings of bipartite graphs,
for which we obtain similar results.

We remark that, in a very recent preprint, Ackerman and Keszegh [3] also (independently
of us) propose a new alternative proof for the 5n − 10 upper bound for fan-crossing graphs.
Moreover, Brandenburg [11] also considers adjacency-crossing graphs by just forbidding
configuration I, but allowing triangle-crossings. He shows however that this class coincides
with fan-crossing graphs, and hence our 5n − 10 upper bound applies.
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Quasiplanar Drawings. A drawing Γ on the sphere S2 of some graph G is quasiplanar if
no three edges of G pairwise cross in Γ and in this case G is called a quasiplanar graph.
Quasiplanar graphs were introduced by Pach [19]. It is known that simple n-vertex quasiplanar
drawings have at most 6.5n − 20 edges [4] and non-homotopic connected n-vertex quasiplanar
drawings have at most 8n − 20 edges [4]. However, the best known lower bounds [4] are just
6.5n − 29 and 7n − 29, respectively. In the full version [15], we reprove the known upper
bounds using the Density Formula. In Section 6, inspired by insights gained in our upper
bound proofs, we provide families of drawings showing that the previous upper bounds are
actually best-possible.

Further applications. In the full version [15], we also use the Density Formula to reprove
(and slightly generalize) the known upper bounds for so-called k+-real face graphs and
1-planar and 2-planar graphs. All results are summarized in Table 1.

Some previously known density proofs already contain ideas that are similar to (parts
of) our strategy, and we discuss this further in Section 7. But with the Density Formula,
whose proof is merely a straight-forward application of Euler’s Formula, we have a unified
and simple approach that somewhat unveiled the essential tasks in this field of research. We
believe it will serve as a useful tool for proving density bounds in the future. For example,
very recently, the Density Formula was already applied by Bekos et al. [9] to give bounds
on the density of k-planar graphs without short cycles. Moreover, given that the Density
Formula behaves symmetrically when it comes to the number of edges and the number of
crossings, it seems plausible that it can also be used to derive bounds on crossing numbers of
beyond-planar graph classes.

2 Terminology, Conventions, and Notation

All graphs in this paper are finite and have no loops, but possibly parallel edges. We consider
classic node-link drawings of graphs. More precisely, in a drawing Γ of a graph G = (V, E)
(in the plane R2 or on the sphere S2) the vertices are pairwise distinct points and each edge
is a simple3 Jordan curve connecting the two vertices. In particular, no edge crosses itself.
In order to avoid special treatment of the unbounded region, we mostly consider drawings on
the sphere S2. In one case (RAC-drawings), however, we consider drawings in the plane R2,
as the drawing style involves straight lines and angles. In any case, we require throughout
the usual assumptions of no edge passing through a vertex, having only proper crossings and
no touchings, only finitely many crossings, and no three edges crossing in the same point.

So-called simple drawings are a particularly important and well-studied type of drawing.
In such a drawing, any two edges have at most one point in common. In particular, simple
drawings contain no two edges crossing more than once, no crossing adjacent edges, and no
parallel edges. However, there is increasing interest in generalizations of simple drawings
that allow these types of configurations, as long as the involved edge pairs are not just drawn
in basically the same way within a narrow corridor. This notion is formalized as follows. A
lens in a drawing Γ is a region whose boundary is described by a simple3 closed Jordan curve
γ such that γ is comprised of exactly two contiguous parts, each being formed by (a part
of) one edge. So the curve γ consists of either two non-crossing parallel edges, or parts of
two crossing adjacent edges, or parts of two edges crossing more than once; see Figure 2 for

3 with no self-intersection
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7:6 The Density Formula

illustrations. Be aware that for drawings in R2, a lens might be an unbounded region. Now
let us call a drawing Γ non-homotopic4 if every lens contains a vertex or a crossing in its
interior. This is indeed a generalization of simple drawings, as these cannot contain any lens.

Figure 2 Lenses with no vertex and no crossing in their interior. Such configurations are forbidden
in non-homotopic drawings.

Beyond-planar graph classes are implicitly defined as all graphs G that admit a drawing Γ
with specific properties, such as all edges of G having at most one crossing in Γ. These for
example are called 1-planar drawings5 and the corresponding graphs are called 1-planar
graphs. We extend this policy to the properties “simple” and “non-homotopic” in the same
way, e.g., a non-homotopic 1-planar graph is a graph that admits a non-homotopic 1-planar
drawing. Observe that this aligns with a simple graph being a graph with no loops (which
we rule out entirely) and no parallel edges.

Fix a drawing Γ of some graph G = (V, E). Setting up some notation, let Ex ⊆ E be
the set of all crossed edges of G, i.e., with at least one crossing in Γ, and Ep = E \ Ex be
the set of all planar edges (without crossings). Further, let X denote the set of all crossings
in Γ. Each edge e is split into one or more edge-segments by the crossings along e. That is,
an edge with exactly k crossings, k ≥ 0, is split into exactly k + 1 edge-segments. An outer
edge-segment of Γ is incident to some vertex, while an inner edge-segment is not. The set of
all edge-segments of Γ is denoted by S and the set of all inner edge-segments by Sin.

▶ Observation 2.1. Let Γ be any drawing of some graph G = (V, E). Then

|S| = 2|X | + |E| and |Sin| = |S| − 2|Ex| − |Ep| = 2|X | − |Ex|.

The planarization Λ of the drawing Γ is the planar drawing obtained from Γ by replacing
each crossing by a new vertex and replacing each edge by its edge-segments. We call the
drawing Γ connected if the graph underlying its planarization Λ is connected. Let us remark
that most density results in this paper assume for brevity the considered graphs to be
connected, while our proofs actually only require the respective drawings to be connected.

The connected components of S2 or R2 after removing all edges and vertices in Γ are
called the cells of Γ. The set of all cells is denoted by C. The boundary ∂c of each cell c

consists of a cyclic sequence alternating between V ∪ X and S, i.e., vertices/crossings and
edge-segments of Γ. If Γ is not connected, ∂c might consist of multiple such sequences. Be
aware that an edge-segment might appear twice on ∂c, a crossing might appear up to four
times on ∂c, and a vertex v may appear up to deg(v) times on ∂c. Each appearance of an
edge-segment / vertex / crossing on ∂c is called an edge-segment-incidence / vertex-incidence
/ crossing-incidence of c. The total number of edge-segment-incidences and vertex-incidences

4 Usually, non-homotopic drawings require a vertex in each lens, but we only need our weaker requirement.
5 In literature, planar drawings are also referred to as plane drawings, and a planar graph with a fixed

plane drawing is called a plane graph. And there is a similar distinction for each beyond-planar graph
class (e.g., 1-planar vs. 1-plane graphs). But for simplicity, we treat planar and plane as equivalent here.
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of c is called the size of c and denoted by ∥c∥. Note that ∥c∥ does not take the number of
crossings on ∂c into account, while edge-segments and vertices are counted with multiplicities;
see Figure 3 for several examples. For an integer i, let Ci and C≥i denote the set of all cells
of size exactly i and the set of all cells of size at least i, respectively.

2

3

44 555

4

1 4
C3

3

4 5 5

C4 C5

Figure 3 Left: Cells (and their sizes) that do not appear in simple or non-homotopic drawings
on at least three vertices. Right: All types of cells c of size ∥c∥ ≤ 5 in a non-homotopic connected
drawing on at least three vertices (cf. Observation 2.2). The bottom row shows degenerate 4 -cells,
5 -cells, and 5 -cells.

Figure 3(right) shows all possible types of cells of size at most 5 that can occur in
connected non-homotopic drawings on S2 with at least three vertices; the bottom row
shows the degenerate cells, i.e., those cells c with a crossing or vertex appearing repeated
in ∂c. When proving edge density bounds by means of the Density Formula, our main
task will be to count these “small cells”; we denote the different types for convenience with
little pictograms, such as 4 -cells, 4 -cells, and 5 -cells. More precisely, each pictogram
describes a type of cell c in terms of the sequence of types of incidences found along its
connected boundary ∂c. E.g., the boundary of a 4 -cell consists of a vertex-incidence, an
edge-segment-incidence, a crossing-incidence, an edge-segment-incidence, a crossing-incidence,
and an edge-segment-incidence, in this order.

▶ Observation 2.2. Let Γ be any non-homotopic connected drawing of some graph G with at
least three vertices. Then

C3 is the set of all 3 -cells,
C4 is the set of all 4 -cells and 4 -cells, and
C5 is the set of all 5 -cells, 5 -cells, and 5 -cells. ⌟

3 The Density Formula

In this section, we first state and prove the Density Formula, then derive some immediate
consequences, and finally develop some general tools that are useful for its application.

▶ Lemma 3.1 (Density Formula). Let t be a real number. Let Γ be a connected drawing of a
graph G = (V, E) with at least one edge. Then

|E| = t(|V | − 2) −
∑
c∈C

(
t − 1

4 ∥c∥ − t

)
− |X |.

Proof. First recall that, by Observation 2.1,

|S| = |E| + 2|X |. (1)
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7:8 The Density Formula

Considering the total sum of ∥c∥ over all cells c ∈ C, we count every vertex v ∈ V exactly
deg(v) times and every edge-segment exactly twice. (Here we use that |E| ≥ 1 and, thus,
deg(v) ≥ 1 for each v ∈ V as Γ is connected.) Thus,

∑
c∈C

1
4∥c∥ = 1

4

(∑
v∈V

deg(v) + 2|S|

)
= 1

4(2|E| + 2|S|) (1)= 1
4(4|E| + 4|X |) = |E| + |X |. (2)

Let Λ = (VΛ, EΛ) be the planarization of G. It has exactly |VΛ| = |V | + |X | vertices,
|EΛ| = |S| edges, and |C| faces. As Λ is connected, we can apply Euler’s Formula (∗):

|E| + 2|X | (1)= |S| = |EΛ| (∗)= |VΛ| + |C| − 2 = |V | − 2 + |C| + |X |,

which gives the following two equations:

|E| = |V | − 2 + |C| − |X | = (|V | − 2) −
∑
c∈C

(−1) − |X | (3)

0 = |V | − 2 − (|E| + |X |) + |C| (2)= (|V | − 2) −
∑
c∈C

(
1
4∥c∥ − 1

)
(4)

Adding (3) and (t − 1) times (4) gives the result. ◀

The Density Formula can be used to find upper bounds on edge densities by counting
cells of small size. To see how this works, let us plug in two specific values for t (t = 4 and
t = 5, which we use quite often throughout the paper) resulting in the following statements:

▶ Corollary 3.2. For any connected drawing Γ of a graph G = (V, E) with |E| ≥ 1 we have

|E| = 4|V | − 8 −
∑
c∈C

(3
4∥c∥ − 4) − |X | ≤ 4|V | − 8 + 7

4 |C3| + |C4| + 1
4 |C5| − |X |.

▶ Corollary 3.3. For any connected drawing Γ of a graph G = (V, E) with |E| ≥ 1 we have

|E| = 5|V | − 10 −
∑
c∈C

(∥c∥ − 5) − |X | = 5|V | − 10 + 2|C3| + |C4| − |X | −
∑

c∈C≥5

(∥c∥ − 5).

So indeed, Corollary 3.2 allows us to derive upper bounds on |E| by proving upper
bounds on 7

4 |C3| + |C4| + 1
4 |C5| − |X |, which can be done by counting cells of sizes 3, 4,

and 5 and cross-charging them with the crossings. Similarly, noting that
∑

c∈C≥5
(∥c∥ − 5)

is non-negative, Corollary 3.3 allows us to derive upper bounds on |E| by proving upper
bounds on 2|C3| + |C4| − |X |. In fact, by taking into account the cells of larger sizes, one can
sometimes obtain more precise bounds. Thus, in the remainder of the section, we will devise
some general tools that help with the required counting / charging arguments. Moreover, we
give a first concrete example of such an argument by proving Lemma 3.4, which is a simple
but very general statement – in fact, it immediately gives two bounds of 4n − 8 in Table 1.

▶ Lemma 3.4. Let Γ be a non-homotopic connected drawing of a graph G = (V, E) with
|V | ≥ 3 and with no 3 -cells, no 4 -cells, no 5 -cells, no 4 -cells, and no 5 -cells. Then
|E| ≤ 4|V | − 8.

Proof. By assumption and Observation 2.2, we have |C3| = 0 and |C4| = 0 and |C5| = # 5 -
cells. Clearly, every crossing is incident to at most four 5 -cells and every 5 -cell has one
incident crossing. In particular, it follows that # 5 -cells ≤ 4|X |. Therefore, the Density
Formula with t = 4 (Corollary 3.2) immediately gives

|E| ≤ 4|V | − 8 + 7
4 |C3| + |C4| + 1

4 |C5| − |X | = 4|V | − 8 + 1
4# 5 -cells − |X | ≤ 4|V | − 8. ◀



M. Kaufmann, B. Klemz, K. Knorr, M. M. Reddy, F. Schröder, and T. Ueckerdt 7:9

▶ Lemma 3.5. Let Γ be any non-homotopic drawing. Then # 4 -cells ≤ |X |. Moreover, one
can assign each 4 -cell c a crossing in ∂c such that each crossing is assigned at most once.

Proof. At every crossing incident to a 4 -cell there is one inner edge-segment and one outer
edge-segment. As Γ is non-homotopic, every inner edge-segment is incident to at most one

4 -cell. This implies that every crossing is incident to at most two 4 -cells, while every
4 -cell has two distinct incident crossings, which implies the claim. ◀

▶ Lemma 3.6. Let Γ be a connected non-homotopic drawing of some graph G with at least
three vertices. Then

|Sin| ≥ # 4 -cells + 2 · # 4 -cells + 3 · # 3 -cells and |Sin| + # 4 -cells ≥ 2|C4| + 3|C3|.

Proof. The second inequality follows by combining the first inequality with Observation 2.2.
To prove the first inequality, let us call an inner edge-segment bad if it is incident to a

4 -cell or 3 -cell in Γ. As Γ is non-homotopic, every bad edge-segment is incident to
only one 4 -cell or 3 -cell. Hence, for the set B ⊆ Sin of all bad edge-segments we have
|B| = # 4 -cells + 3 · # 3 -cells. Define an auxiliary graph J = (VJ , EJ) with vertex set
VJ = Sin and with two edge-segments being adjacent in J if and only if they are an opposite
pair of edge-segments for some 4 -cell. Note that this and the following is true whether
the 4 -cells are degenerate or not. Then |VJ | = |Sin| and |EJ | = 2 · # 4 -cells, and the
maximum degree in J is at most two. Observe that J contains no cycle, as such a cycle would
correspond to a cyclic arrangement of 4 -cells and therefore two edges in G with no endpoints.
Hence, J is a disjoint union of paths (possibly of length 0) and every bad edge-segment
is an endpoint of one such path. Further, no path in J on two or more vertices can have
two bad endpoints, as such a path would correspond to a lens in Γ containing no vertex
and no crossing (as illustrated in Figure 2), contradicting the fact that Γ is non-homotopic.
Note that this implies |VJ | ≥ |EJ | + |B|. Recalling that |B| = # 4 -cells + 3 · # 3 -cells,
|VJ | = |Sin| and |EJ | = 2 · # 4 -cells, we obtain the first inequality of the lemma. ◀

4 k-Bend RAC-Graphs

In this section, we present our results for 1-bend and 2-bend RAC-graphs. We begin with
the upper bounds, for which we only require the following lemma.

▶ Lemma 4.1. Let k ∈ {1, 2} and Γ be a non-homotopic drawing of a connected graph
G = (V, E) such that every crossed edge e ∈ Ex is a polyline with at most k bends, and every
crossing is a right-angle crossing. Then 2|C3| + |C4| ≤ |X | + k−1

2 (|Ex| + 1).

Proof. Lemma 3.6 gives

|Sin| ≥ # 4 -cells + 2 · # 4 -cells + 3 · # 3 -cells. (5)

Now, each 4 -cell and each 3 -cell c is a polygon, and as all crossings have right angles, c

has at least one convex corner that is a bend, except when c is the unbounded cell. As every
bend is a convex corner for only one cell, we have

k|Ex| ≥ # 4 -cells + # 3 -cells − 1. (6)

Together this gives the desired

4|C3| + 2|C4|
(5),(6)

≤ |Sin| + k|Ex| + 1 = 2|X | + (k − 1)|Ex| + 1,

where the last equality uses |Sin| = 2|X | − |Ex| from Observation 2.1. Dividing by 2 and
realizing that 2|C3| + |C4| is an integer, concludes the proof. ◀
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7:10 The Density Formula

▶ Theorem 4.2. For every k ∈ {1, 2} and every n ≥ 3, every connected non-homotopic
n-vertex k-bend RAC-graph G has at most k(5n − 10) + (k − 1) edges.

Proof. Let Γ be a non-homotopic k-bend RAC-drawing of G = (V, E). As G is connected,
so is Γ. The Density Formula with t = 5 (Corollary 3.3) and Lemma 4.1 immediately give

|E| ≤ 5|V | − 10 + 2|C3| + |C4| − |X | ≤ 5|V | − 10 + k − 1
2 (|Ex| + 1),

which implies the desired |E| ≤ |E| + (k − 1)|Ep| ≤ k(5|V | − 10) + (k − 1). ◀

The lower bound construction in [6, Theorem 6] gives 2-bend RAC-graphs with n vertices
and 10n − 46 edges, but the provided drawings are not simple (not even non-homotopic).
We modify it giving simple 2-bend RAC-graphs with n vertices and 10n − 54 edges.

Figure 4 (Illustration of) a simple 2-bend RAC-drawing of G4 from Theorem 4.3.

▶ Theorem 4.3. For every integer k ≥ 1 there exists a simple connected 2-bend RAC-graph
Gk with n = k2 + 8 vertices and 10n − 54 edges.
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Proof. For k ≥ 1, a simple 2-bend RAC-drawing of the graph Gk (Figure 4) consists of
a set Q of k2 = n − 8 vertices in a regular but slightly rotated k × k grid,
an x-monotone 2-bend edge between any two vertices of Q

with consecutive y-coordinates (red), (n − 9 edges)
a y-monotone 2-bend edge between any two vertices of Q

with consecutive x-coordinates (blue), (n − 9 edges)
a set P of eight vertices around Q, each connected to all vertices
of Q with either all (weakly) x-monotone 2-bend edges or all
(weakly) y-monotone 2-bend edges (gray and purple), (8(n − 8) edges)
a 2-bend edge between any two vertices of P (black). (28 edges)

The routing of the edges is illustrated in Figure 4. ◀

5 Fan-Crossing Graphs

Here, we present our upper bound for fan-crossing graphs, starting with the key lemma.

▶ Lemma 5.1. Let Γ be a simple connected fan-crossing drawing of a graph with at least
three vertices. Then |C4| ≤ |X |.

Proof. First, observe that there are no degenerate 4 -cells since Γ is simple. We shall map
each cell c ∈ C4 onto one of its incident crossings ϕ(c) in such a way that no crossing is used
more than once, i.e., the mapping ϕ : C4 → X is injective.

As an auxiliary structure, we orient edge-segments incident to 4 -cells as follows. Let c

be a 4 -cell and s, s′ be a pair of opposite edge-segments in ∂c (that do not share a crossing).
As Γ is simple, the corresponding edges e, e′ are distinct. Now orient s and s′, each towards
the (unique) common endpoint of e and e′, which exists as Γ is fan-crossing. Doing this for
every 4 -cell and every pair of opposite edge-segments, we obtain a well-defined orientation:

▷ Claim. An edge-segment s shared by two 4 -cells c1, c2 has the same orientation in both.

Proof. Observe that the six crossings incident to c1 and c2 are pairwise distinct since Γ is a
simple drawing. Let e = uv be the edge containing s and e1, e2 be the two (distinct) edges
crossing e at the endpoints of s (which are crossings in Γ). Further, let f1, f2 be the two
edges containing the edge-segment opposite to s in c1, c2, respectively. In particular, e, f1, f2
all cross e1 and all cross e2. As Γ is fan-crossing6, e, f1, f2 have a common endpoint, say u.
But then s is oriented consistently towards u according to both incident 4 -cells c1, c2. ◁

▷ Claim. For each 4 -cell c, there is at least one crossing x incident to c such that both
edge-segments incident to c and x are oriented outgoing from x.

Proof. Assuming otherwise, the edge-segments would be oriented cyclically around ∂c. Con-
sider two crossings x1, x2 that are opposite along c (do not belong to the same edge segment
of c). The edges of the two (distinct) edge-segments of c that are outgoing from x1, x2 have a
common endpoint u, as Γ is fan-crossing; see Figure 5. The edges of the two edge-segments of
c that are outgoing from the remaining two opposite crossings y1, y2 behave symmetrically and
share an endpoint v, which is distinct from u, as Γ is simple. The four parts of the mentioned
edges that join the vertices u, v with the crossings x1, x2, y1, y2 are pairwise crossing-free since
Γ is simple. Hence, using these edge parts, we can obtain a planar drawing of the bipartite

6 Here it is crucial that e, f1 and f2 do not form a triangle-crossing.
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graph K3,3 − e (obtained from K3,3 by removing an edge) so that the bipartition classes are
{x1, x2, v} and {y1, y2, u} and where the four degree-3 vertices form a face. However, the
unique7 planar embedding of K3,3 − e has no such face; see again Figure 5. ◁

c

v

u
x1

x2 y1

y2

Figure 5 A cyclic orientation of a 4 -cell leading to a double-crossing (left) or the unique7 planar
embedding of K3,3 − e (right).

Now for every 4 -cell c, we set ϕ(c) to be a crossing x in ∂c whose two edge-segments in
∂c are oriented outgoing from x. Moreover, by Lemma 3.5 for every 4 -cell c, we can set
ϕ(c) to be a crossing in ∂c such that ϕ(c) ̸= ϕ(c′) for any distinct 4 -cells c, c′.

▷ Claim. The mapping ϕ : C4 → X is injective.

Proof. For a 4 -cell c and a 4 -cell or 4 -cell c′ with ϕ(c) = x ∈ ∂c′, we shall show ϕ(c′) ̸= x.

c

c′

x

e

f

v

s

c

c′

x

e

v

s

f f

c

c′ s

x

ee′

c

c′

x

s

e

e′
f

Figure 6 The four cases of a 4 -cell c sharing a crossing x with a 4 -cell or 4 -cell c′.

If c′ is a 4 -cell, let e be the edge that is incident to the vertex v ∈ ∂c′ and contains x.
Further, let f be the other edge at x (containing the inner edge-segment of c′) and let s be
the edge-segment of e in ∂c; see Figure 6. Evidently, v is the common endpoint of all edges
crossing f . In particular, s is oriented inwards at x, which is a contradiction to x = ϕ(c).

If c′ is a 4 -cell, let s be an edge-segment that ends at x and belongs to ∂c′, but not to ∂c.
Let e be the edge containing s, let f be the other edge at x, and let e′ be the edge containing
the edge-segment opposite of s in ∂c′; see Figure 6. As ϕ(c) = x, the edge-segment of e in ∂c

is oriented outwards at x and towards the common endpoint of all edges crossing f . As e

and e′ cross f , edge-segment s is oriented inwards at x and thus ϕ(c′) ̸= x. ◁

Clearly, the last claim implies the desired |C4| ≤ |X |. ◀

Let us prove the edge density of 5n − 10 for connected simple fan-crossing graphs in a
slightly stronger form.

7 All planar embeddings of K3,3 − e are combinatorially isomorphic since it is a subdivision of the
3-connected complete graph K4.
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▶ Theorem 5.2. Let Γ be a simple connected fan-crossing drawing of some graph G = (V, E)
with |V | ≥ 3. Then

|E| ≤ 5|V | − 10 −
∑

c∈C≥5

(∥c∥ − 5).

Proof. As every edge is crossed only by adjacent edges and adjacent edges do not cross (Γ is
simple), there are no 3 -cells in Γ and, hence, |C3| = 0. Therefore Corollary 3.3 (i.e., the
Density Formula with t = 5) immediately gives

|E| = 5|V | − 10 + 2|C3| + |C4| − |X | −
∑

c∈C≥5

(∥c∥ − 5) ≤ 5|V | − 10 −
∑

c∈C≥5

(∥c∥ − 5),

where the last inequality uses Lemma 5.1. ◀

5.1 Flaws in the Original Proofs from Related Work
Recall that fan-planar graphs are a special case of fan-crossing graphs, defined by admitting
drawings in R2 without configuration I and II (original definition [16]), respectively without
configurations I, II, and III (revised definition [17]); cf. Figure 1. The proofs in [16, 17]
involve a number of statements, each carefully analysing the possible routing of edges in
a fan-planar drawing. In the past decade, many papers on (generalizations of) fan-planar
graphs appeared and many rely (implicitly or explicitly) on said statements. As mentioned
above, a flaw in one of the statements from [16] was discovered [18]. In this section, we will
describe additional issues existing in both [16] and [17], thereby outlining why the previous
proofs of the density bounds for fan-crossing, weakly fan-planar, and strongly fan-planar
graphs are indeed incomplete.

v

c′

c

s
u1 u2

w1 w2

c
c′

p

v

u1

u2

w1

w2

Figure 7 Left: Illustration of [17, Corollary 5] taken from the paper. Right: A counterexample.

The authors try to guarantee [17, Corollary 5] that no cell of size 4 of any subdrawing of a
fan-planar drawing Γ contains vertices of G. In fact, if c is a 4 -cell with incident vertex
v and inner edge-segment of an edge u1u2, and some set S of vertices lies inside c, it is
suggested to move the drawing of G[S] to a cell c′ incident to an uncrossed edge vu1 or
vu2 as illustrated in Figure 7(left). However, in the particular situation of Figure 7(right)
with S just being a single vertex s, moving s into c′ would cause edge u1s to cross edge
vw2, which is already crossed by the independent edge u2w1; thus loosing fan-planarity.
In a later proof [17, Lemma 11], induction is applied to the induced subdrawing of an
induced subgraph G′ of G. However throughout, the drawing Γ was chosen to satisfy (i)
having the maximum number of planar edges, and (ii) being inclusionwise edge-maximal
with that property [17, Section 3]. It is not shown or clear why the subdrawing for the
induction still satisfies (i) and (ii).
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6 Quasiplanar Graphs

The lower bounds for simple and non-homotopic quasiplanar graphs presented in this section
are based on properties that tight examples must have that arise from a thorough reading
of our upper bound proof, as provided in the full version [15]. For instance, the removal of
any vertex leaves a cell of size 2 in the non-homotopic case, while in the simple case, the
uncrossed edges must form a matching.

▶ Theorem 6.1. For every n ≥ 4, there exists a non-homotopic n-vertex connected quasiplanar
graph with 8n − 20 edges.

Proof. For n = 4, let us simply refer to the construction illustrated in Figure 8(top-left).

n = 4 n ≥ 5

Figure 8 Illustrations of non-homotopic quasiplanar drawings with n vertices and 8n − 20 edges.
For better readability, the two zig-zag paths outside the cycle are omitted. The edge-coloring (works
only for even n) just indicates four crossing-free sub-drawings, which helps to verify quasiplanarity.

For n ≥ 5, the desired graph Gn consists of (for illustrations refer to Figure 8(right))
an n-vertex cycle C drawn in a non-crossing way, (n edges)
an edge between any two vertices at distance 2 on C drawn inside C, (n edges)
an edge between any two vertices at distance 2 on C drawn outside C, (n edges)
an edge between any two vertices at distance 3 on C, starting inside C,
crossing C at distance 1.5, and ending outside C, (n edges)
a zig-zag path of edges drawn inside C where
the endpoints of each edge have distance at least 3 on C, (n − 5 edges)
another (different) zig-zag path of edges drawn inside C where
the endpoints of each edge have distance at least 3 on C, (n − 5 edges)
a zig-zag path of edges drawn outside C where
the endpoints of each edge have distance at least 3 on C, (n − 5 edges)
another (different) zig-zag path of edges drawn outside C where
the endpoints of each edge have distance at least 3 on C, (n − 5 edges)

Thereby, all edges are drawn without unnecessary crossings. For example, two edges drawn
inside C cross only if the respective endpoints appear in alternating order around C.

Evidently, Gn has n vertices and 8n − 20 edges, and it is straightforward to check that
the described drawing of Gn is non-homotopic and quasiplanar. ◀
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▶ Theorem 6.2. For every even n ≥ 8, there exists a simple n-vertex quasiplanar graph with
6.5n − 20 edges.

Proof. Our construction is a subgraph of the corresponding graph in the proof of Theorem 6.1;
see Figure 9 for an illustration. For every even n ≥ 8, the desired simple quasiplanar graph
Gn is missing all the orange edges depicted in Figure 8 except the ones at distance 1, i.e.

the edges between any two black vertices at distance 2 on C

drawn inside C, (n/2 edges)
the edges between any two white vertices at distance 2 on C

drawn outside C, (n/2 edges)
the edges from each black vertex to its white vertex clockwise at distance 3
on C, starting inside C, crossing C at distance 1.5, and ending outside C, (n/2 edges)

As n ≥ 8, the four zig-zag paths can be chosen without introducing parallel edges. Again,
all edges are drawn without unnecessary crossings. For example, two edges drawn inside C

cross only if the respective endpoints appear in alternating order around C.

n ≥ 8

Figure 9 Illustration of simple quasiplanar drawings with n vertices and 6.5n − 20 edges, for even
n ≥ 8. For better readability, the two zig-zag paths outside the cycle are omitted. The edge-coloring
just indicates four crossing-free sub-drawings, which helps to verify quasiplanarity.

Evidently, Gn has n vertices and 6.5n − 20 edges and it is straightforward to check that
the described drawing of Gn is simple and quasiplanar. ◀

7 Concluding Remarks

Some previously known proofs already contain ideas that are similar to (parts of) our
approach. Often times, this is phrased in terms of a discharging argument, instead of a
direct counting. For example, some discharging steps in [4], [1], [2], and [3] (dealing with
k-planar, so-called k-quasiplanar graphs, and fan-crossing graphs) directly correspond to
our proof of Lemma 3.6. In these four cases, but also in [10], the total sum of all charges is∑

c∈C(∥c∥ − 4) (although stated a bit differently). In [5], which concerns 1-bend RAC-graphs,
there is a charging involving the convex bends. Further, the concept of the size of a cell and
the quantity

∑
c∈C(∥c∥ − 5) already appear in the papers [16, 17] on fan-planar graphs. But
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with the Density Formula, we have a unified approach that somewhat unveiled the essential
tasks in this field of research. A valuable asset of our approach are very streamlined and
clean combinatorial arguments, as well as substantially shorter proofs, as certified by the
number of beyond-planar graph classes that we can treat in about 20 pages (referring to the
full version [15]).

Additionally, it is straightforward to derive from the particular application of the Density
Formula properties that must be fulfilled by all tight examples. For example, from our proof
for k+-real face graphs (in the full version [15]), we immediately see that all tight examples
of k+-real face graphs with k ≥ 3 are planar. Similarly, from our proof for 2-planar graphs
(in the full version [15]), we see that no tight example of a 2-planar graph has a 3 -cell or
4 -cell. And (together with a short calculation) our proof for quasiplanar graphs (in the full

version [15]) implies that in all tight examples of simple quasiplanar graphs the planar edges
form a perfect matching. Specifically, this approach of analyzing the situation in which the
proof with the Density Formula is tight, allowed us to find the first tight examples for simple
and non-homotopic quasiplanar graphs (cf. Theorems 6.1 and 6.2).

The only cases presented here in which upper and lower bounds still differ by an absolute
constant are k-bend RAC-graphs; cf. Table 1. This is due to the fact that these are drawings
in the plane R2 and the unbounded cell behaves crucially different from all other cells. It is
possible to reduce our upper bounds by an absolute constant by a separate analysis of the
unbounded cell, but we did not pursue this here. On the other hand, it may well be that
our bounds are already optimal for k-bends RAC-drawings on the sphere S2 (for the natural
definition of this concept) – they definitely are for k = 0.

Finally for open problems, there is a number of beyond-planar graph classes for which
the exact asymptotics of their edge density is not known yet. This includes for example
non-homotopic fan-crossing graphs, k-quasiplanar graphs for k ≥ 4, and k-planar graphs
for k ≥ 4. Let us refer again to the survey [14] from 2019 for more such cases and more
beyond-planar graph classes in general. Additionally, each class could be considered in a
“bipartite variant” (as we do for fan-crossing graphs in the full version [15]) and/or an “outer
variant” where one additionally requires that there is one cell that is incident to every vertex;
see for example [7].
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Abstract
The k-planar graphs, which are (usually with small values of k such as 1, 2, 3) subject to recent
intense research, admit a drawing in which edges are allowed to cross, but each one edge is allowed
to carry at most k crossings. In recently introduced [Binucci et al., GD 2023] min-k-planar drawings
of graphs, edges may possibly carry more than k crossings, but in any two crossing edges, at least
one of the two must have at most k crossings. In both concepts, one may consider general drawings
or a popular restricted concept of drawings called simple. In a simple drawing, every two edges are
allowed to cross at most once, and any two edges which share a vertex are forbidden to cross.

While, regarding the former concept, it is for k ≤ 3 known (but perhaps not widely known)
that every general k-planar graph admits a simple k-planar drawing and this ceases to be true for
any k ≥ 4, the difference between general and simple drawings in the latter concept is more striking.
We prove that there exist graphs with a min-2-planar drawing, or with a min-3-planar drawing
avoiding crossings of adjacent edges, which have no simple min-k-planar drawings for arbitrarily
large fixed k.
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1 Introduction

One of the most popular current research directions in graph drawing is going “beyond
planarity” [7, 10]. This somewhat broad direction can be described as considering drawings
of graphs in which edges may cross, but the overall pattern of edge crossings is restricted,
usually in a local setting. Some of the earliest examples are 1-planar graphs (every edge may
have at most 1 crossing), and popular extensions nowadays include many families among
which we, for example, mention k-planar- and fan-planar graphs, or k-quasiplanar graphs.
These diverse classes often share some nice properties of planar graphs, such as having
few edges (e.g., for 1-planar graphs [18], for k-planar graphs [14], and for 3-quasiplanar
graphs [2]). However, they may differ greatly from planar graphs in other respects; for
instance, recognizing 1-planar graphs is NP-complete [9, 12].

We refer to Section 2 for a precise definition of a drawing of a graph, and of simple and
min-k-planar drawings. Briefly, by a drawing of a graph (here exclusively in the plane) we
mean a topological representation in which edges (as arcs) join their end vertices (as points)
and avoid passing through other vertices. Furthermore, every two distinct edges intersect
finitely many times, and at most two edges intersect in one point except when it is their
common end vertex. In a simple drawing, we additionally require that every two distinct
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8:2 Note on Min-k-Planar Drawings of Graphs

edges intersect in at most one point – a crossing or a common end. (However, one has to
be careful with this simplified definition when considering a simple drawing of a non-simple
graph; then two parallel edges share two common ends.)

It is very common that research papers assume only simple drawings, for convenience, but
it is sometimes not quite clear whether this assumption is made “without loss of generality,”
or whether it is a significant restriction on the kinds of drawings considered. For instance,
when studying the crossing number of a graph (the minimum total number of crossings
over all drawings), one can quite easily restrict attention to simple drawings without loss of
generality, but such restriction is not possible when studying the odd crossing number [16].
On a different note, so-called fan-planar graphs can be assumed to have a simple fan-planar
drawing without loss of generality, but the proof [11] is highly nontrivial.

Consider k-planar graphs, which are graphs admitting a drawing in which no edge carries
more than k crossings. (The same concept is also known as the local crossing number [17]
or the crossing parameter [9].) The seminal paper of Pach and Tóth [14] explicitly requires
simple k-planar drawings, while, e.g., “algorithmic” papers Grigoriev and Bodlaender [9] and
Korzhik and Mohar [12] deal with general k-planar drawings (in fact, [12] mentions that any
1-planar drawing can be turned into a simple one) and Ackerman [1] distinguishes the cases.
A recent survey on beyond planarity [7] unfortunately does not explicitly address this issue,
and it mostly only implicitly restricts to results about simple drawings in this respect.

To illustrate the potential problem points (of unwary mixing general and simple k-planar
drawings in research), we mention, e.g., [3] which formulates results about general 3-planar
drawings, but importantly uses a lemma of [14] which, in unmentioned fact, relies on the
assumption of a simple drawing. In this particular case of [3], as well as in other papers which
deal with k-planar drawings for only k ≤ 3, there is no reall problem since every general
k-planar graph for k ≤ 3 admits a simple k-planar drawing, as shown already by Pach et
al. [13]. On the other hand, for every k ≥ 4 there exist k-planar graphs which have no simple
k-planar drawing, e.g., Schaefer [17, Chapter 7].

Concerning the new related concept of min-k-planar graphs, which are graphs admitting
a drawing in which every pair of crossing edges has one of the two edges with at most
k crossings; the introductory paper by Binucci et al. [4, 5] requires simple drawings by
the definition. However, min-k-planar drawings may also be understood in the general
(non-simple) setting, and the difference between the general and the simple settings is much
more striking than in the case of k-planar graphs.

Namely, we prove (Theorem 2.1) that for arbitrarily large fixed k there exist graphs
that are min-2-planar without restricting to simple drawings, but which have no simple
min-k-planar drawing. Alternatively, counterexample graphs with a min-3-planar drawing
in which no two edges sharing a common vertex cross can also be constructed. In other
words, the concepts of simple and general min-k-planar drawings always significantly differ,
except in the trivial case of k = 1 (in which we can easily simplify any min-1-planar drawing,
cf. Proposition 2.2), and they differ for k ≥ 3 even if we forbid general drawings in which
two edges with a common vertex cross.

In the course of proving this result, we develop a technical tool (Lemma 3.2) which
suitably constrains possible min-k-planar drawings of graphs within a rigid “frame”, and we
suggest this tool can be useful in further research of the properties of min-k-planar graphs.

2 Min-k-planar Drawings and Graphs

We consider general finite undirected graphs (with possible parallel edges or loops), and say
that a graph is simple if it has no parallel edges and no loops.
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A drawing G of a graph G in the Euclidean plane R2 is a function that maps each vertex
v ∈ V (G) to a distinct point G(v) ∈ R2 and each edge e = uv ∈ E(G) to a simple curve
(non-self-intersecting Jordan arc) G(e) ⊂ R2 with the ends G(u) and G(v). We require that
G(e) is disjoint from G(w) for all w ∈ V (G) \ {u, v} and that G(e) ∩ G(f) is finite for all
e ̸= f ∈ E(G). In a slight abuse of notation we identify a vertex v with its image G(v) and
an edge e with G(e). An intersection (possibly tangential) of two edges e and f other than a
common end vertex, in other words a point x ∈ G(e) ∩ G(f), is called a crossing (of e and f),
and the pair e, f is said to cross in x. A planar drawing is a drawing with no crossings.

For further concepts, the definition of a “crossing” needs a careful clarification. If k > 2
edges together cross in one point, then this situation, strictly, counts as

(
k
2
)

crossings of
pairs of these edges (see, e.g., [6]). Since a slight local perturbation of the involved edges
avoids common crossings of triples without adding any new crossing, for our purposes, we
may simply discard the possibility that k > 2 edges together cross in one point, which is a
common approach in literature. Therefore, without loss of generality, we require that, in
every drawing, no three edges cross in the same point, unless stated otherwise.

One may, likewise, deal with possible tangential crossings in a drawing, which can be
discarded by a slight local perturbation as well, and so exclude tangential crossings by the
definition (as many papers do for convenience), but here we stay on the more general side
and do not exclude them.

In a simple drawing G (otherwise known as a good drawing [8, 17], but we wish to adhere
to the recent terminology), crossings are allowed, but (again) no three edges cross in the
same point, no two edges have more than one crossing in common, and no two adjacent edges
(i.e., with a common end vertex) cross. Hence, in our setting, a simple drawing G is defined
such that, for every e ̸= f ∈ E(G), we have |G(e) ∩ G(f)| ≤ 1, except that |G(e) ∩ G(f)| = 2
when e and f are parallel edges (the latter is irrelevant for simple graphs).

A drawing G is k-planar if no edge contains more than k crossings. A drawing G is
min-k-planar if, for every two crossing edges e and f in G, one (or both) of e, f has no more
than k crossings. If an edge e has more than k crossings in a min-k-planar drawing G, then e is
called heavy in G (hence two heavy edges cannot cross each other in a min-k-planar drawing).

A graph G is min-k-planar if G admits a min-k-planar drawing. Moreover, a graph
G is simply min-k-planar if G admits a min-k-planar drawing G such that G is a simple
drawing. Since some papers shortly speak about min-k-planar graphs while requiring simple
drawings, to avoid further confusion, we will call min-k-planar graph without the additional
requirement of a simple drawing as general min-k-planar.

A careful distinction between general min-k-planar graphs and simply min-k-planar
graphs is indeed necessary for all k > 1, as we are going to prove here.

▶ Theorem 2.1 (Proof in Section 3).
a) For every k ≥ 2, there exists a simple graph Hk which is general min-2-planar, but Hk

has no simple min-k-planar drawing.
b) Moreover, for all k ≥ 3, there exists a graph H ′

k which has a general min-3-planar drawing
in which no two adjacent edges cross, but, again, H ′

k has no simple min-k-planar drawing.

To complement Theorem 2.1, we resolve the remaining trivial cases in Proposition 2.2.

▶ Proposition 2.2.
a) Every general min-1-planar graph admits a simple min-1-planar drawing (hence is simply

min-1-planar).
b) Every graph with a min-2-planar drawing in which no two adjacent edges cross also admits

a simple min-2-planar drawing.
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e1

f1
e

f

x y

e′
1

x y

e′′

f ′′

Figure 1 An illustration of Proposition 2.2 a); up to symmetry between e and f (with common
end vertex x), the edge e carries no other crossing than the point y, and so one can draw an uncrossed
arc e′

1 tightly along the segment e1 ⊆ e from x to y. When redrawing from e to e′′ and from f to f ′′

(using e′
1), the crossing at y is eliminated and no new crossings are added to any edge in the picture.

e1

f1
e

f

x y

e′
1

x y

e′′

f ′′

Figure 2 An illustration of Proposition 2.2 b); now we have two crossings x and y of the same
pair e and f of edges, and there are no more crossings on e. Similarly to Figure 1, when redrawing
from e to e′′ and from f to f ′′ (using the uncrossed arc e′

1), at least one of the crossings at x or y is
eliminated and no new crossings are added to any edge in the picture.

Proof.
a) Let G be a general min-1-planar graph and take a min-1-planar drawing G of G. For

simplicity, in this proof, we write e (an edge) also for the point set G(e) in the drawing.
We may assume that G minimizes the number of edge pairs which violate the simplicity
of the drawing, i.e., edge pairs which share a vertex and cross, since a pair cannot cross
twice in a min-1-planar drawing. Let e, f ∈ E(G) be such a violating edge pair in G;
hence the intersection of e and f contains two distinct points x, y ∈ e ∩ f where x is a
vertex and y a crossing. Moreover, we may assume up to symmetry that e has no crossing
other than with f .
Let us denote by e1 and f1 the subarcs of e and f , respectively, in G with the ends x, y.
Since e1 is internally crossing-free, there exists an arc e′

1 from x to y drawn sufficiently
close to e1 such that e′

1 is disjoint from G except in x, y. We replace f in G with
f ′ := (f \ f1) ∪ e′

1; this new drawing G′ of G is again min-1-planar since no crossings of G
have been affected. If y is a tangent of the edges e and f ′ (not crossing transversely at y),
then a local perturbation of e around y simply removes this tangential crossing, and so we
eliminate one violating edge pair from G in G′. Otherwise, if e and f ′ cross transversely
at y, we instead replace e with e′′ := (e \ e1) ∪ e′

1 and f with f ′′ := (f \ f1) ∪ e1 in G. See
Figure 1. The new drawing G′′ of G is min-1-planar, too, and y is now a tangent of the
edges e′′ and f ′′, which can be eliminated as previously.

b) We let G be a min-2-planar drawing of a graph G in which no two adjacent edges cross.
Again, we may assume that G minimizes the number of edge pairs which violate the
simplicity of the drawing – these are now the pairs which mutually cross exactly twice.
Let e, f ∈ E(G) be such a violating edge pair in G; hence the intersection of e and f

contains two distinct points x, y ∈ e ∩ f which are crossings.
Since G is min-2-planar, up to symmetry, the edge e has no other crossings than x, y.
Denote by e1 and f1 the subarcs of e and f , respectively, in G with the ends x, y. Since e1
is internally crossing-free, there exists an arc e′

1 from x to y drawn sufficiently close to e1
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a1 a2

c1

c2

b1

C3

M1

M2

S2

S1

Figure 3 An anchored general min-2-planar drawing of the anchored graph (Gk, Ak) (here for
k = 3, with the heavy edges drawn thick) as used in the proof of Lemma 2.3. With general k ≥ 2, at
least k − 1 of the edges of the star S1 with center a2 follow the depicted route of the red edge a2b1,
while crossing the edge a2a1.

such that e′
1 is disjoint from G except in x, y. We define new arcs of the edges e and f in

G as follows; e′ = e and f ′ := (f \ f1) ∪ e′
1, and e′′ := (e \ e1) ∪ e′

1 and f ′′ := (f \ f1) ∪ e1.
Clearly, for at least one of the pairs e′, f ′ or e′′, f ′′, some of the points x, y is now a
tangential crossing, which can be eliminated as previously. See Figure 2. The new drawing
G′ of G is min-2-planar, too, and no new crossings have been created between any edge
pairs.

Altogether, we have in each case decreased the number of violating edge pairs, contra-
dicting our minimal choice of the drawing G. ◀

To prove Theorem 2.1, we use the following intermediate result formulated for so-called
anchored graphs, which captures the essence of Theorem 2.1. An anchored graph is a pair
(G, A) where A ⊆ V (G) is an ordered tuple of vertices. An anchored drawing of (G, A) in
the unit disk D ⊆ R2 is a drawing G ⊆ D of G such that G intersects the boundary of D

precisely in the points of A (the anchors) in this clockwise order. We naturally extend the
adjective anchored to min-k-planar drawings. We prove:

▶ Lemma 2.3. For every k ≥ 2, there exists a simple anchored graph (Gk, Ak) which has an
anchored general min-2-planar drawing, but (Gk, Ak) has no anchored simple min-k-planar
drawing. Furthermore, for any k ≥ 3, there exists a simple anchored graph (G′

k, A′
k) which

has an anchored general min-3-planar drawing in which no pair of adjacent edges cross, but
(G′

k, A′
k) has no anchored simple min-k-planar drawing.

Proof. We define the anchored graph (Gk, Ak) as depicted in Figure 3. Gk is a disjoint
union of two induced matchings M1 and M2 of k + 1 edges each, and of two induced stars
S1 and S2, where S1 has center a2 and k + 1 leaves including a1, b1 and S2 has center c2 and
k + 2 leaves in the set C3 ∪ {c1} where |C3| = k + 1. The anchor set is Ak = V (Gk) \ {c2}
ordered as in Figure 3. Figure 3 also shows an anchored min-2-planar drawing of (Gk, Ak)
(however, a1a2 crosses b1a2 there).

Assume, for a contradiction, that there exists an anchored simple min-k-planar drawing
G of (Gk, Ak). By Jordan Curve Theorem, the edge a1a2 has to cross all k + 1 edges of
M1, and so a1a2 is heavy in G. If the edge c1c2 was crossing a1a2, then, again using Jordan

GD 2024
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a1 a2

c1

c2

b1 b2

c3

M1

M2

M3

Figure 4 An anchored general min-3-planar drawing of the anchored graph (G′
k, A′

k) (here for
k = 4, with the heavy edges drawn thick) as used in the proof of Lemma 2.3. For general k ≥ 3, at
least k − 2 of the edges of the matching M3 follow the route of the red edge b1b2. These edges cross
the heavy edge a1a2 twice, and so the drawing is neither simple nor general min-2-planar.

Curve Theorem, some edge of M2 would cross twice with a1a2 – which is not simple, or c1c2
would cross all edges of M2 and be heavy as well – which contradicts G being min-2-planar.
Therefore, all k + 1 edges from c2 to C3 have to cross a1a2 and are non-heavy.

Consequently, none of the edges between c2 and C3 can cross all k + 1 edges of S1. By
Jordan Curve Theorem, hence, some edge of S1, say b1a2 (as in the picture) crosses c1c2.
However, again by Jordan Curve Theorem, from this crossing point to b1, the edge b1a2 has
to cross the edge a1a2, contradicting the assumption that G is simple.

For k ≥ 3, we define the anchored graph (G′
k, A′

k) as depicted (with a min-3-planar
drawing) in Figure 4. The definition is analogous to that of (Gk, Ak), except that the star
S1 is now replaced with an induced matching M3 of k + 1 edges (including the edge a1a2),
and the star S2 is replaced with a path (c1, c2, c3) of length two.

A proof that (G′
k, A′

k) has no anchored simple min-k-planar drawing starts with the same
steps as the previous one. We get that the edge a1a2 is heavy and not crossing c1c2, and so
the edge c2c3 has to cross a1a2 and is non-heavy. Then each of the k edges of M3 has to
cross c2c3 or c1c2, but not all may cross c2c3 which would become heavy. Consequently, some
edge, say b1b2 ∈ E(M3), crosses the edge c1c2. Since c1c2 is separated from V (M3) by a1a2,
by Jordan Curve Theorem, the edge b1b2 has to cross a1a2 twice, again a contradiction. ◀

3 Technical Proofs

In this section we give the technical details leading to the proof of Theorem 2.1. In a nutshell,
we are going to construct a “frame graph” which enforces a predefined anchored subdrawing
of a given anchored graph, and then we apply this construction to the graphs of Lemma 2.3.

A t-amplification of a graph G is the graph obtained from G by replacing every edge
e = xy ∈ E(G) with a new collection of t pairwise internally disjoint paths of length 2 from
x to y. Observe that any t-amplification of a planar graph G is again planar.

▶ Lemma 3.1. For every planar graph G, there exists an integer t = t(G, k, w), depending on
G and integers k and w, such that the following holds. Every general min-k-planar drawing
G of the t-amplification Gt of G contains a planar subdrawing G′ which is isomorphic to the
w-amplification Gw of G.
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Proof. Let the length-2 paths (with ends in V (G) ) from the definition of the t-amplification
Gt be called double edges of Gt. We start with an easy claim:
(*) Let a1, a2, b1, b2 ∈ V (G) (possibly a1 = a2 or b1 = b2), and let D1 and D2 be sets of

double edges of Gt where those of Di have ends ai and bi, such that each double edge
of D1 crosses each one of D2 in the drawing G. If |D1|, |D2| ≥ 2k + 1, then G is not
min-k-planar.

Indeed, since every double edge P ∈ D1 crosses all of D2, one of the two edges of P has at least
k + 1 crossings and is heavy. The same holds for every P ′ ∈ D2. Without loss of generality,
assume now |D1| = |D2| = 2k + 1. If every crossing occurring between D1 and D2 involved a
non-heavy edge, then the total number of these crossings would be bounded (counted along
all non-heavy edges) by at most |D1| · k + |D2| · k = k(4k + 2) < (2k + 1)2 = |D1| · |D2|,
which is impossible. Hence some two heavy edges cross and G is not min-k-planar.

We continue with a Ramsey-type argument.1 For any f ∈ E(G) and any t1, by Ramsey
Theorem, there is a sufficiently large t such that the following holds. Among the t double
edges replacing f in the t-amplification Gt, there exist 2(2k + 1) pairwise crossing ones or
t1 pairwise non-crossing ones. If the former (crossing) case happens, then by (*) we get
a contradiction to the assumption of this lemma, that G is min-k-planar. Therefore, the
non-crossing case happens, and we apply the same argument concurrently to all edges of G.
This way we get a subdrawing G1 ⊆ G of a t1-amplification Gt1 of G such that the collection
of paths replacing any edge of G is alone crossing-free in G1.

Likewise, for any pair of edges f, f ′ ∈ E(G) and any t2, by the bipartite Ramsey Theorem,
there is a sufficiently large t1 such that we get t2 double edges replacing f and another t2
replacing f ′ in Gt1 , which are pairwise noncrossing in G1, or we again get a contradiction
via (*). Applying this argument concurrently to disjoint pairs of edges of G, we obtain a
subdrawing G2 ⊆ G1 of a t2-amplification of G. We iterate this argument until we exhaust
all pairs of edges of G. Starting from a sufficiently large t, the resulting drawing G′ of this
iterative process is a w-amplification of G, and no two double edges cross in G′, as desired. ◀

▶ Lemma 3.2. For any integers a, k and simple graph G with an ordered subset A ⊆ V (G),
|A| = a, there exists a simple anchored graph (H, A) disjoint from G except in the anchors A,
such that the following hold:
a) (H, A) has an anchored simple min-1-planar drawing.
b) In every general min-k-planar drawing H of H ∪ G, the subdrawing G ⊆ H of G is

(spherically) homeomorphic to an anchored drawing of (G, A) or its mirror image.

Proof. For a start, we ignore all components of G − A which attach to A in at most one
vertex; their possible subdrawings can always be added homeomorphically and without
further crossings to the rest of an anchored drawing of (G, A). Let ℓ be the maximum
finite(!) distance in G between a vertex of A and a (reachable) vertex of V (G) \ A. Let
d = a(2kℓ + 2k + 1).

We begin with the graph H0 which is a double wheel of d spokes, i.e., a graph made
from the cycle Cd by adding two central vertices w1, w2 adjacent to all cycle vertices. Let
H∗

0 be the planar dual of H0, and H1 be constructed from H0 ∪ H∗
0 by adding extra edges

uv ∈ E(H1) for every pair u ∈ V (H0) and v ∈ V (H∗
0 ) such that u is a vertex incident to the

face of (the unique planar drawing of) H0 represented by v. We construct the graph H2 by

1 One can get better estimates of t using homotopy-based arguments, but that would not make our result
stronger and we prefer simplicity of brute-force Ramsey here.
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H ′
2

w1

w1
2 w2

2

w3
2

H ′′
2

Figure 5 An illustration of the graph H2 from the proof of Lemma 3.2. The three black circled
vertices are the designated anchors A (here A = {w1

2, w2
2, w3

2}). The subgraph H ′
2 is in thick black and

H ′′
2 in magenta colour. All magenta edges get t-amplified in the construction of H, and consequently,

the black edges forced to cross them will be heavy in any min-k-planar drawing of H by Lemma 3.1.

splitting the central vertex w2 into a vertices, each incident with 2kℓ + 2k + 1 consecutive
spokes of H0 and with naturally corresponding extra edges of H1. See Figure 5. The vertices
split from w2, in their clockwise order, define the anchor set A.

Furthermore, let H ′
2 ⊆ H2 be the subgraph formed by the original edges of H0, and

H ′′
2 = H2 \ E(H ′

2). Observe one important property of planar H ′′
2 ; for every planar drawing

of H ′′
2 and each edge uv ∈ E(H ′

2), the points u and v are separated by a cycle (e.g., the
dual cycle of u ̸= w2) in H ′′

2 . Let now t = t(H ′′
2 , k, k + 1) be as in Lemma 3.1. We construct

H := H ′
2 ∪ Ht

2 where Ht
2 is the t-amplification of H ′′

2 . Obviously, (H, A) has an anchored
simple min-1-planar drawing, e.g., one following Figure 5.

Consider now a min-k-planar drawing H of H ∪G, and denote by H0 ⊆ H the subdrawing
of Ht

2. By Lemma 3.1, H0 contains a planar subdrawing of a (k + 1)-amplification of H ′′
2 .

By the mentioned property of H ′′
2 , every edge of H ′

2 thus has to cross at least k + 1 edges of
Ht

2 and is heavy. In particular, the subdrawing of H ′
2 within H is planar (and so has to look

as in Figure 5).
We pick an anchor vertex a ∈ A and observe that a has 2kℓ+2k+1 disjoint length-2 paths

to w1 in H ′
2. Let Pa denote the “middle” one of them. Assume that an edge f = xy ∈ E(G)

crosses Pa in the drawing H. Then each end x or y has distance at most ℓ in G to a vertex
b ∈ A \ {a} by our choice of ℓ, and so ≤ ℓ + 1 edges of a path from f (and including f) to b

have to cross together kℓ + k + 1 paths of H ′
2 between a and w1, by Jordan Curve Theorem.

Therefore, some edge of this path of G must cross at least k + 1 edges of H ′
2, and we get

pair(s) of crossing heavy edges, which is a contradiction.
Therefore, in H there are H ′

2-paths from each anchor vertex a ∈ A to central w1 which
are not crossed by any edge of the subdrawing of G. This means that the subdrawing of G

within H can be homeomorphically deformed in the sphere so that the vertices of A will be
drawn on a disk boundary and the rest inside, as required by an anchored drawing. The
correct cyclic order (up to a mirror image) of the anchors A on the disk boundary is ensured
by the cycle of H ′

2 on the neighbours of w1 (the rim cycle of the starting wheel). ◀
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We are now ready to finish the proof of the main result.

Proof of Theorem 2.1. We take the anchored graph (Gk, Ak), k ≥ 2, and the anchored
graph (G′

k, A′
k), k ≥ 3, from Lemma 2.3 for (a) and (b), respectively, and plug them into

Lemma 3.2 as G. The rest is an immediate consequence of the previous statements. ◀

4 Conclusions

Many papers in the graph drawing area deal with only simple drawings, either as a convenient
simplification of the general case, or as a strict condition in the definition. However, some
works are not clear in distinguishing between the two situations and this can bring troublesome
problems in the future. In this regard, we would like to mention, for instance, a similar
past confusion thoroughly studied in the remarkable paper of Pach and Tóth [15] (entitled
“Which crossing number is it anyway?”).

We have demonstrated that a careful distinction (between simple / non-simple drawings) is
surely necessary when considering the recent min-k-planar graphs. Our note brings a natural
open question about which of the published results of [4] concerning simply min-k-planar
graphs with k ≥ 2 remain valid also for general min-k-planar graphs.
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Abstract
A complete geometric graph consists of a set P of n points in the plane, in general position, and all
segments (edges) connecting them. It is a well known question of Bose, Hurtado, Rivera-Campo,
and Wood, whether there exists a positive constant c < 1, such that every complete geometric graph
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1 Introduction

A set of points in the plane is said to be: (i) in general position if no 3 points are collinear;
and (ii) in convex position if none of the points lies in the convex hull of the other points.
For a set A of n points in the plane, consider the ratio

D(A) = max{dist(a, b) : a, b ∈ A, a ̸= b}
min{dist(a, b) : a, b ∈ A, a ̸= b}

,

where dist(a, b) is the Euclidean distance between points a and b. We assume throughout
this paper and without loss of generality that the minimum pairwise distance is 1. In this
case D(A) is the diameter of A. A standard volume argument shows that if A has n points,
then D(A) ≥ α0 n1/2, with

α0 := 21/231/4π−1/2 ≈ 1.05, (1)

provided that n is large enough; see [26, Prop. 4.10]. On the other hand, a
√

n ×
√

n section
of the integer lattice shows that this bound is tight up to a constant factor.

Given n points in the plane, in general position, the graph obtained by connecting certain
point-pairs by straight-line segments is called a geometric graph G. If no two segments
(edges) of G cross each other, then G is a plane graph. A graph of the form K1s, where s ≥ 0,
is a special plane graph, called a star ; in particular, a single vertex is a star with no leaves.
A graph in which every connected component is a star is called a star-forest; see, e.g., [3].
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9:2 Partitioning Complete Geometric Graphs into Plane Subgraphs

Obviously, every complete geometric graph of n vertices can be decomposed into n−1 plane
stars. In the present note, we address the following problem of Bose, Hurtado, Rivera-Campo,
and Wood [7], raised almost 20 years ago.

▶ Problem 1 ([7]). Does there exist a positive constant c < 1 such that every complete
geometric graph on n vertices can be partitioned into at most cn plane subgraphs?

An n-element point set A satisfying the condition D(A) ≤ α n1/2, for some constant
α ≥ α0, is said to be α-dense; see the works of Edelsbrunner, Valtr, and Welzl [10], Kovács
and Tóth [15], and Valtr [27]. (Note, the larger α becomes, the “less dense” the set gets.)

Here, we solve Problem 1 for dense point sets.

▶ Theorem 2. Let A be an α-dense point set of n points in general position in the plane,
and let Kn = Kn[A] denote the complete geometric graph induced by A. Then (the edge set
of) Kn can be decomposed into at most cn plane subgraphs, where c = c(α) < 1 is a constant.
Specifically, we have

c(α) ≤ 1 − Ω
(
α−12)

. (2)

Each of these plane graphs is either a star or a plane union of two stars.

Let A be a randomly and uniformly distributed set of n points in the unit square. With
probability tending to 1, as n → ∞, the order of magnitude of the minimum distance in A

will be much smaller than n−1/2. Therefore, D(A) will be larger than α n1/2, for every α,
provided that n is sufficiently large, and Theorem 2 cannot be applied to Kn[A]. Nevertheless,
A almost surely contains a linear-size α′-dense subset, for a suitable constant α′, and we
can easily deduce the following statement, which is also implied by a result of Valtr [28,
Thm. 14] in conjunction with Lemma 5 below. In Section 3 we provide an alternative proof
of Corollary 3.

▶ Corollary 3. Let A be a set of n random points uniformly distributed in [0, 1]2, and let
n → ∞. There exists an absolute constant c < 1 such that, with probability tending to 1, the
complete geometric graph induced by A can be decomposed into at most cn plane subgraphs.

There is an intimate relationship between the above problem and another old question in
combinatorial geometry, due to Aronov, Erdős, Goddard, Kleitman, Klugerman, Pach, and
Schulman [5]. Two segments are said to cross each other if they do not share an endpoint
and they have an interior point in common.

▶ Problem 4 ([5]). Does there exist a positive constant c < 1/2 such that every complete
geometric graph on n vertices has cn pairwise crossing edges?

In the general case, Pach, Rubin, and Tardos [19] established the existence of at least
n/2O(

√
log n) = n1−o(1) pairwise crossing edges. For dense point sets, a better, but still

sublinear, lower bound was established by Valtr[28]. From the other direction, Aichholzer,
Kynčl, Scheucher, Vogtenhuber, and Valtr [1] constructed n-element point sets that do not
contain more than 8⌈ n

41 ⌉ pairwise crossing edges; see also [13].
Problems 1 and 4 are connected by the following simple, but important finding of

Bose et al. [7].

▶ Lemma 5 ([7]). If a complete geometric graph Kn of n vertices has p pairwise crossing
edges, then Kn can be partitioned into n−p plane trees and, hence, into n−p plane subgraphs.
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In view of this statement, a positive answer to Problem 4 would immediately imply our
Theorem 2. Lacking such an answer, we need to take a different approach, which is described
in the next section.

All point sets appearing in this note are in general position, and the logarithms are in
base 2. For any triple of points a, b, c, let ∆abc denote the triangle with vertices a, b, c.

2 Proof of Theorem 2

In this section we prove Theorem 2. We start with a basic observation.

▶ Lemma 6. Let A be a set of n points in general position in the plane, and let B ⊆ A where
|B| = b. Suppose that the complete geometric graph Kb[B] induced by B can be decomposed
into b − p plane subgraphs, for some p ≥ 1. Then Kn[A], the complete geometric graph
induced by A, can be decomposed into n − p plane subgraphs.

Proof. Consider the n − b stars centered at points in A \ B together with the b − p plane
subgraphs in the decomposition of Kb[B], and delete duplicate edges. ◀

In view of Lemma 6, to establish Theorem 2, it is enough to find a large subset B ⊆ A

that can be decomposed into relatively few plane graphs. Instead of Lemma 5, we use the
following result, whose proof is included for completeness.

▶ Lemma 7 (Pach, Saghafian, and Schnider [20]). Let B =
⋃4

i=1 Bi be a set of 4m points
in general position in the plane, where |B1| = |B2| = |B3| = |B4| = m, such that for every
choice pi ∈ Bi, for i = 1, 2, 3, 4, we have that p4 lies inside the convex hull of {p1, p2, p3}.
Then the complete geometric graph K4m[B] induced by B can be decomposed into at most
3m plane subgraphs.

Proof. We decompose the complete geometric graph K4m[B] into 3m plane star-forests,
which come in three families; see Fig. 1:
1. all stars emanating from points in B1 connecting to all points in B1 and B2 together

with all stars emanating from points in B3 connecting to all points in B3 and B4

2. all stars emanating from points in B2 connecting to all points in B2 and B3 together
with all stars emanating from points in B4 connecting to all points in B4 and B1

3. all stars emanating from points in B1 connecting to all points in B1 and B3 together
with all stars emanating from points in B2 connecting to all points in B2 and B4

4 4

3

4

1 1

2

1

2 33 2

Figure 1 Schematic representation of the 3m plane subgraphs in Lemma 7: i ∈ {1, 2, 3, 4}
represents cluster Bi.

Observe that these stars cover all edges of K4m[B]. The first family is the union of m

plane subgraphs: indeed, no star connecting a point in B1 to every point in B1 and B2
crosses any star connecting a point in B3 to every point in B3 and B4 by the assumption.
Therefore, these stars can be grouped in pairs such that each pair forms a plane star forest.
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9:4 Partitioning Complete Geometric Graphs into Plane Subgraphs

Similarly, the second and third families also consist of m plane subgraphs, each. Removing
duplicate edges, we obtain a decomposition of K4m[B] into 3m plane star forests. ◀

We show that every α-dense n-element point set A contains a subset B satisfying the
conditions in Lemma 7 with m = Ω(n). The overall idea is to find four large (linear-size)
subsets of A clustered around four points not in convex position, as depicted in Fig. 3 (right).
Once this favorable configuration is found, it yields a partition of the corresponding complete
geometric graph into a small number of plane subgraphs. This partition is extended to a
partition of the complete geometric graph of the original set into a small number of plane
subgraphs. We next provide the details.

Let k(α) ≥ 3α2 be an increasing function of α, and set

k = k(α), and n0 = ⌈12k2/α2⌉. (3)

The function k(α) will be specified in (4) and (8), in two different ways, as required by the
proof of Lemma 10. We may assume without loss of generality that k(α) takes integer values
(by applying the ceiling function if needed). We distinguish between two cases: n ≤ n0, and
n ≥ n0. Suppose first, that n ≤ n0. Recall that there is a decomposition of Kn[A] into n − 1
plane subgraphs that are stars. Note that n − 1 ≤ cn for n ≤ n0 provided that c < 1 is large
enough: indeed, n(1 − c) ≤ n0(1 − c) ≤ 1 for c ≥ 1 − 1/n0.

Suppose next, that n ≥ n0. Let A be an n-element α-dense set. Since D(A) ≤ α
√

n, we
may assume that A is contained in an axis-aligned square Q of side-length α

√
n. Subdivide

Q into k2 axis-parallel squares, called cells, each of side-length α
√

n/k. Let Σ be the set of
all k2 cells in Q. We may assume without loss of generality that no point in A lies on a cell
boundary.

▶ Lemma 8. Each cell in Σ contains at most 2α2

k2 n points of A.

Proof. Let σ ⊂ Q be any cell and σ′ be the axis-aligned square concentric with σ and whose
side-length is α

√
n

k + 1. Obviously, σ′ contains all disks of radius 1/2 centered at the points
of A ∩ σ. Moreover, since A is α-dense, these n disks are interior disjoint. Moreover, σ′ is
a so-called tiling domain, i.e., a domain that can be used to tile the whole plane. Let m

denote the number of points of A ∩ σ. A packing of m congruent disks of radius 1/2 in σ′

requires [25, Ch. 3.4] that m π
4 ≤ π√

12 Area(σ′), which yields (by using that n ≥ n0):

m ≤ 2√
3

(
α

√
n

k
+ 1

)2

≤ 2√
3

(
1 + 1√

12

)2
α2

k2 n ≤ 2α2

k2 n. ◀

A cell σ ∈ Σ is said to be rich if it contains at least n/(3k2) points of A, and poor
otherwise. Let R ⊂ Σ denote the set of rich cells.

▶ Lemma 9. There are at least k2

3α2 rich cells; that is, |R| ≥ k2

3α2 .

Proof. Let r = |R| denote the number of rich cells. Assume for contradiction that r < k2

3α2 .
By Lemma 8 the total number of points of rich cells is at most

r · 2α2

k2 n <
k2

3α2 · 2α2

k2 n = 2
3 n.

The total number of points of poor cells is less than

k2 · n

3k2 = n

3 .

Thus the total number of points of A is strictly less than n, a contradiction that
completes the proof. ◀
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▶ Lemma 10. There exist four rich cells σ′
1, σ′

2, σ′
3, σ′

4, such that:
for any four points ai ∈ σ′

i ∩ A, i = 1, 2, 3, 4, we have a4 ∈ ∆a1a2a3.

Before presenting our proof of Lemma 10, we sketch a simple alternative proof using a very
powerful tool: the Furstenberg-Katznelson theorem, also called Density Hales-Jewett theorem.
However, it is not strong enough to yield the quantitative statement in Theorem 2. In a
sufficiently large dense subset of a grid in Zd, for any fixed d and s, one can always find a s×s

grid as a subgrid. The case d = 1 corresponds to a classical result of Szemerédi [24]. A higher
dimensional generalization of Szemerédi’s density theorem was obtained by Furstenberg and
Katznelson [14]; see also [17]. Their proof uses infinitary methods in ergodic theory. A more
recent combinatorial proof of this statement can be found in [22], but the resulting bound is
huge (a tower of 2’s of polynomial height).

▶ Theorem 11 (Furstenberg–Katznelson [14]). For all positive integers d, s and every c > 0,
there exists a positive integer N = N(d, s, c) with the following property: every subset X of
{1, 2, . . . , N}d of size at least cNd contains a homothetic copy of {1, 2, . . . , s}d.

Figure 2 Left: A 5 × 5 subgrid of rich cells (shaded) and a relevant subset of four cells.
Right: A 5 × 5 subgrid of rich cells with some separation.

To deduce Lemma 10, apply Theorem 11 with d = 2, s = 5, and c = 1/(3α2), to the set
Σ of cells in Q and its subset R of rich cells. That is, let

k(α) = N(2, 5, 1/(3α2)), (4)

and recall that we have set k = k(α) in the beginning of the proof. By (3), if n is large
enough, this setting ensures the existence of a 5 × 5 subgrid of rich cells. Fig. 2 shows the
four selected rich cells satisfying the requirements in Lemma 10. Note that a separation
between subgrid cells, if any, does not interfere with the result.

Proof of Lemma 10. Let P = conv(R) and v(P ) denote the number of vertices of P . Note
that P is a lattice polygon whose vertices are in the (k + 1) × (k + 1) grid G subdividing
Q. Let C ⊂ R denote the set of rich cells incident to vertices of P : we have |C| ≤ v(P ).
By a well-known result, P has v(P ) ≤ c′k2/3 vertices in G, where c′ > 0 is a constant [16,
Exercise 2, p. 34]. Further, we may take c′ = (8π2)1/3, see [6], and we will use this value
later in (8).

Choose an arbitrary element of C, say a leftmost one, and denote it by σ0. Label the
remaining elements of C in clockwise order around the boundary of P as σ1, σ2, . . . , σ|C|−1.
Consider the convex sets τ1, τ2, . . . , τ2|C|−3 defined as follows:

GD 2024



9:6 Partitioning Complete Geometric Graphs into Plane Subgraphs

τj = conv(σ0 ∪ σj), j = 1, 2, . . . , |C| − 1, (5)
τ|C|+j−1 = conv(σj ∪ σj+1), j = 1, . . . , |C| − 2, and let (6)

K =
2|C|−3⋃

j=1
τj . (7)

We refer to K as the star triangulation from the boundary cell σ0. Let S denote the set
of segments that appear on the boundaries of τ1, τ2, . . . , τ2|C|−3. See Fig. 3 for an example.

2

3

1

4

Figure 3 Left: The set of rich cells in Q (each rich cell is shaded). Center: the star triangulation K

from a boundary cell in C. Here |R| = 22 and |C| = 7. Segments in S are in bold lines. Right: a set
of four rich cells as in Lemma 10.

▷ Claim 12. The segments in S intersect at most 8c′k5/3 cells in Σ.

We verify the claim. Observe that for each i = 1, . . . , 2|C|−3, the segments in S associated
with τi intersect at most 4k cells in Σ (recall that Σ consists of k2 cells). Indeed, if the
translation vector corresponding to the pair of cells in τi makes an angle of at most 45◦ with
the x-axis, τi can intersect at most four cells in each column. Otherwise τi can intersect at
most four cells in each row. Since no point of A lies on a cell boundary and |C| ≤ c′k2/3, the
claim follows.

Since P = conv(R), there are no rich cells in the exterior of P . Moreover, every rich
cell intersecting some τi intersects a segment in S. Note that for k > (24c′ · α2)3 we have
k2

3α2 − 8c′ k5/3 > 0. To this end, let

k(α) = ⌈(24c′ · α2)3⌉ + 1, (8)

and recall that we have set k = k(α) in the beginning of the proof. It follows that there
exists at least one rich cell completely inside one of the triangles of the star triangulation
from σ0. More precisely, if σ0, σj , σj+1, is such a triangle (triple) of rich cells and σ′ is a rich
cell inside the triangle, then

conv(σ0 ∪ σj) ∩ σ′ = ∅, conv(σ0 ∪ σj+1) ∩ σ′ = ∅, and conv(σj ∪ σj+1) ∩ σ′ = ∅. (9)

Setting σ′
1 := σ0, σ′

2 := σj , σ′
3 := σj+1, and σ′

4 := σ′, it is now easily verified that for any
four points ai ∈ σ′

i ∩ A, i = 1, 2, 3, 4, we have a4 ∈ ∆a1a2a3, as required. ◀

Final argument. We use the point set structure guaranteed by Lemma 10. A very similar
structure is highlighted and implicitly used in [20]. For completeness we include the proof
tailored for our structure.
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Recall that a cell σ ∈ Σ is rich if it contains at least n/(3k2) points in A. Consider
four rich cells σ1, σ2, σ3, σ4, such that for any four points ai ∈ σi ∩ A, i = 1, 2, 3, 4, we have
a4 ∈ ∆a1a2a3. Let Ai = A ∩ σi, for i = 1, 2, 3, 4. Remove points from each of the four cells, if
needed, until there are exactly ⌈n/(3k2)⌉ points in A in each of these cells. Let us denote the
resulting sets as Bi ⊆ Ai, for i = 1, 2, 3, 4, where |B1| = |B2| = |B3| = |B4| = m = ⌈n/(3k2)⌉.

Recall that we are in the case n ≥ n0 and that m = ⌈n/(3k2)⌉, where k = k(α) is a fixed
integer. Applying Lemma 6 with P := A and Q := B and Lemma 7 yields that the edge-set
of the complete geometric graph Kn[A] can be decomposed into at most

n − 4m + 3m = n − m ≤
(

1 − 1
3k2

)
n (10)

plane subgraphs. Setting c(α) = 1 − 1
3k2(α) and recalling (8) completes the proof of inequal-

ity (2). ◀

Note. Next, we show that c(α) ≥ 1/2 in Theorem 2, i.e., some sets require at least n/2
plane subgraphs in the partition. For simplicity, we give a grid example, where α ≤

√
2 + ε,

for a small ε > 0. (A suitable example can be found for every α > α0.) Let n = k2 − 1, where
k = 2a + 1. Consider the n/2 integer points with positive y-coordinates or zero y-coordinate
and negative x-coordinate in the lattice section {−a, . . . , a}2, suitably perturbed to avoid
collinearities. Refer to Fig. 4. Add to these points the n/2 reflections with respect to the

Figure 4 A dense set of 24 points with a crossing family of size 12. The origin (marked with a
cross) is not part of the set.

origin, suitably perturbed to avoid collinearities. Observe that the resulting point set has
n points and admits a crossing family of size n/2 consisting of n/2 edges connecting the
n/2 initial points with their reflections. Consequently, any partition of the corresponding
complete geometric graphs into plane subgraphs consists of at least n/2 such subgraphs.

3 Concluding remarks

A. There are many geometric results for finite point sets that can be strengthened under
the assumption that the set is dense, for instance in the case of crossing families or the
classic Erdős–Szekeres problem on points in convex position, as explained next; see also [8,
Ch. 10]. In 1935, Erdős and Szekeres [11] proved, as one of the first Ramsey-type results in
combinatorial geometry, that every set of n points in general position in the plane contains
Ω(log n) points in convex position, and some 25 years later showed [12] that this bound is
tight up to the multiplicative constant. According to the current best (asymptotic) upper
bound, due to Suk [23], every set of n points in general position in the plane contains
(1 − o(1)) log n points in convex position, and this bound is tight up to lower-order terms.

In contrast, a classic result of Valtr given below specifies a much larger threshold for the
maximum size of a subset in convex position in a density-restricted point set [26]: For every
α ≥ α0 there exists β = β(α) > 0 such that any set of n points in general position in the

GD 2024



9:8 Partitioning Complete Geometric Graphs into Plane Subgraphs

plane satisfying D(A) ≤ αn1/2, contains a subset of βn1/3 points in convex position. On the
other hand, for every n ∈ N there exists an n-element point set A ⊂ R2 in general position,
satisfying D(A) = O(n1/2), in which every subset in convex position has at most O(n1/3)
points. In particular, a suitable small perturbation of a piece of the integer lattice has this
property.

B. Pach and Solymosi [21] gave a concise characterization of point sets admitting a cross
ing family of size n/2. They showed that a set P of n points in general position in the plane
(n even) admits a perfect matching with pairwise crossing segments if and only if P has
precisely n halving lines. A halving line for such a set is a line incident to two points of the
set and leaving exactly n/2 − 1 points in each of the two open halfplanes it determines [8,
Ch. 8.3].

As defined by Dillencourt, Eppstein, and Hirschberg [9], the geometric thickness of
an abstract graph G is the minimum k ∈ N such that G has a drawing as a geometric
graph whose edges can be partitioned into k plane subgraphs. The authors proved that the
geometric thickness of Kn is between ⌈(n/5.646) + 0.342⌉ and ⌈n/4⌉. As pointed out in [7],
the difference between Problem 1 and determining the geometric thickness of Kn is that
Problem 1 deals with all possible drawings of Kn whereas geometric thickness asks for the
best drawing.

Decompositions of the edge-set of a complete geometric graph on n points into the
minimum number of families of pairwise disjoint edges (resp., pairwise intersecting edges),
have been studied among others, by Araujo, Dumitrescu, Hurtado, Noy, and Urrutia [4].

Recently, Obenaus and Orthaber [18] gave a negative answer to the question of whether
every complete geometric graph on n vertices (n even) can be partitioned into n/2 plane
subgraphs. See also [2]. As such, n/2 + 1 is a lower bound in some instances on the number
of such subgraphs in Problem 1.

C. If X is a finite point set in the plane, every point of conv(X) can be expressed as a
convex combination of at most 3 points in X. This implies that every point set in general
position that is not in convex position contains a subset of 4 points that are not in convex
position, i.e., a four-tuple a, b, c, d ∈ X such that d ∈ ∆abc.

Our Theorem 2 gives the following quantitative version of Carathéodory’s Theorem for
α-dense sets.

▶ Corollary 13. Let A be a set of n points in the plane, with D(A) ≤ αn1/2, for some
α ≥ α0. Then there exist at least cn4 four-tuples a1, a2, a3, a4 ∈ A such that a4 ∈ ∆a1a2a3,
where c = c(α) > 0 is a constant.

Proof. We may assume that n is large enough. Recall that m = ⌈n/(3k2)⌉, where k = k(α)
is a fixed integer. By Lemma 10, there exist four rich cells σ′

1, σ′
2, σ′

3, σ′
4, such that for any

four points ai ∈ σ′
i ∩ A, i = 1, 2, 3, 4, we have a4 ∈ ∆a1a2a3. Consequently, the number of

(ordered) 4-tuples with this property is at least m4 ≥ n4/(81k8). Setting c(α) = 3−4k−8(α)
completes the proof of the lower bound. On the other hand, the total number of such 4-tuples
is clearly less than n4. ◀

D. The proof of Corollary 3 is straightforward. Subdivide U = [0, 1]2 into 25 smaller
axis-parallel squares as in Fig. 5. Consider the four subsquares: σ1 = [0, 1/5]2, σ2 =
[4/5, 1] × [0, 1/5], σ3 = [2/5, 3/5] × [4/5, 1], and σ4 = [2/5, 3/5] × [1/5, 2/5].
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Figure 5 The four distinguished subsquares are shaded.

The expected number of points in each subsquare is n/25. With probability tending to 1
as n → ∞, each of the four subsquares contains at least n/50 points in A.

Observe that any line connecting a point in σ1 with a point in σ3 leaves σ4 below. By
symmetry, any line connecting a point in σ2 with a point in σ3 leaves σ4 below. Third,
any line connecting a point in σ1 with a point in σ2 leaves σ4 above. As such, a structure
analogous to that in Lemma 10 is obtained, and the corollary follows. ◀

E. Can the dependency of c(α) on α in (2) be improved? Or completely eliminated?
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Abstract
An outer-string representation of a graph is an intersection representation in which each vertex
is represented by a curve that is contained in the unit disk and has at least one endpoint on the
boundary of the unit disk. In an outer-1-string representation the curves representing any two
vertices are in addition allowed to intersect at most once.

In this paper, we consider the following constrained version: Given a graph G plus a cyclic order
v1, . . . , vn of the vertices in G, test whether G has an outer-string or an outer-1-string representation
in which the curves representing v1, . . . , vn intersect the boundary of the unit disk in this order. We
first show that a graph has an outer-string representation for all possible cyclic orders of the vertices
if and only if the graph is the complement of a chordal graph. Then we turn towards the situation
where one particular cyclic order of the vertices is fixed.

We characterize the chordal graphs admitting a constrained outer-string representation and the
trees and cycles admitting a constrained outer-1-string representation. The characterizations yield
polynomial-time recognition and construction algorithms; in the case of outer-1-string representations
the run time is linear. We also show how to decide in polynomial time whether an arbitrary graph
admits a constrained L-shaped outer-1-string representation. In an L-shaped representation the
curves are 1-bend orthogonal polylines anchored on a horizontal line, and they are contained in
the half-plane below that line. However, not even all paths with a constrained outer-1-string
representation admit one with L-shapes. We show that 2-bend orthogonal polylines are sufficient for
trees and cycles with a constrained outer-1-string representation.
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1 Introduction

In a string representation [6, 15] of a graph G = (V, E), each vertex v is drawn as a simple
curve ∂(v) such that the curves of two vertices intersect if and only if the two vertices are
adjacent. We study here only outer-string representations where all curves reside within
a disk or simple closed region D, and the curve of every vertex has at least one endpoint
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10:2 Constrained Outer-String Representations

on the boundary of D, the so-called anchor of the vertex. See Figure 1a. Outer-string
representations were named as such in 1982 [10], though they were implicitly defined and
first results obtained already in 1966 [15]. It follows from a construction of Middendorf and
Pfeiffer [12] that testing whether a graph admits an outer-string representation is NP-hard;
see [14] for a sketch of the proof. One key result about outer-string graphs is that they
are χ-bounded, i.e., their chromatic number is bounded by a function of the clique number [14].
By contrast, the chromatic number even of triangle-free segment graphs, which are a subclass
of string graphs, can be Ω(log n) [13]. A graph is a chordal graph, if it does not contain an
induced cycle of length greater than three. By its tree representation [7, 16], every chordal
graph admits an outer-string representation, and so do the complements of chordal graphs.
Unfortunately, outer-string representations sometimes need exponentially many crossings [1].
So it is interesting to investigate which graphs allow an outer-string representation with a
restricted number of crossings. In an outer-1-string representation, it is additionally required
that the curves of two vertices intersect at most once. This is similar to the intersection graph
of pseudosegments [6], however, with the additional constraint that the anchors still have to
be on the boundary of a simple closed region containing all pseudosegments. Representing
chordal graphs as intersections of pseudosegments was considered in [3].

Biedl and Derka [2] considered outer-string representation where the order of crossings
along a curve was constrained. In this paper, we study outer-string representations that are
constrained in the sense that the cyclic order of the anchors is fixed, i.e., we consider as input
cyclically ordered graphs1 (that is, graphs together with a cyclic order of the vertices) and
we ask whether there is an outer-string, or an outer-1-string representation within a disk
D in which the anchors occur on the boundary of D in the given cyclic order. Constrained
outer-string representations were called the constrained case in [15]. Sinden [15] showed
that the constrained case with n vertices can be reduced to the unconstrained case with 2n

additional vertices and 4n additional edges.
One can restrict the shapes of the curves further. In particular, we also consider L-

shaped [11, 9, 4] and U-shaped representations in which the anchors are on a horizontal line
ℓ and the vertices are 1- or 2-bend orthogonal polylines below that line; see Figures 1b
and 1c. More precisely, in the case of L-shaped representations, the curves are required to
consist of a vertical segment going downward from its anchor on ℓ followed (optionally) by
a single horizontal segment. I.e., in particular, we also allow Ls. In the case of U-shaped
representations, there may be an additional final vertical segment pointing upward. In the
constrained version the input are ordered graphs, i.e., graphs with a linear order of the vertices
and we require that the anchors on ℓ appear in this specific order.

Besides some sufficient conditions for constrained outer-string representations, Sinden [15]
also observed the following necessary condition: The complement of an anchor-ordered cycle
with at least four vertices does not have a constrained outer-string representation, i.e., if the
cyclic order is v1, . . . , vn then the graph with edge set E = {{vi, vj}; |i − j| /∈ {1, n − 1}}
does not have a constrained outer-string representation; see Figure 2.

Our Results. We show that a graph admits a constrained outer-string representation for
every circular order of the vertices if and only if its complement is chordal (Theorem 2
in Section 2). In Section 3 we show that a cyclically ordered chordal graph admits a
constrained outer-string representation if and only if it does not contain the complement of
an anchor-ordered 4-cycle. The proof is constructive and yields a construction algorithm as

1 Sinden [15] used the term constrained graphs.
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(a) Outer-string.

1 2 5 43

(b) L-shaped.

2 3 4 51

(c) U-shaped.

Figure 1 (a) An outer-string representation of a tree that is not an outer-1-string representation
(b+c) two outer-1-string representations of a 5-cycle with special shapes.

v1

v2

v3

v4

(a) Complement of a 4-cycle.

v1

v2

v3

v4

v5

(b) Complement of a 5-cycle.

Figure 2 Complements of anchor-ordered cycles; vertices at anchor positions.

well as a polynomial time testing algorithm. In order to characterize the cyclically ordered
trees that admit a constrained outer-1-string representation, we need two more forbidden
substructures, which we define in Section 4. We then provide a linear-time algorithm that
either constructs a constrained outer-1-string representation of a cyclically ordered tree, or
returns a forbidden substructure. In Section 5, we show how to test in time quadratic in the
number of vertices whether any ordered graph admits a constrained L-shaped outer-1-string
representation. In Section 6, we characterize cyclically ordered simple cycles that admit a
constrained outer-1-string representation. The characterization yields a linear time testing
algorithm. We further show that every cyclically ordered tree (Corollary 18) or simple cycle
(Corollary 23) that admits a constrained outer-1-string representation already admits one
with U-shapes for every induced linear order.2 Full proofs of statements marked with (⋆)
will appear in the forthcoming full version of the paper.

2 Preliminaries

Let G = (V, E) be a simple graph. For e ∈ E, let G − e = (V, E \ {e}). For V ′ ⊆ V , let
G − V ′ be the graph obtained from G by removing V ′ and all edges incident to a vertex in
V ′; we write G − v for G − {v}. A set A ⊆ V is connected if A induces a connected subgraph
in G. The degree deg(v) of a vertex v is the number of edges that are incident to v. A bridge
of a graph G is an edge e of G such that G − e has more connected components than G. If
G is connected, then the bridge components of a bridge e = {x, y} are the vertex sets X and
Y of the two connected components of G − e, named such that x ∈ X and y ∈ Y .

2 A cyclic order ⟨v1, . . . , vn⟩ induces n linear orders ⟨vk+1, . . . , vn, v1, . . . , vk⟩, 1 ≤ k ≤ n.
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10:4 Constrained Outer-String Representations

2.1 Input and Output
An instance (G,⟳) of the problem of testing for a constrained outer-string or outer-1-string
representation consists of a graph G and a cyclic order ⟳ of the anchors around the disk D.
During one of our algorithms, for some curves we need to fix both endpoints to the boundary
of the disk D at specific positions. We call such vertices doubly-anchored, and they occur
twice in ⟳. For our algorithms we assume that the graph G is given as an adjacency list
and ⟳ is given as a doubly-linked circular list of vertex-references. Moreover, each vertex is
equipped with pointers to its one or two entries in ⟳.

A representation is stored as a plane graph H. Every anchor corresponds to an anchor-
vertex in H , and these are connected in an anchor-cycle according to ⟳ with doubly-anchored
vertices appearing twice in the anchor-cycle. Every crossing of two curves corresponds
to a crossing-vertex. In an outer-1-string representation this means that each edge of G

corresponds to a crossing-vertex. Every vertex-curve ∂(v) gives rise to edges in H that
correspond to maximal sub-curves of ∂(v) between its anchor(s) and crossings or between
two crossings, connecting the corresponding vertices. Finally, H comes with a fixed circular
order of the edges around each vertex that corresponds to the representation and in which
the anchor-cycle bounds the outer face. Any embedding-preserving planar drawing of H

yields then the desired representation of the instance.

2.2 A Necessary Condition for Constrained Outer-String Representations
Two sets V1 and V2 of vertices are independent if they have no vertex in common, and there
is no edge with one endvertex in V1 and the other in V2. In an instance of constrained
outer-string representation, we call two disjoint sets A1 and A2 of anchors interleaved if the
cyclic order ⟳ of anchors contains a subsequence a1, a2, a′

1, a′
2 where ai, a′

i ∈ Ai for i = 1, 2.
Note that ai and a′

i can be different anchors of the same doubly-anchored vertex. Two sets
V1 and V2 of vertices are interleaved if their anchors in ⟳ are interleaved. Observe that the
complement of an anchor-ordered 4-cycle is a pair of interleaved independent edges.

▶ Lemma 1 (interleaved independent pairs ⋆). If (G,⟳) has a constrained outer-string
representation, then there are no two independent connected vertex sets that are interleaved.

2.3 Complements of Chordal Graphs
The necessary condition of Sinden [15] implies that, if the complement of an input graph
contains an induced cycle of length at least 4, then there exists a cyclic order for which it
does not admit a constrained outer-string representation. This yields the necessity of the
following characterization.

▶ Theorem 2. A graph admits a constrained outer-string representation for any cyclic
ordering of its vertices if and only if its complement is chordal.

Proof. If the complement of a graph G is not chordal, then it contains an induced cycle Ck of
length k > 3. Let u1, . . . , uk be the vertices of this cycle in the natural order. Then no circular
order of the vertices of G which extends this order allows an outer-string representation of G,
because it contains the complement of Ck with the natural order of its vertices as an induced
subgraph.

We prove the opposite implication by induction on the number of vertices of G. Clearly,
the one-vertex graph allows an outer-string representation for any (i.e., just one) circular
ordering of its vertices (i.e., vertex). Suppose G = (V, E) has more than one vertex and that
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N
v

Figure 3 How to construct a constrained outer-string representation for a complement of a
chordal graph.

the complement G of G is a chordal graph. Let a circular order ⟳ of V be given. Let v be
a simplicial vertex of G, i.e., a vertex v whose neighborhood N = NG(v) in G induces a
clique in G, and hence an independent set in G. Observe that every chordal graph contains
a simplicial vertex [5]. Consider G′ = G − v and its complement G′ = G − v = G − v. By
the induction hypothesis, G′ has an outer-string representation that respects the circular
order ⟳′ of V \ {v} induced by ⟳. In this representation, the neighbors of v (in G) are
represented by disjoint curves; see Figure 3. We add a curve ∂(v) starting at the anchor of v

and contouring the boundary of the region D \
⋃

x∈N ∂(x). In this way ∂(v) intersects all
curves ∂(y) for y ∈ V \ (N ∪ {v}) and avoids crossing all curves ∂(x) for x ∈ N . Thus we
constructed a constrained outer-string representation of G that respects ⟳. ◀

3 Chordal Graphs and Constrained Outer-String Representations

We characterize chordal graphs with a cyclic order of the vertices that admit a constrained
outer-string representation. The proof is by induction on the number of pairs of independent
edges. For example, a path of length five has three pairs of independent edges; see Figure 4.

▶ Theorem 3. A chordal graph G = (V, E) with a cyclic order ⟳ of V has a constrained
outer-string representation if and only if no two independent edges are interleaved.

Proof. By Lemma 1, (G,⟳) has no constrained outer-string representation if there are
two independent edges that are interleaved. So assume that there is no pair of interleaved
independent edges. We show by induction on the number of pairs of independent edges that
(G,⟳) has a constrained outer-string representation within a simple connected region D. We
may assume that there are no isolated vertices.

In the base case, G has no pair of independent edges. Thus [8, Theorem 6.3], G is a split
graph, i.e., it consists of a clique K = {k1, . . . , kr} and a set S of independent vertices, with
an arbitrary set of edges between K and S. To obtain an outer-string representation of G,
add |K| concentric circles inside D, and assign them to k1, . . . , kr. For every clique-vertex ki,
go perpendicular from the anchor to the circle assigned to ki, then along this circle until we
almost touch the curve ∂(ki). This creates an intersection for each edge {ki, kj}: Assume

v1 v2 v3 v4 v5 v6

Figure 4 A path of length five contains three pairs of independent edges.
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s1

s2

s3

s4

s5

s6

s7

s8

k1

k4

k2

k3

(a)

k1

k3

k2

k4

s1

s2s3

s4

s6

s5

s7

s8

(b)

Figure 5 Illustration of the base case in the proof of Theorem 3 on chordal graphs.

AA2

A3

A4
A5

ℓ

in A
in A2 ∪ . . . ∪Ak

isolated vertices in G−K∗

in K∗

copies of K∗ on ℓ
curves for K∗ and the copies

Figure 6 Splitting a chordal graph into smaller instances. If G is chordal but not a split graph,
we find a minimal set K∗ of vertices such that G − K∗ contains at least two non-trivial components.
Let A be such a component for which the anchors are consecutive up to isolated vertices of G − K∗.
Split D by a curve ℓ separating the anchors of A from the anchors of the other non-trivial components
A2, . . . , Ak of G − K∗. Insert copies of K∗ on ℓ.

that the circle for ki has greater radius. Then ∂(kj) intersects this circle when connecting
from the anchor of kj to its circle. This represents the clique K. Now for every vertex s ∈ S,
add a short segment ∂(s) from the anchor of s perpendicular to the boundary of D, and for
all k ∈ K with {k, s} ∈ E, add a detour to ∂(k) to intersect ∂(s); see Figure 5.

Now assume that G contains at least one pair of independent edges. Let K∗ be a minimal
set of vertices such that G − K∗ contains at least two non-trivial components, i.e., connected
components that contain an edge. The following claim is an implication of [8, Theorem 4.1].

▷ Claim 4 (⋆). K∗ exists and is a clique.

Let A1, . . . , Ak be the non-trivial components of G − K∗. Since there is no pair of
interleaved independent edges, it follows that the anchors of A1, . . . , Ak on the boundary of
D are nested; see Figure 6. In particular, there must be a component, say A = A1, whose
anchors are consecutive, except for perhaps some isolated vertices of G − K∗. Split D along
a line ℓ that separates the anchors of A from the anchors of A2, . . . , Ak. Place |K∗| anchor
points along ℓ, one per vertex of K∗ in arbitrary order.

Now we get two instances, an instance IA and an instance IA, by cutting along ℓ. The
instance IA contains (1) all vertices of A, (2) all vertices whose anchor were on the same side
of ℓ as the anchors of A; these might be anchors of isolated vertices of G − K∗ or anchors of
vertices in K∗, and (3) copies of vertices in K∗ with an anchor on ℓ. Here the point assigned
to k ∈ K∗ is taken as the endpoint for k if the actual endpoint of k is not in this part of D,
and it gets taken as endpoint for a new vertex k′ otherwise, where k′ is adjacent only to k.
The instance IA is defined analogously.
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▷ Claim 5. IA and IA are both chordal.

Proof. IA and IA are obtained from chordal graphs by removing vertices and adding leaves.
This neither creates new cycles, nor does it remove chords from remaining cycles. ◁

▷ Claim 6 (⋆). If IA and IA have constrained outer-string representations then so does (G,⟳).

Sketch of Proof. A curve for a vertex k in K∗ can be obtained by starting at the original
anchor of k, following ∂(k) until its end and back to an intersection point with a curve ∂′

1
anchored at a copy k′ of k on ℓ, following ∂′

1 up to ℓ and finally along the curve ∂′
2 of k′ in

the other subinstance until its end. ◁

▷ Claim 7. If IA or IA contains a pair of interleaved independent edges then so does (G,⟳).

Proof. Assume IA contains a pair {v, w}, {a, b} of interleaved independent edges, the case for
IA is symmetric. Unless this involves vertices with an anchor on the curve ℓ, the same pair is
already contained in (G,⟳). If both {v, w} and {a, b} contain a vertex of K∗, then the pair
is not independent. Since IA contains only vertices of A, K∗, and degree-one neighbours of
K∗, we may assume that {a, b} ⊆ A. If the anchors of both v and w are on ℓ, then {v, w}
and {a, b} are not interleaved. So, we may assume that the anchor of v is on ℓ and the anchor
of w is not. We distinguish two cases based on whether w ∈ K∗ or not.

If w ∈ K∗ then, by the minimality of K∗, vertex w had a neighbour v′ in component
A2. It follows that {a, b} and {w, v′} are interleaved and independent. If w ∈ A or w is an
isolated vertex in G − K∗, then v is the copy of a vertex v′ ∈ K∗ whose anchor is on the
other side of ℓ than A. Thus, {a, b} and {w, v′} are interleaved and independent. ◁

▷ Claim 8 (⋆). The number of pairs of independent edges in IA and IA, respectively, is
smaller than in G.

Sketch of Proof. By construction, there is a pair of independent edges e1 ⊆ A1 = A, e2 ⊆ A2
in G which is neither contained in IA nor IA. On the other hand the pairs of independent
edges of IA (IA, respectively), can be mapped into the pairs of independent edges of G with
at least one endvertex in K∗ or A (A2 ∪ · · · ∪ Ak, respectively). ◁

This concludes the proof: If (G,⟳) contains no pair of interleaved independent edges,
then, by Claim 7, none of the sub-instances has one. By Claim 8, they have fewer independent
edge pairs than (G,⟳) and they hence have a constrained outer-string representation by the
inductive hypothesis. By Claim 6 these representations can be combined to a constrained
outer-string representation for the original instance (G,⟳). ◀

▶ Corollary 9. It can be tested in polynomial time whether a chordal graph with a given
cyclic order of the vertices admits a constrained outer-string representation.

4 Constrained Outer-1-String Representations for Trees

In this section, we show how to test for a constrained outer-1-string representation if the
graph is a tree. We first give an outline of our approach. See Figure 7. Let (G,⟳) be the
given instance where G is a tree. If G is a single vertex, then the answer is always true.
Otherwise, we root G, preferably at a vertex that has at least two neighbors, and process
the vertices in post-order, i.e., children are processed before their parents. Whenever we
encounter a vertex x that is not a leaf, we either find an obstruction, i.e., a sub-instance that
makes a constrained outer-1-string representation impossible, or we remove the children of
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Figure 7 We solve constrained outer-1-string on trees in a postorder traversal. Some leaves might
be doubly-anchored (squared vertices). When processing a vertex x then all its children are leaves.
We first prune some of x’s children (Rule 1). We then make sure that the sequence of anchors
contains exactly two X-intervals (pink regions), one of which contains only x. If this is impossible,
we reject the instance (Rule 2, Rule 4, and Rule 5). Finally, we split the instance along the edge
between x and its parent y, keeping y and x as a doubly-anchored vertex in the opposite component
(Rule 6). The base case is reached after pruning the leaves of a star (Rule 2 and Rule 3).

x until x is a leaf. Thus at the end only a single vertex remains and we are done. For the
recursions, we will sometimes have doubly-anchored vertices, but we maintain as invariant
that only leaves of the rooted tree can be doubly-anchored.

4.1 Obstructions
By Lemma 1, there cannot be a constrained outer-string representation if there is a pair
of independent connected vertex-sets that are interleaved. We call such an interleaved
independent pair a pair-obstruction if each of the two vertex-sets contains at most two
vertices, i.e., it is an edge or a set containing a doubly-anchored vertex. We will have
two other obstructions for constrained outer-1-string representations. Recall that a bridge
e = {x, y} defines the bridge-components X and Y of G − e with x ∈ X and y ∈ Y . An
X-interval is a maximal sub-sequence of ⟳ that only contains anchors of X. We define
Y -interval analogously. See Figure 8 for the following lemma.

▶ Lemma 10 (bridge-obstruction ⋆). If (G,⟳) has a constrained outer-1-string representation,
then no bridge {x, y} has three or more X-intervals.

We use the term bridge-obstruction for a bridge that has three or more X-intervals and
hence prevents a constrained outer-1-string representation. See Figure 9.

Finally, observe that two adjacent doubly-anchored vertices must be interleaved. The
third kind of obstruction generalizes this observation and is based on a central path Π with
ℓ ≥ 0 edges and hence will be called Πℓ-obstruction, or simply path-obstruction. See Figure 10.
Let Π = ⟨v0, v1, . . . , vℓ−1, vℓ⟩ be a path, and note that ℓ = 0is specifically allowed. For the
ends of the central path, there are three variants. In the first variant, there are additionally
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x y

X Y

(a)

∂(y)∂(x)x y
p

∂Y

∂X

(b)

Figure 8 Illustration of the proof of Lemma 10. Red curves represent vertices in X, blue curves
represent vertices in Y . The union ∂X and ∂Y of all red and all blue curves, respectively, is connected
and the two sets intersect in p = ∂(x) ∩ ∂(y). Removing p from ∂X ∪ ∂Y yields four connected
components (pink and light-blue areas) the anchor of which form X- or Y -intervals in ⟳.

x y

yx

Figure 9 An outer-string representation of a bridge-obstruction.

two bounding paths Q = ⟨c, v0, b, a⟩ and Q′ = ⟨c′, vℓ, b′, a′⟩ that are disjoint from Π and each
other except at v0 and vℓ. The anchor-order ⟳ is such that in the order induced by the vertices
in Π, Q, and Q′ satisfies two things: (i) the anchors of the sets {a, b, c}, {a, b, c, v0},. . . , and
{a, b, c, v0, . . . , vℓ}, respectively, appear consecutive and (ii) the pair {a, b} and {v0, c} as well
as the pair {a′, b′} and {vℓ, c′} are interleaved. In the second variant, one of the bounding
paths, say Q, is replaced by the condition that v0 is doubly-anchored and that the anchors
of v0 are consecutive in the induced anchor-order. The other conditions on the anchor order
remain. The third variant is defined only for ℓ ≥ 1 and is obtained from the second variant
by similarly replacing Q′ with the requirement that vℓ be doubly-anchored with consecutive
anchors.

▶ Lemma 11 (path-obstruction ⋆). If (G,⟳) has a constrained outer-1-string representation,
then there is no path-obstruction.

Clearly, no instance with a constrained outer-1-string representation can contain any of
the three obstructions. As our main result for trees, we show that this necessary condition is
also sufficient, and furthermore an efficient constructive testing algorithm exists. We prove
the following theorem in the next section.

▶ Theorem 12. An instance (G,⟳) where G is a tree admits a constrained outer-1-string
representation if and only if it contains no pair-obstruction, no bridge-obstruction, and no
path-obstruction. Furthermore, there is a linear-time algorithm that either finds such an
obstruction or returns a constrained outer-1-string representation for (G,⟳).
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Figure 10 (a) The graph of a path-obstruction (b) and a forbidden order of the anchors along
with an outer-string representation. (c,d) A doubly-anchored version of a path-obstruction.

4.2 Reduction-Rules
As outlined, we root the tree, preferably at a vertex of degree at least two, and process the
vertices in post-order. Furthermore, we maintain that all vertices that have been processed
are leaves in the tree or have been deleted altogether. Finally only leaves that are not the
root may be doubly-anchored. Let x be the currently processed vertex. If x is already a leaf,
then we proceed to the next vertex. So assume that x has children. These children have been
processed already, so they are leaves. Let X be the set consisting of x and all its children.
When processing x, we will apply a number of reduction rules, each of which yielding one or
two smaller instances. In particular, all children of x are deleted eventually.

For the reduction rules we have to argue that they are correct, which means two things.
First, if the smaller instances have solutions, then so does (G,⟳). Second, if one of the
smaller instances contains an obstruction, then so does (G,⟳). The second one implies that
if (G,⟳) has a solution, then so do the smaller instances: If (G,⟳) has a solution, then it has
no obstruction, so the smaller instances have no obstructions; by the inductive hypothesis,
this implies that the smaller instances have a constrained outer-1-string representation. Our
arguments for this will be constructive, which means that there will be an easy algorithm to
retrieve the solution or the obstruction from the ones for the smaller instances. A special
type of these rules are obstruction-rules, where the returned instance is an obstruction that
is contained in the instance. In that case the instance is a no-instance and we show how to
exhibit the obstruction in the proof of correctness.

▶ Rule 1 (leaves). If x is adjacent to a leaf v that either (i) is singly-anchored and x, v are
consecutive in ⟳ or (ii) is doubly-anchored and v, x, v are consecutive in ⟳, then remove v

and its anchors from (G,⟳).

▶ Lemma 13. Rule 1 is correct.

Proof. Given a constrained outer-1-string representation of the smaller instance (G′,⟳′), we
can add a curve for v that is anchored on the correct side of x in case (i) or anchored on
both sides of x in case (ii) to obtain a constrained outer-1-string representation of (G,⟳).
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If (G′,⟳′) contains an obstruction, then the exact same subgraph is also an obstruction
for (G,⟳) because (G′,⟳′) is an induced sub-instance of (G,⟳), and adding more vertices
and anchors does not destroy an obstruction. ◀

▶ Rule 2 (anchor of x surrounded by X). If Rule 1 cannot be applied, but there are at least
three anchors in ⟳, and both anchors immediately before and after the anchor of x in ⟳
belong to vertices of X, then report that the instance is a no-instance.

▶ Lemma 14. Rule 2 is correct.

Proof. Let u and v be the vertices in X whose anchors are next to the anchor of x in ⟳.
Since Rule 1 cannot be applied, both u and v are doubly-anchored and u ̸= v. We have
u ̸= x ̸= v since otherwise x would be doubly-anchored, but x is not a leaf and so cannot
be doubly-anchored. We distinguish two cases: If the anchors of u, v, and x are in the
cyclic order u, u, x, v, v then this is a Π2-obstruction for path ⟨u, x, v⟩. If the cyclic order is
v, u, x, v, u then u and v are two independent doubly-anchored vertices that are interleaved,
so this is a pair-obstruction. ◀

If x is the root and neither Rule 1 nor Rule 2 applies then x is the only vertex that is
left. Hence, we get the following rule.

▶ Rule 3 (base case). If x is the root and neither Rule 1 nor Rule 2 applies, then the current
(sub-)instance is a yes-instance.

So for the following rules, we assume that x has a parent y. Vertex y in turn either has a
parent, or it is the root and, by the choice of the root, has at least one other child, so y has
neighbors other than x. Consider the bridge e = {x, y}. Let X and Y be the respective bridge
components of G − e with x ∈ X and y ∈ Y . This is consistent with our earlier definition
of X. The following rule is clearly correct since it directly exhibits a bridge-obstruction.

▶ Rule 4 (three X-intervals). If the bridge {x, y} has three or more X-intervals, then report
that the instance is a no-instance.

So from now on we assume that there are one or two X-intervals. Actually both these
cases can be handled at once. We first identify another obvious no-instance.

▶ Rule 5 (two X-intervals, x not alone). If there are two X-intervals, Rule 1 and Rule 2
cannot be applied, and the X-interval containing the anchor of x contains at least two anchors,
then report that the instance is a no-instance.

▶ Lemma 15. Rule 5 is correct.

Proof. Assume that the X-interval containing the anchor of x contains at least two anchors.
The anchor of x is the first or last anchor in the X-interval, otherwise Rule 2 would apply.
Up to symmetry assume that it is the first. Let x′ be the vertex of X whose anchor follows x

in this X-interval. Since Rule 1 cannot be applied, x′ is doubly-anchored. Note that x′ ̸= x

since otherwise x would be doubly-anchored, but x is not a leaf and so not doubly-anchored.
Consider one anchor in each of the two Y -intervals such that the respective vertices

y′, y′′ ∈ Y are either adjacent or identical. If the two anchors of x′ are in the two X-intervals,
then x′ and {y′, y′′} are independent and interleaved, so a pair-obstruction. If the two anchors
of x′ are in the same X-interval, then let x′′ be any vertex of X whose anchor is in the other
X-interval. This is a child of x. If one of y′, y′′, say y′′, is y, then we obtain a Π1-obstruction
with central path ⟨x′, x⟩, the doubly-anchored vertex x′ and the bounding path ⟨x′′, x, y, y′⟩.
Observe that the anchors appear in a suitable order. If neither of y′, y′′ is y, then {y′, y′′}
forms an independent interleaved pair with edge {x, x′′}, so we have a pair-obstruction. ◀
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If none of the above rules apply, we are in one of two possible situations. Either (a) there
is only one X-interval, and x is the first or last vertex in it, or (b) there are two X-intervals,
but one of them contains only x. Both situations can be handled as one if in situation (a)
we view the range between x and the rest of the X-interval as a “ghost Y -interval” that has
no anchors of Y in it. So we always have two X-intervals (one of them contains only the
anchor of x) and two Y -intervals (one of which may be a ghost-interval).

▶ Rule 6 (split the instance). If none of the previous rules can be applied, then we split the
instance into the graphs GX and GY induced by X ∪ {y} and Y ∪ {x}, respectively. In GX ,
we doubly-anchor y in place of the two Y -intervals. In GX , we doubly-anchor x in place of
the two X-intervals. All other vertices use the same anchors as in ⟳.

▶ Lemma 16 (⋆). Rule 6 is correct.

Sketch of Proof. A constrained outer-1-string representation for G can be constructed by
combining constrained outer-1-string representation for GX and GY at the intersection point
of ∂(x) and ∂(y) such that the anchors are in the correct order.

It remains to show how to reconstruct obstructions of (G,⟳) from obstructions of the
reduced instances. To this end we have to show that if the new anchor of the vertex x or y is
contained in an obstruction of a reduced instance, then we can use omitted vertices to find
an obstruction in (G,⟳). Since GX is a star centered at x and yxy is a subsequence of the
anchor order, it follows that GX cannot contain an obstruction that uses y.

So, let O be an obstruction of GY that contains x. Let x′ ∈ X \ {x} be some child of x,
preferably a doubly-anchored one. Any independent interleaved pair of GY that uses x can
be expanded into one of G by adding x′ to the set that contains x. Any bridge-obstruction
at some bridge e of GY is also one in G. In both cases, an anchor of x′ can take the place of
the second anchor of x in GY . It remains to consider the case that O is a path-obstruction.

If the two anchors of x are consecutive among the anchors of O, we may assume that
x is the endvertex of the central path. If x has a doubly-anchored child, then we obtain a
path-obstruction of G by appending x′ to x. Otherwise there is no ghost Y -interval. Let
{y′, y′′} be an edge with anchors in different Y -intervals. Depending on whether y′ ̸= y ̸= y′′

or not either {x, x′} and {y′, y′′} is a pair-obstruction or G contains a path-obstruction with
bounding path ⟨x′, x, y, y′⟩. See Figure 11a.

If the two anchors of x are not consecutive among the anchors of O, then x is the endvertex
of a bounding path and G contains an interleaved independent pair. See Figure 11. ◀

Note that Rule 6 can always be applied if none of the previous rules apply. Observe
that GX is a star and so directly brings us to the base case after rooting GX at x and
applying Rule 1, as well as Rule 2 or Rule 3. Observe further that GY is obtained from G by
removing the children of x and by doubly-anchoring x. Hence, in GY , vertex x has become
a leaf as desired and we continue processing the rest of GY in post-order. This proves the
characterization stated in Theorem 12. For the linear run time, we refer to the full version of
the paper.

▶ Corollary 17. A cyclically ordered path has a constrained outer-1-string representation if
and only if there are no two independent edges that are interleaved.

Proof. A path cannot have a path-obstruction and if a path has a bridge-obstruction then
this already implies two independent edges that are interleaved. ◀
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Figure 11 How to reconstruct an obstruction of G from a path-obstruction O of GY . In each
case the topmost drawing is a string-representation while in the bottommost drawing the edges
are represented as segments. (a) If x is the endvertex of the central path and no child x′ of x

is doubly-anchored then G contains an interleaved independent pair or {x, y} is replaced by the
bounding path ⟨x′, x, y, y′⟩ in O. (b-d) If x is the endvertex of a bounding path ⟨c, v, a, b⟩ and the
two anchors of x are not consecutive then G contains an interleaved independent pair.

▶ Corollary 18 (⋆). A tree with a given cyclic order ⟳ of the vertices that admits a constrained
outer-1-string representation also has a constrained U-shaped outer-1-string representation
with respect to any linear order induced by ⟳.

Sketch of Proof. We follow the construction for constrained outer-1-string representations.
Whenever Rule 1 or Rule 6 yields yes-instances, we show how to obtain a constrained
U-shaped outer-1-string representation for the original instance. See Figures 12 and 13. We
maintain the property that nothing is drawn to the left of the left-most or to the right of the
right-most anchor. If the linear order is such that an X-interval is split into a right-most
and a left-most part and one of the two parts contains both anchors of a doubly-anchored
vertex then the second anchor of x in GY is put in this sub-interval. ◀

x v
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x v

(b)

x v

(c)

x vv

(d)

remainder
of

graph

x v v
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Figure 12 Constructing a U-shaped representation of a tree after the application of Rule 1.
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Figure 13 Constructing a U-shaped representation of a tree after the application of Rule 6, by
inserting X \ {x} into a representation of GY in the order in which we would apply Rule 1 in GX .
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Figure 14 How to construct a constrained L-shaped outer-1-string representation. First order the
vertices such that the anchores of the future neighbors of any vertex v are consecutive and next to v.
Then draw the L-shaped curves in this order with decreasing y-coordinates of the horizontal part.

5 Constrained L-Shaped Outer-1-String Representations

We now show how to test in quadratic time whether an ordered graph admits a constrained
L-shaped outer-1-string representation. See Figure 14.

▶ Lemma 19. Let G = (V, E) be a graph and let ≺ be an order of the vertices. Then (G, ≺)
admits a constrained L-shaped outer-1-string representation if and only if the vertices of G

can be ordered v1, . . . , vn such that for i = 1, . . . , n the set of future neighbors Vi = {vj ; j >

i and {vi, vj} ∈ E} of vi as well as Vi ∪ {vi} are consecutive in ≺.

Proof. Assume that v1, . . . , vn is such an order. Let the horizontal line from which the
vertices hang have y-coordinate 0. For i = 1, . . . , n we draw the vertical part of ∂(vi) from 0
to −i. The future neighbors Vi are all directly to the left or all directly to the right of vi.
Draw the horizontal part of ∂(vi) in that direction until the last future vertex is met.

Assume now that there is a constrained L-shaped outer-1-string representation of (G, ≺).
Order the vertices v1, . . . , vn according to the y-coordinate of the horizontal part of their
curve from top to bottom. Then the curve of all future neighbors of vi must intersect the
horizontal part of ∂(vi) and all vertical segments of all vertices vj , j > i must be at least as
long as the one of vi. It follows that Vi must be consecutive and directly next to vi. ◀

An example of an ordered graph without a constrained L-shaped outer-1-string represen-
tation is the path ⟨1234⟩ with vertex ordering ⟨2413⟩.

▶ Corollary 20. It can be tested in O(n2) time whether an ordered graph with n vertices
admits a constrained L-shaped outer-1-string representation.
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Proof. Let G = (V, E) be a graph with a linear order ≺ of its n vertices. For i = 1, . . . , n,
iteratively check whether there is a vertex, such that the set of its neighbors is directly to
the left or to the right of vi. If so remove vi and continue. Otherwise report that there is no
constrained L-shaped outer-1-string representation.

This can be tested in O(n2) time. For a vertex v, let N(v) be the set of neighbors of v. An
N(v)-interval is a maximal subsequence of ≺ that contains only anchors of vertices of N(v).
Let k(v) be the number of N(v)-intervals. We first compute k(v) for each vertex v. This
can be done in linear time for each vertex. Observe that we can choose v as a next vertex
if and only if k(v) = 0 or k(v) = 1 and at least one of the neighbors of v in ≺ is in N(v).
Each time we remove a vertex w, we update k(v) as follows. Decrease k(v) by one if and
only if either w ∈ N(v) and both neighbors of w in ≺ are not in N(v) or w /∈ N(v) and both
neighbors of w in ≺ are in N(v). Otherwise do not change k(v). This update can be done in
constant time per removed vertex w and remaining vertex v. ◀

6 Constrained Outer-1-String Representations for Simple Cycles

An extended complement of a 5-cycle (Figure 15a) is the complement of an anchor-ordered
5-cycle or a subpath w1v′vuu′w2 of a cycle whose anchors are in the order w1uv′u′vw2. A
cyclically ordered cycle admits a constrained outer-1-string representation if and only if it
neither contains a pair of interleaved independent edges nor an extended complement of a
5-cycle:

▶ Theorem 21. Let G = (V, E) be a simple cycle and let ⟳ be a cyclic order of V . Then the
following are equivalent.
1. (G,⟳) has a constrained outer-1-string representation.
2. For every path ⟨u′uvv′⟩ of G, at least one among the sequences uv, uu′v′v, uu′v, or uv′v,

or their reverse is a subsequence of ⟳.
3. (G,⟳) does not contain two interleaved independent edges nor an extended complement

of a 5-cycle.

Proof. We show equivalence of (1) and (3) to (2).
1 ⇒ 2: Let P be the path obtained from G after removing u, v, u′, and v′. Let ⟳1 and ⟳2

be the subsequences obtained by splitting ⟳ at the anchors of u and v. Then the anchors
of P are either all in ⟳1 or all in ⟳2: If there were two adjacent vertices v1 and v2 in
P such that the anchor of vi is in ⟳i, i = 1, 2 Then {u, v} and {v1, v2} would be two
interleaved independent edges.
So assume that the anchors of P are in ⟳1, i.e., ⟳2 contains either nothing, or the anchor
of u′, of v′, or of both. If ⟳1 is not empty and ⟳2 contains the anchor of u′ and of v′,
then u′ must be next to u: The curve ∂(u′) must intersect ∂(u) and reach the curve of
the neighbor of u′ in P in ⟳1. Similarely, the curve ∂(v′) must intersect ∂(v) and reach
the curve of the neighbor of v′ in P in ⟳1. This is impossible if the order is uv′u′v.

3 ⇒ 2: Let again P , ⟳1, and ⟳2 be defined as above. As above the anchors of P are either
all in ⟳1 or all in ⟳2. The fact that there is no extended complement of a 5-cycle forbids
the sequence wuv′u′v for any neighbor w of v′ or u′ other than v or u.

2 ⇒ 3: Assume there were two independent interleaved edges {u, v} and {x, y}. Then one
subsequence of ⟳ between u and v would contain x and the other y. But neither x nor y

is a neighbor of u or v. Assume now that there is an extended complement of a 5-cycle.
Then there is the sequence wuv′u′v for some neighbor w ̸= v of v′.
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u

v′
u′

v

w1

w2

(a) Extended complement of a 5-cycle. (b) Representation of a simple cycle.

Figure 15 a) An obstruction for simple cycles. w1 = w2 is also possible. b) How to draw a simple
cycle if for any edge the anchors of the two endvertices are next to each other.

2 3 4 51 6
u′

(a) Case 1.

3 2 5 41 6
u u′ v′ v

(b) Case 2a.

3 2 4 51 6
u u′ v

(c) Case 2a.

2 3 4 61 5
u v′v

(d) Case 2b(i).

3 4 5 61 2
u u′v

(e) Case 2b(ii).

Figure 16 How to draw a simple cycle as a constrained U-shaped outer-1-string representation.
If not all vertices of the cycle are consecutive in the cyclic order of the anchors, we remove one or
two vertices (indicated in red), draw the resulting path and reinsert the vertices.

2 ⇒ 1: If the anchors for any pair of adjacent vertices u, v of G form a subsequence of ⟳
then there is a constrained outer-1-string representation. See Figure 15b.
Assume now that G contains a path u′uvv′ such that ⟳ contains uu′v as a subsequence
(the case uv′v or their reverse being symmetric). Let P be the path obtained from G

by removing u. Since Item 2 implies Item 3, there are no two interleaved independent
edges. Thus, P has a constrained outer-1-string representation by Corollary 17. Route
∂(u) closely along the border of the disk until it intersects first ∂(u′) and then ∂(v).
Assume now that G contains a path u′uvv′ such that the anchors are in the order uu′v′v.
Let P be the path obtained from G by removing u and v. Again by Corollary 17, it follows
that P has a constrained outer-1-string representation. Route ∂(u) and ∂(v) closely along
the border of the disk until they intersect between the anchor of u′ and v′. ◀

The second condition of Theorem 21 can be tested in constant time per edge.

▶ Corollary 22. It can be tested in linear time, whether a simple cycle with a given cyclic
order of the vertices admits a constrained outer-1-string representation.

Simple cycles do not necessarily have a constrained L-shaped outer-1-string representation
even if the respective cyclic order of the anchors admits a constrained outer-1-string repres-
entation, consider for example 12345, 13452, or 34127856. The existence of a constrained
outer-1-string representation follows from Theorem 21 and the non-existence of an L-shaped
outer-1-string representation follows from Lemma 19. However, U-shapes suffice.

▶ Corollary 23 (⋆). Each simple cycle with a given cyclic order ⟳ of the vertices that admits
a constrained outer-1-string representation also has a constrained U-shaped outer-1-string
representation with respect to any linear order induced by ⟳.
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Sketch of Proof. We follow “2 ⇒ 1” in the proof of Theorem 21. We distinguish whether
any two adjacent vertices are consecutive in ⟳ (Figure 16a), some adjacent vertices contain
some neighbors between them (Figures 16b and 16c), or an adjacent pair contains everything
but a neighbor between them (Figures 16d and 16e). ◀

7 Conclusion

We considered outer-string and outer-1-string representations of graphs in which the sequence
of the anchors of the vertices was fixed. In particular, we considered outer-string representa-
tions of chordal graphs, outer-1-string representations of trees and cycles, as well as L-shaped
representations of general graphs. We leave some interesting open problems.

What is the complexity of testing whether a graph has an outer-1-string, a constrained
outer-1-string, or a constrained outer-string representation? Can these problems be efficiently
solved for cacti or graphs with constant treewidth? Can it be tested efficientlywhether an
ordered graph admits a constrained U-shaped outer-1-string representation?

A variant of the problem would be to specify for each vertex a set of anchors and to
require that these points are within its curve. What can be said about this variant?
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Abstract
We show that every planar graph has a monotone topological 2-page book embedding where at most
(4n − 10)/5 (of potentially 3n − 6) edges cross the spine, and every edge crosses the spine at most
once; such an edge is called a biarc. We can also guarantee that all edges that cross the spine cross
it in the same direction (e.g., from bottom to top). For planar 3-trees we can further improve the
bound to (3n − 9)/4, and for so-called Kleetopes we obtain a bound of at most (n − 8)/3 edges
that cross the spine. The bound for Kleetopes is tight, even if the drawing is not required to be
monotone. A Kleetope is a plane triangulation that is derived from another plane triangulation T by
inserting a new vertex vf into each face f of T and then connecting vf to the three vertices of f .
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1 Introduction

Arc diagrams (Figure 1) are drawings of graphs that represent vertices as points on a horizontal
line, called spine, and edges as arcs, consisting of a sequence of halfcircles centered on the
spine. A proper arc consists of one halfcircle. In proper arc diagrams all arcs are proper (see
Figure 1a). In plane arc diagrams no two edges cross. Note that proper plane arc diagrams
are also known as 2-page book embeddings. Bernhard and Kainen [1] characterized the graphs
that admit proper plane arc diagrams: subhamiltonian planar graphs, i.e., subgraphs of
planar graphs with a Hamiltonian cycle. In particular, non-Hamiltonian maximal planar
graphs do not admit proper plane arc diagrams.

To represent all planar graphs as a plane arc diagram, it suffices to allow each edge
to cross the spine once [12, 13]. The resulting arcs composed of two halfcircles are called
biarcs (see Figure 1b). Additionally, all edges can be drawn as monotone curves w.r.t. the
spine [7, 10]; such a drawing is called a monotone topological (2-page) book embedding (see
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(a) (b) (c)

Figure 1 Arc diagrams of the octahedron: (a) proper, (b) general, and (c) monotone.

Figure 1c). A monotone biarc is either up-down or down-up, depending on whether the left
halfcircle is drawn above or below the spine, respectively. Note that a monotone topological
book embedding is not necessarily a book embedding, even though the terminology suggests
it.

In general, biarcs are needed, but many edges can be drawn as proper arcs. Cardinal,
Hoffmann, Kusters, Tóth, and Wettstein [2, 3] gave bounds on the required number of biarcs
by showing that every planar graph on n ≥ 3 vertices admits a plane arc diagram with at
most ⌊(n − 3)/2⌋ biarcs and how this quantity is related to the diameter of the so-called
combinatorial flip graph of triangulations. However, they allow general, not necessarily
monotone biarcs. When requiring biarcs to be monotone, Di Giacomo, Didimo, Liotta, and
Wismath [7, 10] gave an algorithm to construct a monotone plane arc diagram that may
create close to 2n biarcs for an n-vertex planar graph. Cardinal, Hoffmann, Kusters, Tóth,
and Wettstein [2, 3] improved this bound to at most n − 4 biarcs.

As a main result, we improve the upper bound on the number of monotone biarcs.

▶ Theorem 1. Every n-vertex planar graph admits a plane arc diagram with at most
⌊ 4

5 n
⌋

−2
biarcs that are all down-up monotone.

It is an intriguing open question if there is a monotonicity penalty, that is, is there a
graph G and a plane arc diagram of G with k biarcs such that every monotone plane arc
diagram of G has strictly more than k biarcs? No such graph is known, even if for the
stronger condition that all biarcs are monotone of the same type, such as down-up.

For general plane arc diagrams, in some cases ⌊(n − 8)/3⌋ biarcs are required [2, 3]. The
(only) graphs for which this lower bound is known to be tight belong to the class of Kleetopes.
A Kleetope is a plane triangulation1 that is derived from another plane triangulation T by
inserting a new vertex vf into each face f of T and then connecting vf to the three vertices
of f . One might think that Kleetopes are good candidates to exhibit a monotonicity penalty.
However, we show that this is not the case, but instead the known lower bound is tight.

▶ Theorem 2. Every Kleetope on n vertices admits a monotone plane arc diagram with at
most ⌊(n − 8)/3⌋ biarcs, where every biarc is down-up.

So, to discover a monotonicity penalty we have to look beyond Kleetopes. We investigate
another class of planar graphs: planar 3-trees. A planar 3-tree is built by starting from a
(combinatorial) triangle. At each step we insert a new vertex v into a (triangular) face f of
the graph built so far, and connect v to the three vertices of f . As a third result we give an
improved upper bound on the number of monotone biarcs needed for planar 3-trees.

▶ Theorem 3. Every planar 3-tree admits a plane arc diagram with at most
⌊ 3

4 (n − 3)
⌋

biarcs that are all down-up monotone.

1 A plane triangulation is a triangulation associated with a combinatorial embedding. For the scope of
this paper, we also consider the outer face to be fixed.
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Related work. Giordano, Liotta, Mchedlidze, Symvonis, and Whitesides [11] showed that
every upward planar graph admits an upward topological book embedding in which all edges
are either proper arcs or biarcs. These embeddings are also monotone arc diagrams that
respect the orientations of the edges and use at most one spine crossing per edge. One of
their directions for future work is to minimize the number of spine crossings. We believe
that our approach for undirected graphs may provide some insights. Everett, Lazard, Liotta,
and Wismath [8, 9] used monotone arc diagrams to construct small universal point sets for
1-bend drawings of planar graphs, heavily using the property that all biarcs have the same
shape (e.g., all are down-up biarcs). This result has been extended by Löffler and Tóth [14]
by restricting the set of possible bend positions. They use the existence of monotone arc
diagrams with at most n − 4 biarcs to build universal point sets of size 6n − 10 (vertices and
bend points) for 1-bend drawings of planar graphs on n vertices. Using Theorem 1, we can
decrease the number of points by about n/5.

Outline. We sketch the proof of Theorem 1 in Sections 2–4, then in Section 5 the proof of
Theorem 2, and finally, in Section 6 the proof of Theorem 3. Due to space constraints, some
proofs are provided in the full version only.

2 Overview of our Algorithm

To prove Theorem 1 we describe an algorithm to incrementally construct an arc diagram
for a given planar graph G = (V, E) on n ≥ 4 vertices. Without loss of generality we
assume that G is a combinatorial triangulation, that is, a maximal planar graph. Further,
we consider G to be embedded, that is, G is a plane graph. As every triangulation on n ≥ 4
vertices is 3-connected, by Whitney’s Theorem selecting one facial triangle as the outer
face embeds it into the plane. This choice also determines a unique outer face for every
biconnected subgraph. For a biconnected plane graph G denote the outer face (an open
subset of R2) by F◦(G) and denote by C◦(G) the cycle that bounds F◦(G). A plane graph
is internally triangulated if it is biconnected and every inner face is a triangle. A central
tool for our algorithm is the notion of a canonical ordering [5, 6]. Consider an internally
triangulated plane graph G on the vertices v1, . . . , vn, and let Vk = {vj : 1 ≤ j ≤ k}. The
sequence v1, . . . , vn forms a canonical ordering for G if the following conditions hold for
every i ∈ {3, . . . , n}:
(C1) the induced subgraph Gi = G[Vi] is internally triangulated;
(C2) the edge v1v2 is an edge of C◦(Gi); and
(C3) for all j with i < j ≤ n, we have vj ∈ F◦(Gi).

Every internally triangulated plane graph admits a canonical ordering, for any starting
pair v1, v2 where v1v2 is an edge of C◦(G) [5, 6]. Moreover, such an ordering can be computed
by iteratively selecting vi, for i = n, . . . , 3, to be a vertex of C◦(Gi) \ {v1, v2} that is not
incident to a chord of C◦(Gi). This computation can be done in O(n) time [4]. In general, a
triangulation may admit many canonical orderings. We will use this freedom to adapt the
canonical ordering we work with to our needs. To this end, we compute a canonical ordering
for G incrementally, starting with v1, v2, v3, where v1v2 is an arbitrary edge of C◦(G), and v3
is the unique vertex of G such that v1v2v3 bounds a triangular face of G and v3 is not a
vertex of C◦(G). A canonical ordering v1, . . . , vi for Gi, where 3 ≤ i ≤ n, is extensible if
there exists a sequence vi+1, . . . , vn such that v1, . . . , vn is a canonical ordering for G.

▶ Lemma 4. A canonical ordering v1, . . . , vi for Gi is extensible ⇐⇒ V \ Vi ⊂ F◦(Gi).
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)

vn

cv1v5
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Figure 2 Overview of notation used throughout the paper.

We set up some terminology used throughout the paper; refer also to Figure 2. Consider
an extensible canonical ordering v1, . . . , vi for Gi and some vertex v ∈ V \ Vi. Let P◦(Gi)
denote the path C◦(Gi)−v1v2 and direct it from v1 to v2. As Gi is an induced subgraph of the
plane graph G and v ∈ F◦(Gi) (by extensibility), all neighbors of v in Gi are on P◦(Gi). We
associate a planar region Ri(v) to v as follows. If di(v) = degGi

(v) ≤ 1, then Ri(v) = F◦(Gi);
else, let Ri(v) be the open bounded region bounded by the simple closed curve formed by
the part of P◦(Gi) between ℓ and r together with the edges ℓv and rv of G, where ℓ and r

are the first and last, respectively, neighbor (in G) of v on P◦(Gi). We partially order the
vertices in V \ Vi by defining v ≺ v′ if Ri(v) ⊆ Ri(v′).

A vertex v ∈ V \ Vi is eligible (for Gi) if setting vi+1 = v yields an extensible canonical
ordering v1, . . . , vi+1 for Gi+1. Denote the set of vertices eligible for Gi by Ei. Let e = uw

be an arbitrary edge of P◦(Gi), for i < n. As G is a triangulation, there exists a unique
vertex ce ∈ V \ Vi such that uwce bounds a triangular face of G; we say that ce covers e.
Given a canonical ordering v1, . . . , vn, vertex vi covers exactly the edges of P◦(Gi−1) that
are not on P◦(Gi). Similarly, we say that vi covers a vertex v of P◦(Gi−1) if v is not part of
P◦(Gi). The following observations are direct consequences of these definitions and Lemma 4.

▶ Corollary 5. A vertex v ∈ V \ Vi is eligible ⇐⇒ Ri(v) ∩ V = ∅ ⇐⇒ Ri(v) ∩ Ei = ∅.

While computing a canonical ordering v1, . . . , vn, we also maintain an arc diagram, for
short, diagram of Gi. This diagram must satisfy certain properties to be considered valid, as
detailed below. In some cases we apply induction to handle a whole induced subgraph of G,
for instance, within a (separating) triangle, at once. As a result, in certain steps, subgraph
Gi may not correspond to a valid arc diagram.

Every vertex vi arrives with 1 − χ credits, for some constant χ ≥ 0.2 For these credits
we can either create biarcs (at a cost of one credit per biarc), or we place them on edges of
the outer face of the diagram for later use. The costs cost(D) of a diagram D is the sum of
credits on its edges. An edge in the diagram can be one of three different types: mountain
(proper arc above the spine), pocket (proper arc below the spine), or down-up biarc. So the
diagram is determined by (1) the spine order (left-to-right) of the vertices and crossings along
with (2) for every edge, its type and number of credits. The lower envelope of a diagram
consists of all vertices and edges that are vertically visible from below, that is, there is no
other vertex or edge of the diagram vertically below it. Analogously, the upper envelope
consists of all vertices and edges that are vertically visible from above.

2 For Theorem 1 we will set χ = 1/5. But we think it is instructive to keep χ as a general constant in our
argumentation. For instance, this way it is easier to see in which cases our analysis is tight.
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A diagram for v1, . . . , vi and i ∈ {3, . . . , n}, is valid if it satisfies the following invariants:
(X1) Every edge is either a proper arc or a down-up biarc. Every edge on the upper envelope

is a proper arc.
(X2) Every mountain whose left endpoint is on C◦(Gi) \ {v2} carries one credit.
(X3) Every biarc carries (that is, is paid for with) one credit.
(X4) Every pocket on P◦(Gi) carries χ credits3.

Moreover, a valid drawing is extensible if it also satisfies
(X5) Vertex v1 is the leftmost and v2 is the rightmost vertex on the spine. Edge v1v2 forms

the lower envelope of C◦(Gi). The edges of P◦(Gi) form the upper envelope.
To prove Theorem 1 it suffices to prove the following.

▶ Lemma 6. Let G be a maximal plane graph on n ≥ 3 vertices, let v1, . . . , vi be an
extensible canonical ordering for Gi, for some 3 ≤ i < n, and let D be an extensible arc
diagram for Gi. Then, for any χ ≤ 1

5 , D can be extended to an extensible arc diagram D′

for G with cost(D′) ≤ cost(D) + (n − i)(1 − χ) + ξ, for some ξ ≤ 2χ.

Proof of Theorem 1 assuming Lemma 6. We may assume n ≥ 4, as the statement is trivial
for n ≤ 3. Let C◦(G) = v1v2vn, and let v3 be the other (than vn) vertex that forms a triangle
with v1v2 in G. Then v1, v2, v3 is an extensible canonical ordering for G3 in G. To obtain
an extensible diagram D for G3, place v1v3v2 on the spine in this order from left to right.
All three edges are drawn as pockets so that v1v2 is below v1v3 and v3v2. On the latter two
edges we put χ credits each. It is easily verified that D is extensible and cost(D) = 2χ. By
Lemma 6 we obtain an extensible diagram D′ for G with cost(D′) ≤ 2χ+(n−3)(1−χ)+2χ =
n(1 − χ) + 7χ − 3. Setting χ = 1/5 yields cost(D′) ≤ 4

5 n − 8
5 . As vn is incident to a mountain

on the outer face by (X5) which carries a credit by (X2), cost(D′) − 1 is an upper bound for
the number of biarcs in D′ and the theorem follows. ◀

We can avoid the additive term ξ in Lemma 6 by dropping (X5) for D′:

▶ Lemma 7. Let G be a maximal plane graph on n ≥ 4 vertices, let v1, . . . , vi be an
extensible canonical ordering for Gi, for 3 ≤ i < n, and let D be an extensible arc diagram
for Gi. Then, for any χ ≤ 1

5 , D can be extended to a valid arc diagram D′ for G such that
(1) cost(D′) ≤ cost(D) + (n − i)(1 − χ), (2) Vertex v1 is the leftmost and vn is the rightmost
vertex on the spine. The mountain v1vn forms the upper envelope, and the pocket v1v2 along
with edge v2vn forms the lower envelope of D′, and (3) v2vn is not a pocket.

3 Default vertex insertion

We prove both Lemma 6 and Lemma 7 together by induction on n. For Lemma 6, the base
case n = 3 is trivial, with D′ = D. For Lemma 7, the base case is n = 4 and i = 3. We
place v4 as required, to the right of v2, and draw all edges incident to v4 as mountains. To
establish (X2) it suffices to put one credit on v1v4 because v3 is covered by v4 and mountains
with left endpoint v2 are excluded in (X2). The edge of D with left endpoint v3 is covered
by v4; thus, we can take the at least χ credits on it. The invariants (X1), (X3), and (X4) are
easily checked to hold, as well as the statements in Lemma 7.

3 As in the Greek word for pocket money: χαρτζιλίκι.
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In order to describe a generic step of our algorithm, assume that we already have an
extensible arc diagram for Gi−1, for i = 4, . . . , n. We have to select an eligible vertex Vi ∈
V \ Vi−1 and add it using at most 1 − χ credits obtaining an extensible diagram for Gi. In
this section we discuss some cases where a suitable vertex exists that can easily be added to
the arc diagram, using what we call a default insertion. Let vi be any vertex in Ei−1.

We call the sequence of (at least one) edges of P◦(Gi−1) between the leftmost neighbor ℓi

of vi and the rightmost neighbor ri of vi the profile pr(vi) of vi. By (X1) each edge on the
profile is a pocket or a mountain, i.e., writing ⌣ and ⌢ for pocket and mountain, respectively,
each profile can be described by a string over {⌣, ⌢}. For a set A of characters, let A∗, Ak

and A+ denote the set of all strings, all strings of length exactly k and all strings of length
at least one, respectively, formed by characters from A. Let di denote the degree of vi in Gi.

▶ Lemma 8. If pr(vi) ∈ {⌣, ⌢}∗ ⌣⌢∗, then we can insert vi and use ≤ 1 credit to obtain
an extensible arc diagram for Gi. At most 1 − χ credits suffice, unless pr(vi) = ⌢⌣.

Proof Sketch. We place vi into the rightmost pocket pℓpr it covers, draw pℓvi and vipr

as pockets and all other new edges as mountains; see Figure 3. We take the χ credits
from pℓpr. If di = 2, then we place χ credits on each of the two pockets incident to vi so as
to establish (X4), for a cost of χ ≤ 1 − χ, assuming χ ≤ 1/2.

vip`
pr
ri

`i
vip` pr

`i ri

Figure 3 Inserting a vertex vi into a pocket, using 1 − χ credits (Lemma 8).

For di ≥ 3 each new mountain m from vi to the right covers a mountain m′ of P◦(Gi−1)
whose left endpoint is covered by vi, Thus, we can take the credit from m′ and place it on m.
Among all mountains from vi to the left, a credit is needed for the leftmost one only. If there
is such a mountain, then we do not need the χ credits on pℓvi. And if vi covers two or more
edges to the left of pℓ, we gain at least χ credits from the rightmost such edge. ◀

It is more difficult to insert vi if it covers mountains only, at least if di is small. But if
the degree of vi is large, then we can actually gain credits by inserting vi (see Figure 4).

▶ Lemma 9. If pr(vi) ∈ ⌢+ and di ≥ 5, then we can insert vi and gain at least di − 5
credits to obtain an extensible arc diagram for Gi.

`i ri

vi

`i
vi

rim

Figure 4 Inserting a vertex vi into mountains, using 5 − di credits (Lemma 9).

An eligible vertex is problematic if it is of one of the four specific types depicted in Figure 5.
Using Lemmas 8 and 9 we insert vertices using at most 1 − χ credits per vertex, unless all
eligible vertices are problematic. This specific situation is discussed in the next section.
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`i ri

vi

(a) T (2, ⌢)

ri`i

vi

(b) T (3, ⌢2)

vi

`i ri

(c) T (4, ⌢3)

ri`i

vi

(d) T (3, ⌢⌣)

Figure 5 The four types of problematic vertices where default insertion fails.

4 When default insertion fails

In this section we discuss how to handle the case where all eligible vertices are problematic,
that is, they cannot be handled by our default insertion. Let v be an arbitrary vertex in Ei−1,
and let ℓ and r denote the leftmost and rightmost neighbor of v on P◦(Gi−1), respectively.

A special case arises if v = vn is the last vertex of the canonical ordering. This case is
easy to resolve, see Appendix C in the full version for details. Otherwise, we have i < n and
pick a pivot vertex p(v) as follows: If v is T (3, ⌢⌣) we set p(v) = r and say that v has right
pivot type, in the three remaining cases we set p(v) = ℓ and say that v has left pivot type.
Let pc(v) ∈ V \ Vi denote the unique vertex that covers the pivot edge vp(v).

▶ Lemma 10. Assume there is a vertex v ∈ Ei−1 such that pc(v) has only one neighbor
on P◦(Gi−1). Then we can set vi = v and vi+1 = p(v) and spend at most 1 + 2χ credits to
obtain an extensible arc diagram for Gi+1.

Proof. The resulting diagram is shown in Figure 6. The costs to establish are 1 + χ

for T (3, ⌢⌣) and 1 + 2χ for the other types. Note that 1 + 2χ ≤ 2(1 − χ), for χ ≤ 1/4. ◀

ri`i
vi+1 vi

(a) T (2, ⌢)

ri`i
vi+1 vi

(b) T (3, ⌢2)

ri`i
vi+1 vi

(c) T (4, ⌢3)

ri`i
vi+1vi

(d) T (3, ⌢⌣)

Figure 6 Insertion of vi and vi+1 if vi+1 = pc(vi) has degree two in Gi+1.

▶ Lemma 11. Assume that there are v, v′ ∈ Ei−1 such that pc(v) = v′ and at least one
of v, v′ has right pivot type. Then we can set vi = v and vi+1 = v′ and spend at most one
credit to obtain an extensible arc diagram for Gi+1.

Proof. If both v and v′ have right pivot type, then we use the diagram shown in Figure 7 (left).
The costs are 1 − χ ≤ 2(1 − χ), for χ ≤ 1. Otherwise, one of v, v′ has left pivot type and the
other has right pivot type, then p(v) = p(v′) and pc(v′) = v. As the roles of v and v′ are
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11:8 Monotone Arc Diagrams with Few Biarcs

symmetric, we may assume w.l.o.g. that v has right pivot type and v′ has left pivot type. We
use the diagram shown in Figure 7 (right) for the case where v′ is T (3, ⌢2); other types are
handled analogously. The costs to establish the invariants are 1 ≤ 2(1 − χ), for χ ≤ 1/2. ◀

ri+1`i
vi+1vi

p(vi)

ri`i+1
vi

vi+1

p(vi)

Figure 7 Insertion of vi and vi+1 = pc(vi) ∈ Ei−1 if vi has right pivot type.

If we can apply one of Lemmas 10 and 11, we make progress by inserting two vertices
vi and vi+1. Hence, from now on, we assume that neither of Lemmas 10 and 11 can be
applied. Our goal in the remainder of this section is to show that in this case we can find a
vertex u that is not eligible but sufficiently close to being eligible – in a way described in the
following – that we can aim to insert u next, along with some other vertices.

More specifically, the vertex u has neighbors w1, . . . , wk on P◦(Gi−1), for k ≥ 2, and each
subregion Xj of Ri−1(u) bounded by the edges uwj and uwj+1 has a particularly simple
structure. First of all, there exists an integer s = s(Xj) such that we have Xj ∩ Ei−1 =
{c1, . . . , cs}, and every cℓ, for 1 ≤ ℓ ≤ s, is adjacent to u in G. We distinguish three types of
regions, depending on whether Xj contains eligible vertices of left, right, or both pivot types.

Left-pivot region. (see Figure 8a)
Every cℓ, for 1 ≤ ℓ ≤ s, has left pivot type.
We have pc(c1) = u and pc(cℓ) = cℓ−1, for all 2 ≤ ℓ ≤ s.
All vertices in (V \ Ei−1) ∩ Xj lie inside the face bounded by ucswj+1.

csc1

wj+1

u

. . .

. . .

. . .
. . .

. . .

. . .

wj

(a)

cs

wj+1wj

u

(b)

cscs−1c2

wj

c1

wj+1

u

w′

. . .

. . .

. . .

(c)

Figure 8 Structure of regions that our to-be-inserted-next vertex u spans with P◦(Gi−1). All
eligible vertices (shown red) are adjacent to u, all other vertices lie inside the shaded region.

Right-pivot region. (see Figure 8b)
We have s = 1, the vertex c1 has right pivot type, and pc(c1) = u.
All vertices in (V \ Ei−1) ∩ Xj lie inside the face bounded by uwjc1.

Both-pivot region. (see Figure 8c)
Every cℓ, for 1 ≤ ℓ ≤ s − 1, has left pivot type and cs has right pivot type.
We have pc(c1) = pc(cs) = u and pc(cℓ) = cℓ−1, for all 2 ≤ ℓ ≤ s − 1.
The rightmost neighbor of cs−1 on P◦(Gi−1) is the same as the leftmost neighbor of cs

on P◦(Gi−1); denote this vertex by w′.
All vertices in (V \ Ei−1) ∩ Xj lie inside the quadrilateral ucs−1w′cs.
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How to select u. In the remainder of this section we will sketch how to select a suitable
vertex u such that all regions spanned by u and P◦(Gi−1) have the nice structure explained
above. The first part of the story is easy to tell: We select u to be a minimal (w.r.t. ≺)
element of the set U := {pc(v) : v ∈ Ei−1} \ Ei−1. Such a vertex always exists because

▶ Lemma 12. We have U ̸= ∅.

As there is a vertex v ∈ Ei−1 with u = pc(v), we know that u ∈ U has at least one neighbor
on P◦(Gi−1), which is p(v). By Lemma 10 we may assume di−1(u) ≥ 2. Let w1, . . . , wk

denote the sequence of neighbors of u along P◦(Gi−1). The edges uwj , for 2 ≤ j ≤ k − 1,
split Ri−1(u) into k − 1 subregions; let Xj denote the (open) region bounded by wjuwj+1
and the part of P◦(Gi−1) between wj and wj+1, for 1 ≤ j < k.

▶ Lemma 13. In every region Xj, for 1 ≤ j < k, there is at most one eligible vertex v of
each pivot type for which pc(v) = u.

▶ Lemma 14. In every region Xj, at most one eligible vertex has right pivot type. If there
exists a vertex v ∈ Xj ∩ Ei−1 that has right pivot type, then pc(v) = u.

▶ Lemma 15. Let Q denote the set of vertices in Xj ∩Ei−1 that have left pivot type. If Q ≠ ∅,
then the vertices in Q form a sequence x1, . . . , xq, for some q ≥ 0, such that xj = pc(xj+1),
for 1 ≤ j ≤ q − 1, and pc(x1) = u.

▶ Lemma 16. Let e ∈ P◦(Gi−1) ∩ ∂Xj, for some 1 ≤ j < k, and let ce ∈ V \ Vi−1 denote
the vertex that covers e. Then either ce = u or ce ∈ Ei−1.

We process the regions X1, . . . , Xk−1 together with u. Consider region Xj such that Xj ∩
V ≠ ∅, and denote Ej = P◦(Gi−1) ∩ ∂Xj . By Lemma 16 the vertices that cover one or more
edges of Ej are exactly the vertices in Ei−1 ∩ Xj . Thus, we can order these vertices from left
to right, according to the edge(s) in Ej they cover. Denote this sequence by c1, . . . , cs. By
Lemma 14 the only vertex in Xj ∩ V that may have right pivot type is cs. Denote s′ = s − 1
if cs has right pivot type, and s′ = s, otherwise; i.e., cs′ is the rightmost vertex of the
sequence that has left pivot type. By Lemma 15 we have ch = pc(ch+1), for 1 ≤ h ≤ s′ − 1,
and pc(c1) = u. It follows that the rightmost vertex w′ of P◦(Gi−1) that is adjacent to cs′ is
the only vertex of P◦(Gi−1) that can be adjacent to a vertex in (Xj ∩V )\Ei−1. So the general
situation inside Xj can be summarized as depicted in Figure 9. Neither the sequence of left
pivot vertices nor the right pivot vertex may exist, but if neither is present, then Xj ∩ V = ∅.

cscs−1c2

wj

c1

wj+1

u

w′

. . .

. . .

. . .

Figure 9 The structure of eligible vertices within a region Xj . All triangular faces here are empty,
only the central face (shaded) may contain other vertices or edges uch, for 2 ≤ h < s. The left pivot
vertices could be of any type T (z, ⌢z−1).

The following lemma allows us to assume that the central face in each region Xj is
subdivided into empty (of vertices) triangles and at most one – not necessarily empty –
triangle or quadrilateral (the latter if Xj contains eligible vertices of both pivot types).
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11:10 Monotone Arc Diagrams with Few Biarcs

▶ Lemma 17. Let Xj be a region s.t. there exist v, v′ ∈ Ei−1 ∩ Xj with pc(v) = v′, let v′′ be
the vertex that covers vv′. If v′′ ̸= u and χ ≤ 1/5, there exist vi, . . . , vi+h−1 with h ≥ 3 s.t. a
valid diagram for Gi+h−1 can be obtained by spending at most (1 − χ)h credits.
Proof. By Lemma 14 both v and v′ have left pivot type. In particular, if cs ≠ cs′ , this implies
that we have v, v′ ≠ cs (see also Figure 9). By planarity and as v′′ ≠ u, we have v′′ ∈ Xj .
If v′′ is not adjacent to w′, then v′′ is eligible after adding v and v′ and we can set vi = v,
vi+1 = v′, and vi+2 = v′′ and use the diagram for Gi+2 shown in Figure 10 (left), for a
cost of 2 + 2χ ≤ 3 − 3χ, for χ ≤ 1/5. The figure shows the drawing where both v and v′

are T (2, ⌢); it easily extends to the types T (3, ⌢2) and T (4, ⌢3) because more mountains
to the right of v can be paid for by the corresponding mountains whose left endpoint is
covered by v and for more mountains to the left of v′ their left endpoint is covered by v′.

Otherwise, v′′ is adjacent to w′. We claim that we may assume v = cs′ and v′ = cs′−1.
To see this let ṽ ̸= v′′ be the vertex that covers cs′−1cs′ and observe that ṽ is enclosed by a
cycle formed by vv′′w′ and the part of P◦(Gi−1) between the right neighbor of v and w′. In
particular, we have ṽ ̸= u and so cs′−1, cs′ , ṽ satisfy the conditions of the lemma, as claimed.
We set vi = v and vi+1 = v′, and use the diagram shown in Figure 10 (right). If v′′ is eligible
in Gi+1, that is, the triangle vv′′w′ is empty of vertices, then we set vi+2 = v′′ and have a
diagram for Gi+2 for a cost of 2 + χ ≤ 3 − 3χ, for χ ≤ 1/4.

Otherwise, by Lemma 7 we inductively obtain a valid diagram D for the subgraph of G

induced by taking vv′′w′ as an outer triangle together with all vertices inside, with v′′v as a
starting edge and w′ as a last vertex. Then we plug D into the triangle vv′′w′ as shown in
Figure 10 (right). All mountains of D with left endpoint v′′ carry a credit by (X2) for D.
Thus, the resulting diagram is extensible. For the costs we have to account for the fact
that w′ is considered to contribute 1 − χ credits to D, whereas we had already accounted
for w′ in the diagram for Gi−1. On the other hand, the edge v′′w′ is paid for as a part of D.
Thus, the additional costs to handle v, v′, v′′ are (1−χ)+1+χ = 2 ≤ 3−3χ, for χ ≤ 1/3. ◀

v′′v′ v v′′v′ v w′
D

Figure 10 Two vertices v, v′ that have left pivot type and v′′ ̸= u covers the edge vv′.

To complete the proof of Lemmas 6 and 7 it remains to insert u along with the set Vu :=
V ∩ Ri−1(u) of all vertices inside X1, . . . , Xk−1, at a cost of 1 − χ credits per vertex. We
process these regions from right to left in two phases: In Phase 1, we select a suitable
collection Xj , . . . , Xk−1 of regions, for some j ∈ {1, . . . , k − 1}, so that we can insert u

together with all the vertices inside these regions. Then in Phase 2, we process the remaining
regions, assuming that u is already placed on the spine, somewhere to the right. To achieve
this we do a case analysis, depending on the four types of regions: left, right, both pivot, or
empty. In Appendix E of the full version, we show that in all cases u ∪ Vu can be inserted as
required.

5 Triangulations with many degree three vertices

▶ Theorem 18. Let G be a triangulation with n vertices, and let d denote the number of
degree three vertices in G. Then G admits a monotone plane arc diagram with at most n−d−4
biarcs, where every biarc is down-up.
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Proof Sketch. Let T denote the triangulation that results from removing all degree-3 vertices
from G, i.e., T has k = n − d vertices. We proceed in two steps; see Appendix F of the full
version for details.

vi

vi

Figure 11 Insert a vertex using at most one credit and make every triangle cross the spine.

First step. We draw T while maintaining Invariants (X1)–(X3) and (X5) using the following
modifications of our default insertion rules; see Figure 11. First, if we insert vi into a pocket,
we always ensure that the leftmost edge incident to vi is a mountain. Second, if all edges
covered by vi are mountains, we push down the leftmost such mountain m, that is, we redraw
m and all mountains having the same left endpoint as m into down-up biarcs. Third, instead
of assigning credits to covered mountains whose left endpoint remains on the outer face,
we immediately transform them into biarcs. Fourth, each vertex aside from v1, v2, v3, vn

contributes 1 credit to the charging scheme. As a result, the arc diagram of T has at most
n − d − 4 biarcs and all created faces have a non-empty intersection with the spine – note
that the latter property does not follow from from the result by Cardinal et al. [2, 3].

Second step. We insert each degree-three vertex v in its containing face f of T . Using
that f crosses the spine we can place v there and then realize each edge to a vertex of f as a
proper arcs. Thus, no new biarcs are created in the second step. ◀

▶ Theorem 2. Every Kleetope on n vertices admits a monotone plane arc diagram with at
most ⌊(n − 8)/3⌋ biarcs, where every biarc is down-up.

Proof. Let G be a Kleetope on n vertices, and let d denote the number of degree three
vertices in G. By Theorem 18 the graph G admits a monotone plane arc diagram with at
most n − d − 4 biarcs, where every biarc is down-up. Removing the degree three vertices
from G we obtain a triangulation T on n−d vertices, which by Euler’s formula has 2(n−d)−4
triangular faces. As G is a Kleetope, it is obtained by inserting a vertex into each of these
faces, that is, we have n = (n − d) + 2(n − d) − 4 and thus d = (2n − 4)/3. So there are at
most n − d − 4 = (n − 8)/3 biarcs in the diagram. ◀

6 Planar 3-Trees

For 3-trees it is natural to follow their recursive construction sequence and build a corre-
sponding diagram incrementally. A planar 3-tree G is built by starting from a (combinatorial)
triangle. At each step we insert a new vertex v into a (triangular) face f of the graph built
so far, and connect v to the three vertices of f . Every planar 3-tree G on at least four
vertices is 3-connected. So its combinatorial embedding is unique, and for each triangle of
the abstract graph we know whether it is facial or separating. In the former case, there is
exactly one vertex of G that is adjacent to all vertices of the triangle, in the latter case there
are exactly two such vertices. In particular, we can pick any facial triangle to be the starting
triangle of our construction sequence for G and become the outer face of our diagram.
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11:12 Monotone Arc Diagrams with Few Biarcs

Let v1, . . . , vn be such a construction sequence for G. For i ∈ {3, . . . , n}, let Vi =
{v1, . . . , vi} and Gi = G[Vi]. Each vertex vi, for i ∈ {4, . . . , n}, is inserted into a face F(vi) =
uvw of Gi−1, creating three child faces uvvi, vwvi and wuvi of uvw in Gi. We also say
that vi is the face vertex v(uvw) of face uvw. We call a face f of Gi active if it has a face
vertex in V \ Vi; otherwise, it is inactive. The grand-degree gd(f) is the maximum number of
active child faces of f in all of G3, . . . , Gn. Observe that by construction gd(f) ∈ {0, . . . , 3}
and that f is active for some Gi if and only if gd(f) > 0. Similarly, a vertex is a gd-i vertex,
for i ∈ {0, 1, 2, 3}, if it is the face vertex of a face f with gd(f) = i. For a construction
sequence we define its dual face tree T on the faces of all Gi such that the root of T is v1v2v3,
and each active face uvw has three children: the faces uvz, vwz, and wuz, where z = v(uvw).
Note that the leaves of T are inactive for all Gi. Let us first observe that no biarcs are
needed if all faces have small grand-degree. To this end, also recall that G admits a plane
proper arc diagram if and only if it is subhamiltonian and planar.

▶ Theorem 19. Let G be a planar 3-tree that has a construction sequence v1, . . . , vn such
that for each face f in its dual tree gd(f) ≤ 2. Then G admits a plane proper arc diagram.

Proof. We start by drawing the face v1v2v3 as a drop, that is, a face where the two short
edges are proper arcs on different sides of the spine; see Figure 12. Then we iteratively insert
the vertices vi, for i = 4, . . . , n, such that every face that corresponds to an internal vertex
of the dual tree T is a drop in the diagram Di for Gi. This can be achieved because by
assumption at least one of the three faces of Di created by inserting vi is a leaf of T , which
need not be realized as a drop. But we can always realize the two other faces as drops, as
shown in Figure 12. In this way we obtain a diagram for G without any biarc. ◀

vi vi vi

∅

∅ ∅

Figure 12 Insert a vertex vi into a drop s.t. any chosen two of the faces created are drops.

As T is a tree, we can relate the number of internal vertices to the number of leaves.

▶ Lemma 20. Let fd denote the number of faces in T with grand-degree exactly d, and let
ninact denote the number of face vertices that create inactive faces only. Then ninact ≥ 2f3+f2.

Proof. Consider the rooted tree T ′ obtained by removing all leaves of T , and observe that
the grand-degree in T corresponds to the vertex degree in T ′. ◀

We are now ready to describe our drawing algorithm for general planar 3-trees.

▶ Theorem 3. Every planar 3-tree admits a plane arc diagram with at most
⌊ 3

4 (n − 3)
⌋

biarcs that are all down-up monotone.

Proof. Our algorithm is iterative and draws G in the sequence prescribed by T . Namely, at
each step of our algorithm, we select an arbitrary already drawn face uvw and insert its face
vertex v(uvw), possibly together with the face vertex of a child face. We will consider faces
of a particular shape mostly. Consider a face f = uvw such that u, v, w appear in this order
along the spine and uw forms the upper envelope of f . (There is a symmetric configuration,
obtained by a rotation by an angle of π where uw forms the lower envelope of f .) We say
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that f is ottifant-shaped4 if it contains a region bounded by a down-up biarc between u

and w, a down-up biarc between u and v and a mountain between v and w; see Figure 13a.
Note the word “contains” in the definition of ottifant-shaped, which allows the actual face to
be larger. For instance, the top boundary could be a mountain, but we treat it as if it was a
biarc for the purposes of drawing edges; that is, we only connect to u from below the spine.

To control the number of biarcs drawn we maintain a charge ch(v) for each vertex v. We
require additional flexibility from the edge vw of an ottifant-shaped face f = uvw, which we
call the belly of f . To this end, we call a mountain vw transformable if it can be redrawn as
a down-up biarc for at most 3/2 units of charge. (Note that every edge can be drawn as a
biarc for only one credit. But in some cases redrawing an edge as a biarc requires another
adjacent edge to be redrawn as a biarc as well. Having an extra reserve of half a credit turns
out sufficient to cover these additional costs, as shown in the analysis below.)

More specifically, we maintain the following invariants:
(O1) Each internal active face is ottifant-shaped.
(O2) If the belly of an active face is a mountain, it is transformable.
(O3) The sum of the charges of all vertices is at least the number of biarcs drawn.
(O4) For each vertex v we have ch(v) ≤ 3

4 .
It is easy to see that a drawing D of G has at most ⌊ 3

4 n⌋ biarcs if the invariants hold for D.

u v w

(a)

v1 v2 v3

(b)

u v wx

(c)

Figure 13 (a) An ottifant-shaped face uvw, where the long edge is on the top page (green edges
are transformable). (b) Drawing of the initial face v1v2v3. (c) Insertion of a gd-1 vertex x = v(uvw).

Initialization. We put v1v2v3 on the spine in this order and draw the edges v1v2 and v2v3
as pockets and v1v3 as a mountain; see Figure 13b. The invariants (O1)–(O4) hold.

Charging rights. Typically we charge a vertex when it is added to the drawing. But different
vertices have different needs. Specifically, we will see that no biarc/charge is used when
inserting a gd-0 vertex. Therefore, for each gd-0 vertex v we distribute the rights to use
the charge of v among two targets: (1) the parent of v (i.e., the vertex v(f) of the parent f

of F(v) in T ) – if it exists – may assign a charge of ≤ 1/4 to v and (2) the so-called preferred
ancestor p(v) may assign a charge of ≤ 1/2 to v. Preferred ancestors are determined by
selecting an arbitrary surjective map p from the set of gd-0 vertices to the set of gd-2 and
gd-3 vertices. According to Lemma 20 there exists such a map such that every gd-2 is selected
at least once and every gd-3 vertex is selected at least twice as a preferred ancestor.

4 An ottifant is a cartoon abstraction of an elephant designed and popularized by the artist Otto Waalkes.
Use of the term ottifant with kind permission of Ottifant Productions GmbH.
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Iterative step. We select an arbitrary active face f = uvw, which is ottifant-shaped by
(O1), and insert its face vertex x := v(f) into f . Assume w.l.o.g. (up to rotation by an angle
of π) that uw forms the top boundary of f . We make a case distinction based on gd(f).

Case 1: gd(f) = 0. Then all child faces of f are inactive so that (O1) and (O2) hold
trivially. We insert x inside f between u and v on the spine, draw the edge ux as a pocket
and xv and xw as mountains; see Figure 13c. No biarcs are created, so (O3)–(O4) hold.

Case 2: gd(f) ≥ 2. We insert x as in Case 1, except that xv is drawn as a biarc rather
than as a mountain; see Figure 14a. All created child faces are ottifant-shaped (O1) and all
bellies are transformable (O2). We created one biarc. So to establish (O3)–(O4) it suffices to
set ch(x) = 3

4 and add a charge of 1
4 to one of the (at least one) gd-0 vertices in p−1(x).

xu v w

(a)

xu v wy

(b)

u v wxy

(c)

Figure 14 Insertion of (a) a gd-2 vertex x; (b) a gd-1 vertex y; (c) a gd-2 vertex y.

Case 3: gd(f) = 1. Then only one of the three child faces of f is active. If uvx is the
active child face, then we use the same drawing as for a gd-0 vertex (see Figure 13c) and all
invariants hold. However, if one of the other child faces is active, then we cannot use this
drawing because xw is not transformable and xvw is not ottifant-shaped.

So we also consider the face vertex y of the unique child face f ′ of x and insert both x

and y into the drawing together. We consider two subcases, according to f ′.

Case 3A: f ′ = uxw. If gd(f ′) = 0, then we can once again use the drawing for a gd-0
vertex (see Figure 13c) because f ′ is ottifant-shaped and none of its child faces are active.

If gd(f ′) = 1, then we add first x as described for a gd-2 vertex above (see Figure 14a).
Then we add y into f ′ and draw all incident edges as proper arcs; the edge yx can be drawn
either as a mountain (if uxy is the active child face of f ′) or as a pocket (otherwise); see
Figure 14b. In either case, invariants (O1)–(O2) hold. We added one biarc (xv). To establish
(O3)–(O4) we set ch(x) = ch(y) = 1

2 < 3
4 .

Otherwise, we have gd(f ′) ≥ 2. We first add x as described above for a gd-0 vertex and
then y as a gd-2 vertex; see Figure 14c. Invariant (O1) holds. To establish (O2) we have to
make the bellies xw and uy of yxw and uyx, respectively, transformable. To this end, we
put 1/2 units of charge aside so that both xv and xw could be redrawn as biarcs for 3/2 units
of charge, as required. Moreover, we observe that uy can be transformed into a biarc for 1
units of charge if necessary as there is no other edge that must be transformed in this scenario.
We also added a biarc, namely, yx. To establish (O3)–(O4) we set ch(x) = ch(y) = 3

4 .

Case 3B: f ′ = xvw. We consider several subcases according to gd(f ′). If gd(f ′) = 0, we
first insert x as described above for a gd-2 vertex and then y as a gd-0 vertex; see Figure 15a.
Invariants (O1)–(O2) hold trivially. We used one biarc (xv). To establish (O3)–(O4), we
set ch(x) = 3

4 and increase ch(y) by 1
4 . The latter is allowed because x is the parent of y.
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yu v wx

(a)

u v wx y

(b)

u v wyx

(c)

Figure 15 Insertion of (a) a gd-2 vertex x; (b) a gd-1 vertex y; (c) a gd-2 vertex y.

We use the same drawing if gd(f ′) = 1 and the (only) active child face of f ′ is xvy or xyw.
If xvy is active, then we set ch(x) = ch(y) = 1

2 < 3
4 to establish (O3)–(O4). If xyw is active,

then we put 1/2 units of charge aside to make yw transformable and establish (O2). Then
we set ch(x) = ch(y) = 3

4 to establish (O3)–(O4).
If gd(f ′) = 1, then it remains to consider the case that the (only) active child face of f ′

is yvw. We transform vw into a biarc, then insert x between u and v, and finally insert y

between v and w on the spine inside f . All edges incident to x and y are drawn as proper
arcs; see Figure 15b. The only active (grand)child face of f is yvw, and (O1)–(O2) hold. We
have spent 3/2 units of charge to transform vw, and we did not create any biarc. Thus, it
suffices to set ch(x) = ch(y) = 3

4 to establish (O3)–(O4).
If gd(f ′) ≥ 2, then we first insert x between u and v and then y between x and v on the

spine inside f . Then we draw xv and yv as biarcs and the remaining edges as proper arcs
such that xy is a pocket; see Figure 15c. Invariants (O1)–(O2) hold. We created two biarcs
(xv and yv). To establish (O3)–(O4), we set ch(x) = ch(y) = 3

4 and we increase the charge
of a vertex in p−1(y) by 1/2.

It follows that (O1)–(O4) hold after each step . ◀

7 Conclusions

We proved the first upper bound of the form c · n, with c < 1, for the number of monotone
biarcs in arc diagrams of planar graphs. In our analysis, only some cases require χ ≤ 1/5,
indicating a possibility to further refine the analysis to achieve an even better bound. It
remains open whether there exists a “monotonicity penalty” in this problem, but we ruled
out the probably most prominent class of non-Hamiltonian maximal planar graphs, the
Kleetopes, as candidates to exhibit such a phenomenon. It would be very interesting to close
the gap between upper and lower bounds, both in the monotone and in the general settings.
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Abstract
An ℓ-page stack layout (also known as an ℓ-page book embedding) of a graph is a linear order
of the vertex set together with a partition of the edge set into ℓ stacks (or pages), such that the
endpoints of no two edges on the same stack alternate. We study the problem of extending a given
partial ℓ-page stack layout into a complete one, which can be seen as a natural generalization of
the classical NP-hard problem of computing a stack layout of an input graph from scratch. Given
the inherent intractability of the problem, we focus on identifying tractable fragments through the
refined lens of parameterized complexity analysis. Our results paint a detailed and surprisingly rich
complexity-theoretic landscape of the problem which includes the identification of paraNP-hard,
W[1]-hard and XP-tractable, as well as fixed-parameter tractable fragments of stack layout extension
via a natural sequence of parameterizations.
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1 Introduction

An ℓ-page stack layout (or ℓ-page book embedding) of a graph G consists, combinatorially
speaking, of (i) a linear order ≺ of its vertex set V (G) and (ii) a partition σ of its edge set
E(G) into ℓ ≥ 1 (stack-)pages such that for no two edges (with distinct endpoints) uv and
wx with u ≺ v and w ≺ x that are assigned to the same page their endpoints alternate in ≺,
i.e., we have u ≺ w ≺ v ≺ x. When drawing a stack layout, the vertices are placed on a line
called the spine in the order given by ≺ and the edges of each page are drawn as pairwise
non-crossing arcs in a separate half-plane bounded by the spine, see Figure 1a. Stack layouts
are a classic and well-studied topic in graph drawing and graph theory [6, 12, 30]. They have
immediate applications in graph visualization [4,25,38] as well as in bioinformatics, VLSI
design, and parallel computing [14,27]; see also the overview by Dujmović and Wood [20].

The minimum number ℓ such that a given graph G admits an ℓ-page stack layout is
known as the stack number, page number, or book thickness of G. While the graphs with
stack number ℓ = 1 are the outerplanar graphs, which can be recognized in linear time, the
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Figure 1 (a) A graph H and a two-page stack layout of it. In (b), the graph H and its two-page
stack layout are extended by the new vertices and edges marked in blue.

problem of computing the stack number is NP-complete in general. Indeed, the class of
graphs with stack number ℓ ≤ 2 are precisely the subhamiltonian graphs (i.e., the subgraphs
of planar Hamiltonian graphs) and recognizing them is NP-complete [6, 14,39]. Computing
the stack number is known to also remain NP-complete if the vertex order is provided as
part of the input and ℓ = 4 [36], and overcoming the intractability of these problems has
been the target of several recent works in the field [10, 11, 24, 29]. Many other results on
stack layouts are known – for instance, every planar graph has a 4-page stack layout and
this bound is tight [5,40]. For a comprehensive list of known upper and lower bounds for the
stack number of different graph classes, we refer to the collection by Pupyrev [33].

In this paper, we take a new perspective on stack layouts, namely the perspective of
drawing extensions. In drawing extension problems, the input consists of a graph G together
with a partial drawing of G, i.e., a drawing of a subgraph H of G. The task is to insert the
vertices and edges of G which are missing in H in such a way that a desired property of
the drawing is maintained; see Figure 1b for an example. Such drawing extension problems
occur, e.g., when visualizing dynamic graphs in a streaming setting, where additional
vertices and edges arrive over time and need to be inserted into the existing partial drawing.
Drawing extension problems have been investigated for many types of drawings in recent
years – including planar drawings [1, 28, 31, 32], upward planar drawings [16], level planar
drawings [13], 1-planar drawings [21, 22], and planar orthogonal drawings [2, 3, 9] – but until
now, essentially nothing was known about the extension of stack layouts/book embeddings.

Since it is NP-complete to determine whether a graph admits an ℓ-page stack layout (even
when ℓ is a small fixed integer), the extension problem for ℓ-page stack layouts is NP-complete
as well – after all, setting H to be empty in the latter problem fully captures the former one.
In fact, the extension setting can seemlessly also capture the previously studied NP-complete
problem of computing an ℓ-stack layout with a prescribed vertex order [10, 11, 14, 36, 37];
indeed, this corresponds to the special case where V (H) = V (G) and E(H) = ∅. Given
the intractability of extending ℓ-page stack layouts in the classical complexity setting, we
focus on identifying tractable fragments of the problem through the more refined lens of
parameterized complexity analysis [15, 19], which considers both the input size of the graph
and some additional parameter k of the instance1.

Contributions. A natural parameter in any drawing extension problem is the size of the
missing part of the graph, i.e., the missing number of vertices and/or edges. We start
our investigation by showing that the Stack Layout Extension problem (SLE) for
instances without any missing vertices, i.e., V (G) = V (H), is fixed-parameter tractable when
parameterized by the number of missing edges |E(G) \ E(H)| (Section 3).

1 We assume familiarity with the basic foundations of parameterized complexity theory, notably including
the notions of fixed-parameter tractability, XP, W[1]-, and paraNP-hardness [15].
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(para) NP-complete XP, W[1]-hard FPT

Theorem 4.2[14]

∅ VEDD κ κ + ω κ + ω + ℓ

Theorems 5.1
and 6.4

Corollary 6.5 Theorem 7.2

Figure 2 The complexity landscape of Stack Layout Extension. VEDD denotes the ver-
tex+edge deletion distance, ω denotes the page width of the ℓ-page stack layout of H, and
κ = |V (G) \ V (H)| + |E(G) \ E(H)|. Boxes outlined in bold represent new results that we show in
the linked theorems and corollaries. The only result that is not depicted is Theorem 3.2.

The above result, however, only applies in the highly restrictive setting where no vertices
are missing – generally, we would like to solve instances with missing vertices as well as edges.
A parameterization that has been successfully used in this setting is the vertex+edge deletion
distance, i.e., the number of vertex and edge deletion operations2 required to obtain H

from G. But while this parameter has yielded parameterized algorithms when extending,
e.g., 1-planar drawings [21,22] and orthogonal planar drawings [9], we rule out any analogous
result for SLE by establishing its NP-completeness even if H can be obtained from G by
deleting only two vertices (Section 4). This means that more “restrictive” parameterizations
are necessary to achieve tractability for the problem of extending ℓ-page stack layouts.

Since the missing vertices in our hardness reduction have a high degree, we then consider
parameterizations by the combined number of missing vertices and edges κ = |V (G) \ V (H)|+
|E(G) \ E(H)|. We show that SLE belongs to the class XP when parameterized by κ

(Section 5) while being W[1]-hard (Section 6), which rules out the existence of a fixed-
parameter tractable algorithm under standard complexity assumptions. The latter result
holds even if we additionally bound the page width ω of the stack layout of H , which measures
the maximum number of edges that are crossed on a single page by a line perpendicular to
the spine [14]. On our quest towards a fixed-parameter tractable fragment of the problem,
we thus need to include another restriction, namely the number ℓ of pages of the stack layout.
So finally, when parameterizing SLE by the combined parameter κ + ω + ℓ, we show that it
becomes fixed parameter tractable (Section 7). Our results are summarized in Figure 2.
Full proofs of statements marked by ★ can be found in the full version [17].

2 Preliminaries

We assume the reader to be familiar with standard graph terminology [18]. Throughout this
paper, we assume standard graph representations, e.g., as double-linked adjacency list, that
allow for efficient graph modifications. For two integers p ≤ q we denote with [p, q] the set
{p, p + 1, . . . , q} and use [p]0 and [p] as abbreviations for [0, p] and [1, p], respectively. Let G

be a graph that is, unless stated otherwise, simple and undirected, with vertex set V (G) and
edge set E(G). For X ⊆ V (G), we denote by G[X] the subgraph of G induced on X.

Stack Layouts. For an integer ℓ ≥ 1, an ℓ-page stack layout of G is a tuple ⟨≺G, σG⟩
where ≺G is a linear order of V (G) and σG : E(G) → [ℓ] is a function that assigns each edge
to a page p ∈ [ℓ] such that for each pair of edges u1v1 and u2v2 with σ(e1) = σ(e2) it does not
hold u1 ≺ u2 ≺ v1 ≺ v2. For the remainder of the paper, we write ≺ and σ if the graph G is

2 As usual, we assume that deleting a vertex automatically also deletes all of its incident edges.
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clear from context. We call ≺ the spine (order) and σ the page assignment. Observe that we
can interpret a stack layout as a drawing of G on different planar half-planes, one per page
p ∈ [ℓ], each of which is bounded by the straight-line spine delimiting all half-planes. One
fundamental property of a stack layout is its page width – denoted as ω(⟨≺, σ⟩) or simply ω

if ⟨≺, σ⟩ is clear from context – which is the maximum number of edges that are crossed on
a single page by a line perpendicular to the spine [14]. The properties of stack layouts with
small page width have been studied, e.g., by Stöhr [34,35].

We say that two vertices u and v are consecutive on the spine if they occur consecutively
in ≺. A vertex u ∈ V (G) sees a vertex v ∈ V (G) on a page p ∈ [ℓ] if there does not exist
an edge e = xy ∈ E(G) with σ(e) = p and x ≺ u ≺ y ≺ v or u ≺ x ≺ v ≺ y. Note that if u

sees v, then v also sees u. For two vertices u and v which are consecutive in ≺, we refer to
the segment on the spine between u and v as the interval between u and v, denoted as [u, v].

Problem Statement. Let H ⊆ G be a subgraph of a graph G. We say that ⟨≺G, σG⟩ is an
extension of ⟨≺H , σH⟩ if σH ⊆ σG and ≺H⊆≺G. We now formalize our problem of interest:

Stack Layout Extension (SLE)
Given Integer ℓ ≥ 1, graph G, subgraph H of G, and ℓ-page stack layout ⟨≺H , σH⟩.
Question Does there exist an ℓ-page stack layout ⟨≺G, σG⟩ of G that extends ⟨≺H , σH⟩?

We remark that while SLE is defined as a decision problem for complexity-theoretic
reasons, every algorithm presented in this article is constructive and can be trivially adapted
to also output a layout ⟨≺G, σG⟩ as a witness (also called a solution) for positive instances.
For an instance I of SLE, we use |I| as shorthand for |V (G)| + |E(G)| + ℓ.

In line with the terminology previously used for drawing extension problems [21], we
refer to the vertices and edges in V (H) ∪ E(H) as old and call all other vertices and edges
of G new. Let Vadd and Eadd denote the sets of all new vertices and edges, respectively, and
set nadd := |Vadd| and madd := |Eadd|. Furthermore, we denote with EH

add the set of new
edges incident to two old vertices, i.e., EH

add := {e = uv ∈ Eadd | u, v ∈ V (H)}. We consider
the parameterized complexity of our extension problem by measuring how “incomplete” the
provided partial solution is using the following natural parameters that have also been used
in this setting before [7, 8, 21–23]: the vertex+edge deletion distance, which is nadd +

∣∣EH
add

∣∣,
and the total number of missing vertices and edges, i.e., nadd + madd.

3 SLE With Only Missing Edges is FPT

We begin our investigation by first analyzing the special case where V (G) = V (H), i.e., when
only edges are missing from H. We recall that the problem remains NP-complete even in
this setting, as it generalizes the problem of computing the stack number of a graph with a
prescribed vertex order [10,11,14,36,37]. Furthermore, both of the aforementioned measures
of the incompleteness of ⟨≺H , σH⟩ are the same and equal madd =

∣∣EH
add

∣∣. As a “warm-up”
result, we show that in this setting SLE is fixed-parameter tractable parameterized by madd.

Towards this, consider the set S(e) ⊆ [ℓ] of pages on which we could place a new
edge e without introducing a crossing with edges from H; formally, p ∈ S(e) if and only if
⟨≺H , σH ∪ (e, p)⟩ is an ℓ-page stack layout of H ∪ {e}. Intuitively, if |S(e)| is large enough,
then we are always able to find a “free” page to place e independent of the placement of the
remaining new edges. Formally, one can easily show:
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▶ Lemma 3.1 (★). Let I = (ℓ, G, H, ⟨≺, σ⟩) be an instance of SLE with Vadd = ∅ that
contains an edge e ∈ Eadd with |S(e)| ≥ madd. The instance I ′ = (ℓ, H, G′, ⟨≺, σ⟩) with
G′ = G \ {e} is a positive instance if and only if I is a positive instance.

With Lemma 3.1 in hand, we can establish the desired result:

▶ Theorem 3.2 (★). Let I = (ℓ, G, H, ⟨≺, σ⟩) be an instance of SLE with Vadd = ∅.
We can find an ℓ-page stack layout of G that extends ⟨≺, σ⟩ or report that none exists in
O(madd

madd · |I|) time.

Proof sketch. We compute for a single edge e ∈ Eadd the set S(e) in linear time by checking
with which of the old edges e would cross. If S(e) ≥ madd, then following Lemma 3.1, we
remove e from G. Overall, this takes O(madd · |I|) time and results in a graph G′ with
H ⊆ G′ ⊆ G. Furthermore, each remaining new edge e′ ∈ E(G′) \ E(H) can be put in fewer
than madd different pages. Hence, we can brute-force over all the at most O(madd

madd) page
assignments σ′ that extend σH for all edges in E(G′) \ E(H), and for each such assignment
we check in linear time whether no pair of edges e′, e′′ ∈ E(G′) \ E(H) cross each other. ◀

4 SLE With Two Missing Vertices is NP-complete

Adding only edges to a given linear layout is arguably quite restrictive. Therefore, we now
lift this restriction and consider SLE in its full generality, i.e., also allow adding vertices.
Somewhat surprisingly, as our first result in the general setting we show that SLE is NP-
complete even if the task is to merely add two vertices, i.e., for nadd = 2 and EH

add = ∅.
This rules out not only fixed-parameter but also XP tractability when parameterizing by
the vertex+edge deletion distance, and represents – to the best of our knowledge – the first
example of a drawing extension problem with this behavior.

To establish the result, we devise a reduction from 3-Sat [26]. In our reduction, we
insert two new vertices into a partial layout derived from the given formula, and use the
page assignment of their incident edges to encode a truth assignment and validate that it
satisfies all clauses. For this, we will need to restrict the positions of the new vertices to a
certain range along the spine. In Section 4.1, we introduce the fixation gadget that ensures
this. We also reuse this gadget in the reduction shown in Section 6. But first, we use it in
this section to perform our reduction and prove NP-completeness in Section 4.2.

The graph H that we construct will have multi-edges to facilitate the presentation of the
reduction. The procedure for removing multi-edges is detailed in the full version [17].

4.1 Restricting the Placement of New Vertices: The Fixation Gadget
The purpose of the so-called fixation gadget is to restrict the possible positions of new vertices
to given intervals. As this gadget will also find applications outside this reduction, we describe
in the following in detail its general construction for F > 1 new vertices F = {f1, . . . , fF }.

First, we introduce 3(F + 1) new vertices v1, . . . , vF +1, b1, . . . , bF +1, and a1, . . . , aF +1.
We fix the spine order ≺H among these vertices to b1 ≺ v1 ≺ a1 ≺ b2 ≺ v2 ≺ a2 ≺ . . . ≺
bF +1 ≺ vF +1 ≺ aF +1; see also Figure 3. Then, every new vertex fi is made adjacent to vi

and vi+1 and we aim to allow these new edges to be placed only in a dedicated further
page pd. To achieve this, we first introduce for every i ∈ [F + 1] and every page p ̸= pd an
edge e(bi, ai, p) = biai in H and set σ(e(bi, ai, p)) = p; see Figure 3. Furthermore, we also
introduce the edges bivi and viai and set σ(bivi) = σ(viai) = pd for all i ∈ [F + 1] . For every
i ∈ [F ], we add the edge vivi+1 and place it on the page pd, i.e., we have σ(vivi+1) = pd as in
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f2v3

b1
≺H

v1 a1 b2 v2 a2 b3 v3 a3

f1 f2

e(b2, a2, p1) e(b3, a3, p1)

e(b1, a1, p5) e(b2, a2, p5) e(b3, a3, p5)

b1aF+1

v1v2 v2v3

e(b1, a1, p1)

f1v1 f1v2 f2v2

... ... ... ...

pd

p5

p1

Figure 3 A fixation gadget for F = 2 with five other pages in the stack layout. We also highlight
the intended position for f1 and f2 on the spine and the page assignment for their incident edges.

Figure 3. Finally, we also create the edge b1aF +1 and set σ(b1aF +1) = pd. To complete the
construction of the fixation gadget, we add the new edges fivi and fivi+1 for every i ∈ [F ]
to G. Figure 3 shows an example of the fixation gadget for F = 2.

Next, we show that the fixation gadget forces fi to lie between vi and vi+1 on the spine
and the edges fivi and fivi+1 to be on the page pd for every i ∈ [F ].

▶ Lemma 4.1 (★). Let I = (ℓ, G, H, ⟨≺, σ⟩) be an instance of SLE that contains a fixation
gadget on F vertices {f1, . . . , fF }. In any solution ⟨≺G, σG⟩ to I and for every i ∈ [F ],
we have vi ≺ fi ≺ vi+1 and σ(fivi) = σ(fivi+1) = pd. Furthermore, the fixation gadget
contributes 4F + 3 vertices and (ℓ + 4)F + ℓ + 2 edges to the size of I.

Proof sketch. Towards establishing vi ≺ fi ≺ vi+1, one can show that fi ≺ vi would
prevent fi from seeing vi+1 on any page: As fi ≺ vi implies fi ≺ bi+1 ≺ vi+1 ≺ ai+1 and
we have the edge bi+1ai+1 on any page except pd, only visibility on page pd would still be
possible. However, the edges on the page pd prevent visibility to vi+1 for any spine position
left of vi. By symmetric arguments, we can obtain that vi+1 ≺ fi would prevent vi from
seeing fi. Using again the fact that we have the edge biai on any page except pd, in concert
with the relation vi ≺ fi ≺ vi+1 shown above and the edges viai and bi+1vi+1 on the page pd,
one can deduce that σ(fivi) = σ(fivi+1) = pd must hold. Finally, the bound on the size of
the gadget can be obtained by a close analysis of the construction. ◀

Lemma 4.1 tells us that we can restrict the feasible positions for fi to a pre-defined set of
consecutive intervals by choosing suitable positions for vi and vi+1 in the spine order ≺H .
As the fixation gadget requires an additional page pd, we must ensure that the existence of
the (otherwise mostly empty) page pd does not violate the semantics of our reductions. In
particular, we will (have to) ensure that our full constructions satisfy the following property.

▶ Property 1. Let I = (ℓ, G, H, ⟨≺, σ⟩) be an instance of SLE that contains a fixation
gadget on F vertices {f1, . . . , fF }. In any solution ⟨≺G, σG⟩ to I and for every new edge
e ∈ Eadd with σ(e) = pd, we have e ∈ {fivi, fivi+1 | i ∈ [F ]}.
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d1 x1 d2 x2 dN+1 c1 dN+2 c2

c2 = (¬x1 ∨ x2 ∨ x3)

xN cM dN+M+1

cM = (¬x2 ∨ x4 ∨ x5)c1 = (x1 ∨ ¬x2 ∨ x3)

x1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cMx1 /∈ cM

≺H

p¬1

p2

p¬2

p1

...

Figure 4 An overview of the created vertices and edges in our reduction. Green vertices represent
variables, blue vertices clauses, and red vertices the dummy vertices dq. Furthermore, we visualize
some of the edges in H that are created for the variable-vertices (left) and clause-vertices (middle
and right) to block visibility on the respective pages. If an edge is created due to the (non-)existence
of a literal in the clauses c1, c2, or cM it is indicated via a blue arc.

4.2 The Complete Reduction
Let φ = (X , C) be an instance of 3-Sat consisting of N variables X = {x1, . . . , xN } and M

clauses C = {c1, . . . , cM }, each consisting of three different and pairwise non-complementary
literals. The reduction constructs an instance I = (ℓ, G, H, ⟨≺, σ⟩) of SLE which represents
each variable xi and each clause cj of φ, respectively, by a corresponding vertex in H.
The linear order ≺H has the form x1 ≺ x2 ≺ . . . ≺ xN ≺ c1 ≺ . . . ≺ cM ; see Figure 4.
Furthermore, I contains two new vertices s and v. The vertex s is adjacent to all variable-
vertices and the construction will ensure that the page assignment for its incident edges
represents, i.e., selects, a truth assignment Γ for φ. The vertex v is adjacent to all clause-
vertices, and its purpose is to verify that the truth assignment satisfies all clauses. For the
following description of how this is achieved, we assume s ≺ v ≺ x1 as we will use a fixation
gadget to ensure that every solution ⟨≺, σ⟩ of I has this property.

To each variable xi, we associate two pages pi and p¬i corresponding to its possible truth
states. We ensure that s can see each variable-vertex only on its associated pages using
edges incident to dummy vertices dq with q ∈ [N + M + 1]. These dummy vertices are
distributed as in Figure 4. Hence, a page assignment for the edges incident to s induces a
truth assignment. Similar edges also ensure that v can see a clause-vertex cj only on the
pages that are associated to the negation of the literals the clause cj is composed of, see the
blue arcs in Figure 4 for an illustration. We defer the full construction to the full version [17].

We now ensure that s ≺ v ≺ x1 holds in every solution of I by using a fixation gadget on
two vertices, i.e., for F = 2. In particular, we set a3 ≺ d1, i.e., we place the fixation gadget at
the beginning of the spine, and identify s = f1 and v = f2. The spine order ≺H is then the
transitive closure of all the partial orders stated until now; see Figure 4. Finally, we add the
edge d1dN+M+1 and set σ(d1dN+M+1) = pd to ensure that our construction has Property 1.

Regarding the correctness of our reduction, we make the following observation. If an
induced truth assignment does not satisfy a clause cj , then it must use the pages associated
to the negated literals of cj . Thus, the new edge vcj will cross another edge no matter which
page we use. However, if a clause cj is satisfied, we can find a page for the edge vcj that does
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d1 x1 d2 x2 c1 d5 c2 d6d3 x3 d4

s

b1 v1 a1 b2 v2 a2 b3 v3 a3

v

≺H

p1
p¬1

p2
p¬2

p3
p¬3

pd

Figure 5 An example of our reduction for the formula φ consisting of the clauses c1 =
(x1 ∨ ¬x2 ∨ x3) and c2 = (¬x1 ∨ x2 ∨ x3). The extension indicated in saturated colors induces
the truth assignment Γ(x1) = Γ(x2) = 1 and Γ(x3) = 0, which satisfies φ.

not introduce a crossing: the page associated to the negation of the literal that satisfies cj .
Consequently, if φ is satisfiable, then there exists an extension ⟨≺G, σG⟩. Similarly, the
page assignment of an extension ⟨≺G, σG⟩ induces a truth assignment Γ that satisfies φ.
An intuitive example of the reduction is provided in Figure 5, and we obtain the following
theorem.

▶ Theorem 4.2 (★). SLE is NP-complete even if we have just two new vertices and EH
add = ∅.

Finally, we want to remark that Theorem 4.2 is tight in the sense that SLE with only one new
vertex v and EH

add = ∅ can be solved in polynomial time. To that end, we can branch over all
O(n) possible spine positions where v can be placed. For each of these, the observation that
edges incident to the same vertex can never cross each other allows us to greedily assign a
new edge uv to the first page p where v can see u. Recall that we only add one new vertex v.
Hence, u is an old vertex whose spine position is known. Clearly, an extension exists if and
only if there exists a spine position for v such that our greedy page assignment can find a
page for all new edges.

▶ Remark 4.3. Let I = (ℓ, G, H, ⟨≺, σ⟩) be an instance of SLE with nadd = 1 and EH
add = ∅.

We can find an ℓ-page stack layout of G that extends ⟨≺, σ⟩ or report that none exists in
O(n · madd · |I|) time.

5 SLE Parameterized by Missing Vertices and Edges is in XP

In the light of Theorem 4.2, which excludes the use of the vertex+edge deletion distance as a
pathway to tractability, we consider parameterizing by the total number of missing vertices
and edges κ := nadd + madd. As our first result in this direction, we show that parameterizing
SLE by κ makes it XP-tractable. To this end, we combine a branching-procedure with the
fixed parameter algorithm for the special case obtained in Theorem 3.2.

▶ Theorem 5.1. Let I = (ℓ, G, H, ⟨≺, σ⟩) be an instance of SLE. We can find an ℓ-page
stack layout of G that extends ⟨≺, σ⟩ or report that none exists in O(|I|nadd+1

madd
madd) time.

Proof. We branch over the possible assignments of new vertices to the intervals in ≺H . As a
solution could assign multiple vertices to the same interval, we also branch over the order
in which the new vertices will appear in the spine order ≺G. Observe that ≺H induces
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|V (H)| + 1 different intervals, out of which we have to choose nadd with repetition. Together
with the possible orders of the new vertices, we can bound the number of branches by
nadd! ·

(|V (H)|+nadd
nadd

)
. We can simplify this expression to

nadd! · (|V (H)| + nadd)!
nadd! · ((|V (H)| + nadd) − nadd)! = (|V (H)| + nadd)!

|V (H)|! = Πnadd
i=1 (|V (H)| + i) = O(|I|nadd).

In each branch, the spine order ≺G is fixed and extends ≺H . Hence, it only remains to check
whether ≺G allows for a valid page assignment σG. As each branch corresponds to an instance
of SLE where only edges are missing, we use Theorem 3.2 to check in O(madd

madd · |I|) time
whether such an assignment σG exists. The overall running time now follows readily. ◀

The running time stated in Theorem 5.1 not only proves that SLE is in XP when parameterized
by κ, but also FPT when parameterized by madd for constant nadd. However, common
complexity assumptions rule out an efficient algorithm parameterized by κ, as we show next.

6 SLE Parameterized by Missing Vertices and Edges is W[1]-hard

In this section, we show that SLE parameterized by the number κ of missing vertices and
edges is W[1]-hard. To show W[1]-hardness, we reduce from the Multi-colored Clique
(McC) problem. Here, we are given a graph GC , an integer k > 0, and a partition of V (GC)
into k independent subsets V1, . . . , Vk, and ask whether there exists a colorful k-clique
C ⊆ V (GC) in GC , i.e., a clique on k vertices that contains exactly one vertex of every set Vi,
i ∈ [k]. It is known that McC is W[1]-hard when parameterized by k [15]. In the following,
we will use Greek letters for the indices of the partition and denote with nα the number of
vertices in Vα, i.e., nα = |Vα|. Observe that

∑
α∈[k] nα = N with N = |V (GC)|. As we can

interpret the partitioning of the vertices into V1, . . . , Vk as assigning to them one of k colors,
we will call a vertex vi

α with α ∈ [k] and i ∈ [nα] a vertex with color α. Our construction
will heavily use the notion of a successor and predecessor of a vertex in a given spine order ≺.
For a vertex u, the function succ(≺, u) returns the successor of u in the spine order ≺, i.e.,
the consecutive vertex in ≺ after u. Note that succ(≺, u) is undefined if there is no vertex
v ∈ V (G) with u ≺ v. We write succ(u) if ≺ is clear from context. The predecessor function
pred(≺, u) is defined analogously. In the following, we first give an overview of and intuition
behind our reduction in Section 6.1, before we show its correctness in Section 6.2. Note that
the full details of the construction can be found in the full version [17]. Furthermore, as
in the reduction from Section 4, we will allow multi-edges in the graph H to facilitate the
presentation of the reduction. The procedure for removing multi-edges by distributing the
individual edges over auxiliary vertices is also detailed in the full version [17].

6.1 An Overview of the Construction
Let (GC , k, (V1, . . . , Vk)) be an instance of McC. We will construct an SLE instance
(ℓ, G, H, ⟨≺, σ⟩) parameterized by κ that will fulfill two crucial properties to ensure its
correctness. While, at the time of stating the property, our construction might not yet fulfill
it, we show in Section 6.2 that in the end it indeed has the desired properties.

First, we define the base layout of our reduction. In the base layout, we create the N+2k+3
vertices {uj

α | α ∈ [k], j ∈ [nα + 1]0} ∪ {u0
0, u0

⊥, u1
⊥} in H. Note that for each original vertex

vi
α ∈ V (GC), we have a copy ui

α. We will refer to the vertices u0
0, u0

⊥, and u1
⊥ as dummy

vertices and set, for ease of notation, ⊥ = k + 1 and n⊥ = 1. The vertices are placed on the
spine based on their color α and index i; see Figure 6. Finally, observe that succ(ui

α) = ui+1
α

for every vi
α ∈ V (GC). Furthermore, every vertex vi

α ∈ V (GC) induces the interval [ui
α, ui+1

α ]
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u0
0

≺H

u0
1 u1

1 u2
1 un1

1 u0
2 u1

2 unk+1
k

u0
⊥ u1

⊥un1+1
1 u

nk−1+1
α u1

k unk

k

Figure 6 The base layout of our reduction. We use colors to additionally differentiate vertices
that originate from different vertex sets Vα, for α ∈ [k], and the dummy vertices u0

0, u0
⊥ and u1

⊥.

u0
γ u1

γ u
nγ+1
γ u0

γ+1

≺H

(a)

ui
α ui+1

α

(b)

ui
α ui+1

α

≺H

u1
β uj

β uj+1
β

u0
α u1

α unα+1
α u0

α+1

u0
α u1

α u
nβ+1
β u0

β+1unα+1
α

(c)

Figure 7 Edges of H that model the adjacency given by the edge e = vi
αvj

β ∈ E(GC). All of
these edges are placed on the page pe. Intuitively, we span the intervals induced (a) by all vertices
for each color γ ∈ [k] \ {α, β} and (b) by vertices of the colors α and β that are not incident to e,
here visualized for the color α. (c) Furthermore, we create a tunnel that connects ⋎(vi

α) with ⋎(vj
β).

The gray edges in (c) are from (a) and (b).

in ≺H , which we denote with ⋎(vi
α). The equivalence between the two problems will be

obtained by adding a k-clique to G that consists of the k new vertices X = {x1, . . . , xk}.
Placing xα ∈ X in ⋎(vi

β) indicates that vi
β will be part of the colorful k-clique in GC , i.e., we

will have the equivalence ui
α ≺ xα ≺ succ(≺H , ui

α) p. d.⇐⇒ xα is placed in ⋎(vi
α) ⇐⇒ vi

α ∈ C
between a solution ⟨≺G, σG⟩ to SLE and a solution C to McC. To guarantee that C is colorful,
i.e., contains exactly one vertex from each color, we will ensure the following property with
our construction.

▶ Property 2. In a solution ⟨≺, σ⟩ to SLE we have u0
α ≺ xα ≺ u0

α+1 for every α ∈ [k].

To establish the correctness of our reduction, we have to ensure two things. First, we
have to model the adjacencies in GC . In particular, two new vertices xα and xβ , with α < β,
should only be placed in intervals induced by vertices adjacent in GC . We enforce this
by adding for every edge e = vi

αvj
β ∈ E(GC) a page pe. On this page pe, we create the

following edges in H; see also Figure 7 for a visualization. Firstly, we create for every color
γ ∈ [k]\{α, β} an edge that spans exactly the intervals induced by vertices of color γ, thereby
intuitively blocking visibility to any interval induced by a vertex of a color different to α

and β; see Figure 7a. Secondly, we create up to two edges that span all intervals induced
by vertices of color α except ⋎(vi

α); see Figure 7b. We do so similarly for color β. These
edges in concert with a tunnel that we create on page pe, see Figure 7c, allow us to place
the edge xαxβ ∈ E(G) in the page pe if and only if xα is placed in ⋎(vi

α) and xβ in ⋎(vj
β).

More formally, our construction will ensure the following property.

▶ Property 3. Let ⟨≺, σ⟩ be a solution to an instance of SLE that fulfills Property 2 and
for which we have e = vi

αvj
β ∈ E(GC), 1 ≤ α < β ≤ k, and xα, xβ ∈ X . If σ(xαxβ) = pe

then xα is in ⋎(vi
α) and xβ is in ⋎(vj

β).

Second, we have to ensure that we select exactly one vertex vi
α ∈ Vα for every color

α ∈ [k]. In particular, the new vertex xα should only be placed in intervals that are induced
by vertices from Vα. To this end, we modify H to include a fixation gadget on F = k vertices
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by re-using some vertices of the base layout. Most importantly, we identify vα = u0
α for every

α ∈ [k + 1] and fα = xα for every α ∈ [k]; see the full version [17] for details. As the whole
base layout thereby forms the fixation gadget, our construction trivially satisfies Property 1.

6.2 Bringing It Together: Showing Correctness of the Reduction
With the overview of the construction and the intuition behind the reduction settled, we now
proceed to show its correctness in Theorem 6.4. In the proof, we make use of Properties 2
and 3. Therefore, on our path to obtain Theorem 6.4, we first have to show that our
construction fulfills them. Recall that Property 2 is defined as follows.

▶ Property 2. In a solution ⟨≺, σ⟩ to SLE we have u0
α ≺ xα ≺ u0

α+1 for every α ∈ [k].

When incorporating the fixation gadget on F = k vertices in our construction, we identified
vα = u0

α and fα = xα for every α ∈ [k]. Similarly, we identified vF +1 = u0
k+1. The

fixation gadget now guarantees thanks to Lemma 4.1 that we have vα ≺G fα ≺G vα+1, i.e.,
u0

α ≺ xα ≺ u0
α+1, in any solution ⟨≺G, σG⟩. Hence, we can observe the following.

▶ Observation 6.1. Our instance I of SLE fulfills Property 2.

Recall that Lemma 4.1 furthermore tells us that we have in any solution ⟨≺G, σG⟩ the page
assignment σ(xαu0

α) = σ(xαu0
α+1) = pd for every α ∈ [k]. As we have by Property 2 u0

α ≺
xα ≺ u0

α+1 and furthermore by the construction of the fixation gadget σH(pred(u0
α)u0

α) =
σH(u0

αsucc(u0
α)) = pd for every α ∈ [k], we cannot have in ⟨≺G, σG⟩ u0

α ≺ xα ≺ succ(≺H , u0
α)

or pred(≺H , u0
α+1) ≺ xα ≺ u0

α+1, as this would introduce a crossing on page pd. As we
have in ≺H the equality succ(u0

α) = u1
α and pred(u0

α+1) = unα+1
α for every α ∈ [k], we can

strengthen Property 2 and obtain the following.

▶ Corollary 6.2. In a solution ⟨≺, σ⟩ to SLE we have u1
α ≺ xα ≺ unα+1

α for every α ∈ [k].

Finally, we now show that our construction fulfills Property 3, which was defined as follows.

▶ Property 3. Let ⟨≺, σ⟩ be a solution to an instance of SLE that fulfills Property 2 and
for which we have e = vi

αvj
β ∈ E(GC), 1 ≤ α < β ≤ k, and xα, xβ ∈ X . If σ(xαxβ) = pe

then xα is in ⋎(vi
α) and xβ is in ⋎(vj

β).

▶ Lemma 6.3. Our instance I of SLE fulfills Property 3.

Proof. First, recall that we made Observation 6.1, i.e., our construction fulfills Property 2.
Let ⟨≺G, σG⟩ be a solution to SLE with σ(xαxβ) = pe, for e = vi

αvj
β ∈ E(GC), 1 ≤ α < β ≤ k.

Corollary 6.2 tells us that u1
α ≺ xα ≺ unα+1

α and u1
β ≺ xβ ≺ u

nβ+1
β holds. Corollary 6.2 also

holds for any new vertices xγ and xδ with γ, δ ∈ [k] \ {α, β} and γ ̸= δ. Furthermore, we
have the edges u1

γu
nγ +1
γ and u1

δunδ+1
δ on page pe. Hence, all new edges on page pe must be

among new vertices placed in intervals induced by vertices of color α or β.
Now assume that we have u1

α ⪯ xα ⪯ ui
α. Using σH(u1

αui
α) = pe together with u1

α ⪯ xα ⪯
ui

α ≺ xβ , we derive that u1
α ⪯ xα ⪯ ui

α results in a crossing on page pe. Hence, u1
α ⪯ xα ⪯ ui

α

cannot hold. Now assume that we have ui+1
α ⪯ xα ⪯ unα+1

α . From σH(ui+1
α unα+1

α ) = pe

and ui+1
α ⪯ xα ⪯ unα+1

α ≺ xβ we get that ui+1
α ⪯ xα ⪯ unα+1

α results in a crossing on
page pe. Hence, ui+1

α ⪯ xα ⪯ unα+1
α cannot hold. Since we can exclude u1

α ⪯ xα ⪯ ui
α and

ui+1
α ⪯ xα ≺ unα+1

α by the construction of the tunnel on page pe, we can derive that xα must
be placed in ⋎(vi

α). As similar arguments can be made for xβ , we can conclude that we get
a crossing on page pe unless xα is placed in ⋎(vi

α) and xβ in ⋎(vi
β). ◀
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▶ Theorem 6.4 (★). SLE parameterized by the number κ of missing vertices and edges is
W[1]-hard.

Proof sketch. Let (GC , k, (V1, . . . , Vk)) be an instance of McC with N = |V (GC)| and
M = |E(GC)| and let I = (ℓ, G, H, ⟨≺, σ⟩) be the instance of SLE parameterized by the
number κ of missing vertices and edges created by our construction described above. Closer
analysis reveals that the size of I is bounded by O(N + Mk + k2), and we have κ = 3k +

(
k
2
)

as nadd = k and madd =
(

k
2
)

+ 2k; recall that the fixation gadget contributes 2k new edges.
Towards arguing correctness, assume that (GC , k, (V1, . . . , Vk)) contains a colorful k-

clique C. We construct a solution to I by, for every new vertex xα ∈ X , considering the
vertex vi

α ∈ C and placing xα immediately to the right of the copy ui
α of vi

α in H. The fact
that C is a clique then guarantees that, for each edge e ∈ E(GC [C]), there exists the page pe

in which the corresponding edge e′ ∈ E(G[X ]) can be placed in. For the remaining edges
from the fixation gadget, we can use the page assignment from Lemma 4.1.

For the converse (and more involved) direction, assume that SLE admits a solution
⟨≺G, σG⟩. By Property 2, we have that each xα ∈ Vadd must be placed between u0

α and u0
α+1.

Moreover, our construction together with the page assignment forced by Lemma 4.1 guarantees
that xα is placed between precisely one pair of consecutive vertices uiα

α and uiα+1
α , for some

iα ∈ [nα]; recall Corollary 6.2. Our solution C to the instance of McC will consist of the
vertices viα

α , i.e., exactly one vertex per color α. Moreover, each new edge xαxβ ∈ E(G[X ])
must be placed by σG on some page, and as our construction satisfies Properties 1 and 3,
this page must be one that is associated to one edge e = viα

α v
iβ

β of GC . Property 3 now also
guarantees that this page assignment enforces that xα and xβ are placed precisely between
the consecutive vertices uiα

α and uiα+1
α and u

iβ

β and u
iβ+1
β of H, respectively. This means

that the vertices in C are pairwise adjacent, which implies that C is a colorful k-clique. ◀

Figure 8 shows an example of the reduction for a small graph GC with three colors. Since in
a stack layout constructed by our reduction each line perpendicular to the spine intersects a
constant number of edges, see also Figure 8, we also obtain:

▶ Corollary 6.5. SLE parameterized by the number κ of missing vertices and edges and the
page width ω of the given layout, i.e., by κ + ω, is W[1]-hard.

7 Adding the Number of Pages as Parameter for SLE

In this section, we complete the landscape of Figure 2 by showing that SLE becomes fixed-
parameter tractable once we add ℓ to the parameterization considered by Corollary 6.5. We
will make use of the following concepts.

Consider a page p of a stack layout ⟨≺, σ⟩ of G and recall that we can interpret it as a
plane drawing of the graph G′ with V (G′) = V (G) and E(G′) = {e ∈ E(G) | σ(e) = p} on
a half-plane, where the edges are drawn as (circular) arcs. A face on the page p in ⟨≺, σ⟩
coincides with the notion of a face in the drawing (on the half-plane p) of G′. This also
includes the definition of the outer face. See Figure 9 for a visualization of this concept
and observe that we can identify every face, except the outer face, by the unique edge
e = uv ∈ E(G) with u ≺ v and σ(e) = p that bounds it from upwards.

Let Vinc ⊆ V (H) be the vertices of H that are incident to new edges, i.e., Vinc := {u ∈
V (H) | there is an edge e = uv ∈ Eadd}. The size of Vinc is upper-bounded by 2madd. We
will define an equivalence class on the intervals of ≺H based on the location of the vertices
from Vinc. Consider the two intervals [u1, v1] and [u2, v2] defined by the old vertices u1, v1, u2
and v2, respectively. These two intervals are in the same equivalence class if and only if
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Figure 8 An instance (GC , 3, (V1, V2, V3)) of McC (top) and the SLE instance resulting from
our construction (bottom). Colors indicate (correspondence to) the partition. The extension ⟨≺, σ⟩
indicated in saturated colors induces the colorful 3-clique C = {v1

1 , v1
2 , v1

3} in GC . The edges in
GC [C] and their corresponding pages are highlighted in red.

{w ∈ Vinc | w ⪯ u1} = {w ∈ Vinc | w ⪯ u2} and {w ∈ Vinc | v1 ⪯ w} = {w ∈ Vinc | v2 ⪯ w}
holds. Each equivalence class, which we call super interval, consists of a set of consecutive
intervals delimited by (up to) two old vertices; see Figure 10. Note that the first and last
super interval are defined by a single vertex v ∈ Vinc. The number of super intervals is
bounded by 2madd + 1. Furthermore, for a given ≺G, we define ≺G\H to be its restriction to
new vertices, i.e., for every two vertices u, v ∈ Vadd we have that u ≺ v implies u ≺G\H v.

The Algorithm. With the above concepts at hand, we can now describe our algorithm. It
consists of a branching step, where we consider all possible page assignments for the new
edges, all relative orders among the new vertices, all their possible assignments to super
intervals, and all distances new edges can have from the outer face. In the following, we show
that we can verify in polynomial-time whether a branch can be extended to a solution ⟨≺, σ⟩
or not. The core of our algorithm is a dynamic program that we apply in each branch.

▶ Lemma 7.1 (★). Given an instance I = (ℓ, G, H, ⟨≺, σ⟩) of SLE, (i) a page assignment σG

for all edges, (ii) an order ≺G\H in which the new vertices will appear along the spine,
(iii) for every new vertex v ∈ Vadd an assignment to a super interval, and (iv) for every
new edge e an assigned distance ωe to the outer face with respect to H and ⟨≺, σ⟩. In
O(nadd · madd · |I|) time we can compute an ℓ-page stack layout of G that extends ⟨≺, σ⟩ and
respects the given assignments (i)–(iv) or report that no such layout exists.

GD 2024
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≺

outer face

uv

u vw x

Figure 9 A stack layout ⟨≺, σ⟩ and the faces on page p. Note that each edge has the same color
as the face it identifies.

a b
≺H

c d e f g

[[b, e]]

Figure 10 Visualization of super intervals. Each color represents one super interval. Vertices
from Vinc are marked in green.

Proof sketch. We first observe that assignments (i)–(iv) fix everything except for the actual
position of the new vertices within their super interval. Especially, assignment (i) allows us to
check whether an edge e ∈ EH

add incident to two old vertices crosses any old edge or another
new edge from EH

add. Furthermore, assignments (i) and (ii) allow us to check whether two
new edges e = ua, e′ = vb ∈ Eadd with u, a, v, b ∈ Vadd will cross. Adding assignment (iii),
we can also check this for new edges with some endpoints in V (H), i.e., extend this to all
u, a, v, b ∈ V (G). If the assignments imply a crossing or contradict each other, we can directly
return that no desired layout exists. These checks can be performed in O(nadd

2 + madd · |I|)
time. It remains to check whether there exists a stack layout in which no edge of Eadd \ EH

add
intersects an old edge. This depends on the exact intervals new vertices are placed in.

To do so, we need to assign new vertices to faces such that adjacent new vertices are in
the exact same face and not two different faces with the same distance to the outer face. We
will find this assignment using a dynamic program that models whether there is a solution
that places the first j new vertices (according to ≺G\H) within the first i intervals in ≺H .
When placing vertex vj+1 in the ith interval, we check that all preceding neighbors are visible
in the faces assigned by (iv). When advancing to the interval i + 1, we observe that when we
leave a face, all edges with the same or a higher distance to the outer face need to have both
endpoints placed or none. We thus ensure that for no edge only one endpoint has been placed;
see also Figure 11. These checks require O(madd) time for each of the O(nadd · |V (H)|)
combinations of j and i. Once we reach the interval |V (H)| + 1 and have successfully placed
all nadd new vertices, we know that there exists an ℓ-page stack layout of G that extends
⟨≺, σ⟩ and respects the assignments. Finally, by applying standard backtracing techniques,
we can extract the spine positions of the new vertices to also obtain the layout. ◀

We observe that there are O(ℓmadd · nadd! · madd
nadd · ωmadd) different possibilities for assign-

ments (i)–(iv). Applying Lemma 7.1 to each of these, we get the following theorem.

i
(a)

≺G

(b)

eeeeeeeeeeeeeeeee
≺G

i

eeeeeeeeeeeeeeeee

Figure 11 Illustration of advancing from the ith interval, marked in blue, to the interval i + 1.
In (a) and (b), we leave the green face and there exists an edge e ∈ Eadd, marked in orange, with
the same distance to the outer face as the green face. However, in (a), both end points of the edge e

have already been placed, whereas in (b) only one has, which implies a crossing.
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▶ Theorem 7.2 (★). Let I = (ℓ, G, H, ⟨≺, σ⟩) be an instance of SLE. We can find an ℓ-page
stack layout of G that extends ⟨≺, σ⟩ or report that none exists in O(ℓmadd · nadd! · madd

nadd ·
ωmadd · (nadd · madd · |I|)) time.

8 Concluding Remarks

Our results provide the first investigation of the drawing extension problem for stack layouts
through the lens of parameterized algorithmics. We show that the complexity-theoretic
behavior of the problem is surprisingly rich and differs from that of previously studied
drawing extension problems. One prominent question left for future work is whether one
can still achieve fixed-parameter tractability for SLE when parameterizing by κ + ℓ, thus
generalizing Theorem 7.2. As our final result, we show that this is indeed possible at least in
the restricted case where no two missing vertices are adjacent, as we can then greedily assign
the first “possible” interval to each vertex that complies with assignment (i)–(iii).

▶ Theorem 8.1 (★). Let I = (ℓ, G, H, ⟨≺, σ⟩) be an instance of SLE where G[Vadd] is an
independent set. We can find an ℓ-page stack layout of G that extends ⟨≺, σ⟩ or report that
none exists in O(ℓmadd · nadd! · madd

nadd · (madd|I|2)) time.

A further natural and promising direction for future work is to consider generalizing the
presented techniques to other types of linear layouts, such as queue layouts. Finally, future
work could also investigate the following generalized notion of extending linear layouts: Given
a graph G, the spine order for some subset of its vertices and the page assignment for some
subset of its edges, does there exist a linear layout of G that extends both simultaneously?
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Abstract
Not every directed acyclic graph (DAG) whose underlying undirected graph is planar admits an
upward planar drawing. We are interested in pushing the notion of upward drawings beyond planarity
by considering upward k-planar drawings of DAGs in which the edges are monotonically increasing
in a common direction and every edge is crossed at most k times for some integer k ≥ 1. We show
that the number of crossings per edge in a monotone drawing is in general unbounded for the class of
bipartite outerplanar, cubic, or bounded pathwidth DAGs. However, it is at most two for outerpaths
and it is at most quadratic in the bandwidth in general. From the computational point of view,
we prove that upward-k-planarity testing is NP-complete already for k = 1 and even for restricted
instances for which upward planarity testing is polynomial. On the positive side, we can decide in
linear time whether a single-source DAG admits an upward 1-planar drawing in which all vertices
are incident to the outer face.
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1 Introduction

Graph drawing “beyond planarity” studies the combinatorial and algorithmic questions
related to representations of graphs where edges can cross but some crossing configurations
are forbidden. Depending on the forbidden crossing configuration, different beyond-planar
types of drawings can be defined including, for example, RAC, k-planar, fan planar, and
quasi planar drawings. See [19,30,32] for surveys and books.
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13:2 The Price of Upwardness

While most of the literature about beyond planar graph drawing has focused on undirected
graphs (one of the few exceptions being [2,3] which studies RAC upward drawings), we study
upward k-planar drawings of acyclic digraphs (DAGs), i.e., drawings of DAGs where the
edges monotonically increase in y-direction and each edge can be crossed at most k times.
The minimum k such that a DAG admits an upward k-planar drawing is called its upward
local crossing number. We focus on values of k = 1, 2 and investigate both combinatorial
properties and complexity questions. Our research is motivated by the observation that
well-known DAGs that are not upward-planar, i.e., not upward 0-planar, do admit a drawing
where every edge is crossed at most a constant number of times; see, e.g., Figure 1.

(a) (b)

Figure 1 A graph that is not upward planar but admits an upward 1-planar drawing.

Our contribution.
A graph is an outerpath if it has a planar drawing in which each vertex is incident to
the outer face and the internal faces induce a path in the dual graph. Papakostas [35]
observed that there is a directed acyclic 8-vertex outerpath that is not upward-planar (see
Figure 3a). We strengthen this observation by showing that there exists a directed acyclic
fan (that is, a very specific outerpath) that has no upward-planar drawing (Proposition 1).
On the other hand, we show that every directed acyclic outerpath is upward 2-planar
(Theorem 9) and that the upward local crossing number is quadratic in the bandwidth
(Theorem 6). However, the upward local crossing number of bipartite outerplanar DAGs
(Theorem 2), bipartite DAGs with bounded pathwidth (Corollary 4), and cubic DAGs
(Proposition 5) is in general unbounded.
We show that upward 1-planarity testing is NP-complete, even for graph families where
upward planarity testing can be solved in polynomial time. These include: single-source
single-sink series-parallel DAGs with a fixed rotation system; single-source two-sink
series-parallel DAGs where the rotation system is not fixed; and single-source single-sink
DAGs without fixed rotation system that can be obtained from a K4 by replacing the
edges with series-parallel DAGs (Theorem 11).
Finally, following a common trend in the study of beyond planar graph representations,
we consider the outer model, in which all vertices are required to lie on a common face
while maintaining the original requirements [19,30, 32]. We prove that testing whether a
single-source DAG admits an upward outer-1-planar drawing can be done in linear time
(Theorem 13).

The details of omitted or sketched proofs can be found in the full version [1].

Related Work. A drawing of a graph is monotone if all edges are drawn monotone with
respect to some direction, e.g., a drawing is y-monotone or upward, if each edge intersects each
horizontal line at most once. The corresponding crossing number is introduced and studied
in [24,37]. Schaefer [36] mentions the upward crossing number and the local crossing number
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but not their combination. Schaefer [36, p. 64] also showed that a drawing with the minimum
number of crossings per edge can require incident edges that cross. The edges of the provided
4-planar example graph can be oriented such that the resulting directed graph admits an
upward 4-planar drawing. Thus, also an upward drawing that achieves the minimum local
crossing number can require incident edges that cross. Also, the so-called strong Hanani–
Tutte theorem carries over to directed graphs: Fulek et al. [24, Theorem 3.1] showed that
every undirected graph that has a monotone drawing where any pair of independent edges
crosses an even number of times also has a planar monotone drawing with the same vertex
positions. This implies that in any upward drawing of a graph that is not upward-planar
there must be a pair of independent edges that crosses an odd number of times.

Upward drawings of directed acyclic graphs have been studied in the context of (upward)
book embeddings. In that model the vertices are drawn on a vertical line (a spine) following
a topological order of the graph, while all edges are pointing upwards. To reduce the edge
crossings, edges are partitioned into the fewest number of crossing-free subsets (pages).
Studying upward book embeddings is a popular topic, which is usually centered around
determining the smallest number of pages for various graph classes [22,23,29,31,34] or deciding
whether a graph admits an upward drawing with a given number of pages [7, 8, 10, 11, 12].
Our model is equivalent to topological book embeddings [28,33], which are a relaxed version of
book embeddings in which edges are allowed to cross the spine. To the best of our knowledge,
earlier papers considered only the problem of minimizing the number of spine crossings,
whereas we want to bound the maximum number of edge crossings per edge (ignoring the
spine).

2 Preliminaries

A drawing Γ of a graph G maps the vertices of G to distinct points in the plane and the
edges of G to Jordan arcs. For a vertex v of G and a drawing Γ of G, let xΓ(v) and yΓ(v)
denote the x- and y-coordinates of v in Γ, respectively; when Γ is clear from the context, we
may omit it and simply use the notation x(v) and y(v). A face of Γ is a region of the plane
delimited by maximal uncrossed arc portions of the edges of G. The unique unbounded face
of Γ is its outer face, the other faces are its internal faces. An outer edge is one incident
to the outer face; all other edges are inner edges. The rotation of a vertex v in Γ is the
counterclockwise cyclic order of the edges incident to v. The rotation system of Γ is the set
of rotations of its vertices.

The drawing Γ is planar if no two of its edges cross; it is k-planar if each edge is crossed at
most k times. A graph is (k-)planar if it admits a (k-)planar drawing; it is outer (k-)planar
if it admits a (k-)planar drawing where all vertices are incident to the outer face.

A planar embedding E of a planar graph G is an equivalence class of planar drawings
of G, namely those that have the same set of faces. Each face can be described as a sequence
of edges and vertices of G which bound the corresponding region in the plane; each such
sequence is a face of G in the embedding E . A planar embedding E of a connected graph can
also be described by specifying the rotation system and the outer face associated with any
drawing of E .

Let Γ be a non-planar drawing of a graph G; the planarization of Γ is the planar drawing Γ′

of the planarized graph G′ obtained by replacing each crossing of Γ with a dummy vertex.
If Γ is 1-planar, the planarization can be obtained as follows. Let uv and wz be any two
edges that cross in Γ; they are replaced in Γ′ by the edges ux, xv, wx and xz, where x is
the dummy vertex. Two non-planar drawings of a graph G have the same embedding if their
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13:4 The Price of Upwardness

planarizations have the same planar embedding. An embedding E of G can also be described
by specifying the planarized graph G′ and one of its planar embeddings. A planar graph with
a given planar embedding is also called plane graph. An outerplane graph is a plane graph
whose vertices are all incident to the outer face. A fan is a maximal outerpath that contains
a vertex c that is adjacent to all other vertices; we call c the central vertex of the fan. A
2-tree is a planar graph that can be reduced to an edge by iteratively removing a degree-two
vertex that closes a 3-cycle. A series-parallel graph is a graph that can be augmented to a
2-tree by adding edges (and no vertices).

A (simple, finite) directed graph (digraph for short) G consists of a finite set V (G) of
vertices and a finite set E(G) ⊆ {(u, v) | u, v ∈ V (G), u ̸= v} of ordered pairs of vertices,
which are called edges. A source (resp. sink) of G is a vertex with no incoming (resp. no
outgoing) edges. A single-source graph is a digraph with a single source and, possibly, multiple
sinks. A digraph G is an st-graph if: (i) it is acyclic and (ii) it has a single source s and
a single sink t. An st-graph is a planar st-graph if it admits a planar embedding with s

and t on the outer face. We say that a drawing of a digraph G is upward if every (directed)
edge (u, v) of G is mapped to a y-monotone Jordan arc with y(u) < y(v). Clearly, a digraph
admits an upward drawing only if it does not contain a directed cycle. Therefore, we assume
for the rest of the paper that the input graph is a DAG, a directed acyclic graph. Such a
graph has a linear extension, i.e., a vertex order v1, . . . , vn such that, for any directed edge
(vi, vj), we have i < j. We say that a DAG is planar, outerplanar, or series-parallel if its
underlying undirected graph is planar, outerplanar, or series-parallel, respectively.

Let Γ be an upward drawing of a DAG G. By the upwardness, the rotation system of Γ
is such that for every vertex v of Γ the rotation of v has only one maximal subsequence of
outgoing (incoming) edges. We call such a rotation system a bimodal rotation system. An
upward embedding of a DAG G is an embedding of G with a bimodal rotation system. The
minimum k such that a digraph G admits an upward k-planar drawing is called its upward
local crossing number and denoted by lcr↑(G).

For any positive integer k, we use [k] as shorthand for {1, 2, . . . , k}. A path-decomposition
of a graph G = (V, E) is a sequence P = ⟨X1, . . . , Xℓ⟩ of subsets of V , called buckets, such
that (1) for each edge e ∈ E there is a bucket that contains both end vertices of e, and (2)
the set of buckets that contain a particular vertex v ∈ V forms a contiguous subsequence
of P . The width of a path-decomposition is one less than the size of the largest bucket. The
pathwidth of the graph G is the width of a path decomposition of G with the smallest width.

3 Lower Bounds

We start with a negative result that shows that even very special directed acyclic outerpaths
may not admit upward-planar drawings, thus strengthening Papakostas’ observation [35].

▶ Proposition 1. Not every directed acyclic fan is upward-planar.

Proof. Consider the 7-vertex fan F depicted in Figure 2a. Suppose for a contradiction that
F is upward planar, that is, F admits an upward planar drawing Γ. Let c be the central
vertex of F . We assume that c is placed at the origin. We say that a triangle of F is positive
(negative, respectively) if the corresponding region of the plane in Γ contains the point (ε, 0)
((−ε, 0), respectively) for a sufficiently small value ε > 0. The triangles that have one vertex
below c and one vertex above c (namely t1 = △cv1v2, t3 = △cv3v4, and t5 = △cv5v6) are
either positive or negative.
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If both t1 and t5 are positive, then one must contain the other in Γ, say, t1 contains t5;
see Figure 2b. But then vertices v3 and v4 must also lie inside t1. If both lie inside t5, then
the edge (v3, v2) intersects an edge of t5. So both must lie outside t5. But v4 lies on one hand
above v5 and on the other hand below c and, thus, below v6. So the edge (v4, c) intersects
the edge (v5, v6). (If t5 is contained in t1, the edge (c, v3) intersects the edge (v1, v2).)

By symmetry, not both t1 and t5 can be negative, so exactly one of t1 and t5 must be
negative, say, t1; see Figure 2c. Now first assume that t3 is positive. Due to edge (v3, v2),
vertex v3 must be outside t5, so t3 cannot be inside t5. On the other hand, t3 cannot
contain t5 because v4 is above v5. Hence t3 intersects t5. Finally, assume that t3 is negative.
Due to edge (v5, v4), vertex v4 must be outside t1, so t3 cannot be inside t1. On the other
hand, t3 cannot contain t1 because v3 is below v2. Hence t3 intersects t1. ◀

v1 v6

c

v2
v3

v4
v5

t1 t5t3

(a) The fan F .

v1

c

v2

v6

v5

v4
t5

t1

(b) Case: t5 is contained in t1.

v1

v6
c

v2

v3

v4

v5

t1

t5

t3

(c) A 1-planar upward drawing of F .

Figure 2 A directed acyclic fan F that does not admit a planar upward drawing.

By iteratively adding paths on every outer edge of an outerplanar but not upward-planar
DAG, we can construct outerplanar DAGs with an unbounded upward local crossing number.

▶ Theorem 2. For each ℓ ≥ 0, there is a bipartite outerplanar DAG Gℓ with nℓ = 8 · 3ℓ

vertices, maximum degree ∆ℓ = 2ℓ + 3, and upward local crossing number greater than ℓ/6,
which is in Ω(log nℓ) and Ω(∆ℓ).

Proof. The bipartite graph G0 in Figure 3a is not upward planar [35]. For ℓ ≥ 1, we
construct Gℓ from Gℓ−1 by adding a 3-edge path on every outer edge of the graph. Figure 3b
shows G2. The maximum degree of Gℓ is ∆ℓ = 2ℓ + 3. The number of vertices is nℓ =
8 +

∑ℓ
i=1 8 · 3i−1 · 2 = 8 · 3ℓ.

5 6

21 3 4

87

(a) G0.

5 6

21 3 4

87

(b) G2.

Figure 3 There is a family (Gℓ)ℓ≥0 of bipartite outerplanar graphs such that Gℓ has nℓ vertices,
maximum degree ∆ℓ, and upward local crossing number in Ω(∆ℓ) ∩ Ω(log nℓ).

Consider now an upward k-planar drawing Γ of Gℓ for some k. Since G0 is not upward
planar, there must be a pair of independent edges of G0 that crosses an odd number of times
in Γ. Observe that G0 has no upward planar drawing in which only the two inner edges
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13:6 The Price of Upwardness

cross an odd number of times, for otherwise the two cycles ⟨1, 2, 6, 5⟩ and ⟨3, 4, 8, 7⟩ would
intersect an odd number of times, which is impossible. Thus, in Γ there must be an outer
edge e of G0 that is crossed by an independent edge e′ of G0 an odd number of times. We
choose e′ to be an outer edge of G0, if possible.

We now determine a cycle C of Gℓ that is crossed by e an odd number of times and does
also not contain any end vertex of e. If e′ is an inner edge, then we take the outer path P of
G0 that connects the ends of e′ and does not contain e; this is not intersected by e due to our
choice of e′. Let C be the concatenation of P and e′. In this case C has length at most six.

If e′ is an outer edge, we do the following: We start with the path P of length three that
was added for e′. If P contains an edge that is crossed an odd number of times by e then
we replace e′ by such an edge and continue. More precisely, let e1 = e′ and initialize i = 1.
Let P1 be the path of length three that was added for e1. While Pi contains an edge that
is crossed an odd number of times by e, let ei+1 be such an edge, let Pi+1 be the path of
length three that was added for ei, and increase i by one. Since e is crossed at most k times,
this process stops at some i < k. Let C be the cycle that is composed of Pi and ei. In this
case C has length four.

Cycle C might cross itself. However, it divides the plane into cells. Since e crosses C an
odd number of times, it follows that the end vertices of e must be in different cells of the
plane. This means that not only e but also the ℓ edge-disjoint paths that were added on top
of e have to cross C. But C contains at most six edges, each of which can be crossed at most
k times. This is impossible if ℓ ≥ 6k. Hence, if there is an upward k-planar drawing then
ℓ < 6k, which means that k > ℓ/6. ◀

We now show that if we expand the graph class beyond outerplanar graphs, then we
get a lower bound on the upward local crossing number that is even linear in the number
of vertices. The graphs in our construction have pathwidth 2, as opposed to the graphs
in Theorem 2 whose pathwidth is logarithmic. Observe that a caterpillar, i.e., a tree that
can be reduced to a path by removing all degree-1 vertices, has pathwidth 1, and that the
pathwidth can increase by at most 1 if we add a vertex with some incident edges or subdivide
some edges.

▶ Theorem 3. For every k ≥ 1, there exists a DAG with Θ(k) vertices, maximum degree in
Θ(k), and pathwidth 2 that does not admit an upward k-planar drawing.

Proof. Let Gk be the graph consisting of the four vertices a, b1, b2, and c and the following
set of edges and degree-2 vertices (see also Figure 4):

edges (a, b1) and (a, b2);
for i ∈ [2] and j ∈ [3k + 1], a through-vertex at bi, i.e., a vertex d

(j)
i and edges (bi, d

(j)
i )

and (d(j)
i , c);

for j ∈ [6k + 1], a source below a, i.e., a vertex s(j) and edges (s(j), a) and (s(j), c);
for i ∈ [2] and j ∈ [4k + 1], a sink above bi, i.e., a vertex t

(j)
i and edges (bi, t

(j)
i ) and

(c, t
(j)
i ).

Clearly, Gk has O(k) vertices, and pathwidth 2, since G−c is a caterpillar and has pathwidth 1.
Assume that there was an upward k-planar drawing Γ of Gk. Up to renaming, we may

assume that y(b2) ≤ y(b1). Delete all but one of the through-vertices at b1 from the drawing;
in what follows, we write d1 for the one that we keep (it does not matter which one).

Among the 3k + 1 through-vertices d
(j)
2 at b2, there exists at least one for which the path

⟨b2, d
(j)
2 , c⟩ crosses none of the three edges in the path ⟨a, b1, d1, c⟩, for otherwise there would

be an edge with more than k crossings. Delete all other through-vertices at b2; in what
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a

b2

d1

d2

t1
t2

s

c

b1

(a)

a

b2

d1

d2

t2

s

Cb Ca

c

b1

(b)

Figure 4 A graph of pathwidth 2 (drawn upward) that does not have an upward k-planar drawing.
(a) We only show three of the Θ(k) vertices of each group. (b) Cycles Ca and Cb.

follows we write d2 for the one that we keep. Let a′ be the topmost intersection point of
(a, b1) and (a, b2) (possibly a′ = a). Since y(a) ≤ y(a′) < y(b2) ≤ y(b1) the curve Cb formed
by the two directed paths ⟨a′, bi, di, c⟩ (for i ∈ [2]) is drawn without crossing in Γ.

Curve Cb uses six edges, therefore among the 6k + 1 sources below a, there exists one,
call it s, for which edge (s, c) crosses no edge of Cb. Since y(s) < y(a), vertex s is outside Cb,
and so the entire edge (s, c) is outside Cb, except at the endpoint c. In particular, among
the three edges (d1, c), (d2, c), and (s, c) that are incoming at c, edge (s, c) is either leftmost
or rightmost (but cannot be the middle one). We assume here that (s, c) is rightmost, the
other case is symmetric. Write {p, q} = {1, 2} such that the left-to-right order of incoming
edges at c is (dp, c), (dq, c), (s, c). In Figure 4, we have p = 1 and q = 2.

Edge (s, a) is also outside Cb, except perhaps at endpoint a, since it uses smaller y-
coordinates. Let s′ be the topmost intersection point of (s, a) and (s, c). Then there are no
crossings in the curve Ca formed by the directed paths ⟨s′, a, bp, dp, c⟩ and ⟨s′, c⟩. By our
choice of p and q, vertex dq is inside Ca, and so is the entire path ⟨a′, bq, dq, c⟩, except at
the ends since it is part of Cb. In particular, bq is inside Ca, whereas, for j ∈ [4k + 1], t

(j)
q is

outside Ca due to y(c) < y(t(j)
q ). It follows that one of the four edges (a, bp), (bp, dp), (dp, c)

and (s, c) must be crossed at least k + 1 times by edges from bq to the sinks above it. Thus,
the drawing was not k-planar, a contradiction. ◀

The graphs that we constructed in the proof of Theorem 3 are not bipartite, but one
can make them bipartite by subdividing all edges once. This at best cuts the local crossing
number in half, increases the pathwidth by at most 1, and yields the following result.

▶ Corollary 4. There is a family of bipartite DAGs of constant pathwidth whose upward local
crossing number is linear in the number of vertices.

So far we needed graphs of unbounded maximum degree in order to enforce unbounded
upward local crossing number. We now show that, intrinsically, this is not necessary.

▶ Proposition 5. There are cubic DAGs whose upward local crossing number is at least
linear in the number of vertices.
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Proof. The crossing number of a random cubic graph with n vertices is expected to be at
least cn2 for some absolute constant c > 0 [20], and thus there exist graphs yielding this
bound. By the pigeon-hole principle, such a graph contains an edge with Ω(n) crossings
among its Θ(n) edges. Impose arbitrary acyclic edge directions. ◀

4 Upper Bounds

The bandwidth bw(G) of an undirected graph G is the smallest positive integer k such that
there is a labeling of the vertices by distinct numbers 1, . . . , n for which the labels of every
pair of adjacent vertices differ by at most k.

▶ Theorem 6. The upward local crossing number of a DAG G with maximum degree ∆ is at
most ∆ · (2 bw(G) − 2) ≤ 4 bw(G)(bw(G) − 1), so it is in O(∆ · bw(G)) ⊆ O(bw(G)2).

Proof. Observe that the maximum degree ∆ of a graph G is bounded in terms of the
bandwidth of G; namely, ∆ ≤ 2 bw(G). Consider a linear extension of G. For every vertex v

of G, let y(v) be its index in the extension. Now consider a labeling of G corresponding to
the bandwidth. For every vertex v of G, let x(v) be label. Construct a drawing of G by
first placing every vertex v at the point (x(v), y(v)) and by then perturbing vertices slightly
so that the points are in general position. Adjacent vertices are connected via straight-line
segments.

It is easy to see that the drawing is upward since it is consistent with the linear extension.
Consider an arbitrary edge (u, v) with x(u) < x(v). Every edge that crosses (u, v) must have
its left endpoint in the interval [x(u) − bw(G) + 1, x(v) − 1]. Since x(v) − x(u) < bw(G),
there are at most 2 bw(G) − 2 such vertices distinct from u, each of which is incident to at
most ∆ edges. Hence, (u, v) has at most ∆ · (2 bw(G) − 2) crossings. ◀

For some graphs, a sublinear bound on the bandwidth is known, see [13, 21, 38]. This
gives upper bounds on the local crossing number of many graph classes (e.g., interval graphs,
co-compoarability graphs, AT-free graphs, graphs of bounded treewidth); we list only a few:

▶ Corollary 7. The following classes of DAGs have sublinear upward local crossing number:
Square k × k grids have bandwidth Θ(k) and ∆ = 4, hence their upward local crossing
number is in O(k) = O(

√
n).

Directed planar graphs with maximum degree ∆ have bandwidth O( n
log∆ n ) [13], hence

their upward local crossing number is in O( n·∆
log∆ n ).

We complement the negative result in Proposition 1 by showing that every directed
acyclic outerpath allows an upward 2-planar drawing. We start with a technical lemma on
fans.

▶ Lemma 8. Let c be the central vertex of a directed acyclic fan G, and let P = ⟨v1, . . . , vn−1⟩
be the path of the remaining vertices in G. Let P1, . . . , Pk be an ordered partition of P into
maximal subpaths such that, for every i ∈ [k], the edges between Pi and c either are all
directed towards c or are all directed away from c. Then there is an upward 2-planar drawing
of G with the following properties:
1. no edge incident to c is crossed;
2. vertex v1 has x-coordinate 1, the central vertex c and vn−1 have x-coordinate n − 1, and

the x-coordinates of v2, . . . , vn−2 are distinct values within {2, . . . , n − 2};
3. for all edges all x-coordinates of the curves are at most n − 1; all edges incident to c and

all edges of the subpaths P1, . . . , Pk are in the vertical strip between 1 and n − 1;
4. if P1 is a directed path, then the edge between P1 and P2 is crossed at most once.
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P5

(a) A directed fan G.
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vj+1

vj+2

P1

P2

P3

P4

P5

(b) Upward drawing of G with at most two crossings per edge.

Figure 5 Upward 2-planar drawings of fans (Lemma 8). For t ∈ [k], we add the path Pt below c

(blue paths) or above c (green paths), going up and down as prescribed by the edge directions and
such that no edge incident to c is crossed. We maintain the property that all vertices of Pt are on
the outer face of the subgraph induced by Pt and c, except for possibly a last final part pointing
upward if Pt is below c or pointing downward if Pt is above c. See the shaded areas, e.g., the final
part ⟨vi, . . . , vj−1⟩ of P1. The edge connecting Pt and Pt+1 (red edges) might either cross the last
edge of Pt on the outer face (e.g., the edge of P1 between vi−1 and vi) or the edge connecting Pt−1

to Pt in order to reach the outer face. The latter may have been crossed once before (as (vj−1, vj)).

Proof. We place c at (n − 1, 0); then we place v1, v2, . . . , vn−1 above or below c depending
on the direction of the edges that connect them to c; see Figure 5 for an example.

For i ∈ [n − 2], we keep the invariant that, when we place vi, the leftward ray from vi

reaches the outer face of the current drawing after crossing at most one other edge, and that
this edge had been crossed at most once.

In order to choose appropriate y-coordinates, we maintain two values ymin and ymax
indicating the minimum and maximum y-coordinate of any so far drawn vertex. Consider
now a subpath P ′ ∈ {P1, . . . , Pk}. Let vh be the first and let vj−1 be the last vertex of P ′,
i.e., P ′ = ⟨vh, vh+1, . . . , vj−1⟩. We describe in detail the case that the edge from vh, . . . , vj−1
to c are directed towards c that is, vh must lie below c. The other case is symmetric. We
place vh at x-coordinate h and with a y-coordinate sufficiently below ymin. If h = j − 1 we
are done.

We now consider the cases j = n or (vj−1, vj−2) ∈ E. In that case, we place vh+1, . . . , vj−1
using x-coordinates h + 1, . . . , j − 1, going up and down as needed but remaining below the
x-axis. The edges are drawn such that all vertices of P ′ remain on the outer face of the
drawing. I.e., if we use straight-line edges, then, for i ∈ [n − 2], the slope of vivi+1 must be
less than the slope of vic. Since we go towards c, we can draw P ′ and the edges that connect
v1, v2, . . . , vn−1 to c without any crossings.

If j ̸= n and (vj−2, vj−1) ∈ E, then let i ∈ {h, . . . , j − 1} be the smallest index such
that the subpath ⟨vi, vi+1, . . . , vj−1⟩ is directed. In that case, we place vh+1, . . . , vi−1 at
x-coordinates h + 1, . . . , i − 1, going slightly up and down as in the case described above. Let
ymin be the smallest among the y-coordinates of all points placed so far.
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Then we place vi, vi+1, . . . , vj−1 in reverse order, i.e., at x-coordinates j − 1, j − 2, . . . , i.
Set y(vi) = ymin − γ and y(vj−1) = ymin − ε for some (large) γ > 0 and (small) ε > 0
such that vj−1 lies inside the triangle △vi−1vic (pale yellow in Figure 5b) if i > h and
within the triangle △ovic, with o = (0, 0) otherwise. (Observe that in the case i = h, we
already required that vi is sufficiently below ymin; this is now further specified here.) Draw
vi+1, . . . , vj−2 on the segment vivj−1. Now, if i > h then the vertex vj−1 can reach the outer
face via the edge (vi, vi−1) which was not crossed so far. If i = h then vj−1 is on the outer
face if P ′ = P1, otherwise it can reach the current outer face by crossing the edge (vh, vh−1).
This edge might have crossed one edge when it was initially drawn but so far no other edge.

Observe that when we draw the next maximal subpath, we place vj at (j, ymax + 1), i.e.,
in particular in the outer face of the current drawing. The edge from vj−1 to vj must be
directed towards vj since the orientation is acylic. Thus, we can draw the edge between vj−1
and vj upward with at most one crossing, causing at most a second crossing on (vh, vh−1). ◀

c1

c2

c3

c4

c5

F1

F2

F3

F4

F5

w5

w2

u1

u4

(a) A directed outerpath G′.

c1

c2
c3

c4

c5

x

w4

w2

e2u1

u4

e5

w5

f

(b) Upward drawing of G′ with at most two crossings per edge.

Figure 6 Example in- and output of our drawing algorithm (edge crossings due to Lemma 8 are
highlighted in yellow; other edge crossings are highlighted in orange).

Now we describe our construction for general outerpaths; see Figure 6.

▶ Theorem 9. Every directed acyclic outerpath admits an upward 2-planar drawing.

Proof. Without loss of generality, we can assume that the given outerpath is maximal: if the
outerpath has interior faces that are not triangles, we temporarily triangulate them using
additional edges, which we direct such that they do not induce directed cycles and which we
remove after drawing the maximal outerpath.

Let G′ be such a graph; see Figure 6a. Let c1, c2, . . . , ck be the vertices of degree at least 4
in G′ (marked red in Figure 6). These vertices form a path (light red in Figure 6); let them
be numbered along this path, which we call the backbone of G′. We assign every vertex v

that does not lie on the backbone to a neighboring backbone vertex; if v is incident to an
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inner edge, we assign v to the other endpoint of that edge. Otherwise v has degree 2 and is
incident to a unique backbone vertex via an outer edge, and we assign v to this backbone
vertex. For i ∈ [k], backbone vertex ci induces, together with the vertices assigned to it, a
fan Fi.

We draw the backbone in an x-monotone fashion. We start by drawing F1 with the
algorithm for drawing a fan as detailed in the proof of Lemma 8; see the leftmost gray box in
Figure 6b. Then, for i ∈ {2, . . . , k}, we set x(ci) to x(ci−1) plus the number of inner edges
incident to ci and we set y(ci) depending (i) on the y-coordinates of the two neighbors of ci

that have already been drawn (ci−1 and the common neighbor ui−1 of ci−1 and ci in Fi−1)
and (ii) on the directions of the edges that connect these vertices to ci; see, for example,
the placement of c5 in Figure 6b. Then we draw Fi with respect to the position of ci, again
using the algorithm from the proof of Lemma 8 with the following modifications. In general,
vertices in Fi that are adjacent to ci via an edge directed towards ci (resp. from ci) are
placed below (resp. above) all vertices in the drawings of F1, . . . , Fi; see the dark gray boxes
below (resp. above) c2, . . . , c5 in Figure 6b. If an edge of Fi connects two neighbors of ci one
of which lies above ci and one of which lies below ci, then we route this edge to the left of all
drawings of F1, . . . , Fi−1.

An exception to this rule occurs if ci and the common neighbor wi of ci−1 and ci in Fi

must be both above or both below ci−1 due to the directions of the corresponding edges. Let
ui−1 be the common neighbor of ci−1 and ci in Fi−1. We assume, without loss of generality,
that ci is above ci−1. Let P1 and P2 be the first and second maximal subpath from Lemma 8
applied to Fi, and let ei be the edge connecting P1 and P2. We distinguish two subcases.

If P1 is a directed path leaving wi, then we draw P1 above the edge ci−1ci and we draw
the edge ei straight, without going around all drawings of F1, . . . , Fi−1. In this case ei is
directed from P1 to P2. Hence, ei crosses the edge ui−1ci if ui−1ci is directed from ci to ui−1;
see the situation for c2 in Figure 6b. Note that ei may receive a second crossing when we
draw the remainder of Fi in the usual way.

Otherwise, that is, if P1 contains an edge directed towards the left endpoint wi of P1,
let f be the first such edge. We then place the part of P1 up to the first endpoint of f below
the edge ci−1ci; see w5 and f in Figure 6b. If the edge ui−1ci is directed towards ci, we draw
it between wi and the edge ci−1ci. Then it crosses the edge ci−1wi but no other edge. We
place the second endpoint of f below all vertices in V (F1) ∪ · · · ∪ V (Fi−1) and continue with
the remainder of Fi as usual.

In any case, if 1 < i < k, then the last vertex ui−1 of Fi−1 is connected to ci and ci−1 is
connected to the first vertex wi in Fi. These two edges may cross each other; see the crossings
highlighted in orange in Figure 6b. If the edge ci−1wi goes, say, up but the following outer
edges go down until a vertex vk below ci is reached, then the edge ci−1wi may be crossed a
second time by the edge vk−1vk; see the crossing labeled x on the edge c3w4 in Figure 6b.
But due to property 4 of Lemma 8, edge vk−1vk had been crossed at most once within its
fan. Also ci−1wi cannot have a third crossing. Thus, all edges are crossed at most twice. ◀

One can argue that every maximal pathwidth-2 graph can be generated from a maximal
outerpath by connecting some pairs of adjacent vertices using an arbitrary number of (new)
paths of length 2. In spite of the simplicity of this operation, we cannot hope to generalize
the above result to pathwidth-2 graphs; see the linear lower bound on the upward local
crossing number for such graphs stated in Theorem 3.
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5 Complexity of Testing

Here we prove that upward 1-planarity testing is NP-complete even for structurally simple
DAGs, both when a bimodal rotation system is fixed and when it is not fixed. We also show
that testing upward outer-1-planarity for single-source DAGs can be solved in linear time.

5.1 Testing Upward 1-Planarity
We first define a few gadgets; all of them are planar st-graphs. For positive integers b and
q, let a (b, q)-parallel be the parallel composition of b oriented paths each consisting of q

edges; see Figure 7a. For a positive integer p, let a (p)-gate be the parallel composition of an
oriented edge and a (p − 1, 2)-parallel; see Figure 7b. For positive integers h, q, and a, let
an (h, q, a)-chain consist of a series of h (q)-gates, followed by exactly one (a)-gate, followed
again by h (q)-gates; see Figure 7c.

(a) A (4, 3)-parallel. (b) A (4)-gate. (c) A (2, 5, 3)-chain.

Figure 7 Illustrations for the gadgets used in the construction of GA and of GB .

An instance of 3-Partition is a multiset I = {a1, a2, a3, . . . , ak} of positive integers such
that b = k/3 is an integer and

∑k
i=1 ai = W · b, with W integer. The 3-Partition problem

asks if there exists a partition of the set I into b 3-element subsets such that the sum of the
elements of each subset is exactly W . Since 3-Partition is strongly NP-hard [25], we may
assume that W is bounded by a polynomial in b.

We associate with a given instance I of 3-Partition two planar st-graphs GA and GB

defined as follows. Digraph GA is the parallel composition of (b − 1, W + 1, ai)-chains, one
for every i ∈ {1, . . . , k}. Digraph GB is an (b, q)-parallel, with q = W + (k − 3)(W + 1). Note
that the underlying undirected graphs of both GA and GB are series-parallel.

Let G be any digraph that contains the two subgraphs GA and GB defined above. Let
sA and tA (resp. sB and tB) be the two vertices of G that are the source and the sink of GA

(resp. GB). Let Γ be a 1-planar drawing of G and let ΓAB be the 1-planar drawing obtained
by restricting Γ to the nodes and edges of GA and GB. We say that GA and GB cross in
Γ if in ΓAB every sAtA-path (i.e., a path directed from sA to tA) crosses every sBtB-path.
See Figures 8a and 8b for examples of graph GA and GB that do not cross or cross in a
drawing of ΓAB , respectively.

▶ Lemma 10. Let I be an instance of 3-Partition and let GA and GB be the two planar
st-graphs associated with I. Let G be a digraph containing GA and GB as subgraphs such that
G has an upward 1-planar drawing if and only if GA crosses GB. There exists an upward
1-planar drawing Γ of G if and only if I admits a solution.

Proof sketch. We prove that if G admits an upward 1-planar drawing Γ, then Γ provides a
solution of instance I of 3-Partition. By hypothesis, GA and GB cross in Γ; see Figure 9.
Observe that only one path among the b paths of GB can traverse one (ai)-gate GA. Also,
every path of GB crosses all the (W + 1, b − 1, ai)-chains of GA. In particular, every path
of GB must cross at least three (ai)-gates since it has not enough edges to cross more than
k − 2 (W + 1)-gates. Also, if one path of GB crossed more than three (ai)-gates, then some
other path of GB that would cross at most two (ai)-gates. Therefore, every path π of GB
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sA

tA

tB

sB

(a)

sA

tA

tB

sB

(b)

sA

tAtB

sB

(c)

Figure 8 Illustrations for the definition of crossing st-subgraphs. (a) and (b) Two planar st-graphs
GA and GB that do not cross, as witnessed by the two non-crossing dashed paths. (c) Two planar
st-graphs GA and GB that cross.

Table 1 A comparison between results in the literature about the complexity of testing upward
planarity and the results discussed in this paper about the complexity of testing upward 1-planarity.

Underlying
planar graph

Acyclic
orientation

Upward planarity Upward 1-planarity

fixed
embedding

variable
embedding

fixed
rotation
system

variable
rotation
system

Series-parallel

multi-source
multi-sink Polynomial [15, 18] NP-complete

Theorem 11
Case 1

NP-complete
Theorem 11

Case 3

single-source
single-sink

Trivially
polynomial

Trivially
polynomial

General graph

multi-source
multi-sink

Polynomial
[9]

NP-complete
[27] NP-complete

Corollary 12
NP-complete
Theorem 11

Case 2single-source
single-sink Polynomial [14]

must cross exactly three (ai)-gates and k − 3 (W + 1)-gates in Γ. Note that the number of
crossings of π with the three (ai)-gates is exactly W . It follows that if G has an upward
1-planar drawing then the instance I of 3-Partition admits a solution. Conversely, if the
instance I of 3-Partition admits a solution it is easy to construct an upward 1-planar
drawing ΓAB of GA and GB where GA and GB cross. ◀

▶ Theorem 11. Testing upward 1-planarity is NP-complete even in the following restricted
cases:
1. The bimodal rotation system is fixed, the DAG has exactly one source and exactly one

sink, the underlying graph is series-parallel.
2. The bimodal rotation system is not fixed, the DAG has exactly one source and exactly

one sink, the underlying planar graph is obtained by replacing the edges of a K4 with
series-parallel graphs.

3. The bimodal rotation system is not fixed, the underlying graph is series-parallel, there is
one source and two sinks.

Proof sketch. It is immediate to observe that upward 1-planarity testing is in NP, as one
can guess an upward 1-planar embedding and test it in polynomial time. In order to show
that the problem is NP-hard for the cases in the statement it suffices, by Lemma 10, to
exhibit digraphs that contain GA and GB as subgraphs and that admit upward 1-planar
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tA

sBsA g1,1

g9,1

g1,5

g9,5

g1,4

tB

(a)

tA

sBsA

tB

(b)

Figure 9 (a) Digraph GA (dark red) and a schematic representation of digraph GB where each
colored curve represents a directed path with W + (k − 3)(W + 1) edges. The corresponding
instance of 3-Partition is I = {1, 1, 1, 2, 2, 2, 2, 3, 4}, with b = 3 and W = 6. The 1-planar drawing
corresponds to the solution {1, 1, 4} (green path), {2, 2, 2} (blue path), and {1, 2, 3} (red path). The
drawing in (a) is not upward but it can be made upward by stretching it vertically as shown in (b),
where thick edges represent (q)-gates and the central white-filled edges represent (a)-gates.

drawings if and only if GA and GB cross in them. Let mA and mB be the number of edges
of GA and GB , respectively. Let a barrier be a planar st-graph consisting of a (d, 2)-parallel,
where d = mA + mB + 1. Note that neither GA nor GB can cross a barrier in such a way
that every edge is crossed at most once. The instances that we use for the cases listed in the
statement are depicted in Figure 10a (Case 1), Figure 10c (Case 2) and Figure 10e (Case 3),
where the thick edges represent barriers and GA and GB can be identified by their poles. As
shown in Figure 10b, Figure 10d, and Figure 10f an upward 1-planar drawing of such graphs
forces GA and GB to cross, hence, implies the hardness of computing such drawings. ◀

The following corollary is an immediate consequence of the argument used to prove the
second case in the statement of Theorem 11.

▶ Corollary 12. Testing upward 1-planarity is NP-complete for single source-single sink
DAGs with a fixed bimodal rotation system, whose underlying planar graph is obtained by
replacing the edges of a K4 with series-parallel graphs.

We conclude this section by remarking some differences between the complexity of upward
planarity testing and upward 1-planarity testing. When the bimodal rotation system is fixed,
upward planarity testing can be solved in polynomial time [9], whereas upward 1-planarity
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Figure 10 Some digraphs for the proof of Theorem 11. Thick black edges represent barriers.

testing is NP-hard (Theorem 11). Also, when the bimodal rotation system is not fixed and
the digraph has a constant number of sources and sinks, differently from upward 1-planarity
testing, upward planarity testing can again be solved in polynomial time [14]. On the other
hand, any digraph whose bimodal rotation system is not fixed, whose underlying graph is
series-parallel, and that has only one source and only one sink is always upward planar and
thus upward 1-planar. Indeed, adding an edge between any two vertices of the undirected
underlying series-parallel graph yields a planar graph (see, e.g., [17]). It follows that G can
be turned into a planar st-graph by connecting its source to its sink by an edge and hence it
is upward planar [26]. This discussion is summarized in Table 1.

5.2 Testing Upward Outer-1-Planarity
To complement the results of Section 5.1, we consider a restricted setting that has often been
studied in the “beyond planarity” literature to show the tractability of an otherwise NP-hard
problem. Namely, we describe how to test whether a single-source DAG admits an upward
outer-1-planar drawing, i.e., one that is both upward and outer-1-planar.

▶ Theorem 13. For single-source DAGs, upward outer-1-planarity can be tested in linear
time.

This section provides the main ideas behind this result; recall that all details can be
found in the full version [1]. In the following, let G be a single-source DAG. As a first step,
we characterize the single-source DAGs that admit an upward outer-1-planar drawing as
those that admit an outer-1-planar embedding whose planarization is acyclic. In particular,
this implies that we may treat the biconnected components of G independently, and we
therefore assume in the following that G is biconnected. We assume familiarity with the
SPQR-tree [17]. Note that, in the version of the SPQR-tree that we use, there are no Q-nodes.
Instead, skeletons contain both real and virtual edges.

Our testing algorithm builds on the results of Auer et al. [4, 5, 6] for testing outer-1-
planarity. A necessary condition is that the skeleton of each R-node is a K4 and the skeleton
of each P-node contains at most four virtual edges plus, possibly, one real edge. In a nutshell,
Auer et al. [5] show that there is a bijection between the outer-1-planar embeddings of a
biconnected graph G and certain (non-planar) embeddings of all skeletons of the SPQR-tree T
of G. These non-planar embeddings need to satisfy local conditions which state that every
virtual edge must have at least a part of it incident to the outer face, a virtual edge may only
receive a crossing if it belongs to a P-node and corresponds to an S-node, and if a virtual
edge receives a crossing, then the end of it that is not incident to the outer face, if any,
must correspond to a real edge of the graph. As an example consider the embeddings of the
skeletons of node ρ and λ in Figure 11. The shown embedding, where the segment of edge eρ
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Figure 11 Illustration for the necessary conditions that allow for an outer-1-planar embedding.

incident to u is not on the outer face, requires that the expansion graph of eρ starts with a
real edge (here the edge uv) at u. We note that in this case, the edge uv is in fact a real
edge in a neighboring S-node. Unlike the case of SPQR-trees and planar embeddings, the
embeddings of different skeleton cannot be combined independently; instead, there is also
a global condition that requires that no real edge receives crossings from two P-nodes. For
example, the embeddings of skel(ρ) and skel(λ) shown in Figure 11 both imply a crossing on
the edge uv and are therefore not compatible.

We want to restrict our attention to outer-1-planar embeddings whose planarization is
acyclic. For this, we orient the edges in our skeletons, where real edges are endowed with
their orientation in G and a virtual edge {u, v} is directed as (u, v) if its expansion graph
contains a directed path from u to v. Note that if the expansion graph of {u, v} contains
no directed paths between its poles, the virtual edge remains undirected. We then show
that, in order to obtain an outer-1-planar embedding whose planarization is acyclic, we
may only combine what we call acyclic embeddings of the skeletons, which do not already
locally produce cycles; see Figure 12 for an example. Conversely, we prove that if we choose
for each oriented skeleton an embedding that satisfies the local conditions and is acyclic,
and moreover, these choices also satisfy the global condition, then they together define an
outer-1-planar embedding of G whose planarization is acyclic, and hence admits an upward
drawing.

The algorithm therefore works as follows. Since each skeleton admits at most 12 embed-
dings that satisfy the local conditions [5], we can enumerate them and test for each of them
whether it is acyclic in total linear time. After this step, we have for each node µ of T a set Fµ
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Figure 12 Two embeddings of the skeleton of a P-node µ and the corresponding planarizations.
The planarization in (a) contains a directed cycle, the one in (b) does not. Thick arrowed edges
show the direction of the virtual edges; a double arrow indicates an undirected virtual edge.
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of candidate embeddings. It remains to choose for each node µ one embedding Eµ ∈ Fµ

such that the global condition is satisfied, i.e., no two P-nodes put crossings on the same
real edge. We say that such a choice of embeddings is consistent. To decide whether such
a choice exists, we construct a conflict graph H whose vertices are the embeddings of the
skeletons, each Fµ forms a clique and two embeddings of different P-nodes are connected by
an edge if and only if they put a crossing on the same real edge. Then a consistent choice
corresponds to an independent set in H whose size is the number of nodes of T . Since the
size of H is linear in the size of G and we can show that the treewidth of H is at most 36,
the existence of such an independent set can be tested in linear time [16]. We note that, if
the test succeeds, we can also construct the upward outer-1-planar embedding of G in the
same running time.

6 Conclusion

In this paper we initiated the study of upward k-planar drawings, that is, upward drawings of
directed acyclic graphs such that every edge is crossed at most k times for a given constant k.
We first gave upper and lower bounds for the upward local crossing number of various graph
families, i.e., the minimum k such that every graph from the respective family admits an
upward k-planar drawing. We strengthen these combinatorial results by proving that testing
a DAG for upward k-planarity is NP-complete even for k = 1. On the positive side, testing
upward outer-1-planarity for single source digraphs can be done in linear time. We conclude
the paper by listing some open problems that may stimulate further research.
1. Is there a directed outerpath that does not admit an upward 1-planar drawing?
2. Consider the class O∆ of outerplanar graphs (or even 2-trees) of maximum degree ∆. Is

there a function f such that every graph in O∆ admits an f(∆)-planar upward drawing?
3. In light of the lower bounds in Section 3, it is natural to consider graphs with a special

structure, in order to prove sublinear upper bounds on their (upward) local crossing
number. For example, Wood and Telle [39, Corollary 8.3] show that every (undirected)
graph of maximum degree ∆ and treewidth τ admits a (straight-line) drawing in which
every edge crosses O(∆2τ) other edges. Can the upward local crossing number be bounded
similarly by a function in ∆ and τ?

4. Do planar graphs of maximum degree ∆ have upward local crossing number O(f(∆)n1−ϵ)
for some function f and some constant ϵ > 0?

5. Can upward outer-1-planarity be efficiently tested for multi-source and multi-sink DAGs?
6. Investigate parameterized approaches to testing upward 1-planarity.
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Abstract
The treewidth is a structural parameter that measures the tree-likeness of a graph. Many algorithmic
and combinatorial results are expressed in terms of the treewidth. In this paper, we study the
treewidth of outer k-planar graphs, that is, graphs that admit a straight-line drawing where all the
vertices lie on a circle, and every edge is crossed by at most k other edges.

Wood and Telle [New York J. Math., 2007] showed that every outer k-planar graph has treewidth
at most 3k + 11 using so-called planar decompositions, and later, Auer et al. [Algorithmica, 2016]
proved that the treewidth of outer 1-planar graphs is at most 3, which is tight.

In this paper, we improve the general upper bound to 1.5k + 2 and give a tight bound of 4 for
k = 2. We also establish a lower bound: we show that, for every even k, there is an outer k-planar
graph with treewidth k + 2. Our new bound immediately implies a better bound on the cop number,
which answers an open question of Durocher et al. [GD 2023] in the affirmative.

Our treewidth bound relies on a new and simple triangulation method for outer k-planar graphs
that yields few crossings with graph edges per edge of the triangulation. Our method also enables us
to obtain a tight upper bound of k + 2 for the separation number of outer k-planar graphs, improving
an upper bound of 2k + 3 by Chaplick et al. [GD 2017]. We also consider outer min-k-planar graphs,
a generalization of outer k-planar graphs, where we achieve smaller improvements.
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1 Introduction

Treewidth measures the tree-likeness of a graph via so-called tree decompositions. A tree
decomposition of a graph G covers the vertex set of G by bags such that every edge is in
some bag and the bags form a tree such that, for every vertex v of G, the bags that contain v

form a subtree. The width of a tree decomposition is the maximum size of a bag minus one.
The treewidth of G is the minimum width over all tree decompositions of G.

Treewidth is an important structural parameter because the running time of many graph
algorithms and algorithms for drawing graphs depend on the treewidth. Recently treewidth-
based techniques have been successfully applied for convex drawings, that is, straight-line
drawings where vertices lie on a circle. For example, Bannister and Eppstein [8] ([7]) showed
that if a graph admits a convex drawing with at most k crossings in total, then its treewidth
is bounded by a function of k. Furthermore, they used this fact to give, for a fixed k, a
linear-time algorithm (via extended monadic second-order logic and Courcelle’s theorem [13])
to decide whether a convex drawing with at most k crossings exists for a given graph.
Chaplick et al. [12] ([11]) generalized this to bundled crossings (a crossing of two bundles of
edges such that in each bundle the edges travel in parallel, which is counted as one crossing).
Another prominent class of graphs with convex drawings is the class of outer k-planar graphs,
that is, graphs that admit a convex drawing where each edge is crossed at most k times.
Unlike k-planar graphs (without the restriction on the placement of vertices), the treewidth
of outer k-planar graphs can be bounded by a function of k only (see discussion below).
Similarly to Bannister and Eppstein [8], Chaplick et al. [10] used this to test in linear time,
for any fixed k, whether a given graph is full outer k-planar, i.e., whether it admits an outer
k-planar drawing where no crossing appears on the boundary of the outer face.

For disambiguation, recall that k-outerplanar graphs are defined as follows. A drawing
of a graph is 1-outerplanar if all vertices of the graph lie on the outer face. For k > 1, a
drawing is k-outerplanar if deleting the vertices on the outer face yields a (k − 1)-outerplanar
drawing. For k ≥ 1, a graph is k-outerplanar if it admits a k-outerplanar drawing.

In this paper, we are particularly interested in the treewidth of outer k-planar graphs.
Note that every graph is outer k-planar for some value of k. For a graph G, let lcr◦(G) denote
the convex local crossing number of G – the smallest k such that G is outer k-planar. Consult
Schaefer’s survey [19] for details on this and many other types of crossing numbers. Outer
k-planar graphs admit balanced separators of size O(k) (more below) associated with the
drawing, which makes it possible to test, for any fixed k, outer k-planarity in quasi-polynomial
time [10]. This implies that the recognition problem is not NP-hard unless the Exponential
Time Hypothesis fails [10].

We also consider a generalization of outer k-planar graphs, namely outer min-k-planar
graphs, which are graphs that admit a convex drawing where, for every pair of crossing edges,
at least one edge is crossed at most k times. Wood and Telle [20, Proposition 8.5] showed
that any (min-) outer k-planar graph has treewidth at most 3k + 11. More precisely, they
showed that, for every outer min-k-planar graph G, one obtains a tree decomposition of
width at most 3k + 11 from a planar decomposition of G, which is a generalization of a tree
decomposition. The proof uses a result by Bodlaender [9] on k-outerplanar graphs.

For constant k, better treewidth bounds are known. A folklore result is that outerplanar
graphs (k = 0) have treewidth at most 2. Auer et al. [5, 6] ([4]) showed that maximal outer
1-planar graphs are chordal graphs and, therefore, have treewidth at most 3, which is tight.

Another parameter linked to the treewidth is the separation number of a graph. A pair of
vertex sets (A, B) is a separation of a graph G if A ∪ B = V (G) and there is no edge between
A \ B and B \ A. A separation (A, B) is said to be balanced if the sizes of both A \ B and
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B \ A are at most 2n/3, where n is |V (G)|. For a (balanced) separation (A, B), the set A ∩ B

is called (balanced) separator, and |A ∩ B| is the order of (A, B). The separation number of
G, sn(G), is the minimum integer k such that every subgraph of G has a balanced separation
of order k. Note that, for any subgraph G′ of G, tw(G′) ≤ tw(G). This implies that, for
every graph G, sn(G) ≤ tw(G) + 1 [15]. On the other hand, Dvořák and Norin [15] showed
that, for every graph G, tw(G) ≤ 15 sn(G).

Our contribution. Given an outer k-planar drawing Γ of a graph G, let the outer cycle of G

be the cycle that connects the vertices of G in the order along the circle on which they lie
in Γ (even if G does not contain all edges of this cycle). We introduce two simple methods to
construct, given an outer k-planar drawing Γ of a graph G, a triangulation of the outer cycle
of G with the property that each edge of the triangulation is crossed by at most k edges
of G; see Section 3. The resulting triangulations yield the following bounds; see Section 4.

We improve the upper bound of Wood and Telle [20] regarding the treewidth of outer
k-planar graphs from 3k + 11 to 1.5k + 2 (Theorem 13 in Section 4.1). Our proof is
constructive and implies a practical algorithm; the tree decomposition that we obtain
follows the weak dual of the triangulation. For outer 2-planar graphs, our methods yield
an upper bound of 4 (Theorem 12), which is tight due to K5.
Chaplick et al. [10] showed that, for every outer k-planar graph G, its separation number
is at most 2k + 3. We improve this upper bound to k + 2; see Section 4.2.
We give new lower bounds of k + 2 for both the treewidth and the separation number of
outer k-planar graphs; see Section 5. Note that the latter bound is tight (Theorem 17).
Durocher et al. [14] recently proved that the cop number of general 1-planar graphs is
not bounded, but the maximal 1-planar graphs have cop number at most 3. Since it is
known [16] that for every graph G, cop(G) ≤ tw(G)/2 + 1, Durocher et al. [14] observed
that the treewidth bound of Wood and Telle yields, for every outer k-planar graph G,
that cop(G) ≤ 1.5k + 6.5. They asked explicitly whether the multiplicative factor of 1.5
can be improved. We answer this question in the affirmative since our new treewidth
bound immediately yields the better bound cop(G) ≤ 0.75k + 1.75.
For outer min-k-planar graphs, our triangulation improves the bound of Wood and Telle
3k +11 slightly to 3k +1 and gives a bound 2k +1 on the separation number; see Section 4.

Related results. A structurally similar type of result is known for 2-layer k-planar graphs.
A 2-layer k-planar graph is a bipartite graph that admits a k-planar straight-line drawing
with vertices placed on two parallel lines. The maximal 2-layer 0-planar graphs (called
caterpillars) are the maximal pathwidth-1 graphs [17, 18]. Angelini et al. [2] ([3]) showed that
2-layer k-planar graphs have pathwidth at most k + 1 and gave a lower bound of (k + 3)/2
for every odd number k. Hence, their result can be considered as a smooth generalization
of the caterpillar result. Similarly, our treewidth bound 1.5k + 2 for outer k-planar graphs
smoothly generalizes the treewidth-2 bound for maximal outerplanar graphs.

2 Preliminaries

A convex drawing Γ of a graph is a straight-line drawing where the vertices of the graph
are placed on different points of a circle, which we call the circle of Γ. An outer k-planar
drawing Γ of a graph is a convex drawing such that every edge crosses at most k other edges.
A counterclockwise walk of the circle of Γ yields a cyclic order on the vertices of the graph.
We say that two sets on distinct four vertices {v1, w1}, and {v2, w2} are intertwined in Γ

GD 2024
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if they are ordered ⟨v1, v2, w1, w2⟩ or ⟨v1, w2, v2, w1⟩ in this cyclic order. Observe that two
edges {v1, w1} and {v2, w2} cross in Γ if and only if they span four different vertices and are
intertwined. In the remainder of this section, we make some simple observations that will be
helpful later; they can be skipped by more experienced readers.

▶ Observation 1. Let G be a graph. If Γ is an outer k-planar drawing of G, then every
convex drawing Γ′ of G with the same cyclic vertex order as in Γ is also an outer k-planar
drawing of G.

Proof. As the cyclic orders on vertices of G defined by Γ and Γ′ are the same, exactly the
same pairs of edges cross in Γ and in Γ′. ◀

In the definition of convex drawings, we could have allowed placing vertices on arbitrary
convex shapes (instead of a circle) and drawing edges as curves (instead of straight-line
segments) – as long as every curve is drawn inside the circle and no two curves cross more
than once. Using curves will be sometimes convenient in our proofs later.

▶ Observation 2. Let G be a graph, let Γ be an outer k-planar drawing of G, and let c be a
curve that joins vertices v and w of G and is contained inside the circle of Γ. If c crosses at
most l edges of Γ, then the straight-line segment vw also crosses at most l edges of Γ.

Proof. As c must cross every edge {v′, w′} of G that is intertwined with {v, w}, we get that c

must have at least one crossing with every edge crossed by the straight-line segment vw. ◀

A graph G is maximal outer k-planar if G is outer k-planar and G does not contain any
vertex pair e ∈ V 2(G) \ E(G) such that the graph (V (G), E(G) ∪ {e}) is still outer k-planar.
Since removing edges increases neither treewidth nor separation number, we are interested
in properties of maximal outer k-planar graphs.

▶ Observation 3. If G is a maximal outer k-planar graph with at least three vertices, then,
in every outer k-planar drawing of G, the outer face is bounded by a simple cycle.

Proof. Let v and w be two vertices that are consecutive in the cyclic order defined by some
outer k-planar drawing Γ of G. For a contradiction, suppose that v and w are not adjacent.
As v and w are consecutive on the circle of Γ, the set {v, w} is not intertwined with any edge
in Γ. Thus, Γ can be extended to an outer k-planar drawing of G + {v, w}, which contradicts
the maximality of G. ◀

We remark that Observations 1–3 analogously hold for outer min-k-planar graphs.

3 Triangulations

In this section, we present two simple strategies to triangulate maximal outer k-planar graphs.
These triangulations will serve as tools to construct tree decompositions and balanced
separators in Section 4. We assume that some outer k-planar drawing Γ of a graph G on
n vertices is given. During the triangulation procedures, we will modify the drawing, but
we will never change the cyclic order of the vertices. Thus, let v1, v2, . . . , vn be the vertices
of G in the cyclic (counterclockwise) order defined by Γ. As we focus on maximal graphs, by
Observation 3, we have that ⟨v1, v2, . . . , vn, v1⟩ is a cycle in G. Our goal is to construct a
triangulation T of this cycle such that the edges of T cross only a limited number of edges
of G. We refer to the edges of T as links in order to distinguish them from the edges of G.
Every edge of the outer cycle is a link in T ; we call these links outer links. We will select
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(a) Input graph. (b) Step 1. (c) Step 2. (d) Step 3.
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(e) Triangulation.

Figure 1 Steps of the splitting procedure. The active edge is purple, the (new/old) links are
(dark/light) blue, the left/right side of the active edge is red/green. The split vertex is big.

a set of n − 3 other pairwise non-intertwined pairs of vertices as inner links that, together
with the outer links, form a triangulated n-gon. Note that some of the inner links may
coincide with edges of G. We say that a link is pierced by an edge of G if their endpoints
are intertwined in the cyclic order. The piercing number of a link is the number of edges
of G that pierce the link. In particular, the piercing number of outer links is 0, and if a link
coincides with an edge, then its piercing number is at most k by the outer k-planarity of Γ.
We define the edge piercing number of T to be the maximum piercing number of any link
of T . In Section 4 we show how to use triangulations with small edge piercing number.

Our splitting procedure starts by declaring the link {v1, vn} active and considers all
other vertices to lie on the right side of the link. See Figure 1 for illustration. Clearly, the
link {v1, vn} is not pierced. In each recursive step, the input is an active link {vi, vk} with
1 ≤ i < k ≤ n (promised to be pierced at most some limited number of times), along with
a distinguished right side vi+1, . . . , vk−1, where currently no inner links have been selected
apart from {vi, vk}. (Vertices v1, . . . , vi−1, vk+1, . . . , vn form the left side.) The goal is to
pick, among the vertices on the right side, a split vertex vj such that the new links {vi, vj}
and {vj , vk} are pierced by at most some limited number of edges. The new links are added
to T (completing the triangle vivjvk) and become active. The link {vi, vk} ceases to be
active. The split gives rise to two new splitting instances {vi, vj} and {vj , vk}, which are
then solved recursively.

The set of edges of G that pierce the active link are the piercing edges. Note that
every piercing edge has one left and one right endpoint. Intuitively, the edges with two left
endpoints are of no concern to the splitting procedure. The next lemma allows us to push all
crossings among piercing edges to the left of {vi, vk}.

▶ Lemma 4. Given an outer k-planar drawing Γ of a graph G and an active link {vi, vk},
there exists an outer k-planar drawing Γ′ with the same cyclic order as Γ, and all crossings
among the edges piercing the active link are drawn to the left of the active link.

Proof. We draw the vertices of G on the unit circle, keeping the cyclic order defined by Γ.
We set ε > 0 to a sufficiently small value. Then we place vi at (0, −1), vk at (0, 1), all the
vertices on the left side of the link within arc distance ε of (−1, 0), and the vertices on the
right side of the link evenly along the right semicircle, see Figure 2.

Now, Observation 1 yields that the new drawing is an outer k-planar drawing of G with
the same cyclic order. As every pair of intertwined piercing edges has their left endpoints in
arc distance at most ε from (−1, 0) and their right endpoints in arc distance at least π/n

from each other, the crossing of two such segments is to the left of the active link. ◀

Lemma 4 gives us an equivalent drawing of G in which piercing edges cross the active link
in the same order from bottom to top as their right endpoints occur in the cyclic order. This
allows us to draw the piercing edges without crossings on the right side of the active link.
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vk

vi

2ε

Figure 2 We can push crossings among the edges that pierce the active link {vi, vk} to the left.
We show only the top- and bottommost endpoints on the left. Crossings occur exclusively in the
green area, which can be made arbitrarily small.

Now, we are ready to present our first and basic triangulation method. Asymptotically, it
yields a worse bound than Lemma 6, but it serves as a gentle introduction into our techniques,
and it will be used for small values of k and for outer min-k-planar graphs later.

▶ Lemma 5. For k ≥ 1, every outer k-planar drawing of a maximal outer k-planar graph
admits a triangulation of the outer cycle with edge piercing number at most 2k − 1.

Proof. We prove the lemma by providing an appropriate splitting procedure that recursively
constructs the triangulation. Let Γ be an outer k-planar drawing of the given maximal outer
k-planar graph G. We prove by induction on the number of steps of the splitting procedure
that every active link has piercing number at most 2k − 1. The claim is true in the beginning,
as we start with the link {v1, vn}, which is not pierced at all.

Now we consider a later step of the procedure. Let λ = {vi, vk} denote the active link.
For brevity, set u = vi and v = vk. There are two cases.

In the first case, λ is not pierced by any edge of G. Observe that {vi, vi+1} is an edge,
so u has at least one neighbor on the right side of λ in G. We select the split vertex, w, to
be the neighbor of u from the right side of λ that is closest to v in the circular order; see
Figure 3a. In this case, the link {u, w} coincides with an edge of G, and thus is pierced by
at most k edges. To see that the link {w, v} is also pierced by at most k edges, let c′′ be
a curve that starts in w, goes along {w, u} towards u on the right side (in the direction of
walking), then follows {u, v} on the right side, and ends at v. This curve crosses only the
edges that pierce the link {u, w}, so at most k edges pierce the link {w, v} by Observation 2.

In the second case, λ is pierced by edges of G. Using Lemma 4, we modify the drawing Γ
so that the piercing edges cross λ in the same bottom-to-top order as their right endpoints.
Let e1, e2, . . . , eℓ denote the piercing edges, and let w1, w2, . . . , wℓ denote their respective,
not necessarily different, right endpoints in the order from bottom to top. By induction, we
have ℓ ≤ 2k − 1. Then we pick the middle edge ej , where j = ⌈(ℓ + 1)/2⌉, and set the split
vertex w = wj .

To bound the number of edges that pierce the link {u, w}, we draw the curve c′ as in
Figure 3b. We start the curve c′ at u and follow λ until before it crosses ej , then follow ej

until we arrive at w. The curve c′ crosses at most ⌈(ℓ−1)/2⌉ edges that pierce λ and at most k

edges that pierce ej . Thus, there are at most ⌈(ℓ−1)/2⌉+k ≤ ⌈(2k −2)/2⌉+k = 2k −1 edges
that pierce the link {u, w}. We can argue symmetrically for the link {w, v}; see curve c′′ in
Figure 3b.
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(a) Constructing the new triangle △ if
λ is not pierced by any other edge of G.

v

u

w

λ

c′

c′′

e1

eℓ

ej
4

(b) Constructing the new triangle △ bounded by λ, c′, and c′′;
the orange edges that pierce both c′ and c′′ also cross the edge ej .

Figure 3 Constructing a triangulation T with edge piercing number at most 2k − 1.

As we have bounded the piercing number of every active link during the triangulation
procedure by 2k − 1, we get the desired bound of 2k − 1 for the edge piercing number of the
constructed triangulation. ◀

Next, we present our refined triangulation method, where we consider an additional edge
to get a better bound for the edge piercing number.

▶ Lemma 6. For every k ≥ 1, every outer k-planar drawing of a maximal outer k-planar
graph admits a triangulation of the outer cycle with edge piercing number at most k.

Proof. The proof is similar to the proof of Lemma 5, and we use the same terminology. Let
again Γ be an outer k-planar drawing of the given maximal outer k-planar graph G. We
present a splitting procedure and show that every active link is pierced by at most k edges.
For the base of the induction, observe that the link {v1, vn} has no piercing edges. Now, let
λ = {vi, vk} be the active link and set u = vi and v = vk. If λ has no piercing edges in Γ, we
proceed as in the proof of Lemma 5 and pick the split vertex to be the neighbor of u from the
right side of λ that is closest to v. Otherwise, λ is pierced by edges of G. Using Lemma 4,
we assume that the piercing edges cross the active link in the same bottom-to-top order as
their right endpoints. Now, let e1, e2, . . . , eℓ be the piercing edges, and let w1, w2, . . . , wℓ be
their respective, not necessarily different, right endpoints in the order from bottom to top.
We pick the middle edge ej with j = ⌈(ℓ + 1)/2⌉. If ej has no crossings on the right side
of the active link, then we pick wj to be the split vertex. The two curves that start in wj ,
follow ej to e, and then follow λ to either u or v have at most ⌈(ℓ − 1)/2⌉ ≤ k crossings each,
so we can proceed. Now, let x denote the first crossing on the edge ej that occurs on the
right side of λ, and let ê denote the edge that crosses ej at x; see Figure 4a.

We first consider the case where ê and λ are disjoint. Let a and b be the numbers of
crossings on ê on the two sides of x. As a + b + 1 ≤ k, we get that min{a, b} ≤ ⌊(k − 1)/2⌋.
We select the split vertex w to be the endpoint of ê on the side that has fewer, i.e., min{a, b},
crossings along ê. We now assume wj < w < v. The case u < w < wj is symmetric.

We bound the piercing number of the link {v, w}. To this end, we start tracing a curve c′′

at v and follow the link λ until just before it crosses ej , then we follow ej until just before it
crosses ê, and then we follow ê until we arrive at w; see Figure 4a. In the first part, the curve
crosses at most ⌈(ℓ − 1)/2⌉ ≤ ⌈(k − 1)/2⌉ edges. The curve does not cross any edge in the
middle part, as the crossing between ej and ê is the first crossing along ej starting from λ. In
the last part, the curve crosses at most min{a, b} ≤ ⌊(k−1)/2⌋ edges. Thus, by Observation 2,
the piercing number of the link {v, w} is at most ⌈(k − 1)/2⌉ + ⌊(k − 1)/2⌋ ≤ k − 1.
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(a) λ and ê do not share an endpoint; the
new triangle △ is bounded by λ, c′, and c′′.
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(b) λ and ê share the endpoint u; the new
triangle △ is bounded by λ, ê, and c′′.

Figure 4 Constructing a triangulation T with edge piercing number k.

To bound the piercing number of the link {u, w}, we start tracing a curve c′ at u, follow
the link λ until just after it crosses ej and then follow the curve c′′ to w, see Figure 4a. The
curve c′ crosses the same set of edges as the curve c′′ plus the edge ej , so c′′ has at most k

crossings. Thus, the piercing number of the link {u, w} is at most k.
Now we consider the last case, where ê and λ have a common endpoint. In this case, we

choose the other endpoint of ê as w (see Figure 4b) and analyse the two subcases.
We first assume that u is the common endpoint. Then the link {u, w} = ê is an edge

of G, so it has at most k crossings. To bound the piercing number of the link {v, w}, we
argue with the curve c′′ that goes from v to w as defined in the previous case. Observe that
the edge {u, w} has exactly j crossings on the part from u to x (including x). Therefore,
we can argue as above and conclude that the piercing number of the edge {v, w} is at most
(ℓ−j)+(k−j) = k−(2j−ℓ). This is bounded from above by k−1 since 2j−ℓ = 2⌈(ℓ+1)/2⌉−ℓ

is 1 if ℓ is odd and 2 otherwise.
Similarly, if v is the common endpoint, then the link {v, w} = ê is an edge of G, so

it is crossed by at most k edges, and the piercing number of the link {u, w} is at most
(j − 1) + (k − (ℓ − j + 1)) = k + (2j − ℓ) − 2 ≤ k. ◀

The piercing number of a triangle of T is the sum of the piercing numbers of the links
that form the sides of the triangle. We define the triangle piercing number of T to be the
maximum piercing number of any triangle of T . Note that the triangle piercing number of a
triangulation is at most three times its edge piercing number, but it can be smaller. If k is
odd, we obtain a slightly stronger result; if k is odd, for every triangle t that we create in
the proof of Lemma 6, at least one edge of t has at most k − 1 crossings.

▶ Lemma 7. For every odd k ≥ 1, every outer k-planar drawing of a maximal outer k-planar
graph admits a triangulation of the outer cycle with edge piercing number at most k and
triangle piercing number at most 3k − 1.

Proof. Following the proof of Lemma 6, in all cases, there is an edge with piercing number
at most k − 1. If λ has no piercing edges, its piercing number is 0 ≤ k − 1. Otherwise, if ê

and {u, v} are disjoint, {v, w} is pierced by at most k − 1 edges. In the last case, where ê

and {u, v} have a common endpoint, {v, w} is pierced by at most k − 1 edges if ℓ is odd. If ℓ

is even, it implies ℓ ̸= k and therefore the link λ is pierced by ℓ ≤ k − 1 edges. ◀

With a slight modification of the strategy described in the proof of Lemma 6 and a careful
analysis, we also obtain a better bound of the triangle piercing number for the case k = 2.
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Figure 5 λ and ê share the endpoint v; the new triangle △ is bounded by λ, c′, and c′′.

▶ Lemma 8. Every outer 2-planar drawing of a maximal outer 2-planar graph admits a
triangulation of the outer cycle with edge piercing number at most 2 and triangle piercing
number at most 4.

Proof. We roughly follow the strategy of the proof of Lemma 6. Recall that λ is the active
link and that ℓ is the number of edges that pierce λ. If ℓ > 0, then ej with j = ⌈(ℓ + 1)/2⌉ is
the “middle” edge among those that pierce λ. If ej has crossings on the right side of λ, then,
among these, x is the crossing point of ej closest to λ. The edge ê is the edge that crosses ej

in x. As in the proof of Lemma 6, we distinguish the following cases.
1. λ has no piercing edges.
2. ej has no crossings to the right of λ.
3. λ and ê are disjoint (Figure 4a).
4. λ and ê meet in u (Figure 4b).
5. λ and ê meet in v.
In cases 1–4, we choose the split vertex w as in the proof of Lemma 6, which means that the
new active links are pierced at most k = 2 times.

In case 5, we now choose w to be wj (see Figure 5). Let c′ be a curve that starts in u,
follows λ until just before ej and then follows ej to w. Let c′′ be a curve that starts in v,
follows ê to x, and then follows ej to w. In order to show that each of the two curves is
crossed by at most two edges, we need to do some preparations. We say that an edge lies
to the left of the active link if both of its endpoints lie on the left side or one endpoint lies
on the left and the other is an endpoint of the active link. We further say that an edge e

piercing a link λ is anchored with respect to λ if there exists another edge f that crosses e

and either f = λ or f lies to the left of λ. Observe that an anchored edge can have at most
one crossing to the right of λ.

We claim that, during the splitting procedure described above, every edge piercing an
active link is anchored (with respect to the active link). The claim is true in the beginning
as λ = {v1, vn} is not pierced. In case 1, every edge that pierces {u, w} or {v, w} also crosses
the edge {u, w}, so it is anchored. In case 2, every edge that pierces {u, w} or {v, w} also
pierces λ = {u, v} and is anchored by induction. In case 3, observe that no edge crosses ej

between λ and x (as x is the first crossing on ej to the right of λ), and no edge crosses ê

between x and w (by the choice of w and since ⌊(k − 1)/2⌋ = 0 for k = 2). Therefore, every
edge that pierces {u, w} or {v, w} also pierces λ and is anchored by induction. In case 4,
{u, w} is an edge, so every edge piercing it is anchored. Every edge that pierces {v, w} either
crosses {u, w} or pierces λ and is anchored by induction. Similarly, in case 5, every edge
that pierces {u, w} or {v, w} either pierces λ or crosses ej (which lies to the left of both new
active links).

GD 2024



14:10 Bounding the Treewidth of Outer k-Planar Graphs via Triangulations

We now return to case 5 and bound the piercing numbers of the new active links {u, w}
and {v, w}. To do this, we count the edges that cross the curves c′ and c′′, respectively.
As ej is anchored with respect to λ, we get that x is the only crossing on ej to the right of λ.
Now, it is easy to see that c′ is pierced only by ê and possibly by e1 in case j = 2. For c′′,
we can show that there are no crossings along the curve. First, observe that any edge that
crosses ê between v and x has to pierce λ, which is not possible. Second, no edge crosses
ej between x and w, as ej is anchored and x is the only crossing on ej to the right of λ.
Combining these two observations, we see that there is no place for c′′ to cross with an edge.

It remains to show that the triangle piercing number of the new triangle △ formed by u,
v, and w is at most 4. In case 1, λ has no piercing edges. In cases 2, 4, and 5, {v, w} has no
piercing edges. In case 3, we distinguish two subcases depending on the relative position of
w. When wj < w, then {v, w} has no piercing edges. When w < wj , then each of {u, w}
and {v, w} is pierced at most once. ◀

Lastly, we combine the two triangulation strategies from the proofs of Lemmas 5 and 6
to obtain a triangulation method for outer min-k-planar graphs.

▶ Lemma 9. For every k ≥ 1, every outer min-k-planar drawing of a maximal outer min-k-
planar graph admits a triangulation of the outer cycle with edge piercing number at most
2k − 1 and triangle piercing number at most 6k − 3.

Proof. We proceed as in the proof of Lemma 5. We describe a splitting procedure such that
every active link has piercing number at most 2k − 1. Consult Figure 3 for a reminder of the
notation and the strategy. As the given drawing is outer min-k-planar, edges may now have
more than k crossings. We call such edges heavy and the other edges light. By definition,
heavy edges cross only light edges.

We first explain why the previous proof breaks in both cases if the curves c′ and c′′ are
routed along heavy edges. Recall that in the first case when λ has no piercing edges, we
selected the split vertex w to be the neighbor of u from the right side of λ that is closest to v.
If, however, the edge {u, w} is heavy, then we cannot bound the number of crossings along
the curve c′′. In the second case, we selected the split vertex to be the right endpoint wj of
the middle piercing edge ej . If the edge ej is heavy, then we cannot bound the numbers of
crossings along c′ and c′′.

To resolve the issue with the second case, we apply the strategy from the proof of Lemma 6.
Observe that if ej is heavy, then for the first crossing x with an edge ê on the right side of λ,
the edge ê is a light. Similarly, as in the proof of Lemma 6 (see Figure 4), we select the split
vertex w to be the endpoint of ê that is different from u and v and in case both endpoints
are, the one on the side of x with fewer crossings. The piercing numbers of the two new links
are at most ⌈(2k − 1)/2⌉ + k − 1 ≤ 2k − 1.

To resolve the issue with the first case, we use a similar strategy. If the edge {u, w} is
heavy, let x be the crossing on {u, w} that is closest to u and let ê be the crossing edge. Note
that ê is light. We select the split vertex w to be any right endpoint of ê. Now consider
the two curves that start at w, go along ê to x, then along {u, w} to u, and optionally to v

along λ. Both curves have at most k crossings, only with edges that also cross ê. ◀

▶ Remark 10. Given the intersection graph of the edges of G, the triangulations in Lemmas 5–
9 can be constructed in O(nk) time. Each step of the splitting procedures presented in
Lemmas 5–9 can be implemented to run in O(k) time, as the edges that pierce the new active
links also pierce at least one of the edges λ, ej , and ê.
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4 Applications

In this section, we show several applications of our triangulations from Section 3. Among
others, we improve the bound of Wood and Telle [20] on the treewidth of outer k-planar
graphs from 3k +11 to 1.5k +2 (see Section 4.1) and improve the bound of Chaplick et al. [10]
on the separation number of outer k-planar graphs from 2k + 3 to k + 2; see Section 4.2.
In addition, we improve the bound of Wood and Telle of 3k + 11 on the treewidth of outer
min-k-planar graphs to 3k + 1; see Theorem 14.

4.1 Treewidth
Now we show our main tool to obtain a better upper bound on the treewidth. Note that we
do not refer specifically to outer k-planar graphs since our tool can be used for any drawing
of a graph whose vertices lie on the outer face.

Consider a graph G with a drawing Γ whose outer face is bounded by a simple cycle C

that contains all vertices of G. Let T be a planar triangulation of C and f be some triangular
face of T . We call an edge of E(G) \ E(T ) short with respect to f if one of its endpoints is
on f and it pierces a link of f . We call an edge of E(G) \ E(T ) long with respect to f if
neither of its endpoints is on f and it pierces two links of f .

▶ Lemma 11. If G is a graph with a convex drawing whose outer cycle admits a triangula-
tion T with triangle piercing number at most c, then tw(G) ≤ (c + 5)/2.

Proof. Let T be a tree obtained by taking the weak dual graph of T and associating each
node of T with a bag that contains the vertices of G that are incident to the corresponding
face. We modify this tree to consider the piercing edges, ensuring that the sizes of bags do
not exceed (c + 7)/2. (Recall that the width of a tree decomposition is the size of the largest
bag minus 1.)

If T has an unpierced inner link λ = {u, v}, we split T along λ into two triangulations
and compute tree decompositions for them. Since each of them has a bag that contains λ,
we can connect them and obtain a tree decomposition of G.

Hence, from now on, we assume that every inner link of T is pierced at least once. We
root T at an arbitrary leaf. The basic idea is as follows. Consider an edge {u, v} that pierces
inner links of T . Then we lift both u and v to the bag b that is the lowest common ancestor
of the highest bags bu and bv that contain u and v, respectively. That is, we place a copy
of u into each bag on the way from bu to b and symmetrically for v. If we apply this strategy
naively, then there may be a bag with c + 3 vertices in the worst case. In the following, we
describe how to improve this bound.

Consider a face f of the triangulation T . Let bf be the bag in T that corresponds to f .
Let v1, v2, and v3 be the vertices of f such that f shares the link {v1, v2} with the face that
corresponds to the parent of f in T (if any). An edge of E(G) \ E(T ) is lineal if one of its
endpoints is in the bag bf or above and the other endpoint is in a bag below bf in the tree T .
A long edge of E(G) \ E(T ) is bent if its endpoints are in different subtrees of T .

We perform the following two modifications of T for each face f ; see Figure 6.
We subdivide each edge of T between bf and its children (if any) by a new copy bag that
is a copy of bf . We call these bags primary copy bags.
If f has two children in T , assume that piercing number of λ = {v1, v3} is less or equal
to that of λ′ = {v2, v3} and that λ is the common link of f and its left child face. If
there are l > 0 bent edges {u1, w1}, . . . , {ul, wl} w.r.t. f , then we subdivide the edge
of T between bf and its left child by additional l copies of bf . These secondary copy bags
are numbered bf,1, . . . , bf,l from top to bottom; see Figure 6.
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Figure 6 Steps 1 and 2 of the modification. Copy bags are oval; secondary copy bags are yellow.

Next, we lift vertices in bottom-up order, e.g., in preorder. More precisely, at each original
bag bf (that is, not a copy bag) in our preorder traversal of T , we process each edge e of G

that pierces f , according to its type as follows.
If e is a short edge, that is, it is incident to a vertex of f , namely to v1 or v2, then we lift
the highest occurrence of the other endpoint u of e by one bag (as v5 and v7 in Figure 7a)
to the primary copy bag of bf .
If e is a long edge that pierces the link {v1, v2}, then we lift the highest occurrence of the
other endpoint u of e all the way to bf ; see Figure 7b.
If e = {ui, wi} for some i ∈ {1, . . . , l}, then we lift both endpoints of e. First, we lift
the highest occurrence of ui from the left subtree to bf,i. Second, we lift the highest
occurrence of wi in the right subtree of bf to bf . Third, we copy wi into each bag from bf

down to bf,i; see Figure 7c. In this way, the two endpoints of e meet in bf,i.

The modifications described above make sure that the resulting tree T ′ is indeed a tree
decomposition of G, i.e., for each vertex v of G, the subtree induced by the bags that contain v

is connected, and for each edge e of G, there is a bag in T ′ that contains both endpoints of e.
In the following, we show that each bag of T ′ contains at most (c + 7)/2 vertices, i.e., we

have added at most (c + 1)/2 to the initial three vertices. For each face f , the number of
vertices added to the original bag bf is the number of long edges w.r.t. f , which is at most
c/2. It remains to bound the number of vertices that are added to each copy bag of bf .

First, we show the bound for secondary copy bags. Recall that, for i ∈ {1, . . . , l}, we
have added to bf,i from below i endpoints of the bent long edges w.r.t. f and from above
l + 1 − i endpoints of bent long edges; see Figure 7c. In addition, we have added a vertex
for each lineal long edge. Therefore, the number of added vertices is at most one plus the
number of long edges w.r.t. f that pierce the link {v1, v3}. Recall that the link {v1, v3} was
chosen to have at most as many piercing edges as {v2, v3}. Because each inner link of T ,
including {v1, v2}, is pierced at least once, {v1, v3} is pierced at most (c − 1)/2 times. Thus,
we have added at most (c + 1)/2 vertices to bf,i, and so |bf,i| ≤ (c + 7)/2.

Now, we bound the number of vertices that are added to the primary (the bottommost)
copy bag b′ of bf . Note that such a bag is a parent bag of some original bag bg such that the
faces f and g are adjacent. There are two types of vertices that are added to b′. The first
type consists of the endpoints of the lineal long edges of bg (at most c/2). The second one is
just one vertex w of the face g that is not shared with f (for example, the endpoint v5 of g
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Figure 7 Lifting up endpoints of the edges that pierce links of the face f .

in Figure 7a). We have added w only if there are edges in E(G) \ E(T ) with lower endpoint
w (lower w.r.t. T ). Each such edge contributes to the piercing number of g. Hence, the
number of lineal long edges w.r.t. g is at most (c − 1)/2. In both cases (w ∈ b′ and w ̸∈ b′),
we have added at most (c + 1)/2 vertices to b′, so |b′| ≤ (c + 7)/2. ◀

Lemmas 8 and 11 give us an upper bound 4 for outer 2-planar graphs, extending the
known tight bound k +2 for k = {0, 1} [5, 6]. Note that K5 is outer 2-planar and tw(K5) = 4.

▶ Theorem 12. Every outer 2-planar graph has treewidth at most 4, which is tight.

▶ Theorem 13. Every outer k-planar graph has treewidth at most 1.5k + 2.

Proof. We already know better bounds for k ≤ 2. For k ≥ 3, by Lemmas 6, 7, and 11, we
obtain a bound 1.5k + 2.5 for even k and 1.5k + 2 for odd k. As treewidth is an integer, we
obtain 1.5k + 2 for general k. ◀

By Lemmas 9 and 11, we also obtain the following bound for outer min-k-planar graphs,
which improves the previously known bound 3k + 11 by Wood and Telle [20]. Note that
outer min-0-planar graphs are outerplanar graphs.

▶ Theorem 14. For k ≥ 1, every outer min-k-planar graph has treewidth at most 3k + 1.

4.2 Separation Number
Theorems 13 and 14 immediately imply upper bounds on the separation number of outer
k-planar and outer min-k-planar graphs. However, using our triangulations directly, we
obtain even better bounds, namely k + 2 for outer k-planar graphs and 2k + 1 for outer
min-k-planar graphs. The first bound improves the bound of 2k + 3 by Chaplick et al. [10].

GD 2024
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▶ Lemma 15. If G is a graph with a convex drawing whose outer cycle admits a triangula-
tion T with edge piercing number at most c, then G has a balanced separator of size at most
c + 2.

Proof. We construct a balanced separation of order at most c+2 using T . In short, we select
a link λ of T that is a balanced separator for T and put its endpoints into the separator.
Then, we add at most c vertices to the separator according to the edges piercing λ.

First, we find a “centroid” triangle of T as follows. Let T be the tree that is the weak
dual of T . It is well known that every tree contains a vertex such that, after removing it, the
number of vertices in each subtree is at most half of the original tree. Let f = {u, v, w} be
the triangle corresponding to such a vertex of T . We partition V \ f into three disjoint sets
V1, V2, V3; see Figure 8a. We may assume that V1 is the largest among the three sets.

u v

w

V1

V2 V3

f

(a) “Centroid” triangle f and vertex sets V1, V2, V3.

u v

A

B

(b) Edges piercing {u, v} and separation (A, B).

Figure 8 A triangulation with edge piercing number c yields a balanced separator of size at
most c + 2.

Now, we construct the desired separation with the help of the sets V1, V2, V3. As λ = {u, v}
is a link of T , at most c edges pierce λ, connecting vertices in V1 with vertices in V2 ∪{w}∪V3.
Let S be the set of endpoints of the piercing edges on the latter side. Let A = V1 ∪ {u, v} ∪ S

and B = V2 ∪ {u, v, w} ∪ V3; see Figure 8b. We claim that (A, B) is a balanced separation of
order at most c + 2.

Clearly, the order of (A, B) is |A ∩ B| = |S ∪ {u, v}|, which is at most c + 2. Hence, it
suffices to show that the sizes of A \ B and B \ A are at most 2n/3. To this end, we first
bound the size of V1 as follows:

n

3 − 1 ≤ |V1| ≤ n

2 − 1.

The lower bound holds as |V1|+|V2|+|V3| = n−3 and |V1| is the largest. The upper bound can
be shown by the fact that a triangulated outerplanar graph has exactly F + 2 vertices, where
F is the number of triangles. By the way of choosing f , the vertex set V1 ∪ {u, v} induces at
most n/2 − 1 triangles. Therefore, |V1| = |V1 ∪ {u, v}| − 2 ≤ (n/2 − 1 + 2) − 2 = n/2 − 1.

Now we can confirm that the sizes of A \ B and B \ A are at most 2n/3 as follows:

|A \ B| = |V1| ≤ n

2 − 1 ≤ 2
3n and

|B \ A| ≤ |V2 ∪ {w} ∪ V3| = |V \ (V1 ∪ {u, v})| ≤ n −
(n

3 − 1
)

− 2 = 2
3n − 1. ◀

For every k, the classes of outer k-planar graphs and outer min-k-planar graphs are closed
under taking subgraphs. Hence, by Lemmas 6, 9, and 15, we obtain the following bounds.
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▶ Theorem 16. Every outer k-planar graph has separation number at most k + 2, and for
k ≥ 1, every outer min-k-planar graph has separation number at most 2k + 1.

5 Lower Bounds

In this section, we complement the results in Section 4, by giving lower bounds for the
separation number and treewidth of outer k-planar graphs. To show them, we use grid-like
graphs called stacked prisms. The m × n stacked prism Ym,n is the (planar) graph obtained
by connecting all pairs vertices in the topmost and bottommost row of the m × n grid that
are in the same column; see Figure 9a.

︷ ︸︸ ︷
m

n

(a) Grid-like drawing.

︷ ︸︸ ︷n

(b) Clipping of a circular drawing.

Figure 9 Two drawings of the stacked prism Ym,n.

▶ Theorem 17. For every even number k ≥ 0, there exists a graph G such that lcr◦(G) = k

and sn(G) = k + 2.

Proof. We first observe that, if m is even, lcr◦(Ym,n) is at most 2n − 2. If m is even, we
can place the m rows of Ym,n, each of length n, one after the other, alternating in their
direction, around a circle; see Figure 9b. The grid has two types of edges: the row edges
and the column edges, which connect vertices in the same row or column, respectively. As
Figure 9b shows, the row edges have no crossing. For each i ∈ [n], there is a column edge ei

that spans 2i − 2 other vertices along the perimeter of the circle. Each of these vertices is
incident to exactly one column edge that crosses ei. Hence, every column edge has at most
2n − 2 crossings, and lcr◦(Ym,n) ≤ 2n − 2.

Let n = k/2 + 1, and let m be a sufficiently large even number. Then we claim that Ym,n

fulfills the conditions. As we discussed lcr◦(Ym,n) ≤ k holds and therefore sn(Ym,n) ≤ k + 2
follows from Theorem 16. Hence, it suffices to show sn(Ym,n) ≥ k + 2 = 2n, which also
implies lcr◦(Ym,n) ≥ 2n − 2 = k by Theorem 16.

Suppose that Ym,n has a balanced separator S of size less than 2n. As there are n

columns, there is a column that contains at most one vertex of S. This column contains a
path P of length m − 1 that does not intersect S. Now observe that at least m − 2n rows
do not contain any vertex of S, and therefore, all vertices in these rows are connected to
P . Hence, after removing S, the size of the connected component C that contains P is at
least n(m − 2n). The ratio |V (C)|/|V (Ym,n)| is 1 − (2n/m), which is greater than 2/3 if m

is sufficiently large. ◀

Aidun et al. [1] showed that tw(Ym,n) = 2n if m > 2n. With the same stacked prism, we
obtain the following lower bound.

▶ Theorem 18. For every even number k ≥ 0, there exists a graph G such that lcr◦(G) = k

and tw(G) = k + 2.

GD 2024
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6 Conclusion and Open Problems

We have introduced methods for triangulating drawings of outer k-planar graphs such that
the triangulation edges cross few graph edges. These triangulations yield better bounds on
treewidth and separation number of outer k-planar graphs. Our method is constructive; the
corresponding treewidth decomposition and balanced separation can be computed efficiently.
Via our triangulations, we improved the multiplicative constant in the upper bound on the
treewidth of outer k-planar graphs from 3 to 1.5; we showed a lower bound of 1. What is the
correct multiplicative constant? Finding triangulations of outer k-planar graphs with lower
triangle piercing number could be a step in this direction. It would also be interesting to
find other graph classes that admit triangulations with low triangle piercing number.
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Abstract
Edge bundling algorithms significantly improve the visualization of dense graphs by reducing the
clutter of many edges visible on screen by bundling them together. As such, bundling is often
viewed as a post-processing step applied to a drawing, and the vast majority of edge bundling
algorithms consider a graph and its drawing as input. Another way of thinking about edge bundling
is to simultaneously optimize both the drawing and the bundling. In this paper, we investigate
methods to simultaneously optimize a graph drawing and its bundling. We describe an algorithmic
framework which consists of three main steps, namely Filter, Draw, and Bundle. We then propose
two alternative implementations and experimentally compare them against the state-of-the-art
approach and the simple idea of drawing and subsequently bundling the graph. The experiments
confirm that bundled drawings created by our framework outperform previous approaches according
to standard quality metrics for edge bundling.
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1 Introduction

The majority of bundling algorithms consider both the graph and its drawing as input [23].
With the notable exception of approaches that are inspired by confluent drawings [2, 41], the
coordinates of the nodes are vital for computing a bundled drawing of high quality. However,
often we would like to produce a graph layout that simultaneously optimizes the drawing and
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the bundling. For some graphs, edge bundling will not be necessary: if we have a sufficiently
good drawing of a graph, there is no need to bundle it. In the case of dense graphs, it will be
very difficult to find a drawing of the graph that does not require some or many of the edges
to be bundled to resolve its hairball-like appearance. In such cases, it may be advantageous
for us to consider bundling alongside drawing.

One way to optimize the bundling alongside the drawing is to select edges that are likely
to be bundled, remove them from the graph, and draw the skeleton of the edges that will be
bundled against. Edge-Path bundling (EPB) algorithms [37, 38] have such a skeleton with
edges bundled against paths. In this case, the smaller graph that would be computed for
layout would be the edges that participate in the paths used for bundling. The confluent
drawing inspired approaches of Bach et al. [2] and Zheng et al. [41] perform aggregation via
a power set decomposition and create a hierarchy of coarse graphs that are used to draw
and bundle the graph in a confluent way. This aggregation approach will help focus graph
layouts on edges that can support bundles. However, confluent drawings have a lower degree
of bundling when compared to EPB, and it may be interesting to investigate approaches with
a greater degree of bundling.

In this paper, we contribute a framework which offers a greater degree of bundling than
confluent-like approaches while optimizing bundling alongside drawing. Two instantiations of
this framework are explored. Our Filter-Draw-Bundle framework selects nodes and edges
that form the scaffold of the bundling, or the set of edges in the graph that will be bundled
against. Edges that are more likely to be bundled are filtered from the graph. As Edge-Path
bundling has a very strong connection to t-spanners [1, 38], we show how various levels of
t-spanners can be used for drawing with the remaining edges bundled onto the spanner.

2 Related Work

Edge bundling algorithms have been studied for nearly 20 years now [16] with many ap-
proaches [23] created to simplify edge clutter of densely connected networks. Most edge
bundling techniques [4,9,10,17,19,20,22,24,27,29–32,35,39] consider a drawing and a graph
as input and bundle edges together based on similar properties such as orientation, co-location
in space, and other similar edge properties. Recent Edge-Path bundling techniques [37,38]
instead bundle long edges with paths. The main advantage for Edge-Path bundling is that it
does not create the illusion of false connections between disconnected edges as the subtended
edge always has a corresponding path. In all of the above cases, a drawing of the graph
is taken as input and is used for bundling. This has been successfully applied in practice,
but considering the layout in combination with bundling has not been investigated before.
Furthermore, our results show that creating a layout more tailored for bundling has better
performance regarding certain quality metrics.

Confluent drawings [6, 7, 14] do not consider a drawing beforehand. Rather, the graph is
converted into a planar graph by contracting down bicliques, drawing the high level planar
graph, and reintroducing the bicliques into the graph so that they can be bundled without
ambiguity. Less restrictive versions of these drawings [2, 33, 41] do not require the strict
planar condition and generally compute a decomposition of the graph into components. The
decomposition of the graph is drawn and then the edges between components are bundled.
While heuristics for computing confluent drawings introduce less ambiguity compared to our
proposed framework, they are much more constrained in what can be bundled, leading to
less overall bundling.
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In the work presented here, we focus on a new way of optimizing a bundling while drawing
the graph simultaneously. In our case, we filter the graph in a way that takes away edges in
an Edge-Path bundling that are likely to be bundled, providing a low-stress layout of the
paths to be bundled against. In our experiment, we compare against the state-of-the-art
methods that produce confluent-like drawings [2, 41] as well as against the straight-forward
approach of first creating a low-stress drawing of the full input graph and then applying
Edge-Path bundling on it.

3 The Filter-Draw-Bundle Framework

In this section, we introduce the Filter-Draw-Bundle (FDB) Framework. This framework is
designed to optimize three well-studied quality metrics for bundled drawings, namely the ink
ratio, distortion, and ambiguity. We start by formally defining these metrics, since we shall
refer to them when describing the framework.

3.1 Bundling Quality Metrics
We consider three metrics that are in line with the ones described by Wallinger et al. [37,38],
namely ink ratio, distortion, and ambiguity. Smaller values in all three metrics are considered
better. Let G = (V, E) be the input graph, let AB be a bundling algorithm and let LB be
the layout obtained by applying AB to G. The metrics we consider are defined as follows.

Ink Ratio. Informally, the ink ratio is the proportion of pixels within the drawing’s bounding
box that are occupied by LB . It can quantify simplification through a measure of data-ink
ratio [34]. More precisely, let LB ∈ {0, . . . , 255}m×n be an m× n-greyscale bitmap image of
LB , and let 0 ≤ δ < 255 be a threshold grey value below which we consider a pixel occupied;
in our implementation we consider δ = 254, which means all non-white pixels are occupied.
We scale the drawing LB to a bitmap that has a width of 1.000 pixels when computing the
ink ratio. For each pixel LB [i, j] of LB , where 1 ≤ i ≤ m and 1 ≤ j ≤ n, we set pB(i, j) = 1
if LB [i, j] ≤ δ, otherwise we set pB(i, j) = 0. The ink ratio of LB is then defined as:

InkRatio =
∑m

i=1
∑n

j=1 pB(i, j)
m · n

. (1)

We note that our definition of ink ratio is slightly different from Wallinger et al. [37,38], who
measured the reduction in occupied pixels compared to a straight-line input drawing. Since
we do not consider any input drawing for the FDB framework, their definition is not applicable.

Distortion. The distortion of an edge is the ratio between its length in LB and the Euclidean
distance of its endpoints. Human-centred studies have shown that deviations from straight
line distances make paths harder to read [18]. Let ℓB(uv) be the length of an edge uv in
LB and let d(u, v) be the Euclidean distance between u and v. The distortion of LB is the
average distortion of its edges, namely:

Distortion = 1
|E|

∑
uv∈E

ℓB(uv)
d(u, v) . (2)

Ambiguity. The ambiguity of a bundled drawing measures how many false adjacencies
could be derived erroneously from the drawing LB . Avoiding such false connections would be
considered more faithful [26]. More precisely, the ambiguity is defined as the ratio between
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Figure 1 Illustration of our FDB framework. The Filter step takes as input an abstract graph
G = (V, E) and outputs a sparsification G′ = (V, E′) with E′ ⊆ E; the Draw step computes a drawing
Γ of G′; the Bundle step adds to Γ the edges in E′ and bundles them.

the number of perceivable false adjacencies and the total number of perceivable adjacencies.
Here, an adjacency between two vertices u, v is a false adjacency if the topological distance
between u and v is greater than a certain threshold. Given an edge e = st ∈ E, which is
drawn as a curve in LB , the set NB(s, e) of reachable neighbors of s along e consists of all
the vertices that are perceived as being connected to s. More precisely, a vertex v belongs to
NB(s, e) if there is an edge e′ = uv ∈ E that is drawn in LB as a curve that intersects e by
forming a flat angle which is smaller than a certain threshold θ. The set NB(s, e) may contain
both true and false neighbors of s: we denote as NT

B(s, e) the set of the true neighbors and
as NF

B(s, e) = NB(s, e) \NT
B(s, e) the set of the false neighbors. We consider two vertices

as true neighbors if the length of the shortest path between them in G (in hop distance) is
smaller than a certain threshold δ. So if δ = 1 (as in or implementation), NT

B(s, e) contains
only the direct neighbors of s, otherwise it contains all vertices reachable in hop distance at
most δ. The ambiguity of LB is then defined as:

Ambiguity =
∑

s∈V

∑
e=st∈E |NF

B(s, e)|∑
s∈V

∑
e=st∈E |NB(s, e)| . (3)

3.2 Framework Description
We are now ready to describe our algorithmic framework, which we call Filter-Draw-Bundle,
or FDB for short. The algorithmic framework is illustrated in Figure 1 and summarized
in Algorithm 1. As the name suggests, it consists of the following three steps:

Filter: Let G = (V, E) be the input graph. In the Filter step, a subgraph G′ of G is
computed, with G′ = (V, E′) such that V ′ = V and E′ ⊆ E. In particular, E′ is supposed
to be the subset of those edges of G against which the edges of E \E′ will be bundled in
the third step (in our case to optimize for Edge-Path bundling). Graph G′ is called the
skeleton of G.
Draw: A drawing Γ of the skeleton G′ is computed. The quality metrics of the subsequent
bundled graph drawing will strongly depend on the layout of the skeleton.
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Bundle: Γ is enriched with those edges of G that were filtered out in the first step of FDB.
In the instantiations that follow, we shall adopt the Edge-Path bundling (EPB) approach
to bundle against the edges of the skeleton G′.

Algorithm 1 The FDB Framework.

Input: Graph G = (V, E).
Output: A bundled layout LB of G.
/* Filter Step */
w ← computeWeights(G)
G′ = (V, E′)← sparsifyGraph(G, w) // G′ is the skeleton of G

/* Draw Step */
Γ← computeDrawing(G′)
/* Bundle Step */
LB ← edgePathBundling(G, Γ)

In contrast to other bundling approaches, the FDB framework does not receive the vertex
coordinates of the final layout as part of the input, but it computes them during the Draw step.
Hence, the FDB approach is not a post-processing procedure that improves the readability of
a given drawing, but it takes into account the quality metrics of the target bundling during
each step of its algorithmic pipeline, and in particular aims to find a drawing of a suitable
skeleton graph that gives rise to a high-quality bundling.

It is also worth recalling that Bach et al. [2] and Zheng et al. [41] describe similar
ideas. Namely, they first compute a hierarchical aggregation of the graph, then draw such
an aggregation, and finally compute a confluent drawing. While the Filter step of the
FDB pipeline computes a subgraph of G, the approach of [2, 41] suitably selects groups of
nodes, aggregates them, and connects such groups with dummy edges. Once a layout of the
hierarchical aggregation is computed, a confluent drawing of the graph is constructed by
using these dummy edges as a guideline.

3.2.1 Instantiating the FDB Framework

While the flexibility of our algorithmic framework makes it possible to adopt different filtering,
drawing, and bundling strategies, as a proof of concept we make specific choices for the three
different steps which will be used in our experimental analysis. Namely, we describe two
different instances of the FDB framework, which differ for the adopted strategy in the Filter
step. In both cases, we consider filter and draw steps that optimize EPB. The framework
can be used for other bundling algorithms, but appropriate filter and draw steps would be
needed for the bundling algorithm selected. Figure 2 shows the relationship between our
algorithmic choices at each step of the framework and the bundling quality metrics that we
aim at optimizing.

Filter. The edges of E′ for the skeleton subgraph are computed based on a weighting
function. The edges that receive the highest weight will be included in the skeleton. The
idea is to give a higher weight to those edges that are more “central” in the graph, based on
the intuition that bundling against these edges optimizes the distortion.
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Optimize

Filter

Draw

Bundle

Ink Reduction

Distortion

Ambiguity

Algorithmic Step Quality Metric

Figure 2 Relationships between our algorithmic choices at each step of the FDB framework and
the bundling quality metrics that we aim at optimizing.

More formally, we weight the edges by two different methods. The first method uses the
edge betweenness as a standard centrality measure for edges (see, e.g., [12]), defined as:

EdgeBetweenness(e) =
∑

u,v∈V

σ(u, v | e)
σ(u, v) . (4)

In the formula, σ(u, v) denotes the number of shortest paths between any two vertices u

and v of G, and σ(u, v | e) is the number of such shortest paths passing through an edge e.
The edge betweenness assigns a weight to each edge e ∈ E based upon the computation of
all-pairs shortest paths in G [3]. The weight of each edge is proportional to the number of
shortest paths between all vertex pairs of G that pass through this particular edge.

A different approach, specifically tailored for the Bundle step, is to assign edge betweenness
weights by considering the shortest paths only between those pairs of vertices that are actually
adjacent in G, since these edges might later be bundled against their respective shortest
path. We shall filter out those edges of G that appear in only a few such shortest paths. In
the Bundle step, such edges will be reinserted one per time and possibly bundled against the
edges of the skeleton. This leads to the following variant of the definition of edge betweenness,
that we call neighboring edge betweenness:

NeighboringEdgeBetweenness(e) =
∑

uv∈E

σ′(u, v | e)
σ′(u, v) , (5)

where σ′(u, v) is the number of shortest paths between u and v in Guv = (V, E \ {uv}), and
σ′(u, v | e) is the number of these shortest paths passing through e. Algorithm 2 shows the
pseudocode to compute the edge weights based on the neighboring edge betweenness. It is
immediate to see that, since the edge betweenness of an unweighted graph can be computed
in polynomial time (see, e.g., Brandes [3]), also the neighboring edge betweenness can be
computed in polynomial time.

Once the edges are weighted, the skeleton G′ is formed by filtering out the lighter edges
from G. This can be done, for example, by computing a t-spanner [1] using the inverse
weights. Recall that a t-spanner of a weighted graph G is a subgraph G′ of G consisting of
all the vertices of G and of a subset of its edges. The t-spanner property, for some t > 1,
says that for each edge uv in G with weight w(uv), there must be a (shortest) path π

between u and v in G′ whose weight w(π) =
∑

e∈π w(e) ≤ t · w(uv). A typical approach to
compute a t-spanner is to order the edges of the graph by increasing weight; starting from
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Algorithm 2 Edge weights computation with neighboring edge betweenness.

Input: Graph G = (V, E).
Output: Function weights : E → R+.
for uv ∈ E do

sp(uv)← shortestPaths(u, v, Guv = (V, E \ uv))
for e ∈ E do

for uv ∈ E do
sum← 0
for p ∈ sp(uv) do

if p.contains(e) then
sum← sum + 1

weights(e)← weights(e) + sum
|sp(uv)|

return weights

a graph G′ = (V, ∅), the edges are processed one by one in that order, and at each step it
is decided whether the edge is inserted into G′ or not; refer to Algorithm 3, where we use
w(e) = 1/weights(e).

Algorithm 3 Skeleton computation as a t-spanner [1, 38].

Input: Graph G = (V, E), edge-weights w : E → R+, value t > 1.
Output: t-spanner G′ = (V, E′ ⊆ E).
E′ ← ∅
G′ ← (V, E′)
sortedEdges← sortAscending(E, w)
for uv ∈ sortedEdges do

p← shortestPath(G′, u, v)
if p is undefined then

E′ ← E′ ∪ {uv}
else

p.weight← 0
for e ∈ p do

p.weight← p.weight + w(e)
if p.weight > t ∗ w(uv) then

E′ ← E′ ∪ {uv}
return G′ = (V, E′)

According to this algorithm, the lighter edges, i.e., those with the highest (neighboring)
betweenness score, are more likely to be part of G′ than the heavier edges, which have low
betweenness. The higher we choose the value of t the sparser the skeleton G′ will be, since
it is less likely during the construction algorithm that there is no path of weight at most
t · w(uv) in G′. On the one hand, this is expected to influence the ink ratio of the bundled
layout. The intuition is that the sparser the skeleton, the lower the ink ratio. Namely,
when the skeleton is sparser more edges of E \E′ are bundled against the same portion of
the skeleton. On the other hand, sparser skeletons and higher values of t in the spanner
construction are expected to also lead to higher distortions in the final bundled drawings.
Therefore, we expect that the choice of the value of t is very influential for the final bundling
quality, and it should be balanced to achieve both good ink ratio and good distortion.
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Draw. The goal of this step is to compute a drawing of the (unweighted) skeleton G′ such
that the graph-theoretic distance between its vertices is well reflected by their Euclidean
distance in the layout. The intuition behind this choice is that such a layout would, in fact,
give rise to bundled drawings with small distortion because it tends to straighten those paths
against which edges are bundled. To this aim, we compute the output of the Layout step by
means of a stress majorization approach with stochastic gradient descent (SGD) [11,40].

Bundle. This step adds to the layout of the skeleton G′ = (V, E′) those edges that are
not part of it, i.e., edges in E \ E′. Let Γ be the layout of the skeleton computed in the
previous step and let uv ∈ E \ E′ be a non-skeletal edge. We incrementally add each
non-skeletal edge to Γ by adapting the Edge-Path bundling approach proposed in [37,38],
as described in Algorithm 4. More precisely, for each non-skeletal edge uv we consider the
path in the skeleton between u and v that minimizes the sum of the Euclidean lengths of its
edges. Let π be such a path: we bundle uv to π if the distortion is not above a predefined
threshold δ > 1; otherwise, uv is added to Γ as a straight-line unbundled segment. In our
implementation we use the threshold δ = t, for the same value of t applied in the Filter step.
The rationale behind adapting the EPB approach to our scenario is that it avoids independent
edge ambiguities by design. Indeed, an edge uv can only be bundled against a path of the
skeleton connecting u to v. Moreover, we ensure that edges can only be bundled against a
path if their distortion is not above the selected distortion threshold δ. Finally, bundling
always has the goal of saving ink, thus improving on the ink ratio score.

Algorithm 4 Spanner-Edge-Path bundling algorithm [38].

Input: Graph G = (V, E), skeleton G′ = (V, E′), drawing Γ of G′, maximum
distortion δ > 1.

Output: Control points for the edges in E \ E′.
for uv ∈ E \ E′ do

p← shortestPath(G′, Γ, u, v)
p.length← 0
for xy ∈ p do

/* d(x, y) is the Euclidean distance between x and y in Γ */
p.length← p.length + d(x, y)

if p.length ≤ δ ∗ d(u, v) then
/* bundle edge uv against p */
controlPoints(uv)← p.getVertexCoordinates()

else
/* draw edge uv unbundled */
controlPoints(uv)← (Γ(u), Γ(v))

return controlPoints

4 Experimental Study

In this section, we present an experimental analysis that compares the bundling performances
of four algorithms. We first recall these algorithms (Section 4.1); we then discuss our
experimental hypotheses (Section 4.2); next we describe the data set and give implementation
details (Section 4.3); finally, we present a statistical analysis of the results (Section 4.4).
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4.1 Competing Algorithms
In the experiment, we consider the following four algorithms:

EB-FDB: This algorithm is the first instantiation of the FDB framework described in
Section 3.2.1, where the filtering step uses edge betweenness.
NEB-FDB: This algorithm is the second instantiation of the FDB framework described in
Section 3.2.1, where the filtering step uses neighboring edge betweenness.
ConfluentDrawing: This algorithm creates a confluent-like drawing [2, 41] using the
implementation of Zheng et al. [41].
PP-Bundling: This algorithm computes a drawing of the input graph using standard stress
majorization [11,40], and then it performs the Spanner Edge-Path bundling approach [38]
(SEPB) on the computed drawing. It can be regarded as a representative of the common
post-processing approach where the visual clutter is reduced by bundling edges on a
given drawing. Hence, the graph spanner which is used for the bundling is computed on
the Euclidean distances of a given drawing.

4.2 Experimental Hypotheses
We conceptually cluster our hypotheses into two groups. The first group is about
the relationship between the FDB framework and the state-of-the-art bundling methods
ConfluentDrawing and PP-Bundling, whereas the second group is about the direct compar-
ison of the two instantiations EB-FDB and NEB-FDB of the framework.
The following hypotheses belong to the first group:

H1.1: Algorithms EB-FDB and NEB-FDB perform better than the PP-Bundling algorithm
in terms of ink ratio, distortion, and ambiguity.
H1.2: Algorithms EB-FDB and NEB-FDB perform better than the ConfluentDrawing
algorithm in terms of ink ratio, distortion, and ambiguity.

The following hypotheses belong to the second group:
H2.1: Increasing the value of t in the t-spanner reduces the ink ratio of the bundled
drawings computed with either the EB-FDB algorithm or the NEB-FDB algorithm.
H2.2: For a given value of t, the Filter step of the NEB-FDB algorithm yields sparser
t-spanners than those computed by the Filter step of the EB-FDB algorithm.
H2.3: The NEB-FDB algorithm computes bundled drawings with higher distortion but
lower ink ratio than those computed by the EB-FDB algorithm.

Rationale. Concerning H1.1, we recall that in the PP-Bundling algorithm the position of
the nodes is computed by a standard stress majorization method, agnostic of the bundling
step, which is in fact applied as a post-processing. On the other hand, the Filter step of the
EB-FDB and the NEB-FDB algorithms is designed such that the edges of the path against which
the bundling is executed are selected based on the graph topology and placed on a central
position in the layout. This, we believe, positively impacts both ink ratio and distortion,
because the long edges tend to be bundled against sets of edges that are central in the layout,
avoiding long curves that pass through peripheral parts of the layout. This also potentially
leads to layouts with less ambiguity compared to PP-Bundling: routing long edges towards
the center likely reduces edge crossings and, consequently, it could reduce the number of
sharp crossing angles.

Regarding H1.2, the ConfluentDrawing algorithm introduces dummy nodes and edges
to the original graph. While these guides help construct a confluent drawing, we believe
they might negatively impact distortion and ink ratio. Dummy elements are not part of the
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actual data, and curves routed around them might become unnecessarily long compared to
those computed without them. Also, by strategically placing heavier edges centrally, FDB
reduces the chances of them intersecting with many other edges in peripheral areas and this
could lead to less visual clutter and potentially an ambiguity reduction.

As for H2.1, higher values of t give rise to sparser skeletons. Therefore, by increasing t

the number of edges against which the non-skeletal edges are bundled decreases, potentially
leading to a smaller number of occupied pixels in the bundled layout.

Hypothesis H2.2 originates from the observation that the Filter step of NEB-FDB weights
the edges by only considering shortest paths between pairs of adjacent vertices, which could
give rise to a smaller number of “heavily weighted” edges to be included in the skeleton than
those computed by EB-FDB. We note, however, that while we expect this hypothesis to hold
in typical real-world data sets, it is easy to find small counterexamples, where this is not the
case. The same intuition is behind H2.3, as a skeleton with fewer edges gives rise to bundled
drawings that use fewer pixels; however, this may have a negative impact on the distortion.

4.3 Dataset and Implementation Details
Our benchmark consists of graphs having a social network structure [21] and generated using
the well-established Stochastic Block Model (SBM) [15]. The dataset is divided into four
graph-size ranges: 20-50 nodes, 50-100 nodes, 100-150 nodes, and 150-200 nodes. Within each
range, graphs are further categorized into five density classes based on the average number
of edges per node (edge density). These classes range from sparse (2-4 edges per node) to
dense (greater than 10 edges per node). We generated five graphs for each combination of
graph-size range and density class, resulting in a total of 100 graphs.

The implementation of the Filter step of EB-FDB algorithm leverages the well-known
NetworkX library [13] to compute betweenness centrality (Equation 4), which is based on the
algorithm by Brandes [3]. The neighboring edge betweenness of Equation (5) is implemented
in Python. The Draw step for both the EB-FDB algorithm and the NEB-FDB algorithm uses
the Stochastic Gradient Descent method to optimize the stress of a straight line drawing of
the skeleton [40]. Finally, the Bundle step uses the implementation of the Faster Edge-Path
Bundling algorithm by Wallinger et al. [38]. The main code is in Python with integrated
C++ methods. Specifically, the Stochastic Gradient Descent and the NetworkX library make
use of more efficient C++ routines. Due to the different implementation languages we did
not focus on performance comparisions. Still, we measured wallclock runtime and report it
for EB-FDB (mean = 0.36s, max=3.30s) and NEB-FDB (mean = 23.04s, max=335.61s). We ran
our experiments on a compute cluster with an AMD EPYC 7402, 2.80GHz 24-core CPU but
restricted the computation to one core and 32GB of RAM, essentially simulating a powerful
desktop PC.

The data set and the code used for the experimental analysis are available at the following
OSF repository: https://osf.io/g4xqw/.

4.4 Analysis of the Results
We analyzed ink ratio, distortion and ambiguity separately. In general, a Shapiro-Wilk test
revealed that no condition-metric pair was normally distributed. Hence, we applied the
Wilcoxon signed-rank for comparing two conditions or the Friedmann test for three or more
conditions to test for statistical significance (α = 0.01). If statistical significance was found,
we applied Bonferroni-corrected pairwise t-tests. We report effect size with the the Common
Language Effect Size (CLES), i.e., the probability that the score of a random sample from
one distribution is greater than the one of a random sample from some other distribution.

https://osf.io/g4xqw/
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Figure 3 Strip plots of the experimental data about H1.1. The x-axis reports different t values.
The y-axis reports: (top) ink ratio; (middle) distortion, and (bottom) ambiguity. Red segments
connecting the mean values indicate statistically significant differences.

4.4.1 H1.1

Recall that the hypothesis is about EB-FDB and NEB-FDB outperforming PP-Bundling in ink
ratio, distortion, and ambiguity. Our results are as follows (see also Figure 3). Note that the
reported effect size is stated in terms of aggregated t, while individual levels can potentially
have different effect sizes.

Ink Ratio. When aggregating all instances over t we partially confirm the hypothesis.
NEB-FDB (mean value = 1.12) has lower ink ratio than PP-Bundling (mean value = 1.16)
(CLES = 0.67, p < 0.01). However, there is no statistically significant difference between
EB-FDB (mean value = 1.16) and PP-Bundling. If we compare different levels of t, then
there is no significant differences for t = 6 between EB-FDB and PP-Bundling. For all other
levels of t we have statistically significant results between the algorithms. Interestingly, with
increasing t EB-FDB exhibits higher ink ratio reduction than PP-Bundling.
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Figure 4 Instance with |V | = 156 and |E| = 815 from the benchmark dataset visualized with
PP-Bundling (left) and NEB-FDB (right) with t = 6. The ink ratio is 0.21 for PP-Bundling and 0.13
for NEB-FDB; the mean distortion is 1.52 for PP-Bundling and 1.18 for NEB-FDB; the ambiguity is 0.91
for PP-Bundling and 0.90 for NEB-FDB.

Distortion. When aggregating t the results for distortion indicate that there is statistically
significant difference between PP-Bundling (mean value = 1.39) compared to EB-FDB (mean
value = 1.14) (CLES = 0.84, p < 0.01) and NEB-FDB (mean value = 1.13) (CLES = 0.85,
p < 0.01). Furthermore, if we analyse individual values of t we find that there is positive
correlation between t and distortion for PP-Bundling. In contrast, the mean distortion does
not exhibit this behavior for EB-FDB or NEB-FDB.

Ambiguity. Again, if we aggregate instances over t the results indicate significant differences
between PP-Bundling (mean value = 0.70) compared to EB-FDB (mean value = 0.63) (CLES =
0.58, p < 0.01) and NEB-FDB (mean value = 0.64) (CLES = 0.57, p < 0.01). Correlation
analysis shows that for all three algorithms ambiguity correlates with increasing t.

Summary. For distortion and ambiguity our results support H1.1. However, for ink ratio
we found support only for values of t ̸= 6, i.e., for EB-FDB the ink ratio is higher for lower
values of t but decreases faster with increasing t compared to the other algorithms. Also,
with increasing t the distortion for EB-FDB and NEB-FDB remains somewhat constant while
PP-Bundling increases.

Figure 4 shows two drawings of the same graph. The one to the left is computed by
PP-Bundling while the one to the right is computed by NEB-FDB; in both cases t = 6.

4.4.2 H1.2

Recall that the hypothesis is about EB-FDB and NEB-FDB outperforming ConfluentDrawing
in ink ratio, distortion, and ambiguity. Our results are as follows (see also Figure 5).

First, we decided on a value for t to have a fair comparison between EB-FDB and NEB-
FDB against ConfluentDrawing. The choice for t = 6 was guided by the overall balanced
performance regarding all three metrics.
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Figure 5 Strip plots of the experimental data about H1.2. The x-axis reports different algorithms.

Figure 6 Instance with |V | = 147 and |E| = 952 from the benchmark dataset visualized with
ConfluentDrawing (left) and NEB-FDB (right) with t = 6. The ink ratio is 0.23 for ConfluentDrawing
and 0.09 for NEB-FDB; the mean distortion is 1.74 for ConfluentDrawing and 1.17 for NEB-FDB; the
ambiguity is 0.82 for ConfluentDrawing and 0.89 for NEB-FDB.

Ink Ratio. Here, the ink ratio shows a significant difference for ConfluentDrawing (mean
value = 0.16) when compared against NEB-FDB (mean value = 0.12) (CLES = 0.72, p < 0.01)
but not for EB-FDB (mean value = 0.15).

Distortion. The comparison of the distortion values revealed that both EB-FDB (mean value
= 1.17) (CLES > 0.99, p < 0.01) and NEB-FDB (mean value = 1.16) (CLES > 0.99, p < 0.01)
have drastically less distortion than ConfluentDrawing (mean value = 1.75).

Ambiguity. Lastly, we found that ConfluentDrawing (mean value = 0.65) has lower ambi-
guity than EB-FDB (mean value = 0.67) (CLES = 0.58, p < 0.01) and NEB-FDB (mean value
= 0.66) (CLES = 0.57, p < 0.01).

Summary. For ink ratio our results partially support H1.2 and fully support it for distortion.
H1.2 is also supported for NEB-FDB with respect to mean distortion for all values of t that we
considered. As for ambiguity, ConfluentDrawing outperforms both NEB-FDB and EB-FDB.

Figure 6 shows two drawings of the same graph. The one to the left is computed by
ConfluentDrawing while the one to the right is computed by NEB-FDB with t = 6.
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Figure 7 Instance with |V | = 182 and |E| = 1268 from the benchmark dataset visualized both
with NEB-FDB, and with t = 6 (left) and t = 10 (right). The ink ratio is 0.16 in the drawing to the
left and 0.09 in the drawing to the right.

4.4.3 H2.1

Recall that the hypothesis is that higher values of t yield lower ink ratio both with EB-FDB
and with NEB-FDB.

Analyzing the ink ratio for different values of t individually for EB-FDB and NEB-FDB
revealed a similar behavior. For both algorithms the ink ratio has no statistically significant
differences between t = 2 and t = 4 and between t = 8 and t = 10. All other values had
significant difference with effect sizes CLES < 0.4. This indicates that for t ≤ 4 the spanner
is dense and subsequently not many edges can be bundled. Similarly, for t ≥ 8 the spanner
is sparse and probably close to a spanning tree. Hence, the maximal amount of edges is
bundled but there is no choice of path left when computing the bundling.

Summary. Our results support H2.1 except when comparing t = 2 with t = 4 and when
comparing t = 8 with t = 10. Figure 7 shows two drawings of the same graph computed by
NEB-FDB for different t values.

4.4.4 H2.2

Recall that the hypothesis is about NEB-FDB using sparser t-spanners than EB-FDB. Refer
to Figure 8 for our results.

Here we counted the edges in the spanner after computing it in the filter step of EB-FDB
and NEB-FDB. The statistical analysis showed that instances computed with NEB-FDB have
sparser spanners than EB-FDB (CLES = 0.44, p < 0.01). Furthermore, the effect size becomes
stronger if we exclude higher values of t, i.e., all instances that are probably for both a
spanning tree already.

Summary. Our results support H2.2.
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Figure 8 Strip plots presenting the impact of the parameter t on the number of edges in the
spanners for EB-FDB and NEB-FDB.

Figure 9 Instance with |V | = 193 and |E| = 2614 from the benchmark dataset visualized with
EB-FDB (left) and NEB-FDB (right) with t = 6. The ink ratio is 0.24 in the drawing to the left and
0.21 in the drawing to the right; the mean distortion is 1.28 in the drawing to the left and 1.26 in
the drawing to the right.

4.4.5 H2.3

Recall that the hypothesis is about NEB-FDB computing drawings with higher distortion but
lower ink ratio than EB-FDB. Refer to Figure 3 for our results.

In direct comparison between EB-FDB and NEB-FDB we analyzed that both, ink ratio
(CLES = 0.35, p < 0.01) and distortion (CLES = 0.48, p < 0.01) are higher for EB-FDB. Even
though the result for distortion is statistically significant, the effect size only shows minor
impact of the algorithm in the Filter step.

Summary. Our results partially support H2.3. Namely, NEB-FDB outperforms EB-FDB both
in distortion and in ink ratio for the same values of t. Recall that, for a fixed value of t, the
spanner computed for NEB-FDB is generally sparser than the spanner for EB-FDB. In contrast
to our initial intuition, EB-FDB gives rise to higher distortion than NEB-FDB, since the curves
representing the bundled edges are longer.

Figure 9 shows two drawings of the same graph. The one to the left is computed by
EB-FDB while the one to the right is computed by NEB-FDB. In both cases with t = 6.

GD 2024
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5 Final Remarks and Future Work

We conclude the paper addressing the lessons that we learned, pointing out to the limitations
of our study, and discussing future research directions.

Lessons Learned. This study suggests that bundled drawing quality can be significantly
enhanced by designing algorithms that directly optimize core quality metrics during the
layout computation process, rather than relying solely on post-processing techniques. To this
aim, we can use an algorithmic framework consisting of three main steps: Filter, Draw, and
Bundle. The Filter step sparsifies the graph by identifying relevant edges, the Draw step
computes a layout of the sparsified graph, and the Bundle step reinserts the missing edges
into the layout. We showed that the computation of the sparsified graph can have significant
impact on relevant bundling qualities. In particular, we weighted the edges of the graph and
then applied a t-spanner. Our experiments have shown that both the edge weighting method
and the choice of the parameter t in the t-spanner can influence the ink ratio, distortion, and
ambiguity of the final drawing. More precisely, a value of t between 4 and 8, and in particular
a value of t = 6, together with a weighting function based on neighboring edge betweenness,
i.e., NEB-FDB, seems to be the most effective instantiation of the FDB framework in practice.

Limitations. We performed an experimental study that compares the EB-FDB, the NEB-FDB,
the PP-Algorithm, and the ConfluentDrawing bundling algorithms on a data set consisting
of 100 graphs having different numbers of nodes and densities. Although our results support
our hypotheses in most cases, experiments involving additional datasets should be conducted.
For example, one could consider a higher number of networks, having different sizes, and
that are generated with algorithms different from SBM. Also, it would be interesting to
evaluate our approach with real-world networks. At this point, the quality comparisons of
the different bundled drawings are performed purely on the three quantitative measures
of ink ratio, distortion, and ambiguity. Similarly, other drawing quality metrics should be
tested to provide new perspectives on bundling performance.

Future Work. We studied two different algorithmic instances of the FDB framework, namely
the EB-FDB algorithm and the NEB-FDB algorithm. We believe that the potential of the different
steps of the FDB framework can be further investigated by considering different methods for
each of the steps in the framework. It would be interesting to: (i) test different sparsification
techniques such as, for example, the Simmelian backbone [28]; (ii) adopt different layout
strategies for the drawing of the sparsified graph such as, for example, faithful force-directed
methods [25]; (iii) test approaches that consider crossing angles in the Bundle step of
which examples exist in the literature [5, 8]. Currently, we investigated the problem from a
practical perspective, however, a complementary theoretical investigation into combining
layout and bundling algorithms would be beneficial for further understanding. Also, it would
be interesting to compare the drawings produced by EB-FDB, NEB-FDB, PP-Algorithm, and
ConfluentDrawing in terms of aesthetic criteria such as, for example, angular resolution,
crossing angle, and number of crossings. Finally, it is an open question to evaluate whether
the optimized parameters are good proxies for graph readability.
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Abstract
Graph and network visualization supports exploration, analysis and communication of relational
data arising in many domains: from biological and social networks, to transportation and powergrid
systems. With the arrival of AI-based question-answering tools, issues of trustworthiness and
explainability of generated answers motivate a greater role for visualization. In the context of graphs,
we see the need for visualizations that can convince a critical audience that an assertion about
the graph under analysis is valid. The requirements for such representations that convey precisely
one specific graph property are quite different from standard network visualization criteria which
optimize general aesthetics and readability.

In this paper, we aim to provide a comprehensive introduction to visual proofs of graph properties
and a foundation for further research in the area. We present a framework that defines what it means
to visually prove a graph property. In the process, we introduce the notion of a visual certificate,
that is, a specialized faithful graph visualization that leverages the viewer’s perception, in particular,
pre-attentive processing (e. g. via pop-out effects), to verify a given assertion about the represented
graph. We also discuss the relationships between visual complexity, cognitive load and complexity
theory, and propose a classification based on visual proof complexity. Finally, we provide examples
of visual certificates for problems in different visual proof complexity classes.
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Figure 1 Our model GraphTrials identifies key processes for visually proving an assertion about
a given graph in an adversarial setting. The prosecution lawyer, i. e., a software or a human (assisted
by software), intends to highlight evidence for a graph being guilty of satisfying an assertion using a
visual certificate drawing. To convince the judge, i. e., the human audience of the drawing, the visual
certificate guides the judge’s perception to form a mental model which makes the assertion easy
to validate. The visual certificate must be unimpeachable as a defense lawyer (software or human
adversary) checks for reasons to doubt the certificate’s validity to influence the judge’s verdict.

1 Introduction

While state-of-the-art graph and network visualization techniques do a reasonable job of
untangling graphs to convey meaning and support free-form exploration, there are certain
application scenarios where these algorithms fall short. Namely, we focus on applications
where it is necessary to convince a (possibly non-expert) audience that a particular graph
has some structural property. We emphasize that this kind of application scenario differs
significantly from the traditional usage of visualization to generate new knowledge. Namely,
existing graph and network visualization techniques have sought mainly to represent all
aspects of a graph or network structure as faithfully as possible such that a user can explore
the visualization, identify structures, and gain insights about the underlying data. These
traditional visualization techniques can be sufficient for journalists and other communicators
to support a narrative in print or on-line media [11] by showing only selected views of graphs.

However, novel approaches are required in our setting in which a specific property of
the data is to be conveyed in an adversarial setting where the validity of the evidence
presented may be questioned (see also the defense lawyer role in Fig. 1 which may, e. g.,
represent doubts of the audience). For example, the investigative activity of the Italian
Revenue Agency (IRA) exploits the visual analysis of social networks whose nodes are the
actors of potential fraudulent activities and whose edges represent financial/legal transactions
between the actors. The investigators of IRA who suspect a group of persons or a single
individual/company of tax evasion submit a case to the Italian financial Police for possible
prosecution, which also implies showing some structural properties of the network beyond
reasonable doubts. See, e. g., [21–23] for references about the use of visual analytics in the
context of contrasting tax evasion in Italy.1 Below we describe introductory examples.

1 One author has been approached by the Australian Security and Investments Commission (a governmental
regulator for stock exchange) inquiring about visualizations to convince a court about illegal trades.
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▶ Example 1. A network admin discovers that two critical parts of the infrastructure would
not be able to communicate with each other if a particular switch fails. To increase the
robustness of the network, new hardware is needed. They have to convince the manager,
who has no background in network security, to fund new hardware.

▶ Example 2. In a legal court case, the prosecution discovered that money acquired in black
market sales was laundered by laundromat chain as evidenced by money provably transferred
via a complicated network from the dealers to the laundromats. The prosecution has to
convince the judge that all suspects belong to the criminal syndicate.

▶ Example 3. A new AI based heuristic is able to efficiently decide if a given graph is
Hamiltonian, i. e., to test if it contains a cycle traversing all its vertices exactly once2.
However, false positives must be filtered out. A human operator needs to perform this task as
there is no efficient algorithm. To facilitate this, the new version of the algorithm should also
create a visualization of the graph making the Hamiltonian cycle obvious to the operator.

Such scenarios have key differences to standard motivations for graph visualization.
Typical graph visualization techniques (node-link layout algorithms [18, 46], matrix ordering
approaches [7] and mixed approaches which either include features of different paradigms [3,4,
29] or show different visualizations side-by-side [13,28]) usually seek a representation showing
as many graph properties as possible simultaneously (by trading off aesthetic and readability
criteria [1,8,9,17]). However, for the scenarios above it is better to focus on showing optimally
and faithfully just one specific property, i. e., we want a visual proof for that property.

More precisely, a visual proof is a proof given by the use of a graphical or visual
representation called visual certificate. A good visual proof should be clear and concise,
conveying the main idea in an easy-to-understand way. It should be able to effectively
communicate the desired message without being overly complex or cluttered. Additionally,
the visual certificate should be aesthetically pleasing and easy to interpret. Somehow, it
should be able to provide evidence to support the argument being made. Thus, a good visual
certificate should be accurate, concise, and free of errors or mistakes.

In fact, visual proofs are already used in mathematics and other areas such as logic, graph
theory, computer science, and physics [37,57]; visual proofs are often easier to understand
than algebraic proofs, as they are less abstract and easier to follow. Accessible proofs are
often considered more beautiful by mathematicians; e. g., Appel and Haken employed a
computer-assisted proof of the long-open four-color theorem in 1976 [5]. This new type
of proof sparked philosophical debates [50] and while the theorem is broadly accepted as
proved3, researchers still desire a more elegant proof [2]. Thus, we expect that visual proofs
are appealing and even more convincing to experts also in fields other than mathematics.

Visual proofs can also convey properties to non-expert users or explain correctness of
AI-generated solutions. As powerful chat-based interfaces are capable of generating plausible
sounding – but difficult to verify – explanations of complex phenomena, we believe that there
is a requirement to understand what makes a graph representation a proper visual certificate.

2 Note that neural network approaches for NP-hard problems have been described, e. g., in [10]. In
addition, the need for visualizations in the context of explainable deep learning has been described, e. g.,
in [16].

3 According to the Oxford English Dictionary, it is yet to be proven as a “mathematical theorem” [40].
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(a) (b) (c)

Figure 2 Three layouts generated with yEd4 [59]. (a) and (b) Circular and organic layouts
generated with standard settings, resp. (c) Manually created layout highlighting the cut-vertex.

Contribution. We introduce a model identifying important steps and their interactions in a
visual proof of a graph property. Based on this model, we formalize the concept of visual
certificates and give requirements for a visualization to qualify as such. We also give examples
of visual proofs for widely used graph properties and identify open research questions that
should be answered to better understand visual proofs and make them algorithmically usable.

2 First Examples of Visual Proofs

2.1 Example 1: The Graph contains a Cut-Vertex
First, we revisit Example 1. In this communication network there are two distinct parts such
that all connections between them traverse a single switch. This corresponds to the graph
underlying the network containing a cut-vertex, whose removal separates the remainder of
the graph into at least two distinct components. Hence, in order to convince the manager,
the network admin has to point out that the graph underlying the network can be separated
by the removal of the vertex corresponding to the switch. So, they first layout the graph
using a circular layout, which is a wide-spread all-purpose visualization style [44], and point
the manager to the fact that the red colored vertex is a cut-vertex; see Figure 2a.

Unfortunately, the circular layout does a poor job at highlighting the cut-vertex. While
it is evident to the manager that there are a top and a bottom component connected by
some edges, they explain that they are not sure if all connections between both components
use the suggested cut-vertex or not. Hence, the network admin prepares a second drawing
using a force-directed organic layout where the cut-vertex is clearly visible; see Figure 2b.
However, the engineer who designed the network becomes defensive and claims that there
could be another edge hidden behind the alleged cut-vertex. This argument can be easily
disproven by the network admin as they move the cut-vertex down, obtaining the drawing
in Figure 2c. Presented with this new line of evidence, the engineer stops arguing and the
manager agrees that the network has to be made more robust.

Discussion. This example illustrates how standard layout techniques may be unable to
highlight even simple properties. In the circular layout, it is not easy to verify even when the
cut-vertex is highlighted; see Figure 2a. This is due to the Gestalt principle of grouping [52,53].

4 Unless specified otherwise, the layouts of all visualizations in this paper have been created by the
authors.
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(a) (b) (c)

Figure 3 (a)–(b) Organic layout generated with standard settings by yEd [59], with a spanning
tree highlighted in (b). (c) A manually created layout highlighting the spanning tree.

Here, the initial perception is guided by continuity and closure of node positions, leading to
the perception of a single circular component. As a second step, an observer may see two
separate components with edges biasing perception due to connectedness grouping. Thus,
the observer has to analyze the entire graph, going node-by-node, to negate the automatic
perceptual grouping induced by the layout to verify that there is a cut-vertex. The issue
with the second illustration in Figure 2b is of different nature. Namely, the force-directed
layout does a much better job at highlighting the cut-vertex. In fact, the observer discovers
two dense salient features which are the two components separated by the cut-vertex and
immediately notes that they are connected at a single vertex. Nevertheless, if there is an
overlapping edge behind the cut-vertex, the drawing may look the same, challenging the
human observer to identify that the vertex is not a cut-vertex. The drawing in Figure 2c
avoids this problem by explicitly highlighting the cut-vertex via pre-attentively perceptable
patterns (i. e., pop-out effects) [53]. The singular goal of highlighting the cut-vertex is
achieved at the cost of traditionally accepted aesthetic metrics [42], as – compared to the
circular and force-directed layouts – the general layout is unbalanced, with many crossings
and poor resolution; see Table 1. Thus, visual certificates may not be useful in traditional
exploratory applications, instead they focus on highlighting a specific property.

We remark that a cut-vertex proves non-2-connectivity and a similar approach can be
used to visually prove that a graph is not k-connected: there exists a set of k − 1 vertices
whose removal separates the graph and we can layout the graph so that all connections
between two clearly separated parts run via this vertex set.

2.2 Example 2: The Graph is Connected

In Example 2, to convince the judge, the prosecution lawyer decides to visualize the network
of criminals induced by the connections of provable money transfers. The prosecution
lawyer draws it with a force-directed approach; see Figure 3a. While Figure 3a shows that
there are many connections in the graph, it does not emphasize that there is only a single
connected component. Hence, the defense lawyer argues that the component containing
their client may have been drawn on top of the component with all the convicted criminals.
Hence, the prosecution lawyer has to improve their visual proof. To do so, they include
a highlighted spanning tree that shows that every vertex can be reached from every other
vertex; see Figure 3b. Although the defense lawyer now has to admit that there is a smaller
portion of the drawing to check, i. e., the highlighted edges, their argument stays more or less
the same: that there are still crossings between edges of the spanning tree, which may be due
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(a) (b) (c) (d)

Figure 4 Four layouts of a graph with a Hamiltonian cycle (red).

to two different highlighted components drawn on top of each other. Thus, the prosecution
lawyer creates a third drawing in which the spanning tree is crossing-free; see Figure 3c.
Here the spanning tree is rooted at the central vertex and vertices are drawn on concentric
circles depending on distance from the root. Given this visualization, the defense rests, and
the judge decides quickly that indeed all members of the network are affiliated.

Discussion. While in Example 1 we have seen that the drawing style of the entire graph
can be important to visually prove a property, here we added another dimension. Namely, a
subgraph is explicitly color-highlighted for pre-attentive perception. In addition, the drawing
of this subgraph was very important in creating a convincing argument. In Figure 3b the
drawing of the spanning tree is not very readable. Thus, even with the attention drawn to
this portion of the drawing, it remains time consuming to check that a single tree connects
all vertices. But when the tree is laid out in a concise and readable fashion as in Figure 3c, it
is quite evident that it spans all the vertices, as the colored edges induce automatic grouping
via similarity [52] and act as guidance for attention spread [30]. Similar to Example 1, while
the quality of the drawing of the spanning tree is improved, the drawing of the rest of the
graph does not measure well on the usual metrics; see Table 1.

2.3 Example 3: The Graph has a Hamiltonian Cycle
We may train an AI to produce a good node-link drawing for Example 3. As in Section 2.2,
we observe that the quality of the drawing of the evidence relevant to the property under
consideration is more important than the drawing of the full graph (Figure 4a), thus we select
a circular layout with the hamiltonian cycle forming the outer face (Figure 4b). However,
the human operator needs to check that all edges of the highlighted outer cycle are indeed
present which can become increasingly difficult for larger graphs where resolution may
become problematic. We can improve upon these issues by instead using an adjacency matrix
representation. While an arbitrary permutation (see Figure 4c) does not provide any insights,
an appropriate sorting of rows and columns makes the cycle composed of three components:
one red diagonal and two red-cells (top-right and bottom-left); see Figure 4d.

Discussion. We observed that different visualization paradigms may perform better or worse
for visually proving a property. While the node-link drawing in Figure 4b already highlights
the cycle well, the adjacency matrix representation in Figure 4d composes the Hamilton
cycle in three components. The perception of the red diagonal is facilitated by figure-ground
separation via connectedness and similarity [52], and the two corner cells stand out due to
both color difference and symmetry [58]. The particular advantage of this representation is
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16:8 GraphTrials: Visual Proofs of Graph Properties

that the used visual cues scale nicely even for very large matrices (up to the pixel resolution
of the screen) [58]. Thus, an important criterion for judging the quality of a visual proof
should be the workload required by the observer to evaluate the correctness. As checking for
Hamiltonicity is a difficult task with an all-purpose visualization (see also Section 3.3), both
visualizations should be regarded as valid visual certificates albeit of different quality.

3 Related Theories, Frameworks and Models

3.1 Certifying Algorithms
The concept of visual certificates is related to certifying algorithms popularized by McConnell
et al. [36], which seek to provide short and easy-to-check certificates for the correctness of
an algorithm. Let f : X → Y be a computable, surjective function for input set X and
output set Y and let W be a set of witnesses. Intuitively speaking, a witness describes a
simple proof certifying that the output y of an algorithm for f on input x satisfies f(x) = y.
The validity of a witness for a certain combination of inputs and outputs is assessed via the
witness predicate W : X × Y × W → {true, false} that fulfills:
1. Witness property: Given (x, y, w) ∈ X × Y × W , it holds f(x) = y ⇔ W(x, y, w) = true.
2. Checkability: Given (x, y, w) ∈ X × Y × W , it is trivial to determine W(x, y, w).
3. Simplicity: W(x, y, w) ⇒ f(x) = y has a simple proof.

An algorithm for f is now called certifying algorithm if for any input x ∈ X it computes
the output y = f(x) ∈ Y and a witness w ∈ W such that W(x, y, w) = true. It is worth
noting that Properties 2 and 3 of the witness predicate are vaguely formulated. McConnell et
al. [36] suggest that Property 2 can be formalized by requiring that there must be a decision
algorithm for W that runs in a certain time (such an algorithm is called a checker). On the
other hand, they emphasize that Property 3 is intentionally left subjective as it relies on
what is considered common knowledge. For examples of certifying algorithms, see the full
version of this article.

3.2 Perception
Visual proofs are concerned with a design of visual evidence for an existence of a specific
property, such as the presence of a cut-vertex, a Hamiltonian cycle, etc. In principle, a
proof for such a property can be reduced to a program that returns a binary outcome,
affirming or rejecting the claim. This may be sufficient for specialists who are familiar with
the property itself, understand and trust the algorithm behind the code, and trust that
the code is valid. However, such evidence may not be convincing to a non-specialist (a
judge, a stockholder, etc.), particularly because the proof itself will be just one piece of
evidence among many. Prior research shows that in such cases, presenting evidence per se
is not enough, as information can be discounted as confusing, unimportant, or, given the
wrong context, even misleading [49], as the accessibility and clarity of evidence could be as
important as evidence itself [27].

Due to the diversity of graph properties there can be no general solution. Visual proof
design might be guided by the principle of optimizing the data-ink ratio [49]. Thus, instead of
optimizing overall aesthetic metrics [42], one should minimize the required number of visual
queries, i. e., attention orientation, driving eye movements, and pattern/object recognition [54].

The human visual perception system consists of three stages: (1) rapid parallel processing
involving billions of neurons, e. g., extraction of orientation, texture, color, and motion
features; (2) slower processing than Stage 1, e. g., detection of 2D patterns, contours and
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regions; (3) slow serial processing, involving both working and long-term memory, e. g.,
object identification [53]. As in Stage 1 the entire visual field is processed quickly in parallel,
information that can be captured in this stage can be easily distinguished. Thus, pre-attentive
(pop-out) patterns such as color, size, orientation, shapes, etc. should be utilized.

In other words, a good visual proof must ensure that a focal piece of evidence is a visual
“pop-out” feature that automatically attracts viewer attention and that the visual layout is
parsed and grouped into patterns that express the evidence. In case of the former, studies
on visual search provide a comprehensive list of useful pop-out features such as color, size,
contrast, or location [58]. Regarding the latter, one can rely on a large body of literature on
principles of perceptual organization, commonly known as Gestalt principles [52]. However,
yet another constraint is placed by our working memory that limits the number of nodes,
edges, and components that can realistically be assessed at any single time [35].

The examples above illustrate the importance of this approach for visual proofs. For
instance, consider the visual evidence for the existence of a cut-vertex in Figure 2a. While
it uses color to attract the viewer’s attention to the cut-vertex and spatial arrangement to
visually separate the two components, it still leads to an excessive number of visual queries,
requiring multiple scans of individual vertices to ensure that they are connected only to the
cut-vertex and the nodes within the component. In turn, there is a memory bottleneck that
is likely to prevent a viewer from being completely certain about the validity of the proof. In
contrast, in Figure 2c the graph layout groups the entire evidence in just three components
and clearly shows lack of inter-component edges, so that very few visual queries are required
to confirm the vertex is indeed a sole connector between the components. In short, although
there cannot be a single one-size-fits-all approach for constructing visual proofs, their critical
role in aiding the cognition of the viewer means they should be built based on principles of
perceptual organization and around the limitations of attention and memory [54].

3.3 Computational Complexity
To evaluate the amount of the cognitive workload, we will apply concepts from complexity
theory [6,24]. It is also worth mentioning that the examples discussed so far differ in terms of
their computational complexity. Namely, all cut-vertices of a graph and a spanning-tree can
be found in time O(n + m) based on BFS traversals where n is the number of vertices and
m the number of edges while determining a Hamiltonian cycle is NP-complete [24]. Thus,
in Example 3, we have visually proven an algorithmically difficult to solve problem.

However, there may be graph properties that cannot be visually proven. We first have to
discuss how a human observer interacts with a visual certificate. In Example 1, the human
observer identified two connected components and then saw that they can be separated by
the removal of their shared vertex. Such a procedure could be seen as an O(1) time algorithm,
where the observer determined that there is only a single point where both components
touch. Similarly, in Examples 2 and 3, the observer may have checked for every vertex if it
was part of the highlighted structure. Even if they were to check this for every vertex one at
a time, the resulting algorithm would still run in linear time. Hence, an observer is actually
performing a deterministic validation algorithm for establishing that a certificate is correct.

Now, consider the complementary question to Example 3, i. e., we want to determine
whether a graph does not contain a Hamiltonian cycle. This is a CoNP-complete problem as
it is the complement to an NP-complete problem. For CoNP-complete problems it is likely
that there is no certificate that can be checked in polynomial time [6], i. e., if we assume that a
human observer deterministically analyzes a visualization (as could be recreated by computer
vision), we have to assume that we cannot visually prove a CoNP-complete problem.
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3.4 Related Visualization Models
Aside from graph visualizations, the concept of visually enhancing a proof is wide-spread. In
mathematics, visual proofs for theorems have been used since ancient times [57] and there is
a plethora of examples [37]. The question if such proofs can be regarded as such also has
been discussed philosophically [12]. Also in computer science, visualizations are heavily used
to convey knowledge, e. g., while not necessarily proving, an interactive sequential art by
Bret Victor [51] beautifully explained an algorithm from a Nature paper [55].

Overall, there is a trend of increasingly sophisticated models considering an holistic
integration of visualization into the sensemaking process, typically with the goal of informing
the design of interactive systems for data exploration. Early models considered a linear
pipeline, from data, via various transformations, to a visual display [14]. Visual analytics
seeks to apply visualization to support the entire human sense-making loop [41]. More recent
models aim to connect sense-making from interactive data visualization, via hypothesis
formation and testing, to knowledge generation [43]. An underlying theme across most of
this work is the role of computational guidance in the analytics process, and how algorithms
can support the various loops in the sensemaking process [15]. By contrast, we consider a
different model to conceptualize the role of algorithms, and AI, in supporting data (specifically
network data) understanding. Our model for visual proofs (Fig. 1) does not seek to replace
the traditional sense-making/knowledge-generation loop, but to support humans in situations
where the result of a complex algorithm or property needs to be explained and justified.

There are also models related to ours from information visualisation research. Song et
al. [45] considered a problem that may be seen as a complementary question to the one studied
in this paper: They investigated how computer vision can understand network visualizations
optimized for human users. Wickham et al. [56] proposed a two-phase procedure to convince
a human observer that a data set contains statistically significant difference from randomly
generated data. The human observer is first exposed to several randomly generated data sets
(similar to a Rorschach test) before being exposed to a line-up consisting of the real data
set and a couple randomly generated data sets. The first phase primes the human viewer
for statistically insignificant variations so that, in the second phase, statistically significant
differences clearly pop out from the noise. Another related model are Gragnostics, which are
ten features suggested by Gove [25,26], that are fast to compute and provide a quantification of
structural graph properties. In contrast to our model that aims to prove structural properties
of graphs, Gragnostics provides the human user with a first impression of the structure of
the graph at hand which may be helpful for initiating a thorough investigation. Finally, our
model may also be seen as a visual communication of structural graph properties. Visual
communication has been investigated in other settings for several decades, see e. g. [47, 48].

4 The GraphTrials Model

We are now ready to discuss our formalization of visual proofs. For this, we first abstractly
outline the process of visually proving properties of graphs in an adversarial setting using a
model that we call GraphTrials; see also Figure 1. The model includes three distinct roles
that have already appeared in our discussion of Example 2 in Section 2.2: The prosecution
lawyer must convince the judge that a certain assertion regarding a graph is true, the defense
lawyer may raise doubts about the validity of the prosecution lawyer’s claims, and the judge
will determine the truth of the assertion. The roles prosecution lawyer, judge and defense
lawyer are to be seen as abstract descriptions of the different actors in the process; e. g.,
in Examples 1 and 3, the prosecution lawyers were the network admin and the AI based
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algorithm, respectively. The latter example further indicates that not all roles have to be
assigned to a human. In fact, we only require that the judge corresponds to the human
audience of the visual certificate whereas each lawyer may be either human, software or a
human assisted by software. Moreover, as we have seen in Section 2.1, it can also occur that
a critical audience can act as both the judge and defense lawyer roles simultaneously.

To convince the judge of a valid assertion f for the input graph G, the prosecution lawyer
draws a visual certificate W (G). To do so, they first analyze the raw data G to reveal
evidence that proves the assertion f . The evidence is then embedded in W (G): a visual
representation of G that in some way emphasizes the evidence. Note that in the scope of
our model we treat the analysis of the raw data and extraction of the evidence as a black
box, i. e., we may assume that the prosecution lawyer already knows that the assertion f

is true for the input graph G and may also be given the evidence as input. This allows
us to efficiently visually prove algorithmically difficult assertions (such as the existence of
a Hamiltonian cycle as in Section 2.3) and to ignore how the evidence is gathered (either
algorithmically or by human interaction) in our model. The latter aspect also provides the
possibility to separate the evidence gathering from the visualization process W , i. e., W could
be a reusable program that embeds the evidence according to a specification5.

The defense lawyer checks the unimpeachability of W (G) as a visual representation
of G certifying f(G). Thus, they may question whether the graph represented in the
visualization actually corresponds to the input and they may also raise concerns if W (G) is
not distinguishable from a slightly different non-certificate (e. g., in Section 2.1 we encountered
the case where an edge may have been hidden making it invisible to the judge’s perception).

The judge, the human audience of the visual certificate W (G), will validate the claim
f(G) using W (G). In this step, the visual certificate W (G) must guide the judge’s perception
so that they are able to form a mental model M(G) that facilitates confirmation of the
validity of the assertion f(G). For instance, the guidance can be formed by a suitable choice
of topology which leads the judge to identify clusters of the graph as distinct salient features
(as in Section 2.1) or by adding additional features such as color to draw attention to certain
parts of the graph (as in Section 2.2). We discuss the judge’s mental model in the full version
of this article.

It is noteworthy that aside from the input graph and the verdict of the judge, the only
information shared by all three roles is the visual certificate W (G). In particular, it is the only
medium that can be used by the prosecution lawyer to communicate the gathered evidence to
the judge, i. e., the evidence is hidden information only accessible by the prosecution lawyer.
Similarly, the judge is not communicating its mental model M(G) to the prosecution or
defense lawyer, yet as we discussed above both roles might want to estimate what the mental
model will look like. Furthermore, the nature of the mental model plays an important role in
the validation step performed by the judge. Namely, the cognitive load put on the judge in
this step depends hugely on how complex M(G) is. Finally, the defense lawyer’s checking
for unimpeachability is a process that is independent of the judge and prosecution lawyer
and for a faithful and readable visual certificate we demand that there is no reason for the
defense lawyer to raise doubts to the judge. As a result, there are several properties that
we require from a visualization in order to call it a visual certificate and it could occur that
an assertion cannot be visually proven for every graph for which the assertion is true (for
instance we discussed issues related to scalability in Section 2.3). To this end, we also state
when we want to say that a certain assertion can be visually proven for arbitrary graphs.

5 The examples in Section 2.3 and 5 both use visual certificates that highlight cycles.
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Visual Certificates and Visual Provability
We give formal requirements inspired by the concept of certifying algorithms discussed
in Section 3.1. Let f : G → {true, false} be an assertion function for the set of graphs G,
i. e., for some graphs the assertion f(G) is true while for others it is not. For instance, if f

is the existence of a cut-vertex, some graphs do contain one (f(G) = true) while others do
not (f(G) = false). Consider a graph G with f(G) = true and let W (G) be a visualization
of G. We call W (G) visual certificate for f(G) if and only if the following hold:
1. Unimpeachability: We call W (G) unimpeachable, if it satisfies the following two properties.

First, W (G) should provide information faithfulness [38], i. e., it displays the ground
truth properties and structures in G. Second, W (G) should provide task readablility [38],
i. e., the judge can perceive enough information for validating the assertion.

2. Checkability: Given W (G), it is trivial to decide that f(G) = true. In particular, this
means that the judge’s perception leads to the formation of a mental model M(G) that
makes it possible for the judge to efficiently validate the assertion. The number of distinct
observations made by the judge in the process is called the perceptual complexity.

3. Simplicity: Given M(G), there is a simple formal proof for f(G) = true that relies solely
on conclusions that the judge may deduce using M(G). In particular, this means that
W (G) is perceptually distinguishable from any possible wrong visual certificate W ′(G).

If a visual certificate W (G) exists for each G ∈ G with f(G) = true, we call f visually
provable. Note that the complementary function f c (which is true if and only if f(G) = false)
needs not necessarily be visually provable. For instance, we were able to visually prove the
assertion that G contains a Hamiltonian cycle in Section 2.3 but we argued that the absence
of such a cycle cannot be visually proven in Section 3.3. This and requiring unimpeachability
are clear differences to the concept of certifying algorithms whereas checkability and simplicity
occur in both models, here considering the perceptual abilities of the judge; see also Section 3.1.

We are also interested in how efficiently the judge is able to validate f(G) = true based
on M(G). To this end, we define the perceptual complexity as the time that the judge needs
to check the assertion given M(G). The perceptual complexity may depend on the size of
the graph, however, in some scenarios (e.g. Example 1) it may be independent of it. Since
we assume the judge to make an objective judgment based on the evidence, we can treat the
thought process as a deterministic algorithm and apply methods from complexity theory to
evaluate the perceptual complexity. See the full version of this article for an application of
these concepts.

5 Visual Proofs for Graph Properties

We provide visual proofs for further widely used assertions. For a summary of our discussion,
refer to Table 2. In addition, we discuss further assertions in the full version of this article.

(Non)-Bipartiteness and k-colorability. We can use a matrix representation to visually
prove bipartiteness; see Figure 5a. When sorting the rows and columns according to the
two independent subsets, bipartiteness can be simply checked by verifying if the two empty
squares are indeed empty [58]. This approach also generalizes to k-colorability as shown
in Figure 5b for 4 colors, however, for sparse graphs like in Figure 5c additional highlighting
of the (supposedly) empty squares might be necessary. For small graphs, a node-link diagram
might be easier to read and hence preferable, however the approach does not scale well due to
resolution since the judge needs to verify there are no edges within the subsets; see Figure 5d.
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Table 2 Visual proofs in this paper, computational complexity of the problem and perceptual
complexity of presented visual proofs (n and m denote the numbers of vertices and edges, resp.).

Assertion Comp. Complexity Percep. Complexity Sec.

G is connected
O(n+m) O(n) 2.2

G is not (2-)connected O(1) 2.1
G is not k-connected O(k3n2) O(k) 2.1
G is (not) complete O(n2) O(1) 5

G has a Hamilt. cycle (path) NP-complete O(1) 2.3
G has a length-k cycle (path) NP-complete O(k) 2.3

G is (not) bipartite O(n+m) O(1) 5
G is k-colorable NP-complete O(k) 5

CoNP-complete assertions coNP-complete Conj.: No Visual Proof 3.3

(a) (b) (c) (d)

Figure 5 Visualizing k-colorability. (a) A bipartite graph. (b) A dense 4-colorable graph. (c)
and (d) a adjacency matrix and a node-link visualization of a sparse 4-colorable graph.

An odd-length cycle certifies that a graph is not bipartite, so non-bipartiteness can be
visually proven by highlighting a shortest odd cycle in a drawing. In an arbitrary drawing,
the cycle may be hard to spot, see Figure 6a. Redrawing the cycle in convex position makes
it easier to read (see Figure 6b), especially if it is the convex outer cycle; see Figure 6c (this
makes the rest of the graph harder to read; see Table 1). The cycle is now clearly visible and
the judge just needs to assert oddness. While depending on the odd cycle length counting
may be inevitable, the judge can use the symmetry of the drawing of the cycle to see that the
cycle is odd (e.g., in Figure 6c, there is a single top-most but no single bottom-most vertex).
For larger cycle lengths, an adjacency matrix representation may be beneficial: Sort the rows
and columns along the odd cycle and mark it, then append the remaining vertices arbitarily.
Then, alter the spacing of the matrix so that even rows and columns are thicker than odd
ones; see Figure 6d. The cell closing the cycle is a square if and only if the length is odd.

Completeness and Non-Completeness. Non-completeness is evidenced by a single missing
edge and can be visually proven with a circular layout with the missing edge on the outer
cycle. This approach does not scale well for a larger graphs; see Figure 7a. Readability and
scalability can be improved by drawing focus to the missing edge, see Figure 7b. However,
one can also use a matrix representation (see Figure 7c) since spotting a missing square
scales well from a perception perspective [58]. This technique can also prove completeness.

GD 2024
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(a) (b) (c) (d)

Figure 6 Visualizing non-bipartiteness of a graph. In (a) the odd cycle is self-intersecting, making
it difficult to certify that it is in fact a cycle. Both in (b) and (c) the cycle is clearly visibile where
in (c) the cycle forms the outer boundary of the drawing letting it stand out even more compared to
(b). Finally, in (d) the odd cycle is represented by a distinguishable pattern in the adjacency matrix.

(a) (b) (c)

Figure 7 Visualizing non-completeness of a graph. In (a) the missing edge is very difficult to
spot. In (b) and (c) on the other hand it is obvious that an edge is missing.

6 Limitations of the GraphTrials Model

Scalability. In the GraphTrials model, we must not only visualize the evidence represented
in the visual certificate, but also display the remainder of the graph faithfully. This may
result in higher computational complexity compared to other visualization techniques, e. g.,
force-directed graph layouts, whose purpose is to create an overall readable representation.
Why not forgo visualization completely and use an assertion software to validate the evidence
computationally? While this could drastically reduce the computation time and require fewer
software components, there are in fact real-world application scenarios, e. g., in court, where
it may be better to show a visual certificate accompanied by a short explanation why the
certificate is indeed establishing the assertion instead of simply telling the audience that a
piece of software analyzed the network and found the evidence for the assertion; see Section 1.
Another benefit of visual proofs over a non-visual assertion software is that bugs in the visual
proof pipeline can be spotted in the visual certificate, i. e., either the represented graph is
not the input graph or the evidence is not a true evidence for the claim.

Another scalability issue is to display the entire graph faithfully. In Section 4, we assumed
that the visual certificate may be represented by few components in the judge’s mental model
and that the formation of that mental model can be mainly guided by usage of bottom-up
and pattern recognition processes. For large input graphs, the screen resolution might not
permit an information-faithful representation of the input graph so that one must resort to
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techniques for displaying larger data, e. g., zooming. The introduction of such modes of user
interaction may be problematic for our model as it may lead the judge to increasingly use
top-down processes of perception which may influence the formation of the mental model.

Human factors. In our model, the judge is necessarily a human actor in the visual proof
process. Hence, it is no surprise that human factors play an important role in the application
of our model. Our model assumes that the judge is able to draw objective conclusions
provided the evidence by the prosecution lawyer. This process may be hindered by insufficient
background knowledge of the judge or subjective expectations towards the visualization.
Moreover, the judge’s mental model cannot be directly analyzed and influenced introducing
uncertainty into the model. We discuss these aspects further in the full version of this article.

7 Open Problems

(i) Are visual proofs in fact scalable? How do they extend to geospatial and dynamic graphs
where the data are expected to obey spatial and/or temporal constraints? (ii) Which features
contribute to perceptual complexity? (iii) Do response times depend mostly on perceptual
complexity? (iv) When do human users regard a visual certificate as unimpeachable?
(v) What are human limits for the perception of graph properties? For instance, the
minimum perceivable slope difference is ≈ 2 degrees [31]. (vi) What is the trade-off between
perceptual complexity and cognitive load?
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Abstract
Connectivity is one of the important fundamental structural properties of graphs, and a graph
drawing D should faithfully represent the connectivity structure of the underlying graph G. This
paper investigates connectivity-faithful graph drawing leveraging the famous Nagamochi-Ibaraki
(NI) algorithm, which computes a sparsification GNI , preserving the k-connectivity of a k-connected
graph G.

Specifically, we first present CFNI, a divide-and-conquer algorithm, which computes a sparsifica-
tion GCF NI , which preserves the global k-connectivity of a graph G and the local h-connectivity of
the h-connected components of G. We then present CFGD, a connectivity-faithful graph drawing
algorithm based on CFNI, which faithfully displays the global and local connectivity structure
of G. Extensive experiments demonstrate that CFNI outperforms NI with 66% improvement in
the connectivity-related sampling quality metrics and 73% improvement in proxy quality metrics.
Consequently, CFGD outperforms a naive application of NI for graph drawing, in particular with
62% improvement in stress metrics. Moreover, CFGD runs 51% faster than drawing the whole graph
G, with a similar quality.
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1 Introduction

Connectivity is a fundamental structural property of graphs due to its wide communication,
transportation, and production applications. Consequently, tremendous progress has been
made in algorithms and complexity theory related to graph connectivity [40]. For example,
algorithms for various aspects of the connectivity have been presented, ranging from com-
puting the connectivity of a graph [27], increasing the connectivity of a graph through edge
augmentation [41], and decomposing a graph into connected components [18].

One notable problem is finding the minimum k-connected spanning subgraph of a k-
connected graph, which is NP-complete [13]. Nevertheless, an efficient linear-time algorithm
for finding a k-connected spanning subgraph of a k-connected graph with an upper bound of a
linear number of edges has been presented [39]. Specifically, the NI (Nagamochi and Ibaraki)
algorithm computes a k-connected spanning subgraph with O(kn) edges for a k-connected
graph G = (V, E) in O(m) time, where n = |V | and m = |E|.

In graph drawing, the faithfulness is an important quality metric to measure how the
drawing faithfully represents the ground truth structure of a large and complex graph.
Examples include distance-faithful metrics known as stress [8], shape-based metrics [9], cluster-
faithful metrics [31], symmetry-faithful metrics [32, 33], neighborhood-faithful metrics [26],
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(a) G. (b) G1 (computed by NI). (c) G3 (computed by CFNI).

Figure 1 Comparison of NI and CFNI: the sparsification computed by CFNI preserves both the
global sparse connectivity and the local dense connectivity structures of the graph G, better than
the sparsification computed by NI.

and change-faithful metrics [29]. In accordance, graph drawings that aim to optimize such
faithfulness metrics have been investigated, such as stress minimization layouts [12, 22, 52],
and the layouts to optimize shape-based metrics [30] and cluster faithfulness [3]. However,
connectivity-faithful graph drawing has not yet been investigated.

In this paper, we present the first study on connectivity-faithful graph drawings by lever-
aging the NI algorithm, which can compute a sparse subgraph preserving the k-connectivity
of a graph. Specifically, we first note that simply preserving the global k-connectivity of a
graph may not be effective for connectivity-faithful graph drawing. For example, while a
spanning tree preserves the global connectivity of a one-connected graph G, a drawing solely
based on the spanning tree may fail to faithfully represent the local connectivity of dense
subgraphs of G.

Therefore, we first present CFNI (Connectivity-Faithful NI), a divide-and-conquer ap-
proach utilizing NI, which preserves both the global k-connectivity of a graph G and the local
h-connectivity of each connected component of G. We then present CFGD (Connectivity-
Faithful Graph Drawing), which leverages CFNI to compute connectivity-faithful graph
drawings. Our main contributions can be summarized as follows:
1. We present CFNI (Connectivity-Faithful NI), a divide-and-conquer approach for graph

sparsification utilizing NI, to compute a connectivity-faithful sparsification, preserving
not only the global k-connectivity of a graph G but also the local h-connectivity of
each h-connected component of G, for h > k. Extensive experiments demonstrate that
CFNI achieves, on average, 66% better connectivity-related sampling quality metrics and
73% better proxy quality metrics [44] than NI, which outperforms the state-of-the-art
SS (Spectral Sparsification) [49] with 52% better connectivity-related sampling quality
metrics.

2. We present CFGD (Connectivity-Faithful Graph Drawing), which leverages CFNI for
connectivity-faithful graph drawing to faithfully represent both the global and local
connectivity structures in a graph. Experiments show that CFGD obtains better quality
metrics than a naive application of NI to graph drawing, particularly at up to 62% lower
stress on average. Furthermore, CFGD runs faster than directly drawing the whole graph,
at 51% faster, with a similar quality.

Figure 1 compares CFNI and NI for a one-connected graph G. The spanning tree G1
in Figure 1b is computed by NI, while G3 in Figure 1c is computed by CFNI with h = 3
(preserving the triconnectivity of triconnected components of G). Clearly, G3 better preserves
both the global mesh-like structure and the locally dense structures than G1, which loses the
local connectivity.
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2 Related Work

2.1 NI (Nagamochi-Ibaraki) Algorithm
Nagamochi and Ibaraki [39] presented a linear time algorithm to find a sparse k-connected
spanning subgraph of a k-connected graph, based on the following main lemma:

▶ Lemma 1. For graph G = (V, E), let Fi = (V, Ei) be a maximal spanning forest in
V −E1 ∪E2 ∪ . . .∪Ei−1 for 1 ≤ i ≤ |E| where possibly Ei = Ei+1 = . . . = E|E| = {} for some
i. Each spanning subgraph Gi = (V, E1 ∪E2 ∪. . .∪Ei) satisfies λ(x, y, Gi) = min(λ(x, y, G), i)
for all x, y ∈ V where λ(x, y, G) is the local connectivity between x and y in graph G.

Based on Lemma 1, a subgraph GNI = (V, E′) where E′ = E1 ∪ E2 ∪ . . . ∪ Ek is k-
connected if k ≤ λ(x, y, G). To compute GNI , one must compute the disjoint edge subsets
E1, E2, . . . , Em, m = |E|, where each Ei is a maximal spanning forest in G \ (E1 ∪ . . . ∪ Ei−1).
GNI is then constructed using the union of E1 to Ek, i.e., Gk = (V, E1 ∪ E2 ∪ . . . ∪ Ek).

In other words, given a k-connected graph G = (V, E), the NI algorithm computes
an ordered list of disjoint edge subsets E1, E2, . . . , Em, such that (V, E1) is one-connected,
(V, E1 ∪ E2) is biconnected, (V, E1 ∪ E2 ∪ E3) is triconnected, and so on, up to Ek.

The NI algorithm takes a k-connected graph G = (V, E) and starts by marking all v ∈ V

and e ∈ E as “unscanned”, and assigning a counter r to each v ∈ V , where all r(v) starts at 0.
The algorithm loops through every unscanned vertex, selecting a vertex with the highest r for
each iteration. The algorithm then iterates through all unscanned edges e = (x, y) incident
on x, and adds e to the subset Er(y)+1. If r(x) is equal to r(y), r(x) is incremented by 1;
otherwise, r(y) is incremented by 1. e is then marked as “scanned”, and once all unscanned
edges incident on x has been scanned, x is marked as “scanned”. The algorithm finally
returns the k-connected spanning subgraph GNI = (V, E1 ∪ E2 ∪ . . . ∪ Ek). The following
theorem describes the main results:

▶ Theorem 2. Given a simple graph G = (V, E), partition Ei ⊂ E satisfying Lemma 1 can
be found in O(n + m) time, where |Ei| ≤ n − i for i < n and |Ei| = 0 for n ≤ i ≤ m.

The linear runtime comes from each vertex and edge being scanned once. As G is simple,
r(v) for v ∈ V increases at most 1 when an incident vertex is scanned, thus r(v) ≤ n − 1.
Meanwhile, |Ei| ≤ n − 1, as |Ei| = n − 1 implies that no more vertices have r(v) < i. Thus,
the k-connected spanning subgraph GNI = (V, E1 ∪ E2 ∪ . . . ∪ Ek) can have at most k(n − 1)
edges.

Figure 2 shows an example of running NI on a graph, in this case, a biconnected graph G

shown in Figure 2a. Figure 2b shows the result of running NI on G, in particular showing
which edges belong to each edge set E1, E2, E3 as well as the r values of each vertex at the
end of the NI algorithm. Figure 2c shows the biconnected spanning subgraph Gk, obtained
using the union of the edge sets E1 ∪ E2 from the results in Figure 2b.

2.2 Graph Sampling and Spectral Sparsification
Graph sampling has been extensively studied within graph mining, where complex analysis
can be computed more efficiently on the smaller sample graph G′ than on the original large
and complex graph G [21, 23]. The main challenge for graph sampling is to compute G′,
which is a good representative of G, preserving the structural properties of G. However, the
most popular simple random sampling methods, such as Random Vertex (RV ) or Random
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(a) Biconnected graph G. (b) G after running NI. (c) Biconnected subgraph Gk.

Figure 2 Example of running NI on a biconnected graph.

Edge (RE), often produce disconnected samples, failing to preserve the connectivity of G [51].
Recent random sampling methods improve the connectivity of G′ and reduce the computation
time of G′ using the BC (Block-Cut vertex) tree decomposition [16].

Spectral sparsification [48] computes G′ preserving the spectrum of G, which is closely
related to important structural properties such as clustering [50] and connectivity [6]. Every
n-vertex graph G has a spectral sparsification G′ with O(n log n) edges, which can be
computed in near-linear time [49].

More recent work on graph sampling utilizes spectral sparsification to compute G′,
preserving the structural properties of G. For example, DSS (Deterministic SS) computes
G′ by selecting edges in decreasing order of effective resistance values [10]. Similarly, the
SV (Spectral Vertex) sampling computes G′ by selecting vertices in decreasing order of the
sum of effective resistance values of their incident edges [20]. Both DSS and SV have been
shown to perform significantly better than RE and RV , respectively, on various sampling
quality metrics [10, 20].

Furthermore, spectral sparsification has been integrated with graph connectivity, such as
the decomposition into biconnected (resp., triconnected) components using the BC (resp.,
SPQR) tree to reduce the computation time of G′ and to improve the quality of G′ including
the connectivity, see [19, 34].

2.3 Fast Graph Drawing Algorithms using Sampling

Graph sampling methods have been successfully integrated with the most popular graph
drawing methods, such as force-directed algorithms and stress minimization methods, to
reduce the runtime complexity of the algorithms from quadratic time to linear time [14, 46, 52].

For example, the sparse stress-based algorithms [46, 52] sample a pivot set P ⊂ V of
constant size to reduce the stress computation from quadratic to linear time. Similarly, the
RVS algorithm [14] uses a random vertex sampling method with a sliding window to reduce
the runtime of repulsion force computation to linear time.



A. Meidiana, S.-H. Hong, and Y. Jing 17:5

More recently, the fastest graph drawing algorithms using the sublinear-time force
computation and stress computation have been presented [28, 36, 38]. For example, the
SublinearForce framework [28] utilizes both vertex and edge sampling based on spectral
sparsification to reduce the computation of both repulsion and attraction forces from linear
to sublinear, while obtaining better quality than the linear-time RVS.

Sublinear-time stress computation algorithms have also been presented [38], based on
the Stress Majorization and Stochastic Gradient Descent, integrating vertex sampling using
spectral sparsification to reduce the stress computation from linear to sublinear time while
producing drawings similar to SM and SGD.

2.4 Faithfulness Metrics and Faithful Graph Drawing
Faithfulness metrics are designed for evaluating drawings of large and complex graphs,
by measuring how faithfully the ground truth structure of the graph is represented in a
drawing [43]. Various faithfulness metrics have been presented based on the definition of the
ground truth structure of the graph:

Stress measures how proportional the geometric distances between vertices in a drawing
are to the shortest path distance between the vertices in the graph [8].
Shape-based metrics measure how faithfully the “shape” of the drawing, computed using
the proximity graph, represents the ground truth structure of a graph [10, 15].
Proxy quality metrics [44] measure how faithfully the drawing of a sample graph represents
the ground truth structure of the original graph by computing the similarity between a
graph G and the “shape” of the drawing D′ of a sample graph G′ ⊂ G.
Cluster faithfulness [31] measures how faithfully the ground truth clustering of vertices is
represented as the geometric clustering in the drawing.
Automorphism faithfulness [32, 33] measures how faithfully the automorphisms of a graph
are represented as symmetries in the drawing of a graph.
Change faithfulness [4, 29] metrics are designed for dynamic graphs, measuring how
proportional the change in the dynamic graph drawings is to the ground truth change of
the structure of the dynamic graph.

Consequently, a number of graph drawing algorithms for optimizing faithfulness metrics
have been investigated, such as stress minimization layouts [12, 22, 52], ShFR and ShSM
algorithms to maximize shape faithfulness [30], and the ClusterKmeans and ClusterHAC
algorithms to maximize cluster faithfulness [3].

3 CFNI: Connectivity-Faithful NI

While the NI algorithm successfully computes a spanning subgraph preserving the global
k-connectivity of a graph, it may not always be sufficient to preserve the dense local
connectivity structures of the graph for connectivity-faithful graph drawing. This may be an
issue, especially for the graphs with a “globally sparse, locally dense” structure, such as the
scale-free graphs often found in real-world social networks and biological networks [1].

To address this issue, we present CFNI, a divide-and-conquer approach leveraging NI
for graph sparsification, which preserves both global and local connectivities. Given a
k-connected graph G, CFNI takes as parameter a target connectivity h, and returns a
subgraph preserving both the global k-connectivity of G and the local h-connectivity of each
h-connected component of G.
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Algorithm 1 CFNI.

1: Input: Graph G = (V, E), target connectivity h

2: k: connectivity of G

3: if h > k then
4: Decompose G into k + 1-connected components C1, C2, . . . Cc

5: for each k + 1-connected component Ci = (VCi , ECi) do
6: Ghi

= (VCi
, E′

Ci
) = CFNI(Ci, h)

7: end for
8: GCF NI = (V, E′

h = E′
C1

∪ E′
C2

∪ . . . ∪ E′
Cc

)
9: return GCF NI

10: end if
11: E1 = E2 = . . . = Em = {}
12: Vu = V , Eu = E // unscanned vertices and edges
13: r(v) = 0 for all v ∈ VCi

14: while |Vu| > 0 do
15: x = vertex in Vu with largest r

16: for {e ∈ E|e = (x, y)} do
17: Er(y)+1 = Er(y)+1 ∪ {e}
18: if r(x) == r(y) then
19: r(x)+ = 1
20: end if
21: r(y)+ = 1;
22: Eu.remove(e)
23: end for
24: Vu.remove(x)
25: end while
26: GNI = (V, E′ = E1 ∪ E2 ∪ . . . ∪ Ek)
27: return GNI

Roughly speaking, the main idea of CFNI is to divide a k-connected graph into k + 1-
connected components, and then, for each k + 1-connected component, recursively decompose
it into k + 2-connected components, and so on, until a decomposition into h-connected
component is obtained. Finally, we run the NI algorithm for each connected component to
preserve the local connectivity structure.

Algorithm 1 describes the steps of CFNI, which takes as input a graph G = (V, E) and a
target local connectivity h. h can be selected as any positive integer, not necessarily equal to
the k-connectivity of G.

The algorithm first checks for the connectivity k of G. If h > k, the algorithm decomposes
G into k + 1-connected components, and recursively calls CFNI for each k + 1-connected
component (lines 3-7). The recursion stops when CFNI is called on a graph whose k-
connectivity is no lower than h; at this step, NI is run on G (lines 11-26).

Once the recursive calls finish for all k +1-connected components, the local h-connectivity-
preserving k-connected subgraph GCF NI is finally computed using the union of the edge sets
of the k + 1-connected subgraphs of the k + 1-connected components (line 8).

The runtime complexity of CFNI depends on the runtime of the h-connected component
decomposition, while running NI on each component takes linear time. For example, the
decomposition of one-connected (resp., biconnected) graphs into biconnected (resp., tricon-
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nected) components takes linear time [17, 18]. Running NI on each h-connected component
Ghi takes linear time in the number of edges in Gi, which sums up to O(m) due to the
number of edges in all of the connected components adding up to m.

The number of edges in GCF NI is bounded by O(hn). At the lowest level of recursion,
CFNI decomposes a graph G into h-connected components, where NI is run on each h-
connected component Ghi = (Vhi , Ehi) to produce a h-connected subgraph G′

hi
= (Vhi , E′

hi
)

with O(h|Vhi
|) edges. As GCF NI is formed using the union of all G′

hi
, and given that the

sum of all |Vhi
| is n, the number of edges in GCF NI is bounded by O(hn).

4 CFGD: Connectivity-Faithful Graph Drawing

One popular method commonly used to draw big complex graphs is by utilizing graph
sparsification [10, 19, 28, 34, 37, 38]. Namely, given a graph G, first compute a much smaller
sparsified graph G′, then compute a drawing D′ of G′. Finally, the sparsified edges are added
back to D′, to obtain a drawing D of the whole graph G. While this approach is efficient (i.e.,
it has a much faster runtime than drawing the whole graph G), the effectiveness (i.e., the
quality of the drawing D) depends on how well the sparsification G′ preserves the structure
of G.

Due to the limitation of NI in preserving the local connectivity of highly connected
components of a graph G, a naive application of NI for graph drawing may not be sufficient
to represent all important connectivity structures of a graph faithfully. For example, a
drawing of a one-connected graph G based on the spanning tree may fail to depict cycles or
misrepresent locally dense subgraphs. We, therefore, present CFGD, which leverages CFNI
for connectivity-faithful graph drawing to overcome the weakness of NI in preserving the
local connectivity of highly connected components.

Algorithm 2 CFGD.

Step 1: Compute subgraph GCF NI = (V, E′
h) preserving global k-connectivity and local

h-connectivity of k-connected graph G using CFNI.
Step 2: Compute a drawing DGCF NI

of GCF NI using a graph drawing algorithm.
Step 3: Add all edges in Erh

= E \ E′
h to DGCF NI

to obtain a drawing D of G.

We expect CFGD to be able to compute high-quality connectivity-faithful drawings
due to CFNI preserving not only the global k-connectivity of a graph G but also the local
h-connectivity of each h-connected component of G, while still obtaining a fast runtime due
to the efficient runtime of CFNI.

5 CFNI Experiment

5.1 NI Experiment
We first evaluate the baseline performance of NI for graph sparsification by comparing NI
to SS (Spectral Sparsification), which has been shown to outperform stochastic sampling
methods [20, 19, 10, 34]. In summary, NI outperforms SS on several connectivity-related
sampling quality metrics, most notably on the connectivity-related metrics: Closeness
Centrality at 52% better, and Betweenness Centrality at 20% better. The visual comparison
also demonstrates the strengths of NI in preserving the overall connectivity structures that
SS often fails to preserve, for biconnected graphs. Thus, both the quality metrics and visual
comparisons demonstrate the strengths of NI over SS for connectivity-faithful sampling. For
details of the experiment, see the journal version of this paper [35].
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Although NI shows a good performance on biconnected graphs, for one-connected graphs,
the performance of NI deteriorates since the spanning tree misses the local connectivity
structures of graphs, such as cycles and clusters. We, therefore, conduct experiments to
evaluate how CFNI improves upon NI for globally sparse and locally dense one-connected
graphs.

5.2 CFNI Experiment Design

We now present comparison experiments to evaluate the strengths of CFNI over NI. Specific-
ally, we use one-connected graphs as inputs with h = 2, 3, since efficient linear-time algorithms
are known for computing biconnected components and triconnected components [18, 17]. We
denote the sparsification of a graph G computed by NI as G1, as k = 1 for the one-connected
graphs. We then denote the sparsification computed by CFNI with h = 2, 3 as G2 and G3.

We use a mix of real-world and synthetic graphs with various connectivity structures: 1)
real-world benchmark scale-free graphs, with globally sparse, locally dense clusters and small
diameters [24]; 2) GION graphs, biochemical networks with globally sparse, locally dense
clusters and long diameters [25]; 3) mesh graphs, with regular grid-like structures [7]; and 4)
black-hole graphs, synthetic graphs with globally sparse mesh- or cycle-like structures with
locally dense “blobs” attached [10]. See Table 1 for details.

Table 1 Data sets for the CFNI experiments.

(a) Scale-free.

G |V | |E|
soc_h 2000 16097

block_2000 2000 3992
oflights 2905 15645

tvcg 3213 10140
facebook 4039 88234
CA-GrQc 4158 13422

EVA 4475 4652
us_powergrid 4941 6594

as19990606 5188 9930
migrations 6025 9378
lastfm_asia 7624 27806

(b) Mesh.

G |V | |E|
dwt_1005 1005 4813

cage8 1015 4994
bcsstk09 1083 8677
nasa1824 1824 18692
plat1919 1919 15240

sierpinski3d 2050 6144
data 2851 15093
3elt 4720 13722

(c) GION.

G |V | |E|
2_gion 1159 6424
5_gion 1748 13957
6_gion 1785 20459
7_gion 3010 41757
8_gion 4924 52502
4_gion 5953 186279
1_gion 5452 118404
3_gion 7885 427406

(d) Black-hole.

G |V | |E|
G443 285 2009

Cycle759 377 4790
G462 733 62509

Cycle907 823 14995
Cycle896 1031 22638

G500 1080 17636
G887 4784 38135
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5.3 Quality Metrics Comparison
We use the well-known sampling quality metrics to measure how well the sparsifications
preserve the following properties of the original graphs [21, 23]:

Closeness Centrality (CLOSE) computes the “closeness” of a vertex to other vertices
by summing up the length of all shortest paths between a vertex and all the other
vertices [11].
Betweenness Centrality (BETW) measures the ratio of all shortest paths between each
pair of vertices that pass through a certain vertex [11].
Degree Correlation Associativity (DEG) computes the likelihood that vertices link to
other vertices of similar degrees [42].
Average Neighbor Degree (AND) computes the average degree of a vertex’s neighbors [2].
Clustering Coefficient (CC) measures the clustering of edges into tightly connected
neighborhoods and represents the extent of clustering tendency between vertices [47].

More specifically, we measure the sampling quality metrics using the Kolmogorov-Smirnov
(KS) goodness-of-fit-test [5], to compare the similarity of the CDF (Cumulative Distributive
Function) of each graph metric of the original and sparsified graphs. The KS distance has a
value between 0 and 1, where 0 means completely identical CDFs.

We compute the percentage ratio of the difference to compare the metrics computed by
G1 (i.e., computed by NI) and G2, G3 (i.e., computed by CFNI). For example, to compute the
percentage difference of AND computed by G1 and G3, we use the formula AND(G1)−AND(G3)

AND(G1) .
Figure 3a shows the sampling quality metrics computed on G1, G2, and G3, averaged

over all data sets. Clearly, G2 and G3 achieve notably better sampling quality metrics over
G1, and G3 further obtains better metrics over G2. The largest improvements are seen on
the connectivity-related metrics Closeness centrality and Betweenness centrality: averaged
over both, G2 and G3 obtain 51% and 66% improvements, respectively, compared to G1.
Improvements can also be seen over the other three metrics, with G2 and G3 obtaining 17%
and 33% improvements, respectively, over G1.

(a) Sampling quality metrics. (b) Prox. qual.

Figure 3 Average sampling (lower = better) and proxy quality metrics (higher = better) for G1,
G2, and G3. On average, G3 obtains significantly better metrics than G1 (i.e., NI), especially on
connectivity-related metrics CLOSE and BETW at 66% better on average.

To evaluate the effectiveness of the sparsifications for the purpose of graph drawing,
we compute the proxy quality metrics [44], for measuring how faithfully the drawing of
the sparsifications represents the ground truth structure of the original graph. We use
the Backbone layout, specifically designed to untangle “hairball” drawings of large complex
graphs [45], to draw G1, G2, and G3.

Figure 3b shows the proxy quality metrics computed on G1, G2, and G3, averaged over
all data sets. Similar to the results for sampling quality metrics, G2 and G3 obtain notably
better proxy quality metrics than G1, on average 53% better by G2 and 73% better by G3.
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Table 2 Visual comparison of the sparsified graphs computed by CFNI. G2 and G3 (by CFNI)
consistently preserve the structure of the graph G better than G1 (by NI), with G3 significantly
outperforming G2 on some graphs, e.g., Facebook and Sierpinski3d.

G G1 G2 G3

facebook

GION_1

sierpinski3d

Cycle896

(a) Sampling metrics. (b) Proxy metrics.

Figure 4 Average improvements by G2 and G3 (computed by CFNI) over G1 (computed by
NI). CFNI obtains improvement over NI on all metrics, most significantly on connectivity-related
sampling quality metrics CLOSE and BETW.
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5.4 Visual Comparison
Table 2 shows example visual comparisons between the drawings of sparsifications computed
by NI and CFNI, with the drawings of the whole graph G added as reference. Clearly, the
drawings of G2 and G3 are very similar to those of G, i.e., they faithfully represent the
original graph’s structure, while G1 often fails to preserve the structure of G. For example,
see the GION graph GION_1, where G1 misleadingly shows four “branches” expanding from
the middle cluster while G2 and G3 show only two, more faithful to the original G.

Moreover, sometimes only G3 is highly similar to G, while G2 also fails to preserve the
structure of G. For example, see the mesh graph Sierpinski3d, where G1 completely fails
to maintain the mesh structure of the original graph, and while G2 manages to maintain
the structure better, it is still distorted compared to G. Meanwhile, G3 displays almost the
same structure as G.

5.5 Discussion and Summary
Extensive experiments have demonstrated the strengths of CFNI over NI, preserving both the
global and local connectivity structures of graphs. Figure 4 shows the average improvements
obtained by G2 and G3 (i.e., running CFNI with h = 2 and h = 3 respectively) over G1 (i.e.,
running NI). The largest improvements are seen in Closeness centrality and Betweenness
centrality, which are both distance-based centralities highly related to connectivity. On
average, these improvements are 51% better for G2 and 66% better for G3. Significant
improvements are also seen in proxy quality metrics, at 53% better for G2 and 73% for G3.
In addition, G3 further obtains an average 31% improvement over G2 averaged between
Closeness centrality and Betweenness centrality, and 13% improvement for proxy quality
metrics over G2.

The visual comparisons in Table 2 validate the quality metrics, showing that G3 (computed
using CFNI with h = 3) represents both global and local connectivity structures of graphs
much more faithfully than G1 (computed by NI). In particular, for globally sparse and locally
dense graphs such as the scale-free and black-hole graphs, G3 faithfully represents both the
overall global shape and the locally dense clusters better than G1, improving the limitations
of NI. Furthermore, G3 also outperforms G2 in cases where G2 still has limitations capturing
the structure of G, such as seen in the Facebook graph, where the drawing of G3 is much
more similar to G compared to that of G2.

6 CFGD Experiment

6.1 Experiment Design
We now present experiments to evaluate the effectiveness of the CFGD approach, over a
naive application of NI to graph drawing. We performed an initial experiment for the naive
application of NI to graph drawing: given a k-connected graph G, we first compute the
k-connected subgraph GNI = (V, E′) using NI, then compute a drawing DGNI

of GNI , and
finally add back the edges in Er = E \E′ to produce the drawing DGNI +Er

of G. On average,
computing DGNI +Er

is 30% faster than directly computing a drawing D of G (i.e., applying
a graph drawing algorithm directly on G), with on average 11% better edge crossing and
only 15% lower shape-based metrics and neighborhood preservation. However, stress is
significantly higher, at 55% higher on average. For details, see the journal version of this
paper [35].
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We thus present experiments to evaluate how CFGD improves over a naive application
of NI to graph drawing. For the CFGD experiments, we use one-connected graphs, with
h = 2, 3, with the same data set as used in Section 5, and use the Backbone layout [45]
for its strengths in untangling “hairballs” in drawings of large, complex graphs. We denote
the drawing obtained using the sparsified graph computed by NI as D1, corresponding to
the notation G1 for the result of running NI on a 1-connected graph G used in Section 5.
Similarly, we use Dh to simplify the notation DGCF NI +Erh

used to denote the resulting
drawing from running CFGD on a graph G, i.e., we denote the drawing computed by CFGD
using h = 2 and h = 3 as D2 and D3 respectively.

6.2 Runtime Comparison
Figure 5a shows the average runtimes of computing D1, D2, D3 compared to computing a
drawing D directly from G. CFGD always runs significantly faster than drawing G directly,
with over 50% runtime improvement on both D2 and D3. On average, the runtime of
computing D3 is still very similar to D1, at only around 5% difference in runtime improvement
over D, showing that CFGD still preserves much of the runtime improvement obtained by a
naive application of NI for graph drawing.

6.3 Quality Metrics Comparison
To evaluate the performance of CFGD, we compare its results to those obtained from drawing
a graph directly, using graph drawing quality metrics. We use a selection of commonly-used
graph drawing quality metrics: stress [8], edge crossing, and shape-based metrics [10, 15].
See Section 2.4 for details on the metrics.

Stress. Figure 5b shows the average stress of D, D1, D2, and D3. On stress, we see the
largest improvement obtained by CFGD over a naive application of NI for graph drawing:
D2 and D3 obtain much lower stress than D1, at over 62% lower on average. This also
brings the stress to be relatively similar to that of D, at only about 7% difference for D3, in
contrast to D1 obtaining over two times higher stress than D.

Edge crossing. Figure 5c shows the average edge crossing metrics on D, D1, D2, and D3.
Surprisingly, even on D1, edge crossing is already almost the same as D, at only 3% lower
on average. D2 and D3 also show good performance, both at around 3% lower than D1 on
average, and furthermore even slightly better than D at around 6% better on average.

(a) Runtime. (b) Stress. (c) Edge crossing. (d) Shape-based.

Figure 5 Average runtime and quality metrics (lower is better for stress and edge crossing, and
higher is better for shape-based) of computing D1, D2, and D3 compared to computing D directly
on G. CFGD (D2 and D3) obtains significant runtime improvements over computing D directly on
G, while obtaining significantly lower stress than D1 and similar metrics to D.
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Shape-based metrics. Figure 5d shows the average shape-based metrics of D, D1, D2,
and D3. D2 and D3 show notable improvements over D1, on average 31% and 40% higher.
Furthermore, this brings the shape-based metrics of the drawings computed by CFGD closer
to those of the drawings computed directly from G: with D3, the shape-based metrics are
around 13% lower than D, significantly lower than the 51% improvement in runtime.

Table 3 Visual comparison of the drawings computed by CFGD. D2 and D3 (by CFGD) clearly
depict the structures of the graphs more faithfully than D1, with D3 further removing some distortion
issues occasionally displayed by D2 (e.g., on dwt_1005).

D D1 D2 D3

migrations

GION_5

dwt_1005

Cycle907

6.4 Visual Comparison

Table 3 shows some example visual comparisons of CFGD to directly drawing graph G. It
can be seen that in general, drawing D1, i.e., drawing the sparsification computed by NI,
often fails to maintain the structure of G, as can be seen in the direct drawing D. D2 and
D3 are often far more successful in preserving the structures of graphs, such as those seen in
the scale-free graph migrations and the GION graph GION_5.

GD 2024
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In other cases, D3 still succeeds in preserving the structure when even D2 fails. For
example, with the mesh graph dwt_1005, D2 manages to maintain the overall four-pronged
shape, but the drawing is still distorted compared to D. Similarly, for the black-hole graph
Cycle907, although D2 preserves both the local blobs and the overall “cycle”-like global
structure, the shape is somewhat distorted with “zig-zags”. Meanwhile, D3 of both graphs
mostly eliminates the distortion in the drawings compared to D2.

(a) Stress. (b) Edge crossing. (c) Shape-based.

Figure 6 Average improvements (in %) in quality metrics computed by D2 and D3 over D1, i.e.,
improvement of CFGD over a naive application of NI to graph drawing. CFGD obtains improvements
on all quality metrics, with the largest improvement on stress at over 63%.

6.5 Discussion and Summary
Our experiments have demonstrated the effectiveness of CFGD. Figure 6 shows the average
improvements in quality metrics obtained by D2 and D3 over D1. In particular, the largest
improvement is seen on stress: D3 obtains on average 62% lower stress than D1. Looking
at the visual comparison, drawings D1 often contain very long edges between vertices that
neighbor each other in the original graph G but are in distant branches in the spanning tree,
leading to high stress. Meanwhile, these long edges are absent in D2 and D3, leading to
much lower stress compared to D1.

Surprisingly, D1, D2, and D3 obtain edge crossings very similar to D, even slightly better
at 3%, 6%, and 6% lower on average, respectively. Most of this improvement is on scale-free
and black-hole graphs, both containing graphs with globally sparse, locally dense structures.
One possible explanation can be seen from the black-hole graphs, such as can be seen in
graph Cycle907 in Table 3 where the locally dense blobs are drawn with a larger area in
drawings D1, D2, D3 compared to D. This may have removed some of the edge crossings
introduced in D due to the blob being compressed into a smaller drawing area.

7 Conclusion

We present the first study of connectivity-faithful graph drawing, by leveraging the NI
algorithm to graph sparsification and drawing. Specifically, we present local connectivity-
preserving divide-and-conquer approaches CFNI and CFGD, to improve on the limitations
of NI by not only preserving the global k-connectivity of a k-connected graph G, but also
preserving the local connectivities of h-connected components of G, where h > k.

We demonstrate the effectiveness of CFNI over a naive application of NI, obtaining
up to 66% average better connectivity-related sampling quality metrics and 73% better
proxy quality metrics over NI. We also demonstrate the effectiveness of CFGD over a naive
application of NI to graph drawing, most notably with 62% lower stress; CFGD also runs
51% faster than directly drawing the whole graph with similar quality metrics.

Future work includes evaluations of CFNI and CFGD using higher local connectivity.
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Abstract
Visualizing a graph G in the plane nicely, for example, without crossings, is unfortunately not always
possible. To address this problem, Masařík and Hliněný [GD 2023] recently asked for each edge of G

to be drawn without crossings while allowing multiple different drawings of G. More formally, a
collection D of drawings of G is uncrossed if, for each edge e of G, there is a drawing in D such that
e is uncrossed. The uncrossed number unc(G) of G is then the minimum number of drawings in
some uncrossed collection of G.

No exact values of the uncrossed numbers have been determined yet, not even for simple graph
classes. In this paper, we provide the exact values for uncrossed numbers of complete and complete
bipartite graphs, partly confirming and partly refuting a conjecture posed by Hliněný and Masařík [GD
2023]. We also present a strong general lower bound on unc(G) in terms of the number of vertices
and edges of G. Moreover, we prove NP-hardness of the related problem of determining the edge
crossing number of a graph G, which is the smallest number of edges of G taken over all drawings of
G that participate in a crossing. This problem was posed as open by Schaefer in his book [Crossing
Numbers of Graphs 2018].
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18:2 On the Uncrossed Number of Graphs

1 Introduction

In a drawing of a graph G, the vertices are represented by distinct points in the plane and
each edge corresponds to a simple continuous arc connecting the images of its end-vertices.
As usual, we identify the vertices and their images, as well as the edges and the line segments
representing them. We require that the edges pass through no vertices other than their
endpoints. We assume for simplicity that any two edges have only finitely many points in
common, no two edges touch at an interior point and no three edges meet at a common
interior point.

A crossing in a drawing D of G is a common interior point of two edges of D where they
properly cross. For a drawing D of a graph G, we say that an edge e of D is uncrossed in D

if it does not share a crossing with any other edge of D.
There are two staple problems in the graph drawing field that defined the past eighty

years of development in the area. The first one, dating back to World War II times [2, 21], is
the problem of determining the crossing number cr(G) of a graph G, defined as the smallest
number of crossings required in any drawing of G in the plane. The crossing number problem
has been intensively studied ever since, especially in the past thirty years. Computing the
crossing number is NP-hard on general graphs [3], and one can find a thorough overview of
the area in a recent book by Schaefer [19].

The second, only slightly newer problem, is that of determining the thickness θ(G) of a
graph G, defined as the smallest integer k such that G can be edge-partitioned into k planar
graphs. This problem was proposed by Harary [7] in 1961 and since then this concept has
played an important role in graph drawing. Unlike for planarity, deciding whether a graph is
biplanar, that is whether θ(G) ≤ 2, is NP-complete [14]. For an overview of the progress up
to 1998, consult a survey by Mutzel, Odenthal, and Scharbrodt [16].

In this paper, we investigate a very recent notion inspired by a fusion of both concepts
into one. We say that a collection D(G) of drawings of G is uncrossed if for each edge e of G

there is at least one drawing in D(G) in which e is uncrossed; see Figure 1 for an example.
Hliněný and Masařík [11], in relation to extensions of the traditional crossing number of a
graph, defined the uncrossed number unc(G) of a graph G as the smallest size of an uncrossed
collection of drawings of G.

D1 D2

Figure 1 An uncrossed collection D(K5) = {D1, D2} that shows unc(K5) ≤ 2. The edges that
are uncrossed are shown in thick lines. Since K5 is not planar, we have unc(K5) = 2.

The motivation for the uncrossed number [11] is that finding a handful of different
drawings of a graph G instead of just one “flawless” drawing shall highlight different aspects
of G and thus could be useful for the visualization of G, besides the theoretical interest. The
requirement that each edge is uncrossed in at least one drawing is a natural way to enforce
that the drawings will highlight each aspect of the graph as a whole.
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Let us also formulate the decision version of the problem of determining unc(G) of a
given graph G.

UncrossedNumber
Input: A graph G and a positive integer k.
Question: Are there drawings D1, . . . , Dk of G such that, for each edge e ∈ E(G), there

exists an i ∈ [k] such that e is uncrossed in the drawing Di?

Clearly, for every graph G, we have

unc(G) ≥ θ(G), (1)

because the uncrossed edges in each drawing of an uncrossed collection of G induce an
edge-partition of G into planar graphs. However, this new concept significantly differs from
thickness (which just partitions the edges of G) in the sense that all edges of G have to be
present along with the uncrossed subdrawing in each drawing of our uncrossed collection. In
fact, the requirements of an uncrossed collection bring us close to the related notion of the
outerthickness θo(G) of G, which is the minimum number of outerplanar graphs into which
we can decompose G.

Outerthickness
Input: A graph G and a positive integer k.
Question: Can G be decomposed into k outerplanar graphs?

As noted by Hliněný and Masařík [11], given a decomposition {G1, . . . , Gk} of G into
outerplanar graphs, we can let Di be an outerplanar drawing of Gi with all remaining edges
of G being drawn in the outer face. This gives us

unc(G) ≤ θo(G) (2)

for every graph G. Combining this with a result of Gonçalves [4], which implies θo(G) ≤ 2θ(G),
we actually obtain the following chain of inequalities

1
2θo(G) ≤ θ(G) ≤ unc(G) ≤ θo(G) ≤ 2θ(G). (3)

So far, the exact values of uncrossed numbers are not very well understood. Masařík and
Hliněný [11] exactly determined unc(G) of only a few sporadic examples of graphs G, such
as unc(K7) = 3.

Our Results
We determine the exact values of uncrossed numbers for specific and natural graph classes.
First, we derive the formula for the uncrossed number of complete graphs.

▶ Theorem 1. For every positive integer n, it holds that

unc(Kn) =


⌈ n+1

4 ⌉, for n /∈ {4, 7}
3, for n = 7
1, for n = 4.

We also find the exact formula for the uncrossed number of complete bipartite graphs.
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▶ Theorem 2. For all positive integers m and n with m ≤ n, it holds that

unc(Km,n) =


⌈ mn

2m+n−2 ⌉, for m ≤ n ≤ 2m − 2
⌈ mn

2m+n−1 ⌉, for n = 2m − 1
⌈ mn

2m+n ⌉, for 6 ≤ 2m ≤ n

1, for m ≤ 2.

Let us mention that the exact values of the thickness θ(Km,n) of complete bipartite
graphs are not known for all values of m and n; see [17] for further discussion.

We compare our formulas on unc(Kn) and unc(Km,n) with known formulas on the
outerthickness of Kn and Km,n. Hliněný and Masařík [11, Section 6] conjectured the
uncrossed numbers and outerthickness to be the same for both complete and complete
bipartite graphs except in the planar but not outerplanar cases. Guy and Nowakowski [5, 6]
showed that

θo(Kn) =
{⌈

n+1
4
⌉

, for n ̸= 7
3, for n = 7

(4)

and

θo(Km,n) =
⌈

mn

2m + n − 2

⌉
(5)

for all positive integers m and n with m ≤ n. Note that it follows from Theorem 1
and Equation (4) that unc(Kn) = θo(Kn) for every n ̸= 4. For n = 4, we have unc(K4) = 1
while θo(K4) = 2. This confirms the conjecture of Hliněný and Masařík [11] in the case of
complete graphs.

Since⌈
mn

2m + n

⌉
≤
⌈

mn

2m + n − 2

⌉
=
⌈

mn

2m + n
+ 2mn

(2m + n − 2)(2m + n)

⌉
≤
⌈

mn

2m + n

⌉
+ 1

for n ≥ 2m − 1 > 1, it follows from Theorem 2 and Equation (5) that the uncrossed number
unc(Km,n) differs from the outerthickness θo(Km,n) of Km,n by at most 1. In particular,
we have unc(Kn,n) = θo(Kn,n) for every positive integer n. However, Theorem 2 and (5)
give, for example, unc(K4,7) = 2 and θo(K4,7) = 3. Since K4,7 is not planar, this refutes the
conjecture of Hliněný and Masařík [11] in the case of complete bipartite graphs.

Second, we turn our attention to general graphs and their uncrossed number. We improve
the trivial lower bound of unc(G) ≥ ⌈m/(3n − 6)⌉ for any graph G with n vertices and m

edges. By carefully balancing between the numbers of edges in uncrossed subdrawings of G

and the numbers of edges that can be drawn within faces of uncrossed subdrawings, we
derive the following estimate.

▶ Theorem 3. Every connected graph G with n ≥ 3 vertices and m ≥ 0 edges satisfies

unc(G) ≥
⌈

m

f(n, m)

⌉
where f(n, m) = (3n − 5 +

√
(3n − 5)2 − 4m)/2.
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The bound from Theorem 3 becomes interesting for m ≥ 3n − 6. This is because we then
have f(n, m) ≤ 3n − 6 for all integers n ≥ 2 as√

(3n − 5)2 − 4m ≤
√

9n2 − 42n + 49 = 3n − 7

for any m ≥ 3n − 6 ≥ 0. It follows that the lower bound from Theorem 3 is at least as good
as unc(G) ≥ ⌈m/(3n − 6)⌉ for any connected G with n ≥ 2 vertices and m ≥ 3n − 6 edges.

The lower bound from Theorem 3 gets stronger as the graph G gets denser. For example,
if G contains n vertices and εn2 edges for n sufficiently large and ε ∈ (0, 1/2), we get

f(n, m) = (3n − 5 +
√

(9 − 4ε)n2 − 30n + 25)/2 ≤ (3 +
√

9 − 4ε)n/2.

Since (3 +
√

9 − 4ε)/2 < 3 for ε > 0, we obtain unc(G) ≥
⌈

m
cεn

⌉
for any ε > 0 and some

constant cε < 3, instead of trivial unc(G) ≥
⌈

m
3n−6

⌉
. We note that the best constant cε

obtainable from Theorem 3 is (3 +
√

7)/2 ∼ 2.82 as ε ≤ 1/2.
We also consider computational complexity aspects related to the UncrossedNumber

problem. As we will see later, a closely related problem is the one of determining the edge
crossing number of a given graph G, which is the smallest number of edges involved in
crossings taken over all drawings of G. The notion of the edge crossing number is based on
results by Ringel [18], Harborth and Mengersen [8, 9], and Harborth and Thürmann [10].

EdgeCrossingNumber
Input: A graph G and a positive integer k.
Question: Is there a drawing D of G with at most k edges involved in crossings?

The complementary problem to EdgeCrossingNumber is the following one.

MaximumUncrossedSubgraph
Input: A graph G and a positive integer k.
Question: Is there a drawing D of G with at least k edges not involved in any crossings?

In his monograph on crossing numbers, Schaefer [19] mentions that the problem of
determining the computational complexity of EdgeCrossingNumber is open. Here, we
resolve this open question by showing that the problem is NP-complete.

▶ Theorem 4. The EdgeCrossingNumber problem is NP-complete.

By the complementarity of the problems MaximumUncrossedSubgraph and Edge-
CrossingNumber, we obtain the following result.

▶ Corollary 5. The MaximumUncrossedSubgraph problem is NP-complete.

As a consequence of our reduction, we also obtain the following relative result.

▶ Theorem 6. If the Outerthickness problem is NP-hard, then also the Uncrossed-
Number problem is NP-hard.

However, in contrast to the complexity of the thickness problem, which was shown to be
NP-hard already in 1983 by Mansfield [14], the complexity of the Outerthickness problem
remains open.
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2 Preliminaries

We may, without loss of generality, restrict to only simple graphs in the whole paper. This
is since, in each of the formulated problems, whenever an edge e is a part of an uncrossed
subdrawing (as discussed next), any other edge parallel to e can be drawn uncrossed closely
along e, too.

Let D′ be a subdrawing of D consisting of only uncrossed edges of D. Note that we do
not require D′ to contain all such edges. In this situation, we call D′ an uncrossed subdrawing
of G and we say that it represents the subgraph of G formed by edges that are drawn in D′.
Precisely, D′ is an uncrossed subdrawing of G if there exists a drawing D of a graph G such
that D′ is formed by a subset of the uncrossed edges of D.

▶ Lemma 7. Let D′ be an uncrossed subdrawing of a connected graph G. Then D′ is a
planar drawing and, for every edge {u, v} of G, the vertices u and v are incident to a common
face of D′. Moreover, there is an uncrossed subdrawing D′′ of G such that D′′ represents a
connected supergraph of the graph represented by D′.

Proof. The drawing D′ is clearly planar, as, by the definition of D′, each edge of D′ is
uncrossed in a drawing D of G and thus also in D′. Moreover, it is a folklore fact that two
vertices u and v in a planar drawing, here in D′, are not incident to a common face if and
only if there exists a cycle C ⊆ D′ such that u and v are drawn on different sides of C. In the
latter case, however, the edge {u, v} would cross some edge of C in D, which is impossible
since no edge of D′ is crossed.

We prove the second part by induction on the number of connected components represented
by D′. The case of one component is trivial, as D′′ = D′. Otherwise, since G is connected,
there exists an edge e = {u, v} of G that is not drawn in D′ and such that u and v belong to
different components represented by D′. By the first part of the lemma, the vertices u and v

are incident to the same face of D′. So, let D+ be the planar drawing obtained from D′ by
adding a crossing-free arc representing the edge e. Clearly, every edge of G is still incident to
a common face of D+, and so D+ can be completed into a drawing of G such that D+ stays
uncrossed. The subgraph of G represented by D+ has fewer components than we started
with, and so we find the desired D′′ by induction. ◀

Figure 2 The wheel graph W15.

For a graph G, let h(G) be the maximum number of uncrossed edges in some drawing D

of G. Let DWn be a planar drawing of the wheel graph Wn on n vertices; see Figure 2. Note
that DWn is unique up to homeomorphism of the sphere and reflection as Wn is 3-connected.
The following result by Ringel [18] gives a formula for h(Kn) for every integer n ≥ 4, and
additionally claims that drawings of Kn with the maximum number of uncrossed edges have
a unique structure.
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▶ Theorem 8 ([18]). For every integer n ≥ 4, we have h(Kn) = 2n − 2. Moreover, if D is
a drawing of Kn with 2n − 2 uncrossed edges, then D contains the drawing DWn with all
edges from D \ DWn being drawn in the outer face of DWn.

We also mention an analogous result for the complete bipartite graphs Km,n, derived by
Mengersen [15].

▶ Theorem 9 ([15]). For all positive integers m and n with m ≤ n, we have

h(Km,n) =


2m + n − 2, for m = n

2m + n − 1, for m < n < 2m

2m + n, for 2m ≤ n.

The parameter h(G) can be used to estimate the uncrossed number of G. Let {D1, . . . , Dk}
be an uncrossed collection of drawings of a graph G that has m edges. Since every drawing
Di contains at most h(G) edges that are uncrossed by any other edge in Di, we immediately
obtain the following lower bound

unc(G) ≥
⌈

m

h(G)

⌉
. (6)

This bound together with Theorems 8 and 9 give us quite close estimates for unc(Kn) and
unc(Km,n), respectively. In particular, for n ≥ 2 we have

unc(Kn) ≥

⌈ (
n
2
)

2n − 2

⌉
. (7)

On the other hand, we recall the upper bound (2) on the uncrossed number of an arbitrary
graph G using the notion of outerthickness of G.

3 Proof of Theorem 1

In this section, we prove Theorem 1 by providing the exact formula for the uncrossed number
of complete graphs. That is, we show

unc(Kn) =


⌈ n+1

4 ⌉, for n /∈ {4, 7}
3, for n = 7
1, for n = 4

for every positive integer n.
We start with the upper bound, which is easier to prove. For n /∈ {4, 7}, the upper bound

follows from (2) and (4) as we have

unc(Kn) ≤ θo(Kn) =
⌈

n + 1
4

⌉
.

For n = 4, we obviously have unc(K4) = 1 as K4 is planar. Finally, unc(K7) = 3 was proved
by Hliněný and Masařík [11, Proposition 3.1].

It remains to prove the lower bound. Since we already know that unc(K7) = 3 and
unc(K4) = 1 and the statement is trivial for n ≤ 3, it suffices to consider the case n ≥ 5 with
n ̸= 7. Let {D1, . . . , Dk} be an uncrossed collection of drawings of Kn and let D′

1, . . . , D′
k be

corresponding uncrossed subdrawings of Kn such that D′
1 ∪ · · · ∪ D′

k covers E(Kn). By (7),

unc(Kn) ≥

⌈ (
n
2
)

2n − 2

⌉
.
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By Theorem 8, we get that if any uncrossed subdrawing D′
i contains 2n − 2 edges, then D′

i

(as a wheel) contains a universal vertex, that is, a vertex that is adjacent to all remaining
vertices in D′

i. If every drawing D′
i contains at most 2n − 3 edges, then

unc(Kn) ≥

⌈ (
n
2
)

2n − 3

⌉
=
⌈

n

4 + n

4(2n − 3)

⌉
=
⌈

n + 1
4

⌉
(8)

and we are done.
Thus, suppose that some drawing D′

i contains 2n − 2 edges. Without loss of generality,
we can assume i = 1. We then know that D′

1 contains a universal vertex v. In every drawing
D′

j with j > 1, the edges incident to v are already counted for D′
1, thus we can consider the

drawings D′
2, . . . , D′

k to be uncrossed drawings for Kn−1 obtained from Kn by removing v.
Note that these uncrossed drawings of Kn−1 cover E(Kn−1). Then, each D′

j contributes at
most 2n − 4 new uncrossed edges of Kn−1 as h(Kn−1) = 2(n − 1) − 2 = 2n − 4 by Theorem 8.
So the number k of drawings satisfies(

n

2

)
≤ 2n − 2 + (k − 1)(2n − 4) = (2n − 4)k + 2. (9)

However, (2n − 4)k + 2 ≤ (2n − 3)k when k ≥ 2, which is satisfied for n ≥ 5 by (9). Hence,
for k′ being the smallest positive integer that satisfies

(
n
2
)

≤ k′(2n − 3) we obtain k ≥ k′.
Thus, we again have the inequality (8). ◀

A proof of Theorem 2 follows a similar path as that of Theorem 1, but there are several
complications on the way. The upper bound requires a construction for case n ≥ 2m − 1
besides using bounds (2) and (5). The lower bound is handled by Theorem 9 except for cases
m < n ≤ 2m − 2 that require a detailed lengthy analysis. Hence, we left the full proof for
the arXiv version [1].

4 Proof of Theorem 3

Here, we show that every connected graph G with n ≥ 3 vertices and m ≥ 0 edges satisfies

unc(G) ≥
⌈

m

f(n, m)

⌉
where f(n, m) = (3n − 5 +

√
(3n − 5)2 − 4m)/2.

Let D(G) = {D1, . . . , Dk} be an uncrossed collection of drawings of G. For every i ∈ [k],
let D′

i be a subdrawing of Di containing only edges of Di that are uncrossed in Di. By
Lemma 7, each drawing D′

i is then a plane graph with the property that every edge of G

that is not an edge of D′
i is contained in a single face of D′

i. Moreover, since G is connected,
we can assume without loss of generality by this lemma that each D′

i represents a connected
subgraph of G as to bound unc(G) from below it suffices to consider drawings D′

i with as
many edges as possible.

Fix an arbitrary i ∈ [k]. The number of vertices of D′
i equals n. We use mi to denote the

number of edges of D′
i and we will show that mi ≤ f(n, m).

We set Fi to be the set of faces of D′
i and fi = |Fi|. For a face F of D′

i, we use v(F ) for
the number of vertices of D′

i that are contained in the boundary of F and we write |F | for the
number of times we meet an interior of an edge of D′

i when traversing F along its boundary.
That is, |F | is the length of the facial walk. Note that each edge can be counted once or
twice in |F | and so we have v(F ) ≤ |F | as D′

i represents a connected subgraph of G. We
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assume that at least one edge of F is counted once in |F | and that v(F ) ≥ 3 for every face F

as otherwise there is only a single face in Fi and D′
i is a tree with mi ≤ n − 1 ≤ f(n, m) for

n ≥ 3. Also, observe that∑
F ∈Fi

|F | = 2mi (10)

as every edge is incident to a face of D′
i from the left and from the right.

Since every edge of G that is not an edge of D′
i is contained in a single face of D′

i, we
have∑

F ∈Fi

((
v(F )

2

)
− v(F )

)
≥ m − mi. (11)

This is because vertices of each face F can span up to
(

v(F )
2
)

edges of Di and at least v(F )
pairs of vertices of Di are already used for edges of D′

i as each face F contains an edge that
is counted only once in |F |. The left hand side of (11) can be rewritten as

1
2
∑

F ∈Fi

v(F )(v(F ) − 3).

Since v(F ) ≥ 3 and |F | ≥ v(F ) for every face F from Fi, we obtain

1
2
∑

F ∈Fi

|F |(|F | − 3) ≥ m − mi.

Since |F | − 3 ≥ 0, the left-hand side can be bounded from above by

1
2

(∑
F ∈Fi

|F |

)(∑
F ∈Fi

(|F | − 3)
)

= mi(2mi − 3fi)

where we used (10) twice. Altogether, we obtain mi(2mi − 3fi) ≥ m − mi, which can be
rewritten as

fi ≤ 2mi

3 − m − mi

3mi
.

Plugging this estimate into Euler’s formula n − mi + fi = 2, we get

mi ≤ 3n − 5 − m

mi
,

which after solving the corresponding quadratic inequality for mi gives the final estimate

mi ≤ (3n − 5 +
√

(3n − 5)2 − 4m)/2 = f(n, m).

Since i was arbitrary, we see that each drawing D′
i contains at most f(n, m) edges of G

and therefore, we indeed have

k ≥ unc(G) ≥
⌈

m

f(n, m)

⌉
. ◀
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Figure 3 EdgeCrossingNumber instance for proof of Theorem 4 in Section 5. Red edges are
crossed. Thick edges represent M -bundles corresponding to edges from the Maximum Outerplanar
Subgraph instance G, see in detail the edges between 1 and 2 and between 6 and 4. The dashed
edges and c form the central star.

5 Proof of Theorem 4

In this section, we prove that EdgeCrossingNumber is NP-complete. Membership of
this problem in the class NP is trivial. To show NP-hardness, we reduce from the following
NP-complete problem [13, 20].

Maximum Outerplanar Subgraph
Input: A graph G = (V, E) and a positive integer k.
Question: Is there an outerplanar subgraph of G with at least k edges?

Assume an instance of Maximum Outerplanar Subgraph. Let M > |V |, say
M = 2|V |, and k′ = |E| − k. We augment G into a graph G′, and show that G′ can
be drawn with at most Mk′ + |V | crossed edges, if and only if G admits an outerplanar
subgraph with at least k edges. The graph G′ is obtained via two augmenting steps: We
add a central star, i.e., a vertex with an edge to each original vertex of G. Then, we replace
each original edge in G by M parallel paths of length two, which we call an M -bundle. An
example of this transformation can be seen in Figure 3.

Suppose there is a drawing of G′ with at most Mk′ + |V | crossed edges. We want to
modify this drawing into a drawing of G. To this end, we first remove every path belonging
to an M -bundle, if either of its two edges is crossed. We also remove the central vertex
and all of its incident edges. All remaining edges are uncrossed and belong to an M -bundle
path. As there are at most Mk′ + |V | < M(k′ + 1) crossed edges in the drawing, for at least
|E| − k′ = k edges from G there is at least one path of its corresponding M -bundle that
is not removed. We contract for each edge of G one edge of one of the remaining paths of
its M -bundle and remove all other M -bundle paths. The vertices from G all share the face
created by removing the central vertex and all vertices from M -bundles are either contracted
or removed. Thus, we have an outerplanar drawing of a subgraph of G with at least k edges.

Similarly, for every outerplanar subgraph H of G with at least k edges we can construct
a drawing of G′ with at most Mk′ + |V | crossed edges. First, we draw H in an outerplanar
embedding, then we draw the central star into the outer face. Next, we draw the at most
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(a) First drawing.
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(b) Second drawing. Vertices 3 and 6 swapped places.

Figure 4 An instance of the reduction from OuterThickness to UncrossedNumber. The
original graph G in this instance is drawn with solid edges and has outerthickness 2 (as the two
subdrawings in solid black and gray edges certify). The dashed edges and black vertices form the
central star around c added to G in the reduction. In each drawing, all crossed edges are red and
uncrossed edges of the particular drawing are black, and gray edges are uncrossed in both drawings.

|E| − k = k′ remaining edges of G in such a way that they only cross one another and the
edges of the central star. Finally, we replace every edge of G with an M -bundle. The newly
added vertices are positioned in such a way that at most one of the edges of each path is
crossed. Therefore, there are at most Mk′ crossed edges from the M -bundles and at most
|V | crossed edges from the central star, for a total of at most Mk′ + |V | crossed edges. ◀

6 Proof of Theorem 6

We show that if Outerthickness is NP-hard, then UncrossedNumber is NP-hard as well
using a reduction from Outerthickness to UncrossedNumber.

The reduction employs similar arguments as used in Section 5. Let (G, k) be an instance
of the problem Outerthickness. We augment the input graph G into a graph G′ by adding
a vertex and connecting each vertex of G to it with a path of length two. We call the added
structure the central star. See Figure 4 for an example of this transformation.

Let D be a drawing of G′. Consider the uncrossed subdrawing D′
G consisting of the

vertices and all uncrossed edges from G. As there is a path in D \ D′
G between each two

vertices from G, we know that D′
G is outerplanar. Thus, if unc(G′) ≤ k and D1, . . . , Dk is

an uncrossed collection of G′, then the respective subdrawings restricted to G decompose G

into k outerplanar graphs.
Conversely, if G can be decomposed into k ≥ 2 outerplanar subgraphs G1, . . . , Gk, then

we can construct an uncrossed collection D1, . . . , Dk of G′ in the following way: In every
drawing Di, we first draw Gi as an outerplanar graph and we embed the central star in the
outer face. Then, we draw the remaining original edges in such a way that they only cross
each other and edges from the central star. In D1, all crossings on the central star lie on
edges incident to vertices of G, and in all other drawings, the crossings on the central star
involve only edges incident to the universal vertex. This way we assure that also every edge
of the central star is uncrossed in some drawing. ◀
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7 Conclusions and Open Problems

We provided exact values of the uncrossed number for complete and complete bipartite graphs.
The hypercube graphs form another natural graph class to consider as their outerthickness
and thickness were determined exactly; see [5, 12]. However, we are not aware of any formula
for the uncrossed number for the hypercube graphs.

▶ Question 10. Determine the exact value of the uncrossed number for the hypercube graphs.

In Theorem 3, we determined a general lower bound on unc(G) in terms of the number
of the edges and vertices of G by showing unc(G) ≥ ⌈ m

cn ⌉ − O(n) − O(m) for some constant
c with 0 < c ≤ 3. In particular, we argued that the smallest obtainable constant c is
approximately 2.82 for the case of dense n-vertex graphs with εn2 edges where ε ∈ (0, 1/2)
is a fixed constant. Can one obtain a better leading constant in the general lower bound on
unc(G) for such dense graphs G?

We also propose investigating other properties of the uncrossed number. We conjecture
that the uncrossed number can be arbitrarily far apart from the outerthickness despite them
being quite similar on the graph classes we mainly investigated in this paper. In fact, it
follows from our results that the difference between the outerthickness and the uncrossed
number of complete and complete bipartite graphs is never larger than one.

▶ Conjecture 11. For every positive integer k, there is a graph G such that

θo(G) − unc(G) ≥ k.

Lastly, it would be interesting to finally settle the computational complexity of the
outerthickness problem. We conjecture that the Outerthickness problem is NP-hard. Note
that if true, this would also settle the computational complexity of UncrossedNumber by
Theorem 6.
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Abstract
This paper studies planar drawings of graphs in which each vertex is represented as a point along a
sequence of horizontal lines, called levels, and each edge is either a horizontal segment or a strictly
y-monotone curve. A graph is s-span weakly leveled planar if it admits such a drawing where
the edges have span at most s; the span of an edge is the number of levels it touches minus one.
We investigate the problem of computing s-span weakly leveled planar drawings from both the
computational and the combinatorial perspectives. We prove the problem to be para-NP-hard
with respect to its natural parameter s and investigate its complexity with respect to widely used
structural parameters. We show the existence of a polynomial-size kernel with respect to vertex
cover number and prove that the problem is FPT when parameterized by treedepth. We also present
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1 Introduction

Computing crossing-free drawings of planar graphs is at the heart of Graph Drawing. Indeed,
since the seminal papers by Fáry [43] and by Tutte [57] were published, a rich body of literature
has been devoted to the study of crossing-free drawings of planar graphs that satisfy a variety
of optimization criteria, including the area [30,48], the angular resolution [41,51], the face
convexity [16, 17, 27], the total edge length [55], and the edge-length ratio [14, 18, 19]; see
also [31,56].
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19:2 Weakly Leveled Planarity with Bounded Span

In this paper, we focus on crossing-free drawings where the edges are represented as
simple Jordan arcs and have the additional constraint of being y-monotone, that is, traversing
each edge from one end-vertex to the other one, the y-coordinates never increase or never
decrease. This leads to a generalization of the well-known layered drawing style [20,21,35],
where vertices are assigned to horizontal lines, called levels, and edges only connect vertices
on different levels. We also allow edges between vertices on the same level and seek for
drawings of bounded span, i.e., in which the edges span few levels. In their seminal work [44],
Heath and Rosenberg study leveled planar drawings, i.e., in which edges only connect vertices
on consecutive levels and no two edges cross. We also mention the algorithmic framework by
Sugiyama et al. [54], which yields layered drawings for the so-called hierarchical graphs. In
this framework, edges that span more than one level are transformed into paths by inserting
a dummy vertex for each level they cross. Hence minimizing the edge span (or equivalently,
the number of dummy vertices along the edges) is a relevant optimization criterion.

Inspired by these works, we study s-span weakly leveled planar drawings, which are
crossing-free y-monotone drawings in which each edge touches at most s + 1 levels; see Fig. 1.
Note that 1-span weakly leveled planar drawings have been studied in different contexts;
for example, Bannister et al. [3] prove that graphs that admit such drawings have layered
pathwidth at most two1. Felsner et al. [38,39] show that every outerplanar graph has a 1-span
weakly leveled planar drawing and use this to compute a 3D drawing of the graph in linear
volume; a similar construction by Dujmović et al. [37] yields a 2-span leveled planar drawing
for every outerplanar graph, which can be used to bound the queue number [44] of these
graphs. In general, our work also relates to track layouts [37] and to the recently-introduced
layered decompositions [36], but in contrast to these research works we insist on planarity.

Our contributions. We address the problem of computing a weakly leveled planar drawing
with bounded span both from the complexity and from the combinatorial perspectives.
Specifically, the s-Span (Weakly) leveled planarity problem asks whether a graph
admits a (weakly) leveled planar drawing where the span of every edge is at most s. The
main contributions of this paper can be summarized as follows.

In Section 3, we show that the s-Span Weakly leveled planarity problem is NP-
complete for any fixed s ≥ 1 (Theorem 3). Our proof technique implies that s-Span
Leveled Planarity is also NP-complete. This generalizes the NP-completeness result
by Heath and Rosenberg [44] which holds for s = 1.

Figure 1 A 1-span weakly leveled planar drawing of the Frucht graph (left) and a 4-span weakly
leveled planar drawing of the Goldner-Harary graph (right).

1 Bannister et al. use the term weakly leveled planar drawing to mean 1-span weakly leveled planar
drawing. We use a different terminology because we allow edges which can span more than one level.
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The para-NP-hardness of s-Span Weakly leveled planarity parameterized by the
span s motivates the study of FPT approaches with respect to structural parameters of
the input graph. In Section 4, we show that the s-Span Weakly leveled planarity
problem has a kernel of polynomial size when parameterized by vertex cover number
(Theorem 6) and has a (non-polynomial) kernel when parameterized by treedepth (Theo-
rem 9). As also pointed out in [58], designing FPT algorithms parameterized by structural
parameters bounded by the vertex cover number, such as the treedepth, pathwidth, and
treewidth is a challenging research direction in the context of graph drawing (see, e.g.,
[1,5–10,24,45]). Again, our algorithms can also be adapted to work for s-Span Leveled
Planarity.
In Section 5, we give combinatorial bounds on the span of weakly leveled planar drawings
of various graph classes. It is known that outerplanar graphs admit weakly leveled planar
drawings with span 1 [39]. We extend the investigation by considering both graphs with
outerplanarity 2 and graphs with treewidth 2. We prove that some 2-outerplanar graphs
require a linear span (Theorem 10). Since Halin graphs (which have outerplanarity 2)
admit weakly leveled planar drawings with span 1 [2, 33], we consider 3-connected cycle-
trees [25,29], which also have outerplanarity 2 and include Halin graphs as a subfamily.
Indeed, while the Halin graphs are those graphs of polyhedra containing a face that shares
an edge with every other face, the 3-connected cycle-trees are the graphs of polyhedra
containing a face that shares a vertex with every other face. We show that 3-connected
cycle-trees have weakly leveled planar drawings with span 4, which is necessary in the
worst case (Theorem 11). For general cycle-trees, we prove Θ(log n) span (Theorem 14);
such a difference between the 3-connected and 2-connected case was somewhat surprising
for us. Concerning graphs of treewidth 2, we prove an upper bound of O(

√
n) and a lower

bound of 2Ω(
√

log n) on the span of their weakly leveled planar drawings (Theorem 15).

Remarks. Dujmović et al. [35] present an FPT algorithm to minimize the number of levels
in a leveled planar graph drawing, where the parameter is the total number of levels. They
claim that they can similarly get an FPT algorithm that minimizes the span in a leveled
planar graph drawing, where the parameter is the span. Our algorithm differs from the
one of Dujmović et al. [35] in three directions: (i) We optimize the span of a weakly level
planar drawing, which is not necessarily optimized by minimizing the span of a leveled planar
drawing; (ii) we consider structural parameters rather than a parameter of the drawing; one
common point of our three algorithms is to derive a bound on the span from the bound on
the structural parameter; and (iii) our algorithms perform conceptually simple kernelizations,
while the one in [35] exploits a sophisticated dynamic programming on a path decomposition
of the input graph.

Concerning the combinatorial contribution, a byproduct of our results implies new bounds
on the planar edge-length ratio [46,49,50] of families of planar graphs. The planar edge-length
ratio of a planar graph is the minimum edge-length ratio (that is, the ratio of the longest to
the shortest edge) over all planar straight-line drawings of the graph. Borrazzo and Frati [19]
have proven that the planar edge-length ratio of an n-vertex 2-tree is O(n0.695). Theorem 15,
together with a result relating the span of a weakly leveled planar drawing to its edge-length
ratio [33, Lemma 4] lowers the upper bound of [19] to O(

√
n) (Corollary 16). We analogously

get an upper bound of 9 on the edge-length ratio of 3-connected cycle-trees (Corollary 13).
Sketched or omitted proofs can be found in [4].
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2 Preliminaries

In the paper, we only consider simple connected graphs, unless otherwise specified. We use
standard terminology in the context of graph theory [34] and graph drawing [31].

A plane graph is a planar graph together with a planar embedding, which is an equivalence
class of planar drawings, where two drawings are equivalent if they have the same clockwise
order of the edges incident to each vertex and order of the vertices along the outer face.

A graph drawing is y-monotone if each edge is drawn as a strictly y-monotone curve and
weakly y-monotone if each edge is drawn as a horizontal segment or as a strictly y-monotone
curve. For a positive integer k, we denote by [k] the set {1, . . . , k}. A leveling of a graph
G = (V, E) is a function ℓ : V → [k]. A leveling ℓ of G is proper if, for any edge (u, v) ∈ E, it
holds |ℓ(u) − ℓ(v)| = 1, and it is weakly proper if |ℓ(u) − ℓ(v)| ≤ 1. For each i ∈ [k], we define
Vi = ℓ−1(i) and call it the i-th level of ℓ. The height of ℓ is h(ℓ) = maxv∈V ℓ(v)−minv∈V ℓ(v).
A level graph is a pair (G, ℓ), where G is a graph and ℓ is a leveling of G. A (weakly) level
planar drawing of a level graph (G, ℓ) is a planar (weakly) y-monotone drawing of G where
each vertex is drawn with y-coordinate ℓ(v). A level graph (G, ℓ) is (weakly) level planar if it
admits a (weakly) level planar drawing. A (weakly) leveled planar drawing of a graph G is a
(weakly) level planar drawing of a level graph (G, ℓ), for some leveling ℓ of G.

The following observation rephrases a result of Di Battista and Nardelli [32, Lemma 1] in
the weakly-level planar setting.

▶ Observation 1. Let (G, ℓ) be a level graph such that ℓ is (weakly) proper. For each i ∈ [k],
let ≺i be a linear ordering on ℓ−1(i). Then, there exists a (weakly) level planar drawing of
(G, ℓ) that respects ≺i (i.e., in which the left-to-right ordering of the vertices in ℓ−1(i) is ≺i)
if and only if:
(i) if (u, v) ∈ E(G) with ℓ(u) = ℓ(v) = i, then u and v are consecutive in ≺i; and
(ii) if (u, v) and (w, x) are two independent edges (i.e., {u, v} ∩ {w, x} = ∅) with ℓ(u) =

ℓ(w) = i, ℓ(v) = ℓ(x) = i + 1, and u ≺i w, then v ≺i+1 x.

The span of an edge (u, v) of a level graph (G, ℓ) is spanℓ(u, v) = |ℓ(u) − ℓ(v)|. The
span of a leveling ℓ of G is span(ℓ) = max(u,v)∈E spanℓ(u, v). Given a graph G, we consider
the problem of finding a leveling ℓ that minimizes span(ℓ) among all levelings where (G, ℓ)
is weakly level planar. Specifically, given a positive integer s, we call s-Span (Weakly)
leveled planarity the problem of testing whether a graph G admits a leveling ℓ, with
span(ℓ) ≤ s, such that (G, ℓ) is (weakly) level planar. The 1-Span Leveled Planarity
problem has been studied under the name of Leveled Planar by Heath and Rosenberg [44].

A (weakly) y-monotone drawing Γ of a graph defines a leveling ℓ, called the associated
leveling of Γ, where vertices with the same y-coordinate are assigned to the same level and
the levels are ordered by increasing y-coordinates of the vertices they contain. Thus, the
span of an edge (u, v) in Γ is spanℓ(u, v), the span of Γ is span(ℓ), and the height of Γ is h(ℓ).

The following lemma appears implicitly in the proof of Lemma 4 in [33].

▶ Lemma 2. Any graph that admits an s-span weakly leveled planar drawing with height h

has an (2s + 1)-span leveled planar drawing with height 2h + 1.

A planar drawing of a graph is outerplanar if all the vertices are external, and 2-outerplanar
if removing the external vertices yields an outerplanar drawing. A graph is outerplanar (2-
outerplanar) if it admits an outerplanar drawing (resp. 2-outerplanar drawing). A 2-outerplane
graph is a 2-outerplanar graph with an associated planar embedding which corresponds to
2-outerplanar drawings. A cycle-tree is a 2-outerplane graph such that removing the external
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vertices yields a tree. A Halin graph is a 3-connected plane graph G such that removing the
external edges yields a tree whose leaves are exactly the external vertices of G (and whose
internal vertices have degree at least 3). Note that Halin graphs form a subfamily of the
cycle-trees.

3 NP-completeness

This section is devoted to the proof of the following result.

▶ Theorem 3. For any fixed s ≥ 1, s-Span Weakly leveled planarity is NP-complete.

Proof sketch. The NP-membership is trivial. We prove the NP-hardness via a linear-time
reduction from the 1-Span Leveled Planarity problem, which was proved NP-complete
by Heath and Rosenberg [44]. We distinguish based on whether s = 1 or s > 1.

Case s = 1. Starting from a (bipartite) planar graph H, we construct a graph G that is a
positive instance of 1-Span Weakly Leveled Planarity if and only if H is a positive
instance of 1-Span Leveled Planarity, by replacing each edge (u, v) of H with a copy
K(u, v) of K2,4, where u and v are identified with the two degree-4 vertices of K(u, v).

Suppose first that H admits a leveling ℓH in k = h(ℓH) + 1 levels, with span(ℓH) ≤ 1,
such that (H, ℓH) is level planar, and let ΓH be a level planar drawing of (H, ℓH). Consider
the leveling ℓG of G on 2k levels computed as follows. For each vertex w ∈ V (H), we
set ℓG(w) = 2 · ℓH(w). For each vertex w ∈ V (G) \ V (H) in a graph K(u, v), we set
ℓG(w) = min{ℓG(u), ℓG(v)} + 1. By construction, ℓG is proper (and thus span(ℓG) ≤ 1), the
vertices of V (H) are assigned to even levels, and the vertices in V (H) \ V (G) are assigned to
odd levels. The graph K(u, v) admits a leveled planar drawing with span 1 on three levels in
which u and v lie strictly above and strictly below all other vertices of K(u, v), respectively.
This allows us to introduce a new level between any two consecutive levels in ΓH and replace
the drawing of each edge (u, v) of H with a drawing of K(u, v) as the one described above.
The resulting drawing is a level planar drawing ΓG of (G, ℓG).

Suppose now that G admits a leveling ℓG, with span(ℓG) ≤ 1, such that (G, ℓG) is weakly
level planar. We show that H admits a leveling ℓH , with span(H) = 1, such that (H, ℓH)
is level planar. Note that any 1-span weakly leveled planar drawing of K(u, v) is leveled
planar and places u and v on different levels. Also, any edge of G belongs to K(u, v) for
some edge (u, v) ∈ E(H). Thus, any 1-span weakly leveled planar drawing of G is leveled
planar. Moreover, ℓG is proper. Let ΓG be a level planar drawing of (G, ℓG). To construct
a level planar drawing ΓH of (H, ℓH), we simply set the ordering of the vertices on level i

in ΓH to be the ordering of these vertices on level 2i in ΓG. We claim that such orderings
satisfy Conditions (i) and (ii) of Observation 1, which proves that ΓH is level planar.

Case s > 1. In our proof, we exploit special graphs Wi,h, with 1 ≤ h < i, having two
designated vertices ν and σ, called poles; specifically, ν is the north pole and σ is the south
pole of Wi,h; refer to Fig. 2. In the following, we denote by K+

2,α the graph obtained from
the complete bipartite graph K2,α by adding an edge between the two vertices t and b of the
size-2 bipartition class of the vertex set of K2,α. For any i ≥ 2, the graphs Wi,h are defined
as follows. If h = 1, the graph Wi,1 coincides with K+

2,2i+1; see Fig. 2a. If h > 1, the graph
Wi,h is obtained from K+

2,2i+1 by removing each edge (t, x), with x ̸= b, and by identifying t

and b with the north and south pole of a copy of Wi,h−1, respectively; see Fig. 2b.
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W2,1 = K+
2,5 W3,1 = K+

2,7

ν = t ν = t

σ = b σ = b

(a) The graphs W2,1 (left) and W3,1 (right).

W3,2

ν

σ

(b) The graph W3,2. The seven green shaded regions are copies of W3,1.

Figure 2 Illustration for the construction of graphs Wi,h. Pole vertices are white filled.

The reduction for s > 1 is similar to the one for s = 1, but the role of K2,4 is now played
by Ws,s−1. For an edge (u, v) ∈ E(H), we denote by Ws(u, v) the copy of Ws,s−1 used to
replace (u, v). The correctness of the reduction is based on the following claims.

▷ Claim 4. For any i ≥ 2 and h < i, the graph Wi,h admits a leveled planar drawing with
span h + 1 in which the north pole of Wi,h lies strictly above all the other vertices of Wi,h

and the south pole of Wi,h lies strictly below all the other vertices of Wi,h.

▷ Claim 5. For any i ≥ 2 and h < i, in any weakly leveled planar drawing of Wi,i−1 with
span at most i, the edge connecting the poles of Wi,i−1 has span i.

We conclude the proof by observing that the construction of G can be done in polynomial
time, for any fixed value of s; in particular, the number of vertices of G is bounded by the
number of vertices of H times a computable function only depending on s. ◀

The proof of Theorem 3 also shows that, for any fixed s ≥ 1, deciding whether a graph
admits a (non-weakly) leveled planar drawing with span at most s is NP-complete, which gen-
eralizes the NP-completeness result by Heath and Rosenberg [44], which is limited to s = 1.

4 Parameterized Complexity

Motivated by the NP-hardness of the s-Span Weakly leveled planarity problem
(Theorem 3), we consider the parameterized complexity of the problem. Recall that a problem
P whose input is an n-vertex graph G is fixed-parameter tractable (for short, FPT) with respect
to some parameter k if it can be solved via an algorithm with running time O(f(k) · p(n)),
where f is a computable function and p is a polynomial function. A kernelization for P is
an algorithm that constructs in polynomial time (in n) an instance (G′, k′), called kernel,
such that: (i) the size of the kernel, i.e., the number of vertices in G′, is some computable
function of k; (ii) (G′, k′) and (G, k) are equivalent instances; and (iii) k′ is some computable
function of k. If P admits a kernel w.r.t. some parameter k, then it is FPT w.r.t. k.
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▶ Theorem 6. Let (G, s) be an instance of s-Span Weakly leveled planarity with
a vertex cover C of size k. There exists a kernelization that applied to (G, s) constructs a
kernel of size O(k2). Hence, the problem is FPT with respect to the size of a vertex cover.

Proof sketch. First, we give a kernel (with respect to a parameterization by k and s) of
size O(k · s). Second, we show that any planar graph G with vertex cover number k admits
a weakly leveled planar drawing with span at most 3k, which allows us to assume s ≤ 3k.

For the kernel with respect to k +s, we follow a classical reduction approach. By planarity,
the number of vertices of G − C with three or more neighbors in C can be bounded by 2k

(e.g., using [40, Lemma 13.3]), and the number of pairs from C with a degree-2 neighbor
in G − C is at most 3k. For each vertex c ∈ C with more than three degree-1 neighbors in
G − C, we only keep three of such neighbors. Then in any drawing of the reduced instance, a
neighbor vc of c is not on the same level as c, and thus we can reinsert the removed vertices
next to vc. Also, for each pair of vertices {c, d} ∈ C that are common neighbors of more than
4s + 5 degree-2 vertices in G − C, we only keep 4s + 5 of such degree-2 vertices. Then in any
drawing of the reduced instance with span at most s, a neighbor vcd of c and d lies strictly
between the levels of c and d, and thus we can reinsert the removed vertices next to vcd. As
these reductions can be performed in polynomial time, this yields a kernel of size O(k · s).

To bound the span, we consider a more strict trimming operation that removes all
degree-1 vertices of G − C and replaces all degree-2 vertices of G − C with the same two
neighbors u, v ∈ C by a single edge (u, v). As above, the size of this trimmed graph is O(k).
It therefore admits a planar leveled drawing of height (and thus also span) O(k), into which
the removed vertices can be inserted without asymptotically increasing the height. ◀

Let (G, s) be an instance of s-Span Weakly leveled planarity and b be a parameter.
A set M of vertices of G is a modulator to components of size b (b-modulator for short) if
every connected component of G − M has size at most b. Note that a 1-modulator is a vertex
cover. We show that testing whether a graph with a b-modulator of size k admits a weakly
leveled planar drawing with span s is FPT w.r.t. b+k. The neighbors in M of a component C

of G − M are its attachments, and are denoted by att(C). We also denote by bridge(C) the
graph consisting of C, att(C), and the edges between C and its attachments.

We generalize the technique for vertex cover and give a kernel with respect to b + k + s

and further show that any planar graph admits a leveled planar drawing with height (and
hence span) bounded by (5b + 1)bk. Hence, s can be bounded by a function of b + k, which
yields the result. Differently from vertex cover, the components of G − M are not single
vertices but have up to b vertices. Nevertheless, we use planarity to bound the number of
components with three or more attachments by 2k and the number of pairs {u, v} ∈ M that
are the attachments of components of G − M by 3k. The most challenging part is again
dealing with the components of G − M with one or two attachments, as their number might
not be bounded by any function of b+k. Here, the key insight is that, since these components
have size at most b, there is only a bounded number of “types” of these components. More
precisely, two components C1, C2 of G − M that have the same attachments are called
equivalent if there is an isomorphism between bridge(C1) and bridge(C2) that leaves the
attachments fixed. We use the fact that there is a computable (in fact exponential, see
e.g. [26]) function f : N → N such that the number of equivalence classes is bounded by f(b).

We can show that if an equivalence class of components with one attachment (with two
attachments) is sufficiently large, that is, it is at least as large as a suitable function of s and
b, then in any leveled planar drawing with bounded span, one such component must be drawn
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on levels that are all strictly above or all strictly below its attachment (resp. on levels that are
strictly between its two attachments). Then arbitrarily many equivalent components can be in-
serted into a drawing without increasing its span. This justifies the following reduction rules.

▶ Rule 1. For every vertex v ∈ M , let Cv be a set containing all and only the equivalent
components C of G − M such that att(C) = {v}. If |Cv| > (4s + 4)b, then remove all but
(4s + 4)b of these components from G.

▶ Rule 2. For every pair of vertices {u, v} ∈ M , let Cuv be a set containing all and only the
equivalent components C of G − M with att(C) = {u, v}. If |Cuv| > (8s + 8)(b + 1), then
remove all but (8s + 8)(b + 1) such components from G.

We can now sketch a proof of the following theorem.

▶ Theorem 7. Let (G, s) be an instance of s-Span Weakly leveled planarity with a
b-modulator of size k. There exists a kernelization that applied to (G, s) constructs a kernel
of size O(f(b) · k2 · b4). Hence, the problem is FPT with respect to k + b.

Proof sketch. As mentioned above, the number of components of G − M with three or more
attachments is at most 2k. Rules 1 and 2 bound the number of equivalent components with
one and two attachments. The fact that the number of equivalence classes is bounded by
f(b) then yields a kernel of size O(f(b) · k · b2 · s). Note that testing whether two components
are equivalent can be reduced to an ordinary planar graph isomorphism problem [47], by
connecting each attachment to a sufficiently long path, which forces the isomorphism to leave
the attachments fixed. Hence, the described reduction can be performed in polynomial time.

To drop the dependence on s of the kernel size, we prove that every planar graph admits
a leveled planar drawing whose height (and hence span) is at most (5b + 1)bk. To this end,
we use a trim operation that removes all components of G − M with a single attachment and
replaces multiple components of G − M with attachments {u, v} by a single edge (u, v). The
size of the trimmed graph is at most (5b + 1)k, therefore there exists a leveled planar drawing
of the trimmed graph whose span is bounded by the same function. Then the removed
components, which have size at most b, can be reinserted by introducing b new levels below
each level, i.e., the span increases by a linear factor in b. This yields the desired leveled
planar drawing with span at most (5b + 1)bk and thus a kernel of the claimed size. ◀

We now move to treedepth. A treedepth decomposition of a graph G = (V, E) is a tree T

on vertex set V with the property that every edge of G connects a pair of vertices that have
an ancestor-descendant relationship in T . The treedepth of G is the minimum depth (i.e.,
maximum number of vertices in any root-to-leaf path) of a treedepth decomposition T of G.

Let td be the treedepth of G and T be a treedepth decomposition of G with depth td.
Let r be the root of T . For a vertex u ∈ V , we denote by Tu the subtree of T rooted at u, by
Vu the vertex set of Tu, by d(u) the depth of u (where d(u) = 1 if u is a leaf and d(u) = td if
u = r), and by R(u) the set of vertices on the path from u to r (end-vertices included).

As for Theorems 6 and 7, we can show that the instance (G, s) is positive if s is sufficiently
large, namely larger than ((5td)td + 1)td. Hence, we can assume that s is bounded w.r.t. td.

▶ Theorem 8. Every planar graph with treedepth td has a leveled planar drawing of height
at most ((5td)td + 1)td.

Proof sketch. We apply a trimming operation similar to the one described in Theorem 7.
The effect of this operation, when applied to a vertex v, is to bound the number of children
of v in T by 5td. Assume that every vertex in Vv \ {v} has at most 5td children. Then R(v)



M. A. Bekos et al. 19:9

z

u1

u2

u3

u4 v4
v3
v2

v1

(a)

copyright © 2021 G. Da Lozzo

v3 v4

v1

w13
u13

v2

zk

(b)

v2

v3 v4

v1

(c)

Figure 3 (a) A n-vertex 2-outerplanar graph requiring Ω(n) span in every weakly leveled planar
drawing. (b) An n-vertex 3-connected cycle-tree requiring span 4 in every weakly leveled planar
drawing. (c) An n-vertex cycle-tree requiring Ω(log n) span in every weakly leveled planar drawing.
The graph resulting from the removal of the vertices incident to the outer face is drawn bold.

is a vertex set of size at most td and, due to the degree bound, any connected component of
G − R(v) whose vertices are in Vv has size bounded by (5td)td. Similarly as for modulators,
we can remove such components with a single attachment and replace multiple components
with the same two attachments by an edge. This bounds the degree of v in T to 5td (2td for
components with three or more attachments and 3td for components with two attachments).

We apply this trimming operation in batches. The first batch processes all leaves (which
has no effect); each next batch consists of all the vertices whose children are already processed.
After at most td batches the whole tree is processed (and in fact reduced to a single vertex by
processing the root). We then undo these steps while maintaining a leveled planar drawing.
The key point here is that, due to the degree bound, each of the removed components contains
at most (5td)td vertices, and we can simultaneously reinsert all removed components at the
cost of inserting (5td)td levels below each existing level in the current drawing. Therefore,
the number of levels multiplies by (5td)td + 1 per batch. ◀

We thus obtain the following.

▶ Theorem 9. Let (G, s) be an instance of s-Span Weakly leveled planarity with
treedepth td. There exists a kernelization that applied to (G, s) constructs a kernel whose size
is a computable function of td. Hence, the problem is FPT with respect to the treedepth.

Proof sketch. We perform a kernelization with respect to td + s. We then apply Theorem 8
to bound the span in terms of treedepth. We use a strategy similar to the one in Theorem 8
for processing the vertices in td batches. However, instead of the trimming operation used
there, we use Rules 1 and 2 to bound, for each vertex v, the number of components of G−R(v)
whose vertices are in Vv by a function g(td, s). Eventually, we obtain an equivalent instance in
which the vertices have their degree bounded by g(td, s) in T . This is the desired kernel. ◀

5 Upper and Lower Bounds

In this section, we establish upper and lower bounds on the span of weakly leveled pla-
nar drawings of certain graph classes.

▶ Theorem 10. There exists an n-vertex 2-outerplanar graph such that every weakly leveled
planar drawing of it has span in Ω(n).
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Figure 4 (a) An almost-3-connected path-tree G, drawn with solid edges. The path-vertices are
white and the tree-vertices are black. (b) The path-tree G with root ρ.

Proof sketch. The lower bound is provided by the graph Gk of Fig. 3a, which is composed of
k := ⌊(n − 1)/2⌋ “1-fused stacked cycles” and introduced by Biedl [11]. It is easy to observe
that each cycle has an edge that spans two more levels than any edge of a cycle stacked
inside it, from which the linear lower bound follows. ◀

There is however a well-studied graph family, the Halin graphs, which have outerplanarity
2 and admit 1-span weakly leveled planar drawings [2, 33]. This motivates the study of
cycle-trees [29], a superclass of Halin graphs still having outerplanarity 2. We first consider
3-connected cycle-trees showing a constant span and then extend the study to general cycle-
trees. The approach for 3-connected cycle-trees relies on removing an edge from the external
face so to obtain a graph for which we construct a suitable decomposition tree. We conclude
by discussing the span of weakly leveled planar drawings of planar graphs with treewidth 2.

Path-Trees. A path-tree is a plane graph G that can be augmented to a cycle-tree G′ by
adding the edge e = (ℓ, r) in its outer face; see Fig. 4a. W.l.o.g., let ℓ occur right before r

in clockwise order along the outer face of G′; then ℓ and r are the leftmost and rightmost
path-vertex of G, respectively. The external (internal) vertices of G′ are path-vertices (tree-
vertices). The tree-vertices induce a tree in G. We can select any tree-vertex ρ incident to
the unique internal face of G′ incident to e as the root of G. Then G is almost-3-connected if
it becomes 3-connected by adding the edges (ρ, ℓ), (ρ, r), and (ℓ, r), if they are not already
part of G. If G is almost-3-connected, the path-vertices induce a path in G.

SPQ-decomposition of path-trees. Let G be an almost-3-connected path-tree with root ρ,
leftmost path-vertex λ, and rightmost path-vertex r. We define the SPQ-decomposition of G,
introduced in [29], which constructs a tree T , called the SPQ-tree of G. The nodes of T
are of three types: S-, P-, and Q-nodes. Each node µ of T corresponds to a subgraph Gµ

of G, called the pertinent graph of µ, which is an almost-3-connected rooted path-tree. We
denote by ρµ the root of Gµ (a tree-vertex), by λµ the leftmost path-vertex of Gµ, and by
rµ the rightmost path-vertex of Gµ. To handle the base case, we consider as a path-tree
also a graph whose path is the single edge (λ, r) and whose tree consists of a single vertex ρ,
possibly adjacent to only one of λ and r. Also, we consider as almost-3-connected a path-tree
such that adding (ρ, r), (ρ, λ), and (λ, r), if missing, yields a 3-cycle.

We now describe the decomposition.
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Figure 5 Path-trees corresponding to a Q-node (left), an S-node (middle), and a P-node (right).
Dashed edges may or may not belong to Gµ. Shaded triangles represent smaller path-trees Gνi .

Q-node: the pertinent graph Gµ of a Q-node µ is an almost-3-connected rooted path-tree
which consists of ρµ, λµ, and rµ. The edge (λµ, rµ) belongs to Gµ, while the edges (ρµ, λµ)
and (ρµ, rµ) may not exist; see Fig. 5(left).
S-node: the pertinent graph Gµ of an S-node µ is an almost-3-connected rooted path-tree
which consists of ρµ and of an almost-3-connected path-tree Gν , where ρµ is adjacent to
ρν and, possibly, to λν and rν . We have that µ has a unique child in T , namely a node ν

whose pertinent graph is Gν . Further, we have λµ = λν and rµ = rν ; see Fig. 5(middle).
P-node: the pertinent graph Gµ of a P-node µ is an almost-3-connected rooted path-tree
which consists of almost-3-connected rooted path-trees Gν1 , . . . , Gνk

, with k > 1. This
composition is defined as follows. First, we have ρµ = ρν1 = · · · = ρνk

. Second, we have
λνi

= rνi−1 , for i = 2, . . . , k. Third, µ has children ν1, . . . , νk (in this left-to-right order)
in T , where Gνi

is the pertinent graph of νi, for i = 1, . . . , k. Finally, we have λµ = λν1

and rµ = rνk
; see Fig. 5(right).

In the following, all considered SPQ-trees are canonical, that is, the child of every P-node
is an S- or Q-node. For a given path-tree, a canonical SPQ-tree always exists [23].

3-connected Cycle-Trees. Let G be a plane graph with three consecutive vertices u, v, w

encountered in this order when walking in clockwise direction along the boundary of the
outer face of G. A leveling of G is single-sink with respect to (u, v, w) if all vertices of G

have a neighbor on a higher level, except for exactly one of {u, v, w}. A single-sink leveling
ℓ with respect to (u, v, w) is flat if ℓ(u) < ℓ(v) < ℓ(w) or ℓ(w) < ℓ(v) < ℓ(u); ℓ is a roof if
ℓ(v) > ℓ(u) and ℓ(v) > ℓ(w). Note that a single-sink leveling is necessarily either roof or flat.

Given a single-sink leveling ℓ of G with respect to (u, v, w), a good weakly leveled planar
drawing Γ of (G, ℓ) is one with the following properties:
1. Γ respects the planar embedding of G;
2. it holds that x(u) < x(w) in Γ; and
3. all vertices of V (G) \ {u, v, w} are contained in the interior of the bounded region Ruvw

defined by the path (u, v, w), by the vertical rays starting at u and w, and by the horizontal
line y := minz∈V (G) ℓ(z).

Let a and b be two non-zero integers. A good weakly leveled planar drawing Γ of (G, ℓ)
is an (a,b)-flat drawing if ℓ is flat, a = ℓ(v) − ℓ(u), and b = ℓ(w) − ℓ(v); it is an (a,b)-roof
drawing if ℓ is roof, a = ℓ(v) − ℓ(u), and b = ℓ(w) − ℓ(v). Note that, by definition, in an
(a, b)-flat drawing we have that a and b are either both positive or both negative, while in an
(a, b)-roof drawing a is positive and b is negative.

▶ Theorem 11. Every 3-connected cycle-tree admits a 4-span weakly leveled planar drawing.
Also, for all n ≥ 43, there exists an n-vertex 3-connected cycle-tree G such that every weakly
leveled planar drawing of G has span greater than or equal to 4.
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(a) A (1, 1)-flat weakly leveled planar drawing when µ has an odd (left) or even (right) number of children.
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Figure 6 Illustrations for the proof of Theorem 11, when µ is a P-node.
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Figure 7 Illustrations for the proof of Theorem 11, when µ is a Q-node and the height of T is 0.

Proof sketch. We first prove the statement for almost 3-connected path trees. Let G be
such a graph and T be its SPQ-tree with root µ. Let u = λµ, v = ρµ, and w = rµ. Since
removing edges does not increase the span of a weakly leveled planar drawing, we can assume
that the edges (u, v) and (v, w) belong to G and that G is internally triangulated. That
is, we prove the statement when G is a maximal almost-3-connected path-tree. The proof
is based on recursively constructing a drawing of G = Gµ, where the recursion is on the
SPQ-tree T of G, according to the following case distinction (for details, see [4]).

If µ is a P-node, then Gµ has flat levelings ℓi
µ for i = 1, . . . , 4, with span(ℓi

µ) ≤ 4, such
that (Gµ, ℓi

µ) admits a pi-flat weakly leveled planar drawing with p1 = (−1, −1), p2 = (1, 1),
p3 = (−1, −3), and p4 = (3, 1), see Fig. 6. Let k be the number of children of µ in T . Each
flat leveling ℓi

µ is obtained by combining roof levelings for the pertinent graphs of the leftmost
(or the righmost) k−1 children of µ with a flat leveling of the pertinent graph of the rightmost
(resp. leftmost) child of µ. In particular, the k − 1 children of µ for which flat levelings are
used alternate, in left-to-right order, between (1, −3)-roof drawings and (3, −1)-roof drawings.
If µ is a Q-node, then Gµ has flat levelings ℓi

µ for i = 1, . . . , 4, with span(ℓi
µ) ≤ 4, such
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Figure 8 Illustrations for the proof of Theorem 11, when µ is an S-node.

that (Gµ, ℓi
µ) admits a qi-flat weakly leveled planar drawing with q1 = (1, 1), q2 = (−1, −1),

q3 = (3, 1), and q4 = (−1, −3). Also, Gµ has roof levelings ℓj
µ for j = 5, 6, with span(ℓj

µ) ≤ 4,
such that (Gµ, ℓj

µ) admits a qj-roof weakly leveled planar drawing with q5 = (1, −3) and
q6 = (3, −1), see Fig. 7. Finally, if µ is am S-node, then Gµ has the same type of levelings
and weakly leveled planar drawings as in the case in which it is a Q-node, see Fig. 8. Each of
such levelings is obtained from a flat leveling of the pertinent graph of the unique child of µ.

For triconnected cycle-trees, we remove an edge e on the outer face, after an augmentation
we obtain a (1, 1)-flat weakly leveled planar drawing, and insert back e with span 2.

The proof of the theorem is completed by observing that some 3-connected cycle-trees,
like the one in Fig. 3b, require span at least 4. ◀

The approach in the proof of Theorem 11 can be implemented in quadratic time. To get
linear time, we can maintain only the order of the vertices on their levels and calculate the
exact coordinates at the end of the algorithm.

Similar to [37, Lemma 14], one can prove that s-span weakly leveled planar graphs have
queue number at most s + 1; see [4] for details. Thus, we have the following.

▶ Corollary 12. The queue number of 3-connected cycle-trees is at most 5.

The edge-length ratio of a straight-line graph drawing is the maximum ratio between the
Euclidean lengths of e1 and e2, over all edge pairs (e1, e2). The planar edge-length ratio of a
planar graph G is the infimum edge-length ratio of Γ, over all planar straight-line drawings
Γ of G. Constant upper bounds on the planar edge-length ratio are known for outerplanar
graphs [50] and for Halin graphs [33]. We exploit the property that graphs that admit s-span
weakly leveled planar drawings have planar edge-length ratio at most 2s + 1 [33, Lemma 4]
to obtain a constant upper bound on the edge-length ratio of 3-connected cycle trees.

▶ Corollary 13. The planar edge-length ratio of 3-connected cycle-trees is at most 9.

General Cycle-Trees. We now discuss general cycle-trees, for which we can prove a Θ(log n)
bound on the span of their weakly leveled planar drawings.

▶ Theorem 14. Every n-vertex cycle-tree has an s-span weakly leveled planar drawing such
that s ∈ O(log n). Also, there exists an n-vertex cycle-tree such that every weakly leveled
planar drawing of G has span in Ω(log n).
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Proof sketch. For the lower bound, we observe that some cycle-trees require span Ω(log n).
Indeed, in any planar drawing of the graph in Fig. 3c, a cycle with 3 vertices contains a
complete binary tree with Ω(n) vertices in its interior. Then the lower bound on the span
follows from the fact that any weakly leveled planar drawing Γ of a complete binary tree
with Ω(n) vertices has height Ω(log n) (because it has Ω(log n) pathwidth [15,52] and the
height of Γ is lower-bounded by a linear lower function of the pathwidth of the tree [35]).

For the upper bound, let G be a connected n-vertex cycle-tree. Let E be a plane embedding
of G in which the outer face is delimited by a walk W , so that removing the vertices of W

from G one gets a tree T ; see Fig. 9a. We add the maximum number of edges connecting
vertices of W with vertices of W and of T , while preserving planarity, simplicity, and the
property that every vertex of W is incident to the outer face; see Fig. 9b.
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Figure 9 (a) An embedding E of a cycle-tree G, where the tree T is represented by bold lines.
(b) The augmentation of G; the added edges are red. The face f of EGW is gray. (c) Removing the
components of G outside C. (d) Removing the components of G inside C.

We now remove some parts of the graph, so that it turns into a 3-connected cycle-tree H .
Let GW be the subgraph of G induced by the vertices of W and let EGW

be the restriction
of E to GW . There is a unique face f of EGW

that contains T in its interior; let C be the
cycle delimiting f . We remove from G the vertices of GW not in C. The removed vertices
induce connected subgraphs of G, called components of G outside C; see Fig. 9c. Also, we
remove from G all the vertices of T that have at most one neighbor in C. This results in the
removal of subtrees of T , which we call components of G inside C; see Fig. 9d.

We next apply Theorem 11 to construct a weakly leveled planar drawing Λ of H with
O(1) span and insert O(log n) levels between any two consecutive levels of Λ. We use such
levels to re-introduce the components of G inside and outside C, thus obtaining a weakly
leveled planar drawing of G with O(log n) span. The components of G inside C are trees that
can be drawn inside the internal faces of H with O(log n) height, while ensuring the required
vertex visibilities, via an algorithm similar to well-known tree drawing algorithms [22, 28, 53].
The components of G outside C are outerplanar graphs that can be drawn in the outer face
of H with O(log n) height via a suitable combination of results by Biedl [11,12]. ◀

Planar Graphs with Treewidth 2. In this section, we show that sub-linear span can be
achieved for planar graphs with treewidth 2. Note that this is not possible for planar graphs
of larger treewidth, as the graph in Fig. 3a has treewidth three and requires span Ω(n).

▶ Theorem 15. Every n-vertex planar graph with treewidth 2 has an s-span weakly leveled
planar drawing such that s ∈ O(

√
n). Also, there exists an n-vertex planar graph with

treewidth 2 such that every weakly leveled planar drawing of G has span in 2Ω(
√

log n).
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Proof sketch. Biedl [11] proved that every n-vertex planar graph G with treewidth 2 admits
a planar y-monotone grid drawing Γ with O(

√
n) height, that is, the drawing touches O(

√
n)

horizontal grid lines. Interpreting the placement of the vertices along these lines as a leveling
shows that G admits a leveled planar drawing Γ with height, and hence span, O(

√
n).

The lower bound uses a construction by Frati [42]. Note that 2Ω(
√

log n) is larger than
any poly-logarithmic function of n, but smaller than any polynomial function of n. ◀

Since graphs that admit s-span weakly leveled planar drawings have planar edge-length
ratio at most 2s + 1 [33, Lemma 4], we obtain the following result a corollary of Theorem 15,
improving upon a previous O(n0.695) bound by Borrazzo and Frati [19]

▶ Corollary 16. Treewidth-2 graphs with n vertices have planar edge-length ratio O(
√

n).

6 Open Problems

We studied s-span weakly leveled planar drawings from an algorithmic and a combinatorial
perspective. We conclude by listing natural open problems arising from our research:

Does s-Span Weakly leveled planarity have a kernel of polynomial size when
parameterized by the treedepth? Is the problem FPT with respect to the treewidth?
Theorem 15 shows a gap between the lower and upper bounds in the span for the family
of 2-trees. It would be interesting to reduce and possibly close this gap.
It would also be interesting to close the gap between the lower bound of Ω(log n) [13, 14]
and the upper bound of O(

√
n) of Corollary 16 on the edge-length ratio of 2-trees.
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1 Introduction and Preliminaries

We study, from the quantum perspective, the One-Side Crossing Minimization (OSCM)
problem, one of the most studied problems in Graph Drawing, which is defined below.

2-Level Drawings. In a 2-level drawing of a bipartite graph the vertices of the two sets of
the bipartition are placed on two horizontal lines and the edges are drawn as straight-line
segments. The number of crossings of the drawing is determined by the order of the vertices
on the two lines. Formally, let G = (U, V,E) be a bipartite graph, where U and V are the two
parts of the vertex set of G and E ⊆ U × V is the edge set of G. In the following, we write
n, nU , and nV for |U ∪ V |, |U |, and |V |, respectively; also, for every integer h, we use the
notation [h] to refer to the set {1, . . . , h}. A 2-level drawing of G is a pair (πU , πV ), where
πU : U ↔ {1, . . . , |U |} is a linear ordering of U and πV : V ↔ {1, . . . , |V |} is a linear ordering
of V . We denote the vertices of U by ui (i ∈ [nU ]), and the vertices of V by vj (j ∈ [nV ]).
Two edges (u1, v1) and (u2, v2) in E cross in (πU , πV ) if: (i) u1 ̸= u2 and v1 ̸= v2 and (ii)
either πU (u1) < πU (u2) and πV (v2) < πV (v1), or πU (u2) < πU (u1) and πV (v1) < πV (v2).
The number of crossings of a 2-level drawing (πU , πV ) is the number cr(G, πU , πV ) of distinct
(unordered) pairs of edges that cross. Problem OSCM is defined as follows:
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Input: A bipartite graph G = (U, V, E) and a linear ordering πU : U ↔ [nU ].
Output: A linear ordering πV : V ↔ [nV ] such that cr(G, πU , πV ) is minimum.

One-Sided Crossing Minimization (OSCM)

State of the art. The importance of the OSCM problem, which is NP-complete [10] even
for sparse graphs [19], in Graph Drawing was first put in evidence by Sugiyama in [22].

Exact solutions of OSCM have been searched with branch-and-cut techniques, see e.g. [16,
20, 24], and with FPT algorithms. The parameterized version of the problem, with respect to
its natural parameter k = minπV

cr(G, πU , πV ), has been widely investigated. Dujmovic et
al. [7, 8] were the first to show that OSCM can be solved in f(k)nO(1) time, with f ∈ O(ψk),
where ψ ≈ 1.6182 is the golden ratio. Subsequently, Dujmovic and Whitesides [5, 6] improved
the running time to O(1.4656k + kn2). Fernau et al. [11], exploiting a reduction to weighted
FAST and the algorithm by Alon et al. [1], gave a subexponential parameterized algorithm
with running time 2O(

√
k log k) +nO(1). The reduction also gives a PTAS using [17]. Kobayashi

and Tamaki [18] gave the current best FPT result with running time O(k2
√

2k + n).
Quantum Graph Drawing has recently gained popularity. Caroppo et al. [4] applied

Grover’s search [14] to several Graph Drawing problems obtaining a quadratic speedup over
classical exhaustive search. Fukuzawa et al. [12] studied how to apply quantum techniques for
solving systems of linear equations [15] to Tutte’s algorithm for drawing planar 3-connected
graphs [23]. Recently, in a paper that pioneered Quantum Dynamic Programming, several
vertex ordering problems related to Graph Drawing have been tackled by Ambainis et al. [2].

Our Results. First, we exploit the quantum dynamic programming framework of Ambainis
et al. to devise an algorithm that solves OSCM in O∗(1.728n) time and space. We compare
the performance of our algorithm against the algorithm proposed in [18], based on the value
of k. We have that the quantum algorithm performs asymptotically better than the FPT
algorithm, when k ∈ Ω(n2). Second, we use quantum divide and conquer to obtain an
algorithm that solves OSCM using O∗(2n) time and polynomial space. Both our algorithms
improve the corresponding classical bounds in either time or space or both.

In our first result, we adopt the QRAM (quantum random access memory) model of com-
putation [13], which allows (i) accessing quantum memory in superposition and (ii) invoking
any T -time classical algorithm that uses a (classic) random access memory as a subroutine
spending time O(T ). In the second result we do not use the QRAM model of computation
since we do not need to explicitly store the results obtained in partial computations.

Notation. For ease of notation, given positive integers a and b, we denote ⌈ a
b ⌉ as a

b and
⌈log a⌉ as log a. If f(n) = O(nc) for some constant c, we will write f(n) = poly(n). In case
f(n) = dnpoly(n) for some constant d, we use the notation f(n) = O∗(dn) (see, e.g., [25]).

Quantum Tools. We will use quantum search primitives, such as the one of Theorem 1,
and exploit the fact that they can perform condition checking on data stored in QRAM.

▶ Theorem 1 (Quantum Minimum Finding, QMF [9]). Let f : D → C be a polynomial-time
computable function, whose domain D has size N and whose codomain C is a totally ordered
set (such as N) and let F be a procedure that computes f . There exists a bounded-error quan-
tum algorithm that finds x ∈ D such that f(x) is minimized using O(

√
N) applications of F .

Because of space limitations, some proofs are sketched or omitted. They can be found in
the full version of the paper [3].
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Algorithm 1 Procedure QuantumDP is the algorithm of Lemma 2. Procedure OPT is a recursive
procedure invoked by QuantumDP. Procedure QMF performs quantum minimum finding.

1: procedure QuantumDP(X)
2: Input: Set X of size n; Output: the value OPTP(X).
3: for all sets W ⊂ X such that |W |≤ (1 − α)n/4 do ▷ in order of increasing size
4: Compute OPTP(W ) classically via dynamic programming ▷ use Equation (1)
5: with k = |W |−1
6: Store OPTP(W ) in QRAM
7: end for
8: return OPT(X)
9: end procedure

10: procedure OPT(S)
11: Input: Subset S ⊆ X; Output: the value OPTP(S).
12: if |S|≤ (1 − α)n/4 then
13: return value OPTP(S) stored in QRAM
14: else
15: return the result of QMF over all S ⊂ X to find

min
W ⊂S,|W |= |S|

2

{OPT(W ) + OPT(S \W ) + fP(W,S \W )}

16: end if
17: end procedure

2 Quantum Dynamic Programming for One-Sided Crossing
Minimization

In this section, we first describe the quantum dynamic programming framework of Ambainis
et al. [2], which is applicable to numerous optimization problems involving sets. Then, we
show that OSCM is a set problem over V that falls within this framework. We use this fact
to derive a quantum algorithm (Theorem 4) exhibiting a speedup over the corresponding
classical singly-exponential algorithm (given in [3]) in both time and space complexity.

Quantum dynamic programming for set problems. The framework by Ambainis et al. is
defined by the following lemma derivable from [2].

▶ Lemma 2. Let P be an optimization problem (say a minimization problem) over a set X.
Let |X|= n and let OPTP(X) be the optimal value for P over X. Suppose that there exists
a polynomial-time computable function fP : 2X × 2X → R such that, for any S ⊆ X, it holds
that for any k ∈ [|S|−1]:

OPTP(S) = min
W ⊂S,|W |=k

{OPTP(W ) +OPTP(S \W ) + fP(W,S \W )} (1)

Then, OPTP(X) can be computed by a quantum algorithm that uses QRAM in O∗(1.728n)
time and space.

Proof sketch. The algorithm for the proof of the lemma is presented as Algorithm 1. The
main idea of the algorithm is to precompute solutions for smaller subsets using classical
dynamic programming and then recombine the results of the precomputation step to obtain
the optimal solution for the whole set (recursively) applying QMF (see Theorem 1). ◀
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Quantum dynamic programming for OSCM. In the following, let (G, πU ) be an instance
of OSCM. For any S ⊆ E, consider the subgraph H = (U, V, S) of G. For ease of notation,
we denote cr(H,πU , πV ) simply as crS(πU , πV ). Also, let πV be a linear ordering of the
vertices in V and V1, V2 ⊆ V be two subsets of the vertices of V such that V1 ∩ V2 = ∅. We
say that V1 precedes V2 in πV , denoted as V1 ≺πV

V2, if for any v1 ∈ V1 and v2 ∈ V2, it holds
that πV (v1) < πV (v2). Also, for a any W ⊆ V , we denote by E(W ) the subset of E defined
a follows E(W ) := {(ua, vb) : (ua, vb) ∈ E ∧ vb ∈ W}. We will exploit the following.

▶ Lemma 3. Let G = (U, V,E) be a bipartite graph and let πU : U ↔ [nU ] be a linear
ordering of the vertices of U . Also, let V1, V2 ⊆ V be two subsets of the vertices of V such
that V1 ∩ V2 = ∅. Then, there exists a constant γ(πU , V1, V2) such that, for every linear
ordering πV : V ↔ [nV ] with V1 ≺πV

V2 we have that:

γ(πU , V1, V2) = crE(V1)∪E(V2)(πU , πV ) − crE(V1)(πU , πV ) − crE(V2)(πU , πV ) (2)

Observe that, given an ordering πV of V such that V1 precedes V2 in πV , the value
γ(πU , V1, V2) represents the number of crossings in a 2-level drawing (πU , πV ) of G determined
by pairs of edges, one belonging to E(V1) and the other belonging to E(V2).

We are now ready to derive our dynamic programming quantum algorithm for OSCM. To
this aim, we argue next that the framework of Lemma 2 can be applied to the optimization
problem associated with OSCM (i.e., computing the minimum number of crossings over all
2-level drawings (πU , πV ) of G with πU fixed), which we call MinOSCM. First, we have that
MinOSCM is a set problem over V , whose optimal solution respects a recurrence of the
same form as Equation (1). In fact, for a subset S of V , let OPT (S) denote the minimum
number of crossings in a 2-level drawing (πU , πS) of the graph GS = (U, S,E(S)), where
πS : S ↔ [|S|] is a linear ordering of the vertices of S. Then, by Lemma 3, we can compute
OPT (S) by means of the following recurrence for any k ∈ [|S|−1]:

OPT (S) = min
W ⊂S,|W |=k

{OPT (W ) +OPT (S \W ) + γ(πU ,W, S \W )}

Clearly, OPT (V ) corresponds to the optimal solution for (G, πU ). Also, function γ plays the
role of function fP of Lemma 2. Second, we have that γ can be computed in poly(n) time.

In [3], we show that Algorithm 1 applied to MinOSCM can also be adapted to compute
an ordering πV of V that yields a drawing with the minimum number of crossings.

Altogether, we have finally proved the following.

▶ Theorem 4. There is a bounded-error quantum algorithm that solves OSCM in O∗(1.728nV )
time and space.

Comparing Theorem 4 against the current best FPT result [18] solving OSCM in
O(k2

√
2k + n) time, where k bounds the number of allowed crossings, we have the following.

▶ Corollary 5. The algorithm of Theorem 4 is asymptotically more time-efficient than the
FPT algorithm parameterized by the number k of crossings in [18] when k ∈ Ω(n2).

3 Quantum Divide and Conquer for One-Sided Crossing Minimization

Shimizu and Mori [21] used divided and conquer to obtain quantum exponential-time
polynomial-space algorithms for coloring problems that do not rely on the use of QRAM.
In this section, we first generalize their ideas to obtain a framework designed to speedup,
without using QRAM, some classical exponential-time polynomial-space divide and conquer
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Algorithm 2 The quantum algorithm of Lemma 6.

1: procedure QuantumDC(X):
2: Input: Set X of size n; Output: the value OPTP(X).
3: if |S|≤ cP then
4: return fP(S, ∅)
5: end if
6: return the result of QMF over all W ⊂ S with |W |= |S|

2 to find

min
W ⊂S,|W |= |S|

2

{QuantumDC(W ) + QuantumDC(S \W ) + fP(W,S \W )}

7: end procedure

algorithms for set problems. Then, we show that OSCM is a set problem over V that falls
within this framework. We use this fact to derive a quantum algorithm (Theorem 7) that
improves the time bounds of the corresponding classical singly-exponential algorithm (given
in the full version of the paper [3]), while maintaining polynomial space complexity.

Quantum divide and conquer for set problems. In the remainder, we provide a general
quantum framework, defined by the following lemma.

▶ Lemma 6. Let P be an optimization problem (say a minimization problem) over a set X.
Let |X|= n and let OPTP(X) be the optimal value for P over X. Suppose that there exists
a polynomial-time computable function fP : 2X × 2X → R and a constant cP such that, for
any S ⊆ X, it holds that: (i) If |S|≤ cP , then OPTP(S) = fP(S, ∅); (ii) If |S|> cP , then

OPTP(S) = min
W ⊂S,|W |= |S|

2

{OPTP(W ) +OPTP(S \W ) + fP(W,S \W )} (3)

We have that, OPTP(X) can be computed by a quantum algorithm without using QRAM in
O∗(2n) time and polynomial space.

Proof. The algorithm for the proof of the lemma is presented as Algorithm 2 and is based
on the recurrence in Equation (3). It works recursively as follows. If the input set X is
sufficiently small, i.e., |X|≤ cP , then the optimal value for X is computed directly as fP(X, ∅).
Otherwise, it uses QMF to find the optimal pair (S,X \S) that achieves OPTP(X) according
to Equation (3), where OPTP(S) and OPTP(X \ S) have been recursively computed.

The running time Q(k) of Algorithm 2 when |X|= k obeys the following recurrence:

Q(k) ≤

√
O

((
k

k/2

))(
Q(⌊k/2⌋) +Q(k/2) + poly(k)

)
Hence, Q(k) ≤ 2kpoly(k), and the total running time of Algorithm 2 is bounded by O∗(2n).

The space complexity of Algorithm 2 (procedure QuantumDC) can be proved polynomial
as follows; see Figure 1. The execution of QuantumDC determines a rooted binary tree T
whose nodes are associated with its recursive calls; see Figure 2. Each call corresponds to a
circuit in Figure 1. We denote by QDC(i,j) the circuit, at the ith-level of the recursion tree
T , with i = 0, . . . , log n− 1, associated with the jth-call, with j ∈ 0, . . . , 2i − 1. The input to
each of such circuits consists of a set of registers defined as follows. For i = 0, 1, . . . , log n− 1
and j = 0, 1, . . . , 2i − 1, there exists a register Ai,j with n

2i qubits. It stores a superposition
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Figure 1 Schematic representation of the circuit realizing Algorithm 2 for a set X with n = 16.
The qubits in Li,j in input to the circuit QDC(i,j) are incident to its left boundary.
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Figure 2 The tree T whose nodes are associated with the recursive calls of Algorithm 2.

corresponding to a subset Si,j of X (to be defined later) of size n
2i , which represents all

possible ways of splitting the subset into two equal-sized subsets. Specifically, a status 0
for Ai,j [k] corresponds to assigning the kth-element of the subset associated with Ai,j to
one side of the split, while a status 1 of Ai,j [k] corresponds to assigning the kth-element of
such a subset to the other side of the split. In Figure 2, we associate the split defined by
the status-0 qubits (by the status-1 qubits) with the left (right) child of a node. Moreover,
in Figure 2, each edge of T is labeled with the registers representing the corresponding split.

The input of QDC(i,j) is a set Li,j of i+ 1 registers of size n, n
2 , n

4 , . . . , n
2i , respectively;

see Figure 1. The registers in input to QDC(i,j) can be recursively defined as follows. The
register Ai−1,⌊j/2⌋ belongs to Li,j and it is the smallest register in this set. Also, if Ac,d with
c ≥ 1 belongs to Li,j , then Ac−1,⌊d/2⌋ also belong to Li,j . In particular, observe that Li,j
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always contains A0,0. The circuit QDC(i,j) solves problem P on a subset Si,j of X of size
n
2i , which is defined by the states of the registers in Li,j . In particular, the set Si,j can be
determined by following the path of T connecting QDC(i,j) to the root, and observing that
the parity of j determines whether a node in the path is the left or right child of its parent.

We can finally bound the space complexity of Algorithm 2, in terms of both bits and
qubits. Since our algorithm does not rely on external classic memory, we only need to bound
the latter. Note that the number of circuits QDC(i,j) (which are in a bijection with the nodes
of T ) is linear in n and that the number of qubits in Li,j , which form the input of QDC(i,j),
is at most

∑log n
i=0

n
2i = 2n. Hence, the space complexity of Algorithm 2 is polynomial. ◀

Quantum divide and conquer for OSCM. We now describe a quantum divide and conquer
algorithm for OSCM. We start by showing that the framework of Lemma 6 can be applied
to MinOSCM (see Section 2). This can be done in a similar fashion as for the Lemma 2. In
particular, the fact that the MinOSCM problem is a set problem over V immediately follows
from the observation that Equation (3) is the restriction of Equation (1) to the case in which
k = |W |= |S|

2 . Moreover, recall that γ can be computed in poly(n) time. The execution
of Algorithm 2 produces as output a superposition of the registers Ai,j such that the state
with the highest probability of being returned, if measured, corresponds to an ordering πV

of V that yields a drawing with the minimum number of crossings. In [3], we show how to
obtain πV from such a state. Altogether we have proved the following.

▶ Theorem 7. There is a bounded-error quantum algorithm that solves OSCM in O∗(2nV )
time and polynomial space.

4 Conclusions

We presented singly-exponential quantum algorithms for OSCM, exploiting both quantum
dynamic programming and quantum divide and conquer. We believe that this research will
spark further interest in the design of exact quantum algorithms for hard graph drawing
problems. In [3], we highlight two meaningful applications of our results.
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Abstract
Most of the common graph layout principles (a.k.a. “aesthetics”) on which many graph drawing
algorithms are based are easy to define and to perceive. For example, the number of pairs of edges
that cross each other, how symmetric a drawing looks, the aspect ratio of the bounding box, or the
angular resolution at the nodes. The extent to which a graph drawing conforms to these principles
can be determined by looking at how it is drawn – that is, by looking at the marks on the page –
without consideration for the underlying structure of the graph. A key layout principle is that of
optimising “stress”, the basis for many algorithms such as the popular Kamada & Kawai algorithm
and several force-directed algorithms. The stress of a graph drawing is, loosely speaking, the extent
to which the geometric distance between each pair of nodes is proportional to the shortest path
between them – over the whole graph drawing. The definition of stress therefore relies on the
underlying structure of the graph (the “paths”) in a way that other layout principles do not, making
stress difficult to describe to novices unfamiliar with graph drawing principles, and, we believe,
difficult to perceive. We conducted an experiment to see whether people (novices as well as experts)
can see stress in graph drawings, and found that it is possible to train novices to “see” stress – even
if their perception strategies are not based on the definitional concepts.
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1 Introduction

Algorithms for depicting graphs are based on conformance to one or more “layout principles”
(or “aesthetics”). These principles are chosen so that the resulting drawing is considered
“good”, in terms of being easier to read or understand when compared to a random layout that
does not take any useful principles into account. Some empirical work has been undertaken
to determine whether these principles really do enhance human understanding, with support
found for reducing the number of edge crossings [19,20], depicting symmetry [19], and having
wide edge crossing angles [13].

Many of these principles can easily be related to the process of visual perception. For
example, the principle that edges adjacent at a node should subtend as wide an angle as
possible relates to the limitations of visual acuity, as does the need to keep adequate space
between nodes and edges; the principle of depicting symmetric subgraphs in symmetric
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form refers to the Gestalt law of symmetry; bent edges are contrary to the Gestalt law of
continuity; an aspect ratio that is extremely different from the Golden Ratio can result in a
sense of visual imbalance.

Optimising “stress” in a graph drawing (e.g. by [11,14, 30]) is a common layout principle
that is much-cited by graph drawing researchers. It relates to the extent to which the
geometric distance between each pair of nodes in the graph drawing is proportional to the
shortest graph-theoretic path between them – over the whole graph drawing. The definition
of stress therefore relies on calculations associated with the underlying structure of the graph
(the “paths”) in a way that other layout principles do not.

So, while most layout principles can clearly relate solely to visual perception, “stress”
cannot – it requires analysis of the graph structure as well. This does not mean that there
has been no empirical work that refers to stress, simply that it has not done so with explicit
use of the word “stress”. Marner et al. conducted an experiment where participants were
asked to untangle large graphs on a wall-display, with the support of a novel algorithmic
technique for moving several nodes at once [17]. They found that the drawings created by
users did not have lower stress or fewer edge crossings when compared with the graphs drawn
using the Fruchterman & Reingold algorithm [9], and they question the importance of these
two metrics for creating graphs suitable for human understanding. Their instructions to
their participants make no explicit reference to the property of stress.

Chimani et al. claim that “people prefer less stress and fewer crossings” [5]. Their two-
alternative-forced-choice experiment asked participants to choose their drawing of preference,
with the stimuli carefully chosen with variations in both stress and edge crossings. While
it was shown that participants tended to prefer the drawings with lower stress (57%) and
fewer crossings (65%), the former is an implicit variable (unseen and unexplained to the
participants) and the latter is explicit – that is, it is obviously seen.

Stress-preference experimental papers like these make use of the computational stress
measure in their data analysis, but do not educate the participants about the concept of
stress – it is treated as a “hidden” feature, that cannot be “seen” by participants. This paper
represents the first attempt to determine whether people can “see” stress in a graph drawing
when the concept is explained to them. This is important for graph perception experiments
that attempt to determine the most effective (or most preferred, or most efficient) layout
algorithms for human understanding. Stress is a key feature of many common algorithms –
if we cannot be sure that participants understand what it is, how can we assess the extent to
which they value it in graph drawings?

Anecdotally, graph drawing researchers often claim that they can “see stress” – i.e., that
it is as immediately perceptible as other layout principles. While this may be the case for
those fluent in graph drawing principles forms (who have an internally and possibly intuitive
understanding of the stress principle), it is unclear that “stress” can be explained sufficiently
well to non-experts that they too can perceive stress in a graph drawing.

In this paper, we explore whether it is possible to “see” a feature of a graph drawing that
is implicitly defined by both graph structure as well as visual form. We conduct a series
of human experiments, asking participants to distinguish between pairs of graph drawings,
identifying which has lower stress. While our results necessarily depend on the quality of the
explanation of stress given to novices, we find that even experts find the task challenging.
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2 Background

2.1 Applications of Stress in Graph Drawing
Kamada and Kawai [14] first introduced the idea of using stress in graph drawing in the late
80s, with the motivation that a good drawing should accurately represent something about
the graph structure. In this case, that drawn distances be proportional to graph-theoretic
distances. The Kamada-Kawai layout algorithm has seen several improvements such as stress
majorization [10, 11] and stochastic gradient descent [30]. These most recent versions are
among the most popular layout algorithms today, as can be seen by their implementation in
libraries like NetworkX (kamada_kawai_layout), GraphViz (Neato), yEd (Organic), and
others. Stress-based optimisation of multiple graph layout aesthetics is considered by Ahmed
et al. [2] and Devkota et al. [6].

Kruiger et al. [15] and Zhu et al. [32] generalize the classical dimensionality reduction
algorithm t-SNE [26] and include stress as one of the evaluation criteria. Other papers that
optimise stress-related functions and evaluate stress include those by Zhong et al. [31] and
Xue et al. [29].

Regardless of whether an algorithm explicitly optimises stress, it is very commonly used
as a metric to evaluate the quality of graph drawings and layout algorithms. A recent survey
of graph layout algorithms [7] shows that it is the third most common metric employed
in the GD community, behind running time and number of edge crossings. Stress is used
in the evaluation of graph layout algorithms in papers by Hong et al. [12] and Marmer et
al. [17], as well in dynamic graph layout methods, as in Simonetto et al. [22] and Arleo et
al. [3]. Brandes and Pich [4] evaluate several graph layout algorithms based on how well
they optimise stress and Welch and Kobourov show that stress can be used as an alternative
measure of symmetry in graph layouts [28].

2.2 Stress Definitions
The definition of stress is much older than the Kamada-Kawai algorithm, with roots in
statistical analysis. Stress as it is known in the graph drawing community began with
Torgerson, who proposed a technique now known as metric Multi-Dimensional Scaling
(MDS) [25]. Torgerson aims to provide a low dimensional representation of a set of objects
on which distances are given. Importantly, little restriction is given on where these distances
come from, e.g. they may be from a traditional metric space Rd, responses to a Likert scale,
or indeed, graph-theoretic distances. However the distances are obtained, they are collected
into a matrix D ∈ Rn×n, with the cell di,j containing the distance between object i and
object j. MDS aims to find a matrix X ∈ Rn×2 where Xi represents a low dimensional
coordinate of object i such that distances between rows in X are exactly the distances in D.
This is not possible in general, so the deviation of these distances are measured as a function:

∑
i<j

(||Xi − Xj || − di,j)2

d2
i,j

(1)

Note that this function is differentiable with respect to X, so gradient-based optimisation
schemes can be employed to find a local minimum of the equation.

Sometime later, Kruskal defined what is now known as non-metric MDS [16], with the
motivation that preservation of exact distances is often very difficult and too restrictive. In
the non-metric variant, it is instead important to maintain the rank or ordering of distances
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i.e. from each object, the object that is first, second, and third closest in the original space
should still be first, second, and third closest in the projection respectively. This non-metric
stress is defined with a deceptively similar function:√√√√∑

i<j(||Xi − Xj || − d̂i,j)2∑
i<j ||Xi − Xj ||2

(2)

However, the matrix D̂ is not the original distance matrix from the input. Instead, a
Shepard diagram [21] is formed by forming a set of coordinates for each pair of objects i, j:
ci,j = (||Xi − Xj ||, di,j). A Shepard diagram created from an ideal drawing would have all
points lying exactly on a straight line, since this would correspond to all input distances
being exactly all output distances. To measure the deviation from this line, Kruskal performs
a monotonic regression with

(
n
2
)

points to best fit the diagram. The matrix D̂ is defined such
that d̂i,j is the distance in the x-coordinate to the fitted line from ci,j .

In terms of information, the metric stress of equation 1 is more restrictive than the non-
metric stress of equation 2. However, both are measuring how well distances are maintained
in the output. Non-metric stress has the additional advantage that the resulting number will
be in the range 0-1 and is hence more suitable as an evaluation metric. Scale can impact
normalised stress values and several scale-invariant stress measures are detailed in recent
papers by Ahmed et al. [1], Smelser et al. [23], and Wang et al. [27].

3 Methodology

3.1 Experimental Methodology
Our overriding Research Question is “Can people see stress in a graph drawing?” As a simple
yes/no question, this is tricky to address directly: it does not make sense to simply ask a
participant to look at a graph drawing and to state whether it “is” or “is not” stressed. We
therefore address this question by investigating whether people can see the difference in
graph drawings with different stress values; thus, the research question becomes “Can people
see differences in stress between two drawings of the same graph?”

Our methodology was mostly exploratory and incremental. We first addressed the research
question by explaining the concept of stress to novices, giving them some training on the
task (with feedback), and collecting performance data (accuracy, time, confidence) on 45
trials – over three different graph sizes. Each trial consisted of a pair of drawings of the same
graph, with the participants being asked to indicate which has lower stress.

The results of this initial experiment were very encouraging, and so our follow-up study
attempted to see how the extent of training affects performance; in this case, the participants
received the same explanation of stress, but did not receive feedback on the training questions.
We also asked some of our graph drawing expert collaborators to do the experiment as well;
they did not have any training session.

Section 3.4 explains the experimental procedure in more detail.

3.2 Measuring Stress
To test the perception of stress, we need a set of graph drawings which have different values
of stress. To create these, we must define a measurement of stress which is independent
of graph size, structure, and drawing space. While the general definition (i.e. the metric
definition of equation 1 and its commonly used variants), can be used to calculate the stress
of a given drawing, it does not meet this criteria. For example, using this definition, Welch
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and Kobourov show that the stress of a given drawing varies with respect to the scale of the
drawing space [28]. This means graph drawings with different geometric scales cannot be
compared.

To create the stimuli, we use the definition of stress provided by Kruskal [16] (equation 2).
While intended for measuring the quality of multi-dimensional scaling techniques, the method
is applicable to measuring stress in graph drawings and has numerous benefits. Firstly, the
measure is normalised, and hence applicable to graphs of different size and structure. This
definition also has the benefit of being independent of the rotation and geometric scale of
the drawing space. To integrate this measure with other graph drawing metrics, such as
those described by Mooney et al. [18], we subtract the Kruskal stress value from 1. This
means that, as a metric, a value of 1 represents the extreme that is intuitively assumed to be
good – in this case, zero stress. For the rest of this section, we refer to this definition as the
“Kruskal Stress Metric” (KSM).

Hopefully, Section 2.2 leaves one convinced that Kruskal’s definition is an appropriate
measure of stress. To further justify this choice, we used the large dataset described by Mooney
et al. [18], and calculated the Kruskal stress of nearly half a million graph drawings, then
compared this to a normalised stress function based on the Kamada and Kawai definition [14].
We found the correlation between the two definitions to be 0.871. This strong correlation
highlights the similarity in the respective definitions.

3.3 The stimuli
We ran three concurrent experiments, for graphs with node count of 10, 25 and 50. For
each graph size, we created five random graphs using the Erdős–Rényi model [8], with
the constraint that the graph is connected and the number of edges is less than two times
the number of nodes. This constraint ensures that drawings do not end up as “hairballs”.
Preliminary testing when creating the stimuli showed that denser graphs (and hence denser
drawings) tend to have higher stress than sparser graphs, and so, inclusion of them would
limit the range of possible stress values.

We create graph drawings with KSM values in the range of 0.4 to 0.8, with intervals of
0.05 (nine drawings in a set). For each graph size, we generate three sets of drawings using
a basic hill climbing algorithm. The evaluation function for this algorithm is the absolute
difference between the KSM of the current drawing and the target KSM value. Nodes are
initially positioned randomly within a unit grid. Each iteration updates the drawing by
selecting a random node, and moving this node to a new random position within the initial
bounding box of the drawing space. This new random position is also bounded by a circle
of decreasing radius (as the number of iterations increases) centred on the chosen node’s
current position. If the new drawing has KSM closer to the target value, it is taken to be
the current drawing, otherwise it is discarded. The algorithm terminates when the KSM of
the drawing is within 0.01 units of the target value. Example stimuli are shown in Table 1.

3.4 Experimental Procedure
The methodology for each novice experiment is the same, but with different stimuli (corres-
ponding to the three different graph sizes). The participants are first shown an overview of
the aims of the experiment and asked for their consent to participate. Next, participants are
shown a page which outlines the key concepts of graph drawings and stress (details available
in the online version of the paper). We use layman terms such as “network” instead of
“graph”, “object” instead of “node”, and “connection” instead of “edge”. This page explains
the following:
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Table 1 Example drawings of different KSM values. Each row consists of different drawings of
the same graph. Higher KSM values indicate lower stress.

KSM
0.4 0.6 0.8

Size

10

25

50

What a graph is, including definitions for nodes and edges.
What a graph drawing is, and that one graph can have many different drawings.
That different graph drawings have different visual properties, such as symmetry.
What is meant by a “path” and “shortest path” between two nodes.
What stress means in relation to graph drawing, with very basic examples of low and
high stress drawings.
Four pairs of drawings with low and high stress.
That the participants should not spend a long time trying to calculate the stress of a
drawing, but should rely on their immediate perception.

Participants are then shown nine predetermined pairs of drawings and asked to choose
which has lower stress (or that they have the same stress). The nine drawings are of graphs
that are the same size as the given experiment with differences of KSM ranging from 0.4 to 0,
decrementing by 0.05 (in that order). In the first set of experiments there are 25 participants
for each graph size (75 total). These 75 participants are given feedback immediately after
each pair to inform them if they were correct or, if not, what the correct response was.
Where feedback is given, over 50% of the responses to these training questions must be
correct to continue to the main experiment. In the second set of experiments there are 10
participants for each graph size (30 total). These 30 participants are given no feedback on
the nine training questions.

In the main part of the experiment, participants are shown 45 pairs of drawings (trials),
with KSM values in the range 0.4–0.8, and asked to choose the drawing with lower stress (or
that they have the same stress). Each pair consists of two drawings of the same graph. There
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are five graphs and nine unique KSM differences (0, 0.05, 0.1...0.4). The exact drawings
for each KSM difference is random – e.g., for graph one, and KSM difference of 0.3, one
participant may be shown drawings with KSM of 0.4 and 0.7, whilst another may be shown
drawings with KSM of 0.5 and 0.8. The order in which pairs of drawings are shown is
randomised for each participant, as well as which two drawings are chosen (from a pool
of three) and the order (left/right) that they appear on the page. This randomness is
incorporated to lower the chance of a learning effect. The participants are not given any
feedback about their choice. After each choice, the participant is asked if they were confident
about their choice. An example trial is shown in Figure 1.

Figure 1 Example trial for the n=10 experiment. Here the drawing on the left has a KSM value
of 0.45, while the right drawing has a KSM value of 0.7 (but this information is, of course, not shown
to the participants).

After all 45 pairs have been shown, the participant is asked some follow up questions
about the experiment and asked for some demographic information. See Section 3.4.1 for
more details.

The expert experiment follows the same methodology as the novice experiments, however
the experts are not shown the nine training pairs and complete the 45 trials for each graph
size (135 total). The experts are shown the 135 trials in blocks of 45, corresponding to each
graph size (10, then 25, then 50), with an opportunity for a break between blocks.

3.4.1 Data Collection
In each experiment we collect the following data:

The number of incorrect training responses (out of nine).
Which pairs of drawings were shown to participants and their KSM values, as well as
the order they were shown in. Within each pair we also keep track of which drawing was
displayed on the left and which was displayed on the right.

GD 2024



21:8 The Perception of Stress in Graph Drawings

The response from the participant about which drawing had lower stress (The drawing
on the left has lower stress/The drawings have the same stress/The drawing on the right
has lower stress).
How confident the user was about each choice (Confident/Not confident).
The time taken to submit an answer for each pair.

After all pairs of drawings are shown we also collect data for some additional questions
and demographic information:

The overall strategy used to determine which drawing had lower stress.
The participant’s overall confidence in their responses (Very confident/Somewhat confid-
ent/Not very confident/Not confident at all).
How difficult the participant found the experiment (Very difficult/Difficult/Easy/Very
Easy).
How familiar the participant is with network diagrams (Very familiar/Somewhat famili-
ar/Not very familiar/They are new to me).
The participants’ age and gender.

3.4.2 Experimental Conduct
The online survey platform “Qualtrics” was used to set up and run the experiments, and
collect the data.

Participants were recruited from the online platform “Prolific” and paid at a rate of £9
GBP per hour. The pool of participants was limited to users over the age of 18 and residing
in either the United Kingdom or Australia. Participants who were included in one study were
excluded from participating in any of the others to reduce the chance of a learning effect.

For each graph size, we collected results from 25 participants who received feedback on
the training, and 10 participants who did not. For the participants who received feedback
on the training, those who answered more than 50% incorrectly were excluded from the
main experiment. For the experiments on graphs of size 10 and 25, only one participant did
not pass the training. For the experiment on graphs of size 50, three participants did not
pass the training. For each experiment, we recruited more participants until we had 25 who
passed the training and completed the whole experiment. Each experiment was first piloted
by two participants to ensure the experiments ran smoothly and that the data was being
collected correctly. No changes were made after the successful pilots.

The expert participants were invited via email, of whom ten participated in the experiment.
Two of these ten responses were incomplete, leaving us with eight complete expert responses.

This research was approved by the Monash University Human Research Ethics Committee
with ID 42695.

4 Results

4.1 Trained Novices (TN)
We address our research question (“Can people see the differences in stress between two
drawings of the same graph?”) by analysing our data along two dimensions, giving two
sub-questions:

RQa: “How much does the quantifiable difference in stress (the “delta”) between two
drawings of the same graph affect the perception of stress?”
RQb: “How much does the size of the graph affect the perception of stress?”
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In all cases, our dependent variables for measuring perception are accuracy, response time,
and confidence. Of the 75 participants, there were 38 women, 36 men and 1 gender-diverse.
The median age range was 36-45, with 16 participants between 18-25, and one over 76. Four
participants said they were “very familiar” with graph drawing; 55 claimed novice status (at
most “not very familiar”).

4.1.1 Delta trends
We consider each graph size in turn, plot the average accuracy, response time, and confidence
over all 25 participants, and consider trends with respect to delta (Figure 2). There were five
trials per delta value, so accuracy is between 0 and 5; high confidence is recorded as 2 for
each trial (so confidence per delta is between 0 and 10); time is measured in seconds. There
are eight response time data points for which the response time was over 200 seconds (six for
n=50, two for n=25). All other 3,367 response time data points were less than 140 seconds.
These eight data points (0.24% of the total data points) were replaced with the mean of the
relevant participants’ other responses. Participants were given the option to indicate that
the stress in the two drawings was the same. Only five of the forty-five trials were pairs with
zero delta. Use of this option for other deltas indicates difficulty in distinguishing stress.

Figure 2 Delta trends for Trained Novices.

4.1.2 Overall accuracy
In this case, we ignore the delta values, and focus on whether the size of the graph makes a
difference to the overall mean accuracy of stress perception (Figure 3a). An independent
measures t-test between the data for 10 nodes and that for 50 nodes reveals a p-value of
0.0495 – a barely significant difference.

34 of the 75 participants (45%) said they found the task difficult; only three said that it
was “very easy”.

GD 2024



21:10 The Perception of Stress in Graph Drawings

(a) (b)

(c)

Figure 3 Overall accuracy over all trials for each participant type, with respect to graph size.

4.1.3 Discussion: Performance

With an overall accuracy rate of 75.2% (considerably higher than chance: 33% for three-way
multiple choice responses), our data shows that novices who have had the notion of stress
explained to them, and have had the opportunity to be trained with feedback, can indeed
“see” stress. Contrary to our expectations, the size of the graph does not make the task more
difficult, and we see expected trends in accuracy, response time and confidence with respect
to difficulty (as measured by the delta). While there is some uncertainty with the lower
deltas of 0, 0.05 and 0.1, by the time the delta reaches 0.15, participants are getting 80% of
the tasks correct, rising as high as 96% accuracy for 25 nodes with delta=0.4. Looking at
the average number of times that participants judged the stress to be the same, we can see
that any ambiguity caused by deltas of 0.05 and 0.01 diminishes when the delta increases to
0.15. We were surprised by these quantitative results. We had assumed that the complexity
of the notion of stress would be difficult for novices to grasp easily, and that it would be
more difficult to determine in larger graphs.

4.1.4 Discussion: Strategies and Perception

We had asked the participants to explain their strategy in determining the stress differences.
Many participants (24) said that they looked at the distances between the nodes, or the
distribution of the nodes (5). Some were more specific, noting that they looked at the length
of the edges between the nodes (11). Apart from some references to “messiness/busy-ness”
(10), other features highlighted were symmetry (2), edge crossings (5) or edge closeness (4),
angles (5) and “clusters” (5). Only one participant made a value judgement on the form of
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the drawings: “I choose the one that made me feel less stressed i.e the one that was easiest
to understand”. Other notable text summaries include: “The tightness of the angles, the
grouping and how close it was, how “spiky” or chaotic the diagrams looked”, “the ones that
looked more erratic and all over the place felt more stressful” and “if the lines looked messy,
it had more stress.”

Our trained novices were therefore able to perceive “stress” in a graph drawing, using the
perception of edge length, node distribution and visual edge density (i.e. the closeness and
compactness of edges, including edge crossings) as proxy measures.

4.2 Untrained Novices (UN)

Our positive results for trained novices clearly depended on the nature and extent of the
training offered to them: not only were they given a detailed written explanation of the
stress measures (with examples), they had nine opportunities to attempt the task, with
feedback given as to the correct answer for each. We conducted the experiment again, for 10
participants for each size graph, and omitting the feedback.

Of the 30 participants, there were 16 women, 13 men and 1 unknown. The median
age range was 26-35, with 7 participants between 18-25, and four between 56-65. No-one
claimed to be “very familiar” with graph drawing; 24 claimed novice status (at most “not
very familiar”).

Figure 4 shows the data for the untrained participants; Figure 3b shows the overall
accuracy. An independent measures t-test between the data for 25 nodes and that for 50
nodes reveals a p-value of 0.0561 – an insignificant difference. 23 of the 30 participants said
that they found the task difficult.

Figure 4 Delta trends for Untrained Novices.
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4.2.1 Discussion
The overall trend pattern for the untrained novices is comparable to that of the trained
novices: any ambiguity when delta is 0.05 or 0.1 is resolved by the time it increases to 0.15.
It appears that the medium-sized graph (n=25) was easier; it is not clear why this might be
the case.

The strategies used by these participants were similar to those used by the trained
participants: distance between nodes and node distribution (14), “chaotic” (5), and edge
lengths (3). There were three references to “open space” (not mentioned by the trained
participants): “Anything that looked congested or compact I found stressful to look at where
as when it was more spaced with no sudden lines pointing out it looked much more relaxed.”
Two participants referred to analogies: “it reminded me of chemical and biological bonds,
those with random arrangements where the links/bonds were more likely to break, be fragile,
have weaker chain strengths. Those with consistent links/bonds where the lengths and widths
are the same were stronger and less likely to separate”; “some looked like animals, which was
less stressful to me. if there was a rogue line jutting out of somewhere I found this stressful.
when they had more space I found it less stressful.”

The overall accuracy of the untrained novices was 67.6% – still greater than chance (33%)
but less than the accuracy for the trained novices (75.2%). An independent-samples t-test
between the overall mean accuracy for trained and untrained novices gives a p-value of 0.009;
thus, the additional training made a significant difference to the performance of the novice.

4.3 Experts
Having gathered data on how well novices can perceive stress after being presented with a
rudimentary explanation of the concept, we were interested in how graph drawing experts
(who already know the concept well) would fare in the same experiment. Eight graph drawing
experts – known colleagues of the authors (7M, 1F, median age 36-45) – completed all the
trials for all three graph sizes. The experts were shown the same written explanation of
“stress”, but were not given any training.

Figure 5 shows the data for the expert participants; Figure 3c shows the overall accuracy.
A repeated measures t-test between the data for 10 nodes and that for 50 nodes reveals a
p-value of 0.089 – an insignificant difference.

4.3.1 Discussion
The trend patterns for the experts are remarkably similar to the novices. As with both
trained and untrained novices, confusions between the pairs with deltas of 0.1 and less are
resolved for those with values of 0.15 and above. The longer response time for the graphs with
10 nodes can be explained by the fact that these were the trials that all experts completed
first, before they then looked at the larger graphs (suggesting a “warming-up” period). The
experts’ confidence is remarkably low, closely matching that of the novices.

The strategies used by the experts included line length (2), distances between nodes (2),
and edge crossings (2). There were, however, some less specific considerations and some clear
value judgements: “drawings with Low stress just look “right”... high stress drawings look
more random showing features that a human graph drawer would attempt to correct in a
second iteration”; “general feeling how much the nodes are settled into place”; “how well the
overall structure is highlighted”; “how well untangled they are.” It appears that experts do
not (like novice) need to rely so much on visual proxies, but their experience gives them an
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Figure 5 Delta trends for Expert participants.

intuitive “feel” for stress. This “feel” is, however, not fail-safe, with the experts having only
an overall accuracy of 77.5%. Figure 6 shows the relative accuracy of the three categories of
participant.

Figure 6 Overall accuracy over all trials for each participant group.

An independent-samples t-test between the overall mean accuracy for untrained and
trained novices gives a p-value of 0.009; thus, the additional training made a significant
difference to the performance of the novices.

An independent-samples t-test between the overall mean accuracy for trained and expert
gives a p-value of 0.361; thus, there is no significant difference in accuracy between trained
novices and experts. There is also no significant difference between mean response time for
trained novices (7.89s) and experts (5.86s); p=0.065.

We speculate that trained novices thought more carefully about their choices, using
visual proxies they had identified during the training sessions, while the experts made rapid
“gut-feel” decisions. Despite this, all participants reported low confidence in their responses –
even the experts.

GD 2024
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4.4 Correlations Between Stress and Other Metrics
We calculated the correlations between KSM and four other visual properties present in
the “strategy” responses: edge crossings, distribution of nodes in the drawing space, average
distance between nodes, and average edge length (Figure 7). For the distribution of nodes and
edge crossings, we use the Node Uniformity and Edge Crossing metrics defined by Mooney
et al. [18] (details available in the online version of the paper). We compute these metrics on
our set of 405 stimuli drawings.
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Figure 7 Correlations between KSM and other graph drawing metrics.

We find that KSM is positively correlated with the average distance between nodes
(0.30), the distribution of nodes (0.65), and the number of edge crossings (0.69). KSM is
negatively correlated with average edge length (-0.64). Recalling that KSM values closer to
1.0 correspond to lower stress, we can make the following observations:

Drawings with fewer edge crossings have lower stress.
Drawings in which the nodes are more evenly distributed around the drawing space have
lower stress.
Drawings with nodes which are farther apart on average have lower stress.
Drawings which have shorter edge lengths on average have lower stress.

These observations suggest that some of the participants’ “strategies” are effective visual
proxies for stress, though do not fully capture it.

5 Conclusion

These experiments represent the first investigation of whether people can “see” stress, an
invisible property of graph drawings that is defined by both the geometric form of the graph
drawing as well the underlying structure of the graph. We find that it is indeed possible
to describe the notion of stress to people unfamiliar with graphs and graph drawing in
manner that allows them to perceive it. Unprompted, they are able to devise their own
visible proxies for the invisible stress feature – that is, they easily identify appropriate visual
features of drawings which can be used to assess stress: in particular the geometric length
of edges, distances between nodes and node distribution, and “compactness”/ “clustering”/
“density”. We can’t be sure that the participants utilised the exact geometric definition of
stress but their performance suggests that they were able to perceive its visual features. A
few participants referred to the personal stress that they felt while looking at the drawings,
thus transferring a mathematical concept into an emotion.

Surprisingly, experts do not perform much better than trained novices. While there
is some evidence of them also using visual proxies, they also appear to rely on high-level
concepts like “untangling”, “general feeling” and “settled nodes” – more than is evident in
the strategies described by the novices.
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Our findings do not differ with respect to graph size. We were surprised at this, but this
could be explained by the fact that the participants focused on these overall visual proxies
rather than the edges themselves. Our results therefore appear to be generalisable to graph
drawings of different sizes.

This work is important for any human experimental work on the perception and use
of graph drawings where stress is deemed an important feature. Not only have we shown
that people can understand the concept of stress sufficiently well to be able to perceive it,
we have also identified those visual features that they consider to be most related to stress:
edge length, node distribution and concentrated areas of edges and edge crossings. Future
experimental work can now build on these results to investigate, for example, nuances of
different implementations of stress, trade-offs between stress and other layout principles, the
smallest delta for stress perception, and the form of user-generated drawings where low stress
is an explicitly stated goal.

5.1 Future Work
All empirical studies are limited by necessary practical parameters. In this case, the stimuli
are small and sparse graphs. A follow up experiment on larger and denser graphs would
inform on how the perception of stress varies as graph sizes increase. While our results show
only a small difference in terms of perception between graphs of size 10 and 50, this may not
be the case in general as the size of the graph increases. However, as the size and density of
the graph increases, producing drawings with low stress becomes increasingly challenging.

Our results suggest that stress deltas of 0.1 and below are confusing, but that stress
differences of 0.15 and above are more discernible. These observations are also limited by
the range of KSM values used in the experiment. It may be the case that the discernible
difference in KSM is non-uniform; i.e., the difference between drawings with KSM of 0 and
0.15 may be more or less discernible than that of 0.85 and 1.0. A more comprehensive
“Just Noticeable Difference” methodology (such as that used by Soni et al. to measure the
perception of graph density [24]) could validate this, and perhaps result in a more specific
threshold. This methodology would allow us to see what the smallest perceptible difference
in stress is, and see if this follows Weber’s law. This requires careful creation of a broader
set of stimuli as well as a larger number of participants.

Investigation into additional “non-visual” metrics, which are not associated with the
principles of visual perception, such as Neighbourhood Preservation, would provide insights
into their perceptibility. This may also inform on the usefulness of such metrics as criteria
for optimisation and/or evaluation of graph drawings.
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Abstract
Boundary labeling is a well-known method for displaying short textual labels for a set of point
features in a figure alongside the boundary of that figure. Labels and their corresponding points are
connected via crossing-free leaders. We propose orbital boundary labeling as a new variant of the
problem, in which (i) the figure is enclosed by a circular contour and (ii) the labels are placed as
disjoint circular arcs in an annulus-shaped orbit around the contour. The algorithmic objective is to
compute an orbital boundary labeling with the minimum total leader length. We identify several
parameters that define the corresponding problem space: two leader types (straight or orbital-radial),
label size and order, presence of candidate label positions, and constraints on where a leader attaches
to its label. Our results provide polynomial-time algorithms for many variants and NP-hardness for
others, using a variety of geometric and combinatorial insights.
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1 Introduction

Labeling spatial data on a map is a well-studied topic in computational geometry [1, 10,17].
Commonly the feature points are annotated with labels that display the names or additional
descriptions, ensuring non-overlapping labels to guarantee full readability. The labels are
placed either next to the feature points [16] (internal label positions), or remotely along the
contour of a bounding shape such that the feature points are connected to their labels by
crossing-free leaders (external labeling models) [5]. Often, for high feature-point densities, the
external labeling model is more advantageous since the background map is not obscured by
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Figure 1 An orbital labeling highlighting points of interest in a map section (left) and an orbital
labeling of NFL-Championship winning teams, where the label sizes are scaled with the number of
won titles (center). Our notation (right) with an SL-leader in blue and OR-leaders in red.

annotations. A special case of external labeling is boundary labeling [3,4] where the labels are
attached to the (mostly rectangular) boundary of the map. The interest in visualizing data
on round displays, e.g., on smartwatch faces (see Figure 1) or on round displays in cockpits,
is growing, as discussed by Islam et al. [14] in their recent survey; but, from a visualization
perspective, it is still an under-explored topic compared to traditional rectangular displays.
The design space description of Islam et al. [14] includes geospatial data representations as
well as placement of text labels and icons on a round display. With this in mind, we initiate
the investigation of boundary labeling for maps with circular boundaries, surrounded by a
peripheral fixed-width ring, in which the labels are placed. We call these labels orbital. We
assume that the lengths of the orbital labels are normalized, s.t., they sum up to at most the
perimeter of the boundary of the map. Orbital labels can also be used for other purposes,
e.g., to display donut charts representing statistical data values of different feature points
within the map, such that the label sizes are proportional to the data values (Figure 1).
Previous research on circular map displays considered either multirow circular labels where
the sum of label lengths does not equate to the map’s boundary length [12], radial labels [2,9],
or horizontal labels [9, 13,15]. The latter two settings are relevant on rectangular displays
but not suitable for circular displays with a narrow annulus reserved for labels. Furthermore,
these settings differ in their geometric properties and hence their labeling algorithms do not
immediately generalize to orbital labels.

Formally, we assume that we are given a disk D in the plane R2 centered at a point X.
The disk contains n points P = {p1, . . . , pn}. We call the set P of points features and we
refer to the boundary of the disk as the boundary B. The feature closest to X is denoted by
pmin. We may assume that D has a radius of 1. Throughout this paper, unless otherwise
specified, the angle between two points p, q refers to the smallest angle with the center X of D,
i.e., min(∡pXq,∡qXp). Every feature p ∈ P has an associated label representing additional
information to be placed along a circular arc on the boundary starting at a point b1 ∈ B and
ending at a point b2 ∈ B. The circular arc along B is denoted as b1b2

∧

. Usually, the start and
endpoint of the label are not fixed in the input, however, the length of the arc is part of the
input. We represent the associated label simply as a number λ(p), which indicates the length
of the associated label. We assume that

∑n
i=1 λ(pi) is equal to the circumference of D, i.e.,

all labels can be placed in a non-overlapping way without gaps between the arcs on B.
In a labeling L, every feature p ∈ P is assigned a label with starting point sL(p) ∈ B

and an endpoint eL(p) ∈ B, s.t., |sL(p)eL(p)
∧

| = λ(p). We require that all labels in L are
pairwise non-overlapping. Additionally, every feature p is connected to its label via a curve
called a leader. We denote the length of a leader ψ using |ψ|. We call the point on a
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label arc where the leader connects to B the port ξL(p). We represent a port by the port

ratio ρ(p) = |sL(p)ξL(p)
∧

|
λ(p) which is the ratio of the arc from the starting point sL(p) to

the port ξL(p) and the arc from the start-point to the end-point. ε ≤ |sL(p)ξL(p)
∧

| and
ε ≤ |ξL(p)eL(p)
∧

|, i.e., there is always at least a small distance between the ends and the port
of the label. A distance of ε between two points on B should be interpreted as a distance
along B. Now, we define the generic orbital labeling problem.

▶ Problem 1 (Orbital Boundary Labeling). Given a disk D, containing n feature
points P with their labels λ(p) for p ∈ P , compute a labeling L, in which all leaders are
pairwise interior-disjoint and where the sum of leader lengths is minimal.1

A labeling in which the sum over all leader lengths is minimum is also called a leader
length minimal labeling. We consider two leader types in this paper. A straight-line leader or
SL-leader is simply a straight-line segment starting at p and ending at ξL(p). Its length is
the Euclidean distance between p and ξL(p). An orbital-radial leader or OR-leader consists
of two parts: a (possibly empty) orbital circular arc with center point X starting at the
feature p and ending at a bend point q, and a radial segment that connects q to ξL(p); see
Figure 1. We call the line through X and ξL(p) the supporting line of the radial part. Note
that for any pair of feature and port, there are exactly two possible OR-leaders. We call
an OR-leader leaving its feature in clockwise direction a clockwise leader and analogously
define counter-clockwise leaders. We will also refer to the OR-leader whose orbital part spans
an angle larger than π as the feature’s long and to the other one as its short leader. For a
feature pi let ri be the radius of the circle concentric with D containing pi. The length of the
OR-leader can be expressed as a function g : P × [0, 2π] → R with g(pi, θ) = riθ + (1 − ri),
where 0 ≤ θ < 2π describes the angle spanned by the orbital part of a leader connected to pi.

▶ Observation 2. For a fixed feature p, the function g(p, θ) is continuous and linear in θ.

Based on this problem description, we delineate the space of the possible problem variants
and a suitable naming scheme for such variants in the following section.

2 Problem Space

In this paper, we refer to variants of Orbital Boundary Labeling based on the six-
dimensional T -COSA-Orbital Boundary Labeling scheme introduced in this section.
The first dimension, denoted by T , determines the leader type, whereas the other dimensions,
denoted by variables COSA, characterize properties of the labels (A encodes two dimensions).
We use OR and SL as substitutes for T in the T -COSA scheme. Without the T - prefix,
we refer to both OR-COSA and SL-COSA (leader types are not mixed in a labeling). We
mostly focus on OR-leaders, while still discussing which of the results extend to SL-leaders.

For the five dimensions regarding the labels, we use each letter of COSA to describe the
variants for the respective dimension.

[C] Candidate port positions on the boundary. If we are given a set C of candidate
positions on B, we require in any valid labeling L that the set ΞL of all ports in L is a
subset of C, we say the port candidates are locked (and use the symbol C ) otherwise they
are free (C ). For variants with C we assume that sufficiently many, but no more than
linearly many candidates are specified (n ≤ |C|). Otherwise, C is the more reasonable
choice.

1 This definition does allow a leader to contain another feature, i.e., the endpoint of another leader.
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22:4 Boundary Labeling in a Circular Orbit

Table 1 An overview of the problem space and our results. Only locked port ratios (A ) are
shown. The abbreviation “w. NP-h” denotes weakly NP-hard. Red cells represent polytime, due to
the reduction to the algorithm of Benkert et al. [7]. Light red cells are covered by the reduction
but are superseded by faster dedicated approaches. Blue cells with a question mark are conjectures.
Cells indicate the section containing the relevant result; SL-leader results are in the full version [8].

C C

A> A� A> A�

OR
O

S> O(|C|n2) [S. 4.1] O(|C|n2) [S. 4.1] O(n2) [S. 4.3] O(n2) [S. 4.3]

S� O(|C|n2) [S. 4.1] O(|C|n2) [S. 4.1] O(n2) [S. 4.3] O(n2) [S. 4.3]

O
S> O(|C|2n) [S. 4.2] O(|C|n3) [S. 3] O(n5) [S. 3] O(n5) [S. 3]

S� O(|C|4) [S. 3] O(|C|4) [S. 3] w. NP-h [S. 5] w. NP-h [S. 5]

SL
O

S> O(|C|n2) [8, B.1] O(|C|n2) [8, B.1]] O(n2) ? [8, B.3] O(n2) ? [8, B.3]

S� O(|C|n2) [8, B.1] O(|C|n2) [8, B.1] O(n2) ? [8, B.3] O(n2) ? [8, B.3]

O
S> O(|C|2n) [8, B.2]

S� w. NP-h [8, B.4] w. NP-h [8, B.4]

[O] Order. Consider the cyclic order of labels around B. If a certain label order is
pre-specified, we say the label order is locked (O ); otherwise, for the unconstrained
setting, we say the label order is free (O ).
[S] Size of labels. We distinguish the setting where λ(p) = 2π

n for all p ∈ P , in which
case we say that the label size is uniform (S>), otherwise the label size is non-uniform (S�).
[A] Port position on labels. We differentiate between uniform port ratios, where
ρ(p) = ρ(q) for all p, q ∈ P (A>), and non-uniform port ratios (A�). Additionally the
port ratios can be fixed as part of the input (A ) or can be free to be chosen (A ).

To specify a T -COSA variant we substitute C, O, S and A with C /C , O /O , S>/S� and
A>/A�/A>/A� , respectively. Whenever a statement applies to all variants along a COSA
dimension, we drop the sub- or superscript. For example, C O SA> refers to the variants
where the leader style is either OR or SL, the port candidates are free (C ), the order is
locked (O ), the label sizes could be fixed to be uniform or they could be non-uniform (S)
and all port ratios are fixed (A ) to the same (A>) given value.

Contributions. The remainder of the paper is structured as follows (see also Table 1).
Our focus is OR-COSA and we show how results for these variants extend to SL-COSA
and eventually to all COSA variants. Section 3 presents a reduction from OR-COSA to a
problem called Boundary Labeling [7], for which polynomial time algorithms are known.
This approach is applicable to a number of OR-COSA variants. In Section 4 we introduce
dedicated approaches for some variants, which improve the runtime of the reduction approach.
In Section 5 we prove that OR-C O S�A variants are weakly NP-hard. Section 6 outlines
the extensions to straight-line leaders and free port ratios (details in Appendices B and C of
the full version [8], respectively), while Section 7 provides some concluding remarks.

3 Reduction to Boundary Labeling

We begin by investigating the relation between Orbital Boundary Labeling and an al-
ready established related problem called Boundary Labeling. In an instance of Boundary
Labeling, we are given a set of points which are entirely left of a vertical line ℓ. Additionally,
we have a set of n disjoint rectangular labels, which are placed to the right of ℓ. The goal is
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X

(a)

p

(b)

p

(c)

Figure 2 All leaders of gray points in (a) are entirely contained within the green annulus. The
radial part of the blue leader spans the entire intersection between its supporting line and the green
annulus. In the labeling shown in (b), a clockwise rotation of the ports is not possible without
introducing a crossing between the green leader and the one in gray (indicated with a dashed line).
In (c) any rotation clockwise or counterclockwise increases the length of the green leader. Both (b)
and (c) show the implied ports in yellow.

to find a set of parallel-orthogonal (po) leaders, which consist of a line segment parallel to ℓ
starting at a feature point and a second line segment orthogonal to ℓ connecting to a port on
a label. If the label sizes are interchangeable, i.e., every point can be connected to any label,
there is an O(n3) dynamic program [6, 7], which minimizes an arbitrary badness function
for a leader (under the assumption that the function can be computed in linear time). The
dynamic program, which first splits the instance into horizontal strips, defined by points
and the boundaries of the rectangles, then assigns a specific horizontal strip to the feature
farthest from ℓ and then recurses on the two sub-instances defined by this assignment. One
instance contains all features and rectangles above the assigned horizontal strip, the second
everything below.

To create an instance of Boundary Labeling from an instance of Orbital Boundary
Labeling, we consider D as an annulus (by introducing a small circle at the center, which
does not contain any features), find a line segment s orthogonal to B from the boundary of
the small circle to a point on B and transform the annulus into a rectangle, turning B into a
straight line. The basis for this reduction is the following observation, which – intuitively
speaking – prove that there exists a radial line, which we can use to cut and unroll our
instance to remove the cyclic nature of Orbital Boundary Labeling.

▶ Observation 3. In a crossing-free leader-length minimal labeling for problems in OR-
COSA, the supporting line of the radial part for the leader of pmin intersect no other
leader.

Observation 3 is also illustrated in Figure 2a. Based on this observation we know that
in any crossing free labeling, there is always a radial line, which does not intersect a leader
other than the one of pmin. Moreover it is sufficient to check all possibilities for the port of
pmin to obtain such a line. Next, we need to show that there is only a polynomial number of
possibilities for the port of pmin. The exact number depends on the variant we are considering.
If we are considering a labeling for a problem in the set OR-C OSA, we are given the set C
of possible ports, leading to the following observation.

▶ Observation 4. For problems in C OSA there are only |C| possibilities for ξL(pmin).

It is less obvious if and how we can discretize these options for problems without a fixed
candidate set for the ports. If we are considering a problem in the set C O SA, we can
reduce the number of relevant options using the following lemma.
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22:6 Boundary Labeling in a Circular Orbit

▶ Lemma 5. For problems in OR-C O SA there are only n2 possibilities for ξL(pmin).

Proof. Let S be the set of the n intersection points between B and any ray starting at X
through a feature. We prove that there is a leader-length minimal labeling, in which at least
one port is in S. Assume that L is a leader-length minimal labeling, where no port is in S.
Consider a small rotation of all ports clockwise. If such a rotation is not possible without
introducing a crossing, the radial segment of a clockwise leader already contains another
feature, and therefore its port was in S (see Figure 2b). Otherwise, a small enough rotation
neither changes the order of labels nor does it introduce any intersections and therefore
results in a new valid labeling. If this rotation decreases the total leader length, then L was
not optimal, which contradicts our assumption. If the total leader length stays the same,
we can continue the rotation until either the orbital segment of a counter-clockwise leader
reaches length 0 or the radial segment of a clockwise leader hits another feature. In both
cases, its port is in S. If the leader length increases, we instead rotate counter-clockwise.
Again, if the total leader length decreases or stays the same, the arguments above apply.
Assume therefore that the total leader length again increases. Since by Observation 2 the
change in leader length is linear in the angle by which we rotate, there must be a single
leader that increases its length in both rotation directions, which implies that its orbital part
has length 0 in L (see Figure 2c).

Therefore in any optimal labeling, at least one port is in S. Since the order is fixed,
choosing a specific label to have its port at an element in S fixes all other ports and specifically
the location of the port of pmin. Therefore every element of S induces n possible choices for
this port which results in n2 choices in total. ◀

In general, the previous method does not extend to the problems in OR-C O SA, since
choosing one element in S still leaves (n−1)! possible orders of the remaining labels. However,
in the special case where both the label sizes and the port ratios are uniform, we know that
all ports in any valid labeling are distributed equally along B, which implies that again
every element in S induces exactly n possible labels (even if we do not know which label is
connected to which port). Therefore, we state the following observation.

▶ Observation 6. For problems in OR-C O S>A> there are only n2 possibilities for ξL(pmin).

We can now proceed to describe how we create an instance of Boundary Labeling
based on a given instance of Orbital Boundary Labeling.

▶ Lemma 7. Given a port ξ for pmin, we can reduce any problem in OR-CO SA to
Boundary Labeling with po-leaders [7].

Proof. We first map all features to points in the plane (also shown in Figure 3). Let X be
the center of D. For any feature pi ∈ P , let αi be the angle between ξ and pi (recall that
this is defined as the smaller angle formed between these two points at X) and let ri = |Xpi|.
Using polar coordinates we then create a point qi = (ri, αi) for every point pi ∈ P . We now
place a vertical line ℓ at x = 1. Recall that the radius of D is 1 and therefore all points
q1, . . . , qn are left of ℓ. Since the port ratio is locked as part of the input, the fixed position of
ξ also fixes the exact position of the label of pmin. If the problem is in the set OR-CO SA ,
the order of labels is fixed, and therefore ξ also fixes the position of all other labels. For
every point pi we place a rectangle of height λ(pi) − 2ε in the order of the labels (recall that
any port has to have a minimal distance of ε to the boundary of the label), s.t., the lowest
point of the lowest rectangle is at height |sL(pmin)ξ

∧

| + ε.
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(a) Instance of Orbital Boundary Labeling.

σ

ρ

ℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓ

(b) Instance of Boundary Labeling.

Figure 3 An instance (a) of Orbital Boundary Labeling together with a fixed port for pmin.
We use an appropriate mapping to construct an instance of Boundary Labeling, whose solution
(b) corresponds to the solution of Orbital Boundary Labeling. This maps the angle σ between
two features in (a) to their horizontal distance between the mapped features in (b) and the distance
ρ of a feature to B in (a) to the distance of the mapped feature to ℓ in (b). Note that only the
remaining non-fixed labels are part of the new instance.

Now, the length of the radial segment of an orbital-radial leader connecting pi to a point
b ∈ B in our problem is equal to the length of the orthogonal linepart of the po-leader
connecting qi to a point v on ℓ. The relation between the length of the parallel part of the
po-leader and the length of the orbital segment of the OR-leader is more complicated. The
length of the parallel part of the po-leader is simply the difference in y-coordinate between qi

and v. Note that we mapped the clockwise angle of a point qi relative to ξ to the y-coordinate
of qi. However, the length of the orbital part of the OR-leader is dependent on the distance of
pi to X, i.e., two OR-leaders whose orbital part span the same angle can have different lengths.
Specifically, the length of an orbital part in an OR-leader of a feature pi is exactly ri · αi.
Therefore, we define our badness function simply as bad(qi, v) = 1 − ri + ri(|αi − y(qi)|),
where y(q) is the y-coordinate of qi. Note that the restriction of port placement on ℓ to a
specific range (e.g., a point in a candidate set C or a point within a label corresponding
to a fixed port ratio) can be encoded in this badness function too, by setting the value of
bad(qi, v) = ∞ if v lies outside of the permitted range. Finally, also note that we can check
in O(n) time if the split into sub-instances induced by the combination of q and v respects
the fixed order of the labels and, if it does not, also set bad(qi, v) = ∞. This completes the
reduction. ◀

If we do not have a fixed order of labels, we have to pay attention to the order in which
the rectangles are placed. However, if the labels have uniform size, any order will result in
the same set of rectangles resulting in the following observation.

▶ Observation 8. Given a port ξ for pmin, we can reduce any problem in OR-CO S>A to
po-Boundary Labeling [7].

Lastly, if the label sizes are not uniform, and if a candidate set C is fixed, we can adapt
the dynamic program slightly to leverage this fact, by placing smaller rectangles at every
possible candidate position and avoid overlap by restricting the sub-instances to appropriate
ranges. The proof of the following lemma can be found in Appendix A of the full version [8].
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(a) (b) (c)

Figure 4 Three rotations for case OR-C O SA . Candidates are shown in yellow. The blue
feature is the first that is placed and we iteratively test every port candidate. Due to the fixed
order, the other leaders are directly obtained. In a valid labeling (a) all ports (obtained due to a
fixed port ratio) coincide with a candidate and no two leaders cross. A labeling is invalid if ports do
not coincide with a candidate – highlighted red in (b) – or the obtained leaders contain crossings
between themselves, which is shown with the red crosses in (c). In (c) the green leader changed
from a clockwise to a counter-clockwise leader to avoid crossing the blue leader.

▶ Lemma 9. Given a port ξ for pmin, any problem in OR-C O S�A can be solved in
O(|C|3) time by adapting the dynamic program of Benkert et al. [7].

With all the pieces assembled, we obtain the runtime of solving a number of problem
variants via this reduction. We present the relevant runtimes in the following theorem.

▶ Theorem 10. For any problem P in OR-CO SA , OR-C OSA and OR-C O SA let
AP be the size of the set of possible ports for pmin, s.t., the set can be computed in O(AP )
time and let the time required to solve the created instance of Boundary Labeling be
O(BP ). Then P can be solved in time O(AP ·BP ).

Proof. We compute the set of possible ports for pmin as stated in Observation 4, Lemma 5 or
Observation 6. For any element of these sets, we create an instance of Boundary Labeling
and solve it as described in Lemma 7, Observation 8 and Lemma 9. We obtain a po-labeling
minimizing the badness function, which has a one-to-one correspondence to a leader length
minimal OR-labeling of our original instance. ◀

We remark that Benkert et al. [7] point out that their algorithm can be changed to handle
non-uniform labels leading to a pseudopolynomial time algorithm. By Theorem 10 this would
result in pseudopolynomial time algorithms for the problems in OR-C O S�A , however,
these are superseded by a dedicated approach in Section 4, so we omit further details here.

4 Improvement via dedicated approaches

Having established the reduction as a general approach baseline, we will now present a variety
of bespoke approaches, which improve the runtime implied by Theorem 10.

4.1 Locked Port Candidates and Locked Order
We begin by investigating the problem set OR-C O SA . Recall that we are given a set C of
candidate positions for the ports. The placement of the label of pmin determines the position
of all other labels. The following lemma (which is applicable to a larger set of problems)
shows that the same is true for all OR-leaders.
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(b) Rerouted leaders.
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(c) Case 2.

Figure 5 Given a free label order O we can reroute the leaders to arrive at a crossing-free
solution with a shorter total leader length.

▶ Lemma 11. For OR-CO SA , the choice of a port for pmin uniquely determines the
OR-leader of any other feature p′, which does not cross the OR-leader of pmin.

Proof. Note that the orbital parts of the two possible OR-leaders connecting p′ to any point
on B form a circle concentric with B. Therefore one of the two orbital parts crosses the
radial part of the leader of pmin (we also refer again to Figure 2a). The lemma follows. ◀

By Lemma 11 it is sufficient to place λ(pmin) with ξL(p) coinciding with one candidate
(O(|C|) possibilities). Then we check in O(n) time if the ports of the remaining labels in
the correct order also coincide with candidates, in O(n2) time that no two leaders cross,
and finally we compute in O(n) time the total leader length, leading to a total runtime of
O(|C|n2) (see Figure 4) and to the following theorem.

▶ Theorem 12. The problems OR-C O SA can be solved in O(|C|n2) time.

4.2 Locked Port Candidates, Free Order and Uniform Port Distribution
If the order can freely be chosen, then a uniform port ratio together with uniform labels
guarantee that any two labels can be exchanged without creating overlap between two labels.
We can thus utilize a matching algorithm to solve the problems OR-C O S>A> . To obtain a
crossing-free labeling we first prove the following lemma showing that a solution minimizing
total leader length naturally does not contain any crossings.

▶ Lemma 13. Given an instance of a problem variant in OR-CO S>A> every leader-length
minimal labeling L is crossing-free.

Proof. Assume a leader-length minimal labeling L contains two crossing leaders γ1 and γ2
connecting p1 to its port ξL(p1) = ξ1 and p2 to its port ξL(p2) = ξ2, respectively. Both leaders
begin with an orbital segment p1q1

∧
(or q1p1

∧
) and p2q2

∧
(or q2p2

∧
), respectively, connecting

to their bend points q1 and q2, followed by their radial straight-line segment q1ξ1 and q2ξ2.
Clearly, the crossing x occurs between the radial segment of the point closer to the center of
D and the orbital segment of the point closer to B. We assume, w.l.o.g., that x = p1q1

∧
∩ q2ξ2,

and that p1 is on the counter-clockwise end of p1q1
∧

. Let q′ be the intersection of the
supporting line of q1ξ1 and the circle containing q2p2

∧
. There are two cases, as shown in

Figure 5.
In the first case (Figure 5a), we can replace γ1 with a curve consisting of p1x

∧
and xξ2 and

γ2 with curve consisting of p2q
′

∧

and q′ξ1 (Figure 5b). Since |q2x| = |q′q1| and |xq1
∧

| > |q2q
′

∧

|,
the total leader length has decreased. Note that the rerouting might have introduced new
crossings, but since this method reduces the total leader length, we can iteratively apply this
procedure and will never obtain an already seen labeling. Since there is a finite number of
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Figure 6 Case C O S>A>. Each feature p1, . . ., p6 and port candidate c1, . . . , c7 (a) introduces
a vertex in the weighted complete bipartite graph (b). An edge in the bipartite graph corresponds
to a leader and is weighted with the leader’s length.

possible solutions, we have to arrive at a solution, which does not contain crossings anymore
(otherwise we could apply the procedure infinitely many times contradicting the finite number
of possible solutions). We arrive at a labeling, that has a smaller total leader length, which
is a contradiction to L being optimal. While the second case (Figure 5c) looks different
geometrically, we can resolve the crossing identically to the first case to again reduce the sum
of leader lengths. In the special case where both features have the same distance to X, it is
again obvious that by simply switching the ports the newly obtained leaders are a subset
of the old leaders, removing the overlap and reducing the total leader length. In all three
cases, we arrived at a labeling that is better than L which is a contradiction, concluding the
proof. ◀

Next, we show that we can always use the shorter of the two OR-leaders.

▶ Lemma 14. Given an instance of a problem variant in OR-CO S>A> any leader-length
minimal labeling L uses only the shorter of the two possible OR-leaders for any point.

Proof. Assume L contains a long OR-leader for a point p. Replacing the leader with the
short leader between p and its port yields a labeling L′ with a shorter total leader length. If
L′ is crossing-free this is a contradiction to the optimality of L, otherwise we can iteratively
apply the uncrossing procedure of the proof of Lemma 13, which, by Lemma 13, results in
a crossing free labeling with the same or smaller total leader length compared to L′ again
contradicting the optimality of L. ◀

With Lemmas 13 and 14 we know that every combination of feature and port defines
a unique leader and the shortest possible set of such leaders is crossing free. This leads
naturally to a formulation of the problem as finding a minimum-weight matching between
features and ports. However, we still have to guarantee that the ports we select in such a
matching are equally distributed around B; a requirement stemming from uniform label-sizes
and fixed uniform port ratios. To this end, we state the following observation.

▶ Observation 15. Given a set C of candidate ports, we can partition C into at most k = |C|
n

subsets C1, . . . , Ck of size n, s.t., all candidates in one set Ci are equally distributed around
B. This can be done in O(|C|2) time.

Now we can state the central result of this subsection.

▶ Theorem 16. The problems in OR-C O S>A> can be solved in O(|C|2n) time.
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θ1

Figure 7 An example of the function g′(p, θ1) for a point p with a distance of 1 − r to X. the
points a and b are defined as in the proof of Lemma 17.

Proof. We begin by creating the k subsets (Observation 15). For each subset Ci we let Gi

be a weighted complete bipartite graph between the set of features P and Ci using the length
of the (short) leader between a feature p ∈ P and a potential port c ∈ C as the weight of the
edge (p, c); see Figure 6. For OR-leaders it is by Lemma 14 sufficient to use the length of the
shorter of the two leaders. Now a minimum weight bipartite matching in G corresponds to a
leader-length minimal labeling. We know by Lemma 13, that such a labeling is crossing-free
and an optimal solution (for Ci). Such a matching in a bipartite graph with |V | vertices and
|E| edges can be computed in O(|V |2 log |V | + |V ||E|) time [11]. In our case |V | = 2n and
|E| = n2. Therefore the runtime for one subset is O(n3) and since we run this algorithm for
at most |C|

n subsets, we arrive at a final runtime of O(|C|2 + |C|n2). ◀

It is important to note that the total runtime of all iterations of the matching algorithm is
strictly better than the runtime of O(|C|n3) yielded by Theorem 10, due to the preprocessing
runtime of O(|C|2). Theorem 16 only guarantees an improvement for |C| ∈ o(n3).

4.3 Free Candidates and Locked Order
Now we turn to the problem set OR-C O SA . Intuitively, these are problem variants,
in which we can rotate the ports continuously around B to obtain other labelings as long
as we do not change the label order or introduce any crossings. To solve these problems,
we formulate a univariate piece-wise linear function of bounded complexity, whose global
minimum corresponds to an optimal labeling.

Let ω(i) be the index of the label of pi in the fixed order (assuming ω(1) = 1). For any
feature pi let θL

i be the angle between pi and ξL(pi) in a specific labeling L. Recall that by
Lemma 11 the choice of the port for the innermost feature in L also fixes all other ports and
leaders. We will therefore replace θL

i with Θi(θL
1 ), i.e., a function which simply returns the

value of θL
i implied by the value of θL

1 . Since the order of labels is fixed, it is not guaranteed
that every feature is connected to its port using the short OR-leader. To do so we define a
Boolean variable cw(i, θL

1 ). Let si be the intersection of B and a ray starting at X through
pi. Then cw(i, θL

1 ) is true if (in the labeling L implied by the value θ1) starting at si and
traversing B clockwise we encounter ξL(pi) before ξL(p1) and false otherwise.

With this we define the function g′ : P × [0, 2π] → R as

g′(pi, θ1) =
{
g(pi,Θi(θ1)) if cw(i, θ1) or i = 1
g(pi, 2π − Θi(θ1)) otherwise

(1)

We now provide a lemma bounding the complexity of these functions.
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Figure 8 Illustration of the interval (blue area) of θ in which the two leaders of the points pi and
pj do not cross, while increasing θ from 0 (a) to 2π (h). The heavy blue line is the supporting line
for the radial part of the leader of pmin. The endpoints are the value of θ for which the leader of pi

changes from clockwise to counter-clockwise to avoid crossing the leader of the innermost point (c)
and the value for which the radial part of the leader of pj crosses pi (g).

▶ Lemma 17. Any function g′(pi, θ1) consists of at most three continuous linear parts in the
interval 0 ≤ θ1 < 2π.

Proof. Assume cw(i, 0) is true, i.e., we encounter ξL(pi) before ξL(p1) when traversing B
clockwise starting at si. While increasing θ1 the value of cw(i, θ1) changes to false exactly
when ξL(p1) = si and back to true exactly when ξL′(pi) = si, where L and L′ are labelings
implied by some values θ1 = a and θ1 = b, respectively, s.t., a < b (see also Figure 7).
Since for θ1[0, a) ∪ [b, 2π) we have g′(pi, θ1) = g(pi,Θi(θ1)) and for θ1 ∈ [a, b) we have
g′(pi, θ1) = g(pi, 2π − Θi(θ1)) and by Observation 2 the function g is continuous and linear
in these intervals. The case for cw(i, 0) being false is symmetrical and the lemma follows. ◀

We can now create a function h(θ1) =
∑n

i=1 g
′(pi, θ1), which exactly captures the total

leader length of a labeling implied by θ1, which adheres to the order ω. However, it is
important to observe that, while such a labeling does not contain any crossing between the
leader of p1 and any other leader, crossings between any other pair of leaders are still possible.
To avoid these, we restrict θ1 to O(n2) intervals which capture exactly the values, in which
the labeling implied by θ1 does not contain any crossing. We define a new Boolean variable
cr(i, j, θ1), which is true if the two OR-leaders of pi and pj that are implied by θ1, cross.
Let pi be the feature closer to the center of D than pj . Similar to the proof of Lemma 17,
we can find two values θa, θb, s.t., cr(i, j, x) = cr(i, j, x′) for any value x, x′ ∈ [θa, θb) and
cr(i, j, x) = cr(i, j, x′) for any value x, x′ ∈ [0, θa) ∪ [θb, 2π).

▶ Lemma 18. Let I be the set of intervals, s.t., θ1 implies a labeling in which all leaders are
crossing-free if and only if θ1 ∈ I for some I ∈ I. Then |I| ≤ n2.

Proof. For any pair of features, there is exactly one interval in which their leaders do not
cross and one interval in which they do (considering the intervals modulo 2π). An example
is shown in Figure 8. We prove the lemma by induction. The base case is a single feature,
which is always crossing free, therefore |I| = 12. Assume that there are at most n2 such
intervals for n features. We add the (n+ 1)-th feature p. For any of the existing n features,
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4π

pU

pD
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1

1

(a) Placement of two blocker features pU and pD. (b) Detail of the placement of p1, . . . , pn.

Figure 9 Visualization of the reduction. The two points pU and pD are placed close to the
boundary (a) and all points p1, . . . , pn are placed in the very small red circle. A zoomed-in picture
of the red circle is shown in (b).

p defines a single interval in which their leaders do not cross. Consider the possibilities for
adding one of these intervals I ′ to I. Let I ∈ I. If I ∩ I ′ = ∅, we remove I, if I ∩ I ′ = I,
we retain I and if I ∩ I ′ = I ′, we remove I and add I ′. Otherwise, I contains one or two
endpoints of I ′ but not the entire interval. If I contains only one endpoint of I ′, we remove
I and add I ∩ I ′. Since I ′ is an interval, this can happen with at most two other intervals.
Both times we remove one interval and add a new one, thereby not changing the size of
I. Finally, if I contains both endpoints of I ′ but not the entire interval – intuitively the
intervals wrap around B in two different directions – then we remove I and add the two
continuous parts of I ∩ I ′ increasing |I| by one. In this case all other intervals of I are either
entirely contained in I or disjoint from I and therefore |I| does not increase any further.
We iteratively add all n new intervals and increase |I| by a total of at most n. Therefore
|I| ≤ n2 + n < n2 + 2n+ 1 = (n+ 1)2. ◀

With this, we have everything in place to prove the following theorem.

▶ Theorem 19. The problem variants in OR-C O SA can be solved in O(n2) time.

Proof. We set up the function g′(pi, θ1) as in Equation 1 and let h(θ1) =
∑n

i=1 g
′(pi, θ1) as

above. Then we restrict θ1 to the set I of n2 intervals (Lemma 18) in which the implied
labelings do not contain any crossings. Since by Lemma 17 there are at most O(1) continuous
linear pieces for any function g′, we conclude that h consists of O(n) continuous linear pieces
and thus also has at most O(n) local minima. To find the global minimum of h it is sufficient
to check all O(n) local minima as well as the O(n2) endpoints of the intervals in I. ◀

5 Free Candidates, Free Order and Non-uniform labels are NP-hard

The results presented so far cover most of the top half of Table 1. It remains to address the
problems in OR-C O S�A . Due to the flexibility of non-uniform labels, as well as the free
order and lack of a discrete candidate set, these problems turn out to be weakly NP-hard.
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▶ Theorem 20. Given an instance of OR-C O S�A together with k ∈ R it is (weakly)
NP-hard to decide whether there exists a labeling L with a total leader length of less than k.

Proof. For the purpose of this proof, we will relax the requirement that D has a radius
of 1. The final construction can be scaled down to meet that requirement. The reduction
(visualized in Figure 9) is from the weakly NP-hard problem Partition, where we are given
a set X of n integers with S =

∑
x∈X x and need to decide if X can be partitioned into two

sets X1 and X2, s.t.,
∑

x∈X1
x =

∑
x∈X2

x = S/2. For the reduction we place for every xi ∈ X
a feature pi =

(
0, i

4πn2

)
. Additionally we place two features pU = (0, r) and pD = (0,−r),

where r > S+2
4π . We define λ(pi) = xi for all 1 ≤ i ≤ n and λ(pU ) = λ(pD) = 1. Note that∑n

i=1 λ(pi) + λ(pU ) + λ(pD) = S + 2 and the radius of the enclosing disk is therefore S+2
2π .

Any feature pi, s.t., 1 ≤ i ≤ n is contained in a disk of radius 1
4πn and circumference 1

2n

centered at the origin. Let o(i) and r(i) be the orbital and radial part of γpi

L , respectively.
Note that the sum over all r(i) is equal in all labelings. Let this sum be equal to Lradial.
Further note that for any pi, o(i) < 1

2n . Therefore the sum
∑n

i=1 o(i) <
1
2 .

For the problem variants OR-C O S�A>, in any labeling L the port ratios ρ(pU ), and
ρ(pD) are necessarily equal. For the variant OR-C O S�A� port ratios are described as part
of the input and we define them, s.t., ρ(pU ) = ρ(pD). Finally we set k = 1/2 + Lradial.

If there exists a partition of X into two sets X1,X2, s.t.,
∑

x∈X1
x =

∑
x∈X2

x, then
we can make three observations. First, there exists a labeling L in which the length of
the orbital part of γpU

L and γpD

L is equal to 0 and therefore γpU

L and γpD

L are straight
lines. Second, in L both spaces between the labels of pU and pD are equally spaced, i.e.,
|eL(pU )sL(pD)
∧

| = |eL(pD)sL(pU )
∧

|, since ρ(pU ) = ρ(pD). Third, in a labeling L′, in which the
length of the orbital part of γpU

L or γpD

L is not equal to 0, the sum of the length of the orbital
parts of γpU

L′ and γpD

L′ (and therefore the sum over the lengths of all orbital parts of leaders
in L′) is at least 2π

S+2 · S+2
4π = 1

2 . This is because the difference between eL′(pU )sL′(pD)
∧

and
eL′(pD)sL′(pU )
∧

is at least 1 (since the label sizes are integers). Therefore the sum over all
leader lengths in L is less than 1/2 + Lradial, while in L′ it is at least 1/2 + Lradial and L′

can never be optimal.
Assume now that X can be partitioned into two subsets X1,X2, s.t.,

∑
x∈X1

x =
∑

x∈X2
x.

Then the labels can be equally partitioned and the leaders of pU and pD can be straight
lines. Therefore the total sum of leader lengths is less than k. Conversely, assume no such
partition exists. Then the leaders of pU and pD must together contain orbital segments of
length at least 1/2 and the total sum of leader lengths is at least k, concluding the proof. ◀

6 Extensions to SL-Leaders and Free Port Ratios

So far we considered problems in OR-COSA , i.e., settings which use OR-leaders and have a
fixed port ratio. Some results can be translated (with small to medium effort adaptions) to
the settings using SL-leaders and/or free port ratios. In this section, we will give a high-level
overview of which results can be adapted and how. The set of results for free port ratios
is shown in Table 2; results for SL-leaders are included as the bottom part of both Table 1
and 2.

Some results (e.g., Theorem 12) are independent of the leader length (beyond computation
of leader length). Using a matching algorithm as stated in Theorem 16 also extends to the
SL variant (although it requires proving that here also leader-length minimal labelings are
crossing-free). Extending Lemma 19 is harder, since the number of possible local minima of
a function describing the sum of SL leader lengths is not obvious. We include a conjecture
for the settings SL-C O SA one of which extends to a setting with free port ratio due to
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Table 2 A tabular overview of the problem space and our results. Only free port ratios are
shown. The abbreviation “w. NP-h” stands for weakly NP-hard. Blue cells are conjectures. These
results can be found in the full version [8]; cells indicate the section containing the relevant result.

C C

A> A� A> A�

OR
O

S> O(|C|n2) [8, C.1] O(|C|2n3) [8, C.2] O(n2) [8, C.1] O(n6) [8, C.2]

S� O(|C|5n) [8, C.2] O(n7) [8, C.2]

O
S> O(|C|2n) [8, C.1] O(|C|2n3) [8, C.2] O(n5) [8, C.1] O(n6) [8, C.2]

S� w. NP-h [8, C.3]

SL
O

S> O(|C|n2) [8, C.1] O(n2) ? [8, C.1]

S�

O
S> O(|C|2n) [8, C.1]

S� w. NP-h [8, C.3]

the equivalence of labelings. The construction of our NP-hardness reduction can be reused
for the SL-leader case, however, it requires new arguments that it still works as intended.
Details can be found in Section B of the full version [8].

While OR-leaders are related to po-leaders, no such immediate relation exists for SL-
leaders, one reason being that OR-leaders monotonically increase their distance to X, which
is not true for SL-leaders. Therefore the reduction to Boundary Labeling explained in
Section 3 does not extend to SL-leaders. It also does not work as is for free port ratios, since
we relied on the fact that a position of the port of pmin fixes the position of its label, which
is not true for free port ratios. For some instances, we can leverage candidate positions or
a fixed order to prove again that only a certain set of linear or quadratic size needs to be
considered for such a label. Therefore we obtain similar runtimes with an additional linear
or quadratic factor. However this reduction only works for non-uniform port ratios, since
otherwise the subproblems in the dynamic program of Benkert et al. [7] are not independent.
Detailed results for free port ratios can be found in Section C of the full version [8].

7 Conclusion

We have introduced orbital labeling as a variant of boundary labeling for circular boundaries,
in which labels are placed as circular arcs in an annulus along the boundary. We provided a
broad overview of problem variants, based on five different parameters of this labeling problem.
We showed that from an algorithmic point of view, the different parameter combinations lead
to distinctively different computational problems. In general, it appears that (unsurprisingly)
the non-uniform label setting is computationally harder than the uniform setting. Similarly
computing the layout for a fixed order is easier than for a free order of labels. The fixed
candidate setting discretizes the problem and allows for an exhaustive search through all
possible solutions, in contrast to the free candidate setting. In opposition to leader length,
non-uniform port ratios seem to make the problem more approachable if the port ratios are
also free, since free but uniform port ratios introduce a property, which has to be fulfilled
globally, while free non-uniform port ratios can be fixed locally. Concerning leader types, the
linear behaviour of the length of an OR-leader relative to the angle of their port with the
x-axis allows for some approaches, which are not (or at least not immediately) applicable to
SL-leaders.
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It would be interesting to further investigate orbital labeling through a visualization lens
as well: the variants have distinct visual styles and portray varying levels of visual complexity
and uniformity. We are conducting user experiments to determine whether certain variants
are superior to others.
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Abstract
A graph class G admits product structure if there exists a constant k such that every G ∈ G is a
subgraph of H ⊠ P for a path P and some graph H of treewidth k. Famously, the class of planar
graphs, as well as many beyond-planar graph classes are known to admit product structure. However,
we have only few tools to prove the absence of product structure, and hence know of only a few
interesting examples of classes. Motivated by the transition between product structure and no
product structure, we investigate subclasses of intersection graphs in the plane (e.g., disk intersection
graphs) and present necessary and sufficient conditions for these to admit product structure.

Specifically, for a set S ⊂ R2 (e.g., a disk) and a real number α ∈ [0, 1], we consider intersection
graphs of α-free homothetic copies of S. That is, each vertex v is a homothetic copy of S of which at
least an α-portion is not covered by other vertices, and there is an edge between u and v if and only
if u ∩ v ̸= ∅. For α = 1 we have contact graphs, which are in most cases planar, and hence admit
product structure. For α = 0 we have (among others) all complete graphs, and hence no product
structure. In general, there is a threshold value α∗(S) ∈ [0, 1] such that α-free homothetic copies of
S admit product structure for all α > α∗(S) and do not admit product structure for all α < α∗(S).

We show for a large family of sets S, including all triangles and all trapezoids, that it holds
α∗(S) = 1, i.e., we have no product structure, except for the contact graphs (when α = 1). For
other sets S, including regular n-gons for infinitely many values of n, we show that 0 < α∗(S) < 1
by proving upper and lower bounds.
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1 Introduction

We are interested in properties P of graph classes, for which, if a graph class G admits P ,
this certifies that G is well-behaving in some sense. For example, having property P for G can
provide a common structure of graphs G ∈ G, which can be exploited to prove statements
for all graphs in G, or to derive efficient algorithms for graphs in G. A particularly nice
property is that of having bounded treewidth, i.e., that there exists a constant t such that
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every graph G ∈ G is a subgraph of H for some t-tree1 H. Using the simple structure of
t-trees, one can for example show that graphs in G have small balanced separators, or that
MaxIndependentSet can be solved in linear time. However, the n × n-grid graph has
treewidth n and hence, already the class of planar graphs does not have bounded treewidth.

In 2019, Dujmović et al. [12] introduced with product structure a novel concept that
generalizes the property of having bounded treewidth. We say that a graph class G admits
product structure if there exists a constant t such that every graph G ∈ G is a subgraph
of H ⊠ P for a path P and some t-tree H. For example, the n × n-grid graph is a subgraph
of Pn ⊠ Pn, i.e., contained in the strong product of a path and a graph of treewidth 1. In
fact, the class of all planar graphs admits product structure with constant t = 6 [25].

This constant t is also called the row treewidth (denoted rtw) and specifically, for a
graph G we write rtw(G) ≤ t if G ⊆ P ⊠ H for a path P and some t-tree H. The vertices
of P ⊠ H are partitioned into “rows” (one row for each vertex of P ), with each row inducing
a copy of H. In particular, from any vertex-ordering σ of H, we obtain a natural drawing
that reflects the structure of the graph by putting the vertices of the i-th row on y-coordinate
(roughly) i and x-coordinate according to σ. See Figure 1 for some illustrating examples.

P

H = P 3
H

Figure 1 The strong product P ⊠ H with a row highlighted (left), a unit disk intersection
representation of a graph G (center), and its product structure representation G ⊆ P ⊠ H (right).

Interestingly, one can reverse this procedure in case G is an intersection graph of unit
disks in R2 as follows. Roughly speaking, we superimpose a square grid on the intersection
representation and let w be the largest number of disk centers in any grid cell. Then we
find G as a subgraph of P ⊠ H, where H = P 2w−1 is the (2w − 1)-th power of a path, i.e.,
a t-tree for t = 2w − 1. This way, one can conclude for every w that Kw/4-free unit disk
intersection graphs admit product structure. We refer to [17] for a complete, formal proof.

Linear local treewidth. On the other side, we can show that a graph class G has no product
structure by showing that G fails to have another (easier to check) property that in turn
would be necessary for product structure. To this end, note that in the product P ⊠ H each
edge either runs within a row or between two consecutive rows. It follows that for every k the
k-th closed neighborhood Nk[v] = {u ∈ V | d(u, v) ≤ k} of a vertex v in P ⊠ H is completely
contained in at most 2k + 1 rows, each having treewidth t = tw(H). Therefore, the treewidth
of Nk[v] is at most (2k + 1)t, i.e., grows only linearly in k for constant row treewidth t.

▶ Definition 1. A graph class G has linear local treewidth if for all graphs G ∈ G and all
vertices v ∈ V (G) the treewidth of the k-th closed neighborhood of v is in O(k).

1 Definitions of t-trees, treewidth, and strong products will be given in Section 2.
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Linear local treewidth is a necessary (though not sufficient) condition for a class to admit
product structure [12,15, Lemma 6]. For example, in K4-free disk intersection graphs we can
have an n × n-grid in the neighborhood of a single vertex (Figure 2-left), and hence K4-free
disk intersection graphs do not admit product structure. Similarly, the n × n × n-grid graph
has treewidth Ω(n2), but lies completely in N3n[v] of any of its vertices v (Figure 2-center).
Hence, K3-free intersection graphs of unit balls in R3 do not admit product structure.

Figure 2 K4-free disk intersection graphs (left) and K3-free unit ball intersection graphs (center)
with no product structure, and a 1

2 -free disk intersection graph with the free area in blue (right).

Intersection graphs of α-free homothetic shapes. We consider the question when a class
of intersection graphs has product structure, and when not. Crucially, we want the vertices
to be represented by homothetic shapes in R2 of different sizes. By the discussion above, we
must bound the clique size, as well as the size of grids in the neighborhood of any vertex.
We do this by requiring that for every vertex, its corresponding set has an α-fraction of its
area disjoint from all other shapes (Figure 2-right)2. For a shape S ⊆ R2, let us denote its
area by ∥S∥.

▶ Definition 2. Let S ⊆ R2 be a set and α ∈ [0, 1] be a real number. A collection C = {Sv}v∈V

of homothetic (obtained from S by positive scaling and translation) copies of S is α-free if

for every v ∈ V we have ∥Sv −
⋃

u∈V −v

Su∥ ≥ α · ∥Sv∥.

We denote by G(S, α) the class of all intersection graphs of α-free homothetic copies of S.

Whether G(S, α) has product structure or not clearly depends on S and α. In general,
there is a threshold value α∗(S) ∈ [0, 1] such that G(S, α) has product structure for α > α∗(S),
and no product structure for α < α∗(S). For an integer n ≥ 3, we denote by Dn ⊆ R2 a
fixed regular n-gon with area ∥Dn∥ = 1. Our main interest is to determine α∗(Dn).

When two homothetic copies S, S′ of Dn intersect, a number m ≤ n of corners of one,
say S, is contained in the other, S′. Given that exactly m corners of S are covered by S′,
the smallest area of S is covered when S ∩ S′ is the convex hull of m consecutive corners
of S. Let us call such a polygon an n-gon segment with m corners and denote it by Dm

n .
See Figure 3 for an example. Since ∥Dn∥ = 1, the size ∥Dm

n ∥ of Dm
n is the fraction of Dn

covered by Dm
n . In particular, we have ∥Dm

n ∥ ∈ [0, 1]. In fact, for most of the results in this
paper we take α = ∥Dm

n ∥ for an appropriate choice of m (possibly depending on n).

2 This restriction is better suited to investigate the threshold between product structure and no product
structure than the (possibly more common) ply, i.e., the number of shapes that may meet at the same
point. In fact, Figure 2 left already shows that graphs with ply 3 do not admit product structure.
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D
4
8

Figure 3 The 8-gon segment with 4 corners D4
8.

Our results. We investigate whether G(S, α) has product structure or not. As soon as α > 0,
there are indeed constants w = w(S, α) and k = k(S, α), such that all graphs in G(S, α) are
Kw-free and with no k × k-grid in any neighborhood N1[v]. But, while these obstructions
are ruled out, G(S, α) has still no product structure if α > 0 is too small.

▶ Theorem 3. For every n ≥ 2 and α < ∥D4
2n∥, the class of all intersection graphs of α-free

homothetic regular 2n-gons does not admit product structure.

In other words, we have α∗(D2n) ≥ ∥D4
2n∥ > 0 for every n ≥ 2. As an interesting special

case, we highlight that ∥D4
4∥ = 1 and hence α∗(D4) = 1. That is, for every ᾱ > 0 we can

construct collections C = {Sv}v∈V of axis-aligned squares such that each square Sv ∈ C has
at most an ᾱ-fraction of its area covered by C − Sv, i.e., C is arbitrarily close to a contact
representation, and still the intersection graphs of C do not admit product structure3.

In fact, we may encounter the same situation among general (irregular) convex n-gons.

▶ Theorem 4. For every n ≥ 3 there is an n-gon S such that for all α < 1 the class of
intersection graphs of α-free homothetic copies of S does not admit product structure.

For regular n-gons however, if α is large enough, we always have product structure.

▶ Theorem 5. There is an α < 1 such that for all n > 6, the class of intersection graphs
of α-free homothetic regular n-gons admits product structure.

In other words, we have an α̂ < 1 such that α∗(Dn) ≤ α̂ for every n > 6. We prove
Theorem 5 by showing that the graphs in G(Dn, α̂) are planar, and for this reason G(Dn, α̂)
admits product structure [12]. To prove the planarity, we consider the canonical drawing of
the intersection graph G, which is derived from an intersection representation with α-free
homothetic regular n-gons by placing each vertex v at the center of its shape Sv and draw each
edge uv as a short 1-bend polyline inside Su ∪ Sv. We define and discuss these drawings more
detailed in Section 4. In fact, also many beyond-planar graph classes admit product structure
(as we shall list below). And we actually suspect (cf. Conjecture 7 below) that whether or not
G(Dn, α) admits product structure is equivalent to whether or not the canonical drawings of
the graphs in G(Dn, α) belong to a novel type of beyond-planar drawing style.

▶ Definition 6. For k ≥ 0, a topological drawing4 Γ of a graph G in R2 is k-independent
crossing if no edge e of G is crossed in Γ by more than k independent edges of G.

Clearly, 0-independent crossing drawings are precisely planar drawings. And 1-independent
crossing drawings are precisely fan-crossing drawings [6]. In general, in a k-independent
crossing drawing, every edge may for example be crossed by k stars of edges.

3 Hence, these graphs do not belong to any graph class with product structure as listed in Related work.
4 Vertices are points and edges are curves connecting their end-vertices. Any two edges have only finitely

many points in common; each being either a common endpoint or a proper crossing.
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S
S S

S
S

Figure 4 Two regular n-gons meeting in third, S, for large n and the cases n ≡ 0, 1, 2, 3 mod 4.

n

s(n)

Figure 5 Values of s(n) for n = 3, . . . , 100.

▶ Conjecture 7. The class of intersection graphs of α-free homothetic regular n-gons admits
product structure if and only if their canonical drawings are k-independent crossing for a
global constant k (possibly depending on n).

Our final contribution is to exactly determine α in terms of n for which the canonical
drawings of all graphs in G(Dn, α) are k-independent crossing for some k. For this, we define

s(n) =



∥Dn/2+2
n ∥ if n ≡ 0 (mod 4)

∥D⌈n/2⌉+1
n ∥ if n ≡ 1 (mod 4)

∥Dn/2+1
n ∥ = 1

2 if n ≡ 2 (mod 4)

∥D⌈n/2⌉+2
n ∥ if n ≡ 3 (mod 4).

(1)

The function s(n) is defined as the tipping point whether or not two regular α-free n-gons
can meet in a third regular n-gon S without containing a corner of S. See Figure 4 for an
illustration and Figure 5 for a plot of s(n). In particular note that s(n) ≥ 1

2 for all n and
limn→∞ s(n) = 1

2 . The four cases are due to whether or not the four corners closest to the
boundary of S need to be inside S in order for the two n-gons to meet, e.g., in the case n ≡ 0
mod 4 only n/2 of the corners are inside S (and therefore, at the tipping point where the
two n-gons meet exactly at a corner of S, n/2 + 2 are outside or at the boundary), while
half of the area is covered if n/2 + 1 corners are inside S as in the case n ≡ 2 mod 4.

▶ Theorem 8. Let n ≥ 3, α ∈ [0, 1], and s(n) be defined as in (1). Then there exists a
constant k = k(n) such that the canonical drawings of all graphs in G(Dn, α) are k-independent
crossing if and only if α ≥ s(n).
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0 1∥D4
2n∥

no product structure (Thm. 3) product structure/planar (Thm. 5)

s(n)

k-independent crossing (Thm. 8)

0.5

not k-independent crossing (Thm. 8)

Figure 6 Our results for even n > 6. It holds that limn→∞ s(n) = 1
2 and limn→∞∥D4

2m∥ = 0.

Crucially, Theorem 8 and Conjecture 7 together would give α∗(Dn) = s(n), i.e., that
α ≥ s(n) is also the exact tipping point for the product structure of the class G(Dn, α). An
overview of our results for even n > 6 is given in Figure 6.

Organization of the paper. After some related work below, we quickly define in Section 2
treewidth and product structure. In Section 3 we prove Theorems 3 and 4 by presenting a new
graph class called nested grids with no linear local treewidth (hence no product structure),
and then constructing α-free intersection representations of nested grids for the claimed
sets S. In Section 4 we define and discuss the canonical drawing of an intersection graph
from an α-free intersection representation. The canonical drawings are then used to prove
Theorem 5 in Section 5 and Theorem 8 in Section 6. We discuss conclusions in Section 7.

Related work. Since the introduction by Dujmović et al. [12], a variety of graph classes
have been shown to admit product structure, including planar graphs, graphs with bounded
Euler genus g, apex-minor-free graphs [12,25], k-planar graphs, k-nearest-neighbor graphs,
(g, k)-planar graphs, d-map graphs, (g, d)-map graphs [16], h-framed graphs [1], (g, δ)-string
graphs [8,16], k-th powers of planar graphs with bounded maximum degree [8,20], fan-planar
graphs, k-fan-bundle graphs [20], and Kw-free intersection graphs of unit disks in R2 [17].
In addition, product structure has been used to investigate different concepts in graphs;
sometimes resolving long-standing conjectures. This includes adjacency labeling schemes [2,
9, 19], nonrepetitive colorings [10], p-centered colorings [7], clustered colorings [11, 14], vertex
rankings [5], queue layouts [12], reduced bandwidth [3], comparable box dimension [18],
neighborhood complexity [21], twin-width [1, 22], and odd-coloring numbers [13].

On the other hand, there are only very few results for the non-existence of product
structure. Besides linear local treewidth (Definition 1), a necessary condition for product
structure is having bounded layered treewidth [4]. In fact, bounded layered treewidth implies
linear local treewidth [15], making the former the stronger condition. For proper minor-closed
graph classes, both linear local treewidth and bounded layered treewidth are also sufficient
conditions for product structure [12]. However, this does not hold for general graph classes
as some graph classes with bounded layered treewidth admit no product structure [4].

2 Preliminaries

Treewidth. Treewidth is a graph parameter first introduced by Robertson and Seymour [24]
measuring the similarity of a graph to a tree. Let us define the edge-maximal graphs of
treewidth t: For an integer t ≥ 0, a t-tree is a graph H that is either Kt+1, or obtained
from a smaller t-tree H ′ by adding one new vertex v with neighborhood N(v) ⊂ V (H ′) that
induces a clique of size t in H ′. Now, the treewidth of a graph G, denoted as tw(G), is the
minimum t such that G ⊆ H for some t-tree H.
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Strong product of graphs. The strong product of graphs is a combination of the Cartesian
product of graphs and the tensor product of graphs. The vertex-set of the strong product
G ⊠ H of two graphs G and H is defined as V (G) × V (H). The edge-set is the union of
the edges in the Cartesian and the tensor product of G and H. That is, there is an edge in
G ⊠ H between two vertices (u, u′), (v, v′) ∈ V (G ⊠ H) if and only if

u = v, u′v′ ∈ E(H) or u′ = v′, uv ∈ E(G) or uv ∈ E(G), u′v′ ∈ E(H).

3 Intersection graphs without product structure

In this section we prove that, for some α ∈ [0, 1] and some S ⊆ R2, the class G(S, α) of all
intersection graphs of α-free homothetic copies of S does not admit product structure. In
particular, we consider for S regular 2n-gons in Section 3.2 and irregular n-gons in Section 3.3.
Both cases rely on the same general construction, which we describe first in Section 3.1.

3.1 Nested grids
We aim to construct a graph class G that does not have linear local treewidth (cf. Definition 1).
Then, by [12,15, Lemma 6], G admits no product structure. Note that if G has linear local
treewidth, for each graph G = (V, E) ∈ G its treewidth tw(G) is linearly bounded by its radius
rad(G) = minv∈V min{k | Nk[v] = V }. We now aim to construct a sequence G1, G2, . . . of
graphs with rad(Gk) ∈ O(k) but tw(Gk) ∈ Ω(k2), i.e., where the treewidth is not linear in
the radius. Here, we give a general description of Gk, k ≥ 1, which is then completed in
detail depending on the particular polygon S in Sections 3.2 and 3.3.

Step 1: Large grid to ensure small radius. We start with a (k + 1) × (k + 1)-grid with each
edge subdivided twice, called the large grid. For an intersection representation, we use
(k +1)2 large homothets of S, denoted ci,j with i, j ∈ [k +1], in a grid pattern representing
the grid-vertices, and 4k2 smaller homothets of S, called the subdivision shapes, for the
subdivision-vertices. The exact placement is chosen such that the subdivision shapes
meet at their corners so that the resulting intersection graph is the desired subdivided
grid as shown in Figure 7. Note that we do not require that the shapes ci,j have only
a point contact with the subdivision shapes. We refer to this graph as Gk,1 and to the
areas that are bounded by exactly twelve shapes as cells.

c1,1 c1,2 c1,3

c3,3c3,2c3,1

c2,3c2,1

c2,2

c1,1 c1,2 c1,3

c2,1 c2,3
c2,2

c3,3c3,2c3,1

Figure 7 Examples of the large grid with homothetic squares or hexagons, as described in Step 1.
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Figure 8 Parts of a large grid (blue) with small grids in its cells (green) connected by paths (red).

Step 2: Small grids inside cells. Next, we insert a k × k-grid into each cell such that these
small grids do not touch the large grid from Step 1. We denote the union of Gk,1 and
all small grids by Gk,2. In the next step, we connect the small grids so that together
they form a grid of size k2 × k2 plus some additional edges and subdivisions, yielding
quadratic treewidth. To do so, we also specify the placement of the small grid inside
the cell more precisely in the next step. The large grid ensures that the radius of the
resulting graphs is linear in k.

Step 3: Connecting the small grids to ensure large treewidth. We connect any two small
grids in neighboring cells of Gk,1 by adding k pairwise disjoint paths, called connecting
paths, as illustrated in Figure 8. Each set of connecting paths crosses the subdivided
edge of Gk,1 at the contact point of the two corresponding subdivision shapes. To realize
these crossings, we must ensure that a contact point of two same-sized homothets of S

can be crossed by k independent edges, while keeping all shapes α-free. Furthermore, we
connect the endpoints of these k independent edges to their corresponding small grid
with pairwise disjoint paths, while keeping the radius small, that is in O(k).
Leaving the shape-specific details of the crossings to Sections 3.2 and 3.3, we now show
how to achieve the linear radius. As Gk,1 has radius O(k), it suffices to show that every
vertex we add in a cell has distance O(k) to some vertex of Gk,1. We achieve this by
placing the connecting paths inside a cell within a narrow corridor very close to the
border of the cell (Figure 9). Such a corridor and connecting paths along the border
of a cell can always be constructed using 1-free homothets of S of very small size. We
start with a set Pt of k paths connecting the top of the cell with the small grid, which is
placed near the top of the cell for this purpose. All further connecting paths in the same
cell can be placed iteratively by going along the new boundary. Note that the small grid
is not necessarily placed in the center of the cell as the exact geometry inside the cell
is shape-specific and the center might not be reachable while keeping the radius small.
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As we create 4k paths per cell, every vertex on the paths has distance O(k) from the
grid Gk,1. In addition, the small grids are placed such that they touch the end of the
constructed paths, yielding a distance of O(k) for every vertex in each cell.

3.2 Regular 2n-gons

In this section we prove Theorem 3 by giving for every n ≥ 2 an explicit α < 1 such that
intersection graphs of α-free homothetic copies of D2n admit no product structure. Recall
that ∥Dm

2n∥ ∈ [0, 1] denotes the portion of the area of D2n within a segment with m corners.

▶ Theorem 9. For every n ≥ 2 and α < ∥D4
2n∥, the class of all intersection graphs of α-free

homothetic regular 2n-gons does not admit product structure.

Hence, as ∥D4
4∥ = 1 and ∥D4

6∥ = 1
2 , regular α-free squares do not admit product structure

for any α < 1, and regular α-free hexagons do not admit product structure for any α < 1
2 .

Proof. We prove the theorem by using the construction described in Section 3.1. Thus, we
need to show that all three steps of the construction are feasible using α-free regular n-gons.
Constructing the grid Gk,1 described in Step 1 using regular n-gons is clearly possible for all
n, e.g., see Figure 7 for n = 4 and n = 6. For Step 2 place a k × k-grid inside each cell of
Gk,1 yielding Gk,2. The main challenge is to show that Step 3 of the construction is feasible.

In Step 3 we connect the small grids to together contain a k2 × k2-grid subdivision. Let
Su, Sv be two adjacent subdivision shapes in the grid Gk,1 and recall that they meet at a
corner. We aim to construct k pairwise disjoint paths crossing the Su-Sv-contact with contact
point q, see Figure 10 left. We thereby ensure that the inserted shapes do not intersect any
shapes other than Su and Sv. We iteratively place n-gons X1, Y1, . . . , Xk, Yk such that after
iteration i with i ∈ [k], the n-gons X1Y1, . . . , XiYi form i independent edges crossing the line
segment l from the center of Su to q. Additionally, after iteration i there is an εi-ball Bεi [q]
around q for some εi > 0 such that Bεi

[q] does not intersect any Xj or Yj for j ≤ i. For ease
of presentation, let Bε0 [q] be a ball around q that only intersects Su and Sv.

In iteration i we consider the ball Bεi−1 [q] that does not intersect any n-gons Xj , Yj

placed before. Let the corners of an n-gon Sz be cz
1, . . . , cz

n in clockwise order. Without loss
of generality, let q be the corner cu

1 of Su. Let cXi
1 be the corresponding corner of the n-gon

Xi and cYi
1 be the corresponding corner of Yi. Further let p be a point close to q on l with ε′

distance from q, where 0 < ε′ < εi−1. We place Xi, Yi inside Bεi−1 [q] such that they share a
side and meet with a corner at p, i.e., such that cXi

n = p = cYi
2 as shown in Figure 10 right.

Note that two corners of Xi and Yi, respectively, are placed outside of Su and the two
shapes do not intersect Sv. In addition, two corners are placed ε′-close to the border of Su.
Thus, for ε′ small enough Xi and Yi have arbitrarily less than ∥D4

2n∥ area disjoint from Su.
As Xi and Yi do not intersect any other shapes than Su, we can choose ε′ sufficiently small
such that Xi and Yi are α-free for every α < ∥D4

2n∥. Further observe that as ε′ > 0, after
placing Xi and Yi there still exists a ball Bεi

[q] with positive radius εi around q that does
not intersect any Xj or Yj for j ≤ i. Thus, the invariants hold and we can continue placing
n-gons. After k iterations we have k independent edges crossing Su and Sv, as required.

Finally, the edges X1Y1, . . . , XiYi can be connected to the small grids as explained in
Step 3 of the construction while keeping the radius in O(k). Thus, we have constructed a
graph class that does not have linear local treewidth, which rules out product structure. ◀
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small k × k-grid

Pr

Pt

Pl

Pb

Sv
Su

X3

Y3

X2

Y2

X1

Y1

P ′
b

Figure 9 Example of how the paths connecting the grids can be constructed. Su and Sv are
subdivision shapes and X1, Y1, X2, Y2, and X3, Y3 realize the independent edges crossing the contact
point of Su and Sv required in Step 3. Pt connects the top of the cell, i.e. X1, X2, X3, with the
small grid. Pl, Pb, Pr connect the left, bottom, and right side of the cell to the small grid and are
shortened for improved readability. Note that the latter three sets of paths are not symmetric but
walk along the boundary of the cell in order to reach the small grid while keeping the radius small.
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Su Sv

q

k independent edges

l

Su Sv

ql

Bεi−1
[q]

Yi

Xi

p
Bεi [q]

Figure 10 Left: We aim to cross two hexagons U, V with k independent edges. Right: Two
hexagons Xi, Yi inside the ball Bεi−1 [q] with cXi

n = p = cYi
2 that cross the line segment l from the

center of Su to q. In the next iteration, the hexagons Xi+1, Yi+1 are placed inside Bεi [q].

Su Sv

Y1
X2

Y2

X1 p

Figure 11 Two shapes Su, Sv that we cross with two independent edges x1y1, x2y2. Note that to
the bottom-left of X2 and Y2, there is space for more crossing edges.

3.3 Triangles and irregular n-gons
This section is devoted to Theorem 4, which states that for every n ≥ 3 there is a (possibly
non-regular) n-gon S such that α-free intersection graphs of shapes homothetic to S do not
admit product structure for any α < 1. As all triangles are affinely equivalent, we conclude:

▶ Corollary 10. The graph class of α-free intersection graphs of homothetic triangles does
not admit product structure for any α < 1.

The following lemma specifies the shapes we use and immediately implies Theorem 4.
We refer to Figure 11 for examples of shapes that satisfy the required properties.

▶ Lemma 11. Let S be a convex shape with two orthogonal adjacent sides l(S), b(S) such
that S is contained in the rectangle spanned by l(S) and b(S) and no sides of S are parallel
to l(S) or b(S). Then, for no α < 1 does the class of all α-free intersection graphs of shapes
homothetic to S admit product structure.

The main difference to Section 3.2 is how we implement crossings, which is shown in
Figure 11. We give a full proof in [23, Lemma 11].

4 Canonical drawings

In this section, we describe how we derive a drawing of the corresponding intersection graph
G = (V, E) from a collection C of α-free homothetic copies of Dn (for some α > 0). That is,
we identify a point in R2 for each vertex v ∈ V inside its corresponding set Sv ∈ C, and route
each edge uv ∈ E as a polyline in R2 inside an ε-blowup of Su ∪ Sv. Both steps are quite
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natural, but some care is needed in the details. While there is nothing surprising here, in the
upcoming Sections 5 and 6 we prove that for specific choices of n and α, these drawings have
interesting properties, such as being planar or k-independent crossing (cf. Definition 6).

Let n ≥ 3 be fixed, and C = {Sv}v∈V be a collection of α-free homothetic copies of Dn

for some α > 0, and G = (V, E) be its intersection graph. Choose ε > 0 small enough (to be
discussed later). For each shape Sv ∈ C let cv denote its center. We draw each vertex v ∈ V

as a point inside the ε-ball Bε(cv) around cv, such that all vertices lie in general position.

S′
u

S′
v

S′
u

S′
v

S′
u

S′
v S′

v

S′
u

Figure 12 Embeddings with the edges (thick red) inside the shapes.

Now, for every edge uv ∈ E individually, we do the following. First, we scale down Su at
its center cu to S′

u, and Sv at its center cv to S′
v, such that Bε(cu) ⊂ S′

u, Bε(cv) ⊂ S′
v, and

S′
u and S′

v touch but share no positive area. If the line segment cucv intersects S′
u ∩ S′

v, let
puv denote the point of intersection. This is for example always the case when n is even (see
Figure 12). Otherwise, let puv be the single point in S′

u ∩ S′
v (see Figure 12-right).

We now draw the edge uv as a 1-bend polyline connecting u to puv and puv to v. Observe
that the edge uv, including its bend puv, is drawn inside S′

u ∪ S′
v and hence inside Su ∪ Sv.

In case the bend points of several edges happen to coincide, we slightly move the bend points
within their ε-balls such that no two such edges with a common endpoint cross. Similarly,
we slightly move the bend points such that they are in general position together with the
vertices. Hence, the drawing is simple5 except that edges may cross twice.

Let us list some crucial properties of the resulting drawing.

▶ Observation 12. Given α-free homothetic copies of Dn, the canonical drawing Γ of their
intersection graph G = (V, E) satisfies the following properties:

Every vertex v ∈ V is drawn ε-close to the center cv of its shape Sv.
For every edge uv ∈ E there are scaled-down interiorly disjoint S′

u, S′
v with Bε(cu) ⊂

S′
u ⊆ Su and Bε(cv) ⊂ S′

v ⊆ Sv, with the edge drawn as a polyline with its only bend
ε-close to puv ∈ S′

u ∩ S′
v.

The set of all bend points and all vertices is in general position.

Note that we choose the ε-offsets sufficiently small so that if there is a crossing in our
drawing, then the two edges also intersect in the possibly non-simple embedding obtained by
choosing ε = 0. Hence, from now on we may assume the vertices and bends to be placed
exactly at the centers, respectively contact points, for checking whether two edges cross.

5 An embedding is called simple if vertices and edges do not share points except for incident edges meeting
at their common endpoint and non-adjacent edges may cross once but only two in a point (i.e., no
touchings, no self-crossings, no crossings of adjacent edges, no three edges crossing in the same point).
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Figure 13 Situation in the proof of Lemma 14 with puv ∈ S′
x ⊆ Sx.

5 Planar drawings

Complementing the results in Section 3, we show here that for some α < 1 and all n > 6, the
α-free intersection graphs of homothetic regular n-gons admit product structure. But let us
quickly discuss the case α = 1 first. Here we have contact representations, i.e., the n-gons are
interiorly disjoint and induce an edge if they touch. For every n ̸= 4, these contact graphs
are planar, and hence admit product structure [12]. For n = 4, we have contact graphs of
axis-aligned squares, which are 1-planar, and hence also admit product structure [16].

▶ Observation 13. For every n ≥ 3, the class of 1-free intersection graphs of homothetic
regular n-gons admits product structure.

Turning back to the case α < 1, i.e., the statement of Theorem 5, we shall use the
canonical drawings defined in Section 4. To prove Theorem 5, we show that for appropriate
α < 1 and all n > 6 these canoncial drawings are crossing-free and thus the corresponding
class of intersection graphs admits product structure by [12].

▶ Lemma 14. Let n ≥ 3, α < 1, and G be an intersection graph of α-free homothetic regular
n-gons with canonical drawing Γ. If two edges uv, xy ∈ E cross in Γ, then there is a point
p ∈ R2 that is contained in at least three of Su, Sv, Sx, Sy.

Proof. Consider the scaled-down n-gons S′
u and S′

v used to draw the edge uv, as well as S′
x

and S′
y used to draw the edge xy. In particular, consider puv ∈ S′

u ∩ S′
v and pxy ∈ S′

x ∩ S′
y.

Further, we may assume that the crossing of uv and xy involves the segments upuv and xpxy.
Now observe that if pxy ∈ Su, then pxy ∈ Su ∩ Sx ∩ Sy and we are done. Similarly, we are
done if puv ∈ Sx. In the remainder, we aim to show that one of the two cases applies.

For this, let S′′
x be obtained from S′

x by scaling it down at the point pxy until the center
of S′′

x lies on the segment upuv as shown in Figure 13. Since pxy ∈ S′
x, we have pxy ∈ S′′

x

and S′′
x ⊆ S′

x ⊆ Sx. As the center of S′′
x lies on the segment upuv, we obtain that S′′

x either
contains puv or is completely contained in S′

u ⊆ Su. In the first case, we have puv ∈ S′′
x ⊆ Sx,

while in the second we have pxy ∈ S′′
x ⊆ Su, as desired. ◀
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By Lemma 14, crossings in Γ are only possible if three homothetic copies of Dn have a
common point. However, this in turn (as long as n > 6) forces that one of the three shapes
has some significant portion of its area covered by the other two.

▶ Lemma 15. There is an α < 1 such that for every n > 6 and every three homothetic
copies Su, Sv, Sw of Dn that have a common point p ∈ Su ∩ Sv ∩ Sw, one of the three copies
is not α-free.

Lemma 15, which we formally prove in [23, Lemma 15], together with Lemma 14 implies
Theorem 5.

▶ Theorem 5. There is an α < 1 such that for all n > 6, the class of intersection graphs
of α-free homothetic regular n-gons admits product structure.

6 k-independent crossing drawings

In this section we again consider intersection graphs of α-free homothetic regular n-gons, and
specifically, whether their canonical drawings are k-independent crossing (cf. Definition 6)
for a global constant k (that might depend on n). For fixed n ≥ 3, we let α ∈ [0, 1] vary. For
α = 1, one can show that the canonical drawings are planar (or 1-planar for n = 4) and in
particular 1-independent crossing. For smaller α, we have a richer graph class, which is less
likely to have k-independent crossing canonical drawings for any constant k. In fact, we shall
prove that s(n) as defined in (1) is the precise tipping point for α until which the canonical
drawings for G(Dn, α) are k-independent crossing. That is, we prove Theorem 8.

6.1 Not k-independent crossing for α < s(n)

We show that for α < s(n), edges can be crossed by arbitrarily many independent edges.

▶ Proposition 16. Let n ≥ 3, α < s(n), and k ≥ 1. Then there is a collection Ck = {Sv}v∈V

of α-free homothetic regular n-gons with intersection graph Gk = (V, E) such that one
particular edge uv ∈ E is crossed in the canonical drawing Γ of Gk by k independent edges.

Proof. For the case n ≡ 0 (mod 4), we rotate the regular n-gon Dn such that it has four
corners at its extreme x- and y-coordinates; a top, a bottom, a left, and a right corner.

We start by placing a homothetic regular n-gon Su ⊆ R2 with center c and right corner q.
We iteratively place n-gons X1, Y1, . . . , Xk, Yk such that after step i, 1 ≤ i ≤ k the n-gons
X1, Y1, . . . , Xi, Yi are placed and the i corresponding independent edges x1y1, . . . , xiyi all
cross the line segment l from the center c of Su to q. Additionally, there are ε0 > ε1 > · · · > εk

such that the εi-ball Bεi
[q] around q is disjoint from Xj and Yj whenever j ≤ i. Clearly, all

invariants hold before step 1 with ε0 > 0 being any value small enough such that at least an
α-fraction of Su is not covered by Bε0 [q].

In step i, we consider the ball Bεi−1 [q] around q that is disjoint from X1, Y1, . . . , Xi−1, Yi−1.
Let Xi and Yi be (very small) homothetic n-gons inside Bεi−1 [q] such that the bottom corner
of Xi and the top corner of Yi coincide in a single point p on l − q, as shown in Figure 14.
Note that Xi and Yi have strictly more than ∥Dn/2

n ∥ of their area covered by Su, i.e., strictly
less then ∥Dn/2+2

n ∥ is free. Moreover, the closer p is to q, the closer is their free fraction is
to ∥Dn/2

n + 2∥ = s(n). Now we move Xi, Yi along l until at least α < s(n) of each of their
areas is not covered by Su and pick εi > 0 small enough so that Bεi [q] is disjoint from Xi

and Yi. Observe that our invariants hold again.
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Figure 14 Placing Xi, Yi inside the εi−1 ball around q.
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Figure 15 Placement of X1, Y1 in the cases n ≡ 0, 1, 2, 3 mod 4.

After step k, we can place a (tiny) homothetic n-gon Sv inside the ball Bεk
[q] such that

its left corner coincides with q, which completes the construction for n ≡ 0 (mod 4).

If n ̸≡ 1 (mod 4), then the regular n-gon Dn does not have a corner in each of its four
extreme directions. Instead, we may have corners or entire sides. Nevertheless, we can assume
that Dn has a right corner, and do the same construction as above for any n. However,
depending on n, we get a different number of corners of Xi and Yi inside Su. For n ≡ 1
(mod 4) the number of corners of Xi inside of Su is ⌈n/2⌉ and thus roughly ∥D⌈n/2⌉+1

n ∥ of
the area of Xi is not covered by Su. For n ≡ 2 (mod 4) the number of corners is n/2 + 1
and roughly ∥Dn/2+1

n ∥ = 1
2 is free. Lastly, for n ≡ 3 (mod 4) the number of corners of Xi

inside of Su is ⌊n/2⌋ and thus roughly ∥D⌈n/2⌉+2
n ∥ of the area of Xi is not covered by Su.

An example of the placement of X1, Y1 in the various cases is given in Figure 15. ◀
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6.2 k-independent crossing for α ≥ s(n)
We show that for every n ≥ 3, α ≥ s(n), and for every collection of α-free homothetic regular
n-gons, the canoncial drawing Γ of the corresponding intersection graph G is k-independent
crossing (cf. Definition 6) for a global constant k that depends only on n.

The reader might recall Lemma 15 stating that for large enough α, no three α-free n-gons
have a common point. In [23, Lemma 18], we use a similar strategy to show that for any
large enough α (in this case α ≥ 1

2 ), the number of n-gons containing a given point p is
bounded.

▶ Lemma 17. For a point p ∈ R2, n ≥ 5, and α ≥ 1
2 , there are at most 13 regular n-gons

X ∈ C with p ∈ X.

The next lemma crucially exploits that s(n) is chosen as the tipping point whether or
not two regular n-gons can meet in a third regular n-gon without containing a corner of the
latter.

▶ Lemma 18. Let X be a homothetic copy of Dn. Let c be the center, Q be the set of
corners, and p be any fixed point on the boundary of X. Further, let Y be another homothetic
copy of Dn such that Y ∩ cp ̸= ∅. Then at least one of the following holds.

∥Y −X∥
∥Y ∥ < s(n), i.e., less than an s(n)-fraction of Y is not covered by X, or

Y ∩ (Q ∪ {p}) ̸= ∅, i.e., Y contains point p or a corner of X.

Proof. As we are done otherwise, we assume that Y contains no corner of X and that Y is not
completely contained in X. Then Y intersects exactly one side s of X. Let h be the halfplane
supported by s that contains X. Then Y − X = Y − h, and hence ∥Y − X∥/∥Y ∥ ≤ ∥Dm

n ∥
where m is the number of corners of Y that lie outside of X or on the boundary of X. For
convenience let

m∗ =


n/2 + 2 if n ≡ 0 (mod 4)
⌈n/2⌉ + 1 if n ≡ 1 (mod 4)
n/2 + 1 if n ≡ 2 (mod 4)
⌈n/2⌉ + 2 if n ≡ 3 (mod 4).

I.e., s(n) = ∥Dm∗

n ∥, and we are done if m < m∗. So assume that Y has m ≥ m∗ corners
outside or on the boundary of X, and note that this implies that the center of Y lies outside
or on the boundary of X. Also note that the radius of Y is smaller than the side length of
X. Together, it follows that the point p either lies on the side s of X that is intersected by
Y or on an adjacent side s′ of X. Also we assume that p /∈ Y , as otherwise we are done.

Next, we shall argue that we may assume that p is a corner of X. We actually only need
p to satisfy the condition that Y contains neither a corner of X nor p but intersects a side of
X adjacent to p and the line segment cp. In case that p lies on a side s′ ̸= s adjacent to s,
then the corner p′ of X where s and s′ meet fulfills the same condition. In the other case
that p lies on the side s that Y intersects, we can simultaneously move p and Y parallel to s

until p coincides with the corner p′ of s on the far end of Y (recall that p /∈ Y ). Seen from
Y , this only changes the angle of the line segment cp, making it lean even more towards Y .
Again, the new situation fulfills the same condition.

Finally, we face the situation of p being a corner of X, while Y contains no corner of X

but intersects a side s of X incident to p and intersects the line segment cp. Then the portion
of ∥Y ∥ outside X is, by definition, strictly less than s(n), which concludes the proof. ◀
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With Lemmas 17 and 18 at hand, we can now prove the following.

▶ Proposition 19. Let n ≥ 3 and α ≥ s(n) be fixed. Then for any collection C = {Sv}v∈V of
α-free homothetic regular n-gons with intersection graph G = (V, E), the canonical drawing
Γ of G is 26(n + 1)-independent crossing.

Proof. For n ∈ {3, 4}, we have s(n) = 1. Hence, Γ is planar for n = 3 and 1-planar for n = 4,
which is more than enough. For n ≥ 5, let uv ∈ E be any fixed edge in G. Our task is to
bound the number of independent edges in G that cross uv in Γ.

Recall from Observation 12, that S′
u ⊆ Su and S′

v ⊆ Sv are interiorly disjoint but touching
homothetic n-gons, and edge uv is drawn as a polyline from u (ε-close to the center of Su)
to v (ε-close to the center of Sv) with one bend point ε-close to puv ∈ S′

u ∩ S′
v. Actually, we

may assume without loss of generality that u is the center of S′
u, v is the center of S′

v, and
edge uv bends exactly at puv. Then uv consists of two line segments upuv and puvv, and it
is enough to bound the number of edges that cross one of these line segments in Γ, say upuv.

For every edge xy that crosses upuv in Γ, we have Sx ∩ upuv ̸= ∅ or Sy ∩ upuv ̸= ∅, or
both. Let A = {y ∈ V | Sy ∩ upuv ̸= ∅} be the subset of vertices of G whose corresponding
sets intersect upuv. Crucially, all edges of G that cross uv in Γ along the line segment upuv

have an endpoint in A. Since S′
u ⊆ Su, we have

∥Sy − S′
u∥

∥Sy∥
≥ ∥Sy − Su∥

∥Sy∥
≥ α ≥ s(n)

for each y ∈ A. Hence, by Lemma 18, each such Sy must contain the point puv or (at least)
one of the n corners of S′

u. Lemma 17 says that at most 13 such Sy can contain the same
point, and thus |A|≤ 13 · (n + 1). In other words, at most 13(n + 1) independent edges of G

cross uv in Γ along the line segment upuv. Symmetrically, at most 13(n + 1) independent
edges cross puvv, and thus Γ is k-independent crossing for k = 26(n + 1). ◀

Finally, Propositions 16 and 19 together prove Theorem 8.

▶ Theorem 8. Let n ≥ 3, α ∈ [0, 1], and s(n) be defined as in (1). Then there exists a
constant k = k(n) such that the canonical drawings of all graphs in G(Dn, α) are k-independent
crossing if and only if α ≥ s(n).

7 Conclusion

It remains an intriguing problem to determine for the regular n-gon Dn the threshold α∗(Dn)
such that the class G(Dn, α) of intersection graphs of α-free homothetic copies of Dn admits
product structure for α > α∗(Dn) and no product structure for α < α∗(Dn).

With s(n), as defined in (1), we determined the exact threshold for α such that for
α < s(n) arbitrarily many independent edges can cross a single edge in canonical drawings.
While this is exactly the crucial ingredient, we can not construct the nested grids for G(Dn, α)
with α ≈ s(n), unless n ∈ {4, 6}. Still, we suspect an alternative construction to work.

▶ Conjecture 20. For every α < s(n), the class of intersection graphs of α-free homothetic
regular n-gons does not have product structure.

On the other hand, for α ≥ s(n), the canonical drawings of G(Dn, α) are k-independent
crossing. We prove this for k = 26(n + 1) (cf. Proposition 19) but suspect that a constant k

independent of n should suffice. As already conjectured in the introduction, we believe that
graph classes with k-independent crossing drawings have product structure.
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▶ Conjecture 21. The class of k-independent crossing graphs admits product structure.

By Theorem 8 this would imply the following conjecture matching Conjecture 20.

▶ Conjecture 22. For every α ≥ s(n), the class of intersection graphs of α-free homothetic
regular n-gons has product structure.

This seems reasonable since similar beyond-planar graph classes, such as k-planar
graphs [16], fan-planar graphs and k-fan-bundle graphs [20], have been shown to have
product structure. In particular, Hickingbotham and Wood [20] show that if all graphs in G
are r-shallow minors of H ⊠ Kl with r, l, tw(H) ∈ O(1), then G has product structure. For
example, they show this to be true for fan-planar graphs.
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Abstract
We study upward pointset embeddings (UPSEs) of planar st-graphs. Let G be a planar st-graph and
let S ⊂ R2 be a pointset with |S| = |V (G)|. An UPSE of G on S is an upward planar straight-line
drawing of G that maps the vertices of G to the points of S. We consider both the problem of
testing the existence of an UPSE of G on S (UPSE Testing) and the problem of enumerating all
UPSEs of G on S. We prove that UPSE Testing is NP-complete even for st-graphs that consist of
a set of directed st-paths sharing only s and t. On the other hand, for n-vertex planar st-graphs
whose maximum st-cutset has size k, we prove that it is possible to solve UPSE Testing in O(n4k)
time with O(n3k) space, and to enumerate all UPSEs of G on S with O(n) worst-case delay, using
O(kn4k log n) space, after O(kn4k log n) set-up time. Moreover, for an n-vertex st-graph whose
underlying graph is a cycle, we provide a necessary and sufficient condition for the existence of an
UPSE on a given poinset, which can be tested in O(n log n) time. Related to this result, we give
an algorithm that, for a set S of n points, enumerates all the non-crossing monotone Hamiltonian
cycles on S with O(n) worst-case delay, using O(n2) space, after O(n2) set-up time.
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1 Introduction

Given an n-vertex upward planar graph G and a set S of n points in the plane, an upward
pointset embedding (UPSE) of G on S is an upward planar drawing of G where the vertices
are mapped to the points of S and the edges are represented as straight-line segments. The
Upward Pointset Embeddability Testing Problem (UPSE Testing) asks whether
an upward planar graph G has an UPSE on a given pointset S.

Pointset embedding problems are classic challenges in Graph Drawing and have been
considered for both undirected and directed graphs. For an undirected graph, a pointset
embedding (PSE) has the same definition of an UPSE, except that the drawing must be
planar, rather than upward planar. The Pointset Embeddability Testing Problem
(PSE Testing) asks whether a planar graph has a PSE on a given pointset S. Pointset
embeddings have been studied by several authors. It is known that a graph admits a PSE on
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every pointset in general position if and only if it is outerplanar [12, 26]; such a PSE can be
constructed efficiently [7, 8, 9, 10]. PSE Testing is, in general, NP-complete [11], however
it is polynomial-time solvable if the input graph is a planar 3-tree [35]. More in general, a
polynomial-time algorithm for PSE Testing exists if the input graph has a fixed embedding,
bounded treewidth, and bounded face size [5]. PSE becomes NP-complete if one of the latter
two conditions does not hold. PSEs have been studied also for dynamic graphs [15, 16].

The literature on UPSEs is not any less rich than the one on PSEs. From a combinatorial
perspective, the directed graphs with an UPSE on a one-sided convex pointset have been
characterized [6, 27]; all directed trees are among them. Conversely, there exist directed
trees that admit no UPSE on certain convex pointsets [6]. Directed graphs that admit an
UPSE on any convex pointset, but not on any pointset in general position, exist [3]. It is
still unknown whether every digraph whose underlying graph is a path admits an UPSE on
every pointset in general position, see, e.g., [33]. UPSEs where bends along the edges are
allowed have been studied in [6, 24, 25, 30, 31]. From the computational complexity point of
view [28, 29], it is known that UPSE Testing is NP-hard, even for planar st-graphs and
2-convex pointsets, and that UPSE Testing can be solved in polynomial time if the given
poinset is convex.

Our contributions. We tackle UPSE Testing for planar st-graphs. Let G be an n-vertex
planar st-graph and S be a set of n points in the plane. We adopt the common assumption
in the context of upward pointset embeddability, see e.g. [3, 6, 28, 29], that no two points of
S lie on the same horizontal line. Our results are the following:

In Section 3, we show that UPSE Testing is NP-hard even if G consists of a set of
internally-disjoint st-paths (Theorem 1). A similar proof shows that UPSE Testing is
NP-hard for directed trees consisting of a set of directed root-to-leaf paths (Theorem 2).
This answers an open question from [4] and strengthens a result therein, which shows
NP-hardness for directed trees with multiple sources and with a prescribed mapping for a
vertex.
In Section 4, we show that UPSE Testing can be solved in O(n4k) time and O(n3k)
space, where k is the size of the largest st-cutset of G (Theorem 7). This parameter
measures the “fatness” of the digraph and coincides with the length of the longest directed
path in the dual [18]. By leveraging on the techniques developed for the testing algorithm,
we also show how to enumerate all UPSEs of G on S with O(n) worst-case delay, using
O(kn4k log n) space, after O(kn4k log n) set-up time (Theorem 8).
In Section 5, we provide a simple characterization of the pointsets in general position
that allow for an UPSE of G, if G consists of two (internally-disjoint) st-paths. Based on
that, we provide an O(n log n) testing algorithm for this case (Theorem 9).
Finally, in Section 6, inspired by the fact that an UPSE of a planar st-graph composed
of two st-paths defines a non-crossing monotone Hamiltonian cycle on S, we provide
an algorithm that enumerates all the non-crossing monotone Hamiltonian cycles on
a given pointset with O(n) worst-case delay, and O(n2) space usage and set-up time
(Theorem 10).

Concerning our last result, we remark that a large body of research has considered
problems related to enumerating and counting non-crossing structures on a given pointset [2,
13, 22, 32, 36]. Despite this effort, the complexity of counting the non-crossing Hamiltonian
cycles, often called polygonalizations, remains open [20, 32, 34]. However, it is possible
to enumerate all polygonalizations of a given pointset in singly-exponential time [37, 38].
Recently, an algorithm has been shown [21] to enumerate all polygonalizations of a given



C. Alegría et al. 24:3

pointset in time polynomial in the output size, i.e., bounded by a polynomial in the number
of solutions. However, an enumeration algorithm with polynomial (in the input size) delay is
not yet known, neither in the worst-case nor in the average-case acception. Our enumeration
algorithm achieves this goal for the case of monotone polygonalizations.

Because of space limitations, some proofs are sketched or omitted. They can be found in
the full version of the paper [1].

2 Preliminaries

We use standard terminology in graph theory [19] and graph drawing [17]. For an integer
k > 0, let [k] denote the set {1, . . . , k}. A permutation with repetitions of k elements from U

is an arrangement of any k elements of a set U , where repetitions are allowed.

We denote by CH(S) the convex hull of a set S of points and by B(S) its boundary. The
points of S with lowest and highest y-coordinates are the south and north extreme of S,
respectively; together, they are the extremes of S. The left envelope of S is the subpath EL(S)
of B(S) to the left of the line through the extremes of S (including the extremes of S). The
right envelope ER(S) of S is defined analogously. We denote the subset of S in EL(S) and
ER(S) by HL(S) and HR(S), respectively. A ray is upward if it passes through points whose
y-coordinate is larger than the one of the starting point of the ray.

A polyline (p1, . . . , pk) is y-monotone if y(pi) < y(pi+1), for i = 1, . . . , k − 1. A monotone
path on a pointset S is a y-monotone polyline (p1, . . . , pk) such that the points p1, . . . , pk

belong to S. A monotone cycle on S consists of two monotone paths on S that share their
endpoints. A monotone Hamiltonian cycle (p1, . . . , pk, p1) on S is a monotone cycle on S

such that each point of S is a point pi (and vice versa).

A path (v1, . . . , vk) is directed if, for i = 1, . . . , k − 1, the edge (vi, vi+1) is directed from
vi to vi+1; the vertices v2, . . . , vk−1 are internal. A planar st-graph is an acyclic digraph with
one source s and one sink t, which admits a planar embedding in which s and t are on the
boundary of the outer face. An st-path in a planar st-graph is a directed path from s to t.
A drawing of a directed graph is straight-line if each edge is represented by a straight-line
segment, it is planar if no two edges cross, and it is upward if every edge is represented
by a Jordan arc monotonically increasing in the y-direction from the tail to the head. A
digraph that admits an upward planar drawing is an upward planar graph. Every upward
planar graph admits an upward planar straight-line drawing [18]. An Upward Pointset
Embedding (UPSE, for short) of an upward planar graph G on a pointset S is an upward
planar straight-line drawing of G that maps each vertex of G to a point in S. In this paper,
we study the following problem.

Input: An n-vertex upward planar graph G and a pointset S ⊂ R2 with |S| = n.
Question: Does there exist an UPSE of G on S?

Upward Pointset Embeddability Testing Problem (UPSE Testing)

In the remainder, we assume that not all points in S lie on the same line, as otherwise
there is an UPSE if and only if the input is a directed path. Recall that no two points in S

have the same y-coordinate. Unless otherwise specified, we do not require points to be in
general position, i.e., we allow three or more points to lie on the same line.

GD 2024
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3 NP-Completeness of UPSE Testing

In this section we prove that UPSE Testing is NP-complete. The membership in NP is
obvious, as one can non-deterministically assign the vertices of the input graph G to the
points of the input pointset S and then test in polynomial time whether the assignment
results in an upward planar straight-line drawing of G. In the remainder of the section, we
prove that UPSE Testing is NP-hard even in very restricted cases.

We first show a reduction from 3-Partition to instances of UPSE in which the input is a
planar st-graph composed of a set of internally-disjoint st-paths. An instance of 3-Partition
consists of a set A = {a1, . . . , a3b} of 3b integers, where

∑3b
i=1 ai = bB and B/4 ≤ ai ≤ B/2,

for i = 1, . . . , 3b. The 3-Partition problem asks whether A can be partitioned into b subsets
A1, . . . , Ab, each with three integers, so that the sum of the integers in each set Ai is B. Since
3-Partition is strongly NP-hard [23], we may assume that B is bounded by a polynomial
function of b. Given an instance A of 3-Partition, we show how to construct in polynomial
time, precisely O(b · B), an equivalent instance (G, S) of UPSE Testing.

The n-vertex planar st-graph G is composed of 4b+1 internally-disjoint st-paths. Namely,
for i = 1, . . . , 3b, we have that G contains an ai-path, i.e., a path with ai internal vertices,
and b + 1 additional k-paths, where k = 2B + 1. Note that n = 2 + (b + 1)k +

∑3b
i=1 ai =

2 + (b + 1)k + bB.
The points of S lie on the plane as follows (see Figure 1a):
p1 is the origin, with coordinates (0, 0).
Consider b + 1 upward rays ρ1, . . . , ρb+1, whose starting point is p1, such that the angles
α1, . . . , αb+1 that they respectively form with the x-axis satisfy 3π/4 > α1 > · · · >

αb+1 > π/4. Let ℓ be a line intersecting all the rays, with a positive slope smaller than
π/4. For j = 1, . . . , b + 1, place k points pj,1, . . . , pj,k (in this order from bottom to top)
along ρj , so that pj,k is on ℓ and no two points share the same y-coordinate. Observe
that pb+1,k is the highest point placed so far.
Place pn at coordinates (0, 10 · y(pb+1,k)).
Finally, for j = 1, . . . , b, place B points along a non-horizontal segment sj in such a way
that: (i) sj is entirely contained in the triangle with vertices pj,k, pj+1,k, and pn, (ii) for
any point p on sj , the polygonal line p1p ∪ ppn is contained in the region Rj delimited by
the polygon p1pj,k ∪ pj,kpn ∪ pnpj+1,k ∪ pj+1,kp1, and (iii) no two distinct points on any
two segments si and sj share the same y-coordinate.

Note that S has 2 + (b + 1)k + bB = n points. The described reduction is the main ingredient
for the proof of the following theorem.

▶ Theorem 1. UPSE Testing is NP-hard even for planar st-graphs consisting of a set of
directed internally-disjoint st-paths.

Proof. First, the construction of G and S takes polynomial time. In particular, the coordi-
nates of the points in S can be encoded with a polylogarithmic number of bits. In order to
prove the NP-hardness, it remains to show that the constructed instance (G, S) of UPSE
Testing is equivalent to the given instance A of 3-Partition. Refer to Figure 1b.

Suppose first that A is a positive instance of 3-Partition, that is, there exist sets
A1, . . . , Ab, each with three integers, such that the sum of the integers in each set Aj is B.
We construct an UPSE of G on S as follows. We map s to p1 and t to pn. For j = 1, . . . , b+1,
we map the k internal vertices of a k-path to the points pj,1, . . . pj,k, so that vertices that
come first in the directed path have smaller y-coordinates. Furthermore, for j = 1, . . . , b, let
Aj = {aj1 , aj2 , aj3}. Then we map the aj1 internal vertices of an aj1-path, the aj2 internal
vertices of an aj2 -path, and the aj3 internal vertices of an aj3 -path to the set of B points in
the triangle with vertices pj,k, pj+1,k, and pn, so that vertices that come first in the directed
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p1

to pn

s1 s2 s3
sb

ℓ p1,k p2,k p3,k
pb+1,k

p1,k−1

p1,k−2

p1,1

p1,2

pb,k

R1
R2 Rb−1 Rb

(a)
source s

to the target t

(b)

Figure 1 Illustration for the proof of Theorem 1. (a) The pointset S. (b) The UPSE of G on S.

paths have smaller y-coordinates and so that the internal vertices of the aj1 -path have smaller
y-coordinates than the internal vertices of the aj2-path, which have smaller y-coordinates
than the internal vertices of the aj3 -path. This results in an UPSE of G on S.

Suppose next that (G, S) is a positive instance of UPSE Testing. Trivially, in any UPSE
of G on S, we have that s is drawn on p1 and t on pn. Consider the points p1,1, . . . pb+1,1.
The paths using them use all the (b + 1)k points pj,i, with j = 1, . . . , b + 1 and i = 1, . . . , k.
Indeed, if these paths left one of such points unused, no other path could reach it from s

without passing through p1,1, . . . pb+1,1, because of the collinearity of the points along the
rays ρ1, . . . , ρb+1. Hence, there are at most b + 1 paths that use (b + 1)k points. Since
the ai-paths have less than k internal vertices, these b + 1 paths must all be k-paths. Let
P1, . . . , Pb+1 be the left-to-right order of the k-paths around p1. For j = 1, . . . , b + 1, path Pj

uses all points pj,i on ρj , as if Pj used a point ph,i with h > j, then two among Pj , . . . , Pb+1
would cross each other. Note that, after using pj,k, path Pj ends with the segment pj,kpn.
Hence, for j = 1, . . . , b, the region Rj is bounded by Pj and Pj+1; recall that Rj contains the
segment sj . The ai-paths must then use the points on s1, . . . , sb. Since B/4 < ai < B/2, no
two ai-paths can use all the B points in one region and no four ai-paths can lie in the same
region. Hence, three ai-paths use the B points in each region, and this provides a solution to
the given 3-Partition instance. ◀

A similar reduction, illustrated in Figures 2a and 2b, allows us to state the following.

▶ Theorem 2. UPSE Testing is NP-hard even for directed trees consisting of a set of
directed root-to-leaf paths.

4 Testing and Enumeration Algorithms for Planar st-Graphs with
Maximum st-Cutset of Bounded Size

An st-cutset of a planar st-graph G = (V, E) is a subset W of E such that:
removing W from E results in a graph consisting of exactly two connected components
Cs and Ct,
s belongs to Cs and t belongs to Ct, and
any edge in W has its tail in Cs and its head in Ct.

GD 2024
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p1,1
p1,2
p1,3

ℓ
pℓ,1

pℓ,2

pℓ,b−1

pb,3

pb,2

pb,1

p1

R1
R2

Rb−1
Rb

(a)
source s

(b)

Figure 2 Illustration for the proof of Theorem 2. (a) The pointset S. The points of S visible
from p1 (green points) are as many as the children of the root of the tree T . (b) The UPSE of T

on S corresponding to a solution to the original instance 3-partition (red vertices).

In this section, we consider instances (G, S) where G is a planar st-graph, whose maximum
st-cutset has bounded size k. In Theorem 7, we show that UPSE Testing can be solved
in polynomial time for such instances (G, S). Moreover, in Theorem 8, we show how to
enumerate all UPSEs of (G, S) with linear delay. The algorithm for Theorem 7 is based on a
dynamic programming approach. It exploits the property that, for an st-cutset W defining
the connected components Cs and Ct, the extensibility of an UPSE Γ′ of Cs ∪ W on a subset
S′ of S to an UPSE of G on S only depends on the drawing of the edges of W , and not on
the embedding of the remaining vertices of Cs, provided that in Γ′ there exists an horizontal
line that crosses all the edges of W . The algorithm for Theorem 8 leverages a variation of
the dynamic programming table computed by the former algorithm to efficiently test the
extensibility of an UPSE of Cs ∪ W (in which there exists a horizontal line that crosses all
the edges of W ) on a subset S′ of S to an UPSE of G on S.

The proofs of Theorems 7 and 8 exploit two dynamic programming tables T and Q defined
as follows. Each entry of T and Q is indexed by a key that consists of a set of h ≤ k triplets
⟨ei, pi, qi⟩, where, for any i = 1, . . . , h, it holds that ei ∈ E(G), pi, qi ∈ S, and y(pi) < y(qi).
Moreover, each key χ =

⋃h
i=1⟨ei, pi, qi⟩ satisfies the following constraints:

the set E(χ) =
⋃h

i=1 ei is an st-cutset of G and, for every i, j, with i ≠ j, it holds true
that ei ̸= ej (that is, |E(χ)| = h);
for every i, j, with i ̸= j, it holds true that pi = pj (resp. that qi = qj) if and only if ei

and ej have the same tail (resp. the same head); and
let ℓχ be the horizontal line passing through the tail with largest y-coordinate among
the edges in E(χ), i.e., ℓχ := y = y(pi) s.t. y(pj) ≤ y(pi) for any ⟨ej , pj , qj⟩ ∈ χ; then ℓχ

intersects all the segments pjqj , possibly at an endpoint.
For brevity, we sometimes say that the edge ei has its tail (resp. its head) mapped by χ on pi

(resp. on qi). We also say that ei is drawn as in χ if its drawing is the segment piqi.
Let χ =

⋃h
i=1⟨ei, pi, qi⟩ be a key of T and of Q; see Figure 3a. Let Gχ be the connected

component containing s of the graph obtained from G by removing the edge set E(χ).
The entry T [χ] contains a Boolean value such that T [χ] = True if and only if there exists

an UPSE of G+
χ = Gχ ∪ E(χ) on some subset S′ ⊂ S with |S′| = |V (G+

χ )| such that:
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the lowest point ps of S belongs to S′ and s lies on it, and
for i = 1, . . . , h, the edge ei is drawn as in χ.

If T [χ] = False, the entry Q[χ] contains the empty set ∅. If T [χ] = True and E(χ) coincides
with the set of edges incident to s, then Q[χ] stores the set {⊥}. If T [χ] = True and E(χ)
does not coincide with the set of edges incident to s, Q[χ] stores the set Φ of keys with the
following properties. Let eτ be any edge whose tail vτ has maximum y-coordinate among the
edges in E(χ), i.e., ⟨eτ , pτ , qτ ⟩ is such that y(pτ ) ≥ y(pj) for any ⟨ej , pj , qj⟩ ∈ χ. For each
φ ∈ Φ, we have that:

T [φ] = True;
E(χ) ∩ E(φ) contains all and only the edges in E(χ) whose tail is not vτ , and each edge
ei ∈ E(χ) ∩ E(φ) is drawn in φ as it is drawn in χ; and
all the edges in E(φ) \ E(χ) have vτ as their head.

Additionally, we store a list Λ of the keys σ such that T [σ] = True and E(σ) is the set
of edges incident to t. Note that each edge in E(σ) has its head mapped by σ to the point
pt ∈ S with largest y-coordinate.

We use dynamic programming to compute the entries of T and Q in increasing order of
|V (Gχ)|. By the definition of T , we have that G admits an UPSE on S if and only if Λ ̸= ∅.

First, we initialize all entries of T to False and all entries of Q to ∅.
If |V (Gχ)| = 1, then Gχ only consists of s. We set T [χ] = True and Q[χ] = {⊥} for every

key χ =
⋃h

i=1⟨ei, pi, qi⟩ such that:
e1, . . . , eh are the edges incident to s;
p1 = · · · = ph = ps; and
for every distinct i and j in {1, . . . , h}, we have that ps, qi, and qj are not aligned.

If |V (Gχ)| > 1, we compute T [χ] and Q[χ] as follows, see Figure 3b. If two segments
piqi and pjqj , with i ≠ j, cross (that is, they share a point that is internal for at least one
of the segments), then we leave T [χ] and Q[χ] unchanged; in particular, T [χ] = False and
Q[χ] = ∅. Otherwise, we proceed as follows. Let eτ be any edge whose tail vτ has maximum
y-coordinate among the edges in E(χ). Let H− be the set of edges obtained from E(χ) by
removing all the edges having vτ as their tail, and let H+ be the set of edges of G having
vτ as their head. We define the set H := H− ∪ H+. We have the following claim, which is
illustrated in Figure 4.

e4

e5

ℓχ

ps

q3=q2

pt

q4

q5
q1

e1

p1

p4=p5

p3
p2

e3
e2

(a)

ps

vτ

H+

H−

pt

e3
e2 e1 ℓφ

(b)

Figure 3 (a) An entry χ =
⋃5

i=1⟨ei, pi, qi⟩ with T [χ] = True and a corresponding UPSE of Gχ on
a subset of S that includes ps. (b) An entry φ from which χ stems; the points in S↓ are filled white.
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ℓχ

ps

Cs

pt

Ct

vτ

(a)

ps

pt

vτ

C ′
s

C ′
t

(b)

Figure 4 Illustrations for Claim 3. (a) The connected components Cs (dashed) and Ct (solid
black) defined by the st-cuteset E(χ). (b) The connected components C′

s (dashed) and C′
t (solid

black) defined by the st-cuteset H (blue and orange edges).

▷ Claim 3. H is an st-cutset of G.

Consider the set S↓ consisting of the points in S whose y-coordinates are smaller than y(pτ ).
We have the following crucial observation.

▶ Observation 4. T [χ] = True if and only if there exists some key φ, with E(φ) = H, such
that T [φ] = True, the edges in H− are drawn in φ as in χ, the edges in H+ have their heads
mapped by φ on pτ and their tails on a point in S↓.

In view of Observation 4, we can now define a procedure to compute T [χ] and Q[χ].
Assume that the edges e1, . . . , e|H−|, . . . , e|H| ∈ H are ordered so that the edges of H− precede
those of H+. By Observation 4, if |S↓| < |H+|, then we leave T [χ] and Q[χ] unchanged, i.e.,
T [χ] = False and Q[χ] = ∅. In fact, in this case, there are not enough points in S↓ to map
the tails of the edges in H+. Otherwise, let D be the set of all permutations with repetitions
of |H+| points from S↓. We define a set Φ of keys that, for each (d1, . . . , d|H+|) ∈ D, contains
a key φ such that:

(i) E(φ) = H;
(ii) for any i = 1, . . . , |H−|, the triple containing ei in φ is the same as the triple containing

ei in χ (note that ei ∈ H−);
(iii) for any j = |H−|+1, . . . , |H|, the triple containing ej in φ has qj = pτ , and pj = dj−|H−|

(note that ej ∈ H+); and
(iv) for every i = 1, . . . , |H−| and j = |H−| + 1, . . . , |H|, it holds pi = pj if and only if ei

and ej have the same tail.
Let ΦT = {φ : φ ∈ Φ ∧ T [φ] = True}. By Observation 4, we have T [χ] = True if and only if
|ΦT| ≥ 1. Thus, we set T [χ] =

∨
φ∈Φ T [φ] and Q[χ] = ΦT. We say that χ stems from any key

φ ∈ Φ with T [φ] = True.
We now upper bound the sizes of T and Q and the time needed to compute them.

▷ Claim 5. Tables T and Q have size in O(n3k) and O(kn4k log n), respectively.

The proof of Claim 5 is based on the fact that the number of entries of T (and, thus, of
Q) is bounded by

(
m
k

)
· nk · nk ≤ (mn2)k. This is because an st-cutset E(χ) has size at most

h ≤ k and because the number of permutations with repetitions of the points describing a
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mapping of the tails (or of the heads) of E(χ) on them is nk. Further,
(

a
b

)
≤ ab. Since each

entry of T stores a single bit, we immediately have that T has O(n3k) size. Instead, each
entry of Q stores at most O(nk) keys of size O(k log n); thus, Q has O(kn4k log n) size.

Computing T [χ] requires accessing the values of up to |S↓||H+| < nk entries of T . Also,
the time used to compute each entry Q[χ] is upper bounded by the time needed to write the
O(nk) keys in Q[χ], each of which has O(k log n) size. Hence, we have the following.

▷ Claim 6. Tables T and Q can be computed in O(n4k) and O(kn4k log n) time, respectively.

Finally, recall that in order to verify whether G admits an UPSE on S, we need to check
whether Λ ̸= ∅. Computing the maximum size of an st-cutset of a planar st-graph G can be
done in linear time, as it reduces to the problem of computing the length of a shortest path
in the dual of any embedding of G (between the vertices representing the left and right outer
faces of this embedding) [14, 18]. Therefore, the overall running time to test whether G

admits an UPSE on S is dominated by the time needed to compute T , that is, O(n4k) time.
If the algorithm terminates with a positive answer, we obtain an UPSE Γ of G on S by

exploiting table T . Let σ be a key in Λ. We initialize Γ to a drawing of the edges in E(σ) as
they are drawn in σ. Then we search in T a key χ with T [χ] = True such that σ stems from
χ, and update Γ accordingly, until a key α is reached such that T [α] = True and E(α) is the
set of edges incident to s. As the depth of the recursion is linear in the size of G and a key χ

can be searched in O(nk) time, we have the following.

▶ Theorem 7. Let G be an n-vertex planar st-graph whose maximum st-cutset has size k

and let S be a set of n points. UPSE Testing can be solved for (G, S) in O(n4k) time and
O(n3k) space; if an UPSE of G on S exists, it can be constructed within the same bounds.

We describe the algorithm to enumerate all UPSEs of G on S that exploits table Q and
set Λ. The algorithm defines and explores an acyclic digraph D. The nodes of the digraph
correspond to the keys χ of the table Q such that Q[χ] ̸= ∅, plus a source nS and a sink
nT . Let χi and χj be two keys of Q such that Q[χi] ̸= ∅ and Q[χj ] ̸= ∅, and let n(χi) and
n(χj) be the nodes corresponding to χi and χj in D, respectively. There exists an edge from
n(χi) to n(χj) in D if χj ∈ Q[χi]. Also, there exists an edge from nS to each node n(σ) such
that σ ∈ Λ and an edge to nT from each node n(χ) such that Q[χ] = {⊥}. Then D is an
nSnT -graph since nS is its unique source and nT is its unique sink.

The algorithm performs a depth-first traversal of D, in which every distinct nSnT -path
corresponds to an UPSE of G on S. We initialize an UPSE Γ on S as Γ = S (only S

is drawn). When the visit traverses an edge (n(χi), n(χj)) of D, it adds to Γ the edges
in E(χj) \ E(χi), drawn as in χj . When the traversal reaches nT , an UPSE Γ of G on
S is produced. Backtracking to a node n(χi) along an edge (n(χi), n(χj)), the edges in
E(χj) \ E(χi) are removed from Γ .

To prove the correctness (see the full version of the paper [1] for a complete proof), we
show that:

(i) Distinct paths from nS to nT in D correspond to different UPSEs of G on S.
(ii) For each UPSE of G on S, there exists in D a path corresponding to it.

Item i can be proved by contradiction: if two distinct nSnT -paths P1 and P2 yielded the
same UPSE Γ, there would be a node n(χx) shared by P1 and P2 such that the nodes n(χ1)
and n(χ2) of P1 and P2 following n(χx) are different. Since n(χx) is shared by P1 and P2,
the keys χ1 and χ2 have the same edge-set E(χ1) = E(χ2) but the tails of the edges in
E(χx) \ E(χ1) are mapped differently, implying that the UPSEs yielded by P1 and P2 are
different. To prove Item ii, we show that, if Γ is an UPSE of G on S, then there exists an
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nSnT -path that yields Γ. For i = 1, . . . , n, let Si be the set of the lowest i points of S. Also,
for i = 1, . . . , n − 1, let Γi be the restriction of Γ to the vertices of G mapped to Si and
to all their incident edges. We proceed by induction on i, showing that, for each Γi and
Γi+1 there exists an edge (n(χi), n(χ+1)) in D that produces Γi+1. This involves finding a
suitable st-cutset in Γ and proving that this corresponds to a key in D.

We now discuss the running time of the algorithm. Table Q can be constructed in
O(kn4k log n) time, by Claim 6. Also, the digraph D can be constructed in linear time in the
size of Q, which is O(kn4k log n) by Claim 5. Finally, we discuss the delay of our algorithm.
Since the paths from nS to nT have O(n) size and since between an UPSE and the next one
at most two paths are traversed, the delay of our algorithm is O(n). We get the following.

▶ Theorem 8. Let G be a n-vertex planar st-graph whose maximum st-cut has size k and
let S be a set of n points. It is possible to enumerate all UPSEs of G on S with O(n) delay,
using O(kn4k log n) space, after O(kn4k log n) set-up time.

5 Planar st-Graphs Composed of Two st-Paths

In this section, we consider the special case of Theorem 7 in which the underlying graph of
the given planar st-graph is an n-vertex cycle. Here, Theorem 7 would yield an O(n8)-time
testing algorithm. We give a much faster algorithm based on a characterization of the positive
instances, provided that the points are in general position.

▶ Theorem 9. Let G be an n-vertex planar st-graph consisting of two st-paths PL and PR,
and let S be a pointset with n points in general position. We have that G admits an UPSE
on S with PL to the left of PR if and only if |PL| ≥ | HL(S)| and |PR| ≥ | HR(S)|. Also, it
can be tested in O(n log n) time whether G admits an UPSE on S.

Proof. Provided the characterization in the statement holds, we can test whether G admits
an UPSE on S by computing the convex hull CH(S) of S (in O(n log n) time), deriving the
sets HL(S) and HR(S) (in O(n) time, by scanning CH(S)), and finally comparing their sizes
with the ones of PL and PR (in O(1) time). Thus, we focus on proving the characterization.

The necessity is obvious. In the remainder we prove the sufficiency by induction on the
size of S (and, thus, of V (G)). We give some preliminary definitions; see Figures 5–7. Let ps

(pt) be the south (north) extreme of S and let ℓst be the line through ps and pt. Let SL (SR)
be the subset of S in the closed half-plane to the left (right) of ℓst, including ps and pt. Note
that HL(S) ⊆ SL and HR(S) ⊆ SR. Also, since S is in general position, SL ∩ SR = {ps, pt}.

In the base case, it either holds that SL = {ps, pt} and | HR(S)| = |PR|, or SR = {ps, pt}
and | HL(S)| = |PL|. We discuss the former case (see Figure 5), as the latter case is symmetric.
In this case, an UPSE Γ of G on S can be constructed by drawing PR as the right envelope
ER(S) and PL as the y-monotone polyline connecting the point of SR \ HR(S).

If the base case does not hold, we distinguish two cases based on whether both SL and
SR contain a vertex different from ps and pt (Case A), or only one of them does (Case B).

If Case A holds, assume |PL| ≥ |SL|; the case |PL| < |SL| is symmetric, as in that case
it holds true that |PR| ≥ |SR|. Refer to Figure 6. Then HL(S) contains a point p different
from ps and pt; see Figure 6a. Since by the statement |PL| ≥ | HL(S)| and | HL(S)| ≥ 3, we
have that PL contains at least one internal vertex. Let S′ = S \ {p}, let P ′

L be an st-path
with |P ′

L| = |PL| − 1, and let G′ be the st-graph P ′
L ∪ PR. Since | HL(S′)| ≤ |SL| − 1 and

|SL| ≤ |PL|, we have that | HL(S′)| ≤ |PL| − 1 = |P ′
L|. Thus, the graph G′ and the pointset

S′ satisfy the conditions of the statement. Since |S′| = |S| − 1 (and |V (G′)| = |V (G)| − 1), by
induction we have that the graph G′ admits an UPSE Γ′ on S′ (see Figure 6b). Figures 6b
and 6c show how to modify Γ′ to obtain an UPSE Γ of G on S.
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Figure 5 Illustration for the base case of Theorem 9.
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Figure 6 Illustrations for Case A in the proof of Theorem 9.
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Figure 7 Illustrations for Case B2 in the proof of Theorem 9.

If Case B holds, recall that SL = {ps, pt} ⊂ SR, and since the base case does not apply,
we have that |PR| > | HR(S)|. Let p be any point in HR(S) \ {ps, pt} and S′ = S \ {p}. By
the conditions of Case B, the path PR contains at least one internal vertex. Let P ′

R be an
st-path with |P ′

R| = |PR| − 1, and let G′ be the st-graph PL ∪ P ′
R. We distinguish two cases

based on the size of HR(S′). In Case B1, it holds |P ′
R| ≥ | HR(S′)|, whereas in Case B2, it

holds |P ′
R| < | HR(S′)|. In Case B1, we have that the pair (G′, S′) satisfies the conditions

of the statement. In particular, the pair (G′, S′) either matches the conditions of the base
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case or again those of Case B. Thus, since |S′| = |S| − 1 (and |V (G′)| = |V (G)| − 1), we
can inductively construct an UPSE Γ′ of G′ on S′, and obtain an UPSE of G on S with a
redrawing similar to the one in Figure 6c. In Case B2, we proceed as follows; see Figure 7.
Let p+ (p−) be the point of HR(S) with the smallest y-coordinate and above p (with the
largest y-coordinate and below p). Let X be the set of points of S in the interior of the
triangle ∆p+pp− together with p+ and p− (but not p). Clearly, the right envelope of CH(X)
forms a subpath of the right envelope of CH(S′); see Figure 7a. The set HR(X) consists
of p−, p+, and of k vertices not belonging to HR(S) (squares in Figure 7). We denote by
k∗ = |PR| − | HR(S)| the number of points in the interior of CH(S) that need to be the
image of a vertex of PR in an UPSE of G on S. Note that k > k∗ > 0 holds. Let p∧

(p∨) be the point of HR(S′) with the smallest y-coordinate and above p (with the largest
y-coordinate and below p). Up to renaming, let a0 = p+, a1, . . . , aα = p∧ be the subsequence
of points of ER(X) encountered when traversing ER(X) from p+ to p∧ (these points have
decreasing y-coordinates). Similarly, let b0 = p−, b1, . . . , bγ = p∨ be the subsequence of
points of ER(X) encountered when traversing ER(X) from p− to p∨ (these points have
increasing y-coordinates). We define the set X∗ ⊂ HR(X) as follows. If k∗ ≤ α, then
X∗ = {ai|1 ≤ i ≤ k∗}, otherwise X∗ = {ai|1 ≤ i ≤ α} ∪ {bi|1 ≤ i ≤ k∗ − α}. Observe that,
|X∗| = k∗. Also, by the definition of k∗, the path PR contains HR(S)−2+k∗ internal vertices
and since HR(S) ≥ 3 in Case B, we have that PR contains at least k∗ + 1 internal vertices.
Let S∗ = S \ X∗, let P ∗

R be an st-path with |PR| − k∗ vertices, and let G∗ be the st-graph
PL ∪ P ∗

R. Clearly, the pair (G∗, S∗) satisfies the statement, and in particular the base case.
In fact, |P ∗

R| = |PR| − k∗, and by the definition of k∗, we have that |PR| − k∗ = | HR(S)|.
Moreover, by construction, HR(S) = HR(S∗), since the vertices of X∗ lie in the interior
of CH(S). Thus, since |S∗| = |S| − k∗, by induction G∗ admits an UPSE Γ∗ on S∗; see
Figure 7b. Moreover, as the base case applies to (G∗, S∗), we have that the endpoints of the
edges of P ∗

R are consecutive along ER(S). In particular, there exist two adjacent edges e−

and e+ of P ∗
R such that the tail of e− is mapped to p−, the head of e− (i.e., the tail of e+) is

mapped to p, and the head of e+ is mapped to p+. Thus, it is possible to obtain an UPSE Γ
of G on S from Γ∗ (see Figure 7c) by replacing the drawing of the edges e+ and e− with a
y-monotone polyline that passes through all the points in X∗. Such a polyline lies inside
the region F (shaded gray in Figures 7b and 7c) obtained by subtracting from the triangle
∆p+pp− (interpreted as a closed region) all the points of CH(X). In particular, observe that,
in Γ∗, the region F is not traversed by any edge and that the only points of S∗ that lie on
the boundary of F are p and the points in HR(X) \ X∗. ◀

6 Enumerating Non-crossing Monotone Hamiltonian Cycles

Theorem 9 allows us to test whether an n-vertex planar st-graph G composed of two st-paths
can be embedded as a non-crossing monotone Hamiltonian cycle on a set S of n points. We
now show an efficient algorithm for enumerating all the non-crossing monotone Hamiltonian
cycles on S. Figure 8 shows two non-crossing monotone Hamiltonian cycles on a pointset.

▶ Theorem 10. Let S be a set of n points. It is possible to enumerate all the non-crossing
monotone Hamiltonian cycles on S with O(n) delay, using O(n2) space, after O(n2) set-up
time.

Let p1, . . . , pn be the points of S, ordered by increasing y-coordinates. This order can be
computed in O(n log n) time. For i ∈ [n], let Si = {p1, . . . , pi}. A bipath B on Si consists
of two non-crossing monotone paths L and R on Si, each of which might be a single point,
such that L and R start at p1, each point of Si is the image of an endpoint of a segment of
B, and if L and R both have at least one segment, then L is to the left of R (see Figure 9).
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Figure 8 Two non-crossing monotone Hamiltonian cycles on the same pointset.
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Figure 9 Three bipaths on S4. The first two bipaths are extensible, while the third one is not.
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Figure 10 (a) Region R(B) for a bipath B. (b) Region L(B) for a bipath B.

We say that a bipath B is extensible if there exists a non-crossing monotone Hamiltonian
cycle on S whose restriction to Si is B. Consider a bipath B on Si with 1 < i < n. Let pℓ(B)
and pr(B) be the endpoints of L and R with the highest y-coordinate, respectively. Suppose
first that ℓ(B) > r(B). Consider the rightmost ray ρ(pr(B), Sℓ(B) \ Sr(B)) starting at pr(B)
through a point of Sℓ(B) \ Sr(B). We denote by R(B) the open region of the plane strictly to
the right of ρ(pr(B), Sℓ(B) \ Sr(B)) and strictly above the horizontal line through pℓ(B); see
Figure 10a. Similarly, if pr(B) is higher than pℓ(B), then L(B) is the open region of the plane
strictly to the left of the leftmost ray ℓ(pℓ(B), Sr(B) \ Sℓ(B)) from pℓ(B) through a point of
Sr(B) \ Sℓ(B) and strictly above the horizontal line through pr(B); see Figure 10b.

For any i ∈ [n − 1], we say that a bipath B on Si is safe if:
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(i) i = 1; or
(ii) i > 1, pℓ(B) is higher than pr(B), and |R(B) ∩ S| ≥ 1; or
(iii) i > 1, pr(B) is higher than pℓ(B), and |L(B) ∩ S| ≥ 1.

We have the following lemma which is proved in the full version of the paper [1].

▶ Lemma 11. A bipath B is extensible if and only it is safe.

Our enumeration algorithm implicitly defines and explores a search tree T . Its leaves have
level n and correspond to non-crossing monotone Hamiltonian cycles on S. The internal
nodes at level i correspond to extensible bipaths on Si and have at most two children each.
The exploration of T performed by the algorithm is a depth-first traversal. When a node µ is
visited, the number of its children is established. If µ has at least one child, the visit proceeds
with any child of µ. Otherwise, µ is a leaf; then the visit proceeds with any unvisited child
of the ancestor of µ that has largest level, among the ancestors of µ with unvisited children.

The algorithm starts at the root of T , which corresponds to the (unique) safe bipath on S1.
At each node µ at level i ∈ [n − 2], corresponding to a bipath B(µ), we construct either one
or two bipaths on Si+1, associated with either one or two children of µ, respectively. Let L(µ)
and R(µ) be the left and right non-crossing monotone paths composing B(µ), respectively,
and let pℓ(B(µ)) and pr(B(µ)) be the endpoints of L(µ) and R(µ) with the highest y-coordinate,
respectively. If pℓ(B(µ))pi+1 does not cross R(µ), then let BL = B(µ) ∪ pℓ(B(µ))pi+1. We test
whether BL is a safe bipath and, in the positive case, add to µ a child µL corresponding to BL.
Analogously, if pr(B(µ))pi+1 does not cross L(µ), we test whether BR = B(µ) ∪ pr(B(µ))pi+1
is a safe bipath and, in the positive case, add to µ a child µR corresponding to BR. Note
that the algorithm guarantees that each non-leaf node of T is safe, and thus, by Lemma 11,
extensible. Finally, at each node µ at level n − 1, we add a leaf λ to µ corresponding to
the non-crossing monotone Hamiltonian cycle B(µ) ∪ pℓ(B(µ))pn ∪ pr(B(µ))pn. Since µ is
extensible, such a cycle is indeed non-crossing.

In order to complete the proof of Theorem 10, we show what follows:
(i) Each node of T at level i ̸= n is internal.
(ii) Each leaf corresponds to a non-crossing monotone Hamiltonian cycle on S.
(iii) Distinct leaves correspond to different non-crossing monotone Hamiltonian cycles on S.
(iv) For each non-crossing monotone Hamiltonian cycle on S, there exists a leaf of T

corresponding to it.
(v) Using O(n2) pre-processing time and O(n2) space, the algorithm enumerates each

non-crossing monotone Hamiltonian cycle on S with O(n) delay.

To prove Item i, we show that the leaves of T have all level n. Consider a node µ of T

with level i < n − 1, we prove that it has a child in T . Recall that B(µ) is safe, otherwise
it would not had been added to T , and thus, by Lemma 11, it is extensible. Hence, there
exists a non-crossing monotone Hamiltonian cycle C on S whose restriction to Si is B(µ).
Also, the restriction of C to Si+1 is a bipath B′(µ) on Si+1 which coincides with B(µ),
except that it contains either the segment pℓ(B(µ))pi+1 or the segment pr(B(µ))pi+1. Since
B′(µ) is the restriction of C to Si+1, it is extensible and thus, by Lemma 11, it is safe. It
follows that µ has a child corresponding to B′(µ), which is inserted in T when adding
either the segment pℓ(B(µ))pi+1 or the segment pr(B(µ))pi+1 to B(µ). The proof that a
node with level n − 1 is not a leaf is analogous.
To prove Item ii, consider a leaf λ and its parent µ in T . Note that µ is associated with a
safe bipath B(µ) on Sn−1; by Lemma 11, we have that B(µ) is extensible. Since B(µ) is
extensible, the (unique) monotone Hamiltonian cycle on S whose restriction to Sn−1 is
B(µ) is non-crossing. This cycle corresponds to λ and is added to T when visiting µ.
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To prove Item iii, suppose for a contradiction that there exist two leaves λ1 and λ2
associated with two monotone Hamiltonian cycles C1 and C2, respectively, with C1 = C2.
Let µ be the lowest common ancestor of λ1 and λ2 in T . Let j be the level of µ. Denote
by µi the child of µ leading to λi, with i ∈ {1, 2}. By the construction of T , we have that
exactly one of the bipaths B(µ1) and B(µ2) contains the segment pℓ(B(µ))pj+1, while the
other one contains the segment pr(B(µ))pj+1. This contradicts the fact that C1 = C2.
To prove Item iv, let C be a non-crossing monotone Hamiltonian cycle on S. Consider
the safe bipath B on Sn−1 obtained by removing from C the point pn, together with its
two incident segments. It suffices to show that T contains a node µ such that B = B(µ).
In fact, in this case, µ is an extensible node of level n − 1 whose unique child in T is the
leaf corresponding to C. To prove that T contains such a node µ, we prove by induction
that, for every level i = 1, . . . , n − 1, the tree T contains a node corresponding to the
restriction Bi of B to Si. The base case trivially holds. For the inductive case, suppose
that T contains a node ν whose associated bipath B(ν) is Bi−1. Then Bi is obtained
by adding either the segment pℓ(B(ν))pi or the segment pr(B(ν))pi to Bi−1. Since Bi is
extensible, by Lemma 11 it is safe, and hence ν has a child in T corresponding to Bi.
Finally, we discuss Item v. To this aim, we compute in O(n2) time two tables C and
D of O(n2) size that allow us to test in O(1) time whether a bipath B on Si, with
i ∈ {2, . . . , n − 1}, can be extended to a bipath on Si+1 and whether B is safe. The tables
C and D are indexed by triples ⟨pa, pb, X⟩, where pa, pb ∈ S with a < b and X ∈ {L, R}.
Each entry of C contains a Boolean value C[pa, pb, X] that is set to True if and only if the
segment papb+1 does not cross any bipath B on Sb composed of two monotone st-paths L

and R respectively ending at points pa and pb (if X = L) or respectively ending at points
pb and pa (if X = R). Each entry of D contains a Boolean value D[pa, pb, X] that is set
to True if and only if the open region that is (i) strictly to the right of the rightmost (if
X = R, or leftmost if X = L) ray starting at pa and passing through a point in Sb \ Sa

and (ii) strictly above the horizontal line through pb contains a point of S. For each fixed
a ∈ [n − 2] and X ∈ {L, R}, we compute all the entries C[pa, pb, X] and D[pa, pb, X] with
b = a + 1, a + 2, . . . , n − 1 in overall O(n) time. This sums up to O(n2) time over all the
entries of C and of D. The query time of C and D, together with the fact that T has n

levels, implies that the algorithm’s delay is in O(n). More details can be found in the full
version of the paper [1].

Items i–iv prove the correctness of the enumeration algorithm, while Item v proves its
efficiency. This concludes the proof of Theorem 10.

7 Conclusions and Open Problems

We addressed basic pointset embeddability problems for upward planar graphs. We proved
that UPSE testing is NP-hard even for planar st-graphs composed of internally-disjoint
st-paths and for directed trees composed of directed root-to-leaf paths. For planar st-graphs,
we showed that UPSE Testing can be solved in O(n4k) time, where k is the maximum
st-cutset of G, and we provided an algorithm to enumerate all UPSEs of G on S with O(n)
worst-case delay. We also showed how to enumerate all monotone polygonalizations of a
given pointset with O(n) worst-case delay. We point out the following open problems.

Our NP-hardness proofs for UPSE testing use the fact that the points are not in general
position. Given a directed tree T on n vertices and a set S of n points in general position,
is it NP-hard to decide whether T has an UPSE on S?
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Can UPSE testing be solved in polynomial time or does it remain NP-hard if the input
is a maximal planar st-graph?
We proved that UPSE testing for a planar st-graph is in XP with respect to the size of
the maximum st-cutset of G. Is the problem in FPT with respect to the same parameter?
Are there other interesting parameterizations for the problem?
Let S be a pointset and P be a non-crossing path on a subset of S. Is it possible to
decide in polynomial time whether P can be extended to a polygonalization of S? A
positive answer would imply an algorithm with polynomial delay for enumerating the
polygonalizations of a pointset, with the same approach as the one we adopted in this
paper for monotone polygonalizations.
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Beyond-planar graph classes are usually defined via forbidden configurations or patterns in a drawing.
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1 Introduction

In practice, many graphs and networks are non-planar. Since the presence of crossings
in a drawing has been identified as a major influence on the readability and also for its
fundamental theoretical importance (see e.g. [38, 40, 39]), the crossing number of graphs,
i.e., the minimum number of crossings one can achieve in a topological drawing of a graph,
has been the subject of intensive research. It is one of the classical results of Garey and
Johnson [24] that computing the crossing number is NP-complete, and this holds even under
severe restrictions. Concerning approximation results, though some promising progress has
been made, e.g., for graphs of bounded genus [27] and, most recently, for graphs of bounded
degree [20], finding a constant-factor approximation currently seems elusive. On the other
hand, Grohe [25] showed that the crossing number of a graph can be computed in FPT time,
i.e., it can be decided whether a given graph G admits a drawing with at most c crossings
in time f(c)nO(1) where f is a computable function and n denotes the size of the input.
The polynomial dependency on the input is quadratic for Grohe’s algorithm and was later
improved to linear by Kawarabayashi and Reed [32]. Recent years have seen a couple of
extensions, particularly of Grohe’s approach. Pelsmajer et al. [36] showed that the approach
can be extended to show that the odd crossing number is FPT. Very recently Hamm and
Hliněný [26] showed that the problem of extending a partial drawing with the minimum
number of crossings is FPT with respect to the achievable number of crossings.

More recent studies on the perception of drawings have somewhat refined the impact
of crossings on readability [30, 33]. Rather than simply minimizing their number, there
are several factors that influence the readability of drawings with crossings. Aside from
geometric aspects, such as crossing angles, it has been identified as particularly relevant that
the drawn graphs are sparse and close to planar in the sense that the crossings are well-
distributed [29]. This has lead to the research field of beyond-planarity, which is concerned
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with the study of graph classes that are defined by the existence of a drawing where certain
bad configurations of crossings are avoided. The goal of beyond-planarity is to extend results
concerning combinatorics, algorithms and geometric representations known for planar graphs
to larger, more general classes of so-called beyond-planar graphs. A prime example are
1-planar graphs that have a drawing where each edge is involved in at most one crossing. By
now there is a vast amount of literature that deals with various aspects of beyond-planarity;
see e.g. [29, 22, 9]. Unfortunately, even the concept of 1-planarity is quite complicated. While
efficient algorithms are known for testing whether a given graph is outer 1-planar [28, 3],
testing whether a given graph G is 1-planar is NP-complete [34]. Also recognizing k-planar
graphs is NP-hard for every k ≥ 1 [44] and similar hardness results are known for several
beyond-planar graph classes, e.g., k-gap-planar graphs [4, 5], fan-planar graphs and fan-
crossing-free graphs [15]. Efficient algorithms are known only for few and rather special cases
such as recognizing optimal 1-planar graphs [13], triangulated 1-planar graphs [12, 17] or
optimal 2-planar graphs [23].

In light of these hardness results it is natural to consider FPT approaches for recognizing
beyond-planar graphs. Bannister et al. [6] showed that testing 1-planarity is FPT when
parameterized by the vertex cover number, treedepth or cyclomatic number, but is NP-
complete even for graphs of bounded bandwidth, which in particular rules out FPT algorithms
with respect to, e.g., pathwidth. Therefore the usefulness of structural parameters for
recognizing beyond-planar graphs seems to be fairly restricted. One of the arguably most
natural parameters to consider in the context of beyond-planarity is the distance of the
input graph G from being planar. There are multiple ways to measure this; the skewness
of G, denoted by skew(G) is the minimum number of edges one can remove from G to turn
it into a planar graph. The crossing number of G, denoted by cross(G) is the minimum
number of crossings in a topological drawing of G. Finally, given a beyond-planar drawing
style D, such as 1-planar drawings, one may consider the beyond-planar crossing number of
a graph G, i.e., the minimum number crossD(G) of crossings in any planar drawing of G

according to style D. For example, the 1-planar crossing number cross1−planar(G) is the
minimum number of crossings in any 1-planar drawing of G and it is ∞ if no such drawing
exists. Clearly, for any drawing style D it holds that skew(G) ≤ cross(G) ≤ crossD(G). It
turns out that, for most beyond-planar graph classes the skewness and the crossing number
are not a suitable parameter. By a well-known result of Cabello and Mohar [16] testing
1-planarity is NP-complete even for input graphs G with skew(G) = 1 and cross(G) ≤ 10. In
other words, testing 1-planarity is paraNP-hard parameterized by both the skewness and the
crossing number.

Beyond-planar crossing numbers can deviate significantly from the crossing number [19, 45].
Hence it is natural to ask whether recognizing beyond-planar graphs is FPT with respect to
the beyond-planar crossing number. To mention a specific example, for the class of 1-planar
graphs: is it possible to test whether an input graph G admits a 1-planar drawing with
at most c crossings in FPT time with respect to c? Indeed, this is the case: the recent
work of Hamm and Hliněný [26] shows that given a graph G and a partial drawing of a
subgraph H ⊆ G, it can be decided in FPT time whether the given partial drawing can be
completed into a 1-planar drawing of G with at most c crossings. In particular, if we assume
that the partial drawing is empty, their result shows that 1-planarity is FPT by the 1-planar
crossing number. The purpose of this paper is to understand which other beyond-planar graph
classes admit an analogous result. As it turns out, Grohe’s approach [25] for the crossing
number, which is also behind the algorithm of Hamm and Hliněný [26] is fairly flexible
and seems applicable to several notions of beyond-planarity. However, rather than crafting
individual proofs for different classes of beyond-planar graphs, we seek to establish a meta
theorem that allows to obtain such results for a wide variety of beyond-planar graph classes.



M. Münch and I. Rutter 25:3

Large parts of the literature on beyond-planar graphs mention that beyond-planar graph
classes are defined by the existence of a drawing that avoids certain crossing configurations or
crossing patterns. In this sense, a beyond-planar graph class is defined by a set of forbidden
crossing patterns. Interestingly, the idea of what a crossing configuration or pattern is
precisely and what it means that a drawing contains such a pattern have not been formalized
in the literature. In most papers, the forbidden configuration of crossings is given in a figure
but it is usually followed by a more precise verbal definition, which then serves as a basis for
theoretical considerations; see e.g. [2, 22, 31].

Contribution. In this paper, we present an attempt at formalizing the idea of forbidden
patterns of crossings, where crossing patterns are modeled as small graphs and we seek a
drawing whose planarization avoids these graphs. We note that there are various options
to design such notions; we believe that our formalization provides an interesting trade-
off: it is sufficiently general to express several known beyond-planar graph classes with a
small number of patterns and on the other hand is amenable to algorithmic techniques for
computing drawings that avoid a fixed list of patterns and have at most c crossings in FPT
time. Our notion of patterns is simple and yet powerful enough that our results apply to
the following notions of beyond-planar graphs: (simple) k-planar, (simple) k-quasi-planar,
(simple) fan-crossing, (simple) fan-crossing free, (simple) min-k-planar.

A set F of forbidden crossing patterns defines a beyond-planar drawing style D(F),
namely the drawings that avoid all patterns in F . Our main result is the following meta
theorem, which states that the beyond-planar crossing number crossD(F) is FPT with respect
to its natural parameterization.

▶ Theorem 1. For any fixed set F of crossing patterns, the problem of testing whether a
given graph G admits a drawing with at most c crossings that avoids all patterns in F is
FPT with respect to c.

In particular, since our notion of patterns is sufficiently general, this yields, among others,
FPT results for the beyond-planar crossing number for several beyond-planar graph classes.

▶ Corollary 2. The beyond-planar crossing number is FPT for the following notions of
beyond-planarity and any fixed k: k-planar, k-quasi-planar, fan-crossing, fan-crossing free,
min-k-planar.

Outline. After discussing preliminaries in Section 2, we develop our notion of crossing
patterns in Section 3. The next two sections together describe an FPT algorithm for testing
the existence of a drawing with at most c crossings that avoids a fixed set F of crossing
patterns. It is based on the approach of Grohe [25] for the crossing number and works in the
same two phases. In the first phase (Section 4), we bound the treewidth of the graph in terms
of the beyond-planar crossing number, while the second phase solves the problem on graphs
of bounded treewidth via Courcelle’s theorem [21]. Section 6 presents some generalizations
that allow us to cover additional beyond-planar graph classes such as simultaneous planarity
and 2-layer drawings with various restrictions. We summarize our findings and discuss open
questions in Section 7. Lemmas marked with (⋆) are omitted due to space restrictions.
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(a) (b) (c)

Figure 1 (a) Forbidden configuration in a fan-crossing-free drawing. (b) − (c) Two drawings
containing the forbidden configuration.

2 Preliminaries

A drawing Γ of a graph G = (V, E) maps every vertex v ∈ V to a point Γ(v) ∈ R2 and every
edge uv ∈ E to an open simple Jordan arc with endpoints Γ(u) and Γ(v) that does not pass
through any Γ(w) for w ∈ V \ {u, v}. A crossing is a common interior point of two edges.
A graph is planar if it can be drawn in the plane without edge crossings. We say that a
drawing Γ is simple if two edges cross at most once and no two adjacent edges cross.

Let Γ be a drawing of a graph G. The planarization of Γ is the drawing Γ′ we obtain
from Γ by replacing every crossing point by a crossing vertex. In this paper we do not allow
self-crossings. For graphs considered in this paper we allow multi-edges and self-loops.

3 Combinatorial Description of Drawings and Crossing Patterns

Beyond-planar graph classes are usually defined via forbidden configurations or patterns in
a drawing. Our goal is to formalize this concept on a combinatorial level. As an example,
consider the class of fan-crossing-free graphs, which contains all graphs that admit a drawing
that does not contain two adjacent edges that both cross a third edge. The corresponding
forbidden pattern given in the literature (see e.g. [22]) is shown in Fig. 1(a). Clearly the
drawing shown in Fig 1(b) contains the forbidden pattern. Similarly, also the drawing shown
in Fig 1(c) contains an edge that is crossed by two edges e, f sharing an endpoint and is thus
not fan-crossing-free. However, its planarization does not contain a subgraph isomorphic
to the planarization of the forbidden pattern. The presence of the pattern is obscured by
the additional crossing between the adjacent edges in the drawing. It is therefore natural
to require for a drawing D to contain a given pattern P , that crossings that appear within
the pattern P must appear also within an occurrence of P in D, whereas crossings that are
absent in a pattern P but are present in the drawing can be ignored and do not help to avoid
the pattern P .

Now consider 1-planar graphs. A natural forbidden pattern in this graph class is the
one shown in Fig. 2(a). However, there are many more (see Fig. 2(b)–(d) for examples), as
some of the involved edges may share an endpoint or edges may cross each other multiple
times. This leads to the observation that, in many crossing patterns, e.g., for k-planarity, the
crossings are of vital importance, whereas the vertices are often not. In fact, often drawing
styles only specify the presence of crossings on some edges but are agnostic to whether the
endpoints of the involved edges are identical or not and they therefore rather only require
that there exists a part of some edge that is involved in certain crossings. To be able to
express this, our patterns allow to contain subdivision vertices of degree 1, which signify that
the corresponding edge of the pattern may be mapped to a part of an edge. In particular,
the class of 1-planar graphs is defined by the absence of the single pattern shown in Fig. 2(e).
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(a) (b) (c) (d) (e)

Figure 2 Forbidden patterns in a 1-planar drawing. Crosses represent subdivision vertices.

Figure 3 Illustrations of the smoothing operation at a crossing vertex.

▶ Definition 3. A crossing pattern is a graph P = (VP , EP ) with VP = R ∪ C ∪ S such that
(i) each subdivision vertex in S has degree 1, (ii) each crossing vertex in C has degree 4 and
its incidences are partitioned into two sets of size 2, and (iii) each real vertex in R and each
subdivision vertex in S is adjacent to at least one crossing vertex.

We note that condition (ii) allows us to uniquely identify the two edge segments that form
a crossing. In our figures, we usually indicate the pairing by a planar edge-colored drawing
where the incidences that are part of the same set in the partition are drawn oppositely
in the rotation around the crossing vertex and have the same color. Condition (iii) is a
technical condition that we will need later. It is however, a natural assumption, as it ensures
that our patterns indeed express conditions on crossing configurations in drawings rather
than structural conditions on the input graph.

Next, we need to define when a drawing ∆ of a graph G contains a crossing pattern P .
A simple idea would be to consider the planarization of ∆ and to require that it contains a
subgraph isomorphic to P , where crossing and real vertices of P are mapped to crossing and
real vertices of the planarization, respectively. This is, however, not sufficient. In addition
we want to be able to remove parts of an edge, where if the removed part does not start at a
real vertex, we place a subdivision vertex. Finally, as explained above, it is crucial that we
can ignore crossings that are present in the drawing but that are not relevant for forming
the pattern. To formalize this, we define the concept of a drawing representation.

▶ Definition 4. A drawing representation is a graph D = (VR, ER) whose vertex set VR =
R ∪ C ∪ S consists of real vertices in R, crossing vertices in C and subdivision vertices
in S such that (i) each subdivision vertex has degree at most 2, (ii) each crossing vertex has
degree 4 and its edge incidences are partitioned into two sets of size 2.

Two drawing representations are isomorphic if there is an isomorphism between them that
maps real vertices to real vertices, crossing vertices to crossing vertices and subdivision vertices
to subdivision vertices. Observe that for any drawing ∆ of a graph G, the planarization D

of ∆ is a drawing representation, where the partition of the incidences at each crossing
vertex c is defined such that incidences that are opposite in the rotation around the crossing
that corresponds to c are in the same set of the partition.

Let c be a crossing vertex in a drawing representation. To be able to ignore crossings, we
define the operation of smoothing c as (i) inserting edges between those neighbors of c that
are endpoints of edges whose incidences are in the same set of the partition for c and (ii)
deleting c and its incident edges; see Fig. 3. In addition we allow the removal of isolated

GD 2024



25:6 Parameterized Algorithms for Beyond-Planar Crossing Numbers

(iii) (ii) (iv) (i)

Figure 4 Illustration of the operations allowed on a drawing representation.

Figure 5 Forbidden crossing patterns in simple drawings.

vertices, the addition of subdivision vertices on edges of the drawing representation and the
removal of edges. To keep the degree of crossing vertices at 4, we restrict the last operation
to edges that are not incident to a crossing vertex.

▶ Definition 5. Let D, D′ be drawing representations. Then D contains D′ if and only if
a drawing representation isomorphic to D′ can be obtained from D by a sequence of the
following operations

(i) deleting an isolated vertex,
(ii) subdividing an edge by introducing a subdivison vertex,
(iii) smoothing a crossing vertex,
(iv) deleting an edge that is not incident to a crossing vertex.

Figure 4 shows an example of a sequence of such operations. We note that, while
the planarization of a drawing of a graph G constitutes a drawing representation that is
planar, the smoothing operation may turn such a representation into a non-planar graph.
Additionally, observe that a crossing pattern as defined above is a drawing representation. In
particular, we have now formally defined when a drawing representation contains a crossing
pattern. We define that a drawing ∆ of a graph G contains a crossing pattern P if and only
if the planarization of ∆ (considered as a drawing representation) contains P . If ∆ does not
contain P , we also say that ∆ avoids P .

Note that a drawing of a graph G is simple if and only if it avoids the patterns shown in
Fig. 5. The following lemma shows that several widely known beyond-planar drawing styles
are captured by our notion of forbidden crossing patterns. For a definition of the mentioned
graph-classes we refer to [35, 18, 14, 1, 7, 8]. Let Pk denote the crossing pattern consisting
of an edge between two real vertices that is subdivided by k + 1 crossing vertices that are all
adjacent to two private subdivision neighbors; see Fig. 6(a) for k = 2.

▶ Lemma 6 (⋆). Let ∆ be a drawing of a graph G. Then ∆ is
(i) k-planar if and only if it avoids Pk.
(ii) fan-crossing free if and only if it avoids the pattern in Fig. 6(b).
(iii) fan-crossing if and only if it avoids the pattern in Fig. 6(c).
(iv) quasi-planar if and only if it avoids the pattern in Fig. 6(d).
(v) min-1-planar if and only if it avoids the pattern in Fig. 6(e).

Observe that also the number of forbidden crossing patterns in a k-quasi-planar or
min-k-planar drawing is bounded by f(k) for a computable function f , since the number of
orders in which k edges can cross each other is bounded. Hence also min-k-planarity and
k-quasi-planarity can be expressed by a finite set F of forbidden patterns for any fixed k.
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(a) (b) (c) (d) (e)

Figure 6 Examples of crossing patterns.

C1C2C3

H1 H2 H3

Figure 7 The hexagonal grids H1, H2, H3 and the principal cycles of H3.

4 Bounding Treewidth

Let G = (V, E) be a graph for the rest of this section and let F ⊆ E. For a fixed family F
of crossing patterns, we say that G has an (F, F , c)-good drawing if there exists a drawing
of G that (i) does not contain any pattern in F , (ii) has at most c crossings and (iii) none
of the crossings involve an edge from F . Let c ≥ 1 be fixed for the rest of this section. The
goal of the following two sections is to give an algorithm that solves the following problem
in quadratic time. For a fixed family F of crossing patterns, given a graph G, an integer c

and a subset F ⊆ E, the question is whether there exists an (F, F , c)-good drawing of G.
Similarly to the algorithm given by Grohe [25] solving the generalized c-crossing number
problem in quadratic time, our algorithm works in two phases. First the size of the input
graph is reduced iteratively until we get a graph with treewidth bounded by a constant only
depending on c. In the second phase the algorithm solves the problem on this graph of
bounded treewidth.

To bound the treewidth of our input graph we use Grohe’s approach of an irrelevant-
vertex strategy. However, several modifications are necessary, as Grohe only counts crossings,
whereas we additionally have to ensure the absence of certain crossing patterns. In particular,
Lemmas 10–12 are corresponding adaptations of Lemmas 5–7 in Grohe’s paper [25].

4.1 Fundamentals
Let G = (V, E) and H = (V ′, E′) be two graphs. A topological embedding of G into H is a
mapping h that maps every vertex v ∈ V to a vertex in h(v) ∈ V ′ and every edge e ∈ E to
a path h(e) in H such that for all v ̸= w ∈ V we have h(v) ̸= h(w), for all e ̸= f ∈ E the
paths h(e) and h(f) have at most their endpoints in common and for every edge uv ∈ E the
endpoints of h(e) are h(u) and h(v), and h(w) /∈ h(e) for all w ∈ V \ {u, v}.

We denote the hexagonal grid with radius r by Hr; see Figure 7. We number the r

concentric cycles C1, . . . , Cr from the interior to the exterior. Let G be a graph with
subgraph H. An H-component of G is either a connected component C of G − H together
with all edges between C and H and their endpoints in H, or an edge uv ∈ E(G) \ E(H)
such that u, v ∈ H, together with its endpoints; see Figure 8. We call the vertices in
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H C

G

H

G

Figure 8 Illustrations of H-components.

the intersection of an H-component with H the vertices of attachment of the component.
Let h : Hr → G be a topological embedding. We call the subgraph h(Hr \ Cr) the interior
of h(Hr). An h(Hr)-component is proper, if it has at least one vertex of attachment in the
interior of h(Hr). The topological embedding h is flat if the union of h(Hr) with all its
proper components is planar.

For a fixed family F of crossing patterns, the F-crossing number of G is the minimum
number of crossings over all drawings of G that do not contain a pattern in F . The following
theorem is due to Thomassen [43] who stated the result for the genus of a graph rather than
its F -crossing number. However, observe that the F -crossing number of a graph is an upper
bound for its genus and thus our modification of the theorem holds.

▶ Theorem 7 ([43]). For all c, r ≥ 1 there is an s ≥ 1 such that the following holds. If a
graph G has F-crossing number at most c and h : Hs → G is a topological embedding, then
there is a subgrid Hr ⊆ Hs such that the restriction h|Hr of h to Hr is flat.

The following version of the well-known Excluded Grid Theorem will be a useful tool.

▶ Theorem 8 ([25, 41, 11, 37]). Let s ≥ 1. Then there is a w ≥ 1 and a linear-time algorithm
that, given a graph G, either (correctly) recognizes that the treewidth of G is at most w or
computes a topological embedding h : Hs → G.

4.2 The Algorithm
Let G = (V, E) be a graph and let ∆ be a drawing of G in the plane. Let γ be a Jordan curve
in the plane that intersects ∆ only in vertices; we call such a curve a boundary curve. Let GI

be the graph formed by the vertices and edges in the interior of γ and the vertices on γ.
Let GI + γ denote the graph we obtain from GI by adding an edge between two vertices u, v

if u, v lie on γ and are connected via a subcurve of γ that does not contain other vertices
of GI as interior points. Assume there exists a crossing-free drawing Γ of GI + γ whose
outer face is γ. We denote the drawing obtained from ∆ by adding γ, replacing its interior
with Γ and then removing γ by ∆γ→Γ; see Figure 9. A drawing style D is patch-closed
if, whenever ∆ ∈ D, then also ∆γ→Γ ∈ D for any boundary curve γ and any crossing-free
drawing Γ of GI + γ.

▶ Lemma 9 (⋆). Every drawing style D that is defined by the absence of a finite set of
crossing patterns and the requirement that certain edges must not be involved in any crossing,
is patch-closed.

For the rest of this section let c be fixed and let r := 4c + 3. This choice becomes relevant
in the proof of Lemma 11. Moreover, let s be sufficiently large, such that for every graph
of F-crossing number at most c and every topological embedding h : Hs → G, there is
a subgrid Hr ⊆ Hs such that the restriction h|Hr

of h to Hr is flat by Theorem 7. By
Theorem 8 there is a w and a linear-time algorithm that, given a graph G of treewidth
greater than w, computes a topological embedding h : Hs → G. Note that w depends on s,
which depends on r, which ultimately depends on c. Therefore w depends only on c.
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Figure 9 Illustration of patch-closeness. The dashed curve represents γ.

▶ Lemma 10 (⋆). Let F be a finite family of crossing patterns and let w, r be fixed as above.
There is a linear-time algorithm that, given a graph G, either recognizes that the F-crossing
number of G is greater than c, or recognizes that the treewidth of G is at most w, or computes
a flat topological embedding h : Hr → G.

By applying this lemma, we either learn that G has treewidth at most w, or that the F -
crossing number of G is greater than c, or we obtain a flat embedding h : Hr → G. In the
first two cases we are done, as we can either move to the second phase or reject the instance
immediately. Hence we now assume that we obtain a flat embedding h : Hr → G. We denote
the subgrid of Hr bounded by the second principal cycle C2 as H2. The kernel of h is the
subgraph of G consisting of h(H2) and all h(Hr)-components whose vertices of attachment
are all in h(H2). The boundary of the kernel is the subgraph of G consisting of h(C2) and
all h(Hr)-components whose vertices of attachment are all in h(C2). The subgraph containing
the kernel without its boundary is called the interior of the kernel.

▶ Lemma 11. Let G be a graph, F ⊆ E(G) and let ∆ be an (F, F , c)-good drawing of G.
Let h : Hr → G be a flat topological embedding. Then there is an (F, F , c)-good drawing ∆′

of G such that none of the edges of the kernel of h is involved in any crossing of ∆′.

Proof. For 1 ≤ i ≤ r − 1, let Bi be the subgraph of G consisting of h(Ci) and all h(Hr)-
components whose vertices of attachment are all in h(Ci). Moreover, let Ri be the subgraph
of G consisting of the images of the i-th and the (i + 1)-th principal cycle h(Ci), h(Ci+1)
and the images of all edges in Hr connecting these two cycles. Observe that for i, j

with 1 ≤ i < j − 1 ≤ r − 2, the graphs Ri ∪ Bi and Rj ∪ Bj are disjoint. Note that at most
two edges are involved in any crossing and recall that r = 4c + 3. For each crossing that
involves two edges e, f where e belongs to Bi and f to Bj , we either have i = j or |i − j| = 1.
Thus, at most 2c distinct Bi’s contain a crossed edge and by the pigeonhole-principle, there
is an i0 with 2 ≤ i0 ≤ r − 1 such that none of the edges in Bi0 ∪ Ri0 is involved in any
crossing in ∆.

Then, there is a Jordan curve γ around Bi0 ∪ Ri0 that intersects ∆ only in vertices
of Bi0 ∪ Ri0 such that all edges of Bi0 ∪ Ri0 lie in the interior of γ. Let GI be the graph
consisting of the vertices and edges in the interior of γ. Since h is flat, there exists a planar
drawing Γ of GI + γ. Moreover, since (F, F , c)-good drawings are patch-closed by Lemma 9,
also ∆′ = ∆γ→Γ is (F, F , c)-good. ◀

▶ Lemma 12. There is a linear-time algorithm that, given a graph G and an edge set F ⊆
E(G), either recognizes that the F-crossing number is greater than c or recognizes that
the treewidth of G is at most w or computes a graph G′ and an edge set F ′ ⊆ E(G′)
with |V (G′)| < |V (G)| such that G has an (F, F , c)-good drawing if and only if G′ has
an (F ′, F , c)-good drawing.
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Proof. We apply the algorithm of Lemma 10. If the F-crossing number of G is greater
than c or the treewidth of G is at most w we are done. Otherwise the algorithm returns a
flat topological embedding h : Hr → G. Let K be the kernel of h, I its interior, and B its
boundary. Let G′ be the graph obtained from G by contracting the connected subgraph I

to a single vertex vI . Let F ′ be the subset of F that is not contracted in G′ together with
the set of all edges of B and all edges incident to the new vertex vI . Observe that G′

and F ′ can be computed in linear time and |V (G′)| < |V (G)|. It remains to show that G

has an (F, F , c)-good drawing if and only if G′ has an (F ′, F , c)-good drawing.
First assume that G has an (F, F , c)-good drawing ∆. By Lemma 11 there exists

an (F, F , c)-good drawing ∆′ such that none of the edges of the kernel of h is involved in any
crossing of ∆′. Let Γ be the drawing of G′ we obtain from ∆′ by contracting the kernel of h

into a single vertex vI . Clearly, all edges of F ′ are uncrossed in ∆′. Note that since ∆′ does
not contain any pattern in F , if Γ contains such a pattern P ∈ F , then the occurrence of P

must contain vI . However, since all edges incident to vI are crossing-free in Γ, vI cannot be
contained in an occurrence of a crossing pattern by property (iii) of crossing patterns.

Conversely, assume that G′ has an (F ′, F , c)-good drawing Γ. By the choice of F ′, the
wheel induced by the vertices of B and vI is crossing-free in Γ. Since H is flat, there exists a
planar drawing of the kernel with the vertices of B on the outer face and in the same order
as they appear in Γ. Hence the planar graph I can be embedded into a small neighborhood
of Γ(vI). Again, this does not introduce new crossing patterns, since all edges incident to
a vertex in I are uncrossed and no edge in F is involved in any crossing in the resulting
drawing of G. Thus we obtain an (F, F , c)-good drawing of G. ◀

By repeatedly applying the algorithm from Lemma 12 to an input graph G, we either
eventually obtain an equivalent instance whose F -crossing number exceeds c, or we arrive at
an equivalent instance that has bounded treewidth. In the former case, we can reject the
instance, in the latter case we move on to Phase 2.

▶ Corollary 13. There is a quadratic-time algorithm that, given a graph G, either recognizes
that the F-crossing number of G is greater than c or computes a graph G′ and an edge
set F ′ ⊆ E(G) such that the treewidth of G′ is at most w and G has an (F, F , c)-good drawing
if and only if G′ has an (F ′, F , c)-good drawing.

5 Bounded Treewidth and Crossings

Now we describe Phase 2 of our algorithm. If in Phase 1 we do not find out that the
F -crossing number of G is greater than c, we end up with a graph G′ of treewidth at most w,
where w depends only on c, and an edge set F ′ ⊆ E such that G has an (F, F , c)-good
drawing if and only if G′ has an (F ′, F , c)-good drawing. Now we use Courcelle’s Theorem
to show that we can decide in quadratic time whether G′ has an (F ′, F , c)-good drawing. To
this end, we describe an MSO2-formula φF (F ) such that G ⊨ φF (F ) if and only if G has
an (F, F , c)-good drawing. As drawings of graphs cannot be expressed in MSO2, we rather
express this as the existence of a suitable planarization of G, or in fact rather a drawing
representation that is planar.

We use the following primitive formulas as basic building blocks. The formula conn
returns whether a vertex set X ⊆ V is connected by edges from a set E′ ⊆ E, deg0, deg1, deg2
express that a given vertex x has degree 0, 1 or 2, respectively, in the subgraph formed by
the edges in the set E′, disjoint expresses whether two edge sets or vertex sets are disjoint,
minorH expresses whether G contains a fixed graph H as a minor and planar expresses
whether G is planar.
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Let G = (V, E) be a graph and let F ⊆ E be a set of edges that must not receive a
crossing. Assume we want to find a drawing representation with at most c crossings. Our
first step is to construct from G a new graph G+ by subdividing each edge in E \ F with c

crossing dummies. The idea is that a planarization of a drawing of G with at most c crossings
can be described by identifying at most c pairs of crossing dummies of G+ so that the
resulting graph is planar. For the treatment of crossing patterns, we need to be able to
place subdivision vertices on the edges of such a planarization. To enable this, we further
modify G+ into a graph G⋆ where we subdivide each edge that is incident to a crossing
dummy by two subdivision dummies. The vertex set of G⋆ is V ∪ C ∪ S, where V contains
the vertices of G, C contains the crossing dummies and S contains the subdivision dummies.

Expressing a Drawing Representation. The formula φF we construct applies to the
graph G⋆ and receives as input the vertex sets V, C, S and 2c free variables x1, . . . , xc,
y1, . . . , yc. The idea is that their values shall be vertices from C and the intended meaning
is that the crossing dummy xi is identified with the crossing dummy yi to form an actual
crossing. By smoothing all subdivision dummies and all crossing dummies that were not
identified with another crossing dummy we can consider the result as a drawing representation,
whose real vertices are the vertices of G and whose crossing vertices are formed by pairs of
crossing dummies that were identified. It therefore makes sense to require that the values of
the xi are pairwise distinct, with the single exception that we allow xi = yi to allow the use
of fewer than c crossings. We express these requirements with the following formula.

distinctCrossings =
c∧

i=1

∧
j ̸=i

(xi ̸= xj) ∧ (xi ̸= yj) ∧ (yi ̸= yj)

As we work with G⋆ rather than the original graph G, paths whose interior vertices are
all subdivision or crossing dummies play a particular role as such paths correspond to a part
of an edge of G. The following predicate expresses that an edge set E′ forms a path between
two vertices x and y, whose interior vertices, if any, are subdivision or crossing dummies.

path(E′, x, y) =∃I⊆C∪S conn(I, E′) ∧ ∀v∈I deg2(v, E′)∧
∀v∈V (v /∈ I ∧ v ̸= x ∧ v ̸= y → deg0(v)) ∧ deg1(x, E′) ∧ deg1(y, E′)

Using this we can easily formulate the requirement of having no self-crossings.

noSelfCrossings =
c∧

i=1
∀E′⊆E¬ path(E′, xi, yi)

Constraining the Drawing Representation. Let G× denote the graph obtained from G⋆ by
identifying xi with yi for i ∈ {1, . . . , c}. In what follows we want to express properties of G×

in an MSO2-formula. However, our formula does not have access to the graph G×, instead
we have to express all conditions in terms of the original graph G⋆. A vertex v ∈ V (G×) is
incident to an edge e ∈ E(G×) if and only if v is incident to e in G⋆ or if e is incident to a
vertex v′ that is identified with v in G×. This incidence relation in G× can be expressed as
follows.

inc×(v, e) = inc(v, e) ∨

(
c∨

i=1
(inc(xi, e) ∧ v = yi) ∨ (inc(yi, e) ∧ v = xi)

)
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Now any formula φ that expresses a graph property can be transformed into a for-
mula φ× that expresses that G× has the same property by replacing each occurrence
of inc in φ by inc× and replacing any comparison of vertices a = b by the expression
a = b ∨

∨c
i=1 ((xi = a ∧ yi = b) ∨ (xi = b ∧ yi = a)). In particular, planar× expresses that

the graph G× is planar.

Avoiding Patterns. Assume x1, . . . , xc and y1, . . . , yc are chosen such that they satisfy
distinctCrossings ∧ noSelfCrossings ∧ planar×. Then smoothing the subdivision dummies
and the unused crossing dummies defines a planarization of a drawing of G with at most c

crossings and hence a drawing representation of such a drawing. Checking whether this
representation contains a fixed crossing pattern P would possibly require placing subdivision
vertices. However, it is never necessary to place more than two subdivision vertices on an
edge of the planarization, and therefore by construction G⋆ contains already a sufficient
number of subdivision dummies that can be used as subdivision vertices. We also do not
remove edges and vertices but rather specify the vertices and edges that we keep. Moreover,
by working in the graph G⋆, all crossings are automatically smoothed and we rather express
explicitly, which crossings we want to keep.

Let P = (RP ∪ CP ∪ SP , EP ) be a fixed crossing pattern. A chain in P is a path p that
connects two vertices from RP ∪ SP , whose interior vertices are in CP , and for each interior
vertex c of p the incidences with the two edges in p are in the same set of the partition of
incidences of c. Note that there is a unique set of chains that cover P exactly, see Fig. 6,
which we call the chain cover of P .

To express the presence of the pattern P , we choose a subdivision dummy in G⋆ for each
subdivision vertex of P , a real vertex in G⋆ for each real vertex of P , as well as, for each
chain c in the chain cover of P , a crossing dummy in G⋆ for each crossing vertex of p and a set
of edges in G⋆. Observe that for each crossing vertex we thus choose two crossing dummies,
one for each of the two chains of the chain cover that contain it. We then express that the
edge sets chosen for the chains are pairwise disjoint and for each chain p the corresponding
chosen edge set forms a path in G⋆ that connects the two vertices chosen for the endpoints
of p, does not contain real vertices in its interior and visits the crossing dummies chosen
for its crossing vertices in the correct order. Finally, we express that all crossings of P are
actually present by specifying for each crossing vertex c of P that the two chains p1, p2 of
the chain cover that contain c have chosen a pair of crossing dummies for c that is identified
by the choices of the xis and yis.

▶ Lemma 14 (⋆). For every crossing pattern P there exists an MSO2-formula φP that
determines for the graph G⋆ whether the graph G× defined by identifying the crossing
dummies xi and yi for i ∈ {1, . . . , c} contains P . The size of φP depends only on c and the
size of P .

Using the formula φF = planar× ∧
∧

P ∈F ¬φP it then follows that G admits an (F, F , c)-
good drawing if and only if G⋆ ⊨ φF . Observe that, since G⋆ is obtained from G by
subdividing edges, it has bounded treewidth. Moreover, the size of φF depends only on the
number of crossings c and the size of the patters in F . Using Courcelle’s theorem, we obtain
the following result, which together with Corollary 13 implies our main result Theorem 1.

▶ Theorem 15. Let F be a family of crossing patterns and let c be an integer. Let G = (V, E)
be a graph of treewidth at most c and let F ⊆ E. Then there is an algorithm that decides in
quadratic FPT-time whether G admits an (F, F , c)-good drawing.
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(b) (c)(a) (d) (e)

Figure 10 Forbidden crossing patterns for SEFE.

Figure 11 Sketch of the reduction for the 2-layered setting.

6 Extensions and Further Applications

Our notion of drawing representations and crossing patterns can easily be extended to
graphs whose edges are colored with a fixed number of colors. In this setting, two drawing
representations are isomorphic if there is an isomorphism between them that for every color c

maps c-colored edges to c-colored edges. As Phase 1 of our algorithm works irrespective
of such a coloring and the MSO2 formula from Phase 2 can be straightforwardly adapted
to take into account the colors of the edges, Theorem 1 also holds for colored graphs and
colored crossing patterns.

This enables several additional applications. For a graph whose edges are red and black,
we can express that black edges must not be crossed by forbidding the crossing patterns
in Figure 10(a), (b). By employing the reduction sketched in Figure 11 and further patterns
on the red edges, this allows to compute the beyond-planar crossing number of 2-layered
drawings in FPT time for all beyond-planar graph classes that can be expressed in terms of
our crossing patterns.

▶ Corollary 16. For any fixed set F of crossing patterns testing whether a given bipartite
graph admits a 2-layer drawing with at most c crossings that avoids all patterns in F is FPT
with respect to c.

Considering graphs whose edges are black, red, or blue, and allowing only crossings
between red and blue edges by forbidding the patterns in Fig. 10(a) – (e) allows to model
the famous SEFE problem [10, 42].

▶ Corollary 17. Testing whether a pair of graphs (G1, G2) admits a SEFE with at most c

crossings is FPT with respect to c.
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(a) (b)

Figure 12 Two drawings that both contain the pattern shown in Fig. 6(b).

7 Conclusion

We introduced a combinatorial definition of a crossing pattern and showed that for every
beyond-planar graph class C that is defined by the absence of a finite number of such patterns,
deciding whether a graph is in C is FPT with respect to the corresponding beyond-planar
crossing number. Our results are applicable to many beyond-planar graph classes, the ones
we mentioned in the paper are only an extract.

However, since our current definition of crossing patterns does not take topological
aspects into account, it is not able to distinguish the two drawings shown in Fig. 12. Recall
that fan-planar graphs are defined by the absence of the pattern shown in Fig. 6(c) and
the configuration in Fig. 12(b). Thus an interesting open question is, whether our notion
of crossing patterns can be adapted such that also graph classes that rely on topological
properties such as fan-planar or geometric k-planar graphs can be handled.

Another open question is whether bounding the treewidth also works for a definition of
crossing patterns without condition (iii); i.e., if we do not require that real and subdivision
vertices are adjacent to crossing vertices.
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Abstract
Storyline visualizations show interactions between a given set of characters over time. Each character
is represented by an x-monotone curve. A meeting is represented by a vertical bar that is crossed by
the curves of exactly those characters that participate in the meeting. Therefore, character curves
may have to cross each other. In the context of publication networks, we consider storylines where
the characters are authors and the meetings are joint publications. We are especially interested in
visualizing a group of colleagues centered around an author, the protagonist, who participates in all
selected publications. For such instances, we propose a drawing style where the protagonist’s curve
is drawn at a prominent position and never crossed by any other author’s curve.

We consider two variants of storylines with a protagonist. In the one-sided variant, the protagonist
is required to be drawn at the top position. In this restricted setting, we can efficiently compute a
drawing with the minimum number of pairwise crossings, whereas we show that it is NP-hard to
minimize the number of block crossings (i.e., pairs of blocks of parallel curves that intersect each
other). In the two-sided variant, the task is to split the set of co-authors of the protagonist into two
groups, and to place the curves of one group above and the curves of the other group below the
protagonist’s curve such that the total number of (block) crossings is minimized.

As our main result, we present an algorithm for bundling a sequence of pairwise crossings into a
sequence of few block crossings (in the absence of meetings). It exploits a connection to a rectangle
dissection problem. In the presence of meetings, it yields results that are very close to a lower bound.
Based on this bundling algorithm and our exact algorithm for the one-sided variant, we present a
new heuristic for computing two-sided storylines with few block crossings.

We perform an extensive experimental study using publication data of 81 protagonists from
GD 2023 and their most frequent collaborators over the last ten years. Our study shows that, for
two-sided storylines with a protagonist, our new heuristic uses fewer block crossings (and fewer
pairwise crossings) than two heuristics for block crossing minimization in general storylines.
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1 Introduction

Storyline visualizations are a visual tool to convey information about interactions between
a group of entities – usually people – over time. Arguably, storyline visualizations have
a long history that was started by Minard’s startling visualization of Napoleon’s Russian
campain [24], but certainly they have become quite popular since Munroe [26] used them to
cleverly visualize several cinema classics. Our use case is different; see Figure 1.
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Figure 1 Storyline visualization of Robert Ganian and the 15 coauthors with whom he published
most in the last year. In our drawing style, the protagonist (dashed line) has a prominent position –
their curve is not crossed by any other curve. Make your own at https://publines.github.io!

More formally, a storyline S is a pair (C,M), where C = {1, . . . , k} is a set of characters
and M = [m1, . . . ,mn] is a sequence of meetings. If 1 ≤ i < j ≤ n, we say that meeting mi

takes place before meeting mj or that mj is later than mi. Every meeting is a subset of C
of size at least 1. Note that we do not encode at what time a meeting happens exactly. In
a storyline visualization, each character is represented by a continuous x-monotone curve.
Let i ∈ {1, . . . , n}. At meeting mi ⊆ C, the characters that participate in the meeting
have to form an interval in the vertical order of the character curves. The meeting mi is
represented by a vertical line segment si at x-coordinate xi such that (i) exactly the character
curves in mi cross si and (ii) xi < xj if i < j. A storyline visualization thus maps every
point t ∈ [x1, xn] in time to a vertical order πt of the characters.

In order to measure the quality of storyline visualizations (and to eventually design
algorithms that produce readable drawings), various esthetic criteria have been suggested.
Most works have focused on reducing the number of crossings of the character curves (simple
pairwise crossings [12] or more complex types of crossings [31, 32]), others have also tried to
minimize the number of wiggles [11] (that is, the number of turns) and/or the amount of
vertical white-space [29, 23].

In this paper, we investigate a new variant of storylines that is motivated by the visual-
ization of coauthor networks centered around a given main author or protagonist, that is,
a character that is part of every meeting in a storyline. In order to stress the role of the
protagonist, we disallow other curves to cross the protagonist’s curve which can thus be
drawn as a straight horizontal line. We consider two variants concerning the placement of the
protagonist: in the one-sided variant, the line of the protagonist is simply placed topmost,
whereas in the two-sided variant, the line of the protagonist splits the other characters into
two groups; those above and those below the line (see Figure 2). In both variants, we focus on
minimizing crossings (but, in our experiments, we also keep track of the number of wiggles).

As we will show, minimizing pairwise crossings is easy in the one-sided variant. Therefore,
we try to group these simple crossings into larger units, so-called block crossings. In a block
crossing, two groups of curves are exchanged in the vertical ordering while no two curves
within a group change their order. Such a grouping underlines the structure of the intersection
pattern and leads to less visual clutter. Block crossings have also been investigated thoroughly
beyond storyline visualization; in edge bundling [8], in metro maps [10], and due to their
connection to the genus of a graph [3, 4, 5].

Our contribution. We introduce and formally define four variants of the new problem
storyline crossing minimization with a protagonist; see Section 2. We show that one-sided
storyline crossing minimization with a protagonist (1-SCM-P) can be solved efficiently; see
Section 3. For the two-sided version of the problem (2-SCM-P), the characters have to
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be split into two groups, which are then drawn above and below the horizontal line that
represents the protagonist – using the algorithm for the one-sided case. We reduce the
splitting problem to a max-cut problem and solve it heuristically; see Section 4. We then
show that both variants of the storyline block crossing minimization problem (1-SBCM-P
and 2-SBCM-P) are NP-hard; see Section 5.

In order to group pairwise crossings into blocks, we exploit a connection to partitioning
the cells of crossing complexes into rectangular groups of cells that was observed by Fink
et al. [8] in a more general topological setting. Note that in a purely geometric setting, the
partitioning problem (namely of a simple orthogonal polygon into the minimum number of
rectangles) can be solved efficiently, even in the presence of point holes [28]. In order to
benefit from this, our bundling algorithm modifies the crossing complex heuristically such
that it can be partitioned using algorithms for the geometric setting.

In our extensive experimental study we use publication data of 81 protagonists from GD
2023 and their most frequent collaborators over the last ten years; see Section 8. Somewhat
unsurprisingly, a comparison shows that, for storylines with a protagonist, our specialized
heuristic for 2-SBCM-P (combined with the bundling heuristic) uses fewer block crossings
(and fewer pairwise crossings) than two heuristics for storyline block crossing minimization
(SBCM) without a protagonist. On the other hand, these heuristics are free to allow the
protagonist to cross other characters. From this point of view, it is indeed surprising that
our 2-SBCM-P heuristic outperforms the two heuristics for SBCM.

We also evaluate the performance of our bundling heuristic against lower bounds that we
obtain by partitioning the crossing complex without modifying it first. In general, this yields
an optimal partitioning that cannot be realized geometrically, and hence, a lower bound.
It turns out that the numbers of block crossings that our bundling heuristic produces are
usually very close to this lower bound.

More related work. The egocentric storylines of Muelder, Crnovrsanin, Sallaberry, and
Ma [25] probably come closest to our idea of storylines with a protagonist. However, their
aim is to visualize large dynamic networks by selecting and drawing parts that are interesting
for the user. As in our protagonist-setting, Muelder et al. allow the user to select a specific
node p of the network, which is then displayed as a horizontal strip; in their case at the
bottom of the layout. Then they select a subset of the nodes that are active in the current
time step, namely nodes that are of relevance to p according to graph distance (combined
with a time-based weight). Their input does not specify meetings; instead, more relevant
nodes are placed closer to p. Nodes are shown as x-monotone strips between their first and
last appearance; in time steps in which a node is not selected its strip becomes very thin and
is placed behind the strips of selected nodes. Strips are colored according to a time-dependent
clustering. Crossings are treated only implicitly, namely by reusing the vertical ordering of
the nodes from the previous time step and inserting newly selected nodes according to their
relevance.

Kim, Card, and Heer [17] visualized genealogical data using a storyline-like type of
visualization. People are represented by x-monotone curves that start when they are born
and end when they die (or when the diagram ends). The only type of meeting is marriage;
that is, all meetings are of size 2. If a child is born, the start point of its curve is connected
to its parents’ curves by a dashed vertical line. Ancestors are placed by in-order, descendants
by pre-order traversal of the family tree. Interestingly, when visualizing Elizabeth Taylor
and her seven husbands [17, Fig. 9], the authors drew her as a protagonist and experiment
with a 1- and a 2-sided layout. Again, crossings were not minimized; instead, after divorce,
spouse curves simply return to the y-coordinate where they were before marriage.
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Very recently, Kuo, Liu, and Ma [20] presented SpreadLine, a storyline-like visualization
framework for egocentric networks that shares some properties with our two-sided approach.
Instead of splitting the character set such that crossings are minimized, their split is based
on an attribute of the characters given with the input. Hence, if the attribute of a character
changes over time with respect to the protagonist’s attribute, the character’s curve will
cross the protagonist’s curve. For generating the layout, Kuo et al. use the StoryFlow
framework [23]. For crossing minimization, they use the well-known barycenter heuristic
for one-sided crossing minimization in a sweeping fashion (i.e., starting on one side, and
sweeping back and forth until the number of crossings no longer decreases).

We now briefly review the existing (and not so closely related) approaches for storyline
visualization in terms of computational techniques. Tanahashi and Ma [29] used a genetic
algorithm to draw storylines with few crossings, few wiggles, and little white-space. Their
algorithm is rather slow but produces esthetically pleasing results. Gronemann, Jünger,
Liers, and Mambelli [12] used integer linear programming (ILP) to solve storyline crossing
minimization (SCM) exactly. Fröschl and Nöllenburg [11] also used ILP, but in order to
minimize the weighted number of wiggles (where each non-horizontal piece of a character’s
curve is weighted by its height). Kostitsyna, Nöllenburg, Polishchuk, Schulz, and Strash [18]
presented a fixed-parameter (FPT) algorithm for SCM. Van Dijk, Fink, Fischer, Markfelder,
Ravsky, Suri, and Wolff [31] ([30]) gave the first FPT algorithm for SBCM and improved upon
the running time of the FPT algorithm for SCM of Kostitsyna et al. Later, Van Dijk, Lipp,
Markfelder, and Wolff [32] did an experimental study showing that, for SBCM, SAT-based
algorithms are faster than ILP-based algorithms. Di Giacomo, Didimo, Liotta, Montecchiani,
and Tappini [7] drew storylines where each character is represented by a plane tree rather
than just by a curve, so a character can participate in several meetings simultaneously. They
did two case studies, visualizing collaboration between scientists and work groups over time.

Another problem related to storyline visualization is metro-map layout, where metro lines
are routed along the edges of an underlying graph whose vertices correspond to the metro
stations. Note that other than the character curves in storyline visualization, the metro lines
cannot go around a metro station if the station lies on the prescribed path that the metro
line needs to follow. Fink and Pupyrev [9] showed that, given a fixed layout of the underlying
graph, metro-line crossing minimization is NP-hard.

2 Preliminaries and Formal Problem Statement

We say that a meeting m fits a permutation π of C (or a permutation π supports a meeting
m) if the characters in m form an interval in π. In order to enable support for all meetings
in M , the order of characters may have to change at several points in time. Whenever this
order changes, the character curves cross. Since crossings make it harder for an observer to
follow a character curve, we aim to minimize the number of crossings.

We describe a crossing that swaps two characters by their position in π. If a crossing
swaps the character at a with that at a+1, it maps the permutation ⟨1, . . . , a, a+1, . . . , k⟩ to
the permutation ⟨1, . . . , a− 1, a+ 1, a, a+ 2, . . . , k⟩. When two disjoint blocks of curves cross
all at once while staying parallel inside their respective blocks, we call this a block crossing.
Let (a, b, c) with a ≤ b < c be a block crossing that swaps the consecutive blocks ⟨a, . . . , b⟩
and ⟨b+ 1, . . . , c⟩. The permutation ⟨1, . . . , a, . . . , b, . . . , c, . . . , k⟩ is therefore mapped to the
permutation ⟨1, . . . , a − 1, b + 1, . . . , c, a, . . . , b, c + 1, . . . , k⟩. Note that the block crossing
(a, a, a + 1) is equivalent to the pairwise crossing that swaps exactly the characters at a
and a + 1. Let πid = ⟨1, 2, . . . , k⟩ be the identity permutation for a set of k elements.
For i ∈ {1, . . . , k}, we write π(i) for the position of character i in π. Analogously, for
j ∈ {1, . . . , k}, we write π−1(j) for the character at position j in π.
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(a) One-sided storyline drawing with p at the top.
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(b) Two-sided drawing of the same storyline.

Figure 2 In one- and two-sided storylines, the protagonist is drawn as a straight line and does
not participate in any crossings.

In our visualization style, the protagonist maintains a fixed position and therefore, it
must not participate in any (block) crossing that would move it away from that position.
In a further restricted variant, we require the protagonist to be placed either at the top or
bottom of the stack of character lines.

▶ Definition 1 (Two-Sided Storyline Crossing Minimization with a Protagonist (2-SCM-P)).
Given a storyline instance (C,M) with a protagonist p ∈ C and M = [m1,m2, . . . ,mn], find
a start permutation π0 and a sequence X = [X1, X2, . . . , Xn] of (possibly empty) sequences
of crossings such that (i) p is not involved in any crossing, (ii) for 1 ≤ i ≤ n, πi = Xi(πi−1)
supports mi, and (iii) the total number of crossings is minimized.

The variant of the problem where we additionally require that π0(1) = p is called One-Sided
Storyline Crossing Minimization with a Protagonist (1-SCM-P). The variants of the problem
where we count block crossings instead of pairwise crossings are called (One-/Two-Sided)
Storyline Block Crossing Minimization with a Protagonist (1-/2-SBCM-P).

A realization of (C,M) is a pair (π0,X ), where π0 is a start permutation and X is a
sequence of sequences of (block) crossings such that every meeting is supported. Figure 2
shows drawings of a one- and a two-sided storyline with a protagonist.

3 Minimizing Pairwise Crossings in 1-SCM-P

1-SCM-P has fewer degrees of freedom than the more general SCM problem. Indeed, we will
show that 1-SCM-P can be solved in polynomial time. We start with a simple observation.

▶ Observation 2. Given two characters c and d, if a meeting m contains c but not d and a
later meeting m′ contains d but not c, then c and d must cross between m and m′.

A crossing that fulfills the condition stated in the above observation is unavoidable. For
each character c ∈ C, we define its attendance vector vc ∈ {0, 1}|M | where vc(i) = 1 if and
only if c ∈ mi. For any pair (c, d) of characters with c < d, we count the number Ucd of
unavoidable crossings between c and d by removing entries from the attendance vectors
until only those remain that inflict unavoidable crossings. First, remove all entries i where
vc(i) = vd(i). Then, remove all entries j where (vc(j), vd(j)) = (vc(j + 1), vd(j + 1)). Now
Ucd is the number of remaining entries minus one, and the number of unavoidable crossings
for the whole storyline is

∑
1≤c<d≤k Ucd.

▶ Lemma 3. Every instance of 1-SCM-P can be realized with unavoidable crossings only.
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Proof. The statement is trivial for storylines that can be realized without crossings. For
a storyline (C,M) with protagonist p that requires crossings, we show the statement by
contradiction. Let (π0,X ) be a 1-SCM-P realization of (C,M) with the minimum number
of crossings. Let c and d be two characters whose curves cross. Let c be the upper curve
before the crossing, and let t ∈ [0, n] be the point in time when they cross. Clearly, in order
to cross, c and d must lie on the same side of p, say below. Now assume that this crossing is
not unavoidable by our definition. Hence, there is a meeting mi with i < t that contains c
but not d and there is no meeting mj with j > i that contains d but not c. (The case that
the later meeting contains only d but not c, and there is no earlier meeting that contains c
but not d is symmetric to the case that we study and can be handled analogously.)

We can safely remove the crossing of c and d at time t and swap the positions of c and d
in all permutations after t. Any meeting mj with j > i that either contains both c and d or
none of the two is not affected by this change. A meeting mj that contains only c would
require another crossing between c and d, which we could also remove safely. Hence, we
obtain a realization with fewer crossings than (π0,X ), contradicting our choice of (π0,X ). ◀

▶ Theorem 4. There is an algorithm that solves 1-SCM-P in O(k2n) time, where k is the
number of characters and n is the number of meetings.

Proof. From Lemma 3 we know that the unavoidable crossings are sufficient to realize a
storyline with a protagonist. Therefore, we present Algorithm 1 and prove that it produces
exactly the unavoidable crossings.

We set the start permutation π0 such that the characters are in descending lexicographic
order with respect to their attendance vectors. Note that the first meeting m1 fits π0. Let
i ∈ {2, 3, . . . , k} and assume that we have already computed a storyline up to and including
meeting mi−1. Let πi−1 be the permutation right after mi−1. Given πi−1, in order to support
mi, we have to move all characters in S1 = mi \mi−1 towards p (who attends all meetings)
and all characters in S2 = mi−1 \mi away from p. Since we must not cross p, every character
in S1 must cross every character in S2. By Observation 2, these crossings are unavoidable.
For S1 and S2 to form contiguous blocks, we may have to introduce additional crossings.
Assume that we need such a crossing between characters c and d to move d closer to p.
Let mk be the latest meeting before mi−1 that contains c but not d. Such a meeting must
exist, otherwise c and d would be swapped in π0. Hence, due to Observation 2, mk and mi

induce an unavoidable crossing between c and d. Consequently, our algorithm produces only
unavoidable crossings.

Any crossing introduced by one of the inner while-loops of Algorithm 1 moves character c
upwards (that is, decreases π−1(c) in that loop). Therefore, the foreach-loops check at most
k2 pairs of characters, and Algorithm 1 runs in O(k2n) time. ◀

4 Minimizing Pairwise Crossings in 2-SCM-P

In 1-SCM-P, we restrict the storyline such that the protagonist p always is at the topmost
position. This may introduce a lot of crossings compared to storyline visualizations without
this constraint. The variant 2-SCM-P drops this constraint but still requires that p does not
participate in any crossing (i.e., can be drawn straight); see Figure 2b.

We map an instance (C,M) of 2-SCM-P to two instances of 1-SCM-P by splitting C \ {p}
into two sets C1 and C2. For j ∈ {1, 2}, we set Cj = Cj ∪ {p} and let Mj be the restriction
of M to characters in Cj . In order to find a split, we define the crossing graph of (C,M) to
be the complete graph with vertex set C \ {p}, where, for characters c and d with c < d, edge
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Algorithm 1 One-sided storyline with minimum number of pairwise crossings.
Input: Instance (C, M) of one-sided SCM, attendance vectors v1, v2, . . . , vk

Output: Realization (π0,X = [X1, . . . , X|M|]) of (C, M)
1 π0 ← characters in descending lexicographic order by attendance vectors
2 π ← π0

3 X1 ← ∅
4 for i← 2 to |M | do
5 Xi ← ∅
6 if mi fits π then continue
7 S0 ← mi−1 ∩mi

8 S1 ← mi−1 \mi

9 S2 ← mi \mi−1

10 S3 ← C \ (mi−1 ∪mi)
11 foreach c ∈ S0 ordered by π−1 do
12 while d← π(π−1(c)− 1) ∈ S1 do
13 switch c and d in π

14 append (π−1(c), π−1(c), π−1(d)) to Xi // a pairwise crossing

15 foreach c ∈ S2 ordered by π−1 do
16 while d← π(π−1(c)− 1) ∈ S3 do
17 switch c and d in π

18 append (π−1(c), π−1(c), π−1(d)) to Xi // a pairwise crossing

19 append (|S0|+ 1, |mi|, |mi|+ |S2|) to Xi // a block crossing
20 apply Xi to π

21 return (π0,X )

{c, d} has weight Ucd. Consider the problem (Weighted) Min-UnCut which asks for a
2-coloring of the vertices of a graph such that the number (total weight) of the monochromatic
edges is minimized. If two characters c and d are on different sides of p, then they do not
cross. Otherwise they cause exactly Ucd unavoidable crossings, independently of the presence
of other characters. By Theorem 4, we can solve the two 1-SCM-P instances resulting from
the split optimally. Hence a split that minimizes the number of crossings corresponds to a
solution of Weighted Min-UnCut in the crossing graph.

Unfortunately, Min-UnCut is MaxSNP-hard [27]; it admits an O(
√

log n)-approxima-
tion [1]. Note that Min-UnCut is the complement of Max-Cut, which asks for a 2-coloring
of the vertices of a graph such that the number of the bichromatic edges is maximized. In
particular, the set of optimal solutions is the same for both problems.

We can efficiently detect instances of 2-SCM-P that can be drawn without crossings.

▶ Theorem 5. Given a 2-SCM-P instance with k characters and n meetings, we can test in
O(nk2) time whether it admits a solution without crossings.

Proof. Construct the crossing graph, test whether it is bipartite, and if yes, draw the two
resulting one-sided instances using Theorem 4. ◀

Also if the crossing graph is planar, Weighted Max-Cut and hence 2-SCM-P can be
solved efficiently [22]. Similarly, exact FPT algorithms for Weighted Max-Cut [6] carry
over to 2-SCM-P. For our application where we require fast response for larges instances,
we use a heuristic for Weighted Max-Cut [16] that is easy to implement and, although
asymptotically O(|C|3), sufficiently fast.
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5 Hardness of 1-SBCM-P and 2-SBCM-P

Van Dijk et al. [31] showed that SBCM is NP-complete by reducing from Sorting by
Transpositions (SBT). In SBT, given a permutation π and an integer t, the task is to
decide whether π can be transformed into the identity permutation by applying a sequence
of at most t transpositions (which we call block crossings). SBT is NP-hard [2]. Whereas in
SBT the start permutation is given, for SBCM we need a gadget in order to ensure that there
is a point in time where the characters are ordered as in π. We now construct such a gadget.

▶ Lemma 6. Given a set C of k characters and a permutation π of C, there exists a sequence
of meetings M of size k − 1 such that the one-sided storyline (C,M) with protagonist π(1)
can be drawn crossing-free and π is the only permutation that supports all meetings in M .

Proof. For any given order of characters the sequence of meetings [m1, . . . ,mk−1] with
mi = {1, . . . , i+ 1} is supported by the identity permutation πid. Any permutation π′ ̸= π

contains at least two characters c and d with c < d whose positions are swapped compared
to π. By construction, π′ does not support mc−1. ◀

▶ Theorem 7. The problems 1-SBCM-P and 2-SBCM-P are NP-complete.

Proof. It is easy to see that the decision variants of both 1-SBCM-P and 2-SBCM-P lie in
NP. The number of (block) crossings necessary to support any meeting is bounded by

(
k
2
)
.

So we can simply check a solution from left to right, in time polynomial in k and n.
Next we show that 1-SBCM-P is NP-hard. Using Lemma 6 we can build a one-sided

storyline with a protagonist p such that C \ {p} is in π-order just after mk−1 and in πid-order
just after mk; encoding the permutations for SBT (see the blue box in Figure 3).

Solving 1-SBCM-P for this instance gives us a start permutation π0 = π and a sequence
X = [X1, . . . , Xk−1, Xk, Xk+1, . . . , X2k−2] of (possibly empty) sequences of block crossings.
Let πj denote the order of characters right after mj . Meetings m1, . . . ,mk−1 allow us to
maintain π from π0 to πk−1. Because of that, we can prepend (in order) all block crossings
from X1, . . . , Xk−1 to Xk The same is true for meetings mk, . . . ,m2k−2 and the identity
permutation. So block crossings from Xk+1, . . . , X2k−2 can be appended (in order) to Xk.
Now, Xk contains a minimum set of block crossings (a.k.a. transpositions) necessary in order
to transform π to the identity.

For the NP-hardness of 2-SBCM-P, we reuse our proof for the one-sided variant. We use
a simple gadget consisting of one additional author q and 2k2 meetings to fix an assignment
of the authors to the sides that has all authors that are part of our one-sided instance in the
same half of the drawing (see the red box in Figure 3). We add meetings M ′ = [m′

1, . . . ,m
′
2k2 ]

where meetings with even index contain exactly p and q while those with odd index contain
p and all characters 1, . . . , k. The resulting storyline (C,M ′) can be drawn crossing-free if
and only if C ∪ {q} is split (C \ {q}, {q, p}). Any other split introduces at least 2k2 − 2 block
crossings (one for each meeting in M ′ except for the first and the last one). On the other
hand, transforming π into identity takes at most

(
k
2
)

crossings. Therefore, (C \ {q}, {q, p})
is the only optimal split, and the two-sided instance (C ∪ {q},M ′ ◦ M), where ◦ denotes
concatenation, encodes the one-sided instance (C,M). ◀
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1-SBCM-P
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Figure 3 The NP-hardness construction for 2-SBCM-P reuses the one for 1-SBCM-P (blue box).

6 Bundling Pairwise Crossings in Storylines

While we can solve at least 1-SCM-P efficiently, we have seen that 1-SBCM-P is already
NP-hard (Theorem 7). Still, we prefer block crossings from a cognitive point of view; they
structure the set of pairwise crossings. Therefore, we now discuss the problem of covering
a given set of pairwise crossings by the smallest number of block crossings. Fink et al. [8]
introduced this problem for general graph embeddings and showed its NP-hardness.

6.1 Bundling in the absence of meetings

Fortunately, in the special case of storylines, we can solve the following local version of the
problem efficiently as shown below in Theorem 11. The version corresponds to the problem
that needs to be solved between two consecutive meetings, given the sequence of pairwise
crossings.

▶ Definition 8 (Local Bundling for Storylines). Given a permutation π and a sequence X of
pairwise crossings, find the shortest sequence X ′ of block crossings such that, when applying X ′

to π, exactly the same lines cross as when applying X to π.

Fink, Hershberger, Suri, and Verbeek [8] observed a connection between the bundled
crossings problem and the minimum dissection problem for orthogonal polygons with holes.
Soltan and Gorpinevich [28] showed that an orthogonal polygon with arbitrary holes can be
dissected into the minimum number of rectangles in polynomial time. Their algorithm can
be adapted to solve Local Bundling for Storylines as we will show now.

We say that two crossings χ1 and χ2 touch (and can hence be combined into a block
crossing) if (i) they share exactly one character c and (ii) the part of the curve that represents c
between the corresponding crossing points is y-monotone and is not crossed by any other
curve. In Figure 4a, crossings χ1 and χ2 touch, but χ1 and χ3 do not touch and, unlike [8],
we cannot combine them into a block crossing. We call the graph G that has a vertex for
every pairwise crossing in X and an edge for every pair of touching crossings the touching
graph of X. Following Fink et al. [8], we define the crossing complex C for a sequence X of
pairwise crossings in a storyline as a special type of complex that consists of quadrilateral
cells with sides and corners, where two respectively four cells touch:
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χ1

χ2

χ3

c

★

(a) Storyline drawing.

★
χ1

χ2

χ3

(b) Crossing complex C. (c) Bundled crossings.

Figure 4 The crossing complex C of a storyline drawing (a) contains a quadrilateral cell for each
crossing. In (b) the cells are bounded by either the gray exterior (which includes holes) of C or
the thin black lines. Each cell shares a side (black line segments) with at most four other cells. A
bundling corresponds to a dissection of C into (blue shaded) rectangular groups of cells (c).

1. The complex C contains a quadrilateral cell for each crossing in X. Each side of a cell
corresponds to one “half” of a character curve; the one before and the one after the
crossing.

2. If two crossings χ = {b, c} and ψ = {c, d} in X touch each other, then their cells share
the sides that correspond to the unique character in χ ∩ ψ. (Note that, in Figure 4b, the
cells of χ1 and χ2 share a side, whereas the cells of χ1 and χ3 do not share a side.)

3. If the storyline drawing contains a quadrilateral face and the adjacent crossings form a
cycle in G, then the unique corner shared by the corresponding cells is part of C (e.g., the
starred face in Figure 4a becomes the starred corner in Figure 4b).

The crossing complex of the storyline drawing in Figure 4a is shown in Figure 4b. The
exterior of C is shaded in gray. Corners and sides that lie in the interior of C are referred to
as internal. In Figure 4b internal corners are marked by small black disks and internal sides
by solid black line segments.

▶ Lemma 9. The crossing complex C of a storyline drawing can be laid out such that all
internal sides are either falling or rising (i.e., have a slope of 45◦ or −45◦).

Proof. By item 2 of the definition above, an internal side can be drawn perpendicular to
the curve of the common character of the two touching crossings. Since G is a partial grid
graph, it can be drawn orthogonally with respect to the embedding implied by the storyline
drawing (see Figure 4b). Every crossing touches at most four other crossings, and the four
arms of a crossing naturally yield a grid embedding. Therefore, internal sides can be drawn
on a grid rotated by 45◦. ◀

We assume that C has been laid out as described in Lemma 9. In order to dissect C into
the minimum number of rectangular groups of cells, we cut C along chords. A chord is a
sequence of colinear internal sides that starts and ends in a boundary corner (i.e., a corner
that is not internal) and has only internal corners in between. It is easy to see that cuts
are necessary at every concave corner on the boundary ∂C of C. Following Fink et al. [8],
for each boundary corner z, we define its measure of “concaveness” κ(z) = ⌊(α(z) − 1)/2⌋,
where α(z) is the number of cells incident to z. This measure indicates how many cuts are
necessary to make a corner convex. We will show that two cuts always suffice.

▶ Lemma 10. Let z be a corner of C. Then at most five cells are incident to z, and κ(z) ≤ 2.
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Proof. Corners in C (and on the boundary of C) map to faces in the original storyline drawing.
Internal corners in C, by construction, result from a quadrilateral face in the storyline drawing;
therefore, they have only four adjacent cells. All other corners lie on points on ∂C where
internal sides have a common endpoint. This is the case when the crossings around a face in
the storyline drawing form a path in G (each touching pair of crossings implies an internal
side). Since, at each touching pair of crossings, a face has a corner with an angle of 90◦ and
the sum of angles of a face is 360◦, such a path cannot be longer than five crossings. ◀

All corners with four adjacent cells are internal by definition. By Lemma 10, we know
that concave boundary corners have three or five adjacent cells and thus, their measure is 1
or 2. Hence, every cut along a chord starting in a concave corner z decreases κ(z) by 1.

We identify two different types of chords; effective chords, which connect two concave
corners and therefore decrease κ(C) =

∑
z∈∂C κ(z) by 2, and simple chords, which connect

a concave and a convex corner. In order to minimize the number of cuts (and therefore
rectangles), we must maximize the number of cuts along effective chords. Note that not
all combinations of effective chords are feasible. Two effective chords are in conflict if they
share a common internal corner. After cutting along one of them, the other one is no longer
effective by our definition. Instead, it was cut into two simple chords. Recall that concave
corners have measure 1 or 2. Let z be a corner. If κ(z) = 1, then every pair of effective chords
incident to z is in conflict, because a single cut is sufficient to make z convex. If κ(z) = 2,
then only those pairs of effective chords incident to z are in conflict if the two chords together
do not reduce κ(z) to 0. This is the case if, after cutting twice, z still has three consecutive
cells.

In order to identify a maximum set of effective chords, we find a maximum independent
set in their conflict graph. Note that due to the orthogonal nature of our chords, the conflict
graph is bipartite and therefore a maximum independent set can be found in polynomial time
(see Kőnig’s theorem [21]). After applying cuts along a maximum set of effective chords, we
handle the remaining concave corners by choosing an arbitrary simple chord starting at the
corner and cutting along it. After that all connected components of C are rectangular (i.e.,
their boundary corners are 90◦ or 180◦). For the storyline depicted in Figure 4a, a dissection
into rectangles is shown in Figure 4c.

It remains to translate the order of rectangles implied by the embedding of C back into a
feasible order for the bundles. Given two bundles A and B, A must happen before B if, for
any two crossings χA in A and χB in B, (i) the cell of χA has a top-right or bottom-right
edge to the cell of χB in G (according to its grid embedding) or (ii) χA and χB are on the
same level (i.e., if πA is the permutation right before χA and πB is the one right before χB ,
the character curves involved in χA have the same position in πA as those of χB in πB)
and χA comes before χB in X. We then topologically sort the directed graph with a vertex
for every bundle and arcs corresponding to the ordering constraints. This gives us a feasible
order for the bundles.

▶ Theorem 11. Given a storyline with a sequence X of pairwise crossings, Local Bundling
for Storylines can be solved in O(|X|2) time.

Proof. The complex C can be constructed in time linear in |X| since the storyline yields the
topology and, for each crossing in X, we introduce at most four sides and corners. We then
find the effective chords in time linear in |X| because at most four chords start, end, or go
through any corner, and no two chords overlap. Since effective chords are in conflict only
if they start at, end at, or go through the same corner, the number of nodes and edges in
the conflict graph is linear in |X|. Hence, we can find a dissection of C (corresponding to
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B ✗

C ✗

m1 m3m2 m4 m5 m6

(a) Some (in)feasible bundles.
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m4

m5
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(b) C with meetings.

★ χR
m4

m1 m3m2 m4 m5 m6

(c) Bundles around meetings.

Figure 5 Not all bundles are feasible when it comes to meetings (a). Meetings correspond to
point holes in the crossing complex C (b). A possible bundling is shown in (c).

a maximum independent set in the conflict graph) in O(|X|2) time using the algorithm of
Soltan and Gorpinevich [28]. Applying the set of effective chords and adding the remaining
simple chords is again bounded by the number of sides because every side is cut at most
once. The number of bundles is bounded by |X|. We can find all ordering constraints and
topologically sort the conflict graph in O(|X|2) time. ◀

6.2 Bundling in the presence of meetings

So far we only bundled crossings between two neighboring meetings. It is obviously beneficial
and often possible to bundle crossings across meetings. We allow a meeting only to happen
before or after a block crossing (as shown in Figure 5c) but not inside. Hence, we may neither
trap a meeting inside a bundle (see bundle C in Figure 5a) nor change the order of meetings.
For example, in Figure 5a, meeting m4 must happen before the bundled crossing B, whereas
meeting m3 must happen after B. Because we cannot change the order of meetings, such
bundles are prohibited.

For a meeting m, let χR
m be the first crossing after m where one of the characters whose

curves cross is part of m, whereas the other is not. We say that χR
m touches m from the right

(see Figure 5c). Note that χR
m is adjacent to one of the faces where m ends (see the black

star in Figure 5c). In order to prevent bundles (such as C in Figure 5a) to trap meetings
inside, we prohibit faces where meetings end from being part of a bundle. For the crossing
complex C, this means that we remove the corresponding corner from C. The dissection
algorithm can be easily enhanced to support point holes [28]. Point holes get a measure of
two and effective chords starting or ending at a point hole are in conflict if and only if they
have different slopes (one falling one rising).

The last step of the bundling procedure, ordering bundles, must adhere to two further
kinds of constraints, namely meeting–meeting and meeting–bundle constraints. A meeting
must be placed to the right of (or after) another meeting as indicated by the sequence M of
meetings. A bundle must be placed to the right of a meeting m if any crossing in the bundle
touches m from the right. In Figure 6b, the constraints between meetings m2 and m3 and
the bundle marked with the blue star are depicted as black arrows. An arrow starting at a
and pointing at b indicates that a must be placed to the right of b. Unfortunately, sometimes
these constraints form cycles and therefore the bundling cannot be realized geometrically
(for example the bundle with the blue star in Figure 6b or bundle B in Figure 5a).
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(b) Optimal but infeasible.
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(c) Feasible but suboptimal.

Figure 6 With the optimal dissection this bundling has a dependency cycle between
meetings m2, m3, and the bundle marked with the blue star (b). When we split the storyline
between the conflicting meetings (a), the dissection becomes feasible but suboptimal (c) as three
bundles would be sufficient.

We propose the following heuristic: whenever we encounter such a cycle, we split the
storyline after the first meeting in the cycle (i.e., the meeting with the smallest index). See
Figure 6a for an example. Note that every such cycle must involve at least one meeting. It
remains open whether or not we can find a cut through C that still produces an optimal
result regarding the number of bundles. Cutting straight after a meeting and through the
full height of the storyline can worsen the solution as shown in Figure 6c. We can insert the
point holes and find the additional constraints within the same asymptotic runtime as above.
We effectively run our algorithm once per split so theoretically our heuristic has a runtime
of O(|X|3). However, in practice splits are rare and bundling is almost imperceptibly quick
(see Section 8).

Summarizing, we can find an optimal bundling (i.e., with the minimum number of bundles)
as long as no dependency cycles occur when ordering the resulting block crossings. Otherwise,
we can use the number of bundles in the infeasible solution as a lower bound for the optimal
number of bundles. Our experiments (see below) show that even our simple heuristic that
splits the storyline whenever it encounters a conflict yields optimal results for many instances.

7 A Greedy Heuristic for SBCM

In this section we present a greedy algorithm to draw a storyline with few block crossings
in O(k2sn) time, where |C| = k is the number of characters, |M | = n is the number of
meetings, and

∑
i |Xi| = s is the number of block crossings. Because SBCM is NP-hard [31],

we cannot hope for an optimal solution. Our algorithm repeatedly adds block crossings
until all meetings fit. Our heuristic is based on previous work by Herrmann [15], but we use
the following more involved scoring function. Our scoring function considers possible block
crossings and chooses weights differently; moreover, we do not limit the number of meetings
that are factored into the scoring. We use the attendance vector vc of a character c (see
Section 3) in order to find t-conflict-free pairs, that is, pairs that can stay in the same block
for the next t meetings. A pair of characters (c, d) at a meeting mi is t-conflict-free for a
number t if vc(j) = vd(j) for i ≤ j ≤ i+ t.

We process the meetings in order. For i ∈ {2, 3, . . . , n}, let π be the permutation right
after mi−1. Let ⟨π(a), . . . , π(b− 1)⟩ and ⟨π(c), . . . , π(d)⟩ be two maximal blocks of characters
in π that all attend mi and are separated by another block of characters ⟨π(b), . . . , π(c− 1)⟩
that all do not attend mi. Note that if no such configuration exists, mi fits π and we continue
with mi+1. We now have several options to join the two blocks with a single block crossing.
We can either merge the first block into the second or the second into the first and we can
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Algorithm 2 SelectBlockCrossing.
Input: Permutation π, meeting mi, attendance vectors v1, . . . , vk

Output: Block crossing
1 find a < b < c ≤ d such that
2 {π(j) | j ∈ {a, . . . , b− 1, c, . . . , d}} ⊆ mi and
3 {π(j) | j ∈ {1, . . . , a− 1, b, . . . , c− 1, d + 1}} ∩mi = ∅
4 best ← ∅
5 σbest ← −∞
6 foreach χ ∈ {(z, c− 1, d) | z ∈ {a, . . . , b}} ∪ {(a, b− 1, z) | z ∈ {c− 1, . . . , d}} do
7 π′ ← π with χ applied
8 σχ ← 0
9 foreach (e, f) ∈ {(π′(j), π′(j + 1)) | a− 1 ≤ j ≤ d} do

10 i′ ← i

11 while ve[i′] == vf [i′] do i′ ← i′ + 1
12 σχ ← σχ + i′ − i

13 if σbest < σχ or (σbest == σχ and size(best) > size(χ)) then
14 best ← χ

15 σbest ← σχ

16 return best

choose any position inside one of the blocks where we insert the other block. We use the
procedure described in Algorithm 2 in order to rank the possible block crossings and select
the best based on adjacent conflict-free pairs and the size of the block crossing (i.e., number
of characters involved). Let π′ be the permutation after applying the block crossing that we
found in the previous step. If π′ does not support mi, we repeat the described procedure
with π′ instead of π.

Our algorithm heavily depends on a good start permutation. We propose the following
strategy to find one. Let M ′ be the sequence of meetings obtained by reversing M , and
let π̃ be a random permutation. We apply our greedy algorithm to (C,M ′) with π̃ as a start
permutation and record the permutation π′

end after the last meeting. Note that the last
meeting in M ′ is the first meeting in M . We use π′

end as the start permutation for the actual
run.

For each block crossing in the final drawing, we call SelectBlockCrossing (see
Algorithm 2) once. The parameters a, b, c, and d can be determined in O(k) time. At most k
block crossings are considered and each requires up to k − 1 pairs of characters to be scored.
The scoring function can be computed in O(n) time. Therefore, the total runtime is O(k2sn),
where s is the number of block crossings. Note that, in most cases, a lot fewer than n

comparisons are required to score a pair of characters. If the worst-case runtime bound is a
concern, the maximum number of comparisons can be limited by a constant, which reduces
the runtime to O(k2s) (and may slightly increase the number of block crossings).

8 Experiments

Our use case for storylines with a protagonist is to visualize how the peer group of a scientific
author changes over time. We are interested in comparing heuristics for visualizing storylines
with a protagonist to heuristics for visualizing storylines without a protagonist. We want to
measure whether the latter benefit from the additional degree of freedom that allows them to
choose realizations where the protagonist’s curve is crossed by the curves of other characters.
We also want to evaluate the performance of the bundling heuristic that we presented in
Section 6.2.
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Benchmark set. For our experiments, we identified the 81 authors of short and long papers
in the GD 2023 proceedings that have at least 20 coauthors on publications over the last
10 years that are listed in the dblp computer science bibliography at https://dblp.org,
a very reliable source of publication data (for computer science). For each among the 81
authors, we created storylines with their 5, 10, 15, and 20 most frequent coauthors. This
yielded our benchmark set with 324 instances.

Metrics. Metrics for assessing the quality of a visualization look for measurable features
that influence legibility and aesthetics. In the context of storylines, Tanahashi and Ma [29]
discussed formative design criteria and suggested to measure line wiggles, line crossings, and
white-space. Because our drawing style does not produce white-space, we measure wiggles
and crossings. Additionally, we count the number of block crossings (or bundled crossings).
We define the number of wiggles as the number of times a character curve changes position.
This is equivalent to the sum of the sizes of all block crossings where the size of a block
crossing is the number of lines involved. Note that the wiggles metric, as we defined it, is
equivalent to what is known as passages in the context of metro maps [13].

Algorithms. We implemented the following four algorithms for drawing storylines with a
protagonist with few (block) crossings. We call the algorithm that solves 1-SCM-P exactly
1-Sider (see Section 3). Recall that our heuristic for the two-sided variant first splits the
set of characters using a heuristic for Max-Cut and then solves the resulting 1-SCM-P
instances exactly (see Section 4). We call this heuristic for 2-SCM-P 2-Sider. We call our
greedy heuristic for SBCM GreedyBlocks (see Section 7).

As a baseline for our experiments we used a simple heuristic that we call Median. For each
meeting, it selects the median of all attending characters (by their position in the current
permutation) and join the remaining participants with the minimum number of crossings.
For finding a decent start permutation, we use the same trick as with GreedyBlocks and draw
the reversed storyline with a random start permutation.

We combine 1-Sider, 2-Sider, and Median with our algorithm for bundling pairwise
crossings into block crossings (see Section 6). Note that our implementation uses Kuhn’s
classic algorithm [19] for computing a maximum independent set in a bipartite graph; its
cubic runtime is worse than what we stated in Theorem 11, but the algorithm is easy to
implement and fast enough in our setting.

We implemented all algorithms as TypeScript web applications. We performed the tests
under Fedora Linux 40 and node.js v20 on an AMD Ryzen 7 7840HS with 64 GB of RAM.

Results. We applied the four algorithms to each instance in our benchmark set and compared
the results in terms of crossings, block crossings, and wiggles. In Table 1, µ denotes the
average of that metric over all 81 realizations of that algorithm and number of characters.
For every algorithm we also counted how often they produced the best result (with that
metric) out of all algorithms tested; see the columns labeled β.

The results for the largest storylines with 21 authors are shown in detail in Figure 7. All
measurements are relative to GreedyBlocks, so an algorithm with a measure below 1 performs
better than GreedyBlock for that specific data set. For each algorithm, a horizontal line
marks the median of its results. The medians and the detailed results in general support the
overall trend that Table 1 shows.

GD 2024
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Table 1 Experimental results on a dataset of 81 protagonists. The mean µ is calculated for each
algorithm and each number of authors k. β measures the percentage of cases where an algorithm
achieved the best result. Sums over 100 % are possible due to ties.

1-Sider 2-Sider Median GreedyBlocks
k µ β µ β µ β µ β

crossings 6 85.1 0 24.3 88 32.8 21 47.0 11
11 283.0 0 103.3 70 113.3 32 197.3 2
16 536.9 0 211.8 59 222.6 33 418.0 10
21 823.6 0 342.6 53 346.2 42 623.5 5

block crossings 6 33.8 0 18.7 68 21.1 32 23.0 26
11 59.2 0 41.8 59 45.2 22 45.5 30
16 75.9 0 58.9 63 63.4 22 62.8 27
21 87.9 0 72.3 54 76.2 19 72.8 38

wiggles 6 112.6 0 42.9 81 53.5 26 67.3 11
11 286.5 0 136.7 75 152.6 25 208.8 4
16 469.0 0 239.3 68 266.6 26 388.3 6
21 649.1 0 344.1 77 386.6 21 535.8 2

We expected the algorithms that implement our protagonist-focused style to be at a
disadvantage compared to algorithms without that restriction. With about 30 % more block
crossings, 80 % more wiggles, and more than twice as many crossings, for the 1-Sider algorithm
this was clearly the case. The 2-sider algorithm in contrast was competitive in every metric.
Both the 2-sider and Median algorithms match or even outperform the GreedyBlocks heuristic
when it comes to block crossings, showing the effectiveness of our bundling algorithm.

As discussed in Section 6, the bundling algorithm is not always optimal but we can
determine a lower bound on the optimal number of bundles for any input. We evaluate
the quality of our heuristic that splits the storyline whenever it encounters a conflict by
comparing its results with the lower bound. The results can be found in Figure 8. For 1-Sider,
77 % of our test set is bundled optimally; for 2-Sider, 73 %. The results for Median are rather
inconclusive. While most instances are close to the optimum, the overall gap between the
lower bound and the actual number of block crossings is wider. Apparently, the protagonist
benefits bundling.
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Figure 7 Results of 1-Sider , 2-Sider , and Median relative to GreedyBlocks when applied to
the largest instances (with 21 characters) in our benchmark set. Horizontal lines mark the medians.



T. Hegemann and A. Wolff 26:17

0 1 2 3 4 5 6 7
0

100

200

excess bundles

fr
eq

ue
nc

y
1-Sider

0 1 2 3 4 5 6 7
0

100

200

excess bundles

2-Sider

0 10 20 30 39
0

20

40

60

excess bundles

Median

Figure 8 For most of the 324 storylines in our benchmark set, the bundling heuristic operated at
(or very close to) the lower bound.
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Figure 9 For most of the 324 storylines, rebundling reduced the number of block crossings.

The bundling heuristic can also be applied to the results of GreedyBlocks as a post-
processing step. So we run GreedyBlocks, resolve all block crossings into pairwise ones (we
replace any block crossing with a block of a lines intersecting a block of b lines by a × b

pairwise crossings), and then use the bundling heuristic to “rebundle” them again into block
crossings. On the same dataset as used before (324 storylines derived from 81 protagonists)
none of the instances in our dataset had more block crossings than without rebundling,
despite the heuristic nature of our algorithm. See Figure 9 for detailed results. Rebundling
decreased the number of block crossings in 75 % of cases. As a post-processing step it showed
positive results across the board.

Running times. For the dataset of large storylines (20 coauthors) we measured running
times of 100 repetitions per input and algorithm. See Figure 10 for the results. We can
clearly see that bundling takes a toll but overall, for our interactive use case, the running
times are always tolerable and most of the time imperceptible.

9 Conclusion

Storylines with a protagonist arise naturally when visualizing how the peer group of a
scientific author changes over time. Minimizing the number of (block) crossings helps to make
such visualizations more readable. We have presented an efficient algorithm for minimizing
pairwise crossings in a restricted case (1-SCM-P), and we have shown that it is NP-hard to
minimize the number of block crossings (1-SBCM-P) even in the simpler protagonist setting.
Our experimental evaluation has shown that our heuristic for bundling pairwise crossings

GD 2024
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Figure 10 Running times of 1-Sider , 2-Sider , Median , and GreedyBlocks for the largest
instances (with 21 characters) in our benchmark set. Each point is the average of 100 repetitions.

into block crossings performed close to optimal on our benchmark set. Our heuristics for
2-SBCM(-P) are fast enough for interactive applications. The fact that 2-Sider outperformed
GreedyBlocks and Median underlines that more cleverness is needed to exploit the additional
freedom that 2-SBCM offers compared to 2-SBCM-P. On the other hand, having a designated
protagonist can be beneficial in use cases other than the visualization of publication histories;
Kuo et al. [20] used a somewhat less strict notion of a protagonist to visualize (i) interactions
among actors in social media and (ii) disease propagation centered around a primary outbreak.

Still, some questions remain open. Is 2-SCM-P NP-hard? Can bundling in the presence
of meetings (see Section 6.2) be solved efficiently? Can we efficiently minimize the weighted
number of wiggles [11] in the one-sided setting?

Figures 11–14 show some storyline visualizations produced by our algorithms. The
storylines depicted are not necessarily part of our benchmark set. They were specifically
chosen (and some of them cropped) in order to highlight noteworthy properties of the
algorithms. Clicking on the star in a caption opens an interactive storyline visualization of
the same setting using current publication data on dblp.

(a) Drawn by 1-Sider with bundling. ⋆

(b) Drawn by 2-Sider with bundling. ⋆

Figure 11 Clippings of two storylines visualizing Karsten Klein and his 10 most frequent coauthors
in the past 7 years. Note that 2-Sider yields a much more compact drawing (more meetings in the
same sceen space).

https://publines.github.io/?p=*7_19%2F555518_Karsten+Klein+0001&s=1!_**24!aaabb*a10!b7!*aa
https://publines.github.io/?p=*7_19%2F555518_Karsten+Klein+0001&s=1!_**24!aaabb*a10!b7!*ab
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(a) Drawn by 2-Sider with bundling (55 pairwise crossings, 11 block crossings, and 52 wiggles). ⋆

(b) Drawn by GreedyBlocks (44 pairwise crossings, 11 block crossings, and 55 wiggles). ⋆

Figure 12 Two complete storylines visualizing Stefan Felsner and his 16 most frequent coauthors
in the past 3 years. Note that GreedyBlocks produces larger block crossings than 2-Sider.

Figure 13 A clipping of a storyline visualizing Michael Bekos and his 16 most frequent coauthors
in the past 10 years. This realization uses the Median algorithm with bundling. Note that, at
meetings 32 and 33, our bundling heuristic missed an obvious opportunity to merge two 2× 1 block
crossings into a 2× 2 block crossing. ⋆

GD 2024

https://publines.github.io/?p=*7_09%2F298014_Stefan+Felsner&s=1!_**24!aaabb*a16!b3!*ab
https://publines.github.io/?p=*7_09%2F298014_Stefan+Felsner&s=1!_**24!aaabb*a16!b3!*bd
https://publines.github.io/?p=*7_06%2F145716_Michael+A.+Bekos&s=1!_**24!aaabb*a16!c10!*ac


26:20 Storylines with a Protagonist

(a) Drawn by 2-Sider with bundling (58 pairwise crossings, 10 block crossings, and 53 wiggles). ⋆

(b) Drawn by GreedyBlocks (16 pairwise crossings, 8 block crossings, and 24 wiggles). ⋆

Figure 14 Two complete storylines visualizing Vít Jelínek and his 16 most frequent coauthors
in the past 7 years. Note that when more than two disjoint groups collaborate, allowing the
protagonist’s curve to cross other curves can reduce the number of (block) crossings. This happened,
however, not very often in the data set we analyzed.
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1 Introduction

“What is the minimum and maximum number of edges?” is one of the most fundamental
questions one can ask about a finite family of graphs. In some cases the question is easy
to answer; for instance, for the class of all graphs on n vertices the answer is even trivial.
Another such family is the one of planar graphs. More precisely, for planar graphs on n
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every planar graph on n vertices can be augmented (by adding edges) to a maximal planar
graph with exactly 3n− 6 edges. Important advances have recently been made for non-planar
graphs in the context of graph drawing beyond-planarity [15]. But often an answer is much
harder to come by. Specifically, there exist graph classes that are relevant in Graph Drawing
where exact bounds on their edge density are difficult to derive.

The family of graphs that can be embedded on the Euclidean plane with at most k
crossings per edge, called k-planar, is a notable example. Tight bounds on the edge density
of these graphs, for small values of k, are crucial as they lead to improvements on the
well-known Crossing Lemma [3]. This was first observed by Pach and Tóth [22], who back in
1997 presented one of the early improvements of the Crossing Lemma by introducing tight
bounds on the edge density of 1- and 2-planar graphs. Since then, only two improvements
emerged; one by Pach, Radoičić, Tardos, and Tóth [17, 18] in 2004 and one by Ackerman [1]
in 2019, both by introducing corresponding bounds on the edge density of 3- and 4-planar
graphs, respectively. On the other hand, it is worth noting that these progressive refinements
on the Crossing Lemma led to corresponding improvements also on the upper bound on the
edge density of general k-planar graphs with the best one being currently 3.81

√
kn due to

Ackerman [1]. To the best of our knowledge, for 5-planar graphs a tight bound is missing
from the literature, even though it would yield further improvements both on the Crossing
Lemma and on the upper bound of the edge density of general k-planar graphs. Variants of
the Crossing Lemma have also been proposed for specific classes of graphs, e.g., bipartite
graphs [5, 12, 13].

In this work, we continue the study of this line of research focusing on special classes of
graphs; in particular, on graphs not containing some fixed, so-called forbidden substructures.
We consider three settings, according to which the forbidden substructures are 3-cycles
(C3-free), 4-cycles (C4-free) or both of them (girth ≥ 5). For each of these settings, the
problem of finding edge density bounds has been studied both in general and assuming
planarity. In particular, while C3-free n-vertex graphs may have Θ(n2) edges, C4-free graphs
and graphs of girth 5 have at most O(n 3

2 ) edges; see e.g. [14, 23]. For C3-free planar graphs
and planar graphs of girth 5, one can easily derive upper bounds on their edge density using
Euler’s Formula; see, e.g., Table 1. For C4-free planar graphs, Dowden [11] proved that every
such graph has at most 15

7 (n− 2) edges, and that this bound is best possible. For k-planar
graphs, Pach, Spencer and Tóth [19, 20] provided a lower bound on the crossing number of
C4-free k-planar graphs, which can be used to obtain an asymptotic upper bound of O( 3

√
kn)

on the edge density of such graphs with n vertices. Another related research branch focuses
on bipartite graphs (that avoid all odd-length cycles). For this setting, Angelini, Bekos,
Kaufmann, Pfister, and Ueckerdt [5] have proposed lower and upper bounds on the edge
density of several classes of graphs beyond-planarity, including 1- and 2-planar graphs.

Our contribution

We study the class of k-planar graphs in the absence of 3-cycles, 4-cycles and both of them.
Our results are summarized as follows:

For each of the aforementioned settings, we present lower and upper bounds on the
maximum number of edges of k-planar graphs with n vertices when k ∈ {1, 2, 3}. Our
findings are summarized in Table 1.
We next use these bounds to derive corresponding lower bounds on the crossing numbers
of the graphs that avoid the forbidden patterns studied. For a summary refer to Table 2.
We use the two-way dependency between edge density and Crossing Lemma to derive
new bounds on the edge density of k-planar graphs for values of k greater than 3.
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Table 1 Maximum number of edges in k-planar graph classes, ignoring additive constants; results
from the literature are shown in blue square brackets, results form this paper are shown in red angle
brackets, bounds without a citation are derived from Euler’s formula. The lower bound for 2-planar
C4-free graphs trivially holds for 3-planar C4-free graphs.

unrestricted C3-free C4-free Girth 5
k lower upper lower upper lower upper lower upper
0 3n 3n 2n 2n 15n

7 [11] 15n
7 [11] 5n

3
5n
3

1 4n [8] 4n [8] 3n [10] 3n⟨5⟩ 2.4n⟨7⟩ 2.5n⟨6⟩ 13n
6 ⟨9⟩ 2.4n⟨8⟩

2 5n [22] 5n [22] 3.5n [5] 4n⟨10⟩ 2.5n⟨14⟩ 3.93n⟨11⟩ 16n
7 ⟨17⟩ 3.597n⟨15⟩

3 5.5n [18] 5.5n [18] 4n [5] 5.12n⟨18⟩ – 4.933n⟨20⟩ 2.5n⟨22⟩ 4.516n⟨21⟩

k Ω(
√

k)n [22] 3.81
√

kn [1]
3.19

√
kn⟨19⟩ 3.016

√
kn⟨12⟩ 2.642

√
kn⟨16⟩

O( 3√
k)n [20] O( 3√

k)n [20]

Table 2 Bounds on the crossing numbers, ignoring additive constants; hold for sufficiently large m.

unrestricted C3-free C4-free Girth 5
Graph class lower upper lower lower lower
2-planar 10n

3 ⟨3⟩
3-planar 33n

5 ⟨4⟩
general 0.034 m3

n2 [1] 0.049 m3

n2 ⟨18⟩ 0.054 m3

n2 ⟨11⟩ 0.071 m3

n2 ⟨15⟩

To obtain the above results, we leverage different techniques from the literature, such as the
discharging method, the recently introduced density formula for non-planar graphs [16], and
new upper bounds for the crossing number of 2– and 3-planar graphs (Theorems 3 and 4) in
combination with corresponding lower bounds based on the Crossing Lemma.

2 Preliminary Techniques and Tools

In this section, we describe techniques that we use in our proofs, namely, the discharging
method [1, 2] (Section 2.1) and a method derived from a well-known probabilistic proof [3]
of the Crossing Lemma (Section 2.2), which we formalise in the following. This section is
concluded with two theorems of independent interest providing upper bounds on the number
of crossings of (general) 2- and 3-planar graphs (Section 2.3).

2.1 The Discharging Method

In some of our proofs, we employ the discharging method [1, 2], which is summarised as
follows. Consider a biconnected graph G = (V,E) on |V | = n vertices drawn in R2 and its
planarization G′ = (V ′, E′), where at every crossing both edges are subdivided using a new
vertex of degree four. We denote the set of faces of G′ by F ′ and call them cells. For a
face f ∈ F ′ we denote by V(f) and V ′(f) the set of vertices from V and V ′, respectively,
that appear on the boundary ∂f of f . Furthermore, let |f | = |V ′(f)| denote the size of f .

To each face f ∈ F ′ we assign a charge ch(f) = |V(f)|+|f |−4. Using Euler’s formula |V ′|−
|E′| + |F ′| = 2, it is not difficult to check (see [1]) that

∑
f∈F ′ ch(f) = 4n− 8.

We then distribute these charges so as to collect a discharge of at least α, for some α > 0,
for every pair (v, f) ∈ V × F ′ such that v ∈ V(f).

GD 2024
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Then 4n− 8 =
∑

f∈F ′ ch(f) ≥
∑

v∈V α degG(v) = 2α|E| which implies

m = |E| ≤ 2
α

(n− 2) . (1)

The main challenge when applying this discharging method is to manage the redistribution
of charges so that every vertex receives its due, for α as large as possible. As a natural
first attempt, we may have each f ∈ F ′ discharge α to each v ∈ V(f). This leaves f with a
remaining charge of

ch−(f) = ch(f) − α|V(f)| = (1 − α)|V(f)| + |f | − 4 . (2)

If ch−(f) ≥ 0, for all f ∈ F ′, then we are done. However, in general, we may have ch−(f) < 0,
for some f ∈ F ′. In such a case we have to find some other face(s) that have a surplus of
remaining charge they can send to f .

2.2 The Crossing Lemma
We can obtain upper bounds on the density also using the Crossing Lemma [4]. As a basis,
we need both an upper and a lower bound for the crossing number in terms of the number
of vertices and edges. Upper bounds are discussed in Section 2.3. In this section we derive
a lower bound using the Crossing Lemma, along the lines of its well-known probabilistic
proof [3, Chapter 40].

▶ Theorem 1. Let X be a hereditary1 graph family and a, b ∈ R such that for every H ∈ X
with ν vertices and µ edges we have cr(H) ≥ aµ− bν. Then for every graph G ∈ X with n
vertices and m edges with 2am ≥ 3bn we have

cr(G) ≥ 4a3

27b2 · m
3

n2 .

Proof. Let Γ be a minimum-crossing drawing of G. We take a random induced subgraph Gp =
(Vp, Ep) of G by selecting every vertex independently at random with probability p and
consider the drawing Γp of Gp defined by Γ. Then any such graph Gp is in X , and so the
lower bound on cr(Gp) from above holds for Gp and thus also in expectation:

E(cr(Γp)) ≥ a · E(Ep) − b · E(Vp) .

We have E(Vp) = pn and E(Ep) = p2m. Furthermore, note that Γ is a minimum-crossing
drawing of G and, therefore, no pair of adjacent edges crosses. Thus, for a crossing to be
present in Γp, all four endpoints of the crossing edge pair need to be selected. Therefore, we
have E(cr(Γp)) = p4cr(Γ) = p4cr(G). Putting everything together yields

cr(G) ≥ am

p2 − bn

p3 . (3)

The function on the right hand side of the above inequality has its unique maximum
at p = 3bn

2am . Setting p = 3bn
2am to (3) yields:

cr(G) ≥ 4a3

27b2 · m
3

n2 . (4)

As a sanity check, we need p ≤ 1. So the bound holds for 2am ≥ 3bn. ◀

1 Closed under taking induced subgraphs.
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The simple observation that one can remove relatively few edges from a k-planar graph
to obtain a (k− 1)-planar graph allows to lift density bounds for i-planar graphs, with i < k,
to bounds for k-planar graphs. By iteratively removing edges from the graph and a drawing
of it with maximum number of crossings, we can show the following. (The proof can be
found in the full version of this paper [6].)

▶ Theorem 2. Let X be a monotone2 graph family, let k be a positive integer, and let µi(n)
be an upper bound on the number of edges for every i-planar graph from X on n vertices,
for 0 ≤ i ≤ k − 1. Then for every G ∈ X with n ≥ 4 vertices and m edges we have

cr(G) ≥ km−
k−1∑
i=0

µi(n) .

2.3 Upper Bounds on the Crossing Number of 2- and 3-planar graphs
The Crossing Lemma provides us with pretty good lower bounds for crossing numbers. As a
complement, we also need corresponding upper bounds. For a k-planar graph G, we have a
trivial bound of cr(G) ≤ km/2. So if G is 2-planar, then cr(G) ≤ m ≤ 5n− 10. But we can
do better, as the following theorem demonstrates.

▶ Theorem 3. Every 2-planar graph on n ≥ 2 vertices can be drawn with at most (10n−20)/3
crossings.

Proof. Let G = (V,E) be a 2-planar graph on n vertices, and let Γ be any 2-plane drawing
of G with a minimum number of crossings (among all 2-plane drawings of G). We allow
multiple edges between the same pair of vertices in Γ, but no loops nor homotopic edge pairs
(that is, for each pair e1, e2 of edges between the same two vertices, neither of the two parts
of the plane bounded by the simple closed curve e1 ∪ e2 is empty). Without loss of generality
we assume that Γ is maximal 2-plane, that is, adding any edge to Γ results in a graph that is
not 2-plane anymore. We may assume that adjacent edges do not cross in Γ [18, Lemma 1.1].
We claim that a 1/3-fraction of the edges in Γ is uncrossed.

Let us first argue how the claim implies the statement of the theorem. Denote by x the
number of edges that have at least one crossing in Γ. The number γ of crossings in Γ is
upper bounded by 2x/2 = x because every edge has at most two crossings and every crossing
is formed by exactly two edges. Every 2-planar graph on n ≥ 3 vertices has at most 5n− 10
edges [21, 22], and this bound also holds for 2-plane multigraphs without loops or parallel
homotopic edges [7]. It follows that γ ≤ x ≤ 2

3 (5n− 10) = (10n− 20)/3.
So it remains to prove the claim. Consider a vertex v and denote by X(v) the set of edges

incident to v that have at least one crossing in Γ. Let e ∈ X(v), let c denote the crossing
of e closest to v, let e− denote the part of e between v and c, and let χ(e) denote the edge
that crosses e at c. As χ(e) has at most two crossings, at least one of the two curves that
form χ(e) \ c is uncrossed. Pick such a curve and denote it by χ(e)−. The curve χ(e)− has
two endpoints, one of which is c and the other is a vertex of G, which we denote by ψ(e). As
adjacent edges do not cross in Γ, we have ψ(e) ̸= v. By closely following e− and χ(e)− we
can draw a curve between v and ψ(e) in Γ that does not cross any edge of Γ. Thus, by the
maximality of Γ we conclude that vψ(e) is an edge in Γ, and it is uncrossed because Γ is
crossing-minimal by assumption. In this way, we find an uncrossed edge η(e) = vψ(e) for

2 Closed under taking subgraphs and disjoint unions.
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each e ∈ X(v). Different edges e ̸= f in X(v) may yield the same edge η(e) = η(f). But in
this case by construction η(e) = η(f) is homotopic to both e− ∪ χ(e)− and f− ∪ χ(f)−, that
is, the simple closed curve e− ∪ χ(e)− ∪ f− ∪ χ(f)− bounds a face in Γ \ η(e). It follows that
there is no other edge g ∈ X(v) \ {e, f} for which η(g) = η(e), that is, for every uncrossed
edge u incident to v in Γ we have |η−1(u) ∩ X(v)| ≤ 2. Therefore, at least a 1/3-fraction
of the edges incident to v in Γ is uncrossed. As this holds for every vertex v, it also holds
globally, which completes the proof of the claim and of the theorem. ◀

In a similar fashion, we can obtain an improved upper bound for 3-planar graphs, as the
following theorem demonstrates. The proof can be found in the full version of this paper [6].
We remark that the argument used in the proof of Theorem 4 does not work for larger k > 3.

▶ Theorem 4. Every 3-planar graph on n ≥ 2 vertices can be drawn with at most (33n−66)/5
crossings.

3 1-planar graphs

In this section we focus on 1-planar graphs and we present lower and upper bounds on their
edge density assuming that they are either C3-free (Section 3.1) or C4-free (Section 3.2) or
of girth 5 (Section 3.3).

3.1 C3-free 1-planar graphs

We start with the case of C3-free 1-planar graphs, where we can derive an upper bound of
3(n− 2) on their edge density (see Theorem 5); for a matching lower bound (up to a small
additive constant) refer to [10].

▶ Theorem 5. Every C3-free 1-planar graph with n ≥ 4 vertices has at most 3(n− 2) edges.

Proof. We derive the upper bound by an application of the recently introduced edge-density
formula for non-planar graphs [16] given as follows:

|E| ≤ t (|V | − 2) −
∑
c∈C

(
t− 1

4 ||c|| − t

)
− |X |, (5)

where C and X denote the sets of cells and crossings, respectively. By setting t = 3 to (5),
one gets |E| ≤ 3(n− 2) + 1

2 |C5| − 1
2 |C6| − . . .− |X |, where Ci denotes the set of cells of size i

with the size of a cell being the number of vertices and edge-segments on its boundary. Since
each crossing is incident to at most two cells of size 5 (as otherwise a C3 is inevitably formed),
it follows that 1

2 |C5| ≤ |X |, which by the formula given above implies that |E| ≤ 3(n− 2). ◀

3.2 C4-free 1-planar graphs

We continue with the case of C4-free 1-planar graphs. As in the case of C3-free 1-planar
graphs, we can again derive an upper bound of 3(n− 2) for the edge-density using the density
formula of (5), since each crossing is incident to at most two cells of size 5 (as otherwise a
C4 is formed). In the following theorem, we present an improved upper bound.

▶ Theorem 6. Every C4-free 1-planar graph with n ≥ 4 vertices has at most 5
2 (n− 2) edges.



M. A. Bekos et al. 27:7

Proof. We apply the discharging method with α = 4/5 so that the statement follows by (1).
By (2) we have

ch−(f) = 1
5 |V(f)| + |f | − 4 . (6)

In particular, we have ch−(f) > 0 for all faces with at least four edge segments on the
boundary. It remains to handle triangles.

As the graph G is 1-planar, every edge of G′ is incident to at least one vertex in V . It
follows that

|V(f)| ≥ ⌈|f |/2⌉ , (7)

for each f ∈ F ′. So every triangle f ∈ F ′ has either three vertices in V and ch−(f) = −2/5
(type-1) or two vertices in V and one vertex in V ′ \ V with ch−(f) = −3/5 (type-2).

We will argue how to make up for the deficits at triangles by transferring charges from
neighboring faces.

First, let us discuss faces of size at least five. So consider f ∈ F ′ with |f | ≥ 5, and
let k denote the number of triangles adjacent to f in the dual of G′. Then for any vertex
v ∈ V ′(f) \ V(f), at most one of the two edges incident to v along ∂f can be incident to a
triangle of F ′ (because otherwise the two edges of G that cross at v induce a C4). Thus,

k ≤ |V(f)| + |f | − |V(f)|
2 = |f | + |V(f)|

2 .

Together with (6) we obtain

ch−(f) = 1
5 |V(f)| + |f | − 4 = |f | + |V(f)|

5 + 4
5 |f | − 4 ≥ 2

5k ,

which shows that f can send a charge of 2/5 to every adjacent triangle.

2
5

2
5

1
5

2
5

2
5

1
5

(a) type-1.

2
5

2
5

(b) type-2.

2
5

2
5

1
5

2
5

2
5

2
5

2
5

1
5

(c) type-2.

Figure 1 Triangles in the planarization of C4-free 1-planar graphs.

Next, consider a face f with |f | = 4. Combining (2) and (7) we obtain ch−(f) =
|V(f)|/5 ≥ 2/5. We claim that f can send a charge of 2/5 to every triangle that is adjacent
to f via an edge of E′ \E and a charge of 1/5 to every triangle that is adjacent to f via an
edge of E. To see this, let us consider the three different types of quadrangles in F ′. By (7)
we have |V(f)| ≥ 2.

If |V(f)| = 2, then there is at most one triangle adjacent to f because any two triangles
adjacent to f induce a C4. So in this case f can send a charge of 2/5 to every adjacent triangle.
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If |V(f)| = 3, then any triangle adjacent to f via an edge of E′ \ E induces a C4 in G.
Thus, there exist at most two triangles adjacent to f and every such triangle is adjacent via
an edge of E. So in this case f can send a charge of 1/5 to every adjacent triangle.

Finally, if |V(f)| = 4, then every triangle adjacent to f is adjacent via an edge of E.
As ch−(f) = 4

5 , also in this case f can send a charge of 1/5 to every adjacent triangle. This
completes the proof of our claim.

So let us consider the incoming charges at triangles. For a type-1 triangle f , neither of
the adjacent faces is a type-1 triangle because such a pair would induce a C4 in G. If at
least two adjacent faces are type-2 triangles, then for each such triangle g, neither of the
other ( ̸= f) two faces adjacent to g are triangles because together with f and g they would
induce a C4. It follows that g receives a charge of 2 · 2/5 = 4/5 from its two other ( ̸= f)
neighbors, see Figure 1a. As ch−(g) = −3/5, the remaining charge of 1/5 can be passed on
to f . Then f receives a charge of 2 · 1/5 = 2/5 = − ch−(f) overall. Otherwise, at least two of
the three faces adjacent to f have size at least four. Each passes a charge of 1/5 across the
joint edge, which is in E, to f . So the deficit of ch−(f) = −2/5 is covered in this case as well.

It remains to consider type-2 triangles. Let f be a type-2 triangle, and consider the two
faces g1, g2 that are adjacent to f via an edge of E′ \E. If both g1 and g2 are triangles, then
they induce a C4 in G, in contradiction to G being C4-free. If both g1 and g2 have size at least
four, then f receives a charge of 2 · 2/5 = 4/5 from them, which covers ch−(f) = −3/5 and
even leaves room to sent a charge of 1/5 across its third edge, which is in E, see Figure 1b.

Hence, we may assume that without loss of generality g1 is a type-2 triangle and |g2| ≥ 4.
The third face g3 /∈ {g1, g2} adjacent to f is not a type-1 triangle because then g3 together
with g1 would induce a C4 in G. If g3 is a type-2 triangle, then neither of its two other ( ̸= f)
neighbors is a triangle because together with f and g1 there would be a C4 in G. Therefore,
we are in the case discussed above, where g3 receives a charge of 4/5 from its neighbors and
passes on 1/5 to f . Otherwise, we have |g3| ≥ 4 and thus g3 sends a charge of 1/5 to f across
the joint edge, which is in E. Together with the charge of 2/5 that f receives from g2 via
the joint edge, which is in E′ \ E, this suffices to cover ch−(f) = −3/5, see Figure 1c. ◀

▶ Theorem 7. For every sufficiently large n, there exists a C4-free 1-planar graph on n

vertices with 2.4n−O(1) edges.

Proof sketch. It can be observed that the construction in Figure 2a is a 1-plane drawing
and achieves the required number of edges. To show that it is C4-free, we first observe that
all (red) degree four vertices behave symmetrically and all (black) degree five vertices behave
symmetrically. Further, all neighbors of degree four vertices have degree five, thus any cycle
must contain a degree five vertex. We consider an arbitrary degree five vertex b and show
that each neighbor of a vertex in N(b) (circled in Figure 2b) has one unique neighbor in N(b)
(indicated by arrows in Figure 2b); see Figure 2b. Thus, the construction is C4-free. ◀

3.3 1-planar graphs of girth 5
▶ Theorem 8. Every 1-planar graph of girth 5 on n vertices has at most 2.4n edges.

Proof. We go through the proof of the 1-planar C4-free case, and note that the arrow case
as well as the type-1 triangles do not occur. If we choose α = 5

6 , the type-2 triangles have
a negative charge of − 4

6 , and can get charges of 2
6 from their immediate neighboring cells

which are of size at least 4. Note that for the case that those neighboring cells are of size
4, they have only one type-2 triangle by the C4-freeness property, which suffices to provide
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(a)

b

(b)

Figure 2 (a) A dense C4-free 1-plane graph. (b) The neighborhood of a vertex b.

enough charge. If a neighboring cell c has size 5, then, by 1-planarity, it shares with at least
one neighbor a planar edge, through which it does not have to contribute charge. Since the
remaining charge of c is at least 3 · 1

6 + 5 − 4 = 1.5, it can contribute to four neighbours
2
6 charge each. If a neighboring cell c is of size larger than 5, then its remaining charge is
at least 1

6 |V(c)| + |c| − 4 ≥ |c| − 3 ≥ 2
6 |c|, and therefore there is enough charge to provide

2
6 charge to every neighboring type-2 triangle. This immediately gives that an n-vertex
1-planar graph of girth 5 has at most 12

5 n = 2.4n edges. ◀

2
7

2
7

1
7

Figure 3 Triangles in the planarization of 1-planar graphs of girth 5.

▶ Theorem 9. For every sufficiently large n, there exists a 1-planar graph of girth 5 on n

vertices with (2 + 1
6 )n−O(1) ≈ 2.167n−O(1) edges.

Proof sketch. It can be observed that the construction in Figure 4a is a 1-plane drawing and
has the required number of edges. To show that it has girth 5, we first observe the subgraph
within each hexagonal tile has girth 5. It is a Petersen graph, which is known to have girth 5.
It follows that every C3 or C4, if any, uses vertices from at least two different tiles. Second,
we argue that no C3 or C4 uses a red edge. The neighbors of the two endpoints of a red edge
are at pairwise distance at least two; see Figure 4b. As red edges are the only edges that
cross tile boundaries and boundary edges are shared among adjacent tiles, it follows that
every C3 or C4, if any, uses at least two nonadjacent vertices u, v on the boundary ∂T of
a tile T and exactly one vertex z in the interior of T . Then u and v are at distance three
along ∂T and thus do not form a C3. Further, the tile T is the unique common tile of u
and v, so there is no common neighbor of u and v outside of T . As z is the only common
neighbor of u and v inside T , it follows that there is no C4 through u, v, z. ◀

4 2-planar graphs

In this section, we focus on 2-planar graphs and we present bounds on their edge density
assuming that they are C3-free (Section 4.1) or C4-free (Section 4.2) or of girth 5 (Section 4.3).

GD 2024
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(a) (b)

Figure 4 (a) A 1-planar graph of girth 5 with about 2.167n edges (Theorem 9). The construction
consists of repeated triplets of hexagonal tiles (bordered by thick edges, also shown in (b)).

4.1 C3-free 2-planar graphs
For the maximum edge density of C3-free 2-planar graphs, we can derive an upper bound of
4(n− 2) (see Theorem 10); for a lower bound of 3.5(n− 2) refer to [5].

▶ Theorem 10. C3-free 2-planar graphs with n vertices have at most 4(n− 2) edges.

Proof. To derive the upper bound, we apply the discharging method with α = 1
2 so that the

statement follows by (1). By (2) we have

ch−(f) = 1
2 |V(f)| + |f | − 4 . (8)

In particular, we have ch−(f) ≥ 0 for all faces with at least four edges on the boundary.
It remains to handle triangles. Since we consider C3-free graphs, we distinguish between
three types of triangles; those with 0, 1 and 2 vertices on their boundaries and it is not
difficult to observe that the latter ones have zero charge, while the former ones have charge
−1 and − 1

2 , respectively.
For each triangle f with zero or one vertices on its boundary, our strategy is to transfer

at least 1
4 and at most 1

3 units of charge from the cells neighboring f . If f has no vertices on
its boundary, then we will transfer 1

3 units of charge from each neighboring cell. Otherwise,
we will transfer 1

4 units of charge each from two neighboring cells of f ; see Figure 5.
Assume first that |V(f)| = 0; see Figure 5a. Since f is triangular, it follows that f is

formed by three mutually crossing edges. Our strategy is to transfer 1
3 units of charge from

each cell neighboring f . Since f neighbors three such cells, this is enough to bring the
remaining charge of f from −1 to 0. Let c be a neighboring cell of f . It follows that |c| ≥ 4
with two vertices on its boundary. Thus its remaining charge is:

1
2 |V(c)| + |c| − 4 ≥ 1 − 4 + |c| = |c| − 3

This implies that if |c| ≥ 5, then the remaining charge of c is at least 2, in which case c can
transfer 1

3 units of charge to f and its remaining charge will be enough to distributed to the
rest of its neighboring cells. For the second case, we assume |c| = 4. Since c has two vertices
that appear consecutively on its boundary, it follows that one of the sides that bound c is
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Figure 5 Triangles in the planarization of C3-free 2-planar graphs.

crossing free. Denote this side by e and let c′ be the cell on the other side of e. It follows
that c′ is neither a triangle with zero vertices nor a triangle with one vertex on its boundary.
Hence, there is no need to transfer charge from c to c′ according to our strategy. It follows
that there are at most 3 neighboring cells that c may have to transfer charge to. Hence, c
can transfer 1

3 units of charge to f and its remaining charge will be enough to distributed to
the rest of its neighboring cells, if needed.

To complete the proof of the theorem, we next consider the case in which |V(f)| = 1;
see Figure 5b. Let u be the vertex on the boundary of f and let (u1, u2) be the edge with one
of its segments on the boundary of f . Let c1 and c2 be the two neighboring cells of f that
share the two sides of f incident to its vertex. Since we consider C3-free graphs, it follows
that (u, u1) and (u, u2) cannot be both in the graph. Assume that (u, ui) with i ∈ {1, 2} is
not part of the graph. Then, the corresponding cell c ∈ {c1, c2} neighboring f and having
vertex u and ui on its boundary has size at least 4, which means that its remaining charge is
at least:

1
2 |V(c)| + |c| − 4 ≥ 1 − 4 + |c| = |c| − 3 ≥ 1

4 |c|

Hence, we can safely transfer 1
4 units of charge from c to f , since the remaining charge of c

would be enough for being distributed to the remaining cells neighboring c, if needed. This
implies that if both (u, u1) and (u, u2) are not in the graph, then each of the cells c1 and c2
can transfer 1

4 units of charge to f and then we are done. So, in the rest we can assume that
this is not the case.

Let c′ be the face neighboring f that is on the other side of the edge (u1, u2). If c′ has at
least two vertices on its boundary, then as above we transfer 1

4 units of charge from c′ to f
and the remaining charge of c′ would be enough for being distributed to the remaining cells
neighboring c′, if needed. So, it remains to consider the cases in which c′ has either no or
one vertex on its boundary.

Assume first that c′ has one vertex on its boundary, that is, V(c′) = 1. Then:

1
2 |V(c′)| + |c′| − 4 ≥ 1

2 − 4 + |c′| = |c′| − 3.5

GD 2024
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If c′ is such that |c′| ≥ 5, then |c′| − 3.5 ≥ 1
4 |c′| holds and as above we can safely transfer

1
4 units of charge from c′ to f . So, it remains to argue for the cases in which |c′| ∈ {3, 4}.
First, we observe that |c′| ̸= 3, as otherwise the two edges incident to u bounding f would
form a pair of parallel edges. Hence, we may assume that |c′| = 4; see Figure 5c. Since c′ has
one vertex on its boundary, its remaining charge is 1

2 . In this case, we argue that at most
two neighboring cells, namely, f and another one, may need additional charge from c′. In
particular, the two cells neighboring c′ that have the vertex of c′ on their boundary do not
need additional charge, since none of them can be a triangle with zero or one vertex on its
boundary. This means that we can safely transfer 1

4 units of charge from c′ to f , as desired.
To complete the case analysis, we need to consider the case that c′ has no vertex on its

boundary. In this case, the remaining charge of c′ is |c′| − 4. If |c′| ≥ 6, then the remaining
charge of c′ is at least 2, which implies that 1

4 units of charge can be safely transferred to f
and the remaining charge of c′ will be enough for being distributed to the rest of the cells
neighboring c′, if needed. So, we may assume that |c′| ∈ {3, 4, 5}. First, we observe that
|c′| ̸= 3, as otherwise the two edges incident to u bounding f would form a pair of crossing
edges, which is not possible in simple drawings. Hence, |c′| ∈ {4, 5}. If |c′| = 4, then its
remaining charge is 0 and clearly it cannot transfer charge to f . In this case, we consider the
cell c′′ neighboring c′, which does not share a crossing point with f ; see Figure 5d. It follows
that |c′′| ≥ 4 and c′′ has two vertices on its boundary. Since c′ does not require a transfer of
charge, we transfer 1

4 units of charge from c′′ to f and as in the first case of the proof the
remaining charge of c′′ for being distributed to the rest of the cells neighboring c′′.

To complete the proof of the case |V(f)| = 1, consider now the case |c′| = 5. In this
case, the remaining charge of c′ is 1 and this is enough to contribute a 1

4 to at most four
neighboring cells. Hence, we may assume that c′ has to transfer 1

4 units of charge to exactly
five neighboring cells; see Figure 5e. In this case, it follows that none of the edges (u, u1)
and (u, u2) is part of the graph (as otherwise there is a C3; a contradiction). However, we
have assumed that one of these edges belongs to the graph. ◀

4.2 C4-free 2-planar graphs
We continue with the case of C4-free 2-planar graphs, deriving an upper bound 3.929n on their
maximum edge density (Theorem 11); for a lower bound of 2.5n−O(1) refer to Theorem 14.

▶ Theorem 11. Every C4-free 2-planar graph on n ≥ 2 vertices has at most

3

√
190, 125
3, 136 n < 3.929n

edges.

Proof. Let G be a C4-free graph with n vertices and m edges, and let Γ be a minimum-
crossing drawing of G. Then Theorem 2 in combination with the upper bound of 15

7 (n− 2)
by Dowden [11] regarding the edge density of C4-free planar graphs and Theorem 6 yields:

cr(G) ≥ 2m− 5
2n− 15

7 n = 2m− 65
14n .

By applying Theorem 1 for a = 2 and b = 65
14 , we obtain the following lower bound on the

number of crossings of G when m ≥ 195n
56 ≈ 3.482n.

cr(G) ≥ 6, 272m3

114, 075n2 . (9)
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Assume now that G is additionally 2-planar. Then by Theorem 3, we obtain cr(G) ≤ 10n
3 .

Hence, by (9) we have:

6, 272m3

114, 075n2 ≤ 10
3 n ⇐⇒ m3 ≤ 190, 125

3, 136 n3 . ◀

▶ Corollary 12. Every C4-free k-planar graph on n ≥ 2 vertices and m ≥ 3.483n edges has
at most√

114, 075
12, 544 ·

√
k · n < 3.016

√
kn

edges.

Proof. Let G be a C4-free k-planar graph with n vertices and m ≥ 3.483n edges. By (9), we
know a lower bound on its number of crossings, namely,

cr(G) ≥ 6, 272m3

114, 075n2 .

On the other hand, since G is k-planar, it holds km
2 ≥ cr(G). Combining those, we get:

12, 544m2

114, 075n2 ≤ k ⇐⇒ m ≤
√

114, 075
12, 544 kn . ◀

▶ Remark 13. An asymptotically better bound of Θ( 3
√
kn) edges, which however holds for

significantly denser graphs only, can be obtained by combining an improved crossing lemma
for C4-free graphs by Pach, Spencer, and Tóth [20, Theorem 3.1] with the trivial upper
bound of at most km/2 crossings for k-planar graphs.

▶ Theorem 14. For every sufficiently large n, there exists a C4-free 2-planar graph on n

vertices with 2.5n−O(1) edges.

Proof sketch. The construction is illustrated in Figure 6. The proof that it fulfills the
claimed properties follows the same ideas as the proof of Theorem 7. The proof can be found
in the full version of this paper [6]. ◀

v

Figure 6 A 2-plane graph with ≈ 2.5n edges, shown red and blue. Gray shows the grid only.
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4.3 2-planar graphs of girth 5
We conclude Section 4 with the case of 2-planar graphs of girth 5.

▶ Theorem 15. Every 2-planar graph of girth 5 on n vertices has at most

3

√
11, 163

240 n < 3.597n

edges.

Proof. Let G be a graph of girth 5 with n vertices and m edges. As a consequence of Euler’s
Formula, every planar graph of girth g on n ≥ 3 vertices has at most g(n− 2)/(g − 2) edges.
Plugging this together with Theorem 8 into Theorem 2 we get

cr(G) ≥ 2m− 5
3n− 12

5 n = 2m− 61
15n .

By applying Theorem 1 for a = 2 and b = 61
15 , we obtain the following lower bound on the

number of crossings of G when m ≥ 61n
20 .

cr(G) ≥ 800m3

11, 163n2 . (10)

Assume now that G is additionally 2-planar. Then by Theorem 3, we obtain cr(G) ≤ 10n
3 .

Hence, by (10) we have:

800m3

11, 163n2 ≤ 10
3 n ⇐⇒ m3 ≤ 11, 163

240 n3 . ◀

The next corollary follows from (10) of the proof of Theorem 15; its proof is analogous to
the one of Corollary 12.

▶ Corollary 16. Every k-planar graph of girth 5 on n ≥ 2 vertices and m ≥ 3.05n edges has
at most√

11, 163
1, 600 ·

√
k · n < 2.642

√
kn

edges.

Proof. Let G be a k-planar graph of girth 5 with n vertices and m ≥ 3.05n edges. By (10),
we know a lower bound on its number of crossings, namely,

cr(G) ≥ 800m3

11, 163n2 .

On the other hand, since G is k-planar, it holds km
2 ≥ cr(G). Combining those, we get:

1, 600m2

11, 163n2 ≤ k ⇐⇒ m ≤
√

11, 163
1, 600 kn . ◀

▶ Theorem 17. For every sufficiently large n, there exists a 2-planar graph of girth 5 on n

vertices with (2 + 2
7 )n−O(1) ≈ 2.286n−O(1) edges.

Proof sketch. The construction in Figure 7 is an extension of the construction in Figure 4
that achieves the claimed properties. The proof of those properties follows the same ideas as
the proof of Theorem 9. For details refer to the full version of this paper [6]. ◀
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(a) (b)

Figure 7 Illustration for the proof of Theorem 17. The construction consists of repeated triplets
of hexagonal tiles (bordered by thick edges, also shown in (b)).

5 3-planar graphs

This section is devoted to 3-planar graphs and is structured analogously to Section 4. For
space reasons, the proofs of the upper bounds have been deferred to only the full version of
this paper [6], as their proofs are very similar to the corresponding ones of Section 4.

5.1 C3-free 3-planar graphs
▶ Theorem 18. Every C3-free 3-planar graph on n ≥ 2 vertices has at most

3

√
2, 673

20 n < 5.113n

edges.

▶ Corollary 19. Every C3-free k-planar graph on n ≥ 2 vertices and m ≥ 9
2n edges has at

most√
81
8 ·

√
k · n < 3.182

√
kn

edges.

5.2 C4-free 3-planar graphs
▶ Theorem 20. Every C4-free 3-planar graph on n ≥ 2 vertices has at most

3

√
3, 764, 475

31, 360 n < 4.933n

edges.

▶ Theorem 21. Every 3-planar graph of girth 5 on n vertices has at most

3

√
368, 379
4, 000 n < 4.516n

edges.
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▶ Theorem 22. For every sufficiently large n, there are 3-planar graphs of girth 5 with
2.5n−O(1) edges.

6 Conclusions and open problems

In this work, we continued an active research branch in Graph Drawing seeking for new edge
density bounds for k-planar graphs that avoid certain forbidden substructures, namely, cycles
of length 3 or 4 or both of them. For each of these settings, our focus was on k-planar graphs,
with k ∈ {1, 2, 3}, as well as on general k. Several open problems have been triggered:

The first one is the obvious one, that is, to close the gaps between the lower and the
upper bounds reported in Table 1. We believe that this is a challenging open problem.
In particular, it seems to us that the lower bounds for 2- and 3-planar can be improved.
Note that there is a lot of empty space to fill in Table 2 where we did not find any
reasonably good bounds.
Another promising research direction is to study the edge density of k-planar graphs that
are either Ck free for k > 4 or are of girth r with r > 5.
Even though we focused on k-planar graphs, we believe that extending the study to other
beyond-planar graph classes is a challenging research direction that worth to follow.
On the algorithmic side, the recognition problem is of interest; in particular, assuming
optimality. A concrete question here, e.g., is whether the problem of recognizing if a
graph is optimal C3-free 1-planar can be done in polynomial time. Recall that in the
general setting this problem can be solved in linear time [9].
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Abstract
We show that if a bipartite graph G with n ≥ 3 vertices can be drawn in the plane such that (i)
each edge is involved in at most three crossings per edge or (ii) each crossing is assigned to one of
the two involved edges and each edge is assigned at most one crossing, then G has at most 4n − 8
edges. In both cases, this bound is tight up to an additive constant as witnessed by lower-bound
constructions. The former result can be used to improve the leading constant for the crossing lemma
for bipartite graphs which in turn improves various results such as the biplanar crossing number or
the maximum number of edges a bipartite k-planar graph can have.
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1 Introduction

There is a rich literature about planar graphs which includes both algorithmic and combin-
atorial results. Since minimizing the number of edge crossings in a drawing improves its
readability [18], a drawing should be planar whenever possible. Using Euler’s Formula, one
can easily derive that a planar graph with n vertices can have at most 3n − 6 edges, which,
however, implies that most graphs are in fact not planar. Empirical studies showed that not
only the number of crossings but also their topological/geometrical properties play a crucial
role regarding the readability of a drawing [9, 12]. This gave rise to the research area of
beyond planarity, where graph classes are defined in terms of forbidden crossing configurations
– see [8] for a survey of the area. While there is a plethora of beyond-planar classes, we are
here concerned with k-planar and k-gap-planar graphs. A graph G is k-planar if there exists
a drawing of G in the plane such that each of its edges has at most k crossings. A graph G

is k-gap-planar, if G can be drawn in the plane such that there exists an assignment of every
crossing to one of the involved edges such that each edge is assigned at most k crossings.
While the research of k-planar graphs (in particular, 1-planar graphs) started already more
than half a century ago [15], k-gap-planar graphs were introduced quite recently [5] and can,
in some sense, be interpreted as an asymmetric version of k-planar graphs. The authors
of [5] showed that every 2k-planar graph is k-gap-planar, but, for any fixed choice of k, there
exists a 1-gap-planar graph which is not k-planar.
One of the most studied questions regarding a beyond-planar graph class is to determine
its edge density, i.e., the maximum number of edges an n-vertex graph that belongs to this
class can have, see e.g. [2, 7, 11] for some work in this direction. There is an additional
motivation to study the edge density of k-planar graphs in particular: Improved results

© Aaron Büngener and Maximilian Pfister;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Graph Drawing and Network Visualization (GD 2024).
Editors: Stefan Felsner and Karsten Klein; Article No. 28; pp. 28:1–28:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aaron.buengener@student.uni-tuebingen.de
mailto:maximilian.pfister@uni-tuebingen.de
https://orcid.org/0000-0002-7203-0669
https://doi.org/10.4230/LIPIcs.GD.2024.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


28:2 On the Edge Density of Bipartite 3-Planar and Bipartite Gap-Planar Graphs

Table 1 Overview of related edge density bounds and summary of our results (red angle brackets).

Bipartite

Graph class Upper bound Lower bound
Previous Ours

1-planar: 3n − 8 [10] – 3n − 8 [10]
2-planar: 3.5n − 7 [3] – 3.5n − 12 [3]
3-planar: 5.205n [3] 4n − 8 ⟨6⟩ 4n − 12 ⟨7⟩
k-planar: 3.005

√
kn [3] 2.871

√
kn ⟨17⟩ –

1-gap-planar: 4.25n [16] 4n − 8 ⟨5⟩ 4n − 16 [16]
k-gap-planar: 4.25

√
kn [16] 4.06n ⟨18⟩ –

in turn improve the leading constant of the celebrated Crossing Lemma which has various
applications, see [1] – currently there are tight (up to a constant number of edges) bounds for
k ∈ {1, 2, 3, 4} [15, 14, 13, 1]. The edge density was also studied when one imposes additional
restrictions on (i) the drawings (e.g., the drawing is outer [6]) or on (ii) the graphs, where
the most common restriction is to consider bipartite graphs, i.e., graphs which do not contain
any odd cycle. In Table 1, we highlight the important past results regarding the edge density
of bipartite graphs for our work.

Our contribution

In Section 3 and Section 4, we show that both bipartite 1-gap-planar graphs as well as
bipartite 3-planar graphs on n vertices have at most 4n − 8 edges, thus (partially) answering
an open problem posed in [3] and proving a conjecture posed in [16]. In Section 5, we use
the result of Section 4 to improve the constant of the bipartite crossing lemma from 1

18.1
to 1

16.5 which in turn improves the upper bound on the edge density of bipartite k-planar
graphs from ≈ 3.005

√
kn to ≈ 2.871

√
kn.

2 Preliminaries

Throughout the paper, we will assume that all drawings are simple in the sense that no two
adjacent edges cross and no edge crosses itself1. We consider bipartite graphs G = (A, B, E)
with A ∩ B = ∅ and let n = |A ∪ B| and m = |E|. We will usually denote a vertex of A (of
B) by ai (by bi). We do not require that G is simple, i.e., several edges between the same
two endpoints are allowed if they are non-homotopic in the corresponding drawing Γ, i.e., for
any such pair of edges, both the interior and the exterior of the closed region (defined by the
pair) contains at least one vertex of G.

Let B be a beyond-planar graph class. Denote by G the set of all tuples (G, Γ) where
G ∈ B is a bipartite graph of n vertices and Γ is a drawing of G (satisfying the constraints of
B) where any two copies of an edge are non-homotopic. Let G′ ⊂ G consist of all elements
(G, Γ) such that G has the maximum number of edges among all graphs contained in G.
Finally, let G′′ ⊂ G′ consist of all elements (G, Γ) such that Γ has the minimum number of
crossings among all drawings contained in G′. In the remainder, we will refer to such a tuple
(G, Γ) ∈ G′′ as a MaxMin tuple (since G has the maximum number of edges and since Γ has
the minimum number of crossings).

1 we explicitly allow that two edges cross more than once
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3 Bipartite 1-gap-planar graphs

Since we only consider 1-gap-planar graphs, we will abbreviate it henceforth by gap-planar.
The crossing graph of a drawing Γ of graph G has a vertex ve for any edge e of G and an
edge (ve, ve′) if and only if the edges e and e′ intersect in Γ. The following lemma is directly
derived from the definition of gap-planarity.

▶ Lemma 1 ([5]). Let G be a gap-planar graph. Then G admits a gap-planar drawing Γ
such that the crossing graph of Γ is a pseudoforest.

For the remainder of this section, we will fix (G, Γ) as a MaxMin tuple (regarding gap-
planarity). In order to show that G has at most 4n − 8 edges, we want to find a set of edges
of G, denoted by X , such that no two edges of X cross in Γ and such that |X | ≥ m

2 . The
result then follows immediately since X induces a bipartite planar subgraph of G, hence
|X | ≤ 2n − 4 and thus m ≤ 4n − 8 follows. To define X , we will consider the components of
the crossing graph I of Γ. Recall that by definition, no two edges that belong to different
components of I intersect, thus we can consider the components separately.

▶ Lemma 2. Let X be an arbitrary component of I. If X (i) is a tree, (ii) contains an
even-length cycle or (iii) contains an odd-length cycle C and at least one rooted tree at
a vertex of C (that is edge-disjoint from C) is a path of odd length, then X contains an
independent set of size at least |X|

2 .

Proof. If X is a tree or contains an even-length cycle, then by definition and Lemma 1
X is bipartite and thus its vertices can be colored using two colors. Each color induces
an independent set, from which one has size at least |X|

2 . For the third case, let C =
(v1, v2, . . . , vk) be the unique odd cycle of X and w.l.o.g. assume that the tree rooted at v1
is in fact a path (u1, u2, . . . , u2j+1) such that (v1, u1) ∈ I. Coloring ui with i odd implies
that we have colored j + 1 vertices in one color, which is enough to accommodate for all
vertices of the path in addition to v1. Clearly, the only vertex that is not on the path which
is influenced by the coloring is v1. Removing v1 (and the whole path) from X yields a tree
which has an independent set of the desired size as shown in the previous case. Combining
both independent sets then concludes the proof. ◀

Components of I which do not meet the criteria of Lemma 2 are called critical. By Lemma 2,
any such component X is a pseudotree whose unique odd cycle C is of odd length and none
of the trees rooted at the vertices of C are odd-length paths. For these critical components,
we cannot directly find an independent set in I of appropriate size. To be more precise, we
can only find an independent set of size

⌈
|X|−1

2

⌉
. To overcome this issue, we will show that

for any such component X, there exists an uncrossed edge in Γ (i.e., a singleton in I) which
we can uniquely assign to X. The next lemma follows by our choice of (G, Γ).

▶ Lemma 3. Let e1 = (a1, b1) and e2 = (a2, b2) be two edges of G that intersect in Γ. Then,
(a1, b2) or (a2, b1) drawn along the curves of e1 and e2 is present in Γ.

Proof. Suppose for a contradiction that neither (a1, b2) nor (a2, b1) drawn along e1 and e2
exist in Γ . Denote by x the intersection point between e1 and e2. W.l.o.g. assume that
the crossing between e1 and e2 was assigned to e1 in Γ. This implies that no crossing on
the (open) segments a1x and xb1 can be assigned to e1. Moreover, at most one crossing is
assigned to e2 by definition – w.l.o.g. assume this crossing is due to an edge that intersects e2
on the segment a2x. Now, consider the graph G′ = G \ {(a1, b1), (a2, b2)} ∪ {(a1, b2), (a2, b1)}

GD 2024
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with corresponding drawing Γ′ where the drawing of all edges but (a1, b2) and (a2, b1) is
inherited from Γ, while the edges (a1, b2) and (a2, b1) are drawn along (the original curves
of) e1 and e2, refer to Fig. 1a. First observe that G′ is a non-homotopic multigraph, as
neither (a1, b2) nor (a2, b1) drawn along e1 and e2 were present by assumption. Further, Γ′

is a valid gap-planar drawing as we do not need to assign (a1, b2) any crossing, while (a2, b1)
is assigned at most one crossing. But now we have a contradiction to our choice of G and Γ,
as G′ contains the same number of edges as G, but Γ′ contains less crossings than Γ. ◀

▶ Lemma 4. Let S be the set of singletons in I and let Z be the set of critical components
of I. Then |S| ≥ |Z|.

Proof. As we will argue about graph G and its crossing graph I simultaneously, we will
assume in the following that an edge ei = (ai, bi) of G corresponds to a vertex vi of I. Let
X ∈ Z be a critical component in I and let C = (v1, v2, . . . , v2j+1) be its unique odd cycle
in I. Pick two adjacent vertices v1 and v2 of C with corresponding edges e1 = (a1, b1) and
e2 = (a2, b2) of G. Lemma 3 ensures that at least one of (a1, b2) or (a2, b1) exists in G such
that its curve follows e1 and e2 in Γ. W.l.o.g. assume that (a1, b2) exists and denote by v

the corresponding vertex of (a1, b2) in I. We distinguish between the following two cases
based on whether v is adjacent to a vertex of C or not.

Assume first that v is adjacent to some vertex of C, i.e., (a1, b2) intersects an edge of G

associated with a vertex of C in Γ. As (a1, b2) is drawn along e1 and e2, this edge is either
e2j+1 or e3 by construction. We first observe that (a1, b2) cannot intersect both e3 and e2j+1,
as otherwise X is not a pseudoforest (this also holds in the case where e3 = e2j+1, i.e., C is a
3-cycle, in which case (a1, b2) intersects this edge at most once). W.l.o.g assume that (a1, b2)
crosses e3, the other case is symmetric. If there is an additional edge e′ besides e3 that is
crossing (a1, b2), then e′ also crosses either e1 or e2 as (a1, b2) is drawn along e1 and e2, but
then X is not a pseudoforest as this crossing would close another cycle. In particular, if it
crosses e1, then we obtain the cycle (v1, v2, v3, v, v′), and otherwise we obtain (v2, v3, v, v′),
where v′ is the corresponding vertex of e′ in I. Hence, (a1, b2) only crosses e3 – but then we
have an odd-length path rooted at v3 in I (that only contains vertex v), in which case X is
not critical, a contradiction.

Thus we can assume from now on that v is not adjacent to any vertex of C. This means
that either (a1, b2) is crossing free in Γ, or there is an edge e′ that intersects (a1, b2) and
thus either e1 or e2. We keep the former case in mind and consider the latter case. W.l.o.g.
assume that e′ intersects e1, the other case is symmetric. Denote by v′ the corresponding
vertex of e′ in I. Now, in I, we have a tree T ⊂ I[X] rooted at v1 such that (v1, v′) ∈ T and
(v′, v) ∈ T . Let t be the depth of T , let uk be a leaf of depth t and let uk−1 be the unique
parent of uk. Denote by u1

k, . . . , ur
k the children of uk with uk = u1

k and let (α, β) be the
corresponding edge to uk−1 in G. By traversing (α, β) starting from α, the first intersection
we encounter is either with an edge that corresponds to a leaf ui

k or with the edge that
corresponds to the unique parent of uk−1. If the latter case occurs, observe that by traversing
(α, β) starting at β we encounter a leaf first. Denote by (α′, β′) the corresponding edge to
ui

k in G. Hence, w.l.o.g. assume that the crossing x with (α′, β′) is the first one that we
encounter when traversing (α, β) starting at α. This implies that the segment αx is crossing
free. Moreover, since ui

k is a leaf, both segments α′x and xβ′ are crossing free – but then the
edge (α, β′) exists (crossing free) in Γ by maximality.

In both cases, we found an uncrossed edge for a fixed pair of consecutive vertices. By
repeating this argumentation for any two consecutive vertices of C, we can find a set of edges
P with |P | = |C| ≥ 3 such that any edge in P is uncrossed in Γ, i.e., belongs to S.
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a1 b1

a2

b2
(a)

e3

e2

e1 e′1

e′2

e′3

(b)

Figure 1 (a) Illustration for Lemma 3. (b) Subgraph formed by edges ei, e′
1 for i ≤ 3. The blue

edge is a non-homotopic copy of the red ones.

It remains to consider the interaction of different components of I. Given two critical
components X and Y of I, it is possible that an edge occurs in both PX and PY . We claim
the following: any non-homotopic copy of such an edge occurs in at most two such sets.
Assuming we have this claim at hand, the total number of uncrossed edges in Γ is at least

1
2

|Z|∑
i=1

Xi ≥ 1
2

|Z|∑
i=1

3 = 3|Z|
2 ≥ |Z|

since any odd cycle of I has size at least three. It remains to prove the claim. Suppose for a
contradiction that one copy of an edge (a, b) belongs to at least three (critical) components
X1, X2 and X3. Denote by ei and e′

i the two edges of Xi where (a, b) is drawn along. By
definition, no edge of Xi crosses an edge of Xj for i ̸= j. But then e1 and e′

1, e2 and e′
2

and e3 and e′
3 need to bound the same cell of Γ which is impossible, as e1, e2 and e3 are all

incident to a, while e′
1, e′

2 and e′
3 are all incident to b, see Fig.1b. ◀

By Lemma 4, there exists a bijective mapping from S to Z. We will call a critical component
with an additional (singleton) edge an augmented component. Observe that every augmented
component X has an independent set of size

⌈
|X|−1

2

⌉
+ 1 ≥ |X|

2 .

▶ Theorem 5. An n-vertex bipartite gap-planar multigraph without homotopic parallel edges
has at most 4n − 8 edges.

Proof. Let X be the union of the maximum independent sets of every (augmented) component
X of I. Since we established that every component of I, in particular also the augmented
critical components, has an independent set of size at least half its size, it follows that |X | ≥ m

2 .
Clearly, no two edges of X intersect in I, hence the edges of X induce a planar bipartite
multi-graph GX . Since GX does not contain any homotopic multiedges by construction,
it still holds that any face of GX has length at least four. Since Euler’s formula can also
be applied to non-simple graphs, we have that GX has at most 2n − 4 edges, and thus
m ≤ 4n − 8 which concludes the proof. ◀

The lower-bound construction in [16], which yields n-vertex bipartite gap-planar graphs with
4n − 16 edges, asserts that our bound is tight up to an additive constant.

4 Bipartite 3-planar graphs

In this section, we will establish an upper bound on the number of edges a bipartite 3-planar
graph can have.

GD 2024
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▶ Theorem 6. A bipartite 3-planar graph G with n vertices has at most 4n − 8 edges.

Before we prove Theorem 6, we will provide a lower-bound construction to show its tightness
(which has been suggested in [3]).

Figure 2 Lower bound construction for bipartite 3-planar graphs. The vertices of the first and
last row coincide.

▶ Theorem 7. For infinitely many n, there exists a bipartite 3-planar graph G with n vertices
and 4n − 12 edges.

Proof. Assume n is divisible by four. We arrange the vertices equally in four rows (i.e.,
every row contains n

4 vertices) and wrap the construction around a cylinder; i.e., the topmost
and the bottommost row in Figure 2 coincide. Clearly, the drawing is 3-planar. In order
to determine the number of edges, let us count the degrees of the vertices. The vertices in
the first and last column have degree five, while all other vertices have degree eight. Hence,
2m = 8(n − 8) + 8 · 5 and thus m = 4n − 12. ◀

Similar to the previous section, we will fix (G, Γ) as a MaxMin tuple (w.r.t. 3-planarity)
for the remainder of the section. In order to prove Theorem 6, we will use the Discharging
Method, which was initially introduced in order to prove structural properties of planar
graphs, e.g., for the proof of the Four Color Theorem [4]. Our proof will reuse parts of
the notation and ideas from [1] where the author proved an upper bound on the number
of edges of 4-planar graphs. We denote by P (Γ) the so called planarization of Γ, i.e, the
vertices and crossing points of Γ are the vertices of P (Γ), while the edges of P (Γ) are the
crossing-free segments in Γ which are bounded by vertices and crossing points. We will refer
to the vertices of P (Γ) ∩ G as original. We will denote by e = (a, b) an edge of G while the
segment of e restricted to a face f of P (Γ) is denoted by f [e], or, if the two endpoints x and
y of the segment are known, we might also refer to the segment as xy. We will also use (B)
and (3P ) to abbreviate the bipartite and 3-planar property, respectively.

We will prove Theorem 6 by induction on the number of vertices of G. Clearly, if n ≤ 6,
we have 4n − 8 >

(
n
2
)

and the theorem holds. Thus, we assume that n ≥ 7. Moreover, we
can assume that every vertex in G has degree at least 5, as otherwise the theorem follows by
removing a vertex of small degree and applying the induction hypothesis. We begin with the
following important observation for P (Γ); its proof is analogous to the one in [1].

▶ Property 8. If P (Γ) is not 2-connected, then G has at most 4n − 8 edges.

Proof. Assume that P (Γ) has a vertex x such that P (Γ) \ {x} is not connected. The vertex
x is either a vertex of G or a crossing point of two of its edges. Suppose first that x is vertex
of G. Then, G \ {x} is also not connected. Let G1, . . . , Gk be the connected components
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of G \ {x}, let G′ be the graph induced by V (G1) ∪ {x} and let G′′ be the graph induced
by V (G2) ∪ . . . ∪ V (Gk) ∪ {x}. Note that 4 ≤ |V (G′)|, |V (G′′)| < n, since we established
earlier that the minimum degree of a vertex of G is at least 5. Therefore, it follows from the
induction hypothesis that |E(G)| ≤ 4|V (G′)| − 8 + 4|V (G′′)| − 8 = 4(n + 1) − 16 < 4n − 8.

Suppose now that x is a crossing point of two edges e1 and e2. Let Ĝ be the graph we
obtain by adding x as a vertex to G. Therefore, |V (Ĝ)| = n + 1 and |E(Ĝ)| = |E(G)| + 2.
Let G1, . . . , Gk be the connected components of Ĝ \ {x}, let G′ be the graph induced by
V (G1)∪{x} and let G′′ be the graph induced by V (G2)∪ . . .∪V (Gk)∪{x}. Again, note that
4 ≤ |V (G′)|, |V (G′′)| < n by our observation about the minimum degree. It follows from the
induction hypothesis that |E(G)| ≤ 4|V (G′)|−8+4|V (G′′)|−8−2 = 4(n+2)−18 < 4n−8. ◀

Property 8 allows us to assume that P (Γ) is 2-connected. The boundary δf of a face f in
P (Γ) consists of all the edges of P (Γ) that are incident to f . Since P (Γ) is 2-connected, the
boundary of every face in P (Γ) is a simple cycle. Thus, we can define the size of a face f , |f |,
as the number of edges of P (Γ) on its boundary. We will denote by V (f) the set of original
vertices on the boundary of f .

▶ Observation 9. The boundary of every face in P (Γ) is a simple cycle.

Similar to [1], we begin by assigning a charge to every face of P (Γ) such that the total
charge is 4n − 8. Then, we redistribute the charge in several steps such that the charge
of every face is non-negative and the charge of every original vertex v is at least deg(v)/2.
Hence, |E(G)| =

∑
v∈V (G) deg(v)/2 ≤ 4n − 8 and we get the desired bound on |E(G)|.

Let V ′, E′, and F ′ denote the vertex, edge, and face sets of P (Γ), respectively. Clearly,∑
f∈F ′ |V (f)| =

∑
v∈V (G) deg(v) and

∑
f∈F ′ |f | = 2|E′| =

∑
u∈V ′ deg(u) holds. Every

vertex in V ′ \ V (G) is a crossing point in G and therefore its degree in P (Γ) is four. Hence,∑
f∈F ′

|V (f)| =
∑

v∈V (G)

deg(v) =
∑

u∈V ′

deg(u) −
∑

u∈V ′\V (G)

deg(u) = 2|E′| − 4 (|V ′| − n) .

Assigning every face f ∈ F ′ a charge of |f | + |V (f)| − 4, we get a total charge of∑
f∈F ′

(|f | + |V (f)| − 4) = 2|E′| + 2|E′| − 4 (|V ′| − n) − 4|F ′| = 4n − 8,

Recall that we will redistribute the initial charge s.t. the charge of every face of F ′ is
non-negative, while every original vertex v has charge at least deg(v)/2. An equivalent
precondition is that

ch(f) ≥ 0.5 · |V (f)| for all f ∈ F ′ (1)

as we can then redistribute the excess charge from the faces to the original vertices in a
final step. Let f be face of F ′ with |V (f)| = x and |f | = y. We will then refer to f as
an x-y face. To ease the notation, we will use the terms triangles, quadrangles, pentagons,
hexagons and heptagons to refer to faces of size 3,4,5,6 and 7, respectively. For example,
a 2-triangle is a face of size 3 whose boundary contains two original vertices. Since Γ is a
non-homotopic drawing with the minimum number of crossings, there are no faces of size 2 in
F ′. Therefore, initially, the only faces which do not satisfy Equation (1) are 0-triangles and
1-triangles. In order to ensure that a face f still satisfies Equation (1) after it redistributed
some of its charge to another face, we will introduce the notion of local charge for faces that
contain sufficiently many original vertices. Let f ∈ F ′ be a face of P (Γ) with |V (f)| ≥ 2. Let
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v1, v2, . . . vk be the (ordered) sequence of vertices of P (Γ) that are contained in δf . Let vi

and vj be two consecutive original vertices of δf with i < j, i.e., all vertices vk with i < k < j

are crossing points in Γ.
If |j−i| > 1 (mod(k−1)) holds, then we split f along the hypothetical edge (vi, vj) and obtain
a so called subdivision face fa = (vi, vi+1, . . . , vj). Observe that |fa| ≥ 3 and |V (fa)| = 2.

For example, let f be a 2-pentagon with vertices v1, v2, v3, v4, v5 such that v1 and v3
are original vertices. By splitting along the pair {v1, v3} we obtain the subdivision face
fa = (v1, v2, v3) and, as a remainder, fb = (v3, v4, v5, v1). Observe that in this particular case,
fb is also a subdivision face as |fb| ≥ 3 and |V (fb)| = 2, but this is not the case in general.
Let us now consider the charge distribution of such a subdivision. Since a subdivision always
occurs at an edge between two original vertices, we have |V (fa)| + |V (fb)| = |V (f)| + 2
and |fa| + |fb| = |f | + 2. Hence, ch(f) = ch(fa) + ch(fb) after the initial assignment holds.
Since both fa and fb contain the two original vertices on their boundary which defined the
subdivision edge and since the subdivision edges do not contribute to the degree of these two
vertices, fa and fb have to retain less charge. In particular, we require that every subdivision
face fa satisfies

ch(fa) ≥ 0.5 (2)

while the remainder fb has to satisfy

ch(fb) ≥ 0.5(|V (fb)| − s(fb)) (3)

where s(fb) is the number of subdivision edges on the boundary of fb. Observe that
Equation (2) is a special case of Equation (3) when |V (f)| = 2 and s(f) = 1. If all
subdivision faces fx of a face f (and its possible remainder) satisfy Equation (2) and
Equation (3), it is immediate that f satisfies Equation (1), which allows us to argue about
the charge in a more local way. In order to describe the way the charging of {0, 1}-triangles
works we will need the following definitions. Let f be a face, let e be one of its edges, and let
f ′ be the other face that shares e with f . We say that f ′ is the immediate neighbor of f at e.
Note that f ′ ̸= f since P (Γ) is 2-connected. The following two definitions are taken from [1].

Wedge-neighbors. Let f0 be a {0, 1}-triangle in P (Γ) and let x1 and y1 be two vertices of
f0 that are crossing points in Γ. Denote by ex (resp., ey) the edge of G that contains x1 (resp.,
y1) and does not contain y1 (resp., x1). Note that ex and ey intersect at the other vertex
of f0. Let f1 be the immediate neighbor of f0 at x1y1. For i ≥ 1, if fi is a 0-quadrangle,
then denote by xi+1yi+1 the edge of P (Γ) opposite to xiyi in fi, such that ex contains xi+1
and ey contains yi+1, and let fi+1 be the immediate neighbor of fi at xi+1yi+1. Observe
that fi ̸= fj for i < j, for otherwise xj coincides with one of xi and xi+1 (which implies
that ex crosses itself) or with one of yi and yi+1 (which implies that ex and ey intersect
more than once). Let j be the maximum index for which fj is defined. We then call fj the
wedge-neighbor of f0 at x1y1 (note that fj is uniquely defined). We also say that f0 is the
wedge-neighbor of fj at xjyj . Observe that since the relations being an immediate neighbor
at a certain edge of P (Γ) and being an opposite edge in a 0-quadrangle are both one-to-one,
it follows that indeed there cannot be another triangle but f0 that is a wedge-neighbor of fj

at xjyj . Note also that since ex and ey already intersect at a vertex of f0, and by definition
fj cannot be a 0-quadrangle, either |fj | ≥ 5 or |fj | = 4 and |V (fj)| ≥ 1.

▶ Observation 10 ([1]). Let f be a face and let e be one of its edges. Then there is at most
one triangle t such that t is a wedge-neighbor of f at e. If such a triangle exists, then either
|f | ≥ 5 or |f | = 4 and |V (f)| ≥ 1.



A. Büngener and M. Pfister 28:9

Vertex-neighbors. Let x be a crossing point in Γ and let f0, f1, f2 and f3 be the four faces
that are incident to x in clockwise order around x. Note that these faces are distinct, since
P (Γ) is 2-connected. We say that f0 and f2 (resp., f1 and f3 ) are vertex-neighbors at x.

We will introduce one additional kind of neighbor relation.

Rich immediate neighbor. Let f be a face with edges e0, e1, . . . ek. We call an immediate
neighbor f ′ of f at edge ei rich if, in the facial walk of f ′, we have ej−1, ej , ej+1 such that
ei = ej , the common endpoint of ej−1 and ej (ej+1 and ej) is a crossing point in Γ, while
the other endpoint of ej−1 (ej+1) is an original vertex.

4.1 Step 1: Charging the 0-triangles
Consider a 0-triangle f and its immediate neighbors f0,f1 and f2. If one such fi is a rich
immediate neighbor, it charges one unit to f . Otherwise, f obtains 1

3 units of charge from
each of its three wedge-neighbors. Hence, in every case, ch(f) = 0 for all 0-triangles f .

▶ Property 11. Let f be a 0-triangle. If one immediate neighbor fi of f is a 0-x face, then
f has a rich immediate neighbor fj with fj ̸= fi.

Proof. Assume that the edges that define f are denoted by e0, e1 and e2 such that face fi

shares the edge ei with f . W.l.o.g. assume that f0 is a 0-x face. Then, by definition, e1 and
e2 have a crossing in δf0 \ δf and are thus crossed three times each. Since e0 is crossed by e1
and e2 already, it can be crossed at most once more, w.l.o.g. assume that e0 has a crossing
in δf1 \ δf . But then f2[e0] and f2[e1] each contain an original vertex by (3P ) and hence f2
is a rich immediate neighbor. ◀

▶ Observation 12. No 0-x face has to pay in the initial charging step.

Obviously, a sufficiently large face can be a wedge-neighbor and an immediate neighbor to
several other faces. Fix an edge e. Since both the immediate neighbor relation and the
wedge-neighbor relation is unique, e can be assigned to at most one wedge-neighbor (to at
most one immediate neighbor). Further, if e is used for the rich immediate neighbor relation,
it substitutes the wedge-neighbor relation. Hence, a face f is either a wedge-neighbor or
a rich immediate neighbor over each of its edges. Since every rich immediate neighbor
relation introduces three new edges and an original vertex (every wedge-neighbor relation
introduces one new edge), our face gets an additional charge of four (one) units which clearly
accommodates for the discharge if our face is sufficiently large. For example, a 2-pentagon
that is wedge-neighbor to one rich immediate neighbor has, after discharging, still two units of
charge left, which clearly satisfies Equation (1). We conclude with the following observation:

▶ Observation 13. After the initial charging step, only the 1-triangles and (possibly) the
1-quadrangles do not satisfy Equation (1).

Observe that the charge of every 1-triangle is 0, while the charge of a 1-quadrangle can be as
low as 1

3 (this occurs when a 1-quadrangle is a wedge-neighbor to two 0-triangles).

4.2 Step 2: Charging the 1-triangles
Every 1-triangle obtains 0.5 units of charge from its unique wedge-neighbor. Since a 1-triangle
is not a wedge-neighbor to a 0-triangle by Observation 10, it did not loose charge in the
previous step, hence we have ch(f) = 0.5 for any 1-triangle f ∈ F ′. Observe that after these
two rounds, every triangle satisfies Equation (1) (while this is explicit for {0, 1}-triangles,

GD 2024



28:10 On the Edge Density of Bipartite 3-Planar and Bipartite Gap-Planar Graphs

Observation 10 guarantees that no triangle is a wedge-neighbor and, by definition, they are
also not a rich immediate neighbor, hence the charge of 2-triangles still satisfies Equation (1)).
Moreover, by definition, 0-quadrangles are not a wedge-neighbor nor a rich neighbor. Since
any x-y face can be wedge-neighbor to at most y − x triangles, they loose at most 1

2 (y − x)
charge in the second step and thus always satisfy Equation (1) if y ≥ 8. Recall that wedge-
neighbor relations and rich immediate neighbor relations cannot interfere and rich immediate
neighbors give a vast surplus of charge to our face. Thus, the only faces which potentially do
not satisfy Equation (1) are 0-heptagons, 0-hexagons, 0-pentagons and 1-quadrangles. We
will now establish that the first two in fact satisfy Equation (1):
1. Face f is a 0-heptagon: By Observation 12, f did not discharge to a 0-triangle. Since

its initial charge of three is sufficient if f is a wedge-neighbor to at most six triangles,
f needs to a be a wedge-neighbor to seven 1-triangles. But this is impossible as the
corresponding edges would form an odd cycle in G, a contradiction to (B).

2. Face f is a 0-hexagon: Again, we have by Observation 12 that f did not discharge to a
0-triangle. Its initial charge is sufficient if f is wedge-neighbor to at most four 1-triangles.
If f is a wedge-neighbor to five or six 1-triangles, we again have an induced cycle of odd
length in G, a contradiction to (B).

4.3 Step 3: Recharging 0-pentagons and 1-quadrangles
In order for a 0-pentagon (1-quadrangle) to not satisfy Equation (1), it requires a quite
limited local structure which we will exploit to locally redistribute charges.

Throughout the analysis, we will denote by e0, e1 . . . ek−1 the original edges (i.e., the
edges in G) whose pairwise crossing points (and the corresponding segments) define face f .
Let ei = (ai, bi) where ai ∈ A and bi ∈ B are original vertices. We will refer to the immediate
neighbor to f at the edge ei as fi. We will denote by xi the common endpoint of f [ei]
and f [ei+1] which is part of the boundary δf of f . We will further denote by f ′

i the vertex
neighbor of f at xi. Finally, we will denote by ti the 1-triangle which is the wedge-neighbor
to f at edge ei (if it exists). Note that if ti exists, then ti = fi unless fi is a 0-quadrangle.
We denote the unique real vertex of ti as vi. Throughout the proof, our charging scheme will
maintain the following invariant.

▶ Invariant 14. Let x be an intersection point that belongs to the boundary δf of a face f

and let e1 and e2 be the edges which define x. If neither f [e1] nor f [e2] contains an original
vertex, then f does not discharge over x.

4.3.1 f is a 1-quadrangle
With a slight abuse of notation, let v = x3 be the real vertex of f . W.l.o.g. assume that
v ∈ A.
1. f is wedge-neighbor to two 0-triangles. It follows that e1 and e2 are crossed three times

each. Consider f ′
0. By assumption, δf ′

0 contains f ′
0[e0], f ′

0[e1] and f ′
0[e2] such that the

endpoints of f ′
0[e1] \ f ′

0[e0] and f ′
0[e2] \ f ′

0[e0] are original vertices by (3P ), see Fig. 3a.
Hence, f ′

0 is a rich immediate neighbor to f1. A similar observation holds for f ′
2 and f2.

Thus, f did not loose any charge in the initial step and thus satisfies Equation (1), see
Fig. 3a.

2. f is wedge-neighbor to two 1-triangles. Consider the edges e1 and e2. They both have
exactly two crossings which belong to δf .
a. f0[e1] contains an original vertex. In particular, since f2 is a 1-triangle, we have by

(B) that the endpoint of f0[e1] is of the same partition as v and thus it is a1. This
implies that the segment of e1 delimited by a1 and x0 is not crossed (in which case
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Figure 3 Illustrations used in the recharging of 1-quadrangles.

the gray-dashed edge in Fig. 3b that intersects e0 is not present) and the sequence
(a1, x0, v) of f0 defines a subdivision face, which contains 0.5 excess charge which will
be redistributed to f (over its vertex neighbor f1 at x0).

b. f3[e2] contains an original vertex. Following an analogous argument as before, this
original vertex is a2 and thus the sequence (v, x2, a2) forms a subdivision face and
distributes its excess charge to f via f2.

c. Neither f0[e1] nor f3[e2] contains an original vertex. This setting can be observed in
Fig. 3b if we assume that both gray-dashed edges are present. Consider the vertex
neighbor f ′

1 to f at x1. Since e1 and e2 are both crossed thrice, it follows that both
f ′

1[e1] and f ′
1[e2] contain an original vertex. Thus (b1, x1, b2) forms a subdivision face

which will transfer its excess charge to its vertex-neighbor f at x1.
3. f is wedge-neighbor to one 0-triangle and one 1-triangle. W.l.o.g. assume that the

wedge-neighbor to f via edge e1 is a 0-triangle and hence the wedge-neighbor to f via
edge e2 is a 1-triangle. By assumption, edge e2 has three crossings. Assume first that,
a2 ∈ f3[e2], see Fig. 3c. Suppose first that f2 ̸= t2, i.e., the gray-dashed edge in Fig. 3c is
present. Observe that in this case, we have that e1 and e2 have three crossings each. But
then f ′

0 is a rich immediate neighbor to f1 (as witnessed by the edges f ′
0[e2], f ′

0[e0] and
f ′

0[e1]) and hence f did not charge f1 to begin with, a contradiction to our assumption.
If f2 = t2 holds, then we observe that (v, x2, a2) defines a subdivision face of f3, which
will distribute its excess charge to its vertex-neighbor f2 at x2, which will then propagate
it to its unique wedge-neighbor f . Otherwise, we have b2 ∈ f3[e2] and thus a2 ∈ f ′

0[e2].
If also a1 ∈ f ′

0[e1] holds, then f ′
0 is a rich immediate neighbor to f1 – hence f did not

redistribute charge to f1 and thus its charge was sufficient to begin with. Hence assume
that a1 ̸∈ f ′

0[e1], which implies e1 has an additional crossing which belongs to δf ′
0. In this

case, consider f ′
2 and observe that (b2, x2, b3) lie consecutively on the boundary of f ′

3, as
the dotted red edge in Fig. 3d cannot be present due to (3P ), hence the sequence defines
a subdivision face which distributes its excess charge to its vertex neighbor f at x2.

4.3.2 f is a 0-pentagon
Observation 12 establishes that f is not a (discharging) wedge-neighbor to any 0-triangle.
By (B), f cannot be a wedge-neighbor to five 1-triangles.

f is a wedge-neighbor to exactly three 1-triangles

Observe that in this case, it is sufficient to distribute 0.5 units of charge to f . Assume first
that the three 1-triangles appear consecutively. W.l.o.g. assume that t0, t1 and t2 exist and
that the common endpoint of e0 and e2 (i.e., v1) is of the same partition as v0.
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Figure 4 Illustrations used in the recharging of 0-pentagons that are wedge-neighbors to three
1-triangles.

1. f3 is a 0-x face. In this case, both e2 and e4 have a crossing in δf4 \ δf and are thus
crossed three times each – this implies that f0 = t0 and f1 = t1 and thus the sequence
(v1, x0, v0) forms a subdivision face of f ′

0 which can distribute its excess charge of 0.5
units to its vertex-neighbor f at x0, see Fig. 4a.

2. f3 is a 1-quadrangle, hence either e2 or e4 has a crossing in δf3 \ δf .
e2 has a crossing in δf3 \ δf . Again we observe that f3 cannot be a wedge-neighbor at
e2 by (B). Thus, if f ′

2 is not a 0-pentagon, f3 has sufficient excess charge which can be
distributed to its immediate neighbor f at e3, see Fig. 4b. If f ′

2 is a 0-pentagon, then
we necessarily have an additional edge that intersects both e1 and e3. But then, by
assumption both e1 and e2 have three intersections each – hence it holds that f0 = t0
and f1 = t1 and thus (v1, x0, v0) forms a subdivision face of f ′

0 which distributes its
excess charge to its vertex-neighbor f at x0, see Fig. 4c.
e4 has a crossing in δf3 \ δf . In this case, the immediate neighbor of f3 at e4 can
be a 1-triangle f ′, see Fig. 4d (if this is not the case, we proceed as in the previous
case). Let us denote the unique original vertex of f ′ by v′. If b0 ∈ f4[e0] then the
sequence (b0, x4, x3, v′) either defines f4 or forms a subdivision face – in both cases
it has sufficient excess charge to distribute 0.5 units each to its vertex-neighbor f0
at x4, which then propagates the charge to its unique wedge-neighbor f . Otherwise,
b0 ̸∈ f4[e0]. Since e4 and e0 have three crossings each, it follows that f0 = t0 and
f1 = t1 and hence again (v1, x0, v0) forms a subdivision face of f ′

0 which distributes its
excess charge to its vertex-neighbor f at x0, again see Fig. 4d.

3. In the remaining cases, f3 always has sufficient charge which it can distribute to f over
edge e3. The crucial observation is that the edge e3 is neither part of a wedge-neighbor
relation nor of a rich immediate neighbor relation. Since we discharge 0.5 units over e3,
which is the same quantity as a discharge over an edge that defines a wedge-neighbor
relation in the second step, the analysis at the start of Step 2 still holds.

Assume now that the three 1-triangles do not appear consecutively. W.l.o.g. assume that
t0, t2 and t3 exist and that v0 ∈ A (which implies v2 ∈ B and v3 ∈ B). Further, assume that,
when traversing e0 starting at a0, we encounter x4 before x0, see Fig. 4e.
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1. f4 is a 0-x face. This implies that both e0 and e3 have a crossing in δf4 \ δf . Consider
f1. By construction b0 ∈ f1[e0], thus f1 is not a 0-x face. By assumption, f1 is not a
1-triangle. If f1 is a 1-quadrangle, it is not a wedge-neighbor to any 1-triangle by (B)
and it cannot be a wedge-neighbor to a 0-triangle due to (3P ) (as it would necessarily
have to cross e1 and hence also e3, which already has three crossings), see Fig. 4e. The
crucial observation here is that f ′

1 cannot be a 0-pentagon, as this would imply f2 ̸= t2
and thus an additional crossing of e3, a contradiction to (3P ). Hence, f1 does not have
to distribute charge over the edge e2 and hence has sufficient excess charge to distribute
0.5 units of charge to its immediate neighbor f . Finally, if f1 is any larger face, it again
has sufficient excess charge which can be distributed to f (the argument is analogous to
the previous case).

2. f4 is a 1-quadrangle. Assume first that a0 ̸∈ f4[e0]. Hence, a3 is the unique vertex of
f4, see Fig. 4f. By (B), f ′

4 cannot be a 1-triangle. If f ′
4 is a 0-x face, then there is an

edge e′ that intersects e4 and e1 such that f0 ̸= t0. But then both e1 and e4 have three
crossings each, and hence the sequence (v3, x2, v2) forms a subdivision face of f ′

2 which
distributes 0.5 units of charge to its vertex-neighbor f , see Fig. 4f. If f ′

4 is not a 0-x face
(in particular, not a 0-pentagon), then f4 has sufficient charge which it distributes to its
immediate neighbor f at e4.
Assume now that a3 ̸∈ f4[e3]. Hence, a0 is the unique vertex of f4. If f0 = t0, then
the sequence (v0, x4, a0) defines a subdivision face of f ′

4 which distributes its charge to
its vertex-neighbor f at x4. This situation is depicted in Fig. 4g when the dashed-gray
edge does not exist. Otherwise, f0 ̸= t0 and thus f0 is a 0-quadrangle. This implies that
t2 = f2 and t3 = f3 by (3P ). But then the sequence (v3, x2, v2) defines a subdivision face
of f ′

2 which distributes its excess charge to its vertex-neighbor f at x2, again see Fig. 4g.
3. f4 is a larger face. Again, f4 contains sufficient charge which it can distribute to f .

f is a wedge-neighbor to four 1-triangles

W.l.o.g. we assume that f4 is not a 1-triangle and that v0 ∈ A, which implies that v1 ∈
A, v2 ∈ B and v3 ∈ B.
1. f4 is a 0-x face. It follows that both e0 and e3 have three crossings each. Let us first

consider the case where f4 is a 0-quadrangle. Let e′ be the edge of f4 opposite to e4.
Further, denote by x (y) the intersection of e′ with e0 (e3). Let f ′ be the immediate
neighbor of f4 at e′. By (B) and (3P ) we have b0 ∈ δf ′ and a3 ∈ δf ′. But then the
sequence fa = (b0, x, y, a3) forms a subdivision of f ′ (note that fa could coincide with f ′)
which has an excess of at least one charge. Since it is not possible that both immediate
neighbors of f4 different from f ′ and f are 0-pentagons by (3P ), f ′ looses at most 0.5
charge over a vertex-neighbor relation – thus it can distribute 0.5 charge to f through f4.
In order to determine who supplies the remaining 0.5 charge, consider e0. If e0 has no
crossing in δf0 \ f , then the sequence (v1, x0, v0) forms a subdivision which distributes
its excess charge to f ; otherwise, if e0 has a crossing in δf0 \ f , then by (3P ) e0 has
no crossing in δf3 \ f and hence (v3, x2, v2) forms the desired subdivision, see Fig. 5a.
Henceforth, we can thus assume that f4 is not a 0-quadrangle.
a. e4 has no crossing outside of δf . Observe that this implies that also e1 and e2 do not

have any additional crossings outside of δf , as an edge which is crossing e1 or e2 would
necessarily also cross either e0, e3 or e4. We can thus identify two pairs of consecutive
vertices of the same partition, namely (v0, v1) and (v2, v3). Observe that δf ′

0 (δf ′
2)

contains both v0 and v1 (v2 and v3). Hence, (v1, x0, v0) and (v3, x2, v2) each form a
subdivision face which can distribute its excess charge to its vertex-neighbor f at x0
and x2, respectively, see Fig. 5b.
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Figure 5 Illustrations used for the first part of the case analysis where face f is a 0-pentagons
that is a wedge-neighbor to four 1-triangles.

b. e4 has a crossing in δf0 \ δf with an edge e′ = (a′, b′), the case where e4 has a crossing
in δf3 \ f is symmetric. This implies that v0 ̸∈ f0[e4] and thus f0 ̸= t0. We can then
again observe that f3 = t3 and f2 = t2 holds and thus (v3, x2, v2) forms a subdivision
face of f ′

2, which distributes its excess charge of 0.5 to its vertex-neighbor f at x2. For
the remaining 0.5 charge, we consider the following cases.
i. a′ ∈ f ′

0[e′] and a′ ̸= v1 or b′ ∈ f ′
0[e′], see Fig. 5c. Let v′ be the original vertex of

f ′
0[e′]. Hence, by assumption v′ = b′ or v′ = a′, in both cases it holds that v′ ̸= v1

(by (B) or by assumption). The sequence (v1, x0, x, v′), where x is the intersection
point of e′ and e1, then defines a subdivision face fa (in the case of v′ = b′, it is
possible that fa and f ′

0 coincide). Observe that the vertex-neighbor of fa at x is t0,
which does not require any charge. Note that fa is potentially a wedge-neighbor via
the edge e1. However, since the initial charge of fa is at least 2 (the extremal case
occurs if fa = f ′

0 holds). In every case, fa has an excess charge of at least one unit,
it has sufficient charge such that it can distribute 0.5 to its wedge-neighbor and 0.5
to its vertex-neighbor f at x.
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ii. a′ ∈ f ′
0[e′] and a′ = v1. Again, let x be the intersection between e′ and e1 and let f ′

be the vertex-neighbor of f0 at x. Since a′ ∈ f ′
0[e′] and since e1 already has three

crossings, it follows that (v1, x, v0) forms a subdivision of f ′, see Fig. 5d, which
charges 0.5 units to its vertex-neighbor f0 at x. Before we propagate this charge
from f0 to f , we first have to consider f ′

4. If f ′
4 is not a 0-pentagon, f ′

4 has sufficient
charge even before the third step, unless f ′

4 is a 1-quadrangle. However, in the
previous case analysis, we never required a 0-quadrangle to propagate the charge to
a 1-quadrangle – hence, we can safely propagate 0.5 units of charge from f0 to f .
Hence, consider now the case that f ′

4 is a 0-pentagon. Note that this implies that f4
cannot be a 0-triangle by (3P ). Since the following analysis is quite detailed, we set
f̃ = f ′

4 and reuse the adjusted notation of f . In particular, we get ẽ0 = e′, ẽ1 = e4
and ẽ2 = e0, see Fig. 5e. Observe that t̃1 = f ′

0 and sincef̃2 = f4 and since we
covered the case where f4 is a 0-quadrangle already, it follows that t̃2 does not exist.

A. f̃ is wedge-neighbor to at most two 1-triangles. In this case, f̃ does not require
any charge and hence f0 can propagate 0.5 units to f .

B. f̃ is wedge-neighbor to three 1-triangles.
t̃3 is missing. Assume first that f̃3 is a 1-quadrangle. By (B), it is not a
wedge-neighbor at ẽ4 to a 1-triangle, see Fig. 5f. Moreover, the immediate face
at ẽ4 is not a 0-x face by (3P ). Thus, f̃3 does not loose charge over ẽ4 and we
can therefore distribute the excess charge to f̃ . If f̃3 is not a 1-quadrangle,
then the sequence (b̃4, x̃3, x̃2, b̃2) forms a subdivision of face f̃3, see Fig. 5g.
This subdivision has 1.5 units of excess charge and can therefore charge 0.5 to
its immediate neighbor f̃ at ẽ3 as well as 0.5 to its vertex-neighbors at x̃2 and
x̃3 (if required).
t̃4 is missing. By (3P ), face f̃4 is not a 1-quadrangle as it contains an original
vertex of ẽ3, which we denote by ṽ as well as b̃0. The sequence (b̃0, x̃4, x̃3, ṽ)
forms a subdivision face fa of face f̃4 (observe that fa = f̃4 is possible) – hence
fa has at least one unit of excess charge, see Fig. 5h. Since its vertex-neighbor
at x̃4 is a 1-triangle, it does not charge over x̃4 (the same holds for x̃3, but
this is not necessary), and thus its excess charge is sufficient to distribute 0.5
units to its immediate neighbor f̃ at f̃4.
t̃0 is missing. Assume first that f̃0 is a 1-quadrangle. Note that in this case,
it is possible that f̃0 is a wedge-neighbor at ẽ4 to a 1-triangle t∗. If this is
not the case, we proceed as in the first subcase, i.e., f̃0 charges its excess of
0.5 units to its immediate neighbor f̃ at ẽ0. If f̃0 is a wedge-neighbor at ẽ4,
then we consider the immediate neighbor of f̃0 at the edge e∗ = (ã1, b̃0), see
Fig. 5i, which we denote by f∗. If we denote by x∗ the intersection point
between e∗ and ẽ4, then the sequence (ã1, x∗, ã3) defines a subdivision face
which distributes its excess charge to its vertex-neighbor t∗ at x∗. Thus, f̃0
can again distribute its excess charge to f̃ as desired. The case where f̃0 is
not a 1-quadrangle is analogous to the previous ones, i.e., we can identify a
suitable subdivision face.

C. f̃ is wedge-neighbor to four 1-triangles. In this extremal case, we have the setting
depicted in Fig. 6a. We can again observe that the sequence (b̃0, x̃3, b̃2) forms
a subdivision face of f̃ ′

3 which can distribute 0.5 units of charge to f̃ . In this
case, we will evenly split the charge that f0 obtained earlier such that each of
f̃ and f obtain 0.25 units. Note that both f̃ and f need an additional charge
of 0.25 units. Consider face f4. Recall that f4 is a 0-x face by assumption, but
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Figure 6 Illustrations used for the second part of the case analysis where face f is a 0-pentagons
that is a wedge-neighbor to four 1-triangles.

it cannot be a 0-triangle as observed earlier. If f4 has size at least seven, it has
sufficient charge to distribute 0.25 to each of f̃ and f . To see this, let x = |f4|
and observe that f4 has an excess charge of x − 4. Since f4 does not contain
any original vertices, it cannot be a rich immediate neighbor nor a discharging
vertex-neighbor by Inv. 14. Further, since f looses a combined charge of 0.5 over
the edges e0 and e4, it follows that it discharges at most 0.5(x − 1) ≤ x − 4 for
x ≥ 7. If f4 is a 0-6 and does not have sufficient charge, then we have exactly
the setting depicted in Fig. 6b. But then the sequence (ã3, x, a3) is a subdivision
face which distributes 0.5 charge to its vertex-neighbor f4 at x, which can then
be used to charge f̃ and f . Hence, assume that f4 is a 0-5 face, see Fig. 6c for
the extremal case where f4 is an immediate neighbor to two 0-pentagons f̃ and f

as well as a wedge-neighbor to two 1-triangles (the other possible arrangements
of the two 1-triangles surrounding f4 are symmetric). Let f ′ be the immediate
neighbor of f4 at the edge ẽ3. By (3P ) we have b̃2 ∈ δf ′. Now, consider the
edge e∗ = (a∗, b∗) that is incident to v3 (i.e., v3 = b∗) and intersects the edge ẽ3.
If a∗ ∈ δf ′, then we can find a subdivision face, see Fig. 6c, which charges its
immediate neighbor f4 at ẽ3. Otherwise, if a∗ ̸∈ δf ′, then e∗ is intersected by an
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additional edge e′′. If e′′ = (a3, b̃2), then a3 and a∗ (together with an intersection
point) again define a subdivision face, see Fig. 6d. We remark here that the local
configuration which can be observed in Fig. 6d is dense, i.e., we do not have
any excess charge left – this then yields, after an appropriate concatenation of
the configurations, an alternative construction of bipartite 3-planar graphs on n

vertices and 4n − O(1) edges.
If e′′ ̸= (a3, b̃2), we claim that (G, Γ) ̸∈ G′′. Indeed, by substituting the edge
ẽ3 by the edge (a3, b̃2) (which will be drawn along the old curve of ẽ3 and e0)
and inheriting the remainder of the drawing, we can construct a graph G′ and a
corresponding 3-planar drawing Γ′ with strictly less crossings. Observe that by
our construction, any copy of (a3, b̃2), if it exists, is not homotopic to our new
curve. Hence, we obtain a contradiction to our choice of (G, Γ).

iii. a′ ̸∈ f ′
0[e′] and b′ ̸∈ f ′

0[e′]. Suppose first that, when traversing e′ starting at a′, we
encounter its intersection with e4 before its intersection with e0, see Fig. 6e. Let
x be the intersection between e′ and e4 and let f ′ be the vertex-neighbor of f0 at
x. The sequence (v0, x, a′) defines a subdivision face which charges 0.5 units to its
vertex-neighbor f0 at x. The crucial observation is that by (3P ), a′ is necessarily
part of f ′

4 – by a similar argument as in the previous case, f ′
4 has sufficient charge

and thus f0 can propagate 0.5 to f .
Suppose now that, when traversing e′ starting at b′, we encounter its intersection
with e4 before its intersection with e0, see Fig. 6f. But then our choice of (G, Γ) is
a contradiction to our assumption unless b′ and b0 coincide, as the drawing Γ′ of
G \ e′ ∪ {(b′, v1)}, which inherits the curve of all edges of Γ and adds the edge (b′, v1)
such that its curve is drawn along e′, e1 and e0, see the green edge in Fig. 6f, has
strictly less crossings. Suppose therefore that b′ and b0 would coincide. But since
f4 is by assumption a 0-x face, we have that e0 contains a crossing in δf4 \ f – but
then by (3P ) we necessarily have b0 = b′ ∈ δf ′

0, a contradiction to our assumption.

2. f4 is a x-y face with x ≥ 1. By assumption, f4 is not a 1-triangle and by construction it
cannot be a 2-triangle.

f4 is a quadrangle. Observe that it cannot be a wedge-neighbor via edges e3 or e0 by
(B), see the red dotted edge in Fig. 6g for the case of e0, the other is symmetric. W.l.o.g.
we assume that f4[e0] does not contain an original vertex, i.e., the unique original
vertex of f4 is an endpoint of e3. Now, consider face f ′

4. If f ′
4 is not a 0-pentagon,

then f ′
4 does not loose any charge over e0 and hence can distribute its excess charge to

its immediate neighbor f at e4. If f ′
4 is a 0-pentagon, we necessarily have that f0 ≠ t0,

see Fig 6h. But then e1 and e4 are crossed by an edge e′ which has, by definition,
an additional crossing in f ′

4. Consequently, by (3P ), f ′
0 contains an endpoint of e′.

Let v′ be this endpoint and denote by x′ the intersection of e′ with e1. If v′ ≠ v1,
we either have f ′

0 = (v1, x0, x′, v′) or (v1, x0, x′, v′) forms a subdivision face of f ′
0, see

Fig. 6h. In either case, f ′
0 has sufficient charge such that it can distribute 0.5 units to

its vertex-neighbor f at x0. Otherwise, v′ and v1 coincide, see Fig. 6i and we are in the
same setting as in Case 1(b)ii with the difference that f4 is a 1-quadrangle instead of a
0-x face. Again, we can observe that (v1, x, v0), where x is the intersection between e′

and e1, forms a subdivision face and it charges 0.5 units to its vertex-neighbor f0 at x0.
Similar to the previous case, f0 distributes 0.5 units to f unless f ′

4 is a wedge-neighbor
to exactly four 1-triangles. If f ′

4 is a wedge-neighbor to four 1-triangles, then the
remaining charge for f ′

4 and f (we will cover the missing 0.5 charge for f right after)
is provided by f4 – as it has 0.5 excess charge, it can distribute 0.25 to each of its
wedge-neighbors, see Fig. 6i.
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f4 is a larger face. Similar to previous cases, f4 then always has sufficient excess charge
to distribute 0.5 to its immediate neighbor f at edge e4.

In order to determine who distributes the missing 0.5 charge to f , we consider face f4.
By assumption, f4 contains at least one original vertex. Assume first that both b0 and
a3 belong to δf4. In this case f4 is a 2-quadrangle (or a larger face) and has an excess
charge of at least one. Since the vertex-neighbor at x3 is a 1-triangle, it does not loose
charge over x3 – hence, it has sufficient charge to (potentially) distribute 0.5 via x4 and
to distribute 0.5 to its immediate neighbor f . Hence, assume that exactly one of b0 or a3
belongs to δf4. Assume w.l.o.g. that a3 belongs to δf4 which implies that e0 has and
additional crossing in δf4 \ f . Now, if f0 = t0 holds, then (v1, x0, v0) defines a subdivision
face which distributes its excess charge to its vertex-neighbor f at x0. Otherwise, if
f0 ̸= t0, then e1 and e4 have an additional crossing. But then neither e2 nor e3 can have
an additional crossing by (3P ), hence t2 = f2 and t3 = f3 and hence (v3, x2, v2) forms a
subdivision face which distributes 0.5 units of charge to its vertex-neighbor f at x2.

After this final step, every face of F ′ satisfies Equation (1) which concludes the proof.

5 Implications

We will now use the main result of Section 4 to improve the lower-bound for the number
of crossings, which consequently improves various other results. Note that, besides some
numerical differences, the proof strategies for Sections 5.1 and 5.2 are identical to the ones
of [3], while the proofs of Section 5.3 are identical to the ones of [17].

5.1 Crossing Lemma and Edge Density bounds
▶ Theorem 15. Let G be a simple bipartite graph with n ≥ 3 vertices and m edges. Then,
the crossing number cr(G) satisfies the following:

cr(G) ≥ 4m − 25
2 n + 27

Proof. The statements clearly holds when m ≤ 2n − 4. Hence, we may assume w.l.o.g. that
m > 2n − 4. It follows from [10] that if m > 3n − 8, then G has an edge that is crossed by at
least two other edges. Also, by [3], we know that if m > 7

2 n − 7, then G has an edge that is
crossed by at least three other edges. Finally, if m > 4n − 8, then Theorem 6 establishes that
G has an edge that is crossed by at least four other edges. Hence we obtain by induction on
the number of edges of G that the crossing number cr(G) is at least:

cr(G) ≥ (m− (2n−4))+(m− (3n−8))+(m− (7
2n−7))+(m− (4n−8)) = 4m− 25

2 n+27

◀

▶ Theorem 16. Let G be a simple bipartite graph with n vertices and m edges, where
m ≥ 75

16 n. Then, the crossing number cr(G) satisfies the following:

cr(G) ≥ 1024
16875 · m3

n2 ≈ 1
16.5

m3

n2

Proof. Assume that G admits a drawing on the plane with cr(G) crossings and let p =
75n
16m ≤ 1. Choose independently every vertex of G with probability p, and denote by Gp the
graph induced by the vertices chosen in Gp. Let also np, mp and cp be the random variables
corresponding to the number of vertices, of edges and of crossings of Gp. Taking expectations
on the relationship cp ≥ 4mp − 25

2 np + 27, which holds by Theorem 15, we obtain:
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p4cr(G) ≥ 4p2m − 25
2 np ⇒ cr(G) ≥ 4m

p2 − 25n

2p3

The proof of the theorem follows by plugging p = 75n
16m (which is at most 1 by our assumption

on m) to the inequality above. ◀

▶ Theorem 17. Let G be a simple bipartite k-planar graph with n vertices and m edges, for
some k ≥ 2. Then:

m ≤
√

16875
2048 kn ≈ 2.871

√
kn

Proof. For k = 2 and k = 3, the bounds of this theorem are weaker than the corresponding
ones of [3], and of Theorem 6, respectively. So, we may assume w.l.o.g. that k > 3. We may
also assume that m ≥ 75

16 n, as otherwise there is nothing to prove. Combining the fact that
G is k-planar with the bound of Theorem 16 we obtain:

1024
16875 · m3

n2 ≤ cr(G) ≤ 1
2mk

which implies:

m ≤
√

16875
2048 kn ≈ 2.871

√
kn ◀

▶ Theorem 18. Let G be a simple bipartite k-gap-planar graph with n vertices and m ≥ 75
16 n

edges. Then:

m ≤
√

16875
1024

√
kn ≈ 4.06

√
kn

Proof. By definition, we have that

cr(G) ≤ k · m

for any k-gap-planar graph G with m edges. On the other hand, Theorem 16 gives us

cr(G) ≥ 1024
16875

m3

n2

since G is bipartite. Thus

1024
16875

m3

n2 ≤ cr(G) ≤ k · m

and the result follows. ◀

5.2 Exclusion of complete bipartite graphs
▶ Theorem 19. Let Kn,m be a complete bipartite graph and let n ≤ m. Then, K5,m1 with
m1 ≥ 13, K6,m2 with m2 ≥ 9 and K7,m3 with m3 ≥ 7 are not 3-planar and not gap-planar.

Proof. K5,13 has 5 · 13 = 65 edges, but any bipartite 3-planar (gap-planar) graph on 18
vertices has at most 4 · 18 − 8 = 64 edges, a contradiction. Similarly, we have that K6,9 has
54 > 4 · 15 − 8 = 52 and K7,7 has 49 > 4 · 14 − 8 = 48 edges. ◀
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5.3 Biplanar crossing number
The biplanar (k-planar) crossing number of a graph G, denoted by cr2(G) (crk(G)), is the
minimum number of crossings over all possible drawings of the edges of G in two (k) disjoint
planes.

▶ Theorem 20. Let Kp,q be a complete bipartite graph with p, q ≥ 30. Then

cr2(Kp,q) ≥ p(p − 1)q(q − 1)
204

Proof. Applying [17, Lemma 1] together with Lemma 15 yields cr2(G) ≥ 4m − ( 25
2 n − 27) · 2

and thus cr2(K17,17) ≥ 360. Using the recurrence relation

cr2(Kp+1,p+1) ≥
⌈p + 1

p − 1

⌈p + 1
p − 1cr2(Kp,q)

⌉⌉
repeatedly as in [17], we obtain cr2(K30,30) ≥ 3723 and thus

cr2(Kp,q) ≥ p(p − 1)q(q − 1)
30 × 29 × 30 × 29cr2(K30,30)

which yields the desired result. ◀

▶ Theorem 21. For all p, q ≥ 9k + 2,

crk(Kp,q) ≥ p(p − 1)q(q − 1)
66.3k2

Proof. Using Lemma 15, we obtain

crk(K9k+2,9k+2) ≥ 99k2 + 121k + 16

Following the proof of Theorem 7 in [17] we then obtain the desired result. ◀

6 Conclusions and Open Problems

We have established tight upper bounds on the number of edges of bipartite gap-planar and
bipartite 3-planar graphs. The following questions follow naturally:

What is the density of bipartite k-planar graphs, in particular for k = 4? One could
most likely apply the discharging method in a similar way for any fixed k – the issue that
arises for larger k is just the sheer number of cases one has to consider. Hence, we ask as
an open problem if one can (partially) automate such a charging proof in a similar way
to [4]. This is of course also an interesting question in the normal (non-bipartite) setting.
A graph is quasi-planar if there is a drawing in which no three edges mutually cross.
What is the edge density of bipartite quasi-planar graphs?
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Abstract
The classical Crossing Lemma by Ajtai et al. and Leighton from 1982 gave an important lower
bound of c m3

n2 for the number of crossings in any drawing of a given graph of n vertices and m

edges. The original value was c = 1/100, which then has gradually been improved. Here, the
bounds for the density of k-planar graphs played a central role. Our new insight is that for k = 2, 3
the k-planar graphs have substantially fewer edges if specific local configurations that occur in
drawings of k-planar graphs of maximum density are forbidden. Therefore, we are able to derive
better bounds for the crossing number cr(G) of a given graph G. In particular, we achieve a
bound of cr(G) ≥ 73

18 m − 305
18 (n − 2) for the range of 5n < m ≤ 6n, while our second bound

cr(G) ≥ 5m − 407
18 (n − 2) is even stronger for larger m > 6n.

For m > 6.79n, we finally apply the standard probabilistic proof from the BOOK and obtain
an improved constant of c > 1/27.61 in the Crossing Lemma. Note that the previous constant was
1/29. Although this improvement is not too impressive, we consider our technique as an important
new tool, which might be helpful in various other applications.
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1 Introduction

The classical Crossing Lemma by Ajtai et al.[4] and Leighton [10] has been considerably
improved constant-wise from 1

100 in many subsequent works [3, 11, 13] and for many vari-
ants [16], such as bipartite graphs [5], graphs of bounded girth [12], multigraphs [9, 14], etc.
Székely [17] gave an collection of applications of the Crossing Lemma in discrete geometry.

The gradual improvement of the above mentioned constant has been mainly done by using
the linear bounds for the number of edges for planar, 1-planar, 2-planar, etc. graphs. k-planar
graphs have a drawing where each edge is crossed at most k times. Density bounds for
k-planar n-vertex graphs have been subject to intensive research in the past. While planar
graphs have at most 3n − 6 edges, the best known upper bounds for 1-planar, 2-planar
and 3-planar graphs are 4n − 8 [18], 5n − 10 [13] and 5.5n − 11.5 [7] respectively; for the
corresponding non-simple versions the bounds might slightly differ [7]. They have been
directly applied for better bounds for the crossing lemma. The current best constant of 1

29
uses even the bound for 4-planar graphs [1], which is 6n − 12.

We will perform a more refined analysis by considering drawings that are in some sense
between k-planar and k + 1-planar drawings for k = 1, 2. In their paper from 2006 [11], Pach,
Radoicic, Tardos and Tóth used a similar approach to improve the corresponding constant of
the Crossing Lemma. They considered the density of 1-planar drawings with a fixed number
of crossing-free triangles, a class of drawings between planar and 1-planar in general.
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A similar road has been taken in the paper [2] about simple quasi-planar graphs. While
the general density bound here is 6.5n, the authors consider drawings without triangular
cells that have no vertex on the boundary. For such a more general class, a bound of 7n can
be derived. This bound has not been applied for the Crossing Lemma, though. We will apply
such a refined look to 2- and 3-planar drawings: It turns out that either we can prove much
smaller bounds for the edge density than provided by the upper bounds of the corresponding
k-planar classes (which is per se good for the Crossing Lemma) or we can characterize the
drawing in a very good way, which simplifies the way of counting the crossings.

The idea has been motivated by some results in the literature. (Non-simple) optimal
2-planar and 3-planar graphs have been characterized [7], and there is very limited flexibility
for the structure of such graphs. We know that with much less restrictions on the drawings,
the limits of the maximum density for some superclasses for 1-planar and 2-planar graphs are
still roughly at the same value. Examples for this effect are the min-1-planar and min-2-planar
graphs [8] as superclasses of 1-planar and 2-planar graphs, as well as gap-planar graphs as a
superclasse of 2-planar graphs [6].

To use the concept of k-planarity for various values of k, we planned to specify at which
point between k- and k + 1-planarity the density is changing. This turned out to be difficult,
and hence we go the other way around and forbid local configurations that have to occur in
optimal k-planar drawings. That leads to nice insights on the density bounds and surprising
results. Note that all our results hold for non-simple graphs and non-simple drawings.

2 Definitions and Notation

A drawing or topological graph D is a graph drawn in the plane such that the vertices
are pairwise distinct points and the edges are represented as Jordan arcs connecting the
corresponding endpoints. We assume simplicity in the sense that edges do not overlap other
vertices in the interior. Two edges might cross, but we do not allow that more than two
edges cross at a single point. We also assume that two edges have only a finite number of
common interior points and no two edges meet tangentially. Remark that we will consider
not necessarily simple drawings, i.e., we will allow non-homotopic multiple edges as well as
adjacent crossing edges, while loops are forbidden. Since we mostly assume that the number
of crossings will be minimal, there will be no empty lenses, i.e., empty regions having a
boundary that is being defined by two edges; c.f. Proposition 10.

The crossing number cr(D) is defined to be the total number of crossing points in D.
For an abstract graph G, the crossing number cr(G) is the minimum value of cr(D) over all
drawings D with D is a drawing of G. A drawing D is k-planar if no edge is crossed more
than k times. A graph G is k-planar if it has a k-planar drawing.

Forbidden configurations. We now define three forbidden configurations that play a key
role: A full k-planar p-gon F k

p can be described by a p-cycle Cp of planar edges with no other
vertices inside, which is then greedily extended by a maximal number of edges to be placed
inside that are as short as possible observing this subgraph is still k-planar. To finally arrive
at F k

p , we delete the planar cycle Cp at the boundary. In this way, we define a full 2-planar
pentagon F 2

5 to be the graph K5 − C5 drawn in the way described above (see Figure 1a).
Similarly, we can define full 2-planar hexagons F 2

6 and full 3-planar hexagons F 3
6 as specific

drawings of subgraphs of K6 − C6. More precisely, a full 2-planar hexagon consists of the six
short, i.e., 2-hop edges inside a planar C6 (see Figure 1b). A full 3-planar hexagon consists
of all possible 2-hop and two 3-hop edges inside a planar C6 (see Figure 1c).
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(a) (b) (c)

Figure 1 (a) A full 2-planar pentagon F 2
5 , (b) a full 2-planar hexagon F 2

6 and (c) a full 3-planar
hexagon F 6

3 with their boundaries (dashed).

Clearly, a configuration F k
p may be crossed by some other edges. But for full 2-planar penta-

gons and full 2-planar hexagons, this cannot happen in the case of 2-planar drawings, which
motivates to define the planar 5-cycle resp. 6-cycle surrounding them as their boundary (even
if not all of its edges may exist in a drawing). This implies that, for 2-planar drawings,
full 2-planar pentagons and hexagons are edge-disjoint (while they may have common
boundary edges). Similarly, in the case of 3-planarity and full 3-planar hexagons, the cycle
surrounding them consists of uncrossed edges if there are no empty lenses. With this in
mind, we analogously define the boundary of a full 3-planar hexagon, and observe that these
configurations are edge-disjoint for 3-planar drawings.

Using the definitions above, we are able to state our main results in the next section.

3 Results

In this section, we present our results. The proofs of Theorem 1 and Theorem 3 use the
discharging method and can be found in Section 4.

▶ Theorem 1. Any graph G with n ≥ 3 vertices that admits a 2-planar F 2
5 -free drawing has

at most 4.5(n − 2) edges. If the drawing is also F 2
6 -free, then G has at most 13

3 (n − 2) edges.

Counting the number of edges in a drawing consisting of 0.5(n − 2) full 2-planar hexagons,
we see that the first of the two bounds is tight. For the second bound, we refer to a
pentagonalization of the plane, where four edges have been added within each pentagon.

▶ Corollary 2. For every 2-planar drawing of any graph with n ≥ 3 vertices and 13
3 (n−2)+x

edges for x ∈ [0, 2
3 (n − 2)], the number of F 2

5 and F 2
6 configurations is at least x.

Note that G cannot be 2-planar for x > 2
3 (n − 2) by the corresponding density bound.

Proof. Assume that drawing D is a 2-planar drawing of a graph with n vertices and
13
3 (n − 2) + x edges such that the number of F 2

5 or F 2
6 configurations is y < x. We can

destroy those configurations by removing one edge from each F 2
5 and F 2

6 . Hence, we still
have more than 13

3 (n − 2) edges, which is a contradiction to Theorem 1. ◀

This implies that drawings of optimal 2-planar graphs consist of 2
3 (n − 2) full 2-planar

pentagons, a fact that has been already known [7]. Similar results hold for 3-planar drawings.

▶ Theorem 3. Any graph with n ≥ 3 vertices that admits a 3-planar F 3
6 -free drawing has at

most 5(n − 2) edges.

GD 2024
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This bound is tight, which one can see by considering optimal 2-planar graphs.
The next corollary allows us to characterize drawings of dense 3-planar graphs very well.

This extends the characterization of optimal 3-planar graphs, which must have a drawing
consisting of 1

2 (n − 2) F 3
6 configurations and their boundaries [7].

▶ Corollary 4. For ervery 3-planar drawing of any graph with n ≥ 3 vertices and 5(n − 2) + x

edges for x ∈ [0, 0.5(n − 2)], the number of F 3
6 configurations is at least x.

Note that G cannot be 3-planar for x > 0.5(n − 2) by the corresponding density bound.

Proof. Analogously to the proof of Corollary 2, we assume that there is a 3-planar drawing
D of a graph with n vertices and 5(n − 2) + x edges such that the number of F 2

5 or F 2
6

configurations is y < x. Those configurations can be destroyed by removing one edge from each
F 3

6 , hence we still have more than 5(n − 2) edges, which is a contradiction to Theorem 3. ◀

A consequence of this is a new upper bound for the edge density of simple 3-planar graphs,
i.e., the case where multi-edges are forbidden. Note that the best known bound before was
5.5n − 11.5 edges [7] and there exist examples with 5.5n − 15 edges [11].

▶ Corollary 5. There are no 3-planar graphs on n ≥ 3 vertices with 5.5n − 11.5 edges.
Therefore, any simple 3-planar graph on n ≥ 3 vertices has at most 5.5n − 12 edges.

Proof. Assume that there exists a (not necessarily simple) 3-planar graph G with 5.5n − 11.5
edges. Then, by Corollary 4, we would find in any 3-planar drawing D of G at least
0.5(n − 2) − 0.5 full 3-planar hexagons. Let H be any triangulation on the set of vertices that
includes all the boundaries of all F 3

6 configurations in D. As F 3
6 configurations consist of

four triangles, only 2(n − 2) − 4(0.5(n − 2) − 0.5) = 2 triangles in H do not belong to an F 3
6 .

Now we count the edges. Starting with the edges of H, each F 3
6 consists of five additional

edges. The other two triangles may contain one additional edge, which gives in total at most
3(n − 2) + 2.5(n − 2) − 2.5 + 1 = 5.5n − 12.5 edges, contradicting the assumed density. ◀

From Theorem 1 and Theorem 3 we can also derive new lower bounds for the number of
crossings in a graph. The proof can be found in Section 5.

▶ Theorem 6. Let G be a graph with n > 2 vertices and m edges. Then
(a) cr(G) ≥ 73

18 m − 305
18 (n − 2),

(b) cr(G) ≥ 5m − 407
18 (n − 2).

A slightly weaker bound than in (a) of cr(G) ≥ 4m − 50
3 (n − 2) can be derived with a

significantly shorter proof by only applying Theorem 3; we point this out in the proof.
That improves the best known results for m > 5(n−2), which are cr(G) ≥ 4m− 103

6 (n−2)
[11] respectively cr(G) ≥ 5m − 139

6 (n − 2) [1]. Theorem 6 implies directly a better constant
in the Crossing Lemma.

▶ Theorem 7. Let G be a graph with n vertices and m edges. Then cr(G) ≥ 6000
165649

m3

n2 −
218351
165649 n > 1

27.61
m3

n2 − 1.32n. If m ≥ 6.79n > 407
60 n, then cr(G) ≥ 6000

165649
m3

n2 > 1
27.61

m3

n2 .

Proof. Let G be a graph with n vertices and m edges. For the case m ≥ 407
60 n, we construct

a random subgraph G′ by selecting every vertex of G independently with probability p =
407
60 n/m ≤ 1. We denote the number of edges and vertices in G′ by m′ and n′. By Theorem 6

and linearity of expectation, we obtain E[cr(G′)] ≥ 5E[m′] − 407
18 E[n′]. We replace E[n′] = pn,

E[m′] = p2m and E[cr(G′)] = p4 cr(G), and get

cr(G) ≥ 5m

p2 − 407n

18p3 = 6000
165649

m3

n2 .
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For the case m < 407
60 n we compare the bound cr(G) ≥ 6000

165649
m3

n2 − 218351
165649 n with the

corresponding best known linear bounds cr(G) ≥ m − 3(n − 2), cr(G) ≥ 7
3 m − 25

3 (n − 2) [11]
and Theorem 6. ◀

One direct application of the improved Crossing Lemma is a new bound on the edge
density for k-planar graphs.

▶ Corollary 8. For k ≥ 2, any simple k-planar graph with n vertices has at most 3.72
√

kn

edges.

Proof. As in [13], the new bound for k-planar graphs can be derived directly from the new
Crossing Lemma and the fact that each edge can be crossed at most k times:

1
27.61

m3

n2 ≤ cr(G) ≤ km/2,

which then leads to m ≤
√

13.805kn ≤ 3.72
√

kn. ◀

The best previous constant in the bound was 3.81.

4 Proof of Theorems 1 and 3

In this section, we give the proofs of the two central theorems of our paper. First, we will
introduce some necessary concepts, we basically adopted the notation by Ackerman [1].

Notation. We interpret a drawing D as a plane map M(D) = (V ′, E′) whose vertices V ′

are either vertices V (D) of D or crossing points of D. An edge e in E′ connects two vertices
of V ′, i.e., it is a crossing-free segment of an edge of D, which we denote by e. We call an
edge of E′ an r-edge, if r ∈ {0, 1, 2} of its endpoints are vertices of D. For a vertex v ∈ V (D),
we write deg(v) for its degree. The degree of a crossing is always four.

Let F ′ be the set of faces of M(D). For a face f ∈ F ′, we write |f | for the number of
edges in E′ that are incident to f . Similarly, |V (f)| denotes the number of (real) vertices of
D that are incident to f . Note that we will assume 2-connectivity, hence the boundary of
every face is a simple cycle and we avoid double-counting of the vertices. A face with |f | = s

is called a s-gon. In the cases of s = 3, 4, 5, 6, 7 we write instead triangle, quadrilateral,
pentagon, hexagon and heptagon. If we want to denote that |V (f)| = r and |f | = s, we write
r-s-gon and use this wording also for 2-triangles, 0-quadrilaterals, etc. for simplicity. If we
only want to specify for a face that |V (f)| = r, then we call it an r-face.

Further, we need some definitions for relations between faces in F ′. Two faces are r-
neighbors if they share an r-edge. Let now be e0 ∈ E′ a 0-edge of a face f0 ∈ F ′ and f1 ∈ F ′

the 0-neighbor of f0 at e0. For i ≥ 1, if fi ∈ F ′ is a 0-quadrilateral, then let be fi+1 ∈ F ′ the
0-neighbor of fi at the edge ei opposite to fi−1. The face fi, for which i is maximal, is called
the wedge-neighbor of f0 at e0. Since D is 3-planar, we have i ≤ 3. Notice the alternative
definition of a wedge-neighbor by Ackerman [1]. Finally, we define two faces f, f ′ ∈ F ′ to be
vertex-neighbors, if f and f ′ share a crossing-vertex c, but not an edge in E′ incident to c.
See Figure 2 for an illustration of the defined terms.

Preliminaries for the proofs. We prove both theorems by induction. This will allow us, as
in [1], to study only 2-connected drawings (see Proposition 9). For n = 3, independently from
the forbidden configurations, there are at most three non-homotopic edges in any drawing
and therefore both theorems hold. If n > 3 and there is a vertex v ∈ G with deg(v) ≤ 4,
then the theorems follow after removing v by induction.

GD 2024
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f

f ′

f

f ′

f

f ′

(a)

f0

e0

e1

f1

f2

(b)

f

f ′

(c)

Figure 2 Illustrations of the defined neighborhood-relations. (a) From top to bottom: The faces f

and f ′ are 0-neighbors, 1-neighbors, 2-neighbors resp. (b) The 0-pentagon f2 is the wedge-neighbor
of the 1-triangle f0 at its edge e0. (c) The faces f and f ′ are vertex-neighbors.

▶ Proposition 9. If D is not 2-connected, then Theorem 1 and Theorem 3 are true.

Proof. The argument follows the lines of [1]. To argue for the different scenarios of Theorem 1
and Theorem 3 at the same time, let a(n − 2) for a ∈ { 13

3 , 4.5, 5} be an upper bound on the
number of edges, which we want to prove. Assume that there is a vertex x ∈ E′ such that
M(D) \ {x} is not connected. Then x is either a vertex or a crossing of D.

If x is a vertex of D, then D \ {x} is not connected, so let D1, ..., Dk be the connected
components of D \ {x}. Let further D′ be the drawing induced by V (D1) ∪ {x} and D′′

the drawing induced by V (D2) ∪ ... ∪ V (Dk) ∪ {x}. Let |V (D′)| = n′, |V (D′′)| = n′′ and
observe n′ + n′′ = n + 1. Since every vertex has at least degree four, 4 < n′, n′′ < n holds.
By induction, it follows m ≤ (an′ − 2a) + (an′′ − 2a) = a(n + 1) − 4a < a(n − 2).

Assume now that x is a crossing of D. Let D̂ be the drawing obtained by replacing
x by a vertex. This increases the number of vertices by one and the number of edges
by two. Let D1, ..., Dk be the connected components of D̂ \ {x}. Again, let D′ be the
drawing induced by V (D1) ∪ {x} and D′′ the drawing induced by V (D2) ∪ ... ∪ V (Dk) ∪ {x}.
For |V (D′)| = n′, |V (D′′)| = n′′ we observe 4 < n′, n′′ < n. By induction, we get m ≤
(an′ − 2a) + (an′′ − 2a) − 2 = a(n + 2) − 4a − 2 < a(n − 2). ◀

Therefore we will always assume that D is 2-connected. As both theorems consider upper
bounds for the number of edges for the specific graph classes, we also assume that we consider
graphs G that are edge-maximum for the specific class of graphs, and for such graphs a
corresponding drawing D that is crossing-minimum. These assumptions will enable us to
conduct a focused analysis of the bounds for the number of edges.

▶ Proposition 10. Let D be a drawing that is either (1) 2-planar F 2
5 -free or (2) 2-planar

F 2
5 -free and F 2

6 -free or (3) 3-planar F 3
6 -free and maximally-dense-crossing-minimal under

this restriction. Then the following properties hold:
(a) There are no empty lenses.
(b) For all faces f ∈ F ′ we have |f | ≥ 3.
(c) The wedge-neighbor of a 0-triangle or a 1-triangle is a face f ∈ F ′ with |f | ≥ 4 that is

not a 0-quadrilateral.
(d) If there are two vertices u, v ∈ V (D) on the boundary of a face f ∈ F ′, then the edge uv

is part of the boundary of f . Therefore every face f ∈ F ′ with |V (f)| > 2 is a 3-triangle.
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Proof.
(a) Since there are no two homotopic edges, there are no empty lenses with two vertices.

Any other empty lens can be destroyed by swapping the segments of the edges of D

that define the empty lens (without creating one of the forbidden configurations). This
reduces the number of crossings contradicting that D is crossing-minimal.

(b) Loops and self-intersecting edges are forbidden, so there is no face f ∈ F ′ with |f | = 1.
Every face f ∈ F ′ with |f | = 2 is an empty lens, which does not appear in D by (a).

(c) Let f be an arbitrary face. By definition, the face f is never a 0-quadrilateral. If |f | = 3,
then this would imply an empty lens.

(d) For an arbitrary face f , assume that no edge e = uv exists on the boundary of f .
Therefore, we may insert e contradicting that D is maximally dense. By this, we
cannot create one of the three forbidden configurations F 2

5 , F 2
6 and F 3

6 , since they do not
contain planar edges. This does not create homotopic edges as every other edge e′ = uv

homotopic to e would have been already on the boundary of f or would have formed an
empty lens with an edge of the boundary of f contradicting (a).
Assume now that a face f with |V (f)| > 2 exists that is not a 3-triangle. Then we find
three vertices in V (D) on the boundary of f , which do not all appear next to each other.
We introduce a new edge between two of them, contradicting the maximality of D. ◀

In the following, we will use the discharging method. See [1, 2, 8, 15] for similar applications
of this technique. We define a charging function ch : F ′ → R that assigns an initial charge of

ch(f) = |f | + |V (f)| − 4 (1)

to every face f ∈ F ′. It is known that for the total charge
∑

f∈F ′ ch(f) = 4n − 8 holds
(refer to [2] for details). The challenge now is to redistribute the charge so that in the end
every face f ∈ F ′ has a charge of ch′(·) that satisfies ch′(f) ≥ α|V (f)| for a suitable α > 0,
while the total charge does not change. From this and the observation that

∑
f∈F ′ |V (f)| =∑

v∈V (D) deg(v) = 2m holds, we can derive an upper bound of

m ≤ 2
α

(n − 2) (2)

on the number of edges. For a given α and a face f with charge c, we say that |c − α|V (f)||
is the demand of f , if c − α|V (f)| is negative, otherwise we call it the excess of f . If f has
no demand, then we also say that f is satisfied.

4.1 Proof and Discharging for Theorem 1
▶ Theorem 1. Any graph G with n ≥ 3 vertices that admits a 2-planar F 2

5 -free drawing has
at most 4.5(n − 2) edges. If the drawing is also F 2

6 -free, then G has at most 13
3 (n − 2) edges.

Proof. We start with the bound of 13
3 (n − 2). Let D be a 2-planar, F 2

5 -free and F 2
6 -

free drawing that is maximally-dense-crossing-minimal. Assign to every face f ∈ F ′ the
initial charge ch(f) according to Equation (1). The initial charges are distributed in the
following way:

Step 1: Each 0-triangle receives 1
3 charge from each of its wedge-neighbors.

Step 2: Each 1-triangle receives 1
26 charge from both 1-neighbors.

Step 3: Each 1-triangle receives 5
13 charge from its wedge-neighbor.

Step 4: Each 2-quadrilateral contributes its excess to its wedge-neighbor.
Step 5: For each 2-triangle f , let C(f) be the inclusion-minimal planar cycle of D enclosing
f (i.e. the planar cycle that does not contain other planar edges). Then f distributes its
excess equally over those faces that lie inside C(f) and have a demand.

GD 2024
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f

(a)

f

(b)

f

(c)

f

(d)

Figure 3 Discharging for Theorem 1. Planar edges that exist by Proposition 10 are dashed.

Denote the charges after the i-th step by chi(·). With this, we have ch′(·) = ch5(·).

▶ Proposition 11. For all faces f ∈ F ′, we have ch′(f) ≥ 6
13 |V (f)|.

Proof. We analyze the final charge ch′(·) for all faces. Note that a face contributes through
each edge of its boundary in Step 1-3 at most once and the only contributing faces in
Step 1 are 2-quadrilaterals (see Figure 3a) and in Step 2 2-triangles (see Figure 3b). Also
ch3(f) ≥ 6

13 |V (f)| already implies ch′(f) ≥ 6
13 |V (f)|. Because of Proposition 10 there are

only 3-triangles and faces f with |f | ≥ 3 and |V (f)| ≤ 2.
f is a 0-triangle. Then f receives in Step 1 in 3 · 1

3 charge and never contributes charge.
Therefore ch3(f) = −1 + 1 = 0 ≥ 6

13 · 0.
f is a 1-triangle. Then f receives in Step 2 2 · 1

26 charge, in Step 3 5
13 charge and never

contributes charge. Therefore ch3(f) = 0 + 6
13 ≥ 6

13 · 1.
f is a 2-triangle. Then f starts with 1 charge and contributes in Step 2 at most 2 · 1

26
charge. Therefore ch3(f) ≥ 1 − 1

13 = 12
13 ≥ 6

13 · 2.
f is a 3-triangle. Then f never receives or contributes charge. Thus ch3(f) = 2 ≥ 6

13 · 3.
f is a 0-quadrilateral. Then f starts with 0 charge and never receives or contributes
charge as it cannot be the wedge-neighbor of another face. Therefore ch3(f) = 0 ≥ 6

13 · 0.
f is a 1-quadrilateral. Then f starts with 1 charge. If f contributes in Step 3 to less than
two 1-triangles, we have ch3(f) ≥ 1 − 5

13 = 8
13 ≥ 6

13 · 1. Otherwise, we know that f is
bounded by a 5-cycle of planar edges (Figure 3c). Here, charges do not change in Step 4,
but we can find 3

13 charge from the excesses of 2-triangles in this 5-cycle and move that
to f in Step 5. Therefore, we have ch′(f) = 1 − 2 · 5

13 + 3
13 = 6

13 ≥ 6
13 · 1.

f is a 2-quadrilateral. Then f has one wedge-neighbor, to which it contributes either 1
3

charge in Step 1 or 5
13 charge in Step 3. So we have ch3(f) ≥ 2 − 5

13 = 21
13 ≥ 6

13 · 2
f is a 0-pentagon. Note that all wedge-neighbors of f are 1-triangles or 2-quadrilaterals,
as otherwise there would be an edge with three crossings or a face with two real vertices
that are not connected by an edge. If f contributes to five 1-triangles in Step 3, then
we would have an F 2

5 configuration, which is forbidden. Otherwise, at least one 2-
quadrilateral contributes its excess of 14

13 to f in Step 4 (see Figure 3d). Therefore we
have ch4(f) ≥ 1 + 14

13 − 4 · 5
13 = 7

13 ≥ 6
13 · 0.

f is a 1-pentagon or a 2-pentagon resp. Then f contributes to at most three or two
1-triangles resp. in Step 3. Therefore, we have ch3(f) ≥ 2 − 3 · 5

13 = 11
13 ≥ 6

13 · 1 resp.
ch3(f) ≥ 3 − 2 · 5

13 = 29
13 ≥ 6

13 · 2.
f is a 0-hexagon. If f contributes to six 1-triangles in Step 3, then we would have an F 2

6
configuration, which is forbidden. Otherwise, we have ch3(f) ≥ 2 − 5 · 5

13 = 1
13 ≥ 6

13 · 0.
f is a 1-hexagon resp. 2-hexagon. Then f contributes to at most four resp. three
1-triangles in Step 3 and we have ch3(f) ≥ 3 − 4 · 5

13 = 19
13 ≥ 6

13 · 2.
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f is a face with |f | ≥ 7. Then f may contribute charge to at most |f | wedge-neighbors
in Step 3. Therefore ch3(f) ≥ |f | + |V (f)| − 4 − 5

13 · |f | ≥ 8
13 · 7 + |V (f)| − 4 ≥ 6

13 |V (f)|.
Therefore, all faces f ∈ F ′ are satisfied, which proves the proposition. ◀

Combining Proposition 11 and Equation (2), m ≤ 2 · 13
6 (n − 2) is implied, as claimed.

For drawings, where F 2
6 configurations are allowed, we can use similar discharging steps

to prove the bound of 4.5(n − 2) on the number of edges. Here we set α = 4
9 , and therefore

1-triangles can receive 1
18 charge from both its 1-neighbors each in Step 2 without creating a

demand for any 2-triangles. Therefore, faces have to contribute in Step 3 only 1
3 charge to

satisfy all 1-triangles. Now let f be a 0-hexagon that is the wedge-neighbor of six 1-triangles.
Starting with 2 charge, it contributes at most 6 · 1

3 in Step 3, and therefore ends with 0 ≥ 4
9 · 0

charge. For all other faces we still have enough charge with the same analysis as above.
Therefore, there exists a function ch′(·) satisfying ch′(f) ≥ 4

9 |V (f)| for all f ∈ F ′, while
the total amount of charge is still 4n − 8. By Equation (2) we get m ≤ 2 · 9

4 (n − 2). ◀

4.2 Proof and Discharging for Theorem 3
▶ Theorem 3. Any graph with n ≥ 3 vertices that admits a 3-planar F 3

6 -free drawing has at
most 5(n − 2) edges.

Proof. Let D be a 3-planar F 3
6 -free drawing that is maximally-dense-crossing-minimal. As

in the proof of Theorem 1, we assign the initial charges ch(f) to the faces of M(D) and
redistribute them to achieve a function ch′(·). The discharging takes place in seven steps:

Step 1: Each 0-triangle receives 1 charge from each 0-neighbor that is a 2-quadrilateral.
Step 2: Each 0-triangle with a demand receives 1

3 charge from all wedge-neighbors.
Step 3: Each 2-triangle distributes its excess equally over all 1-neighbors that are 1-
triangles.
Step 4: Each 1-triangle receives its demand from its wedge-neighbor.
Step 5: Each face distributes its excess equally over the wedge-neighbors that are 0-
pentagons, but at most 0.3 to each of them, and keeps the rest.
Step 6: Each face distributes its excess equally over all vertex-neighbors that are 0-
quadrilaterals or 0-pentagons. The 0-quadrilaterals distribute this charge equally over
their 0-neighbors that have a demand.
Step 7: For each face f , let C(f) be the inclusion-minimal planar cycle of D enclosing f

(i.e. the planar cycle that does not contain other planar edges). Then f distributes its
excess equally over those faces that lie inside C(f) and have a demand.

Again, we denote by chi(·) the charges after the i-th step and by ch′(·) the final charges.
Our goal is to show ch′(f) ≥ 0.4|V (f)| for all faces f ∈ F ′. Note that this is already implied
by ch4(f) ≥ 0.4|V (f)|, as in Step 5-7 faces contribute only their excesses. We structure the
proof into several propositions, collecting statements about the discharging steps.

▶ Proposition 12. After Step 2, 0-triangles are and remain satisfied.

Proof. Let f be a 0-triangle. We have ch(f) = −1. If f receives in Step 1 charge, then
ch1(f) = 0. Otherwise, f receives 3 · 1

3 charge in Step 2, so ch2(f) = 0. 0-triangles do not
contribute charge in Step 3-4, since they are not wedge-neighbors of 1-triangles. Therefore,
ch′(f) ≥ 0.4 · 0 holds. ◀

▶ Proposition 13. In Step 1-2, 0-faces contribute no charge.
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Figure 4 Illustrations for the proofs of Proposition 13, Proposition 14 and Proposition 15.

Proof. No faces except 2-quadrilaterals contribute charge in Step 1, so we consider only
Step 2. Assume that a 0-face f0 contributes charge to a 0-triangle f in Step 2, and f0 and f

are therefore 0-neighbors at an edge e0. Let e1, e2 be the other edges of f and f1, f2 the
0-neighbors at these edges (see Figure 4a). Since f0 is a 0-face, it is incident to two crossings
each with e1 and e2 and these edges also cross each other at f . Therefore e1 and e2 have
already three crossings and end at f1 resp. f2. The edge e0 ends also at one of f1 or f2, as
otherwise it would have four crossings. W.l.o.g. e0 ends at f1 and by Proposition 10 f1 is a
2-quadrilateral. Hence, ch1(f) ≥ 0.4 · |V (f)|, contradicting that f receives charge later. ◀

▶ Proposition 14. After Step 3, 1-triangles have a demand of at most 0.3 charge.

Proof. Let f be a 1-triangle with the real vertex v and the 0-edge e. Let further f1, f2 be
the 1-neighbors of f (see Figure 4b). Then e ends at one of f1 and f2, as otherwise it would
have more than three crossings. W.l.o.g. let f1 be that face with the vertex v′ to which e is
incident. Then by Proposition 10 the edge vv′ exists and f1 is a 2-triangle. Therefore, f1
starts with 1 charge and has an initial excess of 0.2. Thus, f receives 0.1 charge in Step 3.
We have ch3(f) = 0.1, which is equivalent to a demand of 0.3. ◀

▶ Proposition 15. After Step 4, all 1-quadrilaterals are satisfied.

Proof. Let f be a 1-quadrilateral. We have ch(f) = 1 and f contributes charge only in Step
2 and Step 4. If f contributes to at most one wedge-neighbor or to two 1-triangles, then
ch4(f) ≥ 1 − 0.6 ≥ 1 · 0.4. Otherwise, f contributes either to two wedge-neighbors that are
both 0-triangles or to one 0-triangle and one 1-triangle. In the first case, both 0-triangles are
already satisfied after Step 1, as they have wedge-neighbors that are 2-quadrilaterals (see
Figure 4c). In the second case, f contributes not more than 0.2 charge to the 1-triangle f ′,
because one of its 1-neighbors is a 2-triangle contributing its excess of 0.2 charge only to f ′

in Step 3 (see Figure 4d). Therefore, we have ch4(f) ≥ 1 − 1
3 − 0.2 ≥ 1 · 0.4. ◀

▶ Proposition 16. After Step 4, all faces are and remain satisfied that are not 0-pentagons
that are the wedge-neighbor of four or five 1-triangles.

Proof. Note again that for a face f the charge ch4(f) ≥ 0.4|V (f)| implies already that it
has no demand in Step 5-7, since faces only there contribute their excesses.

To see that 0-triangles and 1-quadrilaterals are satisfied, we refer to Propositions 12 and
15. 1-triangles are satisfied by definition of Step 4. Remember that only 3-triangles and
r-s-gons with r ≤ 2, s ≥ 3 can exist by Proposition 10. Now we discuss the other cases:

f is a 2-triangle. We start with ch(f) = 1. As only wedge-neighbors contribute in Step
1-2 and Step 4 and f cannot be a wedge-neighbor of another face, the only critical step
is Step 3. Here, f contributes in total at most its excess of 0.2 charge, and therefore
ch4(f) ≥ 1 − 0.2 ≥ 2 · 0.4.
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f is a 3-triangle. We start with ch(f) = 2 and f never contributes charge. It follows that
ch4(f) = 2 ≥ 3 · 0.4 holds.
f is a 0-quadrilateral. Again, f never contributes charge, and therefore ch(f) = ch4(f) =
0 ≥ 0 · 0.4 holds.
f is a 2-quadrilateral. We start with ch(f) = 2. Note that f contributes only once as it
has only one wedge-neighbor, and therefore we have ch4(f) ≥ 2 − 1 ≥ 2 · 0.4.
f is a 0-pentagon with at most three wedge-neighbors that are 1-triangles. We have
ch(f) = 1 and f contributes only to three faces. With Proposition 13 and Proposition 14
ch4(f) ≥ 1 − 3 · 0.3 ≥ 0 · 0.4 follows.
f is a 1-pentagon or a 2-pentagon. f starts with ch(f) ≥ 2 and we have ch4(f) ≥
2 − 3 · 1

3 ≥ 2 · 0.4.
f is a face with |f | ≥ 6. Then f may contribute to at most |f | wedge-neighbors charge.
Therefore, we have ch4(f) ≥ |f | + |V (f)| − 4 − 1

3 · |f | ≥ |V (f)|. ◀

It remains to prove that 0-pentagons with four or five wedge-neighbors that are 1-triangles
have at least zero charge after Step 7. We show this by the following four propositions, which
we only state here; the proofs can be found in Appendix A.

▶ Proposition 17. In Step 5, each 0-pentagon receives 0.3 charge from all wedge-neighbors
that are not 1-triangles, 0-triangles or 0-pentagons.

▶ Proposition 18. In Step 6, each 1-face and 2-face f with |f | ≥ 5 and each 0-face f with
|f | ≥ 7 contributes at least 0.4 charge to the vertex-neighbors that are 0-quadrilaterals or
0-pentagons.

▶ Proposition 19. After Step 7, all 0-pentagons that are the wedge-neighbor of four 1-triangles
are satisfied.

▶ Proposition 20. After Step 7, all 0-pentagons that are the wedge-neighbor of five 1-triangles
are satisfied.

By Propositions 16, 19 and 20 ch′(f) ≥ 0.4 · |V (f)| holds for all faces f ∈ F ′. Since charge
is only moved, its total amount is still 4n − 8 and Equation (2) implies m ≤ 2

0.4 (n − 2). ◀

5 Proof of Theorem 6

In this section, we present the proof of Theorem 6 that shows how to use the earlier stated
observations and theorems and leads to a better bound for the Crossing Lemma.

▶ Theorem 6. Let G be a graph with n > 2 vertices and m edges. Then
(a) cr(G) ≥ 73

18 m − 305
18 (n − 2),

(b) cr(G) ≥ 5m − 407
18 (n − 2).

Proof. We start proving the bound in (a). If m ≤ 5(n − 2), then the bound follows from
the linear bound cr(G) ≥ 7

3 m − 25
3 (n − 2) [11]. So assume m > 5(n − 2) and let D be a

crossing-minimal drawing of G. From D, we iteratively remove the edge with the most
crossings until 5(n − 2) edges are left. In particular, as long as the maximum number of
crossings is three, we always remove an edge from an F 3

6 configuration. By Theorem 3,
we stop latest, when there are no F 3

6 configurations. By this process, edges are iteratively
deleted until we reach 5(n − 2) edges, as following:
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Figure 5 Three independent edges (blue) with three crossings in an F 3
6 configuration. In D3 one

of them is already deleted, in D3− also the other two.

m5+ edges with five or more crossings – denote the resulting drawing by D4,
then m4 edges with four crossings – denote the resulting drawing by D3 and the set of
edges deleted in this step by E4,
then m3 edges with three crossings from F 3

6 configurations – denote the resulting drawing
by D3−.

Note that m4 or m3 could be zero in the case that we reached 5(n − 2) already during step
(1) or (2). Afterwards we have m3 edge-disjoint F 3

6 configurations with a missing edge in
D3−. So we are able to find 2m3 more independent edges with three crossings and delete
them (see Figure 5). Continue the deletion process by still removing the edge with the most
crossings until this edge no longer has three or more crossings; we denote the number of
these deleted edges by m3−. Call the achieved drawing D2. By applying the linear bound
from [11] again, we have

cr(G) ≥ [5m5+ + 4m4 + 3m3] + [2 · 3m3 + 3m3−] +
[7

3(5(n − 2) − 2m3 − m3−) − 25
3 (n − 2)

]
= 5m5+ + 4m4 + 13

3 m3 + 2
3m3− + 10

3 (n − 2). (3)

As all values are non-negative, it is not hard to see that this is at least

≥ 4(m5+ + m4 + m3 + 5(n − 2)) − 50
3 (n − 2) = 4m − 50

3 (n − 2).

For the better bound of cr(G) ≥ 73
18 m − 305

18 (n − 2) we have to elaborate on the value m4, as
there was no slack in the last inequality.

As a preparation, we first consider the structure of D2. Let cpent be the number of F 2
5

configurations and chex the number of F 2
6 configurations in D2. Let further E0 be the set of

crossing-free edges on the boundary of the forbidden configurations in D3 resp. D2 that do
not exist in D2, and therefore may be added. We denote |E0| = m0 and state the following;
the proof is in Appendix B.

▶ Proposition 21. With the notation above, cpent + chex ≥ 2
3 (n − 2) − 4

3 m3 − m3− + m0.

Next, we show how to limit the number of the edges of E4, i.e., the deleted edges that
were accounted with four crossings in D4. For that, we introduce a triangulation H on the
set of the n vertices of D4 that contains (1) the boundary of every F 3

6 configuration in D3,
(2) the boundary of every F 2

5 and F 2
6 configuration in D2, (3) every edge in E4 that lies

completely outside of these forbidden configurations. This definition is refined in the proof
of the next proposition. Note that it is always possible to achieve such a triangulation H,
because edges of E4 cannot cross each other.
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▶ Proposition 22. Let H′ ⊆ H be the set of triangles that do not belong to the forbidden
configurations and let c△ = |H′|. Then m4 ≤ m3 + chex + 4m0 + 4c△.

The proof can be found in Appendix B. Combining the results, we can finish the first
part of the proof. Proposition 21 implies

c△ ≤ 2(n − 2) − 4m3 −
[2

3(n − 2) − 4
3m3 − m3− + m0

]
· 3 − chex = 3m3− − 3m0 − chex,

because the total number of triangles is 2(n − 2) and a pentagon resp. hexagon contains
three resp. four triangles. Together with Proposition 22, this gives

m4 ≤ m3 + chex + 4m0 + 4(3m3− − 3m0 − chex) ≤ 5m3 + 12m3−.

Multiplying this term by 1
18 and adding it to Equation (3), we get as desired

cr(G) ≥ 5m5+ + 4m4 + 13
3 m3 + 2

3m3− + 10
3 (n − 2) + m4 − (5m3 + 12m3−)

18
≥ 73

18(m5+ + m4 + m3) + 10
3 (n − 2)

= 73
18(m5+ + m4 + m3 + 5(n − 2)) − 305

18 (n − 2).

For the bound in (b) see the following: If m ≤ 6(n − 2), then we can apply the bound of
(a). So let be m > 6(n − 2). Iteratively delete the edge with the most crossings in a crossing-
minimal drawing D until 6(n − 2) edges are left; these edges have at least five crossings, as
the density of 4-planar graphs is ≤ 6(n − 2) [1]. With the bound in (a), this implies

cr(G) ≥ 5(m − 6(n − 2)) + 73
18 · 6(n − 2) − 305

18 (n − 2) = 5m − 407
18 (n − 2). ◀

6 Discussion

We have improved the leading constant of the lower bound for the crossing number of a given
graph G. Although this improvement does not seem to be too impressive at first sight, we
worked out some interesting observations for drawings with a limited number of crossings per
edge. This leads to further improvements, conjectures and suggestions for future research.

In particular, we have improved for m > 5(n − 2) the lower bound of the crossing
number, unfortunately we did not reach tightness. We confirm the conjecture by [11]
that cr(G) ≥ 25

6 m − 35
2 (n − 2) holds and highlight that this bound would follow from our

proofs, if we were able to show a slightly stronger statement in Proposition 22, namely
m4 ≤ m3 + chex + 4m0 + 4

3 c△. The corresponding upper bound can be obtained by a
construction where the plane subgraph consists only of pentagonal and hexagonal faces [11].

Applying our technique to 4-planar drawings might show that these drawings without full
hexagons F 4

6 have density ≤ 5.5(n − 2). This would provide a characterization of optimal
4-planar graphs, which is a well-known open problem. Further, we can look at 5-planar
graphs, a class that has been considered as too complex for actual research. Just applying
Corollary 8 improves the current known density bound from 8.52n to 8.32n.

It seems to be worthwhile to apply the idea to bipartite graphs to obtain improvements
of the Crossing Lemma. Here, the corresponding linear bound cr(G) ≥ 3m − 17

2 n + 19 used
in the current proof in [5] is not tight.

Furthermore, we have indicated a way how to obtain the exact density bound of optimal
simple 3-planar graphs. Note that we only did one step in this direction.
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Figure 6 (a) No face contributes to two consecutive vertex-neighbors in Step 6. (b) If a 0-heptagon
f contributes to three vertex-neighbors f1, f2, f3 in Step 6, then it contributes not to all its seven
wedge-neighbors in Step 1-5. (c) A 1-pentagon f contributing to all three wedge-neighbors in Step
1-5 and to two vertex-neighbors in Step 6 leads to a contradiction.

A Details for Section 4

▶ Proposition 17. In Step 5, each 0-pentagon receives 0.3 charge from all wedge-neighbors
that are not 1-triangles, 0-triangles or 0-pentagons.

Proof. Note that in the calculations of Proposition 16, we assumed for all faces that are
possibly a wedge-neighbor of a 0-pentagon except 0-triangles, 1-triangles, 1-quadrilaterals
and 0-pentagons that they give at least 0.3 charge to all wedge-neighbors. If such a face f has
a wedge-neighbor that is a 0-pentagon, then it did not contribute charge to it in Step 1-4, and
therefore has 0.3 charge left for it in Step 5. The only critical case is a 1-quadrilateral f with
a 0-pentagon and a 0-triangle f ′ as wedge-neighbors. Observe that in this case ch1(f ′) = 0
already, because there is a 2-quadrilateral next to f ′ as in Figure 4c, and therefore ch4(f) = 1.
Thus, f can contribute 0.3 charge to the 0-pentagon. ◀

▶ Proposition 18. In Step 6, each 1-face and 2-face f with |f | ≥ 5 and each 0-face f with
|f | ≥ 7 contributes at least 0.4 charge to the vertex-neighbors that are 0-quadrilaterals or
0-pentagons.

Proof. Let e be a 0-edge of a face f incident to the crossings x and y. Let f1 be the
vertex-neighbor of f at x and f2 the vertex-neighbor at y. If f1 and f2 are 0-faces, then e

has more than three crossings, a contradiction. Therefore, no face can contribute charge
through two consecutive crossings on its boundary in Step 6. For a face f , this implies that
it can contribute to at most

⌊
|f |
2

⌋
vertex-neighbors in this step.

Now we distinguish different cases for the face f that might contribute to vertex-neighbors.
We start with the case that f is a 0-face. Here, after Step 5, f has an excess of

ch5(f) ≥ |f | − 4 − |f | · 0.3 = 0.7|f | − 4,

which is at least 0.4 ·
⌊

|f |
2

⌋
for |f | ≥ 8 and therefore enough. If f is a 0-heptagon, then, by

the inequality above, there is enough charge if f contributes to at most two vertex-neighbors
in Step 6. So assume that it contributes to three vertex-neighbors. It is not hard to see that
there are wedge-neighbors of f with |f | ≥ 4 and |V (f)| ≥ 1 (see Figure 6a), so f contributes
in Step 1-5 to at most six faces. Now we have ch5(f) ≥ 3 − 6 · 0.3 = 1.2, which is sufficient
to give three vertex-neighbors 0.4 charge each in Step 6.
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Let f now be a 1-face. Then f has an excess of

ch5(f) − 0.4 ≥ |f | + 1 − 4 − (|f | − 2) · 1
3 − 0.4 = 2

3 |f | − 3.4 + 2
3 ,

which is at least 0.4 ·
⌊

|f |
2

⌋
if |f | ≥ 6. If f is a 1-pentagon, then, by the inequality above,

there is enough charge if f contributes to at most one vertex-neighbor in Step 6. So assume
the opposite, i.e., f contributes to two vertex-neighbors f1, f2 in Step 6. If f contributes in
Step 1-5 to only one or two wedge-neighbors, then its excess after Step 5 is at least 1.6 − 2

3
charge and therefore sufficient, so assume this is not the case either.

Walking along the boundary of f , let e0 be a 1-edge of f , let e1, e2, e3 be the 0-edges and
let e4 be the other 1-edge of f . Let further ti be the wedge-neighbor of f at ei for i ∈ {1, 2, 3}.
W.l.o.g. f1 lies at the crossing of e0, and therefore the face t2 is a 1-triangle, as otherwise f

would not contribute charge to t2 in Step 1-5 (see Figure 6b). Therefore, f2 lies at the crossing
of e4. Note that e2 ends at t1 or t3, say w.l.o.g. at t1. But then |t1| ≥ 4 and |V (t1)| ≥ 1, so
f does not contribute charge to t1 in Step 1-5, a contradiction to our assumption. Therefore,
1-pentagons can contribute 0.4 charge to the desired vertex-neighbors.

The last case is that f is a 2-face. Then f has an excess of

ch5(f) − 0.8 ≥ |f | + 2 − 4 − (|f | − 3) · 1
3 − 0.8 ≥ 2

4 |f | − 1.8,

which is at least 0.4 ·
⌊

|f |
2

⌋
for |f | ≥ 5. ◀

▶ Proposition 19. After Step 7, all 0-pentagons that are the wedge-neighbor of four 1-triangles
are satisfied.

Proof. We introduce a notation for the edges and faces at a 0-pentagon f . Let ei, i ∈ {0, ..., 4}
be the edges forming the boundary of f , so that ei and e(i+1 mod 5) have a crossing at f .
Further we denote by ti the wedge-neighbor of f at ei and by fi the vertex-neighbor of f at
the crossing of ei and e(i+1 mod 5).

Let f be a 0-pentagon with four wedge-neighbors that are 1-triangles. So we have
ch4(f) ≥ 1−4 ·0.4 = −0.2. Let w.l.o.g. t0 be the wedge-neighbor of f that is not a 1-triangle.
If t0 is not a 0-triangle or 0-pentagon, then it contributes, by Proposition 17, 0.3 charge to f

in Step 5 and f is satisfied. Otherwise, distinguish between the type of the face t0.
Case 1: t0 is a 0-triangle. Observe that e1 and e4 already have three crossings and e0
two crossings. Therefore, e0 ends at f0 or f4, say w.l.o.g. f0, so f0 is a 2-quadrilateral
(see Figure 7a). Then f0 has an excess of 0.2 after Step 5, as it only contributes in Step 1
charge. Note that the vertex-neighbors of f0 are f and f4. Since f4 is not a 0-face, f0
contributes its excess of 0.2 charge in Step 6 only to f , and therefore ch6(f) ≥ 0.
Case 2: t0 is a 0-pentagon. Again, e1 and e4 already have three crossings and e0 two
crossings. Therefore, f2 is a 2-triangle and also one of f1 and f3, say w.l.o.g. f1 (see
Figure 7b). So we have ch3(t2) = −0.2, and therefore ch4(f) ≥ 1 − 3 · 0.3 − 0.2 ≥ −0.1.
Note that the only face besides f that may receive charge from t0 in Step 5 is f4. Therefore,
we distinguish two cases:

Case 2.1: f4 is a 0-pentagon. If less than three wedge-neighbors of t0 are 1-triangles,
then ch4(t0) ≥ 0.4 and f receives enough charge in Step 5. If three wedge-neighbors of
t0 are 1-triangles, then the 1-triangle at the vertex at which e1 ends has −0.2 charge
after Step 3, as it lies between two 2-triangles (see Figure 7c). Therefore, we have
ch4(t0) = 1 − 2 · 0.3 − 0.2 = 0.2 and f can receive a half of it in Step 5, which is enough.
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Figure 7 Illustrations for the proof of Proposition 19 Case 1 and 2.1.
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Figure 8 Illustrations for the proof of Proposition 19 Case 2.2.

Case 2.2: f4 is not a 0-pentagon. If ch4(t0) ≥ 0.1, then f receives its missing charge
already in Step 5. So assume the opposite, which implies that four wedge-neighbors of
t0 are 1-triangles (see Figure 8a).
If now f3 is a 2-triangle, then ch3(t3) = −0.2 and we have ch(f) = 1−2 ·0.3−2 ·0.2 = 0
and f never has a demand. Otherwise, there is an edge e crossing e3 at f3 that has
already three crossings, and therefore f3 is either a 2-quadrilateral or a 1-triangle. In
the first case, f3 has an excess of at least 0.2 and only contributes it to f in Step 6. In
the second case, we have a planar cycle of length seven, in which all faces except f are
satisfied after Step 6. Here, f receives its demand in Step 7 from a 2-quadrilateral that
is a vertex-neighbor of t0 (Figure 8c). In all cases f is satisfied after Step 6. ◀

▶ Proposition 20. After Step 7, all 0-pentagons that are the wedge-neighbor of five 1-triangles
are satisfied.

Proof. We continue to use the notation introduced in the proof of Proposition 19. Let f be
a 0-pentagon with five wedge-neighbors that are 1-triangles. We distinguish the number of
0-neighbors of f that are 0-quadrilaterals. Note that at most two such faces can exist next
to a 0-pentagon.

Case 1: No 0-neighbor of f is a 0-quadrilateral. Then all five vertex-neighbors are
2-triangles (see Figure 9a) and we have ch′(f) = ch4(f) = 1 − 0.5 · 2 = 0.
Case 2: Exactly one 0-neighbor of f is a 0-quadrilateral. Assume w.l.o.g. that this
0-quadrilateral lies at e0. We consider the wedge-neighbors t2 and t3 of f (see Figure 9b).
Observe that ch3(t2) = ch3(t3) = −0.2, and therefore ch4(f) ≥ 1 − 3 · 0.3 − 2 · 0.2 = −0.3.
Note further that f0 and f4 cannot be 0-faces, and therefore, by Proposition 18, f receives
the missing charge in Step 6 if |f0| or |f4| is at least five. The same holds if one of f0
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Figure 9 Illustrations for the proof of Proposition 20 Cases 1 and 2.

and f4 is a 2-quadrilateral or both are 1-quadrilaterals, because in this case there is an
excess of at least 0.3 charge after Step 5, which is only contributed to f (their other
vertex-neighbor is t0, which does not receive charge in Step 5, see Figure 9b).
Further f1 and f2 cannot be 2-triangles or 3-triangles. If both are 1-triangles, then there
would be homotopic multi-edges, which is not allowed. So the last case to consider is
when one of them – w.l.o.g. f4 – is a 1-triangle and the other – therefore f0 – is a
1-quadrilateral. If f4 is the only wedge-neighbor, to which f0 contributes in Step 1-5,
then it contributes its excess of 0.3 charge to f in Step 6 and f is satisfied. Otherwise,
the second wedge-neighbor of f0 is also a 1-triangle and we have a planar cycle of length
six (see Figure 9c). Here, f0 contributes 0.1 charge to f in Step 6 and the 1-neighbor of
f0 that is a 2-triangle can contribute its excess of 0.2 to f in Step 7. Therefore, we have
ch′(f) ≥ 0.
Case 3: Exactly two 0-neighbors of f are 0-quadrilaterals. W.l.o.g. one 0-quadrilateral is at
e0. If the other 0-quadrilateral would be at e2 (resp. e3), then e1 (resp. e4) would have four
crossings. Therefore, we can assume w.l.o.g. that the second 0-quadrilateral is at e4. Here,
we have ch3(t2) = −0.2 as f1 and f2 are 2-triangles, thus ch4(f) ≥ 1 − 4 · 0.3 − 0.2 = −0.4
(see Figure 10a).
We distinguish the type of the vertex-neighbor f4. Note that |f4| ≥ 4 and f4 cannot be a
2-quadrilateral. If f4 is not a 0-quadrilateral, 1-quadrilateral, 0-pentagon or 0-hexagon,
then, by Proposition 18, f4 contributes 0.4 charge to f in Step 6, and therefore f is
satisfied. The other cases are more complex, but they all have in common that if one
of f0 and f3 is a 2-quadrilateral, then it has an excess of at least 2 − 2 · 0.4 − 0.3 = 0.9
charge after Step 5 and this is enough to ensure ch6(f) ≥ 0.

Case 3.1: f4 is a 0-quadrilateral. Then the only case to consider is that f3 and f4 are
1-triangles. This directly implies a planar cycle of length seven (see Figure 10b). Here,
we make use of the second part of Step 6 and have two 2-quadrilaterals contributing 0.9
charge each to the 0-neighbors of f at e0 and e4, which then is moved to f . Therefore,
f is satisfied after Step 6.
Case 3.2: f4 is a 1-quadrilateral. Then t0 and t4 receive at least 0.2 charge in Step 3,
and therefore we have ch4(f) ≥ 1 − 2 · 0.3 − 3 · 0.2 = −0.2. If now f4 contributes to less
than two 1-triangles in Step 4, f receives from f4 enough charge in Step 6. Otherwise,
f0 and f3 are 1-triangles, implying a planar cycle of length six (Figure 10c). Here, t0
and t4 have two 1-neighbors that are 2-triangles and ch3(t0) = ch3(t4) = −0.1 holds.
Therefore, f contributes only 2 · 0.1 + 0.2 + 2 · 0.3 = 1 charge and f never has a demand.
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Figure 10 Illustrations for the proof of Proposition 20 Case 3, 3.1 and 3.2.

Case 3.3: f4 is a 0-pentagon. We introduce some new notation for f4 and its wedge-
neighbors, likewise for the 0-pentagon f itself: Let f̃ := f4, ẽ0 the edge-segment of e4
at f̃ , ẽ1 the edge-segment of e0 at f̃ and so on (see Figure 11a). Analogously, we denote
by t̃i the wedge-neighbor of f̃ at ẽi and by f̃i the vertex-neighbor at the crossing of
ẽi and ẽ(i+1 mod 5). Note that t̃0 = f0 and t̃1 = f3 are 1-triangles or 2-quadrilaterals
and, as pointed out above, we only have to consider the case that both are 1-triangles.
Observe that f is the only vertex-neighbor of f4 that may receive charge from f4 in
Step 6, as all its other vertex-neighbors cannot be 0-faces. Distinguish the number of
1-triangles that are wedge-neighbors of f4. Note that the wedge-neighbors of f4 can
never be 0-triangles or 0-pentagons, so, by Proposition 17, they contribute 0.3 charge
to f4 if they are not 1-triangles. If three or less wedge-neighbors of f4 are 1-triangles,
then ch5(f) ≥ 1 − 3 · 0.3 + 2 · 0.3 ≥ 0.7, which then is contributed to f in Step 6
implying ch6(f) ≥ 0. If all five wedge-neighbors of f4 are 1-triangles, then we have the
F 3

6 configuration, which is forbidden. So the case remains that four wedge-neighbors
of f4 are 1-triangles. Here, ch5(f4) ≥ 1 − 4 · 0.3 + 0.3 = 0.1 holds and this charge is
contributed to f in Step 6, so there is only 0.3 charge missing for f .
By symmetry, t̃2 is w.l.o.g. a 1-triangle. If t̃3 is the wedge-neighbor of f̃ that is not a
1-triangle, then it must be 2-quadrilateral and this implies a planar cycle of length
seven, in which f is the only face with a demand after Step 6 (see Figure 11b). The
2-quadrilateral t̃3 has an excess of 0.9 charge after Step 6 and contributes it in Step 7
to f . Therefore, f is satisfied.
So assume now that t̃3 is a 1-triangle and t̃4 is the wedge-neighbor that is not a
1-triangle (see Figure 11c). Note that t̃4 is not a 0-face. So for all cases, except that t̃4
is a 1-quadrilateral or 2-quadrilateral, Proposition 18 guarantees that t̃4 contributes in
Step 6 0.4 charge to all its vertex-neighbors. In particular, the 0-neighbor of f at e0
receives 0.4 charge and gives it completely to f . Thus, in this case, f is satisfied.
If t̃4 is a 2-quadrilateral, then we have ch5(t4) = 0.9 and it contributes in the same
way enough charge to f via the 0-neighbor of f at e0. This works also if t̃4 is a
1-quadrilateral contributing to only one wedge-neighbor (namely f̃) in Step 1-5.
In the last case where t̃4 is a 1-quadrilateral and contributes to f̃ and another wedge-
neighbor in Step 1-5, this second wedge-neighbor is f̃3 and must be a 1-triangle. This
implies a planar cycle of length seven (see Figure 11d). In this case, t̃4 and its 1-
neighbor that is a 2-triangle have an excess of 0.1 resp. 0.2 charge after Step 5 and
contribute it to f in Step 6 and Step 7. Therefore, f is satisfied.
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Figure 11 Illustrations for Case 3.3 in the proof of Proposition 20.
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Figure 12 Illustrations for Case 3.4 in the proof of Proposition 20.

Case 3.4: f4 is a 0-hexagon. Note that no wedge-neighbor of f4 can be a 0-face, so f4
contributes no charge in Step 1-3 and Step 5 (see Figure 12a). If at most four wedge-
neighbors of f4 are 1-triangles, then ch5(f4) ≥ 2 − 4 · 0.3 = 0.8 holds by Proposition 17.
In this case, there is at most one other vertex-neighbor of f4 besides f that can be
a 0-quadrilateral or 0-pentagon and f4 can contribute to both 0.4 charge in Step 6.
That is enough to satisfy f .
If five wedge-neighbors of f4 are 1-triangles, then no vertex-neighbor of f4 except f is a
0-face. Therefore, f receives the excess of f4 in Step 6, which is at least 2 − 5 · 0.3 = 0.5.
So again f is satisfied.
Assume now that all six wedge-neighbors of f4 are 1-triangles (see Figure 12b). Then
two of them have a demand of only 0.2 after Step 3 as they have two 1-neighbors that
are 2-triangles. Therefore, ch5(f4) ≥ 2 − 4 · 0.3 − 2 · 0.2 = 0.4. Here, f is the only face
to which f4 contributes in Step 6 and we have ch6(f) ≥ 0. ◀

B Details for Section 5

▶ Proposition 21. With the notation above, cpent + chex ≥ 2
3 (n − 2) − 4

3 m3 − m3− + m0.

Proof. Insert the m0 missing planar edges to D2 at the boundaries of the forbidden config-
urations. Further add a vertex v and five edges in every F 3

6 configuration from D3 as shown
in Figure 13. More precisely, notice that in D2 three edges have been deleted from each F 3

6
configuration. Those three edges form a path consisting of a 2-hop edge, a 3-hop edge and
a second 2-hop edge. Only one 3-hop edge e still exists and it is crossing-free in D2. We
arbitrarily choose a side of e and place the new vertex v close to e at this side. We realize
the five new edges by connecting v to the two vertices of the configuration that are on same
side of e, further to the two endpoints of e, and to one of the two endpoints on the opposite
side of e. We do not create new forbidden configurations by this operation, thus the number
of F 2

5 and F 2
6 configurations in D2 does not change.
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ev

Figure 13 Illustration for the proof of Proposition 21. We augment each F 3
6 configuration after

the deletion of the three blue edges in Figure 5 by one vertex and five edges for the drawing D̃.

As a next step, we remove one edge from each F 2
5 and F 2

6 configuration in D2 and call
this drawing D̃. Remark that D̃ is 2-planar, F 2

5 -free, F 2
6 -free and has 5(n − 2) − 2m3 − m3− +

m0 + 5m3 − (cpent + chex) edges on n + m3 vertices.
Assume we have fewer F 2

5 and F 2
6 configurations in D2 than stated in the proposition.

Then D̃ would have more than

5(n − 2) − 2m3 − m3− + m0 + 5m3 −
[2

3(n − 2) − 4
3m3 − m3− + m0

]
= 13

3 (n − 2 + m3)

edges, which contradicts the statement of Theorem 1 for D̃. ◀

▶ Proposition 22. Let H′ ⊆ H be the set of triangles that do not belong to the forbidden
configurations and let c△ = |H′|. Then m4 ≤ m3 + chex + 4m0 + 4c△.

Proof. Our strategy is to account for every edge in E4 an unique F 2
6 or an unique F 3

6
configuration (there are m3 + chex of them) (Case 1) or to account for four non-assigned E4
edges either an edge that might be inserted in D2 in a planar way (Case 2) or a triangle in
H′ (Cases 3 and 4). For the assignment, we use the fact that edges of E4 do not cross each
other and D4 is 4-planar.
1. e ∈ E4 lies completely in one of the forbidden configurations. This can only be the case

in an F 2
6 or F 3

6 configuration as all five edges of an F 2
5 configuration still exist in D2. In

each F 2
6 or F 3

6 configuration all 2-hops exist in D3. Therefore, e is a 3-hop and crosses
the other 3-hops inside the hexagon, which therefore cannot be in E4. So e is the only
edge in E4 inside the forbidden configuration and can be assigned to it.

2. e ∈ E4 starts in a forbidden configuration P and ends in another one, say P ′. Let uu′ be
the edge on the boundary of P that e crosses. We will assign the edge e to uu′ and argue
that uu′ ∈ E0. Let e1, e2 and e′

1, e′
2 resp. be the 2-hop edges of P and P ′ that enclose

the edge uu′ (see Figure 14a). Each of these four edges is crossed at least twice by edges
belonging to the same forbidden configurations P or P ′. Edge e crosses at least two of
those four edges. And since those edges must not be crossed more than four times, there
are at most four edges of E4 that will be assigned to the same boundary edge uu′. Note
also that uu′ ∈ E0, as otherwise e has at least five crossings (two each in the forbidden
configurations and one with uu′). Therefore, at most four edges of E4 will be assigned to
uu′ ∈ E0.

3. e ∈ E4 is completely outside of any forbidden configuration. By the properties of
triangulation H, e is an edge of a triangle of the triangulation H′. We assign e to that
triangle. By this, at most three such edges of E4 belong to the same triangle in H′.
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Figure 14 (a) At most four edges of E4 (blue) can leave a forbidden configuration P through the
same edge of its boundary, as otherwise one of the 2-hops e1, e2 of P has more than four crossings.
(b) For an edge uu′ on the boundary of a forbidden configuration P that is crossed by edges in E4

(blue), the neighboring triangle in H′ is defined by the edges ua and au′ (red).

4. e ∈ E4 lies partially in the faces of H′ and a forbidden configuration. This is the remaining
case. Let uu′ be a boundary edge of the forbidden configuration P that is crossed by
edge e ∈ E4. To define the triangle t, which is adjacent to the boundary edge uu′, we
consider the crossing edge, say e = ab that has the crossing c with uu′ that is closest to
u. Consider the two segments (a, c) and (c, b) of e, such that (a, c) is completely outside
of the forbidden configuration P . We define the edges of the triangle t, which is adjacent
to uu′, to be the edge that closely follows the two segments (u, c) and (c, a); as the third
edge of t, we take the edge that closely follows the two segments (a, c) and (c, u′), see
Figure 14b. Note that, by the choice of the triangulation, Case 4 can only occur on one
of the edges of the triangle t, here the edge uu′ (an edge in E4 that enters t through
another edge and ends at u or u′ would cross e, a contradiction to the fact that edges of
E4 do not cross each other). We distinguish two cases:

uu′ is crossed by at most two edges of E4. We assign those edges to the triangle t.
In the extreme case, we might have two more edges from Case 3 being assigned to t.
Thus, not more than four edges are assigned to t in total.
uu′ is crossed more often. As in Case 2, we observe that there are at most four edges
crossing uu′. We claim that neither the edge ua nor u′a can be in E4. For that, observe
that uu′ is crossed already at least three times (by assumption) and e at least two
times (in the forbidden configuration P ). Every edge crossing ua or ua′ must cross
either uu′ or e and they cannot have four additional crossings in total since D4 is
4-planar.
This implies that it is sufficient to assign the edges in E4 that cross uu′ to the
triangle t. ◀
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The associahedron is the graph GN that has as nodes all triangulations of a convex N -gon, and
an edge between any two triangulations that differ in a flip operation. A flip removes an edge
shared by two triangles and replaces it by the other diagonal of the resulting 4-gon. In this paper,
we consider a large collection of induced subgraphs of GN obtained by Ramsey-type colorability
properties. Specifically, coloring the points of the N -gon red and blue alternatingly, we consider
only colorful triangulations, namely triangulations in which every triangle has points in both colors,
i.e., monochromatic triangles are forbidden. The resulting induced subgraph of GN on colorful
triangulations is denoted by FN . We prove that FN has a Hamilton cycle for all N ≥ 8, resolving
a problem raised by Sagan, i.e., all colorful triangulations on N points can be listed so that any
two cyclically consecutive triangulations differ in a flip. In fact, we prove that for an arbitrary fixed
coloring pattern of the N points with at least 10 changes of color, the resulting subgraph of GN

on colorful triangulations (for that coloring pattern) admits a Hamilton cycle. We also provide an
efficient algorithm for computing a Hamilton path in FN that runs in time O(1) on average per
generated node. This algorithm is based on a new and algorithmic construction of a tree rotation
Gray code for listing all n-vertex k-ary trees that runs in time O(k) on average per generated tree.
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1 Introduction

The associahedron is a polytope of fundamental interest and importance [6, 14, 17], as
it lies at the heart of many recent developments in algebraic combinatorics and discrete
geometry; see [21] and the references therein. In this paper we are specifically interested in
its combinatorial structure, namely the graph of its skeleton; see Figure 1. This graph, which
we denote by GN , has as nodes all triangulations of a convex N -gon (N ≥ 3), and an edge
between any two triangulations that differ in a flip operation, which consists of removing an
edge shared by two triangles and replacing it by the other diagonal of the resulting 4-gon.
The graph GN is isomorphic to the graph that has as nodes all binary trees with N − 2
vertices, and an edge between any two trees that differ in a tree rotation. Each binary tree
arises as the geometric dual of a triangulation, with the root given by “looking through” a
fixed outer edge, and flips translate to tree rotations under this bijection; see Figure 2.
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N = 6

G6

Figure 1 The graph of the 3-dimensional associahedron. The top edge of each triangulation is
the outer edge that determines the root of the corresponding binary tree (see little arrow).
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R1 = [[A,B], C] R2 = [A, [B,C]]

Figure 2 Correspondence between flips in triangulations (top) and rotations in binary trees
(bottom).

Properties of the graph GN have been the subject of extensive investigations in the
literature. Most prominently, the diameter of GN was shown to be 2N − 10 for all N >

12 [22, 24]. Furthermore, the graph GN is regular with degree N − 3, and this number is
also its connectivity [16]. The chromatic number of GN is at most O(log N) [3, 10], while
the best known lower bound is only 4.

Another fundamental graph property that we focus on in this paper is Hamiltonicity.
To this end, Lucas [18] first proved that GN admits a Hamilton cycle for N ≥ 5, and a
short proof was given by Hurtado and Noy [16]. A Hamilton path in GN can be computed
efficiently and yields a Gray code ordering of all binary trees by rotations [19]. This algorithm
is a special case of the more general Hartung-Hoang-Mütze-Williams permutation language
framework [12, 13, 20, 5].

In this paper, we consider a large collection of induced subgraphs of GN obtained by
Ramsey-type colorability properties. This line of inquiry was initiated by Sagan [23], following
a sequence of problems posed by Propp on a mailing list in 2003. Specifically, we label the
points of the convex N -gon by 1, . . . , N in counterclockwise order, and we color them red (r)
and blue (b) alternatingly. It follows that point i is colored red if i is odd and blue if i is
even. For even N , any two neighboring points have opposite colors, whereas for odd N this
property is violated for the first and last point, which are both red.
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N = 6

G6

N = 5

G5

F5

F6

1

1

2

3

4

5

2

3 4

5

6

Figure 3 Induced subgraphs of the associahedron G5 (top left) and G6 (bottom left) obtained
for the coloring sequence rbrb · · · by forbidding monochromatic triangles. The triangulations with
monochromatic triangles are still shown, but they are not part of the graphs F5 and F6 (top right
and bottom right, respectively) and hence crossed out.

We say that a triangulation is colorful if every triangle has points of both colors, i.e., no
triangles in which all three points have the same color. We write FN for the subgraph of GN

induced by all colorful triangulations. In other words, FN is obtained from GN by deleting
all triangulations that have a monochromatic triangle; see Figure 3.

1.1 Sagan’s problem and its generalization
Sagan [23] proved that FN is a connected graph, and he asked [personal communication]
whether FN admits a Hamilton path or cycle. Looking at the first two interesting in-
stances N = 5 and N = 6 in Figure 3, we note that F5 has a Hamilton path, but no cycle,
and F6 has no Hamilton path and hence no cycle either. Furthermore, F7 admits a Hamilton
path (see Figure 12), but no Hamilton cycle, which seems rather curious (cf. Theorem 5
below). We prove the following result.

▶ Theorem 1. For any N ≥ 8, the graph FN has a Hamilton cycle.

The resolution of Sagan’s question immediately gives rise to the following more general
problem: We consider an arbitrary sequence α of coloring the points 1, . . . , N red or blue, and
let Fα be the corresponding induced subgraph of GN obtained by forbidding monochromatic
triangles. For which sequences α does Fα admit a Hamilton path or cycle?

Formally, a coloring sequence is a sequence α = (α1, . . . , αℓ) of even length ℓ ≥ 2 with
αi ≥ 1 for i = 1, . . . , ℓ, and it encodes the coloring pattern

rα1bα2rα3bα4 · · · rαℓ−1bαℓ (1)
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30:4 Flips in Colorful Triangulations

for the points 1, . . . , N , where N =
∑ℓ

i=1 αi, and rαi and bαj denote αi-fold and αj-fold
repetition of red and blue, respectively. In words, the first α1 many points are colored red,
the next α2 many points are colored blue, the next α3 many points are colored red etc.
Clearly, the special cases considered by Sagan are α1 = α2 = · · · = αℓ = 1 for even N = ℓ,
or α1 = 2 and α2 = · · · = αℓ = 1 for odd N = ℓ + 1, respectively (in the second case, the
two consecutive points of the same color are 1 and 2 instead of 1 and N as before, but this
is only a cyclic shift of indices). We let Fα be the induced subgraph of GN induced by the
colorful triangulations with coloring sequence α.

We provide the following generalization of Theorem 1 before. Specifically, our next
theorem applies to all coloring patterns with at least 10 changes of colors.

▶ Theorem 2. For any coloring sequence α = (α1, . . . , αℓ) of (even) length ℓ ≥ 10, the
graph Fα has a Hamilton cycle.

Note that there are 2N−2 different coloring sequences satisfying the conditions of the
theorem, i.e., there are exponentially many subgraphs of the associahedron to which Theorem 2
applies. This also shows that the associahedron has cycles of many different lengths.

In view of the last theorem, it remains to consider short coloring sequences, i.e., sequences
of length ℓ ≤ 8. We offer three simple observations in this regime. We first consider the
easiest case ℓ = 2, i.e., the coloring sequence has the form α = (a, b). The resulting graph Fα

for α = (4, 4) is shown in Figure 4. Another way to think about such a triangulation is as
a triangulation of the so-called double-chain, where each triangle has to touch both chains.
We observe that the number of colorful triangulations in this case is

(
N−2
a−1

)
=

(
N−2
b−1

)
where

N := a + b. Moreover, these triangulations are in bijection with bitstrings of length N − 2
with a − 1 many 0s and b − 1 many 1s, so-called (a − 1, b − 1)-combinations. This bijection is
defined as follows; see Figure 4: Given a triangulation, we consider a ray separating the red
from the blue points, and we record the types of triangles intersected by this ray one after
the other, specifically we record a 1-bit or 0-bit if the majority color of the three triangle
points is red and blue, respectively. We see that flips in the triangulations correspond to
adjacent transpositions in the corresponding bitstrings. In the following, we use the generic

111000 110100

101100

110010

101010

101001

100110

011010

011100

110001

010110

100101

011001 010101

001110

100011

001101

010011

001011 000111

F(4,4)

1

2

3

4 5

6

7

8

Figure 4 Flip graph of colorful triangulations for the coloring sequence α = (4, 4) (rrrrbbbb),
which is isomorphic to the flip graph of (3, 3)-combinations under adjacent transpositions. The
black arrow in the leftmost triangulation is the ray that separates red from blue points, and the
combination is obtained by reading the triangle types that intersect this ray from top to bottom
(red=1, blue=0). The nodes of degree 1 and a Hamilton path in the flip graph are highlighted.
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term flip graph for any graph that has as nodes a set of combinatorial objects, and an edge
between any two objects that differ in a certain change operation. From what we said before,
it follows that F(a,b) is isomorphic to the flip graph of (a − 1, b − 1)-combinations under
adjacent transpositions. Applying known results from [4, 9] thus yields the following theorem.

▶ Theorem 3. For integers a, b ≥ 1 with a + b ≥ 3, the graph F(a,b) is isomorphic to the flip
graph of (a − 1, b − 1)-combinations under adjacent transpositions. Consequently, F(a,b) has a
Hamilton path if and only if a ∈ {1, 2}, or b ∈ {1, 2}, or a and b are both even. Furthermore,
if a, b ≥ 2, then F(a,b) has no Hamilton cycle.

The reason for the non-existence of a Hamilton cycle is that F(a,b) has two nodes of
degree 1, corresponding to the combinations 1a−10b−1 and 0b−11a−1; see Figure 4.

The next result is a simple observation for the special case of coloring sequences of
length ℓ = 4 with exactly two non-consecutive blue points; see Figure 5.

▶ Theorem 4. For integers a, b ≥ 1, the graph F(a,1,b,1) is isomorphic to an a × b rectangular
grid with one pending edge attached to each node. Consequently, it does not have a Hamilton
path unless a · b ≤ 2.

The nodes of degree 1 are the triangulations in which the two blue points are not connected
by an edge, in which case the only possible flip restores this edge between them.

1

2

3

4

5

6

7

8

9

F(4,1,3,1)

Figure 5 Illustration of Theorem 4 for the coloring sequence α = (4, 1, 3, 1) (rrrrbrrrb). The
nodes of degree 1 in the flip graph are highlighted.

The last result is for coloring sequences of length ℓ = 6 and yields an infinite family of
natural flip graphs that admit a Hamilton path but no Hamilton cycle, despite the fact that
they have minimum degree 2; see Figure 6.

▶ Theorem 5. For α = (a, 1, 1, 1, 1, 1), the graph Fα has no Hamilton cycle if a ≥ 1, but a
Hamilton path unless a ∈ {1, 3}.

1.2 Algorithmic questions and higher arity
We also provide an algorithmic version of Theorem 1.
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F(1,1,1,1,1,1)

F(2,1,1,1,1,1)

F(3,1,1,1,1,1)

F(4,1,1,1,1,1)

a = 1

a = 2

a = 3

a = 4

Figure 6 Illustration of the family of graphs F(a,1,1,1,1,1).

▶ Theorem 6. For any N ≥ 8, a Hamilton path in the graph FN can be computed in
time O(1) on average per node.

The initialization time and memory requirement for this algorithm are O(N).
Our construction of a Hamilton path/cycle in FN relies on a Gray code ordering of

ternary trees by rotations. We first describe this setup, generalizing our earlier definitions
about triangulations and binary trees; see Figures 7 and 8 for illustration. Let k ≥ 2 and
n ≥ 1 be integers, and let N := (k − 1)n + 2. We consider a dissection of a convex N -gon
into n many (k + 1)-gons. A flip operation removes an edge shared by two (k + 1)-gons and
replaces it by one of the other k − 1 possible diagonals of the resulting 2k-gon. Dissections of
an N -gon into (k + 1)-gons are in bijection with k-ary trees with n vertices. Each k-ary trees
arises as the geometric dual of a dissection into (k + 1)-gons, with the root given by “looking
through” the outer edge 1N , and flips translate to tree rotations under this bijection.

We denote the corresponding flip graph of dissections of an N -gon into (k + 1)-gons by
GN,k+1. The associahedron is the special case k = 2, i.e., the graph GN,3 = GN . By what
we said before, the graph GN,k+1 is isomorphic to the rotation graph of k-ary trees with n

vertices, where N = (k − 1)n + 2. Huemer, Hurtado, and Pfeifle [15] first proved that GN,k+1
has a Hamilton cycle for all k ≥ 3, which combined with the results of Hurtado and Noy [16]
for the case k = 2 (binary trees) yields the following theorem.

▶ Theorem 7 ([16] for k = 2; [15] for k ≥ 3). For any k ≥ 2, n ≥ max{2, 5 − k} and
N := (k − 1)n + 2, the graph GN,k+1 has a Hamilton cycle.

The proof from [15] for the case k ≥ 3 does not generalize the simple inductive construction
of a Hamilton path/cycle in the associahedron (the case k = 2) described in [16], and it
imposes substantial difficulties when translating it to an efficient algorithm. Consequently, we
provide a unified and simplified proof for Theorem 7, valid for all k ≥ 2, which can be turned
into an efficient algorithm. This result generalizes the efficient algorithm for computing
a Hamilton path in the associahedron provided by Lucas, Roelants van Baronaigien, and
Ruskey [19].
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22 21
20

19

18

17

16

15

14

13
121110

9

8

7

6

5

4

3
2

1 root

k = 3, n = 10, N = (k − 1)n+ 2 = 22

root

T

T = [[ε3], [[ε3], [ε3], [ε3]], [[ε3], [ε3], ε]]

Figure 7 Bijection between dissections of an N -gon into (k + 1)-gons and k-ary trees, illustrated
for the case k = 3.

A

B C D

E A B

C D EA B C

D E

A

B

C

D

E A

B D

EA

B D

E

C C

flips

rotations

R1 = [[A,B,C], D,E] R2 = [A, [B,C,D], E] R3 = [A,B, [C,D,E]]

Figure 8 Correspondence between flips in quadrangulations (top) and rotations in ternary trees
(bottom); cf. Figure 2.

▶ Theorem 8. For any k ≥ 2, n ≥ max{2, 5 − k} and N := (k − 1)n + 2, a Hamilton path
in GN,k+1 can be computed in time O(k) on average per node.

The initialization time and memory requirement for this algorithm are O(kn).
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30:8 Flips in Colorful Triangulations

We implemented the algorithms mentioned in Theorems 6 and 8 in C++, and made the
code available for download and experimentation on the Combinatorial Object Server [7].

1.3 Three colors
We now consider colorings of the points 1, . . . , N with more than two colors. To start with,
we color the points in counterclockwise order alternatingly red (r), blue (b) and green (g),
and we consider triangulations in which every triangle has points of all three colors, i.e., one
point of each color. This setting has also been considered by Sagan [23]. Note that flips
of a single diagonal as before are not valid operations anymore (in the sense that the flip
graph would not have any edges), so we consider a modified flip operation instead which
consists of a particular sequence of 4 flips. Specifically, a twist “rotates” a triangle that is
surrounded by three triangles, i.e., the inner triangle is removed, creating an empty 6-gon,
and the triangle is inserted the other way; see Figure 9. We write HN for the flip graph of
colorful triangulations under twists; see Figure 10.

▶ Theorem 9. For any N that is a multiple of 3, the graph HN is connected.

A

B C D EA B C

E

A

B

C

D

EA

B D

E

C

twist

T = [[[A,B], [C,D]], E] T ′ = [A, [[B,C], [D,E]]]

D

left-twist

right-twistT T ′

Figure 9 Twist operation and the corresponding binary
trees.

N = 9

H9

H6

N = 6

Figure 10 Fflip graphs H6 and H9.

1.4 Outline of this paper
In this extended abstract we focus on proving Theorems 1 and 2. Before providing the proofs
in Section 3, we collect a few definitions and auxiliary results in Section 2. The proofs of
all other results can be found in the preprint [1]. We conclude with some open questions in
Section 4.
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2 Preliminaries

2.1 String operations
For any string x and any integer k ≥ 0, we write xk for the k-fold concatenation of x. Given
any sequence x = (x1, . . . , xℓ), we write rev(x) := (xℓ, xℓ−1, . . . , x1) for the reversed sequence.

2.2 Dissections and trees
For integers k ≥ 2 and n ≥ 1, let N := (k − 1)n + 2. We write DN,k+1 for the set of all
dissections of a convex N -gon into (k + 1)-gons. In particular, DN,3 are triangulations of a
convex N -gon. We write Tn,k for the set of all k-ary trees with n vertices, and tn,k := |Tn,k|.
Both objects are counted by the k-Catalan numbers (OEIS sequence A062993), i.e., we have

|DN,k+1| = |Tn,k| = tn,k = 1
(k − 1)n + 1

(
kn

n

)
.

We also define t′
n,3 :=

∑n
i=0 ti,3 · tn−i,3 as the number of pairs of ternary trees with n vertices

in total (OEIS A006013). We have the explicit formula

t′
n,3 = 1

n + 1

(
3n + 1

n

)
.

2.3 Colorful triangulations
For any coloring sequence α, we write Cα for the set of colorful triangulations with coloring
pattern defined in (1). By these definitions, Fα is the subgraph of GN induced by the
triangulations in Cα. Sagan’s question concerned the special case α := 1N for even N

and α := (2, 1N−2) for odd N , and for those particular coloring sequences α we simply
write CN = Cα and FN = Fα. Sagan proved the following.

▶ Theorem 10 ([23, Thm. 2.1]). For any q ≥ 1 we have

|CN | =
{

2q · tq,3 = 2q

2q+1
(3q

q

)
if N = 2q + 2,

2q · t′
q,3 = 2q

q+1
(3q+1

q

)
if N = 2q + 3.

The two sequences in this theorem are OEIS A153231 and A369510, respectively.

2.4 Graphs
For a graph G, we write ∆(G) for its maximum degree. Also, we write G ≃ H for two
graphs G and H that are isomorphic.

For any integer d ≥ 1, the d-dimensional hypercube Qd is the graph that has as vertices
all bitstrings of length d, and an edge between any two strings that differ in a single bit.

▶ Lemma 11 ([8]). For any d ≥ 2 and any set E of at most 2d − 3 edges in Qd that together
form vertex-disjoint paths, there is a Hamilton cycle that contains all edges of E.

For integers a ≥ 1 and d ≥ 1 we define S(a, d) as the set of all a-tuples of non-decreasing
integers from the set {1, . . . , d}, i.e., S(a, d) = {(j1, . . . , ja) | 1 ≤ j1 ≤ j2 ≤ · · · ≤ ja ≤ d}.
Furthermore, we let G(a, d) be the graph with vertex set S(a, d) and edges between any two
a-tuples that differ in a single entry by ±1; see Figure 11.
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G(1, 5)
a = 1 a = 2 a = 3

54321

G(2, 5) G(3, 5)

54321

j1

j1

5
4
3
2
1

j2

54321 j1

5
4
3
2
1

j3 1
2
3
4
5

j2

H 1
≃
G
(2
, 5
)

H 2
≃
G
(2
, 4
)

H 3
≃
G
(2
, 3
)

H 4
≃
G
(2
, 2
)

H 5
≃
G
(2
, 1
)

Figure 11 Illustration of the graph G(a, d) and Lemma 12. The spanning trees and the extremal
vertices are highlighted.

▶ Lemma 12. For any a ≥ 1 and d ≥ 1, the graph G(a, d) has a spanning tree T with
∆(T ) ≤ 3.

We refer to the vertices 1a and da as extremal vertices, and note that they have degree 1
in G(a, d), unless a = d = 1, in which case the graph is a single vertex having degree 0.

Proof. We argue by induction on a and d. For a = 1 and any d ≥ 1, the graph G(a, d)
is the path on d vertices, so the claim is trivially true. For the induction step let a ≥ 2.
We split G(a, d) into subgraphs Hi for i = 1, . . . , d where Hi contains all vertices in which
the first coordinate equals i. Note that Hi ≃ G(a − 1, d − (i − 1)) for all i = 1, . . . , d, in
particular Hd ≃ G(a − 1, 1) is a single vertex. By induction, Hi has a spanning tree Ti with
∆(Ti) ≤ 3 for all i = 1, . . . , d. Furthermore, the two extremal vertices have degree 1 in Ti

for i = 1, . . . , d − 1 and degree 0 in Td. We join the trees Ti to a single spanning tree T

of G(a, d) by adding the edges
(
(i, da−1), (i + 1, da−1)

)
for i = 1, . . . , d − 1 between their

extremal vertices. ◀

3 Colorful triangulations

In this section we consider the setting of colorful triangulations introduced by Sagan, with
the goal of proving Theorems 1 and 2. ri

3.1 Alternating colors
We first assume that the number N of points is even and the coloring sequence is α = 1N ,
i.e., the coloring pattern along the points 1, . . . , N is rbrb · · · rb = (rb)N/2. Recall that CN

denotes the set of all colorful triangulations with this coloring sequence.
Let T ∈ CN be a colorful triangulation. We say that an edge of T is monochromatic if

both endpoints have the same color, and we say that it is colorful if both endpoints have
distinct colors. We observe the following:

(i) Every triangle of T has exactly one monochromatic edge.
(ii) Every monochromatic edge of T is an inner edge.

Consequently, if we remove from T all monochromatic edges, keeping only the colorful ones,
then the resulting dissection r(T ) is a quadrangulation on the point set. Indeed, by (i)
every triangle is destroyed, and by (i)+(ii) destroying a triangle creates a quadrangle. While
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F ′
7

N = 6

F6

F7

N = 7

N = 4

F ′
4 ≃ G4,4 F ′

5
F4

N = 5

F5

1

2

3 4

5

6

1

2

3

4

51

2 3

4

1

2

3
4

5

6

7

F ′
6 ≃ G6,4

Lemma 15 (i)

R3 R2
R1

c(R2)re
v(
c(
R 1
))

re
v(
c(
R 3
))

Figure 12 Flip graphs of colorful triangulations and reduced graphs for N = 4, 5, 6, 7.

T has N − 2 = n triangles, r(T ) has q := (N − 2)/2 = n/2 quadrangles. Furthermore,
there are 2q many colorful triangulations that yield the same quadrangulation r(T ) by
removing monochromatic edges. They are obtained from r(T ) by placing a diagonal in each
of the q quadrangles in one of the two ways. Note that the subgraph of FN induced by
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N = 9
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F ′
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Lemma 15 (i)
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v(
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5 6
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Figure 13 Reduced graphs of colorful triangulations for N = 8, 9.

those 2q triangulations is isomorphic to the q-dimensional hypercube Qq, as each of the q

monochromatic edges in T can be flipped independently from the others. We thus obtain a
partition of FN into hypercubes Qq, plus edges between them. These copies of hypercubes
are highlighted by blue bubbles in Figure 12.

We also note that every quadrangulation R on N points equals r(T ) for some colorful
triangulation T ∈ CN . Indeed, given R, then coloring the N points red and blue alternat-
ingly will make all edges colorful. We define a reduced graph F ′

N , that has as nodes all
quadrangulations on N points, and for any two colorful triangulations T and T ′ that differ
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in a flip of a colorful edge, we add an edge between r(T ) and r(T ′) in F ′
N ; see Figures 12

and 13. We observe that F ′
N is isomorphic to the flip graph of quadrangulations GN,4, i.e.,

we have F ′
N ≃ GN,4. These arguments yield a direct combinatorial proof for the first equality

in Theorem 10.

▶ Lemma 13. Let q ≥ 3 be an integer and N := 2q + 2, and let S be a spanning tree of F ′
N .

(i) If q = 3 and ∆(S) ≤ 2 (i.e., S is a Hamilton path), then FN has a Hamilton cycle.
(ii) If q ≥ 4 and ∆(S) ≤ 3, then FN has a Hamilton cycle.

The conclusions of the lemma do not hold when q = 2: Indeed, while F ′
6 has a Hamilton

path (the graph is a triangle), there is no Hamilton path or cycle in F6; see Figure 12.

Proof. The idea is to “uncompress” the spanning tree S in F ′
N to a Hamilton cycle in FN .

Specifically, for any quadrangulation R we consider the 2q colorful triangulations C(R) :=
{T ∈ CN | r(T ) = R}, and we let Q(R) denote the subgraph of FN spanned by the
triangulations in C(R). Recall that Q(R) ≃ Qq, i.e., Q(R) is isomorphic to the q-dimensional
hypercube. In the first step of the uncompression, we replace each edge (R, R′) of S by two
edges (T1, T ′

1), (T2, T ′
2) with T1, T2 ∈ C(R) and T ′

1, T ′
2 ∈ C(R′). We refer to the edges (T1, T ′

1)
and (T2, T ′

2) as connectors, and to their end nodes T1, T2, T ′
1, T ′

2 as terminals. In the second
step, each quadrangulation R with degree d in S is replaced by d paths that together visit all
nodes in Q(R) and which join the connectors at their terminals to a single Hamilton cycle.

We now describe both steps in detail. For a given quadrangulation R, we associate each
of the colorful triangulations T ∈ C(R) by a bitstring b(T ) ∈ {0, 1}q as follows: We label the
q quadrangles of R arbitrarily by j = 1, . . . , q, and we define b(T )j := 0 if the monochromatic
edge of T that sits inside the jth quadrangle of R connects the two red points, and otherwise
(if it connects two blue points) b(T )j := 1.

p1

p2

p3 p4

p5

p6

R R′

Q(R) := FN [C(R)]

FN

p1

p2

p3 p4

p5

p6

p1
p2

p3 p4

p5

p6

(p1, p4) ↔ (p2, p5)

≃ Qq

Q(R′) ≃ Qq

p1
p2

p3 p4

p5

p6

connectors

Qq−2

shortcuts

F ′
N

Qq−2

(a) (b)

R

Q(R)

H(R)

d

Figure 14 Illustration of the proof of Lemma 13.

Now consider an edge (R, R′) of S, which we aim to replace by two connectors (T1, T ′
1),

(T2, T ′
2) with T1, T2 ∈ C(R) and T ′

1, T ′
2 ∈ C(R′). We denote the edge flipped in R by (p1, p4),

and we label the points of the adjacent 4-gons in circular order by p1, p2, p3, p4 and p4, p5, p6, p1,
respectively, such that the edge (p1, p4) is replaced by (p2, p5); see Figure 14 (a). It follows
that T1, T ′

1, T2, T ′
2 must be triangulations that contain the two monochromatic edges (p2, p4)
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and (p5, p1) (but neither (p1, p3) nor (p4, p6)). Consequently, the two corresponding bits
of b(T1), b(T ′

1), b(T2), b(T ′
2) must have a prescribed value, and therefore T1, T2 and T ′

1, T ′
2 can

be chosen from a (q − 2)-dimensional subcube of Q(R) and Q(R′), respectively. Also, we
will choose the connectors so that the pairs of terminals (T1, T2) and (T ′

1, T ′
2) differ only in a

single flip, i.e., we select the two pairs of terminals as edges in their respective cubes, and we
call these edges in Q(R) and Q(R′) shortcuts. Note that the two connectors with the two
shortcuts form the 4-cycle (T1, T ′

1, T ′
2, T2). By the assumption q ≥ 3 we have q − 2 ≥ 1, i.e.,

there is at least one choice for each prescribed edge.
If the node R has degree d in S, then we have to choose d distinct shortcut edges in

the hypercube Q(R), each selected from a distinct (but not necessarily disjoint) (q − 2)-
dimensional subcube, and to find a Hamilton cycle H(R) in Q(R) that contains all of these
edges; see Figure 14 (b). By Lemma 11, it is enough to ensure that the shortcut edges
together form paths in Q(R). If d ≤ 2 (case (i) of the lemma), then this is clear, as one or
two edges always form one or two paths. If d = 3 (case (ii) of the lemma), one has to avoid
that all three shortcut edges are incident to the same node, which is easily possible under
the stronger assumption q ≥ 4.

Then the Hamilton cycle in FN is obtained by taking the symmetric difference of the edge
sets of the cycles H(R) ⊆ Q(R) for all quadrangulations R on N points with the 4-cycles
formed by the connectors and shortcuts (i.e., the shortcuts are removed, and the connectors
are added instead). This completes the proof. ◀

3.2 General coloring patterns
We now consider an arbitrary coloring sequence α = (α1, . . . , αℓ) and the corresponding
coloring pattern defined in (1). Recall that Cα denotes the set of all colorful triangulations with
this coloring pattern, and that the corresponding flip graph is denoted by Fα. The graph Fα

is an induced subgraph of the associahedron GN , where N =
∑ℓ

i=1 αi. As in the previous
section, a colorful triangulation T ∈ Cα has two types of edges, namely monochromatic and
colorful edges. We write Eα for the set of boundary edges that are monochromatic in T , i.e.,
these are the pairs of points (i, i + 1) for i = 1, . . . , N (modulo N) where both endpoints
receive the same color. Generalizing the discussion from the previous section, we observe the
following:

(i) Every triangle of T has exactly one monochromatic edge.
(ii) Except the edges in Eα, every monochromatic edge of T is an inner edge.

Consequently, if we remove from T all monochromatic inner edges (the edges in Eα are
boundary edges and hence not removed), keeping only the colorful ones, then the resulting
dissection r(T ) has t := N − ℓ triangles that contain the edges in Eα and q := (ℓ − 2)/2
quadrangles. Furthermore, there are 2q many colorful triangulations that yield the same
dissection r(T ) by removing monochromatic edges. They are obtained from r(T ) by placing
a diagonal in each of the q quadrangles in one of the two ways. Note that the subgraph
of Fα induced by those 2q triangulations is isomorphic to the q-dimensional hypercube Qq.
We thus obtain a partition of Fα into hypercubes Qq, plus edges between them.

We refer to a dissection of a convex N -gon into q quadrangles and t triangles that
contain all the edges of Eα as an α-angulation, and we write Dα for the set of all such
dissections. We also note that every α-angulation R on N points equals r(T ) for some colorful
triangulation T ∈ Cα. Indeed, given R, then coloring the N points according to the pattern
in (1) will make all edges except the ones in Eα colorful. We define a reduced graph F ′

α that
has as nodes all α-angulations on N points, and for any two colorful triangulations T and T ′

that differ in a flip of a colorful edge, we add an edge between r(T ) and r(T ′) in F ′
α; see

Figures 12, 13 and 15.
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The proof of Lemma 13 presented in the previous section generalizes straightforwardly,
yielding the following statement. Note that the variable ℓ in Lemma 14 below plays the
role of N = 2q + 2 in Lemma 13, and so the assumptions ℓ = 8 and ℓ ≥ 10 translate to
q = (ℓ − 2)/2 = 3 and q ≥ 4 used in the proof of Lemma 13, respectively.

▶ Lemma 14. Let α = (α1, . . . , αℓ) be a coloring sequence of (even) length ℓ ≥ 8, and let S
be a spanning tree of F ′

α.
(i) If ℓ = 8 and ∆(S) ≤ 2 (i.e., S is a Hamilton path), then Fα has a Hamilton cycle.
(ii) If ℓ ≥ 10 and ∆(S) ≤ 3, then Fα has a Hamilton cycle.

The next lemma allows us to duplicate the occurrence of a color that appears only once
(i.e., we change αi = 1 to some larger number αi > 1), while inductively maintaining spanning
trees with small degrees in the corresponding reduced flip graphs.

▶ Lemma 15. Let β = (β1, . . . , βℓ) and α = (α1, . . . , αℓ) be coloring sequences of (even)
length ℓ ≥ 4 that agree in all but the ith entry such that βi = 1 and αi > 1.

(i) If F ′
β has a Hamilton path and αi = 2, then F ′

α has a Hamilton path.
(ii) If F ′

β has a spanning tree T with ∆(T ) ≤ 3, then F ′
α has a spanning tree S with

∆(S) ≤ 3.

In Figure 12, part (i) of this lemma is applied to construct a Hamilton path in F ′
7 from

one in F ′
6. Similarly, in Figure 13, a Hamilton path in F ′

9 is constructed from one in F ′
8.

ℓ = 6, N = 9
α = (α1, . . . , α6) = (2, 1, 2, 2, 1, 1)

F ′
α

t = N − ℓ = 3
q = (ℓ− 2)/2 = 2

1
2
3

4
5

6
7
8

9

Figure 15 Reduced graph of colorful triangulations for the coloring sequence α = (2, 1, 2, 2, 1, 1)
(rrbrrbbrb).
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The idea for the proof of part (i) is the same as the one used by Hurtado and Noy [16].

Proof. We consider the point p :=
∑i

j=1 βj on the boundary, which is neighbored by two
points p − 1 and p + 1 (modulo N =

∑ℓ
j=1 βj) of the opposite color. We also define

a := αi − 1, i.e., we want to add a points of the same color as p next to p. Let R ∈ Dβ be a
β-angulation, and let (p, q1), (p, q2), . . . , (p, qd) be the edges incident with the point p in R in
counterclockwise order (all these edges are colorful), such that q1 = p + 1 and qd = p − 1; see
Figure 16. If a = 1, then for j = 1, . . . , d we let Rj be the α-angulation obtained from R by
inflating the edge (p, qj) to a triangle (p, p′, qj). Specifically, the single point p is split into
two consecutive points p and p′ on the boundary joined by an edge, and q1, . . . , qj remain
connected to p′, whereas qj , qj+1, . . . , qd remain connected to p. More generally, we define
J(R) := {(j1, . . . , ja) | 1 ≤ j1 ≤ j2 ≤ · · · ≤ ja ≤ d}, qȷ(R) := 1a and pȷ(R) := da, and for any
(j1, j2, . . . , ja) ∈ J(R) we let R(j1,...,ja) be the β-angulation obtained from R by inflating
each of the edges (p, qj1), . . . , (p, qja) to a triangle. Note that the same edge may be inflated
multiple times; see the bottom rows with labels a = 2 and a = 3 in Figure 16. Specifically,
if some value jb, b ∈ {1, . . . , a}, appears c times in the list j1, . . . , ja, then the edge (p, qjb

)
is inflated to c many triangles. Furthermore, observe that R(j1,...,ja) differs from R(j′

1,...,j′
a)

in a flip if and only if (j1, . . . , ja) and (j′
1, . . . , j′

a) differ in a single entry by ±1, i.e., the
subgraph of F ′

α induced by the α-angulations R(j1,...,ja), (j1, . . . , ja) ∈ J(R), is isomorphic

qd = p− 1p+ 1 = q1

q2

q3

q4

R

R1 R2 R3 R4 R5

c(R) = (R1, R2, R3, R4, R5)

p

qdq1
pp′

qd
q1 pp′qdq1

pp′ qdq1
pp′ qdq1

pp′

a = 1

a = 3

R(1,1,1) R(5,5,5)R(1,3,4)

a = 2

R(1,1) R(5,5)R(1,2) R(2,4)

R(1,1,2)

. . . . . .

. . . . . .

Figure 16 Illustration of the proof of Lemma 15. Edges of the β-angulation R that are not
incident to the point p are not shown for clarity.
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S(R)

S ⊆ F ′
α

T̂ qT

Rȷ̂(R)

Rqȷ(R)

R

T ⊆ F ′
β

Figure 17 Illustration of the proof of part (ii) of Lemma 15. The fork-like structures are the
spanning trees obtained from Lemma 12 (cf. Figure 11).

to the graph G(a, d) defined in Section 2.4. By Lemma 12, it admits a spanning tree S(R)
with ∆(S(R)) ≤ 3, in which the nodes Rqȷ(R) and Rpȷ(R) have degree 1. If a = 1, then
this subgraph and spanning tree is simply a path, and we refer to it as children sequence
c(R) := (R1, R2, . . . , Rd). Also note that if (R, Q) is an edge in F ′

β , then (Rqȷ(R), Qqȷ(Q))
and (Rpȷ(R), Qpȷ(Q)) are both edges in F ′

α.
We now prove (i), using the assumption αi = 2, i.e., a = 1. Let P = (R1, . . . , RL) be a

Hamilton path in F ′
β . Then a Hamilton path in F ′

α is given by P ′ := (rev(c(R1)), c(R2),
rev(c(R3)), c(R4), . . .); see Figures 12 and 13.

For proving (ii), let T be a spanning tree in F ′
β with ∆(T ) ≤ 3. We partition its edges into

two disjoint forests of paths qT and pT , i.e., we have ∆( qT ) ≤ 2 and ∆( pT ) ≤ 2; see Figure 17.
We then define the spanning tree S as the union of the trees S(R) for all β-angulations R

plus the edges {(Rqȷ(R), Qqȷ(Q)) | (R, Q) ∈ qT } and {(Rpȷ(R), Qpȷ(Q)) | (R, Q) ∈ pT }. It is easy to
check that S is indeed a spanning tree of F ′

α with ∆(S) ≤ 3. ◀

3.3 Proofs of Theorems 1 and 2
Proof of Theorem 2. For the given coloring sequence α = (α1, . . . , αℓ) of length ℓ ≥ 10, we
consider the alternating coloring sequence β = 1ℓ of length ℓ, i.e., all repetitions of colors
are reduced to a single occurrence, and β corresponds to coloring ℓ points alternatingly red
and blue. The corresponding reduced flip graph F ′

ℓ is isomorphic to the rotation graph
of ternary trees, i.e., we have F ′

β = F ′
ℓ ≃ Gℓ,4. Theorem 7 yields a Hamilton path in the

graph F ′
β = F ′

ℓ. Applying Lemma 15 (ii) once for each αi with αi > 1, we obtain that F ′
α

has a spanning tree S with ∆(S) ≤ 3. Lastly, applying Lemma 14 (ii) yields that Fα has a
Hamilton cycle. ◀

Proof of Theorem 1. For N ≥ 10 the result is a special case of Theorem 2, so it remains to
cover the cases N = 8 and N = 9. A Hamilton path P in F ′

8 is guaranteed by Theorem 7;
see Figure 13. Applying Lemma 13 (i) to P yields that F8 has a Hamilton cycle. Applying
Lemma 15 (i) to P proves that F ′

9 has a Hamilton path P ′. Applying Lemma 13 (i) to P ′

shows that F9 has a Hamilton cycle. ◀

4 Open questions

Tables 1 and 2 show all coloring sequences α on up to N ≤ 11 points for which the graph Fα

has no Hamilton path or cycle. The sequences are shown up to rotational symmetry, reversal,
and exchange of the two colors. In several cases, Theorems 3, 4 and 5 provide an explanation

GD 2024
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Table 1 Coloring sequences α for N ≤ 11
for which Fα has no Hamilton cycle but a
Hamilton path.

N α Reason
6 (4, 2) Thm. 3

(2, 1, 1, 2)
7 (5, 2) Thm. 3

(2, 1, 1, 1, 1, 1) Thm. 5
8 (6, 2) Thm. 3

(4, 4) Thm. 3
9 (7, 2) Thm. 3

(4, 1, 1, 1, 1, 1) Thm. 5
10 (8, 2) Thm. 3

(6, 4) Thm. 3
(5, 1, 2, 2)
(5, 1, 1, 1, 1, 1) Thm. 5
(4, 1, 3, 2)
(4, 1, 2, 3)

11 (9, 2) Thm. 3
(6, 1, 1, 1, 1, 1) Thm. 5
(5, 1, 2, 3)
(5, 1, 1, 4)

Table 2 Coloring sequences α for N ≤ 11
for which Fα has no Hamilton path.

N α Reason
6 (3, 1, 1, 1) Thm. 4

(3, 3) Thm. 3
(1, 1, 1, 1, 1, 1) Thm. 5

7 (4, 3) Thm. 3
(3, 1, 2, 1) Thm. 4
(3, 1, 1, 2)

8 (5, 1, 1, 1) Thm. 4
(5, 3) Thm. 3
(4, 1, 2, 1) Thm. 4
(4, 1, 1, 2)
(3, 1, 3, 1) Thm. 4
(3, 1, 1, 1, 1, 1) Thm. 5
(3, 1, 1, 3)
(3, 2, 1, 2)

9 (6, 1, 1, 1) Thm. 4
(6, 3) Thm. 3
(5, 1, 2, 1) Thm. 4
(5, 1, 1, 2)
(5, 4) Thm. 3
(4, 1, 3, 1) Thm. 4
(4, 1, 1, 3)
(3, 1, 3, 2)
(3, 1, 2, 3)

10 (7, 1, 1, 1) Thm. 4
(7, 3) Thm. 3
(6, 1, 2, 1) Thm. 4
(6, 1, 1, 2)
(5, 1, 3, 1) Thm. 4
(5, 1, 1, 3)
(5, 5) Thm. 3
(4, 1, 4, 1) Thm. 4
(4, 1, 1, 4)
(3, 1, 3, 3)

11 (8, 1, 1, 1) Thm. 4
(8, 3) Thm. 3
(7, 1, 2, 1) Thm. 4
(7, 1, 1, 2)
(7, 4) Thm. 3
(6, 1, 3, 1) Thm. 4
(6, 1, 1, 3)
(6, 5) Thm. 3
(5, 1, 4, 1) Thm. 4
(5, 1, 3, 2)
(4, 1, 3, 3)
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for the non-Hamiltonicity; see the third column in the tables. In the other cases, we are still
missing such an explanation. Based on this data, we feel that Theorem 2 can be strengthened
and the requirement ℓ ≥ 10 relaxed to ℓ ≥ 8. Furthermore, it seems that for ℓ = 6 there is
always a Hamilton path in Fα unless α ∈ {(1, 1, 1, 1, 1, 1), (3, 1, 1, 1, 1, 1)}.

Also, Theorem 9 on twists in 3-colored triangulations invites deeper investigation. We
conjecture that the graph HN has a Hamilton cycle for all N ≥ 9 that are divisible by 3.
Furthermore, it seems that if N = 2 (mod 3) the graph HN is not connected. What are the
properties of the flip graphs for general coloring patterns with three or more colors?

Another interesting question concerns bijections between k-ary trees and classes of per-
mutations. For k = 2 (binary trees), there is a natural bijection to 231-avoiding permutations.
Are there similar correspondences between k-ary trees and pattern-avoiding permutations
for k ≥ 3? In particular, do tree rotations translate to nice operations on the permutations,
specifically to so-called jumps heavily used in [12, 13, 20, 5]?

Going back to the uncolored setting and the associahedron GN , Theorem 2 shows that GN

admits cycles of many different lengths. What is the cycle spectrum of GN , i.e., the set S(GN )
of all possible lengths of cycles in GN ? We conjecture that almost all lengths are possible.

▶ Conjecture 16. We have |S(GN )|/|DN,3| = 1 − o(1) as N → ∞.

Baur, Bergerova, Voon and Xu [2] recently introduced another family of flip graphs on
triangulations in which the triangles are colored, not the vertices. The resulting graphs are
disconnected in general, and their structure is still not very well understood (in [11] these
graphs are related to the famous Four Color Theorem).
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Abstract
Storyline drawings are a popular visualization of interactions of a set of characters over time, e.g., to
show participants of scenes in a book or movie. Characters are represented as x-monotone curves that
converge vertically for interactions and diverge otherwise. Combinatorially, the task of computing
storyline drawings reduces to finding a sequence of permutations of the character curves for the
different time points, with the primary objective being crossing minimization of the induced character
trajectories. In this paper, we revisit exact integer linear programming (ILP) approaches for this
NP-hard problem. By enriching previous formulations with additional problem-specific insights and
new heuristics, we obtain exact solutions for an extended new benchmark set of larger and more
complex instances than had been used before. Our experiments show that our enriched formulations
lead to better performing algorithms when compared to state-of-the–art modelling techniques. In
particular, our best algorithms are on average 2.6–3.2 times faster than the state-of-the-art and
succeed in solving complex instances that could not be solved before within the given time limit.
Further, we show in an ablation study that our enrichment components contribute considerably to
the performance of the new ILP formulation.
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(a) Solution with 374 crossings computed in 0.15 s by a greedy heuristic.

(b) Drawing with the minimum number of 236 crossings computed in 401.23 s by our new ILP formulation.

Figure 1 Storylines for the first Harry Potter movie. Interactions are shown as vertical gray bars.

1 Introduction

Storyline drawings are a well-studied visualization style for complex event-based temporal
interaction data and have been popularized by the xkcd comic “Movie Narrative Charts”
in 2009 [19]. They show a set of characters, e.g., from the plot of a movie or book, and
how they interact or co-occur in a sequence of events over time, e.g., by participating in the
same scene or conversation of the evolving story. A storyline drawing is a two-dimensional
diagram, where the x-axis represents time and the y-dimension is used for the vertical
grouping of characters according to their interaction sequence. The exact temporal distance
of interactions is usually not depicted, only their order. Each character is represented as
an x-monotone curve, and interactions are represented by vertically grouping the curves
of the participating characters at the x-coordinate corresponding to the interaction time.
Characters that are not participating in an interaction at any specific point in time are
vertically separated from each other. Figure 1 shows an example of a storyline drawing.
Due to their popularity and the intuitive data encoding, they are well suited for visual
storytelling and have since been used as visual metaphors for representing a variety of
different event-based data sets beyond the original book and movie plots [19, 28], e.g., for
software projects [20,27], newspaper articles [1], political debates on social media [18], visual
summaries of meeting contents [23], scientific collaborations [14], sports commentary [34],
and gameplay data [33].

There is one main degree of freedom when computing and optimizing storyline drawings:
the (vertical) linear order and positioning of the characters at each discrete time steps. The
only hard constraint is that all characters participating in the same interaction must be
consecutive as a group. This degree of freedom can thus be used to minimize the number of
crossings between character curves, their wiggles (i.e. the amount of vertical movement of
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character lines in the visualization), and any excessive white space in the diagram, which are
the three major objectives that have been identified for computing storyline drawings [27,28].
While the number of crossings is determined purely combinatorially by the sequence of
character permutations, wiggles and white space depend on the actual y-coordinates assigned
to each character curve at each point in time.

In this paper, our interest is the combinatorial crossing minimization problem. It is the
primary objective in practical storyline optimization pipelines [18], where it forms the input
to the subsequent steps of reducing wiggles and white space while maintaining the character
order. Additionally, crossing minimization is one of the most fundamental graph drawing
problems [2, 22] and it is well known that graph drawings with fewer crossings increase
readability [21]. Unfortunately, crossing minimization in storyline drawings is an NP-hard
problem [9,17] and hence practical approaches for storyline visualization usually resort to
heuristics, even though they cannot guarantee optimal solutions.

We consider the crossing minimization problem from the opposite side and revisit exact
integer linear programming (ILP) approaches [11] for computing provably optimal solutions.
Such approaches often lead to practical exact algorithms. Our goal is to improve on the
runtime performance of such exact methods by enriching the models with both new problem-
specific insights and better heuristics. Faster exact algorithms for crossing minimization
in storyline drawings are practically relevant for two reasons: firstly, solving moderately
sized instances to optimality within a few seconds provides a strictly better alternative to
commonly used suboptimal heuristics, and secondly, knowing optimal solutions for a large
set of representative benchmark instances (even if their computations take several minutes or
up to a few hours) is a prerequisite for any thorough experimental study on the performance
of non-exact crossing minimization heuristics and for generating crossing-minimum stimuli
in user experiments.

Related Work. Tanahashi and Ma [28] introduced storyline drawings as an information
visualization problem, provided the first visual encoding model, and defined the above-
mentioned optimization criteria (crossings, wiggles, white space). They suggested a genetic
algorithm to compute storyline drawings. Ogawa and Ma [20] used a greedy algorithm to
compute storylines to depict software evolution. Due to slow computation times of previous
methods, Liu et al. [18] split the layout process into a pipeline of several subproblems ordered
by importance, the first one being crossing minimization. They solved the character line
ordering by an iterated application of a constrained barycenter algorithm, a classic heuristic
for multi-layer crossing minimization [25]. Their results were obtained in less than a second
and had fewer crossings than those computed by the genetic algorithm [28], which took more
than a day to compute on some of the same instances. Tanahashi et al. [27] enhanced previous
methods to take into account streaming data and apply a simple sequential left-to-right
sorting heuristic. Recent practical works on storyline drawings focus on other aspects, such
as an interactive editor [30] or a mixed-initiative system including a reinforcement learning
AI component [29]; both these systems apply a two-layer crossing minimization heuristic [8].

Several authors focused on the combinatorial crossing minimization problem and its
complexity. Kostitsyna et al. [17] observed that the NP-hardness of the problem follows from
a similar bipartite crossing minimization problem [9] and proved fixed-parameter tractability
when the number of characters is bounded by a parameter k. Gronemann et al. [11] were
the first to model the problem as a special type of tree-constrained multi-layer crossing
minimization problem. They implemented an exact branch-and-cut approach that exploits
the equivalence of the quadratic unconstrained 0/1-optimization problem with the maximum
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cut problem in a graph. They managed to solve many instances with up to 20 characters
and 50 interactions optimally within a few seconds. Van Dijk et al. [31, 32] proposed block-
crossing minimization in storyline drawings, which counts grid-like blocks of crossings rather
than individual crossings. They showed NP-hardness and proposed greedy heuristics, a
fixed-parameter tractable algorithm, and an approximation algorithm. In a follow-up work,
van Dijk et al. [32] implemented and experimentally evaluated an exact approach for the
block crossing minimization problem using SAT solving. A different variation of storylines
was studied by Di Giacomo et al. [10], who considered ubiquitous characters as x-monotone
trees with multiple branches, enabling characters to participate in multiple simultaneous
interactions; they solved the crossing minimization aspect using an adaptation of the previous
SAT model [32]. Dobler et al. [7] consider time interval storylines, where additionally to the
order of characters, the order of time steps in so-called time-intervals can be permuted.

The problem is also similar to crossing minimization in layered graph drawing, which
was introduced by Sugiyama et al. [25]. The problem is to draw a graph with its vertices on
multiple parallel lines while minimizing crossings. A notable difference to storyline crossing
minimization is that vertices can have arbitrary degree and that edges can span more than
one layer. For a survey of algorithms and techniques in layered graph drawing, we refer to
Healy and Nikolov [13].

Contributions. The contributions of this paper are the following:
We identify structural properties of storyline drawings and prove that there exist crossing-
minimum drawings satisfying them, reducing the search space of feasible solutions.
We propose a new ILP formulation exploiting these structural insights in order to (i)
significantly reduce the number of required constraints and (ii) apply symmetry breaking
constraints to strengthen the ILP model.
We introduce several new heuristics that support the exact solver, either as initial
heuristics to improve branch-and-bound pruning or for deriving integral solutions from
fractional ones during the incremental ILP solving process.
We have compiled a new benchmark set of storyline instances, including those of earlier
studies, as well as several challenging new ones.
We have conducted a detailed experimental evaluation of our new ILP model using the
above benchmark set. We compare its ability to solve instances with state-of-the-art ILP
models. Moreover, in an ablation study, we show that our further enhancements (e.g.,
adding symmetry breaking constraints and novel heuristics) contributes considerably to
the performance of both the new and several state-of-the-art ILP formulations.
We show that our ILP models are able to solve previously unsolved instances from the
literature and obtain a speedup of 2.6–3.2 compared to the state of the art.

Data sets, source code, evaluation, and a visualization software are available on
https://osf.io/3bua2/.
Due to space constraints, statements marked with (⋆) are proved in a full version of the
paper [6].

2 Preliminaries

Permutations. Given a set X = {x1, . . . , xn}, a permutation π is a linear order of its
elements, or equivalently, a bijective mapping from {1, 2, . . . , |X|} to X. For x, x′ ∈ X we
write x ≺π x′ if x comes before x′ in π. For Y ⊆ X, π[Y ] is the permutation π restricted
to Y , formally, for y, y′ ∈ Y , y ≺π[Y ] y′ if and only if y ≺π y′. For two permutations π, ϕ

https://doi.org/10.17605/OSF.IO/3BUA2
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t1 t2 t3 t4 t5 t6 t7

c1c2c3c4

c5c6c7 c8

A(c1) = {t1, t2}

I1

I2 I3

I4
I5

I6 I7

I8

AC(t3) = AC(t1, t7) = {c2, c3, . . . , c7}
I(t3) = {I3, I4}
CI(t3) = {c2, c3, c6, c7}

Figure 2 Illustration of important notation throughout this paper with the aid of a storyline
drawing depicting interactions I1–I8 of the characters c1–c8 over the time steps t1–t7.

of two sets X and Y with X ∩ Y = ∅, we denote by π ⋆ ϕ their concatenation. Given two
permutations π, π′ of the same set X, the inversions between π and π′ is the number of pairs
x, x′ ∈ X such that π−1(x) < π−1(x′) and π′−1(x) > π′−1(x′).

Problem input. A storyline instance consists of a 4-tuple (T, C, I, A) where T =
{t1, t2, . . . , tℓ} is a set of totally ordered time steps (or layers), C = {c1, c2, . . . , cn} is a
set of characters, and I = {I1, I2, . . . , Im} is a set of interactions. Each interaction I ∈ I has
a corresponding time step time(I) ∈ T and consists of a set of characters char(I) ⊆ C. Further,
A maps each character c ∈ C to a consecutive set of time steps, i.e., A(c) = {ti, ti+1, . . . , tj}
for 1 ≤ i ≤ j ≤ ℓ. We say that character c is active at the time steps in A(c), it starts at ti

and ends at tj . We define AC(t) for t ∈ T as the set of all characters c ∈ C active at time t, i.e.,
AC(t) = {c ∈ C | t ∈ A(c)}. Clearly, for each interaction I ∈ I, char(I) ⊆ AC(time(I)) must
hold. Next, we define the set of all characters active in the time interval [ti, tj ] (1 ≤ i ≤ j ≤ ℓ)
as AC(ti, tj) = AC(ti) ∩ AC(ti+1) ∩ · · · ∩ AC(tj). For a time step t ∈ T we define the set
of interactions at t as I(t) = {I ∈ I | time(I) = t} and its corresponding set of characters
as CI(t) =

⋃
I∈I(t) char(I). Without loss of generality, for the interactions at time step

t we assume that |I(t)| ̸= 0 and that the sets of characters of the interactions I(t) are
pairwise disjoint. This is a reasonable assumption as characters usually participate in at
most one interaction at any given time, e.g. in movies. Important notation is also illustrated
in Figure 2.

Problem output. Solutions to storyline instances (T, C, I, A) consist of a sequence of ℓ

permutations S = (π1, π2, . . . , πℓ) such that πi is a permutation of AC(ti) for all i = 1, . . . , ℓ

satisfying the condition that the set of characters of each interaction I ∈ I(ti) appears
consecutively. We call S a storyline solution or drawing.

The number of crossings cr(πi, πi+1) between two consecutive permutations πi and πi+1
is defined as the number of inversions of the two permutations πi[C] and πi+1[C], where
C = AC(ti) ∩ AC(ti+1). The number of crossings in a storyline solution is

∑ℓ−1
i=1 cr(πi, πi+1).

The problem addressed in this paper is the following.

▶ Problem 1 (Storyline Problem). Given a storyline instance (T, C, I, A), find a storyline
drawing S with the minimum number of crossings.
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3 Standard Models for the Storyline Problem

The most natural ILP formulation to solve Problem 1 has a quadratic objective function and
is based on the linear ordering model, which uses binary variables in order to encode the
linear ordering at each time step. The number of crossings between two subsequent time
steps is then given by the number of inversions of the two permutations.

From now on, we assume that characters cu, cv, cw are pairwise different, even if we write
for example cu, cv ∈ C for some set C of characters.

Quadratic Model (QDR)

For each time step ti, i = 1, 2, . . . , ℓ and each tuple of characters cu, cv ∈ AC(ti) we introduce
a binary ordering variable xi,u,v which is equal to 1 if and only if cu ≺πi

cv. The quadratic
model QDR is given as follows:

min
ℓ−1∑
i=1

∑
cu,cv∈AC(ti,ti+1)

xi,u,vxi+1,v,u (QDR)

xi,u,v = 1 − xi,v,u for all i = 1, . . . , ℓ; cu, cv ∈ AC(ti) with u < v (EQ)
xi,u,v + xi,v,w + xi,w,u ≤ 2 for all i = 1, . . . , ℓ; cu, cv, cw ∈ AC(ti) (LOP)

xi,u,w = xi,v,w for all i = 1, . . . , ℓ; I ∈ I(ti); (TREE)
cu, cv ∈ char(I), u < v; cw ∈ AC(ti) \ char(I)

xi,u,v ∈ {0, 1} for all i = 1, . . . , ℓ; cu, cv ∈ AC(ti), (BIN)

The character curves for cu and cv cross between the two layers ti and ti+1 if and only if
one of the terms xi,u,vxi+1,v,u and xi,v,uxi+1,u,v equals 1. The (LOP) and (EQ) constraints
ensure transitivity of the set of characters AC(ti) present at time step ti and guarantee that
they define a total order. For all interactions I ∈ I(ti) the (TREE) constraints ensure that
characters from I appear consecutively at the respective time step ti.

Linearized Model (LIN)

The standard linearisation of quadratic integer programs introduces additional variables
yi,u,v that substitute the quadratic terms xi,u,vxi+1,v,u for all ti, i = 1, 2, . . . , ℓ − 1 and each
tuple of characters cu, cv ∈ AC(ti, ti+1) in the objective function. In order to link the new
variables with the ordering variables, we introduce the following constraints:

yi,u,v ≥ xi,u,v − xi+1,u,v for all i = 1, . . . , ℓ; cu, cv ∈ AC(ti, ti+1) (CR)

Obviously, the variable yi,u,v is forced to 1, if the character cu is before cv at time step ti in
the solution represented by the y-variables, and the order of both characters is reversed at
time step ti+1. The linearised model (LIN) is given as follows.

min
ℓ−1∑
i=1

∑
cu,cv∈AC(ti,ti+1)

yi,u,v (LIN)

yi,u,v, xi,u,v satisfy (BIN), (EQ), (LOP), (TREE), and (CR)
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Max-Cut Model (CUT)
Gronemann et al. [11] have suggested a formulation based on the transformation of the problem
into a quadratic unconstrained binary program with additional (TREE) constraints, which
is then solved using a maximum cut approach. Here, we omit the detour via the quadratic
binary program and directly provide the corresponding maximum cut formulation. Starting
with a feasible storyline drawing Ŝ = (π̂1, . . . , π̂ℓ), we define the graph GM = (VM , EM ):
The vertex set VM is given by a vertex v∗ and the union of the sets Vi (i = 1, . . . , ℓ), where
Vi has a vertex ci

uv for each pair cu, cv ∈ AC(ti) with cu ≺π̂i cv.
We introduce an edge between the vertices ci

uv and ci+1
pq if the corresponding characters

coincide. In the case that cu = cp and cv = cq, the (type-1) edge e = ei
uv gets a weight of

we = −1, and in the case that cu = cq and cv = cp, the (type-2) edge e = ei
uv gets a weight

of we = 1. We define the constant K as the number of edges of type (2). The intention is the
following: An edge of type (1) results in a crossing if and only if it is in the cut, and an edge
of type (2) results in a crossing if and only if it is not in the cut. This construction allows for
associating the maximum cut objective function values W to corresponding crossing numbers
K − W . In particular, W = 0 for the empty cut corresponds to the number of crossings K

in Ŝ. In order to guarantee that the characters of an interaction appear consecutively, we
introduce type-3 edges with weight 0 from the additional vertex v∗ to every vertex in Vi for
all i = 1, . . . , ℓ, and add the additional constraints (TRC). We introduce a binary variable ze

for every edge e ∈ EM in the graph, which is 1 if and only if the edge is contained in the
computed cut.

The following model guarantees that every optimal solution corresponds to a constrained
maximum cut in the graph GM that provides the optimal solution to the storyline problem.
The constraints (CYC) capture the fact that any intersection of a cut and a cycle in a graph
has even cardinality. The correctness is provided in [11], see also [3, 24].

max
∑

e∈EM

weze (CUT)

∑
e∈F

ze −
∑

e∈C\F

ze ≤ |F | − 1 for all cycles C ⊆ EM , F ⊆ C, |F | odd (CYC)

0 ≤ z(v∗,ci
uv) + z(v∗,ci

vw) − z(v∗,ci
uw) ≤ 1 for all i = 1, . . . , ℓ; ci

uv, ci
vw, ci

uw ∈ Vi (LOPC)
with cu ≺π̂i

cv ≺π̂i
cw

z(v∗,ci
uw) = z(v∗,ci

vw) if cu, cv ≺π̂i
cw

z(v∗,ci
wu) = z(v∗,ci

wv) if cu, cv ≻π̂i
cw

}
for all i = 1, . . . , ℓ; I ∈ I(ti);
cu, cv ∈ char(I); cw ∈ AC(ti) \ char(I)

(TRC)

ze ∈ {0, 1} for all e ∈ EM (BIC)

4 Structural Properties of Storyline Solutions

In this section, we identify structural properties of storyline solutions that will help us to
optimize the models proposed in Section 5, and that guide the exact optimization process.
First, we define two properties of storyline drawings. Definition 2 captures that the relative
order of characters in an interaction can be propagated backwards.

▶ Definition 2 (Type-1 consistency). Let S = (π1, π2, . . . , πℓ) be a solution to a storyline
instance (T, C, I, A). Let I ∈ I, ti = time(I) and C = char(I). Let 1 < j(I) ≤ i be the index
of the earliest time step tj(j) such that C ⊆ AC(tj(I), ti) and

∀k ∈ {j(I) + 1, . . . , i} : CI(tk) ∩ C = ∅ ∨ ∃I ∈ I(tk) : C ⊆ char(I).

GD 2024



31:8 Revisiting ILP Models for Exact Crossing Minimization in Storyline Drawings

We say that S is I-consistent if

∀k ∈ {j(I), j(I) + 1, . . . , i} : πk[C] = πi[C].

Further, we say that S is type-1-consistent if it is I-consistent for all I ∈ I.

Definition 3 defines the property that between suitable pairs of interactions with the
same set of characters, these characters are kept together between the two time steps. Note
that this is not implied by type-1 consistency.

▶ Definition 3 (Type-2 consistency). Let S = (π1, π2, . . . , πℓ) be a solution to a storyline
instance (T, C, I, A). Consider two interactions I1, I2 ∈ I such that

char(I1) = char(I2) = C,
i = time(I1) < time(I2) = j, and
∀k ∈ N : i < k < j ⇒ [CI(tk) ∩ C = ∅ ∨ ∃I3 ∈ I(tk) : C ⊆ char(I3)].

We say that S is (I1, I2)-consistent if

∀i < k < j : ∃πa, πb : πk = πa ⋆ πi[C] ⋆ πb.

Further, we say that S is type-2-consistent if it is (I1, I2)-consistent for all such pairs (I1, I2).

The following lemma shows that we can achieve type-1 consistency for storyline drawings
without increasing the number of crossings. Essentially, if a storyline solution is not type-1
consistent for an interaction I, we can propagate the relative order of characters in that
interaction forward from the time step tj(I) from Definition 2.

▶ Lemma 4 (⋆). Let (T, C, I, A) be an instance with a solution S. We can construct from S

a type-1-consistent solution S′ such that cr(S′) ≤ cr(S). If S is type-2-consistent, so is S′.

A similar result with a related proof argument holds for type-2 consistency.

▶ Lemma 5 (⋆). Let (T, C, I, A) be an instance with a solution S. We can construct from S

a type-2-consistent solution S′ such that cr(S′) ≤ cr(S). If S is type-1-consistent, so is S′.

The following is a direct consequence.

▶ Corollary 6. For each storyline instance (T, C, I, A) there exists a crossing-minimum
solution S that is type-1-consistent and type-2-consistent.

Theorem 7 is the main ingredient for a new ILP formulation given in Section 5. It shows that
we can in specific cases assume the order of characters Ca above and Cb below an interaction
at time step ti to be equal to the relative order at ti−1. This is similar to type-1-consistency,
where the relative order of characters in an interaction sometimes can be kept.

▶ Theorem 7 (⋆). Let (T, C, I, A) be a storyline instance. There exists a crossing-minimum
solution S = (π1, π2, . . . , πℓ) with the following property. For all ti ∈ {t2, t3, . . . , tℓ} with
|I(ti)| = 1, where I(ti) = {I}, the following holds.
(1) ∃Ca, Cb : πi = πi[Ca] ⋆ πi[char(I)] ⋆ πi[Cb],
(2) if Ca ⊆ AC(ti−1, ti), then πi[Ca] = πi−1[Ca],
(3) if char(I) ⊆ AC(ti−1, ti), then πi[char(I)] = πi−1[char(I)], and
(4) if Cb ⊆ AC(ti−1, ti), then πi[Cb] = πi−1[Cb].

Proof sketch. For time steps t with |I(t)| = 1 let Ca be the characters above the interaction
in an optimal solution. Similarly, let Cb be the characters below. By imagining that Ca and
Cb form two respective interactions, the result follows from Lemma 4. ◀
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5 Refining the ILP models

We apply our structural insights from Section 4 to the models (besides the (CUT)-model) to
obtain a new ILP formulation, including a reduction of the number of (LOP) constraints in
Section 5.1 via Theorem 7 and the inclusion of additional symmetry breaking constraints in
Section 5.2 via Corollary 6.

5.1 The Propagated Linear Ordering Model (PLO)
For our new formulation, we take the linearized model (LIN) as basis, but remove some of
the (LOP)-constraints for time step ti as we can make use of propagating the ordering at ti−1
by Theorem 7 as follows. If I(ti) for i > 1 contains only one interaction I, and no characters
outside the interaction start at ti (i.e., AC(ti) \ AC(ti−1) ⊆ CI(ti)), we only include a part
of the (LOP)-constraints for time step ti using a representative character cw ∈ char(I):

From the set of (LOP)-constraints containing at least one character in AC(ti)\char(I), we
keep only those that contain exactly two characters in AC(ti)\ char(I) and the representative
character cw ∈ char(I). This is sufficient, because we can define the order of the active
characters in ti relative to the order of the characters in the interaction I based on Theorem 7.
Hence, let cw be a representative character from the set char(I), and consider a pair of
characters cu, cv ∈ AC(ti) \ char(I). By Theorem 7, if both cu and cv are above or below cw,
then their relative order can be fixed by their relative order at ti−1. Otherwise, their relative
order is already given by their relative order to cw. That is, if, e.g., cu is above cw and cv

is below cw, then we know that cu is above cv. To ensure the above, we add the following
constraints in addition to the (LOP)-constraints for cu, cv, and cw at time step ti.

xi,u,v ≥ xi−1,u,v + xi,u,w + xi,v,w − 2 (PROP-R1)
xi,u,v ≥ xi−1,u,v + xi,w,u + xi,w,v − 2 (PROP-R2)

The two constraints ensure that cu is above cv if the requirements are met. By switching cu

and cv, these constraints also ensure the case that cu is below cv.
If additionally char(I) ⊆ AC(ti−1) we can apply Theorem 7 (3) to further reduce the

number of those (LOP)-constraints, whose triples are taken from the set char(I): In this
case, we do not add any of the (LOP)-constraints for the characters in I, but instead for
each pair cu, cv ∈ char(I), we add the following constraint ensuring that the relative order of
cu and cv is the same for ti and ti−1.

xi,u,v = xi−1,u,v (PROP-I)

If both reductions for (LOP) apply, we get a quadratic rather than cubic number of constraints
for ti. We call this formulation propagated linear order (PLO). Note that this idea of reducing
the number of (LOP)-constraints also works for any of the other standard ILP models.

▶ Theorem 8 (⋆). Every optimal solution to the formulation (PLO) corresponds to a crossing
minimum storyline drawing.

Proof sketch. Since we have only reduced some of the (LOP)-constraints, the correctness
follows by induction on the time steps w.r.t. transitivity of the computed character order. ◀

5.2 Symmetry Breaking Constraints
We introduce the set (SBC) of symmetry breaking constraints that are based on Corollary 6
and might improve the solving process of the models, as they constitute equalities:
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We can assume that a crossing-minimum solution is type-1 consistent. Thus let I ∈ I
with ti = time(I) and let j(I) be defined as in Definition 2. For all pairs cu, cv ∈ char(I)
and all j(I) ≤ k < i we can add the following constraint enforcing type-1 consistency:

xk,u,v = xi,u,v (SBC-1)

We can assume that a crossing-minimum solution is type-2 consistent. Thus, let I1, I2 ∈ I
be two distinct interactions satisfying the properties of Definition 3. Let i = time(I1) and
j = time(I2). For all i < k < j, all pairs cu, cv ∈ char(I1), and all cw ∈ AC(tk) \ char(I1)
we add the following constraint, enforcing type-2 consistency:

xk,u,w = xk,v,w (SBC-2)

6 Implementation

In this section, we discuss relevant implementation details and new heuristic-based approaches
to improve our algorithms.

6.1 Initial Heuristic
We propose a heuristic that is provided to the ILP solver as starting solution: Roughly, we
solve intervals of the instance consisting of ℓ̂ < ℓ consecutive time steps optimally using the
(PLO) ILP formulation. The first ŝ ≤ ℓ̂ layers of those are saved as the heuristic solution.
Then, the last layer is fixed (i.e. layer ŝ) by fixing the ordering variables accordingly, in order
to compute the solution for the next interval, and so on. Initial testing showed that ŝ = 5
and ℓ̂ = 30 yields a good tradeoff between runtime and solution quality. A more detailed
description is given in the full version [6].

6.2 Rounding and Local Improvement Heuristics
We propose a rounding heuristic that exploits fractional LP-solutions. Furthermore, we try
to improve these solutions as well as incumbent solutions found by the solver software by
proposing three local improvement heuristics Rem-DC, Push-CR, and SL-Bary.

Rounding Heuristic. We propose a strategy to round fractional solutions of the ordering
variables to valid integer solutions corresponding to a drawing of the storyline instance.
Roughly, the orders πi are computed by considering for each ordering variable xi,u,v its
rounded up or down value if the fractional value is different from 0.5 in the LP solution,
and propagating the relative order of u and v in πi−1 if the fractional value is 0.5. Then,
the characters are sorted by the sums of the rounded values, characters belonging to the
same interaction are “treated as one character”. A detailed description is given in the full
version [6].

Local Improvement Heuristics.
Rem-DC (remove double crossings) This heuristic finds pairs of characters that cross twice,

and both crossings can be removed without increasing the total number of crossings.
Formally, this is possible for a drawing S and two characters c, c′ if there exist 1 ≤ i < j ≤ ℓ

with j − i > 1 such that
c and c′ cross between ti and ti+1, and tj−1 and tj , and
for all k ∈ N with i < k < j, c and c′ either belong to the same interaction in tk, or
they both are in no interaction for tk.
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Then for all k as above we can exchange c and c′ in πk. This removes the double-crossing
between c and c′ and further does not introduce new crossings.

Push-CR This heuristic proceeds from i = 2, . . . , ℓ in this order and tries to push crossings
between πi−1 and πi forward by one time step: Let C be a maximal set of characters
such that (1) all characters in C appear consecutively in πi, (2) C ⊆ AC(ti−1, ti), and (3)
all characters in C either appear in the same interaction in ti or no character in C is part
of an interaction. For each such set of characters C we replace in πi, πi[C] by πi−1[C].
By similar arguments as in Section 4 this never increases the number of crossings.

Bary-SL Lastly, we describe a variant of the barycenter heuristic [25] for storylines that
iteratively improves a storyline drawing by updating πi for 1 ≤ i ≤ ℓ based on πi−1 and
πi+1 or one of them if not both exist. It is only applied to πi if |I(ti)| = 1. Informally,
we say that a pair of characters c, c′ is comparable if c and c′ have the same relative order
in πi−1 and πi+1. We compute an ordering πi such that most comparable pairs have the
same relative order in πi−1, πi, πi+1 as follows. We compute the directed auxiliary graph
GC whose vertex set is a subset S of AC(ti) and which contains an arc from c to c′ for
each comparable pair c and c′ such that c is before c′ in πi−1 and πi+1. Then, an order of
S is built by iteratively selecting the vertex from GC with the fewest incoming arcs. We
also ensure that characters c that are not part of I are above or below the characters in I

depending on which option leads to fewer crossings between c and char(I) with respect to
the considered time steps ti−1, ti, ti+1. The algorithm computing the order based on the
graph GC is then applied to the characters in the interaction yielding πI , and those not in
the interaction yielding πC , respectively. The ordering πC is inserted into the maximum
position of πI such that all characters before πC “prefer” being above the interaction
with regard to crossings with char(I). The new πi is only accepted if it decreases the
number of crossings.

Both Bary-SL and Push-CR are applied successively to layers 2, . . . , ℓ. This is repeated
five times and applied to valid integer solutions found by the solver and the rounding heuristic
described above. If enabled, the rounding heuristic is applied to every LP solution found by
the solver. Rem-DC is applied five times to each pair of characters.

6.3 Max-Cut Implementation Details
Since the original implementation of Gronemann et al. [11] is not available, we provide our
own implementation that was optimized beyond their algorithm. After reading the input, we
first find an initial starting solution by applying adapted barycenter techniques as described
in [11]. We start the root relaxation with the objective function and the tree constraints
(TRC) as the only constraints, and start separating the odd cycle (CYC) (as suggested by
Charfreitag et al. [4]) and the (LOPC) constraints. The (LOPC) constraints are separated by
complete enumeration. Whenever a new LP solution is available, all nonbinding inequalities
are eliminated, and we try to exploit the information in the (fractional) solution in order to
obtain a better incumbent solution.

The root phase ends when no violated inequalities are found. Then the branch-and-cut
phase is started by changing the variable types from continuous in the interval [0, 1] to binary.
In the Gurobi “MIPSOL” callbacks at branch-and-cut nodes with an integer solution, we
check if the integral solution is the characteristic vector of a storyline drawing. If so and if
the number of crossings is lower than the one of the incumbent solution, the latter is updated,
otherwise, the exact (CYC) and (LOPC) separators are called to provide violated inequalities
that are passed to Gurobi as lazy constraints. In the Gurobi “MIPNODE” callbacks it is
tried to exploit the fractional solution for a possible update of the incumbent solution.
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6.4 Implementation of the ILP Models
The models (QDR), (LIN), and (PLO) include many symmetries regarding ordering variables
and crossing variables. For each ti ∈ T and pair of characters cu, cv ∈ AC(ti) we only keep
the ordering variables xi,u,v and crossing variables yi,u,v with u < v. The constraints are
adjusted with standard projections [11,12].

We take the linearized model (LIN) as basis for our refined ILP model described in
Section 5, because preliminary experiments showed no performance gain from refining (QDR)
instead. Further, the linearized model (LIN) is competitive with the max-cut approach when
implemented in Gurobi. Therefore, we decided on refining the linearized model that is simpler
to implement and more accessible when compared with the max-cut approach. Furthermore,
implementing any of the ILP models naively includes up to O(ℓn3) (LOP)-constraints in the
model. We have experimented with adding these constraints during a cutting-plane approach
and also by including them into the Gurobi solver as lazy constraints, i.e., constraints that
the solver can decide to include at later stages during the solving process. We decided to
always add (LOP) as lazy constraints, as this leads to the best performance. Hence, we
consider the following algorithms for our experimental evaluation.

MC: the max-cut formulation (as a baseline) implemented as described in Section 6.3
LIN: the linearized model (LIN) with (LOP)-constraints included as lazy constraints
QDR: the quadratic model (QDR) with (LOP)-constraints included as lazy constraints
PLO: the PLO formulation with (LOP)-constraints included as lazy constraints

The latter three algorithms are by default extended with the symmetry breaking constraints
described in Section 5.2 (SBC), the initial heuristic from Section 6.1 (INIT), and the rounding
and local improvement heuristics from Section 6.2 (RND). This is not done for MC, as it
should serve as a state-of-the-art baseline and allow comparison with Gronemann et al. [11].

7 Experiments and Evaluation

In our experimental evaluation, we are interested in the following research questions.
Q1: Does the algorithm PLO based on our new ILP model dominate the state-of-the-art

model MC? Will we be able to solve hard instances that have not been solved to
optimality before? How do the various algorithms compare to each other?

Q2: What effect do the structural insights have when applied to the LIN-formulation?
Q3: What is the effect of the newly introduced components SBC, INIT, and RND?

In the following we describe our experimental setup, our benchmark instances, and the
results of our study. We also provide our results and analysis on https://osf.io/3bua2/.

7.1 Setup
Systems employed for all experiments have AMD EPYC 7402, 2.80GHz 24-core CPUs and
1024GB of RAM, running Ubuntu 18.04.6 LTS; experiments were run using a single thread.

MC is implemented in C and compiled with gcc 7.5.0, GNU make 4.1, and flag -O3,
all remaining code is written in C++17, compiled with cmake 3.10.2 and g++ 11.4.0 in
Release mode. To solve the ILPs we used Gurobi 11.0.1. The time limit is 3600s (same
as Gronemann et al. [11]) and the memory limit is 16GB for all experiments. We do not
know the memory limit for Gronemann, however memory was certainly not our limiting
factor. The time for the initial heuristic is negligible (< 1% of the overall runtime), so it is
not counted towards the solving time.

https://doi.org/10.17605/OSF.IO/3BUA2
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To mitigate performance variability, we ran each instance-setting combination with five
different seeds provided to Gurobi; data displayed below corresponds to the seed with the
median runtime. With this, an instance counts as “solved in the time limit”, if the majority
of the five runs does not time out. Source code for the new formulations is available on
https://osf.io/3bua2/.

7.2 Test Data
The instances used in our computational study are taken from the literature [7,10,11,26].
However, we also present a new data set, including existing instances, in a specifically
designed storyline data format, together with tools for transformation and visualization
of the storyline layouts on https://osf.io/3bua2/. We also provide data on best known
crossing numbers.

The existing instances from Gronemann et al. [11] consist of three book instances from
the Stanford GraphBase database [16], i.e., Anna Karenina (anna), Les Misérables (jean)
and Adventures of Huckleberry Finn (huck), and the movie instances TheMatrix, Inception,
and StarWars. The instances gdea10, gdea20 from Dobler et al. [7] consist of publication
data from 10 (resp. 20) authors from the GD conference. The publication instances ubiq1,
ubiq2 are from Di Giacomo et al. [10]. Furthermore, anna and jean are split up into slices of
1-4 consecutive chapters as was done by Gronemann et al. [11]1. The new instances consist
of scenes from nine blockbuster movies, namely Avatar, Back to The Future, Barbie, Forrest
Gump, Harry Potter 1, Jurassic Park, Oceans 11, Oppenheimer, and Titanic.

In all 59 resulting instances, characters are active from their first interaction to their last
interaction, and most instances have one interaction per time step.

7.3 Evaluation
Several instances could be solved within 30s by all algorithms, others could not be solved
within the time limit by any of the algorithms. The three instances TheMatrix, Inception,
and StarWars used commonly in heuristic storyline visualization were all solved within 450ms.
We exclude all these instances and focus on the 23 challenging instances that remain. Out
of these, the maximum number of characters is 88, and the maximum number of layers is
234. An extended experimental evaluation and more detailed statistics are given in the full
version [6].

Answering Q1 and Q2. Figure 3 displays the number of instances solved over time for
each algorithm. We observe that the algorithms differ in their ability to solve challenging
instances: PLO solves the most, followed by LIN and MC, with QDR last. In fact, PLO
solves one instance that cannot be solved by any other algorithm, and additionally solves
six instances that could not be solved by Gronemann et al. [11] and three more than MC
within the same time limit. Hence, we answer the first part in Q1 positively. For further
illustration, the exact runtimes per instance are also shown in Figure 4.

Answering Q2, the structural insights as applied in PLO reduce the number of constraints
by a factor of five on average, comparing LIN and PLO. More so, they enhance Gurobi’s
capabilities of strengthening the LP relaxation, as the two instances not solved by LIN are

1 We could not replicate this process fully equivalently, as sometimes our optimal crossing numbers are
different to those of Gronemann et al. [11].
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Figure 5 Number of instances solved per time limit given, broken down by algorithm. Algorithms
are compared with their counterparts where exactly one component is disabled.

solved by PLO in the root, while LIN starts branching early and times out. QDR enters
branching in all 23 instances, PLO in two, MC in three, LIN in seven instances. PLO solves
21 out of 23 instances in the root, the remaining two with branching.

Furthermore, we computed the speedup factor of PLO, LIN, and QDR, when compared
with MC on instances where both respective algorithms did not time out. This factor is the
runtime of MC divided by the runtime of, e.g., PLO. The geometric means of these values
are 2.6 for PLO, 3.2 for LIN, and 2.7 for QDR. Hence, our new algorithms are 2.6–3.2 times
faster than the state-of-the-art algorithm MC.

Ablation study to answer Q3. We conduct an ablation study to discern the impact each of
the methods proposed in Sections 5 and 6 has on the algorithms’ performance. To this end,
we enable all the proposed methods as the baseline configuration for PLO, LIN, and QDR,
namely SBC, INIT and RND. Then, each component is disabled one at a time to measure
the component’s impact on overall performance. In Table 1 we present the speedup factors of
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Table 1 Geometric means of the speedup factor of each baseline algorithm vs. its counterpart
where the respective component is disabled.

speedup factor PLO LIN QDR

SBC 1.12 1.35 1.42

INIT 1.05 1.09 0.97

RND 1.50 1.37 1.52

(a) Solution with 765 crossings computed in 0.57 s by a greedy heuristic.

(b) With the minimum number 244 of crossings computed in ≈ 7 hours.

Figure 6 Storyline of Les Misérables (jean) with 80 characters and 402 layers.

the algorithms vs. their counterparts with the specific component disabled. From this table,
we conclude that SBC and the RND are beneficial for all algorithms, while INIT has a small
to no noticeable impact. This is further supported by Figure 5, which shows that disabling
SBC or RND, results in all the formulations solving fewer instances (curves with noSBC
and noRND are below the baseline). This is because SBC introduces equalities between two
variables, and hence improve presolving capabilities and reduce the search space that solvers
have to explore. The heuristics of RND help the solver find optimal solutions early in the
process. This answers Q3.

Large Instances. Finally, we demonstrate that our implementations are capable of solving
even very large instances to proven optimality: Figure 6(a) shows the raw drawing of the data
for Victor Hugo’s Les Misérables [15] as provided in the data file jean.dat of the Stanford
GraphBase [16]. After roughly 7 hours of single thread computation, we obtained the proven
crossing minimum layout shown in Figure 6(b).
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8 Conclusion and Future Work

As shown in our experimental study, our new methods and algorithms dominate the state-
of-the-art algorithms and are able to solve large instances to optimality, while the newly
introduced improvements are beneficial towards all considered formulations. We observe two
directions for future work.

Our new components for improvement could be implemented into the max-cut formulation.
However, initial experiments have shown that the simple linearized formulation (LIN)
performs comparably to the more complex max-cut formulation, hence we expect that
this will result in a negligible or no improvement over our proposed formulations.
Out of our 59 instances (see https://osf.io/3bua2/) we were able to solve 55 when
increasing the time limit. The remaining four unsolved instances should pose a challenge
to engineer new exact methods for crossing minimization in storylines.
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1 Introduction

Drawing nonplanar graphs in the plane while avoiding forbidden crossing configurations
is a prominent line of research in graph drawing. Over the past twenty years, numerous
papers have addressed this topic, commonly recognized as beyond-planar graph drawing. For
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example, one of the most studied graph hierarchies is this context is the one of k-planar
graphs, i.e., graphs that admit a drawing in which each edge is crossed at most k times (see,
e.g., [24, 26]). Another classical example is the class of right-angle-crossing graphs (RAC
graphs), which admit a straight-line drawing where any two crossing edges form 90◦ angles at
their crossing point (see, e.g., [11, 12]). We refer the reader to surveys, books, and seminar
reports for a comprehensive overview on beyond-planar graph drawing [13, 18, 19, 21].

In this paper, we study k+-real face graphs, a beyond-planar graph hierarchy recently
introduced in [5, 6] and further studied in [23]. Namely, a nonplanar graph Γ of a graph G

divides the plane into topologically connected regions, called faces (or cells). The boundary
of each face is formed by vertices, crossings, and edge segments. Given a positive integer
k, the drawing Γ is a k+-real face drawing of G if the boundary of each face of Γ contains
at least k vertices of G. In this case, G is a k+-real face graph. The research in [5, 6, 23]
concentrates on providing tight bounds on the edge density of k+-real face graphs, and on
establishing relationships between k+-real face graphs and other prominent beyond-planar
graph classes. Conversely, testing which graphs admit a k+-real face drawing and computing
such a drawing when the test is positive are almost unexplored problems. Trivial recognition
algorithms exist only for complete graphs and complete bipartite graphs, exploiting results
about edge density and crossing numbers for these families [5].

Contribution. Following a consolidated line of research in beyond-planar graph drawing,
and addressing a problem mentioned in [5], we investigate the complexity of recognizing
k+-real face graphs. We study both the general unconstrained scenario and the classical
2-layer scenario for bipartite graphs, in which the vertices of the two partition sets are placed
on two distinct horizontal lines and the edges are drawn as straight-line segments. We remark
that the 2-layer scenario has a long tradition in graph drawing (see, e.g., [1, 15, 16, 22, 27, 28])
and in beyond-planar graph drawing (see, e.g., [3, 4, 7, 9, 10]). Our results are as follows:

We prove that, for the set of instances ⟨G, k⟩, where G is a graph and k is a positive integer,
testing whether G admits a k+-real face drawing is NP-complete. More specifically, we
prove that the problem is already NP-complete for k ∈ {1, 2} and even if G is biconnected
(Section 3). This excludes that recognizing k+-real face graphs is fixed-parameter tractable
(FPT) or even slicewise polynomial (XP) when parameterized by k, unless P=NP.
We provide tight upper bounds on the edge density of 2-layer k+-real face graphs for any
positive integer k (Section 4.1). Then, we describe linear-time algorithms for recognizing
2-layer k+-real face graphs for any k ≥ 2, and for recognizing optimal 2-layer k+-real face
graphs for any given k ≥ 1 (Section 4.2). The optimal graphs are those that match the
maximum possible edge density. Recognizing optimal graphs for specific beyond-planar
graph families is also a classical problem in graph drawing [2, 8, 20].

For space reasons, some proofs are sketched or omitted.

2 Basic Terminology and Tools

We consider connected, simple graphs, i.e., without parallel edges and self-loops. Given a
graph G = (V, E) and a set E′ ⊆ E, let V ′ ⊆ V be the set of the end-vertices of the edges
in E′. The graph G′ = (V ′, E′) is the subgraph of G induced by E′. A block B of G is a
biconnected component of G. If B is an edge, it is a trivial block, otherwise B is non-trivial.

In a drawing Γ of a graph G the vertices are represented as points of the plane and the
edges are simple Jordan arcs. We only consider simple drawings, that is: (i) adjacent edges
do not intersect, except at their common endpoint; (ii) two independent (i.e., non-adjacent)
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(a) (b)

Figure 1 (a) A 2+-real face drawing. (b) A 2-layer 2+-real face drawing.

edges intersect at most in one of their interior points, called a crossing point; and (iii) no three
edges intersect at a common crossing point. A vertex of Γ is either a point corresponding to
a vertex of G, called a real-vertex, or a crossing point, called a crossing-vertex. An edge of Γ
is a curve connecting two vertices of Γ; an edge of Γ whose endpoints are both real-vertices
coincides with an edge of G; otherwise, it is just a proper portion of an edge of G. A drawing
Γ subdivides the plane into topologically connected regions, called faces (or cells). The
boundary of each face is a circular sequence of vertices and edges of Γ. The face corresponding
to the the infinite plane region is the external face of Γ; the other faces are the internal faces.

For an integer k ≥ 0, we say that f is a k-real face (resp. k+-real face) if it contains
exactly (resp. at least) k real vertices. For an integer k ≥ 1, a k+-real face drawing of a
graph G is a drawing such that each face is a k+-real face (see Figure 1a for an example with
k = 2). If G admits such a drawing, it is a k+-real face graph. A k+-real face graph whose
number of edges is the maximum possible over all its number of vertices is said to be optimal.

2-layer drawings. In a 2-layer drawing Γ of a bipartite graph G = (V1 ∪ V2, E), the vertices
in V1 and in V2 lie on two distinct horizontal lines L1 and L2, called layers, and the edges
are straight-line segments. If Γ is also k+-real face then it is a 2-layer k+-real face drawing,
and G is a 2-layer k+-real face graph (see Figure 1b for an example with k = 2). Again, a
2-layer k+-real face graph is optimal if it matches the maximum possible edge density.

Given a 2-layer drawing Γ of a graph G, we say that there is a fan crossing in Γ if two
adjacent edges of G are crossed by a third one in Γ; we also say that these three edges form
a fan crossing. Further, Γ is a 2-layer RAC drawing if any two crossing edges only cross at
right angles. A 2-layer RAC graph is a graph admitting a 2-layer RAC drawing.

Given a bipartite graph G = (V1 ∪ V2, E), let π1 and π2 be two linear (left-to-right)
orderings of the vertices in V1 and in V2, respectively. A 2-layer embedding γ = (π1, π2)
of G is the equivalence class of 2-layer drawings of G that induce the orderings π1 and π2.
In other words, γ is an abstraction of a 2-layer drawing where only the vertex orderings
on the layers matter, independent of the vertex coordinates. A drawing of γ is any 2-layer
drawing of G in the class γ. If γ has a 2-layer RAC drawing, it is a 2-layer RAC embedding.
Analogously, if γ has a k+-real face drawing (for some k ≥ 1), then γ is a 2-layer k+-real face
embedding. Note that, in fact, if γ is a 2-layer k+-real face embedding, every drawing of γ is
a 2-layer k+-real face drawing. Indeed, it is not difficult to see that any two distinct drawings
of the same 2-layer k+-real face embedding γ have the same set of faces, which is uniquely
determined by the linear orderings of the vertices on the two layers1 Hence, for a 2-layer
k+-real face embedding γ, we will refer to the faces of γ to indicate the faces of any 2-layer
drawing of γ. Similarly, the edge crossings of a graph G in a 2-layer drawing Γ of G only

1 If a 2-layer drawing Γ has a face without real-vertices, its 2-layer embedding γ does not uniquely
determine the set of faces, i.e., another drawing of γ may have a set of faces different from that of Γ.
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depend on the 2-layer embedding γ of Γ. A crossing in γ between two edges of G refers to
the crossing formed by these edges in any drawing of γ; real- and crossing-vertices of γ refer
to the real- and crossing-vertices of any drawing of Γ. Since two real-vertices of the same
layer cannot belong to the same internal face of a 2-layer drawing, the next property holds.

▶ Property 1. Let γ be a 2-layer embedding of a connected bipartite graph G. In every
drawing of γ, each internal face has at most two real-vertices.

A caterpillar is a tree such that removing all its leaves yields a path. A ladder is a
bipartite outerplanar graph consisting of two paths of the same length ⟨u1, . . . , u n

2
⟩ and

⟨w1, . . . , w n
2

⟩ plus the edges (ui, wi) for i = 1, . . . , n
2 ; the edges (u1, w1) and (u n

2
, w n

2
) are

the extremal edges of the ladder (see Figure 6). The next result will be used in the following.

▶ Theorem 2 (Di Giacomo et al. [9]). A 2-layer embedding γ of a bipartite graph is a 2-layer
RAC embedding if and only if there is no fan crossings in γ.

3 Recognizing Unconstrained k+-real face graphs

For optimal graphs, the results in [5, 6] imply that for k ≥ 3, recognizing k+-real face graphs
corresponds to recognizing planar graphs that have an embedding with all faces of degree k.
This last problem is tractable for k ≤ 6 whereas it is NP-complete for odd k ≥ 7 and for even
k ≥ 10 [25]. Moreover, recognizing optimal 2+-real face graphs is equivalent to recognizing
optimal 1-planar graphs [6], which is linear-time solvable [8]. In this section we prove that
recognizing k+-real face graphs is NP-complete; in particular, the next theorem shows that
the problem is NP-complete for k = 2 and even for biconnected graphs.

▶ Theorem 3. Deciding if a graph G is 2+-real face is NP-complete, even if G is biconnected.

Membership of the problem in NP can be easily verified using standard arguments. We
reduce from the 3-Partition problem, which is known to be strongly NP-hard [17]. Recall
that an instance of 3-Partition consists of a set A = {a1, a2, . . . , a3m} of 3m integers, each
of which is strictly between B/4 and B/2, where B = 1

m

∑3m
i=1 ai. Then, the problem asks

whether A can be partitioned into m subsets A1, A2, . . . , Am, each of cardinality 3, such that
the sum of the integers in each subset is B.

Proof overview. The idea is to construct a rigid frame which admits a unique 2+-real face
drawing (up to a homeomorphism of the plane) and contains a large face. Inside this face, we
arrange, in a grid-like fashion, 3m vertical gadgets and m horizontal paths. The former,
called columns, encode the integers of an instance A of 3-Partition; see Figure 5a. If a
2+-real face drawing exists, one can read a solution for A by looking at how the paths intersect
the columns; see Figure 5b. A crucial ingredient is an intertwined design of the columns and
of the path gadgets such that the latter must cross the former in a controlled manner.

Construction. Let A be an instance of 3-Partition. We will construct in polynomial time
a graph G, such that A admits a partition if and only if G admits a 2+-real face drawing. In
our construction, we will leverage K6 as a building block, since any 2+-real face drawing of
it is 1-planar as we prove in the following lemma; refer to Figure 2a for an illustration.

▶ Lemma 4. Any 2+-real face drawing of K6 is 1-planar.
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⇐⇒

(a) (b)

Figure 2 (a) A 1-planar and 2+-real face drawing of K6, and its schematic representation. (b)
Schematic representations of a belt of length three, and of a 2-belt.

LEFT WALL RIGHT WALL

TOP BEAM

BOTTOM BEAM

P

L

(a)

2M

M + ai ⇐⇒

(b)

Figure 3 (a) A ring barrier. (b) Three channels of a column, two are dense and one is sparse,
along with their schematic representation.

Proof. By Lemma 1 of [6] it follows that, for a 2+-real face drawing, it holds χ ≤ n − 2,
where χ is the number of crossings in the drawing and n is the number of real vertices. For
K6, this implies χ ≤ 4. Suppose by contradiction that K6 admits a 2+-real face drawing Γ
with an edge crossed at least twice. Thus, Γ contains a face of degree at least four (namely
a face with at least two real vertices and two crossing-vertices). Since each other face of Γ
has at least degree three and since the sum of the degrees of the faces of Γ equals twice the
number µ of its edges, we have 2µ ≥ 3(ϕ − 1) + 4 = 3ϕ + 1, where ϕ denotes the number
of faces of Γ. Since µ = m + 2χ and ϕ = m + χ + 2 − n, the last inequality implies that
2(m + 2χ) ≥ 3(m + χ + 2 − n) + 1 or equivalently χ ≥ m − 3n + 7 holds. For K6, we know
n = 6 and m = 15, thus χ ≥ 10, which contradicts the bound χ ≤ 4. ◀

A belt of length k is a chain of k copies of K6 that are glued such that two consecutive
copies share one edge; see also Figure 2b. A b-belt of length k is obtained by merging together
b > 1 belts of length k, as shown in Figure 2b. To construct graph G, we first create a quite
rigid structure, called ring barrier R, consisting of four components: the top beam, the right
wall, the bottom beam and the left wall. Each of the top and bottom beams consists of a
T -belt of length L, while each of the left and right walls consists of a T -belt of length P ,
with the following choice of parameters: (i) M = ⌈B/2⌉ + 1; (ii) X = 2M ; (iii) L = 3mX;
(iv) P = 3m + 2; (v) T = L2. Note that M > ai for each i = 1, . . . , 3m. Also, L and P are
chosen to accommodate 3m column gadgets and m transversal gadgets, to be defined later.
T makes the ring barrier thick enough; it is formed by gluing in a circular arrangement the
endpoints of the top beam, right wall, bottom beam and left wall; see Figure 3a.

GD 2024
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D1 +D2 +D3

(a) (b)

Figure 4 (a) Two transversal gadgets (only a part of the ring barrier is shown and columns are
omitted). (b) A transversal gadget routed through a channel.

The top and bottom beams are connected by a set of 3m columns; see Figure 3b. Each
column contains a stack of 2m − 2 copies of the barrier-gadget, which is formed by gluing X

copies of K6. Within each column, consecutive copies of the barrier-gadget are connected
by an even set of pairwise disjoint edges whose size will be defined later, interleaved by
an edge in the middle of the sequence forming two triangles, as shown in Figure 3b. The
topmost and the bottommost copy of the barrier-gadget of each column is connected to the
top and bottom beam, respectively, also in the same fashion. The edges that realize these
connections are called vertical edges and form the so-called channels. In particular, there are
m − 1 topmost channels, one central channel and m − 1 bottommost channels. The central
channel of the i-th column is sparse containing only M + ai vertical edges (note that, by
construction, X = 2M > M + ai); the remaining ones are dense containing X edges each.

We conclude the construction of graph G by introducing m pairwise disjoint gadgets,
π1, π2, . . . , πm, called the transversal gadgets of G. Each transversal gadget consists of two
edges, called guide edges, and one path of D1 + D2 + D3 vertices, where the three parameters
are specified below. The intuition is that, in order to realize a 2+-real face drawing, each path
must cross all columns through one of their channels, and each path will be able to do so if
and only if it can be routed through exactly three sparse channels whose number of vertical
edges is equal to B; therefore, the length of a single path is crucial: (i) D1 = (3m−3)(2X +8),
for the path to be able to cross 3m − 3 dense channels; (ii) D2 = 2B + 6M + 24, for the
path to be able to cross 3 sparse channels; (iii) D3 = 2(3m − 1), for the path to be able to
cross the faces between consecutive columns. These gadgets are attached at independent
consecutive vertices along the left and right walls, as shown in Figure 4a (each of the m

gadgets takes three vertices on the left wall and on the right wall, which are both made by
T -belts of length 3m + 2). Note that G does not contain any cut-vertex.

Proof sketch for Theorem 3. To prove that A admits a partition if and only if G admits
a 2+-real face drawing, we need a few definitions. A canonical drawing of G is one such
that, if two edges cross, then one of the following cases applies: (i) both edges are part of
a K6, or (ii) one edge is part of a transversal gadget and the other is a vertical edge of a
channel, or (iii) one is a guide edge of transversal gadget and the other is an edge of the
path of the same transversal gadget. Consider a column C and a channel c of C. We say
that a transversal gadget π is routed through c, if c is the only channel of C whose edges
are crossed by some edges of π, see Figure 4b. If A1, . . . , Am is a solution of A, then a
2+-real face drawing of G can be obtained by routing each transversal gadget πi through
m − 3 dense channels and 3 sparse channels corresponding to the elements of Ai as shown
in Figure 5. Proving the other direction requires a more involved argument. We first prove
that a crossing-minimal 2+-real face drawing of G, if any, is a canonical drawing. Next we
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(a) (b)

Figure 5 (a) A canonical drawing (schematic representation) where the transversal gadgets are
omitted. (b) A complete canonical drawing in which the three transversal gadgets are schematized
as thick polylines of different colors and their intersections with sparse cells are highlighted.

can show that each transversal gadget is routed through m − 3 dense channels and 3 sparse
channels such that no two gadgets traverse the same channel. This allows the construction
of a solution A1, . . . , Am of A as follows: if πj crosses the κ-th, λ-th and µ-th columns of G

through sparse channels, where 1 ≤ κ, λ, µ ≤ 3m, then Aj = {aκ, aλ, aµ}. ◀

▶ Remark 5. The proof of Theorem 3 can be adapted to show that recognizing 1+-real face
graphs is also NP-complete. At high level, we substitute the copies of K6 with copies of K7,
slightly modify the channel structure by introducing two edges that cross (to ensure that a
single guide edge cannot be routed through a channel without an associated path) and halve
the length of the paths. In the interest of space, we defer the details to the journal version.

4 2-Layer k+ graphs

In this section we focus on 2-layer k+-real face drawings. We start giving edge-density results
for each positive integer k (Section 4.1); they represent a preliminary step for the recognition
problem. Then, we describe algorithms to recognize 2-layer k+-real face graphs for k ≥ 2,
and algorithms to recognize optimal 2-layer k+-real face graphs for k ≥ 1 (Section 4.2).

4.1 Edge Density
We give tight upper bounds on the edge density of n-vertex 2-layer k+-real face graphs, for
any k ∈ [1, n]. For k ∈ [3, n] the next theorem establishes that the n-vertex connected 2-layer
k+-real face graphs are caterpillars, thus they have n − 1 edges.

▶ Theorem 6. An n-vertex connected graph is 2-layer k+-real face for any k ∈ [3, n] if and
only if it is a caterpillar.

Proof. A connected graph has a 2-layer planar embedding if and only if it is a caterpillar [14].
Suppose first that γ is a 2-layer k+-real face embedding of a connected graph G for a given
k ∈ [3, n]. By Property 1, γ cannot have internal faces, i.e., all real-vertices of γ belong
to the external face. In particular, there cannot be any two edges of G that cross in γ,
otherwise, since G is connected, there would be an internal face in γ. Hence G is 2-layer

GD 2024
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u1 u2 u3 u4 u5

w1 w2 w3 w4 w5

u1 u3 u5w2 w4

u2 u4w1 w3 w5

u6

w6

w6

u6

ΓG

Figure 6 Illustration for Theorem 7. An optimal 2-layer 2+-real face graph G with n = 12
vertices (left) and a 2-layer 2+-real face drawing Γ of G (right).

u1 u2 u3 u4 u5

w1 w2 w3 w4 w5

u1 u3 u5w2 w4

u2 u4w1 w3 w5

u6

w6

w6

u6

ΓG

Figure 7 Illustration for Theorem 8. An optimal 2-layer 1+-real face graph G with n = 12
vertices (left) and a 2-layer 1+-real face drawing Γ of G (right).

planar, which implies that it is a caterpillar. Conversely, if G is a caterpillar it has a 2-layer
planar embedding. This embedding has a unique face (the external face), which contains all
the vertices of the graph, thus it is a 2-layer k+-real face embedding for every k ∈ [3, n]. ◀

▶ Theorem 7. Any n-vertex 2-layer 2+-real face graph has at most 1.5n − 2 edges, and this
bound is tight.

Proof. Let G = (V1 ∪V2, E) be an n-vertex bipartite graph that admits a 2-layer 2+-real face
drawing Γ, and let m be the number of edges of G. Augment Γ (and G) with n − 2 (non-
crossing) straight-line edges that connect all the vertices in each vertex set Vi (i = 1, 2), in
their linear ordering along the corresponding layer. The resulting drawing Γ′ is an outer
2+-real face drawing of a graph G′ with n′ = n vertices, i.e., a 2+-real face drawing with all
vertices on the external face. In [6] it is proved that such a graph G′ has at most 2.5n − 4
edges. Since G′ has m′ = m + n − 2 edges, we have m ≤ 1.5n − 2. About the tightness of
the bound, the ladders on n vertices are optimal 2-layer 2+-real face graphs (Figure 6). ◀

▶ Theorem 8. Any n-vertex 2-layer 1+-real face graph has at most 2n − 4 edges, and this
bound is tight.

Sketch. The proof is analogous to that of Theorem 7, but exploits the fact that an outer
1+-real face drawing has at most 3n − 6 edges [6]. A 2-layer 1+-real face graph that matches
this bound is a ladder with some extra edges (see Figure 7 when n = 12). Namely, let
V1 = {u1, . . . , u n

2
} and V2 = {w1, . . . , w n

2
}. For i = 1, . . . , n

2 there is an edge (ui, wi). For
i = 1, . . . , n

2 − 1 there are the two edges (ui, wi+1) and (ui+1, wi). For each i ∈ {1, . . . , n
2 − 2}

there is an edge (ui, wi+2). This graph has in total m = n
2 +n−2+ n

2 −2 = 2n−4 edges. ◀

4.2 Recognition
For k ∈ [3, n], Theorem 6 implies that testing whether an n-vertex graph G is 2-layer
k+-real face is equivalent to testing whether G is a caterpillar. Hence, the following holds.
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▶ Theorem 9. Let G be any connected graph with n vertices and let k ≥ 3. There exists an
O(n)-time algorithm that tests whether G is 2-layer k+-real face and that computes a 2-layer
k+-real face drawing if one exists.

Theorem 9 extends trivially to the recognition of optimal 2-layer k+-real face graphs for
k ≥ 3, since by Theorem 6 any connected 2-layer k+-real face graph with k ≥ 3 is optimal.
Recognizing 2-layer k+-real face graphs for k ∈ {1, 2} is more involved. The following
definition will be used in the next subsections. Let G be a bipartite graph, P be a simple
path in G, and γ be a 2-layer embedding of G. We say that P is a zig-zag path in γ if the
restriction of γ to P is not self-crossing (see, e.g., the path from w to w′ in Figure 8). If P

is a zig-zag path, there exists a drawing of γ in which P is x-monotone; thus, with a slight
abuse of terminology, we also refer to the left-to-right order of the vertices of P in γ.

4.2.1 2-layer 2+-real face graphs
We start with the following inclusion relationship.

▶ Lemma 10. Any 2-layer 2+-real face embedding is a 2-layer RAC embedding.

Proof. Suppose that γ is a 2-layer 2+-real face embedding of a graph. There cannot be a fan
crossing in γ, as otherwise γ would have a triangular 1-real face, contradicting the hypothesis
that γ is a 2+-real face embedding. Hence, by Theorem 2, γ is a 2-layer RAC graph. ◀

Lemma 10 implies that the family of 2-layer 2+-real face graphs is included in the family
of 2-layer RAC graphs. The reverse does not hold, as the next lemma proves.

▶ Lemma 11. There exist infinitely many graphs that are 2-layer RAC but not 2-layer
2+-real face.

Sketch. For any even positive integer k, consider a bipartite graph G = (V1∪V2, E) consisting
of: (i) two 4-cycles B and B′; (ii) a path P of length k between a vertex w ∈ V2 of B and a
vertex w′ ∈ V2 of C ′; (iii) two paths P and P ′ of length k

2 + 2, where P is attached to w and
P ′ is attached to w′. See Figure 8 for an illustration where: k = 4, w = w2, w′ = w8; C, C ′,
and P are in bold; P is in blue and P ′ is in red. In any 2-layer RAC embedding of G, P and
P ′ are zig-zag paths that cross each other, thus forming a 1-real face f (see Figure 8). ◀

u1 u2

w1 w2 = w

u9 u10

w3 w4 w5 w6 w7 w8 = w′ w9

u3 u4 u5 u6 u7 u8

B B′ee′
f

Figure 8 Illustration for Lemma 11. A 2-layer RAC graph that is not 2-layer 2+-real face.

Note however that the graphs of Lemma 11 are not biconnected. If we restrict to
biconnected graphs, we are able to prove that 2-layer RAC graphs and 2-layer 2+-real face
graphs are in fact the same family. More precisely, the following result is known (see [9]).

▶ Theorem 12 (Di Giacomo et al. [9]). An n-vertex biconnected graph G is 2-layer RAC if
and only if it is a spanning subgraph of a ladder. Also, there exists an O(n)-time algorithm
that tests whether G is 2-layer RAC, and computes a 2-layer RAC drawing of G if one exists.
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From the considerations above, we derive the following characterization.

▶ Lemma 13. A biconnected graph is 2-layer 2+-real face if and only if it is a spanning
subgraph of a ladder.

Proof. As shown, every ladder is a 2-layer 2+-real face graph, and hence every spanning
subgraph of a ladder is a 2-layer 2+-real face graph. Vice versa, let G be a biconnected
2-layer 2+-real face graph and let γ be a 2-layer 2+-real face embedding of G. By Lemma 10,
γ is 2-layer RAC, and hence, G is a spanning subgraph of a ladder by Theorem 12. ◀

The next theorem follows by combining Lemma 13 and Theorem 12.

▶ Theorem 14. An n-vertex biconnected G is 2-layer 2+-real face if and only if it is 2-layer
RAC. Also, there exists an O(n)-time algorithm that tests whether G is 2-layer 2+-real face
and that computes a 2-layer 2+-real face drawing if one exists.

Moreover, by Lemma 13 and since any n-vertex ladder is optimal 2-layer 2+-real face
(Theorem 7), whereas any non-biconnected n-vertex 2-layer 2+-real face graph has less than
1.5n − 2 edges, we get the following result for optimal 2-layer 2+-real face graphs.

▶ Corollary 15. An n-vertex graph G is optimal 2-layer 2+-real face if and only if it is a
ladder. Optimal 2-layer 2+-real face graphs can be recognized in O(n) time.

We now focus on the recognition of connected 2-layer 2+-real face graphs that are not
biconnected. By Lemma 10, every 2-layer 2+-real face embedding of a bipartite graph G (if
any) must be searched in the space of 2-layer RAC embeddings of G. Hence, we first recall in
some details what is the structure of any 2-layer RAC embedding γ of a connected graph G;
then we establish an extra property that γ must fulfill to be a 2-layer 2+-real face embedding.

Structure of 2-layer RAC embeddings. Let G be a 1-connected graph and let γ be a 2-layer
RAC embedding of G. As showed in [9], the embedding γ consists of two parts:

Skeleton. The first part, called skeleton, is a (possibly empty) left-to-right sequence
of non-trivial blocks; any two consecutive blocks either share a cut-vertex of G or are
connected by a zig-zag path, placed between them, which we call an in-between path. The
first (last) block of the sequence may be preceded (followed) by a maximal zig-zag path
attached to it, called an extremal path. If G is a tree (without non-trivial blocks), the
skeleton is just a single zig-zag path; by convention, the extremal paths coincide with
such a zig-zag path. We denote by skelγ(G) the subgraph of G induced by the edges of G

in the skeleton of γ.
Dangling Paths. The second part is a set of zig-zag paths, each path P sharing exactly one
vertex w with the skeleton. We call P a dangling path and w the attaching vertex of P .
Two dangling paths are either edge-disjoint or they have exactly one edge in common,
which is the one containing the attaching vertex of the paths. We denote by dangγ(G)
the subgraph of G induced by the edges that belong to the dangling paths.

Clearly, the edges of skelγ(G) and of dangγ(G) partition the edge set of G. When G

is not a tree, we also denote by skel−γ (G) the subgraph of skelγ(G) consisting only of the
non-trivial blocks and their in-between paths. Figure 9 shows an example of 2-layer RAC
embedding and its parts. Note that, by definition, if G is not a tree, each zig-zag path of
skelγ(G) is attached to two non-trivial blocks (if this path is an in-between path) or to one
non-trivial block (if this path is an extremal path). Further, by Lemma 13, each non-trivial
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γ

(a)

skelγ(G)

skel−(G)

(b)

extremal path
B2 extremal path

in-between path

B1
B3

(c)

dangling paths

(d)

dangγ(G)

(e)

extended
extremal path extended in-between path

B1 B2

B3

extended
extremal path

(f)

Figure 9 (a) A 2-layer RAC embedding γ of a graph G; the colored vertices are attaching vertices;
(b) skelγ(G) and skel−(G); (c) the components of skelγ(G); (d) the dangling paths of γ; (e) dangγ(G).
(f) The extended zig-zag paths of the 2-layer RAC embedding γ.
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block B of G is a spanning subgraph of a ladder, and the leftmost and rightmost edges of B,
which we call the extremal edges of B in γ, coincide with the extremal edges of such a ladder.
A skeleton zig-zag path extended with the extremal edges of the non-trivial blocks to which
it is attached will be called an extended zig-zag path of skelγ(G). For example, Figure 9f
shows the extended zig-zag paths of the 2-layer RAC embedding of Figure 9a.

The following properties hold for any 2-layer RAC embedding γ, otherwise it is easy to
see that γ would contain a fan-crossing (see [9] for details).

▶ Property 16. A dangling path cannot cross any non-trivial block in γ.

▶ Property 17. Let P and P ′ be two edge-disjoint dangling paths of γ that cross each other,
and let w and w′ be their attaching vertices. Then: (a) w and w′ are distinct vertices of the
same extended zig-zag path of the skeleton; (b) if (w.l.o.g.) w is to the left of w′, then all the
vertices of P (P ′) distinct from w (w′) are to the right of w (to the left of w′).

▶ Property 18. Each edge of a dangling path in γ crosses at most one edge of the skeleton.
Also, if P and P ′ are two edge-disjoint dangling paths that cross each other in γ, then each
edge of P and of P ′, with the possible exception of the edges incident to their attaching
vertices, crosses exactly one edge of the skeleton.

▶ Property 19. Let w be any vertex of an extended zig-zag path of the skeleton. Then, there
are at most two dangling paths of length larger than one attached to w.

▶ Property 20. If G is not a tree and if γ′ is a 2-layer RAC embedding of G distinct from γ,
then skel−γ (G) = skel−γ′(G). Also the restriction of γ to skel−γ (G) coincides with the restriction
of γ′ to skel−γ′(G) (up to mirroring).

By Property 20, we can denote skel−γ (G) by skel−(G), as it does not depend on the specific
embedding γ. We can get skel−(G) by recursively removing from G the degree-1 vertices.

Structure of 2-layer 2+-real face graphs. A 2-layer RAC embedding γ of a graph G is
dangling-crossing free if it does not have two dangling paths that cross each other. The next
lemma is a key ingredient to efficiently recognize 2-layer 2+-real face graphs.

▶ Lemma 21. Let γ be a 2-layer RAC embedding of a connected graph G. Then, γ is a
2-layer 2+-real face embedding if and only if it is dangling-crossing free.

Sketch. Let n ≥ 2 denote the number of vertices of G. Suppose first that γ is dangling-
crossing free. The external face of γ contains all the vertices of G, thus it is an n-real face,
and hence a 2+-real face. Consider now any internal face f of γ. By Property 16, a dangling
path cannot cross any edge of a non-trivial block of G in γ. Hence, if f is formed only
by skeleton edges of γ then it is a face internal to the embedding of a non-trivial block B.
Since by Lemma 13, B is a spanning subgraph of a ladder (and it is drawn RAC), the face
f is either a triangle with two real-vertices or a quadrilateral with two real-vertices (see
Figure 10a). Finally, assume that f is formed by skeleton edges and by edges of a single
dangling path P (f cannot contain edges of two distinct dangling paths, because we are
assuming that the dangling paths are pairwise non-crossing). In this case, the skeleton edges
that cross P to form f belong to a zig-zag path (either an extremal path or an in-between
path of γ). Since by Property 18 each edge of P crosses at most one skeleton edge and since
P is also a zig-zag path, f is either a 2-real triangle or a 2-real quadrilateral (see Figure 10b).

Suppose vice versa that γ is a 2-layer 2+-real face embedding. If there were in γ two
dangling paths that cross each other, they would form a 1-real face, like f in Figure 8. ◀
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f2f1

(a)

f1 f2

(b)

Figure 10 (a) Internal faces created by skeleton edges (bold); (b) Internal faces created by
skeleton edges (bold) and dangling path edges (thin).

Before stating the main result of this section, we give an additional auxiliary lemma.

▶ Lemma 22. If G is a 2-layer 2+-real face graph, then G admits a 2-layer 2+-real face
embedding such that the attaching vertex of each dangling path has degree at least three.

▶ Theorem 23. Let G be an n-vertex bipartite graph. There exists an O(n)-time algorithm
that tests whether G is 2-layer 2+-real face, and that computes a 2-layer 2+-real face drawing
of G if one exists.

Proof. Based on Lemma 21, we describe an algorithm that attempts to construct a dangling-
crossing free 2-layer RAC embedding γ of G, if one exists. We distinguish two main cases:
Case 1 – G is not a tree (G contains at least one non-trivial block); Case 2 – G is a tree.

Case 1 – G is not a tree. The algorithm executes the following steps:

Step 1. (See Figure 11.) It tests whether there exists a subgraph of G that is a valid skel−(G).
To this aim, it recursively removes from G all the vertices of degree one and then applies
the algorithm of Theorem 12 to check whether the resulting graph G′ admits a 2-layer RAC
embedding, and to compute one if any. If such an embedding does not exist, the algorithm
stops and rejects the instance. Otherwise, G′ coincides with skel−(G) and, by Property 20,
its 2-layer RAC embedding γ′ is unique (up to mirroring); the algorithm goes to the next
step.

Step 2. Let B1, . . . , Bh (h ≥ 1) be the non-trivial blocks in the left-to-right order defined by γ′.
The edges of G \ skel−(G) form a forest F of trees, each tree sharing exactly one vertex with
skel−(G). At most two of these trees share a vertex with the leftmost extremal edge of B1
in γ′; let Fℓ be the subset of F that contains these (at most two) trees. Analogously, at most
two trees share a vertex with the rightmost extremal edge of Bh in γ′; let Fr be the subset
of F that contains these trees. In this step, the algorithm tests if the trees in F \ {F ℓ, Fr}
form a valid set of dangling paths that can be attached to γ′ to get a dangling-crossing free
2-layer RAC embedding γ′′. This is done by executing the following substeps.

Step 2.1. (See Figure 12a.) First, the algorithm considers the paths attached to every
cut-vertex shared by two non-trivial blocks. Specifically, for each such cut-vertex w, all
the paths attached to w can be successfully embedded (between the two non-trivial blocks
sharing w) if and only if each of them consists of a single edge; otherwise one of these
paths would cross a non-trivial block, thus violating Property 16.
Step 2.2. (See Figure 12b.) For each in-between path P , delimited by two blocks Bi and
Bi+1, the algorithm checks whether there are some paths attached to the vertex u of
the rightmost extremal edge of Bi not in P , or attached to the vertex v of the leftmost
extremal edge of Bi+1 not in P . In particular, there can be at most one such a path,
call it P (resp. P ′), attached to u (resp. to v), because two paths attached to u (or to
v) cannot be embedded without causing a fan crossing with P . Further, P and P ′ must
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G

(a)

F r

G′ = skel−(G)

F ℓ
F \ {F ℓ,F r}

(b)

B1 B2 B3

(c)

Figure 11 Step 1: (a) an input bipartite graph G; (b) decomposition of G into skel−(G) and a
forest F ; (c) a 2-layer RAC embedding of skel−(G). The attaching vertices are in white.

necessarily be embedded to the right of u and to the left of v, respectively. Hence, if both
P and P ′ exist in the graph, the algorithm checks that they do not cross each other in
their unique embedding. If only one among P and P ′ exists, say P , the algorithm checks
that it does not cross Bi+1 in its unique embedding. If any of the above checks fails, then
the algorithm rejects the instance, otherwise it continues with the next substep.
Step 2.3. (See Figures 13a and 13b.) For each in-between path P of γ′, the algorithm
considers the paths that in G are attached to P , and checks if they can be embedded so
to be pairwise non-crossing. Formally, let Bi and Bi+1 be the two non-trivial blocks that
delimit P (1 ≤ i ≤ h − 1). Also, let W = ⟨w1, w2, . . . , wp⟩ be the left-to-right sequence of
attaching vertices of P , i.e., the vertices to which some trees of F \ {F ℓ, Fr} are attached.
By Property 16, all the paths attached to P must be embedded between Bi and Bi+1.
Hence, we can process the vertices of W in their left-to-right order and test, for each
vertex wj ∈ W , if all paths attached to wj can be suitably embedded as zig-zag paths
so that: (i) they do not cross with any previously embedded dangling paths attached
to wg, with g < j, or with Bi, or with the dangling path P attached to Bi embedded in
Step 2.2; (ii) they leave the maximum degree of freedom for embedding the dangling paths
attached to wj+1, subject to condition (i). Conditions (i) and (ii) together guarantee the
correctness of the testing algorithm. However, to satisfy these conditions, we sometimes
need to process contemporary all the vertices in specific subsequences of W , as done in [9]
for testing 2-layer RAC embeddability (a necessary condition in our case).
More in details as proved in [9], there are only three possible types of graph structures,
called feasible structures, that could be attached to the vertices of W without necessarily
creating fan crossings (see Figures 14a and 14b):

star-tree: it is a subdivision of a star rooted at a vertex w ∈ W . By Property 19, at
most two paths attached to w have length larger than one. Call them the long paths.
y-tree: it is a tree attached to a vertex w ∈ W and consisting of two paths sharing
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Figure 12 (a) Step 2.1: Addition of paths attached to a cut-vertex w shared by two non-trivial
blocks; (b) Step 2.2: Addition of the paths P and P ′.

only the edge that contains w.
k-fence: it is a set of vertex-disjoint paths attached to a maximal subsequence W ′ of
vertices of W that are consecutive in P . Each w ∈ W ′ has exactly one path attached
to it. Also, if k ≥ 5, all the paths attached to the vertices of W ′, except possibly those
attached to the first two and to the last two vertices of W ′, have length at most two.

Hence, the testing algorithm first checks whether all the vertices in W can be partitioned
into maximal subsequences W1, W2, . . . , Wq (q ≥ 1), such that each subsequence Wi

contains the attaching vertices of a feasible structure, which we denote by T (Wj) (|Wj | = 1
if T (Wj) is a star-tree or a y-tree). If this is not possible, the algorithm rejects the instance.
Otherwise, it searches for an embedding of each T (Wj) such that all these embeddings,
along with the embeddings of Bi, Bi+1, and P , result in a 2-layer RAC embedding that is
dangling-crossing free. Namely, in [9] it is shown that, for the 2-layer RAC embeddability,
the number of candidate embeddings for each structure is bounded by a small constant.
More precisely (see Figures 14c–14f): (i) For a star-tree it must be decided which of the
(at most) two long paths can go to the left and which to the right (the paths of length
one can always be embedded without crossing the skeleton); (ii) for a y-tree it must be
decided which of the two paths goes to the left and which to the right; (iii) for a k-fence,
the set of candidate embeddings is at most 2 if k = 2, or at most 3 if k = 3, or at most
4 if k ≥ 4. In particular, in a valid embedding of each k-fence, one of its paths will
be embedded to the left of the k-fence, one to the right, and the others in-between the
leftmost and the rightmost vertices of the k-fence (see [9] for more details).
However, differently from [9], we can only accept the embeddings of T (W1), . . . , T (Wq)
where no two dangling paths cross each other. To this aim, our testing algorithm processes
all Wj from left to right in a greedy fashion. Each time a subsequence Wj is considered,
the algorithm checks if the feasible structure T (Wj) has some candidate RAC embeddings
that do not cause crossings with dangling paths already embedded to the left of Wj . If
not, the instance is rejected; otherwise, among the candidate embeddings, the algorithm
selects one for which the dangling path of T (Wj) that goes to the right is as short as
possible, which maximizes the degrees of freedom for dangling paths that will be processed
in the future. This guarantees that the test is positive if and only if a 2-layer 2+-real face
embedding exists. At the end, the algorithm checks whether the embedding of T (Wq)
causes a crossing of a dangling path of T (Wq) with Bi+1 (or with a dangling path attached
to Bi+1 in Step 2.2). If so, it rejects the instance, otherwise goes to the next step.
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T (W1)

T (W2) T (W3)
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Figure 13 Step 2.3: (a) feasible structures attached to the in-between path of the graph of
Figure 11a; (b) addition of T (W1), T (W2), and T (W3). Step 3: (c) addition of the extremal paths;
(d) completion of the 2-layer RAC embedding.

Step 3.(See Figures 13c and 13d.) The algorithm tests if Fℓ and Fr can be added to the
embedding γ′′ of Step 2, to form the final dangling-crossing free 2-layer RAC embedding γ. If
so, Fℓ and Fr coincide with the graph formed by the two extremal paths of skelγ(G) and by
the dangling paths attached to (the extended version of) these extremal paths. To perform
this test for Fr, the algorithm has to determine the path corresponding to the extremal path
P in Fr. Then, it will apply the same procedures as in Steps 2.2 and 2.3 to test whether
the remaining part of Fr consists of dangling paths attached to (the extended version of) P ,
and whether they can be embedded without crossing each other and without creating fan
crossings. The test for Fℓ is the same, but the procedures of Steps 2.2 and 2.3 are applied
going from right to left. We now explain how the algorithm can test for the existence of a
valid P in Fr (for Fℓ the algorithm is symmetric).

Let e = (u, v) be the rightmost extremal edge of the last non-trivial block Bh, and let
Tu and Tv be the two trees of Fr attached to u and v, respectively. If both Tu and Tv are
non-empty and contain vertices of degree larger than two (other than u and v), then Fr

cannot be the union of an extended extremal path with dangling paths attached to it. Hence,
the algorithm can reject the instance in this case. On the other hand, if both Tu and Tv are
paths, the algorithm can arbitrarily choose one of them as the desired extremal path and the
other as a dangling path; these two paths can always be embedded as zig-zag paths going
from left to right, without creating fan crossings. Finally, assume without loss of generality,
that Tu is the only tree (among Tu and Tv) that contains vertices of degree larger than two
(in addition to u). Denote by W the set of vertices of degree at least three in Tu (including u).
The desired extremal path (if any) must contain all vertices in W . If this is not the case,
the algorithm rejects the instance. Otherwise, let P ′ be the path in Tu starting from u and
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Figure 14 (a) Examples of a y-tree and a star-tree; (b) Examples of a 2-fence and of a 5-fence;
(b)-(e) Two possible 2-layer RAC embeddings for each of the structures in (a) and (b).

containing all the vertices of W ; also, let w be the last vertex of W encountered along P ′.
The desired extremal path P must be obtained by extending P ′ with a path attached to w.
Let P denote the set of paths attached to w and extending P ′. Note that, there can be at
most three paths in P with more than one edge, because, by Property 19, there can be at
most two dangling paths of length larger than one attached to w. We can get P by extending
P ′ with an arbitrarily chosen path P ∈ P of maximum length. Indeed, suppose that there
exists a 2-layer 2+-real face embedding γ where P is extended with a path P ′ ∈ P shorter
than P . We can always obtain from γ a new 2-layer embedding by exchanging P ′ with P ,
possibly after a horizontal flip of these two paths. Since P ′ is shorter than P , such a flip can
only reduce the number of crossings in γ and does not create two dangling paths that cross
each other; thus the new embedding remains a 2+-real face embedding.

Case 2 – G is a tree. In this case, if γ is a 2-layer 2+-real face embedding of G, the skeleton
skelγ(G) of γ is simply a zig-zag path, and the graph structures formed by the dangling
paths attached to skelγ(G) must be star-trees, or y-trees, or k-fences. Since, by Lemma 10, γ

is also a 2-layer RAC embedding, the algorithm can just apply the procedure of Step 2.3
on every path of G that is a candidate skeleton for a 2-layer RAC embedding of G. In [9],
it is proved that the number of such candidate skeletons is bounded by a small constant
(precisely, there are at most 49 candidate skeletons).

Time Complexity. About the time complexity of the described algorithm, consider first
the case in which G is not a tree. The recursive removal of degree-1 vertices in Step 1 is
executed in O(n) time, and testing if the resulting graph admits a 2-layer RAC embedding is
done in O(n) time by the algorithm in [9]. Hence, Step 1 takes overall O(n) time.

About Step 2, we have that: (i) Steps 2.1 and 2.2 can be easily executed in O(n) time
by visiting the subgraphs in the set F \ {Fr, Fℓ}. (ii) In Step 2.3, we apply the O(n)-
time algorithm in [9] to test whether all subgraphs attached to an in-between path are
feasible structures and to partition W into maximal subsequences W1, W2, . . . , Wq. Then,
the subsequent greedy procedure that processes W1, W2, . . . , Wq from left to right can be
executed in linear time, because for each Wj the algorithm evaluates a constant number of
candidate embeddings. Hence, Steps 2 takes O(n) time.
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About Step 3, the procedure described to find a candidate extremal path P is executed
in linear time by simply visiting Fr and Fℓ. The remaining part of this step uses the same
strategy as Steps 2.2 and 2.3, thus it takes O(n) time.

Finally, if G is a tree, the algorithm computes all candidate skeletons, which are bounded
by a constant number. This is done through the O(n)-time procedure in [9]. For each
candidate skeleton, the algorithm uses the strategy of Steps 2.2, which takes O(n) time. ◀

4.2.2 Optimal 2-layer 1+-real face graphs
To derive a linear-time recognition algorithm for optimal 2-layer 1+-real face graphs, we prove
several structural properties of these graphs. We denote by G an optimal 2-layer 1+-real face
graph and by Γ a 2-layer 1+-real face drawing of G. Since the removal of vertices or edges
from Γ yields a 2-layer 1+-real face drawing, any subgraph of G is also 2-layer 1+-real face.

▶ Property 24. The minimum vertex-degree of G is 2.

Proof. Assume for a contradiction that G has a vertex u with deg(u) = 1. Let H be the
graph obtained from G by removing vertex u, that is, H = G \ {u}. Since G has n vertices
and 2n − 4 edges, graph H has n − 1 vertices and 2n − 3 edges. By Theorem 8, this is a
contradiction, since graph H is a 2-layer 1+-real face graph (as a subgraph of G). ◀

▶ Property 25. The maximum vertex-degree of G is 4.

Proof. Assume to the contrary that G has a vertex u with deg(u) ≥ 5. To derive a
contradiction, we first consider the case in which deg(u) = 5. Assume without loss of
generality that u belongs to layer L1 of Γ and let u1, . . . , u5 be the neighbors of u in L2 in
this left-to-right order. We observe that vertex u3 cannot have two neighbors, say v and w,
that are both either to the left or to the right of u in L1, as otherwise the edges (u3, v) and
(u3, w) together with the edges (u, u1) and (u, u2) in the former case or with the edges (u, u4)
and (u, u5) in the latter case would form a face in Γ that does not contain a real-vertex on
its boundary (see the gray colored face in Figure 15a); a contradiction. This implies that
deg(u3) ≤ 3, namely, u3 can be adjacent to u, to a vertex v to the left of u, and to a vertex
w to the right of u in L1; see Figure 15b. In particular, if (u3, v) belongs to G, then v cannot
be connected to a vertex to the right of u3 in L2, as otherwise this connection together
with the edges (u3, v), (u, u1), and (u, u2) would form a face in Γ without real-vertices on
its boundary (see the gray colored face in Figure 15b); a contradiction. Symmetrically, if
(u3, w) belongs to G, then w cannot be connected to a vertex to the left of u3 in L2. Let H

be the graph obtained by (i) removing vertex u3 from G, (ii) adding the edge (u4, v), if the
edge (u3, v) belongs to G, and (iii) adding the edge (u2, w), if the edge (u3, w) belongs to G.
Since graph G is a 2-layer 1+-real face graph, graph H is a 2-layer 1+-real face graph, as
well. Since G has n vertices and 2n − 4 edges, graph H has n − 1 vertices and 2n − 3 edges.
By Theorem 8, this is a contradiction, since graph H is a 2-layer 1+-real face graph.

To complete the proof, consider the case in which deg(u) ≥ 6. Let u1, . . . , udeg(u) be
the neighbors of u in L2 in this left-to-right order. Vertices u3 and u4 can have neither a
common neighbor nor two distinct neighbors that are both to the left or to the right of u

in L1, as otherwise this would imply a face in Γ with no real-vertex on its boundary; see
Figures 15d and 15e, respectively. Further, as in the case in which deg(u) = 5, we can prove
that neither u3 nor u4 can have two neighbors that are both to the left or both to the right
of u in L1; see Figure 15a. Hence, by Property 24, each of u3 and u4 has degree exactly 2 in
G. In particular, there exist two vertices v and w on opposite sides of u along L1, such that
u3 is adjacent to v and u3 is adjacent to w. Let H be the graph obtained by removing vertex



M. A. Bekos et al. 32:19

u wv

u2 u4u1 u3 u5

L1

L2

(a)

u

u2 u4u1 u5

L1

L2

wv

u3

(b)

u

u2 u4u1 u5

L1

L2

v w

u3

(c)
u

u2 u5u1 u6

L1

L2
u3 u4

(d)

u

u2 u5u1 u6

L1

L2
u3 u4

(e)

u

u2 u5u1 u6

L1

L2
u3 u4

v w

(f)
u

u2u1

L1

L2
u3 u4u2u1

(g)

u

u2u1

L1

L2
u3 u4u2u1

(h)

u

u1

L1

L2
u2v

v1 v2

(i)

Figure 15 Illustrations for the proof of Theorem 31.

u3 from G and by adding the edge (u4, v); see Figure 15f. Since G is a 2-layer 1+-real face
graph, graph H is a 2-layer 1+-real face graph, as well. Since G has n vertices and 2n − 4
edges, graph H has n − 1 vertices and 2n − 3 edges, which again contradicts Theorem 8. ◀

▶ Property 26. Neither the leftmost nor the rightmost vertex of each layer in Γ has degree 4.

Proof. Assume to the contrary that the leftmost vertex, say u, of L1 has degree 4 and let
u1, . . . , u4 be its neighbors in L2 in this left-to-right order. By Property 24, deg(u1) ≥ 2 and
deg(u2) ≥ 2; hence, u1 and u2 either have a common neighbor to the right of u in L1 or have
two distinct neighbors that are both to the right of u in L1. Both cases, however, cause a
face without real-vertices in Γ; see Figures 15g and 15h, respectively; a contradiction. ◀

▶ Property 27. Either the leftmost (rightmost) vertex of L1 or the leftmost (rightmost)
vertex of L2 in Γ has degree 2.

Proof. Assume to the contrary that neither the leftmost vertex u in L1 nor the leftmost
vertex v in L2 has degree 2. By Properties 24–26, deg(u) = deg(v) = 3. Let u1 and u2
be two neighbors of u in L2, and let v1 and v2 be two neighbors of v in L1, such that
{u, v} ∩ {u1, u2, v1, v2} = ∅. The edges (u, u1), (u, u2), (v, v1), and (v, v2) form a face in Γ
without real-vertices (see Figure 15h); a contradiction. ◀

▶ Property 28. The leftmost (rightmost) vertex of L1 and the leftmost (rightmost) vertex of
L2 in Γ are adjacent.

Proof. If the leftmost (resp. rightmost) vertices of L1 and L2 are not adjacent, one can
connect them without introducing any crossing, which contradicts that G is optimal. ◀

GD 2024
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▶ Property 29. The leftmost (rightmost) vertex of L1 and the leftmost (rightmost) vertex of
L2 in Γ cannot be both of degree 2.

Proof. Assume to the contrary that the leftmost vertex u in L1 and the leftmost vertex v in
L2 are both of degree 2. By Property 28, u and v are adjacent. Let H be the subgraph of G

obtained by removing u and v from G. Since G has n vertices and 2n − 4 edges, it follows
that H has n − 2 vertices and 2n − 7 edges, which contradicts Theorem 8. ◀

▶ Property 30. If G has at least seven vertices, the vertex to the right (left) of the leftmost
(rightmost) degree-2 vertex in Γ has degree 3.

Proof. By Properties 26–28, the leftmost two vertices of G are of degree 2 and 3, and the
same holds for the rightmost two vertices of G. Since by Property 25 the maximum degree
of G is 4 and since G has n vertices and 2n − 4 edges, by the hand-shaking lemma G has
two more vertices of degree 3 (besides the two aforementioned extreme ones), while each of
the remaining n − 6 vertices has degree 4. Assume by contradiction that the vertex to the
right of the leftmost degree-2 vertex has degree 4. Let H be the graph obtained by removing
the leftmost degree-2 vertex from G. The obtained subgraph H has n − 1 vertices and
2n − 6 = 2(n − 1) − 4 edges, thus it is still optimal. Hence, it satisfies Properties 26 and 28.
In particular, none of its two leftmost vertices can be of degree 4, a contradiction. ◀

▶ Theorem 31. Let G be an n-vertex bipartite graph. There exists an O(n)-time algorithm
that tests whether G is an optimal 2-layer 1+-real face graph, and that computes a 2-layer
1+-real face drawing of G in one exists.

Proof. Let G = (V1 ∪ V2, E) be an n-vertex optimal 2-layer 1+-real face graph and let Γ
be a 2-layer 1+-real face drawing of G. The vertex-degree of G ranges between 2 and 4
(Properties 24 and 25). However, neither the leftmost nor the rightmost vertex of each of the
layers L1 and L2 of Γ has degree 4 (Property 26). In particular, assuming that the graph
has at least seven vertices, the leftmost (rightmost) two vertices of L1 and L2 are adjacent,
such that one of them has degree 2 and the other has degree 3 (Properties 27, 28, and 30).

From these properties, we can derive our linear-time recognition algorithm. If n ≤ 6,
then we can check whether G is an optimal 2-layer 1+-real face graph by generating all its
2-layer embeddings and checking whether at least one of them is a 2-layer 1+-real face. If
n ≥ 7, then we identify one of its vertices of degree 2, say v. If there is no such vertex,
then the instance is rejected (by Property 27). Otherwise, we additionally check whether
v is neighboring a degree-3 vertex, say w. If no such vertex exists, then the instance is
rejected (by Properties 24, 26, and 29). Otherwise, we remove v from G and recursively
check whether the obtained instance is a 2-layer 1+-real face graph starting now from w

(which has degree 2). The implementation is straightforward, and the algorithm works in
O(n) time. The correctness follows from a direct application of Properties 24–30. ◀

5 Open Problems

A question that directly stems from our research is whether 2-layer 1+-real face graphs can
be recognized efficiently. In the unconstrained scenario, are there subfamilies of k+-real face
graphs that can be recognized efficiently? Also, are there meaningful parameterizations that
make the recognition problem tractable?
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Abstract
Beyond planarity concepts (prominent examples include k-planarity or fan-planarity) apply certain
restrictions on the allowed patterns of crossings in drawings. It is natural to ask, how much the
number of crossings may increase over the traditional (unrestricted) crossing number. Previous
approaches to bound such ratios, e.g. [13, 28], require very specialized constructions and arguments
for each considered beyond planarity concept, and mostly only yield asymptotically non-tight bounds.
We propose a very general proof framework that allows us to obtain asymptotically tight bounds, and
where the concept-specific parts of the proof typically boil down to a couple of lines. We show the
strength of our approach by giving improved or first bounds for several beyond planarity concepts.
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1 Introduction

Throughout this paper, we only consider simple graphs, i.e., no self-loops or multi-edges. Given
a graph G, let n and m denote its number of vertices V (G) and edges E(G), respectively. A
drawing D of G is a mapping of V (G) to distinct points in R2, and E(G) to curves connecting
the respective end points. Such a curve must not contain any vertex point other than its
end points. When two edge curves intersect on an internal point x, this is a crossing of
these two edges at x. The crossing number cr(G) is the smallest number of crossings over
all drawings. To achieve it, we can safely assume simple drawings, i.e., no three edges cross
at a common point, no edge crosses itself or adjacent edges, and no pair of edges crosses
multiple times. A graph is planar if it allows a crossing-free drawing. In the last decades,
several beyond planarity concepts have been established that generalize planar graphs in that
certain special crossing patters are allowed or forbidden, see, e.g., [15,17] for overviews. A
prominent example is k-planarity, where any edge may be crossed at most k times.
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We are interested in the minimum number of crossings within any beyond planarity
restricted drawing. Intuitively speaking, a beyond planarity concept is a way to (try to)
formalize our understanding of what aspects constitute a readable drawing. Still, within these
restrictions it is natural to ask for a drawing with the least number of crossings. Alternatively,
we can ask how much it “costs” in terms of crossings to follow a certain drawing paradigm.

Formally, let B(k) denote any beyond planarity concept, where we omit the parameter k
for parameterless beyond planarity concepts. Then, GB(k) (GB(k)(n)) denotes the set of
graphs (on n vertices, respectively) allowing a B(k)-drawing. The B(k)-crossing number
crB(k)(G) for a graph G ∈ GB(k) is the least number of crossings over all B(k)-drawings of G.
The crossing ratio ϱB(k)(n) of B(k) is the largest attainable ratio between the B(k)-crossing
number and the (normal) crossing number, over all n-vertex B(k)-graphs:

ϱB(k)(n) := sup
G∈GB(k)(n)

crB(k)(G)
cr(G) .

Crossing ratios of beyond planarity concepts have for the first time been explicitly
considered in [12,13], where linear lower bounds Ω(n) where established for 1-planar, k-quasi-
planar, and (weakly) fan-planar graphs. In all but the first case, the upper bounds where (at
least) quadratic in n, and it was conjectured in [13] that the real lower bounds should rather
be Ω(n2). Later, [28] generalized the results to k-planarity and seven more beyond planarity
concepts. However, none of the provided bounds were tight except for planarly-connected
and straight-line RAC. In both publications, each planarity measure needs a very specific
construction and intricate specialized arguments to prove the lower bounds (which tend to
always be the most complicated part in crossing number proofs). Furthermore, both only
consider simple drawings, when establishing upper bounds on the crossing ratio. Simple and
non-simple crossing ratios may differ, if there are B(k)-graphs that only allow non-simple
B(k)-drawings. Our bounds below work with and without the simplicity assumption.

Our contribution. In this paper, we propose a general framework that, when applicable,
simplifies crossing ratio proofs down to only a couple of B(k)-specific lines (10–20 lines for the
lower bound). In contrast to previous schemes, this framework is able to prove asymptotically
tight bounds for all considered beyond planarity concepts, and our proofs further show
that the crossing ratio is already achieved between any two subsequent parameterizations
k and k + 1, in all considered parametrized concepts. Table 1 summarizes our results. A
key idea lies in the simplification of the necessary lower bound arguments, by turning them
into counting arguments over a set of (sufficiently) disjoint Kuratowski-subdivisions (see
Section 2). In particular, this allows us to avoid any intricate discussions about alternative
drawing possibilities, the simplicity of drawings, etc. We present the proof framework in
Section 3, and showcase its versatility and strength for various beyond planarity concepts in
Section 4.

2 Preliminaries

Kuratowski subdivisions. A graph G is planar if and only if it does not contain a K5 or K3,3
subdivision (summarily called Kuratowski subdivisions) [24]. Let K be a K3,3 subdivision in
G. The six degree-3 vertices of K are the Kuratowski nodes of K, and the paths between them
(not containing other Kuratowski nodes) its Kuratowski paths; by replacing each Kuratowski
path by a single edge, one obtains K3,3. Two Kuratowski paths are adjacent, if they share
a common Kuratowski node. Clearly, we have cr(G) ≥ 1, and any drawing D of G (even
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Table 1 Overview on our results on the crossing ratios of beyond planarity concepts for n-vertex
graphs. Formally, [13] considers weakly fan-planar, but their proof works for all 4 variants. The
column “ϱ?” denotes whether we also show the (same) rectilinear crossing ratios in Section 4.10. The
∗-marked previous upper bounds need no explicit discussion of non-simple drawings by the nature of
the beyond planarity concept. All our bounds, except the upper bounds for adjacency-crossing and
fan-crossing, work with and without the simplicity assumption.

beyond planarity concept previous best our results Section ϱ?
k-planar Ω(n/k) ∩ O(k

√
kn) ∗ [28] Θ(n) 4.1 ✓

k-vertex-planar — Θ(n) 4.2 ✓

IC-planar — Θ(n) 4.3 ✓

NIC-planar — Θ(n) 4.4 ✓

NNIC-planar — Θ(n2) 4.5 ✓

k-fan-crossing-free Ω(n2/k3) ∩ O(k2n2) ∗ [28] Θ(n2/k) 4.5 ✓

straight-line RAC Θ(n2) ∗ [28] (direct corollary) 4.5 —
adjacency-crossing
fan-crossing
weakly fan-planar
strongly fan-planar

 Ω(n) ∩ O(n2) [13] Θ(n2) 4.6 ×

k-edge-crossing — Θ(k) 4.7 ✓

k-gap-planar Ω(n/k3) ∩ O(k
√
kn) ∗ [28] Θ(n/k) 4.8 ✓

k-apex-planar Ω(n/k) ∩ O(k2n2) [28] Θ(n2/k) 4.9 ✓

skewness-k Ω(n/k) ∩ O(kn) [28] Θ(n) 4.9 ✓

a non-simple one) contains at least one crossing x between two edges from non-adjacent
Kuratowski paths. We say that x covers K. Every Kuratowski subdivision in G has to be
covered in D; a single crossing may cover several such subdivisions.

Upper bounds. The crossing lemma [2] states that any graph G with n vertices and
m > 4n edges has cr(G) ∈ Ω( m3

n2 ). We may split GB(k)(n) into graphs Gdense
B(k) (n) := {G ∈

GB(k)(n) | m > 4n} that are sufficiently dense for the crossing lemma, and Gsparse
B(k) (n) :=

GB(k)(n) \ Gdense
B(k) (n). It will later turn out that we attain the largest ratios on graphs of the

latter subset. Let ϱsparse
B(k) (n) := supG∈Gsparse

B(k) (n)
crB(k)(G)

cr(G) . Then

ϱB(k)(n) = max

ϱsparse
B(k) (n) , sup

G∈Gdense
B(k) (n)

crB(k)(G)
cr(G)

 ,

where we want to use the crossing lemma to bound the second term in the maximum.

▶ Observation 1. We have:
(a) If crB(k)(G) ∈ O(m2), then ϱB(k)(n) ∈ O(ϱsparse

B(k) (n) +m2 · n2

m3 ) ⊆ O(ϱsparse
B(k) (n) + n).

(b) If crB(k)(G) ∈ O(mk), then ϱB(k)(n) ∈ O(ϱsparse
B(k) (n) +mk · n2

m3 ) ⊆ O(ϱsparse
B(k) (n) + k).

All simple drawings satisfy the prerequisite of Observation 1(a). Furthermore, in the
context of connected sparse graphs in Gsparse

B(k) (n) (and thus for ϱsparse
B(k) (n)), we know m ∈ Θ(n).

GD 2024
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Figure 1 Red-yellow (left) and blue-blue (right) drawing of F used for standard drawings of Gℓ.

1-jumping. The crossing ratio ϱB(k)(n) relates the B(k)-restricted crossing number to the
normal one. It is natural to ask, how small a parameter ∆ ≥ 1 can be chosen such that
ϱ∆
B(k)(n) := supG∈GB(k)(n)

crB(k)(G)
crB(k+∆)(G) attains the same asymptotic bound. We say ϱB(k)(n)

is ∆-jumping if ϱ∆
B(k)(n) ∈ Ω(ϱB(k)(n)). For all concepts in Section 4 except k-gap-planarity

(Section 4.8), we will observe 1-jumping as our upper bounds on the normal crossing numbers
are already attained by B(k + 1)-drawings.

3 Framework for Proving Lower Bounds on Crossing Ratios

Let B(k) be a beyond planarity concept, and ψ : N2 → N a function dependent on k and the
graph’s number of vertices n. To show that the crossing ratio ϱB(k) ≥ ψ(k, n), we construct
an infinite family {Gℓ}ℓ≥ℓ0 , for some ℓ0 ∈ N, such that for each Gℓ we have

crB(k)(Gℓ)
cr(Gℓ)

≥ ψ(k, |V (Gℓ)|).

To construct this family, we always start with a frame F = (N,C, col), an edge-colored
K3,3. To avoid ambiguity with the graphs constructed based on F , we call elements
of N := {v1, v2, v3, w1, w2, w3} nodes and elements of C := {{vi, wj} | i, j ∈ {1, 2, 3}}
connections. Each connection c ∈ C has a color col(c) that is either red, blue, yellow, or gray.

Based on this frame F and some parameter ℓ, we construct framework graphs Gℓ. To
this end, we define for each of the four colors col a graph Scol (which we will call con-graph
in the following) with two pole vertices s, t. The size of Scol often depends on ℓ, k, or both.
Intuitively, we may talk about, e.g., a red con-graph if it is associated with the color red.
We then replace each connection {a, b} ∈ C with a new copy S{a,b} of its color’s con-graph
Scol({a,b}), identifying this con-graphs’ poles s and t with a and b, respectively.

In most of our proofs, the con-graphs are rather simple: an (i, j)-bundle is a con-graph
consisting of i internally-vertex-disjoint s-t-paths, each of length j (i.e., j edges in each path);
an (i, j)+-bundle furthermore contains the edge {s, t}. In all our constructions, the yellow
con-graph is the single edge {s, t}, which can equivalently be seen as a (1, 1)-bundle.

Standard Drawings of Gℓ. In our framework, we need to show (i) that Gℓ is indeed in
GB(k)(n), (ii) an upper bound on cr(Gℓ), and (iii) a lower bound on crB(k)(Gℓ). We show (i)
and (ii) by constructing standard drawings of Gℓ: These drawings are constructed by first
drawing the frame F ; in particular this maps connections to curves in the plane. We obtain
a drawing of Gℓ by drawing each con-graph in a small neighborhood of its corresponding
connection’s curve (instead of drawing the connection itself). Whenever possible, we draw
con-graphs planarly with their poles on their local outer face; otherwise we explicitly specify
their drawing. Apart from this, we only need to specify how to draw crossing con-graphs.
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Unless specified otherwise, our frame F contains a 4-cycle of a blue, a yellow, another blue,
and a red connection in this order; its remaining five connections are gray. Thus, to cover
the K3,3, there has to be a red-yellow crossing, a blue-blue crossing, or a crossing involving a
gray connection. We can classify drawings of F with a single crossing by the colors of the
crossing connections; we are in particular interested in a red-yellow and a blue-blue drawing
of F , cf. Figure 1. Such drawings yield corresponding standard drawings of Gℓ. We use a
red-yellow standard drawing to show an upper bound on cr(Gℓ). As the yellow con-graph is
only a single edge, the number of crossings is kept low. However, the red con-graph is chosen
such that this drawing is not a B(k)-drawing. We use a blue-blue standard drawing to show
that Gℓ is in GB(k)(n). However, the blue con-graphs are chosen such that many crossings
arise. Lastly, the gray con-graphs are chosen such that a standard drawing with a crossed
gray connection is not a B(k)-drawing and also requires many crossings.

Lower bounding crB(k)(Gℓ). To prove a lower bound on crB(k)(Gℓ), we aim to show
that the number of crossings in the drawing establishing Gℓ ∈ GB(k)(n) is asymptotically
optimal. Until now, we only considered standard drawings of Gℓ, where each con-graph was
treated as a unit. For the proof of the lower bound on crB(k)(Gℓ), we consider an arbitrary
B(k)-drawing D of Gℓ. In particular, therein con-graphs may, for example, partially cross
themselves or one another. For every connection c ∈ C, let Pc be a (not necessarily maximal)
set of s-t-paths in the con-graph Sc. If a con-graph Sc is a bundle, then we use the set of all
its edge-disjoint paths as Pc; otherwise we will define it specifically. Let w(c) := w(Sc) := |Pc|
be the width of Sc; further, let the height h(c) := h(Sc) := maxp∈Pc

|p| be the number of
edges in the longest path in Pc. For an edge e ∈ Sc, let Pc[e] be those paths in Pc that
contain e. We define K := K(Gℓ, N) as the set of all K3,3 subdivisions of Gℓ that have N
as their Kuratowski nodes and where each Kuratowski path is from

⋃
c∈C Pc. There is a

mapping between the Kuratowski paths of K and the connections C of F , such that each
Kuratowski path consists of an s-t-path in the respective connection’s con-graph.

Consider some Kuratowski subdivision K ∈ K that is covered in D by a crossing x

between e1, e2 ∈ E(G). For i ∈ {1, 2}, let ci ∈ C be the connection with ei ∈ Sci . The
connections c1 and c2 are non-adjacent in F . The crossing x may cover all Kuratowski
subdivisions that have a Kuratowski path from Pc1 [e1] and one from Pc2 [e2], but no other
of K. By definition of K, the crossing x covers at most |Pc1 [e1]|·|Pc2 [e2]|

|Pc1 |·|Pc2 | of the Kuratowski
subdivisions in K. In most cases (in particular whenever Sc1 , Sc2 are both bundles) we have
|Pc1 [e1]| = |Pc2 [e2]| = 1, and then the crossing x covers 1

|Pc1 |·|Pc2 | of the K-subdivisions.
In our proofs, we sometimes consider a specific subdrawing of D. Let c ∈ C be a connection

with con-graph Sc and let R be an s-t-path in Sc. Subdrawing D′ is the R-restriction of D
where all of Sc except for R (a bundle of width 1) is removed. Within D′, R is considered to
be the con-graph of c, and we are interested in the minimum number of crossings covering
the Kuratowski subdivisions KD′ ⊆ K in D′. We may consider an (R1, R2)-restriction, where
we perform this operation twice, for distinct connections.

4 Proving Crossing Ratios

We now use our framework to prove the crossing ratio for several beyond planarity concepts.
Generally, whenever we define such a concept B(k), we do so via B(k)-drawings. This is
always to be understood to implicitly define the corresponding graph class as those graphs
that allow such a B(k)-drawing: e.g., a graph is k-planar if it allows a k-planar drawing. See
Table 1 for previously established crossing ratios (if any).
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4.1 k-Planar: ϱk-pl(n)
In a k-planar (k ≥ 1, shorthand “k-pl”) drawing, no edge is crossed more than k times [25,26].

▶ Theorem 2. For every ℓ ≥ 41, there exists a k-planar graph Gℓ with n ∈ Θ(ℓ2k) vertices
such that crk-pl(Gℓ) ∈ Ω(nk) and cr(Gℓ) ∈ O(k). Thus ϱk-pl(n) ∈ Ω(n).

Proof. Let Gℓ be a framework graph, where the red con-graph is a (k+1, 2)-bundle, the blue
con-graphs are (ℓk, ℓ)-bundles, and the gray con-graphs are (ℓk, 2)-bundles, so n ∈ Θ(ℓ2k).
A red-yellow standard drawing shows cr(Gℓ) ∈ O(k). A blue-blue standard drawing, see
Figure 2a for how the blue con-graphs cross, shows that Gℓ is k-planar.

Let D be a k-planar drawing of Gℓ. At least one s-t-path R in the red con-graph is not
crossed by the unique yellow edge, as the latter has at most k crossings. From now on, we
thus only consider the R-restriction D′ of D, which does not have any red-yellow crossings.
Let c, c̃ be two connections. Any crossing between edges from c and c̃ can cover at most

1
w(c)·w(c̃) of the KD′ -subdivisions (recall that the width of the red con-graph here in D′ is 1).
By k-planarity, there can be at most k · min{|E(c)|, |E(c̃)|} crossings between edges from c

and c̃. As all con-graphs are bundles, the number of edges in each con-graph is the product of
its height and width. Thus, such crossings can overall cover at most k · min{w(c)·h(c),w(c̃)·h(c̃)}

w(c)·w(c̃)
of the KD′-subdivisions. Let c be a gray connection, then crossings between c and another
connection c̃ can cover at most

k · min{ℓk · 2, w(c̃) · h(c̃)}
ℓk · w(c̃) =


1·1
ℓ·1 if c̃ is yellow
1·2
ℓ·1 if c̃ is red
ℓk·2
ℓ·ℓk if c̃ is blue
ℓk·2
ℓ·ℓk if c̃ is gray

 ≤ 2
ℓ

of the KD′ -subdivisions. Five con-graphs are gray and four connections are non-adjacent to
a given connection, so crossings involving a gray edge can cover at most 5 · 4 · 2

ℓ ≤ 40
41 of the

KD′ -subdivisions. Thus, blue-blue crossings cover at least 1
41 of the KD′ -subdivisions. Since

each such crossing covers at most 1
(ℓk)2 of the KD′ -subdivisions, this yields a total of Ω((ℓk)2)

crossings in D and so crk-pl(G) ∈ Ω(nk) and ϱk-pl(n) ∈ Ω(n). ◀

A non-k-planar drawing has an edge that is crossed at least k+ 1 times, and crk-pl(Gℓ) ≤
mk, as in a k-planar drawing each edge is crossed at most k times. Thus, Theorem 2 and
Observation 1(b) with ϱsparse

k-pl (n) ≤ mk
k+1 ∈ O(n) yield:

▶ Corollary 3. The k-planar crossing ratio ϱk-pl(n) is in Θ(n) and 1-jumping.

4.2 k-Vertex-Planar: ϱk-vp(n)
A vertex v is adjacent to a crossing x, if x is on an edge incident to v. In a k-vertex-planar
(shorthand “k-vp”) drawing, no vertex may be adjacent to more than k crossings.

▶ Theorem 4. For every ℓ ≥ 11, there exists a k-vertex-planar graph Gℓ with n ∈ Θ(ℓ2k)
vertices such that crk-vp(Gℓ) ∈ Ω(nk) and cr(Gℓ) ∈ O(k). Thus ϱk-vp(n) ∈ Ω(n).

Proof. Let Gℓ be a framework graph, where the red con-graph is a (k + 1, 2)-bundles, the
blue con-graphs are (ℓk, 2ℓ + 1)-bundles, and the gray con-graphs are (ℓk, 2)-bundles, so
n ∈ Θ(ℓ2k). A red-yellow standard drawing shows cr(Gℓ) ∈ O(k). A blue-blue standard
drawing shows that Gℓ is k-vertex-planar, cf. Figure 2b.
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(a) k-planar. (b) k-vertex-planar. (c) IC-planar. (d) NIC-planar.

(e) k-fan-crossing-free. (f) fan-planar variants
red-yellow crossings.

(g) fan-planar variants
and k-edge-crossing.

(h) k-gap-planar. (i) k-apex-planar. (j) skewness-k.

Figure 2 Visualizations of standard drawings of crossing con-graphs, for different beyond planarity
concepts. The con-graphs are colored consistently to their color type (blue, gray, red, yellow); we
use two shades of blue when showing crossing blue con-graphs. The depicted values for ℓ are chosen
for easy comprehension of the drawing paradigm (e.g., (a) shows ℓ = 3, k = 2); they are smaller
than required in the proofs.

Let D be a k-vertex-planar drawing of Gℓ. Since the yellow edge e has at most k crossings,
there exists an s-t-path R in the red con-graph not crossed by e. Let D′ be the R-restriction
of D; it does not have any red-yellow crossings. Let c be a gray connection with con-graph
Sc; it has width ℓk. Since any crossing on Sc is adjacent to one of the poles of Sc, there are
at most 2k crossings on Sc and thus crossings involving at least one edge from Sc can cover
at most 2k

ℓk = 2
ℓ of the KD′-subdivisions. Five con-graphs are gray, so crossings involving a

gray edge can cover at most 5 · 2
ℓ ≤ 10

11 of the KD′-subdivisions. Thus, blue-blue crossings
cover at least 1

11 of the KD′-subdivisions. Since each such crossing covers at most 1
(ℓk)2 of

the KD′ -subdivisions, this yields crk-vp(G) ∈ Ω((ℓk)2) = Ω(nk). ◀
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A non-k-vertex-planar drawing has at least k + 1 crossings, and crk-vp(G) ≤ nk, as every
vertex may be adjacent to at most k crossings. Thus, Theorem 4 and Observation 1(b) with
ϱsparse

k-vp (n) ≤ nk
k+1 ∈ O(n) yield:

▶ Corollary 5. The k-vertex-planar crossing ratio ϱk-vp(n) is in Θ(n) and 1-jumping.

4.3 IC-Planar: ϱIC(n)
Two crossings share a vertex v if they are both on edges incident to v. A drawing is IC-planar
(independent crossings planar, shorthand “IC”), if no two crossings share a vertex [3, 23,30].
Note that crIC must not be mistaken for the independent crossing number, where there
are no restrictions on the crossings, but one only counts crossings between non-adjacent
edges [27]. In fact, IC-planarity is equivalent to 1-vertex-planarity. We can obtain near-tight
non-asymptotic bounds for this special case.

▶ Theorem 6. For every ℓ ≥ 2, there exists an IC-planar graph Gℓ with n = 4ℓ2 + 12 vertices
such that crIC(Gℓ) = n

4 − 3 and cr(G) ≤ 2. Thus ϱIC(n) ≥ n
8 − 3

2 .

Proof. Let Gℓ be a framework graph, where the red and gray con-graphs are (1, 2)+-bundles
(i.e., triangles), and the blue con-graphs are (ℓ, 2ℓ+ 1)-bundles, so n = 4ℓ2 + 12. The graph
has n = 6 + 6 + 2 · 2ℓ · ℓ = 4ℓ2 + 12 vertices. A red-yellow standard drawing shows that
cr(Gℓ) ≤ 2. A blue-blue standard drawing shows that the graph is IC-planar, cf. Figure 2c.

Consider an IC-planar drawing D of Gℓ. For each red or gray connection c = {s, t}, at
least one of the two s-t-paths in its con-graph has to be uncrossed, as otherwise there would
be non-independent crossings. Since the yellow connection is adjacent to the blue connections,
all Kuratowski subdivisions have to be covered by blue-blue crossings. Since blue con-graphs
have width ℓ, any blue-blue crossing can only cover at most 1

ℓ2 of the K-subdivisions, yielding
cr(Gℓ) ≥ ℓ2 = n

4 − 3. ◀

A non-IC-planar drawing has at least 2 crossings, and crIC(G) ≤ n/4, as no crossings
share a vertex, thus ϱIC(n) ≤ n/4

2 = n
8 . Together with Theorem 6 we have:

▶ Corollary 7. For the IC-planar crossing ratio it holds that ϱIC(n) ∈ [ n
8 − 3

2 ,
n
8 ].

We note that by shrinking the length of a single path in each of the two blue con-graphs
by 2, our construction still works and (since then n = 4ℓ2 + 8) we would get the slightly
tighter lower bound of n

8 − 1, at the expense of a slightly longer proof.

4.4 NIC-Planar: ϱNIC(n)
In an NIC-planar (nearly independent crossings, shorthand “NIC”) drawing, any two crossings
may share at most one vertex [29, 30]. Clearly, each edge is involved in at most one crossing.

▶ Theorem 8. For every ℓ ≥ 4, there exists an NIC-planar graph Gℓ with n ∈ Θ(ℓ2) vertices
such that crNIC(Gℓ) ∈ Ω(n) and cr(Gℓ) ≤ 2. Thus ϱIC(n) ∈ Ω(n).

Proof. Let Gℓ be a framework graph where the red con-graph is a (1, 2)+-bundle, the blue
con-graphs are (ℓ, ℓ+ 2)-bundles, and the gray con-graphs are (ℓ, 2)-bundles, so n ∈ Θ(ℓ2).
A red-yellow standard drawing shows cr(Gℓ) ≤ 2. A blue-blue standard drawing, shows that
Gℓ is NIC-planar, cf. Figure 2d.

Consider a NIC-planar drawing D of Gℓ. Since the yellow edge can be crossed at most once
and all other con-graphs have width at least 2, a crossing on the yellow edge covers at most 1

2
of the K-subdivisions. Any red-gray crossing can cover at most 1

2ℓ of the K-subdivisions. As
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Figure 3 A fan-crossing-free but not NNIC-planar graph. The red edges cannot be crossed in any
FCF drawing. The depicted fan-crossing-free subembedding of the non-gray edges is unique (up to
mirroring), but not NNIC-planar: arrows point to two crossings that share three (shaded) vertices.

each of the three red edges is involved in at most one crossing, such crossings cover at most
3
2ℓ of the K-subdivisions in total. Therefore, at least 1 − 1

2 − 3
2ℓ ≥ 1

8 of the K-subdivisions
have to be covered by crossings involving only gray and blue edges. Any such crossing covers
at most 1

ℓ2 of the K-subdivisions, yielding crNIC(Gℓ) ∈ Ω(ℓ2) = Ω(n). ◀

A non-NIC-planar drawing has at least 2 crossings, and crIC(G) ≤ m/2, as each crossing
requires two edges not involved in any other crossing. Since NIC-planar graphs have at most
18
5 n edges [4], we have ϱNIC(n) ≤ 9

10n and together with Theorem 8:

▶ Corollary 9. The NIC-planar crossing ratio ϱNIC(n) is in Θ(n).

4.5 NNIC-Planar and k-Fan-Crossing-Free: ϱNNIC(n) and ϱk-fcf (n)
A simple drawing is NNIC-planar (nearly nearly independent crossings, shorthand “NNIC”),
if any two crossings share at most two vertices. This beyond planarity concept has seemingly
not been investigated before, but it is closely related to fan-crossing-free (FCF) drawings [10]:
simple drawings where we disallow a single edge to cross over a fan, i.e., multiple edges
that share a common incident vertex. Observe that if an edge {x, y} would cross two edges
incident to a common vertex z, these two crossings would share the three vertices x, y, z.
Thus, NNIC may at first sight seem identical to FCF. However, while every NNIC-planar
graph is clearly also FCF, the inverse is not necessarily the case:

▶ Theorem 10. There exist fan-crossing-free graphs that are not NNIC-planar.

Proof sketch. Figure 3 shows an FCF graph that is not NNIC-planar. We refer to the
arXiv-version [11] for a detailed proof of that fact. A central idea is that copies of K5 can be
used as “blocking walls” as they cannot be crossed in an FCF drawing. ◀

More generally, we can consider the generalization of FCF graphs, the k-fan-crossing-free
(shorthand “k-fcf”) graphs, k ≥ 2, where any edge may cross at most k − 1 edges of a fan in
a simple drawing [10]. Standard FCF is thus identical to 2-fcf.
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▶ Theorem 11. For every ℓ ≥ 109, there exists a k-fan-crossing-free graph Gℓ with n ∈ Θ(ℓk)
vertices such that crk-fcf(Gℓ) ∈ Ω(n2) and cr(Gℓ) ∈ O(k). Thus ϱk-fcf(n) ∈ Ω( n2

k ).

Proof. Let Gℓ be a framework graph, where the red con-graph is a (2k, 2)-bundle, blue
con-graphs are (ℓk, 3)-bundles, and gray con-graphs are (ℓk, 2)-bundles, so n ∈ Θ(ℓk). A
red-yellow standard drawing shows cr(Gℓ) ∈ O(k). Observe that in a blue con-graph, the
“middle” edges of all the ℓk paths are pairwise non-adjacent. We can thus obtain a fan-
crossing-free drawing by considering a blue-blue standard drawing where all middle edges
of the paths of one blue con-graph cross all middle edges of the paths of the other blue
con-graph, cf. Figure 2e.

Let D be a k-fan-crossing-free drawing of Gℓ. Each red or gray edge is adjacent to one of
the six frame nodes. Therefore, the yellow edge e can cross at most 2(k− 1) of the red edges,
so there exists an s-t-path R in Sred not crossed by e. Let D′ be the R-restriction of D; it
does not have any red-yellow crossings. Consider some edge e in D′. Let c = {s, t} be the
connection with e ∈ E(c). For each of the four frame nodes a ∈ N \ {s, t}, edge e can have
at most k − 1 crossings with gray edges incident to a. The crossings of e with any gray edge
cover at most 4(k−1) · 1

w(Sgray)·w(c) = 4(k−1)
ℓk·w(c) of the KD′ -subdivisions (recall that the width of

the red con-graph here in D′ is 1). As all con-graphs are bundles, there are
∑

c̃∈C w(c̃) · h(c̃)
choices for e, so crossings involving a gray edge can cover at most

∑
c̃∈C

4(k−1)·w′(c̃)·h(c̃)
ℓk·w′(c̃) of

the KD′-subdivisions. Since |C| = 9, maxc̃∈C{h(c̃)} = 3, and ℓ ≥ 109, this simplifies to at
most 9 · 4(k−1)·3

ℓk ≤ 108(k−1)
109k ≤ 108

109 . Thus, blue-blue crossings have to cover at least 1
109 of

the KD′ -subdivisions. As each such crossing covers at most O( 1
(ℓk)2 ) of the KD′ -subdivisions,

we have crk-fcf(Gℓ) ∈ Ω((ℓk)2) = Ω(n2). ◀

In a non-k-fan-crossing-free drawing there has to be an edge that crosses k ∈ O(n) edges
of a fan, so there are at least k crossings. The k-fan-crossing-free drawing may require O(m2)
crossings, as by definition k-fan-crossing-free drawings are simple. Therefore, Theorem 11
together with ϱsparse

k-fcf (n) ∈ O( n2

k ) in the context of Observation 1(a), yields:

▶ Corollary 12. The k-fan-crossing-free crossing ratio ϱk-fcf(n) is in Θ( n2

k ) and 1-jumping.

Since NNIC-planarity is more restrictive than fan-crossing-free (which is k-FCF for k = 2),
but on the other hand NNIC-planar drawings are also necessarily simple, we also have:

▶ Corollary 13. The NNIC crossing ratio ϱNNIC(n) is in Θ(n2).

A straight-line RAC (right-angle crossings) drawing [14] is a drawing where edges are
represented by straight lines and all crossings have to be at 90 degrees. Consider any Gℓ

from Theorem 11. In a straight-line RAC drawing, there can be no edge crossing over two
fan edges, so crsl-RAC(Gℓ) ≥ cr2-fcf(Gℓ). However, as witnessed by the blue-blue standard
drawing (Figure 2e), each Gℓ is straight-line RAC drawable. A straight-line RAC graph
can have at most 4n− 10 edges [14], and thus no more than O(n2) crossings in any simple
drawing. Therefore, our proof automatically also confirms [28, Corollary 15], without the
need of an individual construction or proof:

▶ Corollary 14. The straight-line RAC crossing ratio ϱsl-RAC(n) is in Θ(n2).

4.6 Fan-Planar and Variants: ϱac(n), ϱfc(n), ϱwfp(n), ϱsfp(n)
A drawing is adjacency-crossing [8], if no edge crosses two independent edges. In other words,
whenever an edge e crosses some edges f1, f2, the latter two have to have a common incident
vertex. A drawing is fan-crossing [8], a slight further restriction of the former, if all edges
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F = {f1, f2, ...} that cross e are incident to a common vertex; observe that the only difference
to before is whether e may cross all edges of a triangle. A drawing is weakly fan-planar,
if all edges from F furthermore cross e “from the same side”; it is strongly fan-planar, if
also furthermore no endpoint of e is enclosed by e and the edges from F , see [9, 19] for
details. In our notations, we use the shorthands “ac”, “fc”, “wfp”, and “sfp” for the above
concepts, where crac(G) ≤ crfc(G) ≤ crwfp(G) ≤ crsfp(G) for any graph G by definition.
When considering straight-line drawings, all four concepts are identical.

▶ Theorem 15. For every ℓ ≥ 1, there exists a strongly fan-planar graph Gℓ with n ∈ Θ(ℓ)
vertices such that crac(Gℓ) ∈ Ω(n2) and cr(Gℓ) ∈ O(1). Thus ϱac(n), ϱfc(n), ϱwfp(n), ϱsfp(n) ∈
Ω(n2).

Proof. Let Gℓ be a framework graph, in which the red and gray con-graphs are complete
graphs on seven vertices (K7) and the blue con-graphs are (ℓ, 2)-bundles, so n ∈ Θ(ℓ). We
need to describe how a K7 con-graph is drawn in a standard drawing, see Figure 2f: Let
c = {s, t} be the connection corresponding to a K7 con-graph; as per definition, we draw the
K7 in a small neighborhood of c’s curve such that s, t are on the local outer face. Observe
that K7 can then still be drawn strongly fan-planarly. However, any adjacency-crossing
drawing of a K7 contains at least one s-t-path P where every edge in P is crossed by another
edge of the K7 [7]1. We may call this property ⟨P⟩. A red-yellow standard drawing shows
that cr(Gℓ) ∈ O(1). A blue-blue standard drawing, where all blue-blue crossings are adjacent
to the same two frame nodes shows that the graph is strongly fan-planar, cf. Figure 2g.

Consider an adjacency-crossing drawing D of Gℓ. By property ⟨P⟩, we know that each
red or gray K7 con-graph gives rise to a pole-connecting path that cannot be crossed by any
edge outside of its con-graph. Since the yellow edge is adjacent to both blue con-graphs, all
K-subdivisions need to be covered by blue-blue crossings. Since each such crossing covers at
most 1

ℓ2 of the K-subdivisions, we have crac(Gℓ) ∈ Ω(ℓ2) = Ω(n2). ◀

For G ∈ Gwfp(n), the upper bound crwfp(G) ∈ O(m2), is attained by a simple drawing [20,
21]. In strongly fan-planar drawings, edges cannot cross multiple times (and there can be at
most O(m2) crossings between adjacent edges, if they exist at all), so the same asymptotic
upper bound holds. Therefore, Theorem 15 together with Observation 1(a) yields:

▶ Corollary 16. The weakly and strongly fan-planar crossing ratios ϱwfp(n), ϱsfp(n) are in
Θ(n2).

There are no results for the number of crossings a non-simple adjacency-crossing or fan-
crossing drawing may have. Since a simple drawing has at most O(m2) crossings, Theorem 15
together with Observation 1(a) yields:

▶ Corollary 17. The adjacency-crossing and fan-crossing crossing ratios ϱsimple
ac (n), ϱsimple

fc (n)
are in Θ(n2) for simple drawings.

4.7 k-Edge-Crossing: ϱk-ec(n)
A drawing is k-edge-crossing (shorthand “k-ec”) if at most k edges have crossings [16,18].

▶ Theorem 18. For every ℓ ≥ 1, there exists a k-edge-crossing graph Gℓ with n ∈ Θ(ℓk)
vertices such that crk-ec(Gℓ) ∈ Ω(k2) and cr(Gℓ) ∈ O(k). Thus ϱk-ec(n) ∈ Ω(k).

1 We note that [7, Lemma 7] is stated in terms of (weak) fan-planarity, but it is simple to see that the
same argument even holds for fan- and adjacency-crossing drawings.
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Figure 4 Drawings of the differently colored frame used in Theorems 20, 23, and 25 for the
k-gap-planar, k-apex-planar, and skewness-k crossing ratios, respectively.

Proof. Let Gℓ be a framework graph, where the red con-graph is a (k, 2)-bundle, the gray
con-graphs are (ℓk, 2)-bundles, and blue con-graphs are ( k

2 , 2)-bundles, so n ∈ Θ(ℓk). A
red-yellow standard drawing shows that crk-ec(Gℓ) ∈ O(k). A blue-blue standard drawing
shows that Gℓ is k-edge-crossing, cf. Figure 2g.

Consider a drawing D of Gℓ with at most k crossed edges. A con-graph is cut if all paths
between its poles are crossed. There are at least two cut con-graphs in D, as otherwise, it
would contain non-covered K-subdivisions. Each cut con-graph contains at least its width
many crossed edges. Only yellow and blue con-graphs have widths less than k, so only they
can be cut without exceeding k crossed edges. Therefore, at least k

2 +1 crossed edges are blue
or yellow. Consequently, at most k

2 − 1 crossed edges are red or gray. Any crossing of these
red or gray edges with the unique yellow edge can cover at most 1

k of the K-subdivisions, so
they together cover at most ( k

2 − 1) 1
k ≤ 1

2 of the K-subdivisions. The remaining at least 1
2 of

the K-subdivisions have to be covered by other crossings, but they cover at most O( 1
k2 ) of

the K-subdivisions each. This yields crk-ec(Gℓ) ∈ Ω(k2). ◀

In a non-k-ec drawing there are at least k
2 crossings as there are at least k + 1 crossing

edges. In a k-ec drawing there are less than k2

2 ∈ O(mk) crossings as each of the at most k
crossing edges can cross each other crossing edge, leading to ϱsparse

k-ec (n) ∈ O( k2

k ) = O(k) in
the context of Observation 1(b); together with Theorem 18 we yield:

▶ Corollary 19. The k-edge crossing crossing ratio ϱk-ec(n) is in Θ(k) and 1-jumping.

4.8 k-Gap-Planar: ϱk-gap-pl(n)

Let E(x) denote the two edges involved in a crossing x. A drawing is k-gap-planar (shorthand
“k-gap-pl”) if there exists a mapping from each crossing x to one of E(x), such that any edge
e ∈ E(G) is mapped to at most k times overall [5,6]. The intuition (and reason for the name)
is that we may want to visualize crossings by drawing a “gap” on one of the two involved
edge curves, but each edge curve may not attain too many gaps.

▶ Theorem 20. For every ℓ ≥ 5, there exists a k-gap-planar graph Gℓ with n ∈ Θ(ℓk) vertices
such that crk-gap-pl(Gℓ) ∈ Ω(nk) and cr(Gℓ) ∈ O(k2). Thus ϱk-gap-pl(n) ∈ Ω( n

k ).

Proof. Consider a coloring of the frame F where a blue connection is adjacent to two
independent red connections, and all other connections are gray, see Figure 4. Let Gℓ be a
framework graph, where the blue and red con-graphs are (5k, 2)-bundles, and the gray con-
graphs are (ℓk, 5)-bundles, so n ∈ Θ(ℓk). A red-red standard drawing shows cr(Gℓ) ∈ O(k2).
A blue-gray standard drawing shows that Gℓ is k-gap-planar, cf. Figure 2h.
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Let D be a k-gap-planar drawing of Gℓ. A red-red crossing covers at most 1
(5k)2 = 1

25k2

of the K-subdivisions, but the 2 · 2 · 5k red edges can have at most 20k · k = 20k2 crossings
between each other. As the blue connection is adjacent to the red connections, at least
1 − 20k2

25k2 = 1
5 of the K-subdivisions have to be resolved by crossings involving a gray

edge. Since such a crossing can cover at most O( 1
ℓk·k ) of the K-subdivisions, we have

crk-gap-pl(Gℓ) ∈ Ω(ℓk2) = Ω(nk). ◀

A non-k-gap-planar drawing has over k2 crossings, since there is an edge that has at least
k+1 crossings mapped to it, and all the corresponding crossing edges have at least k crossings
mapped to them. In a k-gap-planar drawing, there can be at most mk crossings as at most
k crossings can be mapped to each of the m edges, leading to ϱsparse

k-gap-pl(n) ∈ O( mk
k2 ) = O( n

k )
in the context of Observation 1(b); together with Theorem 20 we yield:

▶ Corollary 21. The k-gap-planar crossing ratio ϱk-gap-pl(n) is in Θ( n
k ).

4.9 k-Apex-Planar and Skewness-k: ϱk-apex(n) and ϱskew-k(n)
A drawing is k-apex-planar (skewness-k) – with shorthand “k-apex” (“skew-k”) – if there are
k vertices, called apex vertices (edges, called skewness edges, respectively), whose removal
yields a planar subdrawing. Let B(k) be either of the two concepts. To prove crossing ratio
upper bounds, [28] furthermore needs to assume that a crossing minimal B(k)-drawing is
simple (which is, unfortunately, not true in general). We do not want to impose the simplicity
requirement, and for our bounds it suffices:

▶ Lemma 22. Let B(k) ∈ {k-apex, skew-k}. All B(k)-graphs allow simple B(k)-drawings.
Thus, the (non-simple) B(k)-crossing number is always upper bounded by a well-defined
simple B(k)-crossing number.

Proof. Let R be the edges whose removal leaves a planar subgraph G′ (we retain apex
vertices, all of which now have degree 0). Draw G′ planar with straight lines. Now add all
edges R as straight lines. The resulting straight-line drawing (possibly after ε-perturbations
to avoid collinearities) is a simple k-apex-planar (or skewness-k) drawing by definition. ◀

▶ Theorem 23. For every ℓ ≥ 1, there exists a k-apex-planar graph Gℓ with n ∈ Θ(ℓk)
vertices such that crk-apex(Gℓ) ∈ Ω(n2) and cr(Gℓ) ∈ O(k). Thus ϱk-apex(n) ∈ Ω( n2

k ).

Proof. Consider a coloring of the frame F where a blue connection is adjacent to two
independent red connections, and all other connections are gray, see Figure 4. Let Gℓ be
a framework graph, where the red con-graphs are single edges, the gray con-graphs are
(ℓk, 2)-bundles, but the blue con-graph is more involved: Start with a (k, 2)-bundle B and
let A be its k degree-2 vertices; replace every edge of B with a (ℓ, 2)-bundle; finally, for each
v ∈ A, add four new vertices that form a K5 together with v. This yields n ∈ Θ(ℓk). For
standard drawings, we draw the blue con-graph without the K5s planarly and then, for each
v ∈ A, we draw its K5 in a small neighborhood of v with one crossing that is adjacent to v.
In such a drawing, there are k crossings and we have to remove k vertices (for example A)
to obtain a planar subdrawing. A red-red standard drawing shows that cr(Gℓ) ≤ k + 1. A
blue-gray standard drawing with all crossings incident to a vertex of A shows that Gℓ is
k-apex-planar, cf. Figure 2i.

Consider a k-apex-planar drawing D of Gℓ. Each of the k disjoint K5 subgraphs in Sblue
needs to be covered by a crossing. Thus, all k apex nodes are in Sblue and so all of the
K-subdivisions are covered by blue-gray crossings. As each such crossing can cover at most

1
(ℓk)2 of the K-subdivisions, we have crk-apex(Gℓ) ∈ Ω((ℓk)2) = Ω(n2). ◀
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Any non-k-apex-planar drawing has at least k + 1 crossings; by Lemma 22 we have
ϱsparse

k-apex(n) ∈ O( m2

k ) = O( n2

k ) in the context of Observation 1(a). With Theorem 23 we yield:

▶ Corollary 24. The k-apex-planar crossing ratio ϱk-apex(n) is in Θ( n2

k ) and 1-jumping.

▶ Theorem 25. For every ℓ > k, there exists a skewness-k graph Gℓ with n ∈ Θ(ℓk) vertices
such that crskew-k(Gℓ) ∈ Ω(nk) and cr(Gℓ) ∈ O(k). Thus ϱskew-k(n) ∈ Ω(n).

Proof. Consider the same coloring of the frame F as in Theorem 23, see Figure 4. Let Gℓ

be a framework graph, where the red con-graphs are single edges, the gray con-graphs are
(ℓk, 2)-bundles, but the blue con-graph is more involved: Start with a (k, 2)-bundle B and
let A be its k degree-2 vertices and s and t its poles; for each v ∈ A, add three new vertices
Wv that form a K5 together with v and s, but remove the edge {s, v}. This yields n ∈ Θ(ℓk).
Let Q be the ℓk edge-disjoint s-t-paths of gray edges in Gℓ. We observe k edge-disjoint K5
subdivisions, one for each v, induced by the vertices {s, v} ∪Wv together with the edge {v, t}
and a path of Q to establish the v-s-Kuratowski path. In standard drawings, we draw the
blue con-graph with k crossings, one for each v ∈ A, such that {v, t} is crossed by an edge
between vertices of Wv. We can remove the k blue edges incident to t to obtain a planar blue
subdrawing. A red-red standard drawing shows that cr(Gℓ) ≤ k + 1. A blue-gray standard
drawing, where each crossing involves a blue edge incident to t, shows that Gℓ is skewness-k,
cf. Figure 2j.

Consider a skewness-k drawing D of Gℓ. For each v ∈ A, consider the ℓk K5 subdivisions
that differ only by the chosen path of Q. Since there cannot be ℓk (gray) skewness edges,
we have a blue skewness edge per v, which is not in any considered K5 subdivision for any
other vertex in A. Thus, all k skewness edges are blue and all of the K-subdivisions have
to be covered by blue-gray crossings. As each such crossing can cover at most 1

ℓk2 of the
K-subdivisions, we have crk-apex(Gℓ) ∈ Ω(ℓk2) = Ω(nk). ◀

A non-skewness-k drawing has at least k + 1 crossings. A simple skewness-k drawing has
at most mk crossings, attained when each of the k edges we want to remove crosses all other
edges. Via Lemma 22, this leads to ϱsparse

skew-k(n) ∈ O( mk
k ) = O(n) for Observation 1(b). Thus

▶ Corollary 26. The skewness-k crossing ratio ϱskew-k(n) is in Θ(n) and 1-jumping.

4.10 Rectilinear Crossing Ratios: ϱB(k)(n)

The rectilinear crossing number cr(G) ≥ cr(G) is the minimum number of crossings in a
straight-line drawing of G [1]. Analogously, we can define crB(k)(G) ≥ crB(k)(G) as the
minimum number of crossings over all straight-line drawings of G subject to the beyond
planarity concept B(k). We naturally yield the rectilinear crossing ratio ϱB(k)(n), defined
analogously to ϱB(k)(n) but w.r.t. the rectilinear crossing numbers.

All previous crossing number lower bounds still hold in the straight-line setting. Further,
we establish the crossing number upper bounds via straight-line drawings in nearly all above
theorems – only for the fan-planar variants, its K7s require non-straight edges. Thus:

▶ Corollary 27. The rectilinear crossing ratio bounds for k-planar, k-vertex-planar, IC-planar,
NIC-planar, NNIC-planar, k-fan-crossing-free, k-gap-planar, k-edge-crossing, skewness-k,
and k-apex-planar graphs coincide with those of the above crossing ratios.
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5 Conclusion

We presented a framework to yield (short) proofs for the crossing ratios of many different
beyond-planarity concepts, summarized in Table 1. We also included straight-line and
non-simple variants of these concepts. Most importantly, and in contrast to most previous
approaches, this allows us to attain asymptotically tight bounds. The key idea is to consider
graphs arising from a single K3,3 by “thickening” edges via subgraphs, and than count how
many of the arising K3,3-subdivisions can be resolved by certain crossings, yielding a lower
bound on the total number of crossings in beyond-planarity-restricted drawings.

There are only three beyond-planarity concepts which we did not discuss although their
crossing ratios (on simple drawings) have previously been studied: For planarly connected
graphs, the tight bound Θ(n2) is already known [28]. For k-quasi-planar graphs, our
Observation 1(a) easily yields the improved upper bound ϱk-qp(n) ∈ O(n2/k2) instead of
O(f(k) · n2(log n)2) [13] for some growing function f . A (k, l)-grid-free drawing, l ≤ k,
can have at most O(k1/l · m2−1/l) crossings [22]. Thus, for (k, l)-grid-free graphs, our
Observation 1(a) yields the upper bound ϱ(k,l)-grid-free(n) ∈ O(n2−1/l/(lk1−1/l)) ⊂ O(n2/l)
instead of O(g(k, l) · n2) [28], where g is exponential in l. The idea of counting crossings that
resolve certain percentages of Kuratowski subdivisions seems to allow us to also improve, at
least slightly, the known crossing ratio lower bounds for both. However, this cannot easily
be done purely within our framework and the lower bounds remain linear in n and therefore
far from matching the upper bounds.

Interestingly, for every but one considered beyond-planarity concept B(k), we were able
to show that the ratio is 1-jumping, i.e., we can observe the worst-case crossing ratio already
for graphs that would attain the optimal crossing number if we were to increase k by just 1.
Only for the k-gap-planar crossing ratio, our construction does not yield 1-jumping; it is
unclear whether this is a limitation of our framework or if the k-gap-planar crossing ratio is
indeed not 1-jumping.
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1 Introduction

A simple drawing of a graph G is a representation of G in the plane (or on the sphere) such
that the vertices of G are mapped to distinct points and the edges of G are mapped to
Jordan arcs connecting their respective end-vertices. Furthermore, every pair of edges is
allowed to have at most one point in common, which is either a common end-vertex or a
proper crossing. Simple drawings of graphs are widely studied combinatorial objects that
have received considerable attention in different areas of graph drawing, for example, every
crossing-minimizing drawing of a graph is simple.

Several classes of simple drawings have been considered, including straight-line drawings
(where the edges are straight-line segments), x-monotone drawings (where the edges are
x-monotone curves), 2-page book drawings1 (where all vertices lie on a straight line and the

1 2-page book drawings are also known as linear layouts.

© Oswin Aichholzer, Joachim Orthaber, and Birgit Vogtenhuber;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Graph Drawing and Network Visualization (GD 2024).
Editors: Stefan Felsner and Karsten Klein; Article No. 34; pp. 34:1–34:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:oaich@ist.tugraz.at
https://orcid.org/0000-0002-2364-0583
mailto:orthaber@ist.tugraz.at
https://orcid.org/0000-0002-9982-0070
mailto:bvogt@ist.tugraz.at
https://orcid.org/0000-0002-7166-4467
https://doi.org/10.4230/LIPIcs.GD.2024.34
http://arxiv.org/abs/2410.09922
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


34:2 Separable Drawings: Extendability and Crossing-Free Hamiltonian Cycles

edges are drawn as half-circles), pseudolinear drawings (for which there exists an arrangement
of pseudolines such that every edge lies on one pseudoline), and pseudocircular drawings
(for which there exists an arrangement of pseudocircles such that every edge lies on one
pseudocircle). For details on and relations between these and several more classes (some of
which are mentioned later) see for example [3].

A drawing class that was introduced by Arroyo, Richter, and Sunohara [7] and that is of
special interest for this work is the class of pseudospherical drawings. These are pseudocircular
drawings with the additional property that every edge of the drawing intersects every
pseudocircle of the underlying arrangement at most once. Stated differently, a pseudospherical
drawing D of a graph G is a simple drawing in which every edge e is contained in a simple
closed curve γe such that
1. the only two vertices of D on γe are the end-vertices of e,
2. for any two edges e ̸= f the curves γe and γf intersect in exactly two crossing points, and
3. γe intersects every edge f ̸= e of D at most once, either in a crossing or in an end-vertex.

In this work we introduce a new class of simple drawings, which we call separable drawings.
These are all simple drawings that fulfill Properties 1 and 3 of pseudospherical drawings (but
not necessarily Property 2). Separable drawings can also be seen as “locally pseudospherical”
because locally for every edge, they look like pseudospherical drawings, but the curves γe

and γf of different edges e and f of D may interact arbitrarily. This additional freedom gives
the advantage that for recognizing separable drawings, it is sufficient to independently find a
curve for each edge of the drawing. That is, we do not have to consider the set of potential
such curves for all edges simultaneously, which can be relevant from a computational point
of view. Moreover, we show that it is a real additional freedom in the sense that the class of
separable drawings is strictly larger than the one of pseudospherical drawings.

Note that pseudocircular drawings are all simple drawings that fulfill Properties 1 and 2
of the definition of pseudospherical drawings. Hence the class of pseudospherical drawings is
the intersection of the classes of separable and pseudocircular drawings.

Our motivation for studying separable drawings stems from the quest of solving two
classic graph drawing questions for simple drawings, namely, the extendability to simple
drawings of complete graphs and the existence of crossing-free Hamiltonian cycles in drawings
of complete graphs. In this work, we answer both questions for the class of separable drawings
and elucidate the relation of separable drawings to further classes of simple drawings.

Edge extension of simple drawings. It is easy to see that every straight-line drawing in
the plane on n vertices in general position can be extended to a straight-line drawing of
the complete graph Kn. As a consequence of Levi’s Enlargement Lemma [17], an analogous
statement is true for pseudolinear drawings. For simple drawings the situation is very different.
Kynčl showed that extendability to complete graphs is not always possible [14]. Further,
there exist simple drawings of graphs with only a linear number of edges, which cannot
be extended by any of the missing edges without violating simplicity [11]. The decision
problem of whether a given drawing can be extended by some given edges is NP-complete [4],
even for a single edge and if the drawing is pseudocircular [5]. To the positive, the edge
extension problem is fixed-parameter tractable (FPT) when parameterized by the number
of edges to insert and an upper bound on newly created crossings [9]. The complexity of
deciding whether a simple drawing (of some class) can be extended to a simple drawing of
the complete graph is still an open problem. Recently, Kynčl and Soukup [16] showed that
every x-monotone drawing admits an extension to an x-monotone drawing of the complete
graph.
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Crossing-free Hamiltonian cycles and paths. It is well known that every straight-line
drawing of Kn contains a crossing-free Hamiltonian cycle, and that this property does not
hold for straight-line drawings of general graphs (it already breaks for Kn minus one edge).
In 1988, Rafla [20] conjectured that the same is true for simple drawings of Kn.

▶ Conjecture 1. Every simple drawing of Kn with n ≥ 3 vertices contains a crossing-free
Hamiltonian cycle.

If Conjecture 1 is true, then every simple drawing of Kn also contains at least n crossing-
free Hamiltonian paths and 2 crossing-free perfect matchings. Pach, Solymosi, and Tóth [18]
made the study of crossing-free subdrawings popular. For simple drawings, a lot of effort
went into the search for crossing-free matchings, with the current best lower bound for their
size being Ω(

√
n) [2]. With regard to special drawing classes, the existence of a crossing-free

Hamiltonian cycle is an easy exercise for 2-page book drawings and x-monotone drawings.
Further, Conjecture 1 was proven to hold for generalized twisted drawings on an odd number
of vertices [2]. In a previous work, we also confirmed it for cylindrical drawings as well as
strongly c-monotone drawings [3]. In that work, we further stated the following conjecture,
which we showed to be a strengthening of Conjecture 1 in the sense of an affirmative answer
for all simple drawings of Kn (but not necessarily for a restricted class of simple drawings).
Further, we showed that the implication holds for cylindrical and strongly c-monotone
drawings and confirmed both conjectures for them.

▶ Conjecture 2. Every simple drawing D of Kn on n ≥ 2 vertices contains, for each pair of
vertices v ̸= w in D, a crossing-free Hamiltonian path with end-vertices v and w.

Very recently, both conjectures have been verified for the large class of g-convex2 (short for
generalized convex) drawings [8], where the authors also coined the term plane Hamiltonian
connected for drawings fulfilling Conjecture 2.

A simple drawing D of Kn is called g-convex if every triangle in D has a convex side.
A triangle in D is the simple closed curve formed by an induced subdrawing on three vertices
in D. Every triangle splits the plane (or sphere) into two connected components, their
closures are the sides of the triangle. A side S of a triangle is called convex if the subdrawing
of D that is induced by all vertices in S is completely contained in S (that is, no edge between
two such vertices crosses the triangle).

G-convex drawings have been introduced by Arroyo, McQuillan, Richter, and Salazar [6]
as the largest class of a hierarchy of classes of simple drawings of Kn, all of which are
combinatorial generalizations of straight-line drawings. Hence the results of [8] on plane
Hamiltonicity are quite strong.

Our contribution. In Section 2 we introduce some more notation and show first properties
of separable drawings, also explaining why we chose the name “separable”. We further
observe that every 2-page book drawing is separable (Observation 6) and show that for
simple drawings of Kn being separable is a property of the rotation system (Lemma 5).

In Section 3 we consider the extension problem. We prove that for every graph G on n

vertices, every separable drawing of G can be completed to a simple drawing of Kn and that
the same holds for crossing-minimizing drawings of G (Theorems 8 and 9). We further discuss
that extension to simple drawings is the best we can hope for by presenting an example of a
separable drawing that cannot be extended to any separable drawing of Kn (Figure 4).

2 G-convex drawings are just called convex drawings in [6, 8]. However, we prefer the term generalized
convex or g-convex to avoid confusion, since the term convex drawing classically refers to a straight-line
drawing with vertices in convex position.
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In Section 4, we turn our attention to the plane Hamiltonicity problem. We show that
all separable drawings of Kn fulfill both Conjecture 1 (Theorem 11) and Conjecture 2
(Theorem 10). Further, we prove that separable drawings are a proper superclass of g-convex
drawings (Theorem 14). Thus our results on plane Hamiltonicity constitute a strengthening
of the according results on g-convex drawings in [8].

Finally, we consider the question of recognizing separable drawings in Section 5. We
show that the recognition problem is solvable in polynomial time for simple drawings of Kn

(Theorem 15) and NP-complete for simple drawings of general graphs (Theorem 16).
We conclude with some open problems in Section 6.

2 Preliminaries

Before we get to first properties of separable drawings, we introduce some more notation
to facilitate argumentation. We call an edge e of a simple drawing D a separator edge if
there exists a simple closed curve γe containing e such that the only vertices of D on γe

are the end-vertices of e and such that, for each edge f ̸= e of D, γe has at most one point
in common with f . We call the curve γe a witness for e. With this definition, a simple
drawing D is separable if and only if every edge of D is a separator edge.

Note that a simple closed curve γ partitions the plane into two connected components.
We call the closures of these components the sides of γ. To ease reasoning, we sometimes
refer to the bounded side of γ in the plane as the inside and the other side as the outside.

The following lemma motivates why we call separable drawings “separable”.

▶ Lemma 3. Let γe be a witness of a separator edge e in a simple drawing D. Then every
edge f of D that connects two vertices on the same side of γe is fully contained in that side.

Proof. The statement is clear for e itself. Further, by the definition of a separator edge,
each edge f ̸= e of D has at most one point in common with γe. Every edge f incident to e

already has an end-vertex in common with γe and, therefore, is contained in one side of γe.
Finally, every edge f with both end-vertices on the same side of γe and not incident to e

crosses γe an even number of times. Since f crosses γe at most once, it does not cross γe at
all, which implies that f is contained in one side of γe. ◀

Lemma 3 tells us that, for every edge e in a separable drawing D, each witness γe of e

separates D into two induced subdrawings that together cover all vertices of D, and that do
not interact with each other except for sharing the common edge e. In Lemma 5 (Item 2) we
show that, for simple drawings of Kn, the existence of two such induced subdrawings is an
equivalent characterization of separability. This implies that, for complete graphs, we do not
need to check edges between the two sides of γe for multiple intersections with γe.

A special case of a separator edge is an uncrossed edge e. Indeed, we can close e to a
simple curve γe in a small neighborhood of e itself. Then γe has one point in common with
every edge incident to e and no point in common with any other edge. With respect to the
separation into two subdrawings, this means that one of them only consists of the edge e.

▶ Observation 4. Every uncrossed edge is a separator edge.

A classic combinatorial abstraction of a simple drawing D of Kn is its rotation system.
The rotation of a vertex in a simple drawing is the (clockwise) cyclic order of its incident
edges, which is classically given by an accordingly sorted list of its adjacent vertices. The
rotation system of a simple drawing is the collection of the rotations of all of its vertices.
Gioan [10] and Kynčl [13] independently showed that two simple drawings of Kn have the
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same set of crossings if and only if they have the same rotation system. An abstract rotation
system of Kn gives, for each vertex, a (potentially arbitrary) cyclic order of its incident edges.
An abstract rotation system of Kn is called realizable if there exists a simple drawing of
Kn with this rotation system. As shown by Kynčl [15] in combination with computational
results from [1], an abstract rotation system is realizable if and only if all its subrotation
systems on five vertices are. This implies that deciding whether an abstract rotation system
of Kn is realizable can be done in O(n5) time.

1 :

2 :

3 :

4 :

5 :

6 :

7 :

2 3 4 5 6 7

1 3 4 5 6 7

1 2 4 5 6 7

1 2 3 5 6 7

1 2 3 4 6 7

1 2 3 4 5 7

1 2 3 4 5 6

(a)
1

2

3

4

5

6

7

(b)

Figure 1 (a) A rotation system corresponding to a convex straight-line drawing of K7. The only
possible flip of the edge e = {2, 6} is marked. (b) As we implicitly show in the proof of Lemma 5,
Item 3 ⇒ Item 1, a flip of e in the rotation system corresponds to redrawing e (the dashed version
is after the flip, the solid version before) in any simple drawing realizing the rotation system.

We next discuss that for a simple drawing D of Kn, separability only depends on the
rotation system of D. To this end, we first introduce local changes in rotation systems, which
we call flips. A flip in the rotation system of a simple drawing D of Kn, see Figure 1 for an
example illustration, is the operation of removing an edge e = {v, w} in the rotations of its
two incident vertices and adding it again in a different position such that
1. in the counter-clockwise rotation of v and the clockwise rotation of w, the sets of vertices

between the position of e before and after the operation coincide and are non-empty, and
2. the resulting (abstract) rotation system is realizable.

To relate separator edges to flips in rotation systems (Item 3 of Lemma 5) we will make use
of a result by Schaefer [21]. It states that every pair of drawings of Kn minus a non-perfect
matching having the same set of crossings can be transformed into each other via triangle
mutations (the operation of moving an edge over the crossing between two other edges; see
also Figure 2), plus a homeomorphism of the plane.

▶ Lemma 5. Let D be a simple drawing of Kn and let e = {v, w} be an edge of D. Then the
following are equivalent:
1. The edge e is a separator edge.
2. The edge e can be closed to a simple curve γ′

e such that every edge f of D that connects
two vertices on the same side of γ′

e is fully contained in that side.
3. The edge e is either uncrossed or it can be flipped to an edge e′ such that e and e′ cross

disjoint sets of edges.

Proof. In the following we show that Item 1 is equivalent to Item 2 and that Item 1 is
equivalent to Item 3. The implication Item 1 ⇒ Item 2 is given by Lemma 3. Hence, there
are three implications left to show.
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Item 2 ⇒ Item 1 Let D1 be the subdrawing of D induced by all vertices of the inside of
γ′

e and similarly D2 for all vertices of the outside of γ′
e. Since γ′

e separates D1 and D2,
any edge in D1 or D2 has at most one point in common with γ′

e. It remains to consider
edges f = {v1, v2} with v1 ∈ D1 and v2 ∈ D2. If f crosses e, which it can cross at most
once, then f lies in the inside of the crossing K4 on the vertices {v, v1, w, v2}, or, in other
words, it is separated from γ′

e \ e by the 4-cycle v, v1, w, v2. Hence it cannot cross γ′
e a

second time. The remaining case is that f crosses γ′
e \ e. Let B be the boundary of the

unbounded cell of D1. We show that f crosses B exactly once.
Assume for a contradiction that f crosses B more than once. Let x1 and x2 be two
consecutive such crossings along f such that the part f ′ between x1 and x2 lies inside B.
Then f ′ crosses D1 and separates the inside of B into two connected components F1
and F2. Let F1 be the component that contains e. If no vertex of D1 lies in F2, then every
edge in D1 that is crossed by f ′ would have to be crossed at least twice, a contradiction
to D being simple. Hence, there is some vertex z of D1 in F2. If v1 lies in F1, then {v1, z}
crosses its incident edge f . If v1 lies in F2, then {v1, v} and {v1, w} cross their incident
edge f . Since we have a contradiction in both cases, f crosses B exactly once.
We reroute γ′

e \ e arbitrarily close to B along the outside of B. This does not change any
crossings with D1 or D2 and, by the arguments above, every edge f between the two
subdrawings D1 or D2 is crossed exactly once by the adapted curve γ′

e. Consequently, e

is a separator edge.
Item 1 ⇒ Item 3 Recall that γe has at most one point in common with every edge f ≠ e

in D. Hence, replacing e by e′ = γe \ e gives a simple drawing D′. If D and D′ have the
same crossings, then both e and e′ are uncrossed. Otherwise the rotation system must
have changed and, by Lemma 3, the change is exactly as defined for a flip.

e′

f

(a)

e′

f

(b)

e′

f

(c)

Figure 2 (a) If after a triangle mutation the redrawn edge f (dashed) would cross e′ twice, then
(b) we first move e′ over the respective crossing and then (c) redraw f as planned.

Item 3 ⇒ Item 1 If e is uncrossed, then e is a separator edge by Observation 4. So assume
that e can be flipped to e′ such that no edge is crossed by both e and e′, and let D′ be a
simple drawing realizing the rotation system with e′ instead of e.
We first show that D − e and D′ − e′ have the same crossing edge pairs. Recall that for a
rotation system of Kn, n ≥ 4, and any pair f, g of independent edges, the subrotation
system on the 4-tuple of the four end-vertices of f and g determines whether or not f and
g cross. When flipping e to e′, the subrotation system of any 4-tuple that contains at most
one end-vertex of e remains unchanged. Hence it remains to consider 4-tuples v, w, v1, v2
that involve both end-vertices of e. If in D, such a 4-tuple forms a crossing that does not
involve e, then the order of v1 and v2 in the counter-clockwise rotation around v and the
clockwise rotation around w (when starting with {v, w}) is inverse, implying that the
subrotation system after the flip is the same as the one before the flip and hence that
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the same edge pair also crosses in D′. If in D, such a 4-tuple is non-crossing or contains
the crossing between e and {v1, v2}, then the order of v1 and v2 in the counter-clockwise
rotation around v and the clockwise rotation around w (when starting with {v, w}) is
the same. Hence, after the flip, the subrotation system again is either non-crossing or
forms the crossing between e′ and {v1, v2}. Altogether, this implies that all crossing edge
pairs that exist in exactly one of D and D′ involve e or e′.
Since D − e and D′ − e′ have the same crossing edge pairs, they at most differ in the
order of crossings along edges. Hence we can apply Schaefer’s generalization of Gioan’s
theorem [21] to transform D′ − e′ to D − e via triangle mutations, potentially also
transforming e′. More exactly, whenever we want to move an edge f over a crossing and
e′ lies between the edge and the crossing, we first move e′ over that crossing and then
make the originally planned move with f ; see Figure 2 for an illustration. This process
may change the order of crossings along e′, but changes neither the crossing edge pairs
nor the rotation at any vertex. Hence, once we have transformed D′ − e′ to D − e, we
have obtained a transformed edge e′ such that D − e + e′ is a realization of the flipped
rotation system. Since no edge of D − e is crossed by both e and e′ and no edge incident
to e crosses any of e and e′, the union of e and e′ fulfills the properties of a witness γe,
which shows that e is a separator edge. ◀

Note that in the proof of Item 2 ⇒ Item 1 the subdrawings D1 and D2 are interchangeable.
That is, we could also reroute γe close to the boundary of D2. Furthermore, in the proof of
Item 3 ⇒ Item 1 the drawing D can be an arbitrary realization of the respective rotation
system. Therefore, every simple drawing that corresponds to a rotation system that has at
least one realization as a separable drawing is itself a separable drawing. This makes being
separable a property of the rotation system for simple drawings of Kn.

Before we come to the main results of this paper, let us mention 2-page book drawings D.
There the vertices lie on a common line and all edges e are drawn as half-circles. Hence, by
closing e to a circle, we get a simple closed curve that has at most one point in common with
any edge f ̸= e of D.

▶ Observation 6. Every 2-page book drawing is separable.

3 Extendability

In the following we prove that every separable drawing D of a graph G on n vertices can be
completed to a simple drawing of Kn. As a first step we show how to add one edge to D.
To do so, we impose a minimality condition regarding the witnesses of all edges in D. In
particular, we call a collection D◦ of witnesses, one for every edge in D, a witness set for D.
Further, for an edge {u, v} not in G, we call a continuous curve that connects the drawn
end-vertices D(u) and D(v) in D a realization of {u, v} in D.

▶ Lemma 7. Let D be a separable drawing of a non-complete graph G and let D◦ be a witness
set for D. For a fixed edge {u, v} not in G, let e be a realization of {u, v} in D that, over all
possible realizations, minimizes the number of crossings with the witness set D◦. Then the
drawing D′ = D + e is simple.

Proof. Let e be as described and assume, to the contrary, that D′ is not simple. The
minimality condition implies that e is self-avoiding, hence, the assumption implies that e has
more than one point in common with an edge f of D; see Figure 3 for an example illustration.
Let x1 and x2 be two of those common points that are consecutive along f . Then the parts
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34:8 Separable Drawings: Extendability and Crossing-Free Hamiltonian Cycles

e1 and f1 of e and f , respectively, between x1 and x2 each, form a simple closed curve. Since
every witness γg in D◦ for an edge g in D has at most one point in common with f it follows
that, if γg crosses f1, then γg also has to cross e1. Therefore, rerouting e along f between x1
and x2 reduces the number of crossings of e with D◦ by at least one; a contradiction to the
minimality condition on e. ◀

e
f

x1

x2

(a)

f1

e1

γg

(b)

ẽ

f
γg

(c)

Figure 3 (a) The edges e and f have more than one point in common, with x1 and x2 being
consecutive common points on f . (b) Every witness γg that crosses f1 also has to cross e1. (c) The
result of rerouting e along f between x1 and x2.

A natural way to get to a simple drawing of Kn would be to iterate the argument of
Lemma 7. However, we would need the drawing in each step to be separable, which might
not be the case. In particular, Figure 4(a) shows an example of a separable drawing D on
9 vertices that cannot be completed to a separable drawing of Kn. Figure 4(b) shows a
witness set for D, and Figure 4(c) indicates that, with respect to crossings, there are only
two different ways to add the edge e between the leftmost and rightmost vertex in D. Hence
the witness of e would have to be the union of these two options. However, both cross the
rightmost edge in D (orange), which is not allowed for a witness.

(a) (b) (c)

Figure 4 A separable drawing of a non-complete graph that cannot be extended to any separable
drawing of a complete graph.

By imposing a second minimality condition, however, we can still extend to a simple
drawing of Kn.

▶ Theorem 8. Let D be a separable drawing of a non-complete graph on n vertices. Then D
can be extended to a simple drawing of Kn.

Proof. Let D◦ be a witness set for D. We extend D to a drawing D′ of Kn such that (1) each
added edge e creates a minimum number of additional crossings when being added to D◦

and such that under this condition (2) D′ has the least total number of crossings. Then, by
Lemma 7, D + e is simple for each of those added edges.

Hence, an obstruction to simplicity can only occur between two added edges e1 and e2
in D′; see Figure 5 for an example illustration. Let x1 and x2 be two consecutive common
points on e1, and let e′

1 and e′
2 be the respective parts between x1 and x2. By the first

minimality condition, e′
1 and e′

2 must have the same number of crossings with D◦, otherwise
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we could reroute one of e′
1 or e′

2 along (a part of) the other to get fewer crossings. But then
exchanging e′

1 and e′
2 produces a drawing D′′ fulfilling the first minimality condition but

with fewer crossings than D′; a contradiction to the second minimality condition on D′. ◀

e2

e1
x1

x2

D◦

(a)

e′1

e′2

D◦

(b)

ẽ2 ẽ1

D◦

(c)

Figure 5 (a) The edges e1 and e2 have more than one point in common, with x1 and x2 being
consecutive common points on e1. (b) The parts e′

1 and e′
2 must have the same number of common

points (4 each in this example) with the witness set D◦. (c) The result of exchanging e′
1 and e′

2.

Inspired by the question whether every crossing-minimizing drawing of Kn is pseudospher-
cial, we also investigate the extendability of crossing-minimizing drawings of non-complete
graphs. Interestingly, as we detail in the full version of this paper, the proof works rather
similar to that for separable drawings, we only need to replace the arguments regarding the
witness set with arguments using that the initial drawing is crossing-minimizing.

▶ Theorem 9. Let D be a crossing-minimizing drawing of a non-complete graph on n vertices.
Then D can be extended to a simple drawing of Kn.

4 Crossing-free Hamiltonian cycles and paths

This section is about separable drawings of the complete graph Kn. We first show that
they are plane Hamiltonian connected, that is, there exists a crossing-free Hamiltonian path
between each pair of vertices, which proves Conjecture 2 for this class.

▶ Theorem 10. Every separable drawing D of Kn contains, for each pair of vertices v ̸= w

in D, a crossing-free Hamiltonian path with end-vertices v and w.

Proof. The proof is by induction on n. For n ≤ 2 the statement is trivially true. For the
induction step, let n ≥ 3, let v ̸= w be two arbitrary vertices in D, and consider some edge
e = {v, v′} with v′ ̸= w and witness γe. Further, let D1 be the subdrawing of D induced by
the set of vertices on the side of γe not containing w and let D2 be the subdrawing of D
induced by the set of vertices on the other side of γe but without vertex v.

Then D1 and D2 are both proper subdrawings of D. Hence, by the induction hypothesis,
there exists a crossing-free Hamiltonian path P1 in D1 with end-vertices v and v′ and there
exists a crossing-free Hamiltonian path P2 in D2 with end-vertices v′ and w. By Lemma 3,
no edge of the path P1 crosses any edge of the path P2. Consequently, the union of P1 and
P2 forms a crossing-free Hamiltonian path in D with end-vertices v and w. ◀

Figure 6(a) gives an illustration of the proof. With a similar approach we obtain that
separable drawings of Kn also contain a crossing-free Hamiltonian cycle, by this proving
Conjecture 1 for them. Figure 6(b) shows an illustration of how to get the Hamiltonian cycle.

▶ Theorem 11. Every separable drawing D of Kn with n ≥ 3 vertices contains a crossing-free
Hamiltonian cycle.
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Proof. Let e = {v, w} be an arbitrary edge in D with witness γe and let D1 and D2 be the
subdrawings of D induced by the vertices on the two sides of γe, respectively. By Theorem 10,
there exists a crossing-free Hamiltonian path Pi in Di with end-vertices v and w, for i ∈ {1, 2}.
By Lemma 3, no edge of P1 crosses any edge of P2. Hence, the union of P1 and P2 forms a
crossing-free Hamiltonian cycle in D. ◀

e

γe

v

w

v′

P1

P2

(a)

e

γe

v

P1

P2

w

(b)

Figure 6 (a) Finding a crossing-free Hamiltonian path between two given vertices and (b) finding
a crossing-free Hamiltonian cycle in a separable drawing of Kn.

For the proofs of Theorems 10 and 11 it is actually sufficient that for every pair of vertices
v and w, one of them is incident to a separator edge that is not {v, w}. In particular, this is
the case when every vertex is incident to at least 2 separator edges. We call this property
degree-2-separable. In the proof we further rely on induction. Therefore, we call a class S
of simple drawings subset-closed if every subdrawing of a drawing in S is itself in S. With
this we get the following observation, which might be helpful to show Conjecture 1 for even
larger classes of simple drawings.

▶ Observation 12. Let S be a subset-closed class of simple drawings of complete graphs
such that every drawing in S is degree-2-separable. Then every drawing in S contains a
crossing-free Hamiltonian cycle.

Let us further mention that a single separator edge is enough to find a crossing-free
matching of linear size; let us call this property 1-separable for a subset-closed class of simple
drawings. Indeed, we can add the separator edge e to the matching and then recurse on the
subdrawings in the two sides of the witness γe. In the worst case, for each edge that we add,
we get two subdrawings with only one vertex each that cannot be matched anymore.

▶ Observation 13. Let S be a subset-closed class of simple drawings of complete graphs such
that every drawing in S is 1-separable. Then every drawing in S contains a crossing-free
matching of linear size in n.

Unfortunately there exist simple drawings of Kn without a single separator edge. Figure 7
shows the (up to weak isomorphism3) only two simple drawings of K8 with this property; the
different edge colors are just for better visibility. This result has been obtained by applying
the algorithm of Theorem 15 to all different rotation systems of K8 as given in [1]. Note
that Harborth and Mengersen [12] proved that simple drawings of Kn for n ≤ 7 always have
uncrossed edges, and therefore, they have separator edges by Observation 4. Hence, the
drawings depicted in Figure 7 are the smallest examples without any separator edge.

3 Two simple drawings of a graph are weakly isomorphic if they have the same crossing edge pairs. For
simple drawings of Kn, weak isomorphism is equivalent to having the same rotation system [10, 13].
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(a) (b)

Figure 7 The two simple drawings of K8 that do not have a single separator edge.

We conclude this section by proving that all g-convex drawings are separable, therefore
showing that our results on plane Hamiltonicity improve upon the work of Bergold, Felsner,
M. Reddy, Orthaber, and Scheucher [8]. Our proof is inspired by the proof of Arroyo, Richter,
and Sunohara [7] that all so-called hereditarily convex drawings (of Kn) are pseudospherical.

▶ Theorem 14. Every g-convex drawing (of Kn) is separable.

Proof. We show that every edge e = {a, b} in a g-convex drawing D is a separator edge. If
e is uncrossed, then it is a separator edge by Observation 4. Hence, we can assume that e

is crossed by at least one edge. In the following we find a simple closed curve γe fulfilling
Item 2 of Lemma 5, thereby showing that e is a separator edge. In particular, we find vertex
sets VL and VR that will correspond to the vertices on the two sides of γe, respectively.

We fix an orientation of e and say that a vertex v of D lies on the left or on the right of e

if the convex side of the triangle spanned by e and v lies to the left or right of the oriented
edge e, respectively. Recall that both sides of such a triangle can be convex and that the
convex side is unique if and only if it is part of a crossing K4 = {a, b, v, w}. In this K4, e

can either be a diagonal or a boundary edge. In the first case v and w lie on different sides
of e and in the second case they lie on the same side of e; see Figure 8 for an illustration.

a

b

v w
e

z

(a)

e

z
a

b

v

v′

(b)

Figure 8 In a crossing K4, e is either (a) a diagonal edge or (b) a boundary edge.

We start with VL = VR = {a, b}. In a first step, we consider crossing K4’s where e is
a diagonal and we add the respective vertices v that are to the left of e to VL. Since D is
g-convex, the respective vertices w that are to the right of e will never be added to VL. In a
second step, we successively add vertices v to VL if there exists a crossing K4 = {a, b, v′, v}
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such that e is a boundary edge and v′ was already added to VL before. Once we cannot add
anymore vertices to VL in this manner, we add all remaining vertices to VR. Note that for all
vertices v in VL the unique convex side of the triangle spanned by v and e is to the left of e.

Let DL and DR be the subdrawings of D induced by the vertices VL and VR, respectively.
Note that e is uncrossed in both those subdrawings. Consider the cell F∞ in DL that is
incident to e and to its right. We show that all vertices of VR lie in F∞.

Assume first that a vertex z of VR lies in the convex side of a triangle spanned by e and
a vertex v added to VL in the first step, that is, there is an edge {v, w} that crosses e. Then,
by convexity, the edge {z, w} must lie in the crossing side of the K4 spanned by {v, a, w, b}
and hence {z, w} also crosses e; see Figure 8(a) for an example. But this implies that z lies
to the left of e and was added to VL in the first step; a contradiction to z ∈ VR.

Assume next that z lies in the unique convex side of a triangle added to VL in the second
step but not in one added in the first step. Then either {z, a} or {z, b} has to cross a triangle
spanned by e and a vertex v′ in VL; see Figure 8(b) for an example. Therefore, z is added to
VL in the second step; again a contradiction.

Assume last that z lies neither in F∞ nor in any of the triangles spanned by e and VL.
Then the edges {z, a} and {z, b} cannot cross any of those triangle edges as argued before.
Further, no vertex of VL can lie in the triangle spanned by z and e to the right of e because
we would not have added it to VL then. Since z does not lie in F∞, some part of DL separates
it from there. Hence, there is an edge f = {v1, v2} in DL crossing {z, a} or {z, b}. Since v1
and v2 are on the same side of the triangle {z, a, b} and f does not cross e, f crosses both
{z, a} and {z, b}; see Figure 9(a) for an illustration. Consequently, the triangles {v1, v2, a}
and {v1, v2, b} have no convex side; a contradiction to D being g-convex.

a

b

ez
v1

v2

(a)

a

b

e

w1

w2

v

(b)

Figure 9 Two situations leading to a triangle (marked orange) not having a convex side.

It remains to show that no edge f = {w1, w2} of DR can cross any edge of DL. We first
show that f cannot cross any edge incident to e. If f itself is incident to e, this cannot
happen similar to before. Otherwise, since both w1 and w2 are in F∞, f has to pass through
a triangle spanned by e and a vertex v of VL; see Figure 9(b) for an illustration. This results
in the triangles {w1, w2, a} and {w1, w2, b} not having a convex side. Consequently, f can
only cross some edge in DL that is independent to e. But then f has to cross that edge more
than once. This is a contradiction in both cases.

Hence, we can close the edge e in F∞ close to the boundary of DL to a simple curve γe

that fulfills all properties of a witness, that is, e is a separator edge. ◀

Note that we could not just add all vertices to the left or right of e to VL or VR, respectively.
Figure 10(a) shows an example where this would not result in two separated subdrawings.

Further, to see that separable drawings are not only the union of g-convex and 2-page book
drawings, for example, consider a straight-line drawing with at least 5 vertices {v1, . . . , vk}
on the convex hull and reroute the edges {v1, v3} and {v2, v4} outside of the convex hull.
This is always separable, not g-convex, and in most cases also not weakly isomorphic to any
2-page book drawing. Figure 10(b) shows the smallest such example.



O. Aichholzer, J. Orthaber, and B. Vogtenhuber 34:13

a

b

e

(a) (b)

Figure 10 (a) A g-convex drawing where a complete left-right splitting via convex sides is not
possible. (b) A separable drawing that is neither g-convex nor a 2-page book drawing.

5 Recognition

We have shown in Section 2 that for simple drawings D of the complete graph Kn being
separable is a property of the rotation system (Item 3 of Lemma 5). From this we obtain a
polynomial time recognition algorithm for separable drawings (and rotation systems) of Kn.

▶ Theorem 15. It can be decided in O(n6) time whether a given simple drawing D of Kn is
separable.

Proof. We check, for each edge e = {v, w} in D, whether it is a separator edge. If e is
uncrossed, then it is a separator edge by Observation 4 and we are done. Otherwise we
use the relation between separator edges and flips in rotation systems given by Item 3 of
Lemma 5 to determine all possible flips of e in the rotation system. Recall that by Lemma 5,
separability of a simple drawing D of Kn is a property of the rotation system of D. Given
the drawing D, its rotation system can be computed in O(n2) time in a straight forward way.
In the following, we use this rotation system to check separability.

By the definition of a flip of e in the rotation system, the subsets in the counter-clockwise
rotation of v and the clockwise rotation of w between the position of e before and after the
flip must coincide. We get all such possibilities of potential flips for e in O(n) time, by going
through the rotations of v and w in parallel (starting with {v, w}) and keeping a parity list
of all vertices how often they appeared in the subsets. A counter is used to see how many of
the vertices appeared an odd number of times, that is, showed up in only one of the two
subsets so far. Every time this counter is zero we have a potential flip.

Checking whether the new rotation system after a potential flip is realizable takes O(n3)
time because we only need to test all 5-tuples that contain the flipped edge [15]. Further,
checking whether the flipped edge has all different crossings from the original edge takes
O(n2) time by testing for all O(n2) new crossings whether they also existed before.

In total there are O(n2) many edges e, each of them has O(n) potential flips, and testing
whether such a flip yields a witness for e takes O(n3) time as argued. Hence, we can decide
in O(n6) time whether a simple drawing of Kn is separable. ◀

Unfortunately, the situation is very different for simple drawings of arbitrary graphs. In
particular, we construct simple drawings of matchings in the following where it is NP-hard
to decide whether they are separable. For this we use a reduction from linked planar 3-SAT
with negated edges on one side, which was shown to be NP-hard by Pilz [19, Theorem 10].
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The incidence graph Gϕ of a 3-SAT formula ϕ has one vertex for each variable and each
clause in ϕ and an edge between a variable vertex and a clause vertex if the variable occurs
in the clause (as a positive or negative literal). If Gϕ is a planar graph, then ϕ is a planar
3-SAT instance. For linked planar 3-SAT there is a Hamiltonian cycle C that first visits
all variable vertices and then all clause vertices such that the union of Gϕ and C is still a
planar graph. Further, in the restriction “with negated edges on one side”, there exists an
embedding of Gϕ ∪ C such that all edges in Gϕ corresponding to positive literals are drawn
inside of C and all edges corresponding to negative literals are drawn outside of C.

▶ Theorem 16. It is NP-complete to decide whether a given simple drawing of an arbitrary
graph is separable.

Proof. Given a 3-SAT formula ϕ that is an instance of linked planar 3-SAT with negated
edges on one side, we construct a simple drawing D containing a special edge e such that e is
a separator edge if and only if ϕ is satisfiable. Therefore, it is NP-hard to decide whether e is
a separator edge. Moreover, we show that all other edges in D are definitely separator edges.
Consequently, it is NP-hard to decide whether D is separable. In Figure 11 we illustrate the
individual gadgets of the following construction and in Figure 12 we show an example of the
complete drawing D corresponding to a small 3-SAT formula.

Given an embedding of the union of the incidence graph Gϕ and the Hamiltonian cycle C,
we let e be the part of C between the clause vertices and the variable vertices. We then add
four boundary edges, close to C and on both sides next to the variable and the clause part
each, crossing e and crossing each other in the middle; see Figures 11(a), 11(c), and 11(f).
Thereby we restrict the potential witness γe of e to be drawn within a strip close to C.

For each edge of Gϕ we also add an edge to D. We call these edges literal edges. Instead
of the variable vertices of Gϕ we let the incident literal edges in D cross in a grid such that
edges for positive literals are drawn in one direction and those for negative literals in the
other direction; see Figure 11(b). This is possible because C splits those edges into inside and
outside, respectively. In that way we force γe to either cross all positive or all negative literal
edges of the corresponding variable. In the following, crossing the positive side encodes the
variable being set to FALSE and vice versa.

(a) (b) (c) (d) (e) (f)

Figure 11 The variable gadget (b) and the two clause gadgets (d) and (e). Boundary edges are
drawn green, literal edges darkorange, auxiliary edges purple, and local edges lightblue.

For the clause variables of Gϕ we construct special clause gadgets depending on how
many positive/negative literals are in the clause. We can assume, for simplicity and without
loss of generality, that all clauses contain exactly three literals (duplicating one literal if
necessary). Hence we have two cases, either all literals are of the same type (negated or
not) or two are of one type and one of the other. See Figures 11(d) and 11(e) for the two
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constructions of clause gadgets. In addition to the literal edges, we need some auxiliary
edges that cross e and a boundary edge, and some local edges in the gadgets. Since auxiliary
edges cross e, they cannot be crossed by γe again. Further, literal edges can only be crossed
if they were not yet crossed in the variable gadget, that is, if they have the value TRUE.
Finally, γe can pass through a clause gadget without crossing any local edge twice if and
only if it can cross at least one literal edge.

So far we have shown that e is a separator edge if and only if ϕ is satisfiable. It remains
to show that all other edges in the construction are separator edges in any case. The local
edges can be closed locally within the gadget. The boundary edges can be closed next to
the boundary edge on the other side of the strip. Further, we let the auxiliary edges in the
construction cross e in reverse order (nested) to how they enter the strip within the boundary
edges. Therefore they pairwise do not cross and can be closed outside of the other side of
the strip. For the literal edges we go back next to the boundary on the other side of the
strip. Since Gϕ is planar, we can cross all other literal edges except for those corresponding
to the same variable. In each clause gadget we can cross the auxiliary edge or at least one of
the three literal edges. Between the clause and variable gadgets (Figure 11(c)) we change
sides and then cross all literal edges on the same side.

This finishes the proof for NP-hardness. For NP-completeness observe that a witness set
for D can be encoded and checked in polynomial space and time. ◀

c b a

a ∨ b ¬a ∨ b ∨ c

¬b ∨ ¬c

e

Figure 12 The simple drawing D corresponding to the 3-SAT formula (a∨b)∧(¬a∨b∨c)∧(¬b∨¬c)
as an instance to decide whether the edge e (darkblue) is a separator edge. The first and third
clause use the same gadget, just upside down, and the literals a and ¬c, respectively, are duplicated
to have exactly 3 literals in all clauses.

6 Future Work

Extending the question whether all crossing-minimizing drawings of Kn are g-convex [6] we
ask the following.

▶ Question 17. Is every crossing-minimizing drawing of an arbitrary graph separable?

Further, we showed NP-hardness for recognizing separable drawings. The corresponding
question for pseudospherical drawings [7] is still open to the best of our knowledge.

▶ Question 18. Is it NP-hard to decide whether a simple drawing of an arbitrary graph is
pseudospherical?
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Abstract
We introduce the k-Plane Insertion into Plane drawing (k-PIP) problem: given a plane drawing of a
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drawing is k-plane. In this paper, we show that the problem is NP-complete for every k ≥ 1, even
when G is biconnected and the set F of edges forms a matching or a path. On the positive side, we
present a linear-time algorithm for the case that k = 1 and G is a triangulation.

2012 ACM Subject Classification Mathematics of computing → Combinatoric problems

Keywords and phrases Graph drawing, edge insertion, k-planarity

Digital Object Identifier 10.4230/LIPIcs.GD.2024.35

Related Version Full Version: https://doi.org/10.48550/arXiv.2402.14552 [19]

Funding Julia Katheder : Funded by the Deutsche Forschungsgemeinschaft (DFG) – 364468267.
Fabian Klute: F. K. is supported by a “María Zambrano grant for attracting international talent”
and by grant PID2019-104129GB-I00 funded by MICIU/AEI/10.13039/501100011033.
Irene Parada: I. P. is a Serra Húnter Fellow. Partially supported by grant 2021UPC-MS-67392
funded by the Spanish Ministry of Universities and the European Union (NextGenerationEU) and
by grant PID2019-104129GB-I00 funded by MICIU/AEI/10.13039/501100011033.
Ignaz Rutter : Funded by the Deutsche Forschungsgemeinschaft (DFG) – 541433306.

1 Introduction

Inserting edges into planar graphs is a long-studied problem in graph drawing. Most
commonly, the goal is to find a way to insert the edges while minimizing the number of
crossings and maintaining the planarity of the prescribed subgraph. This problem is a core
step in the planarization method to find graph drawings with few crossings [23]. Gutwenger
et al. [16] have studied the case of a single edge. For multiple edges, the picture is more
complicated. In case the edges are all incident to one vertex previously not present in the
graph, the problem can be solved in polynomial time [8]. However, the general problem is
NP-hard even when the given drawing is fixed and the underlying graph is biconnected [24, 26].
Assuming a fixed drawing, Hamm and Hliněný presented an FPT-algorithm parameterized
by the number of crossings [17]. Finally, Chimani and Hliněný [9] gave an FPT-algorithm for
the fixed and variable embedding settings with the number of inserted edges as a parameter.

In this paper, we take a slightly different viewpoint and do not restrict the overall number
of created crossings, but instead their structure. Moreover, we focus on the case when the
drawing of the given planar graph G is fixed. Then our goal is, given a plane drawing Γ
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of G and a set F of edges not present in G, to find a k-plane drawing containing Γ as a
subdrawing plus the edges of F . Here, a k-plane drawing of a graph is one in which no edge
is crossed more than k times. The class of k-planar graphs, which are those admitting a
k-plane drawing, is widely studied in graph drawing [11, 18].

▶ Problem 1 (k-Plane Insertion into Plane drawing (k-PIP)). Let Γ be a plane drawing of a
graph G = (V, E) and let H = (V, E′) be its complement. Given G, Γ and a set F ⊆ E′ of
edges, find a k-plane drawing of the graph (V, E ∪ F ) that contains Γ as a subdrawing.

For any fixed k ∈ N, an instance (G, Γ, F ) of k-PIP consists of a graph G, a plane drawing
Γ of G, and a set of edges F from the complement of G.

Our contribution. In addition to introducing this problem, we give two results. In Section 2,
we present an O(|V |) algorithm for 1-PIP for the case that G is a triangulation. To accomplish
this, we first reduce the number of possible ways one edge can be inserted into the given
drawing to at most two per edge in F and then use a 2-SAT formulation to compute a
solution if possible. In Section 3, we show that k-PIP is NP-complete for every k ≥ 1 even if
G is biconnected and the edges in F form a path or a matching.

Related work. k-PIP is related to the problem of extending a partial drawing of a graph to a
drawing of the full graph. Usually, the goal in such problems is to maintain certain properties
of the given drawing. For example, in works by Angelini et al. [1], Eiben et al. [13, 14],
Ganian et al. [15], or Arroyo et al. [3, 4] the input is a plane, 1-plane, k-plane, or simple
drawing, respectively, and the desired extension must maintain the property of being plane,
1-plane, k-plane, or simple. Restrictions of the drawing such as it being straight-line [25],
level-planar [5], upward [21], or orthogonal [2] have been explored. Other results consider
the number of bends [7] or assume that the partially drawn subgraph is a cycle [6, 22].

2 1-PIP: Efficiently inserting edges into a triangulation

We assume standard notation and concepts from graph theory; compare, e.g., [12]. Given an
instance (G, Γ, F ) of 1-PIP, often times an edge e ∈ F can be inserted into Γ in different
ways. Note that e cannot be inserted without crossings in a triangulation. An option for
e is an edge γ of G such that e can be inserted into Γ crossing only γ. Note that in a
triangulation, a pair of adjacent faces uniquely defines an edge γ that must be crossed if e is
inserted into said pair of faces. Thus, we also use the term option to refer to such a pair of

G G+ FF

(a) (b)

Figure 1 (a) The 1-PIP problem: a plane graph G, a set F of edges, and a 1-plane drawing of
G + F . (b) In a triangulation, an edge in G (bold) can only be an option for a single edge in F

(green) and clashes with at most four other options (blue).
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v
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Figure 2 Cases with three or more options in a triangulation.

faces. An option for e is safe if, in case the instance admits a solution, there is a solution
in which e is inserted according to this option. Two options for two edges e and e′ of F

clash if inserting both e and e′ according to these options violates 1-planarity. Examples
of safe options are those of edges with a single option and an option without clashes. An
immediate solution can be found if each edge in F has a non-clashing option. However, it
is not sufficient for each edge in F to have a safe option in order to find a solution, e.g., in
the case that two single options are clashing. Observe that in a triangulation, each edge
of Γ can only be an option for one edge of F and clashes with at most four other options;
see Figure 1(b). Further, for a triangulation, we have the following property where a blocking
cycle in the drawing forces an edge to have only clashing options; see Figure 2(a).

▶ Property 2. Let e = (u, v) be an edge in F and let σi = (x, w) be one of its options. For an
edge e′ = (w, y) ∈ F having at least one clashing option with σi, there is other non-clashing
option with σi, if there is a cycle C in G such that u, v ∈ C and x, w, y /∈ C, .

Proof. The cycle Cσi
= (u, x, v, w, u) and C share only the vertices u and v and since Γ is

plane, C and Cσi partition Γ into four regions, where the edges in C and Cσi constitute the
borders of said regions. The edge e′ has an option that clashes with σi, i.e., this option is an
edge in Cσi . Then the endpoint y of e′ lies in the region bordered by edges in C and Cσi .
By 1-planarity, e′ cannot have an option not clashing with σi, as this would require crossing
C twice. ◀

▶ Theorem 3. 1-PIP can be solved in linear time for instances (G, Γ, F ) where G is a
triangulation.

Proof. The idea is to preprocess the instance until we are left with a set F ′ ⊆ F of edges
with two options each. The resulting instance can then be solved using a 2SAT formula.
We begin by computing all options for every e ∈ F , resulting in O(|V |) options, since each
option is an edge in the plane drawing Γ, crossed by a unique edge in F . Since Γ is plane,
we can get the triangles incident to each v ∈ V in cyclic order and also the options for
edges in F incident to v. Hence, we get the overall O(|V |) options for edges in F in O(|V |)
time. For an edge (u, v) ∈ F , u, v ∈ V , with two or more options we say that two options
are consecutive if the corresponding faces are consecutive in the cyclic order around u (or
v); see the options for (u, v) in Figure 2(c) for an illustration. We say a set of options is
cyclically consecutive if the corresponding edges induce a cycle in G; see the options for (u, v)
in Figure 2(d). Whenever an edge e has no option left, we stop and output no and if e has
exactly one option left, we insert it into Γ. Every time we insert an edge, we need to remove
at most four options of other edges plus all the options of the just inserted edge. Consider
an edge e = (u, v) ∈ F , u, v ∈ V , that has three or more options. We consider three cases.
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(a) There are at least three options for e, and at least one of them, σi, is not consecutive to
any of the other two; see rightmost option in Figure 2(b). We claim that σi is either
safe or never possible in a solution. If σi is not clashing with any other option, it is safe
and we add it. Otherwise, let w and x be the two endpoints of σi. Option σi can only
be clashing with two options for edges in F incident to w and two options for edges
in F incident to x. Moreover, any option for those edges clashes with σi. To see this,
consider the cycle C formed by u, v, and the endpoints of another option for e other
than σi (illustrated in red in Figure 2(b)). By σi being is a non-consecutive option, C

fulfills Property 2 for clashing options of edges in F incident to x and w.
(b) There are at least four consecutive non-cyclic options for e; see Figure 2(c). Let σi be

one of the inner options. Then, similar to the previous case, we can find a blocking
cycle as follows. If the option clashes with the rightmost (leftmost) option, we can find
a blocking cycle formed by u, v and the endpoints of the leftmost (rightmost) option.
Otherwise, the cycle formed by u, v and the first and last endvertex in the path formed
by the consecutive options of e forms a cycle fulfilling Property 2 for the endvertices of
σi.

(c) There are three consecutive or four cyclically consecutive options for e; see Figure 2(d).
Consider the middle option σi (or any option if there were four). If it is safe, we just
add it. Else, let w and x be the endpoints of σi and y, z the other endpoints of options
for e. Assume, w.l.o.g., that σi clashes with an option of an edge ew incident to w and
to vertex y. For σi to be a possible option in a solution, ew must have an option that
does not clash with it. There is only one possibility, and it implies that v, y, z or u, y, z

form a triangle. Assume, w.l.o.g., the former, so (y, z) is an edge in Γ. Let V⋄ be the set
of vertices {u, v, w, x, y, z} and G⋄ the octahedron subgraph of G induced by V⋄.
Edges in F with exactly one endpoint in V⋄ \ {u} have at most one option. Thus, we
can insert them first and see whether we are still in Case (d). Edges incident to u and to
a vertex not in V⋄ cannot clash with any option of an edge between vertices in V⋄. Thus,
we can solve the constant-size subinstance consisting of inserting such edges into G⋄
independently, taking into account the single-option edges that we might have inserted.

Once each edge has exactly two options we create a 2SAT formula containing one variable
per option and clauses that ensure exactly one option per edge in F ′ and exclude clashes.
This formula has size O(|V |) and is satisfiable iff the original instance has a solution. ◀

3 k≥1-PIP: Inserting a path or a matching is NP-complete

The membership of k≥1-PIP in NP is straightforward; we prove NP-hardness by reduction
from Planar Monotone 3-SAT. Let ϕ be a Boolean formula in CNF with variables
V = {x1, . . . , xn} and clauses C = {c1, . . . , cm}. Each clause has at most three literals and
is either positive (all literals are positive) or negative (all literals are negative). Furthermore,
there is a rectilinear representation Γϕ of the variable-clause incidence graph of ϕ such that
all variables and clauses are depicted as axis-aligned rectangles or bars connected via vertical
segments and all variables are positioned on the x-axis, all positive clauses lie above, and all
negative clauses lie below the x-axis; see Figure 3 for an example. This problem is known to
be NP-complete [10, 20]. The bars in Γϕ can be layered decreasingly from top to bottom. We
set the layer of the variables as layer zero, and insert two empty layers, one directly above
and one below the variable layer. We denote by L(c) the layer of clause c; see Figure 3.
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¬x1 ∨ ¬x2

−1

1

3

Figure 3 Rectilinear representation of the variable-clause incidence graph of a Planar Monotone
3-SAT instance.

In the following, starting from Γϕ, we construct a graph G = (V, E), its plane drawing Γ,
and the edge set F , which will be inserted into Γ in a specific way. We start with the case of
F forming a path (see Theorem 7) and describe the changes to our construction for F being
a matching afterwards (see Corollary 8).

We denote by H+ the graph consisting of an axis-aligned (k + 1) × (k + 1)-vertex grid,
where all the k + 1 vertices on the left side of the grid are connected to a vertex u, while all
vertices on the right are connected to a vertex v. We create chains of copies of H+, that
are connected via the vertices u, v. Further, we denote by H− the axis-aligned grid graph
consisting of (k − 1) × (k − 1) vertices. In our construction of G, we create grids of H−

graphs, by connecting two opposing vertical or horizontal sides of their respective vertex grid
via k − 1 non-crossing edges. The grid construction can also be connected to copies of H+

via k − 1 non-crossing edges, leaving out the corner vertices of the H+ vertex grid. If it is
necessary to connect a single vertex v to an H−, we connect v via a fan of k − 1 edges to one
side of the vertex grid. Note that for the case of k = 1, structures parameterized by k − 1
such as H− are meant to disappear from the construction. Figure 4(a) shows a structure
consisting of multiple copies of H+ and H− and their schematic representation used in more
complex figures. We say that an edge e ∈ F is ℓ-spanning if there are ℓ different copies of
H+ in the chain between its endpoints.

Figure 4 Different representations used in the drawings of our construction. (Left) every vertex
and every edge, (middle) a simplification, and (right) a highly abstracted representation.

The variable gadget. We replace each bar of a variable x in Γϕ by a variable gadget which
consists of an H+-chain of 4a+1 copies, where a is the maximum over the number of positive
and negative occurrences of x in ϕ. Let u1, . . . , u4a+2 be the vertices that join the copies of
H+ as well as the two unjoined vertices of the first and last H+ copy in the chain, from left
to right. Moreover, we mark for i ∈ {0, . . . , a − 1} the vertices u4i+3 as variable endpoints
(squares in Figure 5). Each such vertex is incident to two literal edges, which are connecting
the variable gadgets to adjacent layers and encode the truth value of the respective variables.
We call a literal edge exiting its variable endpoint upwards (downwards) positive (negative).

GD 2024



35:6 On k-Plane Insertion into Plane Drawings

¬xi

xi

¬xj ¬xj ¬xj

xj xj xj

xj = falsexi = true

Figure 5 Drawing of the variable gadget illustrating Lemma 4.

xj xk xℓ xj xk xℓ xj xk xℓ

Figure 6 Drawing of the clause gadget illustrating Lemma 5.

For every copy of H+ with position 4i + 2, 0 ≤ i < a, we connect the top and the bottom
side of its vertex grid to one copy of H− each. For each side – top and bottom – of the H+-
chain, the copies of H− will be connected by k − 1 non-crossing edges in F as schematically
shown in Figure 5. For an illustration showing all vertices and edges, see Figure 4(a).

For each variable gadget, its edges in F (bold red in Figure 5) then consist of alternating
3- and 1-spanning edges. Formally, for each i ∈ {0, . . . a − 1}, the path F passes through the
vertices u4i+1, u4i+4, u4i+3, u4i+6, u4i+5, except for a − 1, where we omit the last vertex.

For the remainder, we depict literal edges representing the value true in blue and the
ones representing false in orange, while the edges in F are colored in red; c.f. Figures 5, 6,
8, and 10. The proofs of statements marked with a (⋆) are available in [19].

▶ Lemma 4 (⋆). Let v be a variable gadget described as above. Then, in any k-planar
drawing containing v, its literal edges, and the edges Fv ⊆ F incident to vertices in v, either
all negative or all positive literal edges are crossed.

We think of the variable corresponding to the gadget as set to true if the negative literal
edges are crossed, and to false otherwise. We connect the variable gadgets by adding one
copy of H+ with a 1-spanning edge added to F in between them; see Figure 5.

The clause gadget. We describe the construction only for the positive clauses; it works
symmetrically for the negative ones. The clause gadget is depicted in Figure 6. It consists of
a chain of two copies of H+, followed by two edges, followed by two more copies of H+. We
mark the middle vertices of each of the two copies and the two edges as variable endpoints
and add one additional edge to them, their literal edge. Assume that all literal edges are
drawn on the same side as shown in Figure 6 and add edges to F as shown in red. Further,
we add three copies of H− on the top and two on the bottom side of the gadget, and connect
the left- and rightmost vertex in the gadget as well as the middle variable endpoint to the
corresponding ones. Similar to the variable gadget, these H− copies will be connected via
edges in F as shown in Figure 6.
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▶ Lemma 5 (⋆). Let c be a clause gadget drawn as described above. Then, in any k-planar
drawing containing c, its literal edges, and the edges Fc ⊆ F incident to vertices of c, at least
one literal edge has to be crossed by an edge in Fc.

Propagating the variable state. Again, we only describe the construction for layers > 0 as
the other side is symmetric. We insert H+-chains with 1-spanning edges added to F on every
layer > 0 of Γϕ and insert the clause gadgets into the respective layers as shown in Figure 8.
Further, we create variable endpoints on all layers > 0 in order to propagate the state of
the variable gadgets to clauses in higher layers. Layer 1 thereby ensures that each variable
endpoint can be connected to another endpoint, even if the respective literal edge is not used
in a clause, as this is crucial to ensure the alternating pattern in the variable gadgets; see,
e.g., x1 in Figure 8. For each pair of corresponding variable endpoints of a variable gadget
and clause gadget, we create a variable endpoint at a merged vertex in the H+-chain in each
layer i with 0 < i < L(c) and insert propagating edges, by prescribing F to span the two
neighboring copies of H+. Further, we connect every two consecutive variable endpoints on
layer j and j + 1 with 1 ≤ j < L(c) via a literal edge, as illustrated in Figure 8.

Both the variable and the clause gadget require each literal edge to have either k − 1
or k crossings. Since the k≥1-PIP problem requires Γ to be plane, it is not possible in our
construction to create these crossings with edges in G, hence the path formed by edges F has
to cross each literal edge k − 1 times, in addition to one potential crossing by the propagation
edges. To this end, we create a subpath Pi comprised of edges in F between each layer i

and layer i − 1 (if present), which is passing through copies of H− and crosses the literal
edges k − 1 times; see Figure 7 for different levels of abstraction used in our illustrations.
The subpath of F on every layer i is joined to Pi and Pi+1 (if present) by an H+-chain and
1-spanning edges. For k = 1 we simply connect the subpaths of F on each layer to the next
by aH+-chain and 1-spanning edges. Note that if k is even, the sides where the H+-chain is
located alternate, otherwise they connect on the same side of the drawing. Note that in our
illustrations showing final the constructions for the graph given in Figure 3, we assume an
even k. To ensure that the edges in each Pi do not exceed k crossings, we subdivide between
each literal edge by inserting vertically connected copies of H− as depicted in Figure 8.

Figure 7 Different representations of the alternating path Pi between layer i and layer i − 1.

▶ Lemma 6 (⋆). Let P = e1, . . . , eL(c) be a path of literal edges such that e1 is incident to a
variable endpoint of variable gadget v and eL(c) to one clause gadget c, if e1 is crossed in v,
then eL(c) is crossed by an edge of F incident to vertices on layer L(c) − 1.

Note that the first edge of P being uncrossed in the variable gadget does not necessarily
lead to its last edge being uncrossed in layer L(c) − 1. In fact, this is possible when multiple
literals evaluate to true for a clause gadget; e.g., the top-left orange edge in Figure 8.
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▶ Theorem 7 (⋆). k-PIP is NP-complete for every k ≥ 1, even if G is biconnected and F

forms a path.
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−3

−4

Layer

1

−1

x1 ∨ x3 ∨ x4

x1 ∨ x2 ∨ x3

x2 ∨ x3

x2x1 x3 x4

¬x1 ∨ ¬x2 ¬x3 ∨ ¬x4

¬x2 ∨ ¬x3 ∨ ¬x4

¬x1 ∨ ¬x2 ∨ ¬x4

¬x2 ∨ ¬x3 ∨ ¬x4

¬x1 ∨ ¬x2 ∨ ¬x4

¬x3 ∨ ¬x4

Figure 8 Solution (in red) of the k-PIP instance coming from the graph given in Figure 3.

Figure 9 Different representations of the k − 1 matching edges which substitute the alternating
path Pi in the case that F is a matching.

We can use essentially the same construction, but replace the alternating connections
between the layers by single edges to prove NP-hardness also for the case that F is a matching;
see Figures 9 and 10.

▶ Corollary 8. k-PIP is NP-complete for every k ≥ 1, even if G is biconnected and F forms
a matching.
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¬x3 ∨ ¬x4

Figure 10 k-PIP instance where F is a matching reduced from the graph given in Figure 3.

4 Conclusion

We introduced the k-PIP problem and showed that it is NP-complete for every k ≥ 1 even
when the given graph is biconnected and the inserted edges form a path or matching. We
also presented a linear-time algorithm for 1-PIP when the given graph is triangulated. This
naturally raises the question if the triconnected case of 1-PIP is also polynomial-time solvable.
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Abstract
Edge crossings in geometric graphs are sometimes undesirable as they could lead to unwanted
situations such as collisions in motion planning and inconsistency in VLSI layout. Short geometric
structures such as shortest perfect matchings, shortest spanning trees, shortest spanning paths, and
shortest spanning cycles on a given point set are inherently noncrossing. However, the longest such
structures need not be noncrossing. In fact, it is intuitive to expect many edge crossings in various
geometric graphs that are longest.
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conjectured that the longest spanning cycle must have a pair of crossing edges.

In this paper, we give a negative answer to the question and also refute the conjecture. We present
a framework for constructing arbitrarily large point sets for which the longest perfect matchings, the
longest spanning paths, and the longest spanning cycles are noncrossing.
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1 Introduction

Traversing points in the plane by a polygonal path or cycle possessing a desired property has
a rich background. For instance, the celebrated travelling salesperson problem asks for a
polygonal path or cycle with minimum total edge length [9, 23, 25]. In recent years, there
has been increased interest in paths and cycles with properties such as being noncrossing
[2, 16], minimizing the longest edge length [6, 12, 22], maximizing the shortest edge length [7],
minimizing the total or largest turning angle [1, 11, 18, 21], and minimizing the number of
turns [13, 17, 26] to name a few. The longest cycle – the MaxTSP – is NP-hard in Euclidean
spaces of dimension ≥ 3, but the complexity of the planar MaxTSP is unknown [20, 10].
Paths and cycles that have combinations of these properties have also attracted attention.
For example, simultaneously being noncrossing and having maximum total edge length [3, 19]
is difficult to satisfy: to achieve a larger length we typically introduce more crossings.

Edge crossings in geometric graphs are usually undesirable as they have the potential of
creating unwanted situations such as collisions in motion planning and inconsistency in VLSI
layout. They are also undesirable in the context of graph drawing and network visualization
as they make drawings more difficult to read and use. Short geometric structures such as
shortest perfect matchings, shortest spanning trees, shortest spanning paths, and shortest
spanning cycles are inherently noncrossing. This property, however, does not necessarily
hold if the structure is not shortest. For long structures such as longest perfect matchings,
longest spanning trees, longest spanning paths, and longest spanning cycles – the other end
of the spectrum – it seems natural to expect many crossings. Counting crossings in geometric
graphs and finding geometric structures with a minimum or maximum number of crossings
are active research areas in discrete geometry. The study of this type of problem attracted
more attention after the work of Aronov et al. [8] in 1994, who showed that any set of n

points in the plane in general position admits a crossing family (a set of pairwise intersecting
segments) of size Ω(

√
n). They also conjectured that the true lower bound is linear in n.

The current best lower bound, n1−o(1), was established by Pach et al. [24] in 2019.
The noncrossing property of shortest structures is mainly ensured by the triangle inequality.

The triangle inequality, as noted by Alon et al. [3], also implies that the longest structures
often have crossings because a structure usually gets longer by creating more crossings. Alon
et al. [3] studied the problem of finding longest noncrossing structures (such as matchings,
paths, or trees). Some of their initial results have been improved and extended by Dumitrescu
and Tóth [19] (for matchings, paths, and cycles), by Biniaz et al. [14] and by Cabello et al. [15]
(for trees). Along this direction, one might wonder whether a longest structure (defined on
an arbitrarily large point set) is necessarily crossing. This was explicitly asked by Álvarez-
Rebollar et al. [4]. Among other interesting results, they presented arbitrarily large planar
point sets for which the longest perfect matching is noncrossing. They asked the following
question and proposed the following conjecture:

▶ Question 1 (Álvarez-Rebollar et al. [4]). For every sufficiently large planar point set, must
the longest spanning path have two edges that cross each other?

▶ Conjecture 1 (Álvarez-Rebollar et al. [4]). The longest spanning cycle on every sufficiently
large set of points in the plane has a pair of crossing edges.
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The “sufficiently large” condition in the question and conjecture makes sense, as otherwise
one can take any 3 points in general position, or any 4 points that are not in a convex
position – for such point sets, all spanning paths and cycles are noncrossing.

In the other direction, one might wonder about maximizing the number of crossings in
cycles. Here, we would like to highlight another result of Álvarez-Rebollar et al. [4, 5]. Let
C(n) be the largest number such that any set of n points in the plane admits a spanning
cycle with at least C(n) pairs of crossing edges. Álvarez-Rebollar et al. [4, 5] established
the following lower and upper bounds: n2/12 − O(n) < C(n) < 5n2/18 − O(n). In other
words, any set of n points in the plane admits a spanning cycle with at least n2/12 − O(n)
crossings, and there is a family of point sets that does not admit any cycle with more than
5n2/18 − O(n) crossings.

1.1 Our contributions
In this paper, we provide negative answers to both Question 1 and Conjecture 1. For any
integer n ≥ 1 we present a set of n points in the plane for which the longest spanning path is
unique and noncrossing. Similarly, for any integer n ≥ 4, we present a set of n points in the
plane for which the longest spanning cycle is unique and noncrossing. To build such point
sets, we use the following framework: First, we choose a set P of points on the x-axis for
which the longest structure may not be unique. Then, we assign new y-coordinates to points
in P to obtain a new point set P ′ for which the longest structure corresponds to one in P

and is also unique and noncrossing. In Section 6, we present some structural properties of
longest paths and cycles, which may be of independent interest.

1.2 Preliminaries
All point sets considered in this paper are in the Euclidean plane. A geometric graph is a
graph with vertices represented by points and edges represented by line segments between the
points. Let P be a finite point set. A spanning path for P is a path drawn with straight-line
edges such that every point in P lies at a vertex of the path and every vertex of the path
lies at a point in P . A spanning cycle is defined analogously. In other words, a spanning
path is a Hamiltonian path in the complete geometric graph on P , and a spanning cycle is a
Hamiltonian cycle in this graph.

Consider two line segments, each connecting a pair of points in P . If the interiors of the
segments intersect, then we say that they cross; this configuration is called a crossing. A
path or a cycle is called noncrossing if its edges do not cross each other. We denote the
undirected edge between two points p and q by pq, the directed edge from p towards q by
(p, q), and the Euclidean distance between p and q by |pq|. The length of a geometric graph
G is the sum of the lengths of its edges, and we denote it by |G|.

2 Longest Paths and Cycles on the Real Line

In this section we characterize longest paths and cycles in dimension one. These observations
play a pivotal role in our constructions in the plane (Sections 3 and 4). We say that an edge
e intersects a point p if the intersection of e and p is not empty (the intersection could be an
endpoint of e). For a sorted set of 2k+1 numbers, the median is the number with rank k+1,
and for a sorted set of 2k numbers, the median is the mean of the two numbers with ranks k

and k+1.
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▶ Lemma 2. Let P be a set with an even number of points in R, i.e., in dimension one.
The endpoints of any longest spanning path on P lie on different sides of the median of P .

Proof. Let P = {p1, . . . , pn} and assume w.l.o.g. that 0 is the median of P (in particular,
0 /∈ P ). Let H be a longest spanning path on P . Orient the edges of H to make it a directed
path. Let ps and pe be the starting and ending points of H, respectively. For the sake of
contradiction, assume that ps and pe have the same sign, which we may assume, due to
symmetry, to be positive. Thus ps, pe > 0. Then, the sum of degrees of vertices in H to the
left of the origin is 2 more than the sum of degrees of vertices to the right. Therefore, H must
have a directed edge (pa, pb) where pa, pb < 0. If pb < pa, then by replacing (pa, pb) with the
undirected edge pspb we obtain a longer undirected path; and if pb > pa by replacing (pa, pb)
with pepa we obtain a longer undirected path. Both cases lead to a contradiction. ◀

▶ Lemma 3. Let P be a set with an even number of points in R, i.e., in dimension one. Let
H be a spanning path on P . Then H is a longest spanning path if and only if

(i) every edge of H intersects the median of P , and
(ii) the two endpoints of H are the two points closest to the median of P .

Proof. Let P = {p1, . . . , pn} so that pi < pj for all i < j ∈ {1, . . . , n}, and assume w.l.o.g.
that 0 is the median of P . Note that 0 /∈ P since n is even. First, we prove by contradiction
that if H is a longest spanning path, then (i) and (ii) hold.

Suppose that (i) does not hold. Orient the edges of H to make it a directed path. Let
(pa, pb) be an edge of H that does not intersect the median. Due to symmetry, assume that
pa, pb < 0. By Lemma 2, the endpoints of H lie on different sides of the median. This implies
that both sides have the same sum of vertex degrees. Thus H must have an edge (pc, pd)
such that c, d > 0. By replacing these edges with papc and pbpd we obtain an (undirected)
spanning path that is longer than H because |pa − pc| + |pb − pd| > |pa − pb| + |pc − pd|. This
contradicts H being a longest path.

Now suppose that (ii) does not hold: without loss of generality pn/2 is not an endpoint
of H. (The case for pn/2+1 can be handled symmetrically). Then H has an endpoint pa

with a < n/2. Orient the edges of H so that the path is directed from pa towards the other
endpoint. Let (pn/2, pb) be the outgoing edge from pn/2. By part (i), we have pb ≥ 0. By
removing (pn/2, pb) we obtain two paths, and pb is an endpoint on one of those paths. Next,
join the paths with a new edge (pa, pb). Thus we obtain an (undirected) spanning path that
is longer than H because |pa − pb| > |pn/2 − pb|. This contradicts H being longest.

Finally, we prove that any spanning path H that satisfies (i) and (ii) is longest, using a
direct proof. Consider a longest spanning path L on P . By the sufficiency proof, (i) and
(ii) hold for L. This implies that the positive interval [pn/2, pn/2+1] is contained in each of
the n−1 edges, hence it contributes to the length of L with multiplicity n − 1. Similarly, for
any i ∈ {2, . . . , n/2} the positive interval [pn/2+i−1, pn/2+i] contributes to the length of L

by multiplicity n − 2i. A similar argument holds for negative intervals. See Figure 1. On
the other hand, any spanning path (including H) that satisfies (i) and (ii) receives the exact
same multiplicities from the corresponding intervals. Therefore H and L have the same
length, and hence H is also a longest path. ◀

A statement similar to that of Lemma 3 can be proved for paths with an odd number of
points (in this case one endpoint is the median itself and the other endpoint is the closest
point to the median). However, we will not use this in our construction.
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pn/2+1 pnpn/2p2p1 24

n-1 multiplicity

...

Figure 1 Illustration of a longest path for a point set on a line, for the case where the number
of points, n, is even. Numbers below intervals [pn/2+i, pn/2+i+1] represent the multiplicity of the
contribution of the corresponding intervals to the length of the longest path.

▶ Lemma 4. Let P be a finite set in R, i.e., in dimension one.
(i) A spanning cycle on P is longest iff each of its edges intersects the median of P .
(ii) If P contains an odd number of points, then for any longest spanning cycle the two

edges incident to the median lie on opposite sides of it.
(iii) Assume that P contains n = 2k+1 points and there is an interval I of length h > 0

between the leftmost k+1 and the rightmost k points. Then in any longest spanning
cycle, n−1 = 2k edges contain the interval I; and if a spanning cycle has fewer than 2k

edges that contain I, then it is at least 2h shorter than a longest cycle.

Proof. Let P = {p1, . . . , pn} so that pi < pj for all i < j ∈ {1, . . . , n}, and assume w.l.o.g.
that 0 is the median of P . Note that 0 /∈ P if n is even, and p⌈n/2⌉ = 0 if n is odd.

First we prove the sufficiency of (i) by contradiction. Let C be a longest cycle on P , and
orient its edges to obtain a directed cycle. Suppose, for the sake of contradiction, that the
edge (pa, pb) of C does not intersect the median. We may assume w.l.o.g. that pa, pb < 0.
The sum of vertex degrees strictly on the left and right side of the median are the same,
and the edges that contain 0 in their interior contribute 1 to both sums. Consequently, C

contains an edge (pc, pd) with pc, pd > 0; or (when n is odd) there are two edges incident to
the median, say (pc, 0) and (0, pd) with pc, pd > 0. In the first case, we can replace edges
(pa, pb) and (pc, pd) with (pa, pc) and (pb, pd). In the second case, replace (pa, pb) and (pc, 0)
with (pa, pc) and (pb, 0). In both cases, we obtain a longer (undirected) spanning cycle,
contradicting the maximality of C.

The necessity of (i) can be proved by a counting argument similar to that of Lemma 3-(i).
Now, we prove (ii) by contradiction. Without loss of generality, let 0 ∈ P be the median

of P . Suppose that the median is incident to two edges (pc, 0) and (0, pd) with pc, pd > 0.
Then, there is a point in P to the right of 0 incident to an edge of C that does not contain 0
in its interior. Denote this edge by (pa, pb), where pa, pb < 0. We can replace edges (pa, pb)
and (pc, 0) with (pa, pc) and (pb, 0) to obtain a longer spanning cycle, contradicting the
maximality of C.

To prove the first part of (iii), note that if n = 2k+1, then the median is the (k+1)-st
point of P , that we denote by p0. Let C be a longest cycle on P . It is implied from (i) and
(ii) that exactly one edge of C (which is incident to p0) does not contain I. The remaining
n−1 = 2k edges contain I.

For the second claim in (iii), let C be a spanning cycle on P in which fewer than 2k

edges contain I. Orient the edges of C to obtain a directed cycle. The sum of degrees of the
leftmost k+1 (resp., rightmost k) vertices is 2k+2 (resp., 2k), and the edges containing I have
fewer than 2k left (resp., right) endpoints. Consequently, the leftmost k+1 (resp., rightmost
k) points in P induce at least two edges (resp., one edge) of C. Therefore, C contains two
edges, (pa, pb) and (pc, pd), such that pa, pb are to the left of I and pb, pd are to the right of
I. We can replace these two edges with (pa, pc) and (pb, pd), to obtain a spanning cycle C ′

that traverses I two more times than C. In particular, we have |C ′| ≥ |C| + 2 |I| = |C| + 2h,
hence |C| ≤ |C ′| − 2h ≤ |Cmax| − 2h, where Cmax is a longest cycle on P . ◀
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3 Noncrossing Longest Paths

Let n ≥ 1 be an integer. In this section, we construct n points for which the longest spanning
path is unique and noncrossing. This can be easily observed for n < 5: For example, for
n = 4, any spanning path of the vertices of a triangle and a point in the interior is noncrossing.
Thus, we will now assume that n ≥ 5. In Section 2, we uncovered some structural properties
of longest paths for n points on a line. Here we show how to construct a 2-dimensional point
set starting with n points on the x-axis and then assigning y-coordinates to the points. We
show that the longest path is unique and noncrossing. We describe our construction for the
case where n is even; the construction for the case where n is odd follows with some minor
changes. The following theorem summarizes our result in this section.

▶ Theorem 5. For every integer n ≥ 1 there exists a set of n points in the plane for which
the longest spanning path is unique and noncrossing.

In Section 3.1 we give an overview of our construction for an even number of points. The
details and proofs are given in Section 3.2. The case of odd paths is considered in Section 3.3.

3.1 A path with an even number of points: An overview

For k ≥ 3, consider a set P of n = 2k points pi on the x-axis such that p1 = (0, 0) and
pi = (i, 0) for i = −1, ±2, . . . , ±k, as illustrated in Figure 2(a). Our construction would
work even if we set p1 = (1, 0); however, for a reason that will become clear in Section 3.3,
we set p1 differently. The longest spanning path for this point set is not unique. In fact,
Lemma 3 implies that any spanning path with endpoints p1 and p−1 and with all edges
crossing the y-axis is a longest path. Conversely, any longest path must have endpoints p1
and p−1, and its edges must cross the y-axis. Let H be the set of these paths. Let P ′ be the
point set obtained by assigning to each point pi a y-coordinate yi such that, as illustrated in
Figure 2(b), the following holds:

1
8k

= y1 ≫ y−2 ≫ y2 ≫ y−3 ≫ y3 ≫ · · · ≫ y−k ≫ yk ≫ y−1 = 0.

The value y1 is much larger than y−2, which is in turn much larger than y2 and so on.
Notice that the largest y-coordinate y1 is 1/8k which is much smaller than 1. Due to the
small y-coordinates, a longest path H ′ on P ′ corresponds to a path H ∈ H. The length
of H ′ is roughly the length of H plus a very small value ∆(H ′), which depends on the
new y-coordinates. Let e1 be the only edge of H ′ incident to p1. Since p1 has a very large
y-coordinate compared to other points, the contribution of e1 to ∆(H ′) is larger than the
contribution of other edges. The contribution of e1 is maximized if it connects p1 to the
nearest plausible neighbor, which is p−2; this can be observed from Figure 2(b). Therefore
e1 = p1p−2. By a similar argument, p−2 gets connected to p2, and so on. It follows that
the path H ′ is unique and it is p1, p−2, p2, p−3, p3, . . . , p−k, pk, p−1. This path is y-monotone,
and hence noncrossing; see Figure 2(b).

Note. Figures 2(a) and 2(b) are not to scale. The y-coordinates should be small enough
so that all points lie almost on the x-axis (We exaggerated the y-coordinates to facilitate
readability). Moreover, if we orient the path from p1 towards p−1, then the extension of
every directed edge intersects all edges that follow.
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p1

p2 pk

p−1p−2p−k

ℓ2ℓk

∆2

∆k

1/8k

(a)

p1

p2
pk

p−1

p−2

p−k

1/8k

δ

p−k

(b)

Figure 2 Illustration of the construction of a longest path for 2k points. The figure is not to
scale as the real y-coordinates are very small so that the points lie almost on the x-axis. (a) Lifting
p1 to the y-coordinate 1/8k. (b) The final longest path.

3.2 A path with an even number of points: Details

Recall the set P of 2k points, k ≥ 3, on the x-axis, described in the previous section and
illustrated in Figure 2(a). We say that an edge e intersects the y-axis if the intersection
of e and the y-axis is not empty (the intersection could be an endpoint of e). The longest
paths for points on a line were characterized in Lemma 3. Denote by H the set of all longest
spanning paths on P .

▶ Lemma 6. Let 0 ≤ ε ≤ 1
8k be a real number. Suppose that every point in P is perturbed by

a distance of at most ε. Let P ′ be the new point set after perturbation. Then, the order of
the points along any longest path for P ′ is the same as the order of the points along some
path in H.

Proof. The length of any path on P is an integer. Therefore, any path in H is at least 1
unit longer than any path not in H.

Let H ′ be any longest path on P ′. The difference between its length and the length of
any path in H is at most (2k−1) · 2ε because H ′ has 2k−1 edges, each edge has 2 endpoints,
and each endpoint is at distance at most ε from its corresponding point in P . Since ε ≤ 1

8k

the difference is less than 1/2. Therefore, H ′ cannot correspond to a path that is not in H,
so H ′ corresponds to a path in H with the same order of points. ◀

GD 2024
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Our plan is to assign new y-coordinates to the points of P to obtain a point set P ′ for
which the longest path is y-monotone and unique. The new y-coordinates will be at most 1

8k ,
and thus, by Lemma 6, the longest path H ′ of P ′ will correspond to a path in H. We will
make H ′ correspond to the path p1, p−2, p2, p−3, p3, . . . , pk, p−1, which is in H (by Lemma 3)
and depicted in Figure 2(b). We assign to each point pi the y-coordinate yi such that the
following holds:

y1 ≫ y−2 ≫ y2 ≫ y−3 ≫ y3 ≫ · · · ≫ y−k ≫ yk ≫ y−1.

We set y1 = 1
8k , y−1 = 0, and use the following lemma to identify the remaining y-coordinates.

▶ Lemma 7. There exists a real number δ, with 0 < δ < y1, such that if 0 ≤ yi ≤ δ for each
i ̸= 1 then the longest path on P ′ connects p1 to p−2.

Proof. Since each yi is at most 1/8k, Lemma 6 implies that any longest path H ′ on P ′

corresponds to a path H in H. Due to small y-coordinates, we have |H ′| = |H| + ∆(H ′) for
some small value ∆(H ′) ≥ 0 which depends on the new y-coordinates. Specifically, we have

|H ′| =
∑

(pi,pj)∈E(H′)

|pipj | =
∑

(pi,pj)∈E(H′)

√
|i − j|2 + |yi − yj |2

= |H| +
∑

(pi,pj)∈E(H′)

(√
|i − j|2 + |yi − yj |2 − |i − j|

)
= |H| + ∆(H ′),

where 0 ≤
√

|i − j|2 + |yi − yj |2 − |i − j| ≤ |yi − yj | ≤ max{yi, yj}.
Recall from Lemma 3 that p1 is an endpoint of any longest path in H. Moreover, p1 is

connected to a point (different from p−1) to the left of the y-axis. For j ∈ {2, . . . , k} let ℓj

be the Euclidean distance between p1 and the point (−j, 0), and let ∆j be the difference of
their x-coordinates as in Figure 2(a). The contribution of p1p−j to |H ′| would be at least
ℓj − δ (when p−j has y-coordinate δ) and at most ℓj (when p−j has y-coordinate 0). The
contribution of the corresponding edge to |H| would be ∆j . Hence the contribution of p1p−j

to ∆(H ′) would be at least ℓj − δ − ∆j and at most ℓj − ∆j . An easy calculation shows that

ℓ2 − ∆2 > ℓ3 − ∆3 > · · · > ℓk − ∆k;

this is also implied by the fact that ∆i+1−∆i = 1 while ℓi+1−ℓi < 1. If we set δ <

(ℓ2 − ∆2) − (ℓ3 − ∆3), then the contribution of p1p−2 to ∆(H ′) is at least

ℓ2 − δ − ∆2 > ℓ2 − ∆2 − ((ℓ2 − ∆2) − (ℓ3 − ∆3)) = ℓ3 − ∆3,

which is larger than the contribution of any other plausible edge p1p−j . Since the y-coordinates
of all other points are less than δ, any other edge of H ′ contributes less than δ to ∆(H ′). By
setting

δ = (ℓ2 − ∆2) − (ℓ3 − ∆3)
2k − 1 ,

the contribution of p1p−2 exceeds the sum of the contributions of the remaining 2k − 2 edges
of H ′. Thus, for this choice of δ the longest path H ′ connects p1 to p−2. ◀

By Lemma 7, we have a specific value δ such that the longest path includes edge (p1, p−2).
Now we set y−2 = δ and repeat the arguments of Lemma 7, with y−2 and p−2 (instead of y1
and p1). This implies that the next edge of the longest path will connect p−2 to p2. Repeating
this 2k−5 more times, we obtain the unique longest path p1, p−2, p2, p−3, p3, . . . , pk, p−1, as in
Figure 2(b); in each of the last two steps, there is only one remaining plausible edge (namely,
p−kpk from p−k, and pkp−1 from pk). This path is y-monotone and hence is noncrossing.
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3.3 A path with an odd number of points
In this section, we obtain a noncrossing longest path with an odd number of points. Here
is the place where we use the coordinate (0, 0) of the point p1 ∈ P . We show that our
construction for even paths leads to a construction for odd paths by simply removing p1.
Thus we do not need to repeat the lemmas of Section 3.2 for the odd case.

We claim that if we remove the point p1 from the path H ′ constructed on P ′ in the
previous section, the remaining path, i.e., H ′′ = p−2, p2, p−3, p3, . . . , pk, p−1, is the longest
path for the remaining 2k−1 points. By construction, |H ′| = |H ′′| + |p1p−2|. Assume, for
the sake of proof by contradiction, that the longest path L for the remaining points is longer
than H ′′. Among the two endpoints of L, let pi be an endpoint that is not p−1. Due to our
choices of the x- and y-coordinates we have |p1pi| ≥ |p1p−2|. Therefore the concatenation of
L and p1pi would give a path on P ′ of length |L| + |p1p−2| which is larger than |H ′|. This
contradicts H ′ being the longest path on P ′.

4 Noncrossing Longest Cycles

Let n ≥ 3 be an integer. In this section, we construct a set of n points for which the longest
spanning cycle is unique and noncrossing. For n = 3, every spanning cycle is noncrossng.
For n = 4, we take three vertices of a triangle and a point in the interior. Thus, we assume
that n ≥ 5.

▶ Theorem 8. For every integer n ≥ 3 there exists a set of n points in the plane for which
the longest spanning cycle is unique and noncrossing.

In Section 4.1 we give an overview of our construction for an even number of points.
The details and proofs are given in Section 4.2. For an odd number of points we sketch a
construction in Section 4.3.

4.1 A cycle with an even number of points: An overview
Let n ≥ 6 be an even number. Then either n = 4k or n = 4k−2 for some integer k. To
simplify the indexing (of points and y-coordinates) in our construction, from now on we
assume that n = 4k−2. Let P be a set of n points, consisting of 2k points pi = (i, 0) for
i = ±1, ±2, . . . , ±k and 2k−2 points p′

i = (i+ϵ, 0) for i = −1, ±2, . . . , ±(k−1), k, where
ϵ > 0 is a small value to be determined; see Figure 3. (The construction for n = 4k is
similar; it consists of P and two additional points pk+1 = (k+1, 0) and p′

−k = (−k+ϵ, 0).)
Our construction for cycles is somewhat similar to that of paths in the sense that our cycle
consists of two y-monotone interior-disjoint paths between p1 and p−k (or between p1 and
pk+1 when n is a multiple of 4). Although the main idea sounds simple, the noncrossing
property of the longest cycle is not straightforward and involves a more detailed analysis.

Lemma 4 implies that a spanning cycle on P is longest if and only if each of its edges
intersects the y-axis. Let C be the set of all longest spanning cycles on P . As illustrated
in Figure 3, we obtain a point set P ′ by assigning to each point pi and p′

i the respective
y-coordinates yi and y′

i such that:

1
16k

= y1 ≫ y−1 ≫ y′
2 ≫ y−2 ≫ y′

3 ≫ · · · ≫ y′
k ≫ y−k = 0.

For each i ∈ {2, 3, . . . , k} we choose yi such that pi lies just below (almost on) the segment
p′

−i+1p′
i, and for each i ∈ {−1, −2, . . . , −(k−1)} we choose y′

i such that p′
i lies just below

(almost on) the segment p−ipi.
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36:10 Noncrossing Longest Paths and Cycles

Due to the small y-coordinates, any longest cycle C ′ on P ′ corresponds to a cycle C ∈ C.
Moreover |C ′| = |C| + ∆(C ′) for some small value ∆(C ′) which depends on the new y-
coordinates. Since p1 has the largest y-coordinate, the contribution of the two edges of C ′

that are incident to p1 (say e1 and e2) is maximized when they are connected to the nearest
plausible neighbors which are p−1 and p′

−1. We will choose the y-coordinates in such a way
that the contribution of e1 and e2 is larger than the sum of the contributions of the remaining
edges of the cycle. Thus C ′ must connect p1 to p−1 and p′

−1. Similarly, by a suitable choice
of y-coordinates, we enforce C ′ to connect p−1 and p′

−1 to the nearest plausible neighbors
which are p2 and p′

2, and so on. By repeating this process, the longest cycle C ′ would be the
concatenation of two paths p1, p−1, p2, p−2, . . . , p−k and p1, p′

−1, p′
2, p′

−2, . . . , p′
k, p−k.

p1

p2

p−1

p−k

p′−1

p′2

pk

ϵ ϵϵϵ

1 2 k−1−2y−k=0

y1 = 1/16k

y−1

y′2
p′k
y′k

y−2

p−2
p′−2

< ϵ

Figure 3 Illustration of the construction of a longest cycle for 4k−2 points. The figure is not to
scale. The y-coordinates should be small enough so that all points lie almost on the x-axis.

4.2 A cycle with an even number of points: Details
Recall the point set P from the previous section (the y-coordinates and the value of ϵ > 0
will be determined in this section). The longest cycles for points on a line were characterized
in Lemma 4. Let C be the set of all longest cycles on P .

▶ Lemma 9. Any cycle in C is at least 1 unit longer than any cycle not in C.

Proof. Consider any cycle D that is not in C. Lemma 4 implies that D has an edge that
does not intersect the y-axis. Orient the edges of D to make it a directed cycle. Since the
number of points to the left of the y-axis is the same as the number of points to its right, D

has two directed edges (pa, pb) and (pc, pd) such that a, b ≤ −1 and c, d ≥ 1. By replacing
these edges with papc and pbpd we obtain an (undirected) spanning cycle D′ such that

|D′| − |D| = (|papc| + |pbpd|) − (|papb| + |pcpd|) ≥ 2|p1p′
−1| = 2(2 − ϵ) > 1.

Since the length of any cycle C in C is at least |D′|, we get |C| > |D| + 1. ◀

▶ Lemma 10. Let 0 ≤ ε ≤ 1/16k be a real number. Suppose that every point of P is perturbed
by a distance of at most ε. Then the order of the points along any longest cycle of the new
point set is the same as the order of the points along some cycle in C.
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Proof Sketch. The proof is similar to that of Lemma 6 and uses Lemma 9. The parameter
ε is small enough such that the total change in the length of any spanning cycle on P is
less than 1/2. Together with Lemma 9, this implies that any longest cycle on the perturbed
points corresponds to a cycle in C. ◀

To obtain P ′ we only need to describe the following y-coordinates:

y1 ≫ y−1 ≫ y′
2 ≫ y−2 ≫ y′

3 ≫ · · · ≫ y′
k ≫ y−k.

The y-coordinates of the remaining points would then follow as outlined in the previous
section (more details are given after Lemma 12). We set y1 = 1

16k and y−k = 0. We use the
following lemma (which can be proven similarly to Lemma 7) to assign the y-coordinates.

▶ Lemma 11. There exists a real number δ, ϵ ≤ δ < y1, such that if 0 ≤ yi ≤ δ for i ̸= 1
and 0 ≤ y′

i ≤ δ for i ̸= −1, then every longest cycle of P ′ connects p1 to p−1 and p′
−1.

Proof. Lemma 10 implies that any longest cycle C ′ on P ′ corresponds to a cycle C in C. Due
to small y-coordinates, we have |C ′| = |C| + ∆(C ′) for some small value ∆(C ′) ≥ 0 which
depends on the new y-coordinates. Lemma 4 implies that C ′ connects p1 to two points to the
left of the y-axis. Similar to Lemma 7, for j ∈ {1, . . . , k} define ℓj as the Euclidean distance
between p1 and the point (−j, 0), and define ∆j as the difference of their x-coordinates.
Analogously, for j ∈ {1, . . . , k−1} define ℓ′

j and ∆′
j for p1 and the point (0, −j + ϵ). Every

edge that connects p1 to a point to the left of the y-axis has the following contributions to
|C|, |C ′| and ∆(C ′).

For j ∈ {1, . . . , k} the contribution of p1p−j to |C ′| is at least ℓj − δ and at most ℓj . The
contribution of the corresponding edge to |C| is ∆j . Hence the contribution of p1p−j to
∆(C ′) is at least ℓj − δ − ∆j and at most ℓj − ∆j .
For j ∈ {2, . . . , k−1} the contribution of p1p′

−j to |C ′| is at least ℓ′
j − δ and at most ℓj .

The contribution of the corresponding edge to |C| is ∆′
j . Thus the contribution of p1p′

−j

to ∆(C ′) is at least ℓ′
j − δ − ∆′

j and at most ℓ′
j − ∆′

j .
The contribution of p1p′

−1 to |C ′| is at least ℓ′
1 − δ − ϵ because the y-coordinate of p′

−1
is at most δ + ϵ; to verify this observe that y−1 ≤ δ and y′

−1 − y−1 < ϵ because p′
−1 is

almost on p1p−1 whose slope is less than 1; also see Figure 3 (recall that the figure is
not to scale). The contribution of the corresponding edge to |C| is ∆′

1. Therefore the
contribution of p1p′

−1 to ∆(C ′) is at least ℓ′
1 − δ − ϵ − ∆′

1 and at most ℓ′
1 − ∆′

1.

Observe that

ℓ′
1 − ∆′

1 > ℓ1 − ∆1 > ℓ′
2 − ∆′

2 > ℓ2 − ∆2 > · · · > ℓk − ∆k.

If we set δ < 1
2 ((ℓ1 − ∆1) − (ℓ′

2 − ∆′
2)), then the contributions of p1p−1 and p1p′

−1 to ∆(C ′)
would respectively be at least

ℓ1 − δ − ∆1 > ℓ1 − 2δ − ∆1 > ℓ1 − ∆1 − ((ℓ1 − ∆1) − (ℓ′
2 − ∆′

2)) = ℓ′
2 − ∆′

2, and

ℓ′
1 − δ − ϵ − ∆′

1 ≥ ℓ′
1 − 2δ − ∆′

1 > ℓ′
1 − ∆′

1 − ((ℓ1 − ∆1) − (ℓ′
2 − ∆′

2)) > ℓ′
2 − ∆′

2,

which are larger than the contribution of any other edge p1p−j and p1p′
−j . By setting

δ = 1
2

(ℓ1 − ∆1) − (ℓ′
2 − ∆′

2)
4k − 2

the contribution of each of p1p−1 and p1p′
−1 would be even larger than the sum of the

contributions of the remaining 4k−4 edges of C ′. Thus, for this choice of δ the longest cycle
C ′ connects p1 to p−1 and p′

−1. ◀
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We choose δ as in the proof of Lemma 11, and set y−1 = δ. Then we set y′
−1 so that p′

−1 lies
just below (almost on) the segment p1p−1, as in Figure 3. Notice that δ < y′

−1 < δ+ϵ = y−1+ϵ.
Then, by Lemma 11 the longest cycle connects p1 to p−1 and p′

−1. By Lemma 4, the other
edges incident to p−1 and p′

−1 must cross the y-axis.

▶ Lemma 12. There exists a real δ, ϵ ≤ δ < y−1, such that if 0 ≤ yi ≤ δ for i ̸= −1, 1, 2
and 0 ≤ y′

i ≤ δ for i ̸= −1, then every longest cycle of P ′ connects p−1 to p2 and p′
−1 to p′

2.

Proof. Recall the longest cycle C ′ from the proof of Lemma 11. We choose δ small enough
such that the contribution of each of p−1p2, p−1p′

2, p′
−1p2, and p′

−1p′
2 to ∆(C ′) is larger than

the sum of the contributions of the remaining 4k−6 edges of C ′. This would force C ′ to
connect p−1 and p′

−1 to p2 and p′
2.

By an argument similar to that of Lemma 11 we can find a parameter δ1 that forces C ′

to connect p−1 to p2 or p′
2 (δ1, y−1, p−1, p2, and p′

2 play the roles of δ, y1, p1, p′
−1, and p−1,

respectively). Similarly, we can find a parameter δ′
1 that forces C ′ to connect p′

−1 to p2 or p′
2

(where δ′
1, y′

−1, p′
−1, p2, and p′

2 play the roles of δ, y1, p1, p′
−1, and p−1, respectively). Then

we choose δ = min{δ1, δ′
1}.

Our choice of δ ensures that C ′ connects p−1 and p′
−1 to p2 and p′

2. Notice that p−1
and p′

−1 cannot both connect to p2 or to p′
2 because it closes the cycle. Thus C ′ must use

p−1p2 and p′
−1p′

2 or p−1p′
2 and p′

−1p2. We show that C ′ uses p−1p2 and p′
−1p′

2. See Figure 4.
Recall that p2 is almost on the edge p′

−1p′
2, and hence |p′

−1p′
2| ≈ |p′

−1p2| + |p2p′
2|. By the

triangle inequality we get |p−1p2| + |p2p′
2| > |p−1p′

2|. Adding these two yields

|p−1p2| + |p′
−1p′

2| > |p−1p′
2| + |p′

−1p2|, (1)

which means that C ′ connects p−1 to p2 and p′
−1 to p′

2. ◀

p′−1

p−1

p2
p′2

Figure 4 The longest cycle connects p−1 to p2 and p′
−1 to p′

2.

We choose our new δ as in the proof of Lemma 12, and set y′
2 = δ. Now that the point p′

2
is fixed we can choose the y-coordinate of p2 in the triangle △p−1p′

−1p′
2 and very close to the

segment p′
−1p′

2 such that (1) holds. This forces the longest cycle to use p−1p2 and p′
−1p′

2. By
repeatedly applying Lemma 12, the longest cycle will use the edges pip−i and p′

ip
′
−i (for i > 0)

and the edges pip−i+1 and p′
ip

′
−i+1 (for negative i < 0). Therefore the longest cycle on P ′

is the concatenation of two paths: p1, p−1, p2, p−2, . . . , p−k and p1, p′
−1, p′

2, p′
−2, . . . , p′

k, p−k.
This cycle is unique and noncrossing.

Each time we apply Lemma 12 we obtain a new value for δ. In each application we need
δ to be greater than or equal to our fixed parameter ϵ. For this purpose, we choose ϵ to be
the parameter δ that is obtained in the last application of Lemma 12, i.e., δ = y′

k.

4.3 A cycle with an odd number of points: An overview
Our construction uses the longest paths of Section 3.2. First we observe that our path
construction can be generalized to any set of x-coordinates.
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▶ Lemma 13. For every even integer n ≥ 4, every set P of n real numbers, and every δ > 0
such that the δ-neighborhood of the median of P does not contain any points in P , there
exists a set P ′ of n points in the plane with the following properties:
1. the x-projection of P ′ is P ;
2. all y-coordinates are in the interval [0, δ];
3. the x-projection of any longest path on P ′ is a longest path on P ;
4. the longest spanning path on P ′ is unique and noncrossing; and
5. the y-coordinates of the two endpoints of the longest path are 0 and δ.

Proof sketch. We choose the points in P ′ such that their x-coordinates are the same as the
numbers in P and their y-coordinates are in [0, δ], and thus (1) and (2) follow.

By an argument similar to the proof of Lemma 3(i) one can show that the difference of
lengths of a longest and a non-longest path on P is at least 2δ. Therefore Lemma 6 would
imply that by choosing the y-coordinates in the interval [0, 2δ/8k], any longest path on P ′

corresponds to a longest path on P , and thus (3) follows. Items (4) and (5) follow by proper
choices of y-coordinates similar to that of Lemma 7. ◀

We can now outline the construction; see Figure 5 for an illustration. Let
n = 2k+1, for k ≥ 2. We choose a set of x-coordinates as P =
{−k, −(k−1)ϵ, −(k−2)ϵ, . . . , −ϵ, 0, 1, 2, . . . , k}, where ϵ ∈ (0, 1/16k2) will be specified later.
Note that 0 is the median of P , and the set A = {−i · ϵ : i = 0, 1, . . . , k − 1} ⊂ [−1/16k, 0]
forms a small cluster. By Lemma 4(ii), all edges of any longest cycle on P intersect the
y-axis; and Lemma 4(iii) implies the following.

▶ Observation 14. The length of any cycle on P that connects p−k to two points in A is at
least 2 units shorter than a longest cycle on P .

p2

p−k

p0

pk

ϵ

1 2 3
−(k − 1)ϵ

y−k = 1/8k

ϵϵ
0

−k k333

p3

y0 = δ

−ϵ

Figure 5 Illustration of the construction of a longest cycle for 2k+1 points.
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Below, we will specify a y-coordinate for each element in P . This will result in the point
set P ′ for which the longest spanning cycle is unique and noncrossing. We will denote by A′

the set of points in P ′ corresponding to A.
It remains to specify the y-coordinates of the points in P ′ and the parameter ϵ. Let px

denote the point in P ′ with x-coordinate x ∈ P . We first choose the y-coordinate for the
leftmost point: Let y−k = −1/16k; this is the only negative y-coordinate. We assume that
|yi| ≪ 1/16k for all other points. This ensures that the longest cycle on P ′ corresponds
to a longest cycle on the 1-dimensional multiset where 0 represents the entire cluster A

(cf. Lemma 4(iii) and Lemma 10). By Lemma 4(ii), for any longest cycle on P ′, the two edges
incident to p−k intersect the y-axis (i.e., the median). Furthermore, there is a threshold
δ > 0 such that if 0 ≤ yi ≤ δ for all remaining points, then p−k must be adjacent to the
two closest points on or to the right of the y-axis: That is, p−k is adjacent to a point in
cluster A′ and to p1 (cf. Observation 14 and Lemma 10). Next, we set y0 = δ and find a
threshold δ1 ∈ (0, δ) such that if 0 ≤ yi ≤ δ1 for all remaining points and 0 < ϵ < δ1, then
the contribution of edge p−kp0 exceeds the sum of contributions of all remaining edges of a
spanning cycle. Consequently, the longest cycle must include the edge p−kp0. Now both p−k

and p0 are fixed, and we choose a sufficiently small ϵ ∈ (0, δ1) such that all remaining points
in the cluster A′ are below p−kp0 for all possible y-coordinates.

A longest cycle on P ′ comprises of p−kp0, p−kp1, and the longest path H ′ on P ′ \ {p−k}
(from p0 to p1 cf. Lemma 3). By Lemma 13, we can choose y-coordinates for the remaining
points such that H ′ is unique and noncrossing; and y1 = 0. In particular, edge p−kp1 lies
below the x-axis, hence below the entire path H ′; and P ′ \{p−k, p0} lies below the supporting
line of p−kp0. Consequently, the concatenation of p−kp0, p−kp1 and H ′ is noncrossing.

5 Noncrossing Longest Matchings

Álvarez-Rebollar et al. [4] showed that there exist point sets for which the longest perfect
matchings are noncrossing. Their example is attributed to Kåra P. Villanger in a paper by
Tverberg [27]. As illustrated in Figure 6, it consists of a set S of k segments with endpoints
in A = {a1, . . . , ak} and B = {b1, . . . , bk}. The distance between any two points ai ∈ A and
bj ∈ B is larger than the distance between any two points in A, or the distance between any
two points in B. The points in B are roughly on a vertical line. Álvarez-Rebollar et al. [4]
have provided a precise description of the construction along with a detailed proof that S is
a longest matching for A ∪ B.

a1 a2
a3

a4

b1

b2

b3

b4

Figure 6 Villanger’s configuration as illustrated in [4].

Here, we exhibit an alternative point set for which the longest perfect matching is
noncrossing. Our construction follows the same framework as for paths and cycles. Let
P be a set of 2k points pi = (i, 0) for i = ±1, ±2, . . . , ±k. One can verify that a perfect
matching on P is longest if and only if all edges cross the y-axis. One such matching is
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M = {p−ipi : i = 1, . . . , k}. Using ideas similar to those used for paths and cycles, one can
assign to each pi a new y-coordinate yi to make M longest and noncrossing at the same time;
see Figure 7. The new y-coordinates are of the following form: y1 ≫ y−1 = y2 ≫ y−2 =
y3 ≫ · · · = yk ≫ y−k.

p1 p2 pkp−1p−2p−k

Figure 7 Illustration of our construction of a longest matching.

6 Some Properties of Longest Paths and Cycles

In this section we give some structural properties of longest paths and cycles, possibly of
independent interest. We state these properties only for cycles, but they hold for paths as
well. Two edges are in convex position if they are edges of their convex hull. Two directed
edges in convex position have the same orientation if they are both directed clockwise or
counterclockwise along their convex hull.

▶ Observation 15. Suppose that we orient the edges of a longest cycle C to make it a directed
cycle. Then C cannot have pair of non-adjacent edges that are in convex position and have
the same orientation along their convex hull.

To verify this, note that if C has two such edges, say e1 and e2, then flipping them
(replacing e1 and e2 by the two diagonals of the convex hull of e1 and e2) would produce a
longer undirected cycle as in Figure 8(a). Since e1 and e2 have the same orientation along
their convex hull, the flip does not break the cycle into two components. If every directed
simple polygon S contained a pair of non-adjacent edges in convex position with the same
orientation along their convex hull, Observation 15 would imply Conjecture 1. However,
some simple polygons do not have edges that can be flipped in this way; see e.g., Figure 8(b).

e1

e2

(a) (b)

Figure 8 (a) Flipping two edges in convex position. (b) A simple polygon with no pair of edges
in convex position that have the same orientation, no matter how we direct the polygon.

▶ Observation 16. The longest cycle need not contain an edge between diametric points.
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To verify this observation consider an isosceles right triangle abc whose right angle is at
b. Place one point at a, one point at c, and two or more points very close to b. Then, the
longest cycle does not contain the diametric point pair {a, c}. This observation implies that
a longest cycle may not be achieved by greedily choosing longest edges.

The following proposition implies that if the longest cycle is noncrossing, it contains some
edge whose length is among the smallest three-quarters of all distances defined by its vertices.

▶ Proposition 17. Let S be a simple polygon (a noncrossing cycle) on n points. Then S has
an edge whose length is among the smallest 3n2/8 + n/8 distances of the

(
n
2
)

point pairs.

Proof. Let e and e′ be two edges of S such that their distance along S (in terms of the
number of edges) is at least 2. Since S is a simple polygon, e and e′ do not cross. Thus, there
is an endpoint p of e and an endpoint p′ of e′ such that |pp′| is larger than the length of the
shorter of e and e′, and pp′ is not an edge of S. The number of pairs of edges at distance 0 is
n, and the number of pairs of edges at distance 1 is also n. Thus, the total number of pairs
of edges at a distance at least 2 is

(
n
2
)

− 2n. Each such pair of edges yields a pair {p, p′}.
Each {p, p′} can be counted for 4 different pairs of edges that are obtained by combining
the two edges incident to p and the two edges incident to p′. Therefore the total number of
distinct pairs {p, p′} is at least 1

4
((

n
2
)

− 2n
)
. Subtracting this from the total number

(
n
2
)

of
point pairs yields the claimed bound. ◀
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Rectilinear Crossing Number of Graphs Excluding a
Single-Crossing Graph as a Minor
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Abstract
The rectilinear crossing number of G is the minimum number of crossings in a straight-line drawing
of G. A single-crossing graph is a graph whose crossing number is at most one. We prove that every
n-vertex graph G that excludes a single-crossing graph as a minor has rectilinear crossing number
O(∆n), where ∆ is the maximum degree of G. This dependence on n and ∆ is best possible. The
result applies, for example, to K5-minor-free graphs, and bounded treewidth graphs. Prior to our
work, the only bounded degree minor-closed families known to have linear rectilinear crossing number
were bounded degree graphs of bounded treewidth as well as bounded degree K3,3-minor-free graphs.
In the case of bounded treewidth graphs, our O(∆n) result is again tight and it improves on the
previous best known bound of O(∆2n) by Wood and Telle, 2007.
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1 Introduction

In this article graphs are undirected, simple, and finite, unless stated otherwise. For a graph
G, with vertex set V (G) and edge set E(G), let |G| := |V (G)| and ∥G∥ := |E(G)|. 1

A drawing of a graph represents each vertex by a distinct point in the plane, and represents
each edge by a simple closed curve between its endpoints, such that the only vertices an edge
intersects are its own endpoints, and no three edges intersect at a common point (except at
a common endpoint). A drawing is rectilinear if each edge is a line segment. 2 A crossing
is a point of intersection between two edges (other than a common endpoint). A drawing
with no crossings is crossing-free. A graph is planar if it has a crossing-free drawing. The
crossing number of a graph G, denoted by cr(G), is the minimum number of crossings in
any drawing of G. The rectilinear crossing number of a graph G, denoted by cr(G), is the
minimum number of crossings in any rectilinear drawing of G.

Crossing number is a fundamental and extensively studied graph parameter with wide
ranging applications and rich history (see the survey by Schaefer [37] for over 700 references
on the crossing number and its variants). Computationally the problem of determining the

1 For each vertex v of G, let NG(v) := {w ∈ V (G) : vw ∈ E(G)} be the neighbourhood of v in G. The
degree of v, denoted by degG(v), is |NG(v)|. Let ∆(G) be the maximum degree of G. When the graph
is clear from the context, we will sometimes write deg(v) instead of degG(v) and ∆ instead of ∆(G).

2 Rectilinear drawings are also known as straight-line drawings in the literature.
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crossing number of a given graph, is notoriously difficult. Computing the crossing number
is NP-hard by Garey and Johnson [19], even for planar graph plus an edge [8]. It is hard
to approximate even for cubic graphs [7] and until recently there were no approximation
algorithms with sub-polynomial in n approximation factor even for bounded degree graphs [10].
On the positive side, Kawarabayashi and Reed [23] give an O(f(k)·|G|) algorithm for deciding
whether a given graph G has crossing number at most k.

Since computing the exact, or even an asymptotic, crossing number of a graph is hard, a
great deal of past research has been focused on deriving asymptotic bounds. Regardless of
the applications, be it visualization or circuit design [4, 26, 27], having as few crossings as
possible is a desirable property in a drawing of a graph. This naturally leads to a study on
upper bounds and lower bounds on the crossing number of various graph families.

Trivially, the (rectilinear) crossing number of every graph G is at most O(∥G∥2). For
some graphs this bound is asymptotically tight, including for example, the complete graph
and a random cubic graph. For others, it is far from optimal. We would like to understand
what classes of graphs have rectilinear crossing number better than O(∥G∥2) and by how
much. To understand that, we consider next the known lower bounds on the crossing number,
which clearly apply to rectilinear crossing number.

Every planar triangulation G is known to have 3|G| − 6 edges (if |G| ⩾ 3). Consequently,
for every n ⩾ 3, there are n-vertex graphs with 3n − 6 edges that can be drawn with zero
crossings. The following result, known as the crossing lemma, tells us that as soon as a
graph has a little more than 3|G| edges, it must have vastly more than zero crossings in
every drawing. Specifically, the crossing lemma, proposed by Erdős and Guy [18], proved by
Leighton [28] and Ajtai et al. [3]; and, subsequently improved [2, 29, 31] states the following.

▶ Theorem 1. For any ϵ > 0, there exists cϵ such that, every graph G with ∥G∥ > (3+ ϵ) · |G|
edges, cr(G) ⩾ cϵ

∥G∥3

|G|2

An immediate consequence of this theorem is that all graphs G that have at least (3 + ϵ) · |G|
edges have crossing number at least Ω(|G|). We say that a family of graphs has a linear
crossing number if there exists a constant c such that every graph G in the family has
cr(G) ⩽ c · |G|. The crossing lemma tells us that for most graph families the best one can
hope of is that they have linear crossing number. By the crossing lemma, any family of
graphs that has members with the number of edges superlinear in the number of vertices
cannot have linear crossing number. Thus the only candidates for linear crossing number
are families of graphs whose members all have a linear number of edges. One example of
such a family is a family of graphs whose members have the maximum degree bounded by
a constant. Another example is a family of graphs that exclude some fixed graph H as a
minor. 3 Kostochka [24] and Thomason [39] proved independently that H-minor free graphs
G have O(|H|

√
log |H| · |G|), and thus a linear, number of edges.

It turns out that neither of these two families of graphs have linear crossing number.
Consider, for example, the graph K3,n. It has a linear number of edges and it is K5-minor-free,
yet it is known to have crossing number Ω(n2) [30, 32]. Similarly, consider the family of all
cubic graphs. They have a linear number of edges and yet, for every large enough n, there is
a cubic n-vertex graph whose crossing number is Ω(n2) [25, 13, 14, 28].

3 Let vw be an edge of a graph G. Let G′ be the graph obtained by identifying the vertices v and w,
deleting loops, and replacing parallel edges by a single edge. Then G′ is obtained from G by contracting
vw. A graph X is a minor of a graph G if X can be obtained from a subgraph of G by contracting
edges. A graph G is X-minor-free if X is not a minor of G. A family of graphs F is minor-closed if
G ∈ F implies that every minor of G is in F . F is proper if it is not the family of all graphs.
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Thus to admit a linear crossing number, it is not enough for a family of graphs to
have a bounded degree only or to only exclude a fixed graph as a minor. Having both
of these properties however is enough. Böröczky et al. [22] first showed such a result for
bounded Euler genus graphs (see Theorem 2). Note that by the above mentioned result by
Kostochka [24] and Thomason [39], for every graph G from a proper minor closed family of
graphs ||G|| ∈ O(|G|). That fact will be used throughout this article, starting with the next
theorem.

▶ Theorem 2 ([1, 22]). For every integer γ ⩾ 0, there is a function f such that every graph G

with Euler genus γ has crossing number cr(G) ⩽ f(γ)·
∑

v∈V (G) deg(v)2 ⩽ 2·f(γ)·∆(G)·||G|| ∈
O(f(γ) · ∆(G) · |G|)

An improvement on the dependence on γ in Theorem 2 for orientable surfaces was shown
by Djidjev and Vrťo [15], with cr(G) ⩽ c · γ · ∆(G) · |G| for some constant c. Wood and
Telle [41] were the first to show that excluding a minor and bounding the maximum degree
were sufficient to ensure a linear crossing number, as stated in the next theorem.

▶ Theorem 3 ([41]). For every graph H, there is a constant c := c(H) such that every
H-minor-free graph G has crossing number cr(G) ⩽ c · ∆(G)2 · |G|

Theorem 3 was improved by Dujmović et al. [16] by reducing ∆(G)2 to ∆(G).

▶ Theorem 4 ([16]). For every graph H, there is a constant c := c(H) such that every
H-minor-free graph G has crossing number cr(G) ⩽ c · ∆(G) · |G|

In addition, the result in Theorem 4 was shown to have the best possible dependence of
∆(G) and |G|. These results show that we know very strong, in fact best possible, bounds
on the crossing number of all proper minor-closed families of graphs of bounded degree.

Much less is known about the rectilinear crossing number. Fáry [21] and Wagner [40]
proved independently that every planar graph has a rectilinear drawing with no crossings.
Hence, every planar graph G has the rectilinear crossing number 0, and thus for planar
graphs G, cr(G) = cr(G). One may be tempted to conjecture that the rectilinear crossing
number and crossing number are tied. However, that is not the case. In particular, Bienstock
and Dean [5] proved that for every m and every k ⩾ 4, there exists a graph G with cr(G) = k,
but cr(G) ⩾ m. Therefore, Theorem 3 and Theorem 4 do not imply that bounded degree
proper minor-closed families of graphs have linear rectilinear crossing number.

In fact, in addition to planar graphs, we are only aware of the following two meinor-closed
families of bounded degree admitting linear rectilinear crossing number. The first is the
result on K3,3-minor-free graphs by Dujmović et al. [16].

▶ Theorem 5 ([16]). Every K3,3-minor-free graph G has rectilinear crossing number cr(G) ⩽∑
v∈V (G) deg(v)2 ⩽ 2 · ∆(G) · ||G|| ∈ O(∆(G) · |G|)

The second is a result on the convex crossing number of bounded treewidth graphs
by Wood and Telle [41]. Rectilinear drawings where vertices are required to be in convex
positions are called convex drawings. For a graph G, the minimum number of crossings over
all convex drawings of G is called convex crossing number of G and is denoted by cr∗(G).
Clearly, for every G, cr(G) ⩽ cr(G) ⩽ cr∗(G).

▶ Theorem 6 ([41]). Every graph G of treewidth k has convex crossing number cr∗(G) ∈
O(k2 · ∆(G)2 · ||G||) ∈ O(k3 · ∆(G)2 · |G|)

In the case of the rectilinear crossing number a stronger bound is known but still with a
quadratic dependence on ∆(G) in the worst case.
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▶ Theorem 7 ([16]). Every graph G of treewidth k has rectilinear crossing number cr(G) ∈
O(k · ∆(G) ·

∑
v∈V (G) deg(v)2) ∈ O(k · ∆(G)2 · |G|)

Our goal in this article is to extend this result to much wider minor-closed families of
graphs of bounded degree, in particular, a family of graphs that exclude a single-crossing
graph as a minor. A single-crossing graph is a graph whose crossing number is at most one.
Single-crossing minor-free graphs have been studied by the algorithms community [17, 12, 9]
where at times these results were precursors to algorithms and techniques applicable to
more general minor-closed classes [12, 11]. K3,3, K5 and every planar graph are examples of
single-crossing graphs. Note however that a minor of a single-crossing graph is not necessarily
a single-crossing graph itself (see [12] for easy examples). Note finally that a graph excluding
a single-crossing graph as a minor may have arbitrarily large crossing number. For example,
any n-vertex graph G, composed of disjoint union of ⌊ n

6 ⌋ copies of K3,3, excludes K5 as a
minor (K5 is a single-crossing graph) and yet the crossing number of G is Θ(n).

The following theorem is our main result.

▶ Theorem 8. Let X be a single-crossing graph. There exists a constant c := c(X), such
that every X-minor-free graph G has the rectilinear crossing number of at most c · ∆(G) · |G|.

The dependence on ∆ and |G| in the above theorem is best possible. A standard lower
bound constructions implies it (see for example [22, 41]). Specifically, consider a graph
comprised of the disjoint union of Ω(n/∆) copies of K3,3 where each K3,3 is transformed
into a maximum degree ∆ graph by adding Ω(∆) paths of length two between every pair
of adjacent vertices in each copy of K3,3. This graph has maximum degree ∆ and is still
K5-minor-free (and thus single-crossing minor-free) and yet has crossing number Ω(∆ · n). It
also has treewidth at most 5. Thus the following two corollaries of Theorem 8 are both tight.
Since K5 is a single-crossing graph, the following is an immediate corollary of Theorem 8.

▶ Corollary 9. There exists a constant c such that every K5-minor-free graph G has a
rectilinear crossing number of at most c · ∆(G) · |G|.

It is known that the family of graphs of treewidth at most k excludes a planar grid of
size kc as a minor (for some constant c) [35]. Since every planar graph is a single-crossing
graph, Theorem 8 implies the following result.

▶ Corollary 10. For every integer k > 0, there exists a constant ck such that every graph G

of treewidth at most k has a rectilinear crossing number at most ck · ∆(G) · |G|.

In the process of proving the main result, Theorem 8, we establish a more precise upper
bound for treewidth-k graphs: k · (k + 2) · ∆(G) · ||G||. See Theorem 19.

This corollary improves the previous best known bound on rectilinear crossing number of
bounded treewidth graphs from O(∆(G)2 · |G|) (see Theorems 6 and 7 above) to the optimal
O(∆(G) · |G|) bound. It should be noted however that Theorem 6 by Wood and Telle [41]
gives an O(∆(G)2 · |G|) bound for the convex crossing number of bounded treewidth graphs,
and that bounds still stands as the best known for convex drawings.

In the next section, Section 2, we introduce key concepts that will be helpful in proving
Theorem 8. In Section 3, we present the proof of Theorem 8. Finally, we conclude in
Section 4.
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2 Preliminaries

Recall that the definition of drawing of a graph has the following condition: “no three edges
intersect at a common point (except at a common endpoint)”. In relation to this, we define
a set of points P to be in general position if no three points of P lie on one line and if no
three line segments between pairs of points in P intersect in one point unless all three share
a common endpoint. For the ease of presentation we will add to the definition of rectilinear
drawings the condition that all endpoints of G are in general position.

2.1 Multigraphs
Our proof of the main result, Theorem 8, will require the use of multigraphs. Recall that a
multigraph is a graph that may have parallel edges but no loops. For the remainder of this
paper, we will use the term “multigraph” when parallel edges are allowed, and “graph” when
they are not, i.e., when the graph is simple. The degree of a vertex v in a multigraph Q,
denoted by degQ(v), is the number of edges of Q incident to v. However, unlike in simple
graphs, degQ(v) is not necessarily equal to |NQ(v)|.

A rectilinear drawing of a multigraph Q represents vertices, V (Q), by a set of |V (Q)|
points in the plane in general position and represents each edge by a line segment between its
endpoints. The general position assumption implies that the only vertices an edge intersects
are its own endpoints, and no point in the drawing is in three distinct line segments (unless
all three share a common endpoint). It should be noted that parallel edges between the
same pair of vertices in such a drawing overlap, as they are represented by the same line
segment. A crossing-pair is a pair of edges in a rectilinear drawing that do not have a common
endpoint and whose line segments intersect at a common point. The number of crossings in
a rectilinear drawing of a multigraph is the number of crossing-pairs in the drawing. The
rectilinear crossing number of a multigraph Q, denoted by cr(Q), is the minimum number of
crossings over all rectilinear drawings of Q.

Note that by these definitions, a pair of overlapping edges in a rectilinear drawing of a
multigraph is not considered a crossing-pair. This is because, in our main proof, we start
with a rectilinear drawing of a certain multigraph Q. We eventually replace parallel edges
(and their overlapping line segments) with incident edges (and thus line segments that have
one endpoint in common) and such edges can never cross. Notice also that if one is allowed
to replace line segments by arcs in a rectilinear drawing of a multigraph Q, then it is trivial
to redraw Q such that the resulting “arc” drawing of Q has no overlapping edges and has the
same number of crossings as the starting rectilinear drawing of Q. Finally, if Q is a simple
graph, these definitions of rectilinear drawing and rectilinear crossing number are equivalent
to the earlier ones for simple graphs.

2.2 Decompositions and Treewidth
For graphs G and H, an H-decomposition of G is a collection (Bx ⊆ V (G) : x ∈ V (H)) of
sets of vertices in G (called bags) indexed by the vertices of H, such that
1. for every edge vw of G, some bag Bx contains both v and w, and
2. for every vertex v of G, the set {x ∈ V (H) : v ∈ Bx} induces a non-empty connected

subgraph of H.

The width of a decomposition is the size of the largest bag minus 1. The adhesion of a
decomposition is the size of the largest intersection between two bags that share an edge in
H. If H is a tree, then an H-decomposition is called a tree decomposition. The treewidth of
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a graph G is the minimum width of any tree decomposition of G. Tree decomposition and
treewidth are key concepts in graph minor structure theory and they have been extensively
studied ever since their introduction by Halin [20] and by Robertson and Seymour [34].

2.3 Rectilinear Drawings
In the process of proving our main result, Theorem 8 in Section 3.1, we will construct
drawings of graphs where at one stage we will replace a point (representing some vertices)
with disks that fulfill certain criteria. The following lemma will be helpful for that stage.

For any positive integer h, let [h] denote the sequence of numbers [1, · · · , h]. When it
is clear from the context, we will make no distinction between a vertex v of a graph and
the point that represents it in a drawing. Specifically, we will refer to both as v when no
confusion can arise. The same will be true for an edge e and the line segment representing it
in a drawing.

▶ Lemma 11. Let D be a rectilinear drawing of any graph G. Then for each vertex w ∈ V (G),
there exists a disk Cw of positive radius centered at w such that the following is true. Let
v1, . . . , vd be the neighbours of w in G. Let Pw be any set of at most d points in Cw such
that V (G) ∪ Pw is in general position. For each i ∈ [d], replace the line segment wvi of D

by a line segment between vi and any point in Pw. Denote that point by pi. The resulting
drawing D′ (of the resulting graph G′) has the following properties:
1. Any two edges in G, neither of which is incident to w, cross in D′ if and only if they

cross in D.
2. For each i ∈ [d], the edge wvi and any edge xy where {x, y} ⊆ V (G) − {w, vi} cross in D

if and only if vipi and xy cross in D′.
3. All the remaining crossings in D′ are crossings between pairs of segments with distinct

endpoints in Pw.

It should be noted that if |Pw| = 1, that is if Pw has exactly one point, then D′ is a
rectilinear drawing of G where a pair of edges of G cross in D′ if and only if they cross in D.

Proof. Start with the drawing D of G and a disk C centered at w such that the only parts
of D that intersect C are w and the edges incident to w. Then, for each i ∈ [d], let Si be
the union of all possible line segments from vi to any point in C. Let S denote the union of
all Si, i ∈ [d]. By reducing the radius of C to some positive radius r and then redefining S

accordingly, the following becomes true for D and C.
No vertex of G is in S other than w, v1, . . . , vd.
For each i ∈ [d], the only vertices of G that are in Si are vi and w.
For each i ∈ [d], the only crossing points of D in Si are crossings between wvi and the
edges not incident to w in G.
No segment between two crossings in D is fully contained in S, unless it lies on one of
the edges wvi, i ∈ [d].

Such a positive radius r exists by continuity and the resulting disk meets the conditions
imposed on Cw. ◀

3 Main Result

In order to prove our main result, Theorem 8, we will use, as one of the tools, Robertson and
Seymour’s structure theorem for graphs that exclude a single-crossing graph as a minor [33].
This structure theorem uses the notion of clique-sum, that we define next. Let G1 and G2 be
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two disjoint graphs. Let C1 = {v1, v2, · · · , vk} be a clique in G1 and C2 = {w1, w2, · · · , wk}
be a clique in G2, each of size k, for some integer k ⩾ 1. Let G be a graph obtained from
G1 and G2 by identifying vi and wi for each i ∈ [k] and possibly deleting some of the edges
uiuj in the resulting clique C = {u1, u2, · · · , uk} of G. Then we say that G is obtained by
k-clique-sums of graphs G1 and G2 (at C1 and C2). A (⩽ k)-clique-sum is an l-clique-sum
for any l ⩽ k. The following theorem by Robertson and Seymour [33] describes a structure
of graphs that exclude a single-crossing graph as a minor. 4

▶ Theorem 12 ([33]). For every single-crossing graph X, there exists a positive integer
t := t(|X|) such that if G is an X-minor-free graph, then G can be obtained by (⩽ 3)-clique-
sums of graphs G1, . . . , Gh such that for each i ∈ [h], Gi is a planar graph (with no separating
triangles) or the treewidth of Gi is at most t.

The graphs G1, · · · , Gh in Theorem 12 are called the pieces of the decomposition.
Theorem 12 is equivalent to stating that every X-minor-free graph G has a tree decom-

position of adhesion at most 3 such that the vertices in each bag of the decomposition induce
in G either a planar graph (with no separating triangles) or a graph of treewidth at most
t. Armed with these notions, we are now ready to state a more precise version of our main
result.

▶ Theorem 13. Let X be a single-crossing graph. Let G be an X-minor-free graph and let
t := t(|X|) be the integer from Theorem 12. Then cr(G) ⩽ 3 · (t2 + 2t + 2) · ∆(G) · ||G||.

Theorem 13 is a strengthened version of Theorem 8 by Theorem 12 and the fact that
∥G∥ ∈ O(|X|

√
log |X| · |G|) [24, 39] (as discussed earlier). Hence, the remainder of this

section will be dedicated to proving Theorem 13. To do so, one has to be able to produce
rectilinear drawings of the pieces, G1, . . . , Gh, of the decomposition (from Theorem 12) with
the claimed number of crossings and then combine these drawings by conducting clique-sums.
The following is a sketch of the two main steps our proof will take.

Step 1. Foremost, Theorem 13 has to be true for the pieces Gi of the decomposition, namely
the planar graphs and bounded treewidth graphs. By the Fáry-Wagner theorem [21, 40],
we know that Theorem 13 is true for all planar graphs. In fact, it is true with bound
zero for the rectilinear crossing number. On the contrary, if Gi is a bounded treewidth
graph, the required O(∆(Gi) · |Gi|) bound on its rectilinear crossing number was not
known prior to our work. Thus one of the goals of this paper is to prove that bound for
bounded treewidth graphs as one of the necessary steps in the proof of Theorem 13.

Step 2. Suppose now that for each piece, Gi of the decomposition, we have already established
the O(∆(Gi) · |Gi|) bound for the rectilinear crossing of Gi. The main goal then becomes
demonstrating that the rectilinear drawings of G1, G2, . . . , Gh can be joined by performing
clique-sums without increasing the number of crossings in the final drawing of G by too
much. Prior to this work it was not known how to conduct clique-sums on rectilinear
drawings while achieving that goal. In particular, we need to join rectilinear drawings
of G1, G2, . . . , Gh in such a way that the resulting number of crossings in the rectilinear
drawing of G is O(∆(G) · |G|).

4 Note that the original statement of Theorem 12 by Robertson and Seymour [36] does not mention
separating triangles. The reason such a statement can be made is that any planar graph G containing a
separating triangle can itself be obtained by 3-clique-sums of two strictly smaller planar graphs, G1 and
G2, where the clique-sum is performed on that separating triangle.
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The main challenge for proving Theorem 13 is Step 2 above. To overcome that challenge,
we introduce the notion of simplicial blowups of graphs. The use of these simplicial blowups
however impacts Step 1. In particular, it is not enough anymore to prove that the pieces
of the decomposition have O(∆(Gi) · |Gi|) rectilinear crossing number. We must prove a
stronger condition, namely that the simplicial blowups of the pieces have such a rectilinear
crossing number.

In Section 3.1 we introduce simplicial blowups and demonstrate how to achieve Step 2.
In Section 3.2 we introduce graph partitions and present a helpful lemma for producing
rectilinear drawings. In Section 3.3 and 3.4, we then prove that Step 1 above can be
accomplished, or more precisely that simplicial blowups of planar graphs and bounded
treewidth graphs have the desired rectilinear crossing number. Once those two steps have
been achieved, we will conclude the proof of Theorem 13 in Section 3.5.

3.1 Bound for Rectilinear Crossing Number Using Clique-Sums
A multigraph Q is called a (⩽ k)-simplicial blowup of a graph G if Q can be obtained from
G by adding an independent set of vertices S to G, and performing the following steps for
each vertex u in S:
1. Make u adjacent to all the vertices of some clique of size at most k of G

2. Add zero or more parallel edges between u and its neighbours in G.
and finally, once Steps 1 and 2 are conducted on all vertices of S, delete zero or more edges
from each clique of G involved in Step 1.

Theorem 14 is the key technical tool of this paper. It shows how rectilinear drawings
(of simplicial blowups) of the pieces of a decomposition can be combined into a rectilinear
drawing of a graph obtained by clique-sums of the pieces, all while not increasing the final
number of crossings by too much. The previous result on the crossing number of minor-closed
families (Theorem 4) by Dujmović et al. [16], also had to deal with performing clique-sums
on drawings while controlling the crossing number. Our proof of Theorem 14 is inspired by
their proof. However the drawings produced by their theorem have many bends per edge
and are thus far from rectilinear drawings.

The following theorem is stated in a form that is more general than we will require.
Specifically, the theorem does not require the pieces Gi of the decomposition to be planar or of
bounded treewidth. As such, Theorem 14 may be useful in future work on rectilinear crossing
numbers of X-minor-free graphs where X is not necessarily a single-crossing graph and thus
the pieces of the decomposition are the almost embeddable graphs from the Robertson and
Seymour graph minor theory.

We say that a graph R is (k, c)-agreeable if for every induced subgraph R′ of R and every
(⩽ k)-simplicial blowup R∗ of R′, cr(R∗) ⩽ c · ∆(R∗) · ||R∗||.

▶ Theorem 14. Let c be a positive number, k a positive integer, and G1, · · · , Gh a collection of
graphs such that every Gi is (k, c)-agreeable. Then every graph G that can be obtained by (⩽ k)-
clique-sums of graphs G1, · · · , Gh has rectilinear crossing number cr(G) ⩽ k·(c+2)·∆(G)·||G||.

Proof. Since clique-sums identify vertices, to avoid confusion, we will assume that the vertices
of the final graph G have names and that each vertex in each piece Gi, i ∈ [h] inherits its
name from G. Thus vertices that are identified by clique-sums have the same name in the
pieces involved. Consequently, there may be multiple vertices with the same name in the
disjoint union of G1, G2, . . . Gh.
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We may assume that the indices 1, . . . , h are such that for all j ⩾ 2, there exists a
minimum i such that i < j where Gi and Gj are joined at some clique C of Gi when
constructing G. We define Gi to be the parent of Gj , with Pj = V (C) being the parent clique
of Gj . The parent clique of G1 is the empty set. Note that, by the introductory paragraph
of this proof, it makes sense to talk about the clique Pj as existing in both in Gi and in Gj .

Let T be a rooted tree with vertex set {1, . . . , h}, where ij is an edge of T if and only
if Gj is a child of Gi. Let Ti denote the subtree of T rooted at i and Ui be the set of the
children of i in T .

For each i ∈ [h], let G−
i = Gi − Pi. Note that for each v ∈ V (G), there is exactly one

i ∈ [h] such that v is in V (G−
i ). Thus V (G−

1 ), · · · , V (G−
h ) is a partition of V (G). We say

that a vertex v of G belongs to vertex i of T if v ∈ G−
i . For each i ∈ [h], let G[Ti] denote the

graph induced in G by the vertices of G that belong to the vertices of Ti, that is the graph
induced in G by

⋃
{V (G−

j ) : j ∈ Ti}.

Defining the (⩽ k)-simplicial blowups of pieces. To prove the theorem, we now define,
for each G−

i , i ∈ [h], a specific (⩽ k)-simplicial blowup, denoted by Q−
i . To define Q−

i , start
with G−

i . For each child Gj of Gi, add a new vertex cj to G−
i . We call cj a dummy vertex

and say that cj represents Gj in Q−
i . Note that for all j ∈ [2, · · · , h], there is exactly one

i < j such that Q−
i has a vertex that represents Gj (namely, the vertex cj). For the clarity

of the next statement, note first that V (G−
i ) ∩ Pj is not empty as otherwise Pj would also

exist in some Gf where f < i and Gj would not be a child of Gi. For each edge vw ∈ E(G),
where v ∈ V (G−

i ) ∩ Pj and w ∈ G−
ℓ , where i < ℓ and ℓ ∈ V (Tj), connect v to cj by an edge.

Label that edge with the triple (v, w, Pvw), where Pvw is the path in T from i to ℓ. We call
the edge labelled (v, w, Pvw) in Q−

i an isthmus edge. It represents the edge vw in the final
drawing of G. We consequently refer to the edge vw of G as isthmus edge as well. We say
that two isthmus edges are siblings if they are adjacent to the same dummy vertex. For a
vertex u in Q−

i such that u is in Pj for some child Gj of Gi, we say that u is involved in a
clique-sum in Q−

i . Thus each isthmus edge of Q−
i has an endpoint in G−

i that is involved in
some clique-sum in Q−

i . We finally remove from Q−
i the edges in Pj that are not in G. We

set the resulting multigraph to be Q−
i .

Notice that Q−
i is a (⩽ k)-simplicial blowup of G−

i . Since Gi is (k, c)-agreeable (by
the assumption) and since G−

i is an induced subgraph of Gi, it follows that cr(Q−
i ) ⩽

c · ∆(Q−
i ) · ||Q−

i ||.
For i ∈ [h], consider a rectilinear drawing of Q−

i with at most c · ∆(Q−
i ) · ||Q−

i || crossings.
We will construct the desired rectilinear drawing of G by joining these rectilinear drawings
of Q−

i . Consider for a moment solely the disjoint union of these rectilinear drawings. The
resulting rectilinear drawing of the disjoint union has at most

∑
i∈[h] c · ∆(Q−

i ) · ||Q−
i ||

crossings.
Notice that there is one-to-one mapping between the edges of G and the edges in the

union of all Q−
1 , Q−

2 , . . . , Q−
h , that is in

⋃
i∈[h] E(Q−

i ) (where the isthmus edges of G map to
the isthmus edges in the union and where the non-isthmus edges of G map to the non-isthmus
edges of the union). Thus ||G|| =

∑
i∈[h] ||Q−

i ||. Hence, if for all i ∈ [h], ∆(Q−
i ) ⩽ k · ∆(G),

the above sum would be upper bounded by c · k · ∆(G) ·
∑

i∈[h] ||Q−
i || = c · k · ∆(G) · ||G||.

This is akin to the upper bound that we want on the rectilinear crossing number of G. Thus
we want to first bound the degree of each vertex in Q−

i by k · ∆(G). This is not completely
obvious due to the addition of the dummy vertices in the construction of Q−

i and also due to
the fact that clique-sums allow for edge deletions from the cliques.

▷ Claim 1. For every i ∈ [h] and every v ∈ Q−
i , degQ−

i
(v) ⩽ k · ∆(G).
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Proof. There are three cases to consider.
Case 1. v is a dummy vertex of Q−

i .
By construction, for some j ∈ Ui, v represents some Gj and is adjacent to at most
k vertices of the parent clique Pj in Gi. Each edge between a vertex u ∈ Pj and v

corresponds to an (isthmus) edge in G adjacent to u. Since degG(u) ⩽ ∆(G), v is incident
to at most k · ∆(G) edges, giving degQ−

i
(v) ⩽ k · ∆(G).

Case 2: v is in G−
i (and thus not a dummy vertex) and v is not involved in any clique-sums.

Then, it follows that degQ−
i

(v) ⩽ degG(v).
Case 3: v is in G−

i (and thus not a dummy vertex) and is involved in at least one clique-sum.
Consider every j ∈ Ui such that v ∈ Pj . Then v has a least one neighbour in G[Tj ] and
thus at least one edge connecting it to cj , otherwise the clique-sum could have omitted v.
Additionally, there exists a one-to-one mapping between the set of edges in G between
v and its neighbours in G[Tj ] and the set of (parallel isthmus) edges between v and
cj in Q−

i . In other words, there is a one-to-one mapping between the isthmus edges
incident to v in Q−

i and the isthmus edges incident to v in G. Finally, consider the
non-isthmus edges incident to v in G−

i . Each edge of Gi that has been removed in the
construction of Q−

i (namely the edges removed from Pj) was also removed in G, thus
degQ−

i
(v) ⩽ degG(v). ◁

With degrees of the vertices of Q−
i sorted out, we are ready to describe how to construct

a rectilinear drawing of G from the rectilinear drawings of Q−
1 , Q−

2 , . . . , Q−
h .

Constructing the rectilinear drawing of G from the rectilinear drawings of Q−
1 , Q−

2 ,..., Q−
h.

Since for each i ∈ [h], Q−
i is (k, c)-agreeable, cr(Q−

i ) ⩽ c · ∆(Q−
i ) · ||Q−

i ||. By Claim 1,
cr(Q−

i ) ⩽ c · k · ∆(G) · ||Q−
i ||. Let D(Q−

i ) denote a rectilinear drawing of Q−
i with at most

c · k · ∆(G) · ||Q−
i || crossings. For the remainder of the proof, we will show how to construct a

rectilinear drawing, D(G), of G by combining the rectilinear drawings D(Q−
i ) of Q−

i , i ∈ [h],
such that the resulting number of crossings in D(G) is as claimed in the theorem.

Note that removing dummy vertices (and their incident isthmus edges) from D(Q−
i )

gives a rectilinear drawing of G−
i . Denote these rectilinear drawings by D(G−

i ). In the
final drawing, D(G), the drawing of each G−

i will be identical to D(G−
i ), possibly scaled

and/or rotated. In other words, in D(G), the implied rectilinear drawing of the disjoint
union of G−

1 , G−
2 , . . . , G−

h will be the disjoint union of D(Q−
1 ), D(Q−

2 ), . . . , D(Q−
h ) without

the isthmus edges. The isthmus edges will be redrawn in this construction.
We will join the rectilinear drawings D(Q−

i ), i ∈ [h] in the order of their indices. For
ℓ ∈ [h], Dℓ denotes the rectilinear drawing obtained by joining D(Q−

1 ), D(Q−
2 ), . . . , D(Q−

ℓ )
(joining is detailed below). The rectilinear drawing Dh will thus be the desired rectilinear
drawing D(G) of G. While joining these drawings, we will maintain the invariant that for
each j > ℓ, such that the parent of Gj is some Gi with i ∈ [ℓ], the rectilinear drawing Dℓ

contains the representative dummy vertex (cj) of each Gj . Furthermore we maintain that
Dℓ minus the dummy vertices (that is Dℓ − ∪j>ℓcj) is isomorphic to G − ∪j>ℓV (G[Tj ]).

We start by defining D1 = D(Q−
1 ). D1 satisfies the above invariant. For j ∈ [2, · · · , h]

we construct Dℓ from Dℓ−1 and D(Q−
ℓ ) as follows. By the invariant, Dℓ−1 has a dummy

vertex cℓ representing Gℓ. Let Cℓ be a disk centered in the point cℓ in Dℓ−1 that meets the
conditions of Lemma 11. Let v1, v2, . . . , vd be the neighbours of cℓ in Dℓ−1. Construct Dℓ

by the following steps.
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1. Remove cℓ and its incident (isthmus) edges.
2. Scale down D(Q−

ℓ ). Place it inside Cℓ and rotate it such that all the vertices of Dℓ are in
general position.

3. For each isthmus edge labelled with (x, y, Pxy) that was incident to cℓ, (re)draw it as the
line segment from x to y if y in Q−

ℓ . Otherwise, by construction, D(Q−
ℓ ) has a point cj ,

j > ℓ and y ∈ G[Tj ]. In that case, draw a line segment between x and cj . By Lemma 11,
the only new crossings (pairs) that this introduces are crossings between (a) a pair of
(re)drawn sibling isthmus edges (that were both incident to cℓ) or (b) one such isthmus
edge (incident to cℓ) and edges strictly inside the disk Cℓ (that is, edges in G−

ℓ ).

The resulting drawing Dℓ satisfies the invariant. Note that at the end of this process,
when ℓ = h, there are no more dummy vertices and each edge labelled (x, y, Pxy) in Dh is an
actual line segment connecting vertex x and y in G and thus actually represents the isthmus
edge xy of G. The final drawing Dh is a rectilinear drawing D(G) of G. It remains to prove
that D(G) has the claimed number of crossings.

Before joining the drawings D(Q−
i ), i ∈ [h], the total number of crossings in the disjoint

union of all drawings was at most c · k · ∆(G) · ||G||, as argued earlier. We name this quantity
the initial sum. We now prove that joining these drawings into a drawing of G does not
increase the initial sum by much. Specifically, we will show that all new crossings can be
charged to the edges of G such that each edge is charged at most 2 · k · ∆(G) new crossings,
which will complete the proof.

By the construction, the new crossings must involve at least one isthmus edge. Consider
such an isthmus edge e labelled (v, w, Pvw), where v ∈ Q−

i and w ∈ Q−
p , i < p and w ∈ G[Tj ]

where j ∈ Ui (and thus p ∈ Tj). There are four cases to consider.

Case 1. Consider first a crossing in D(G) between e and a non-isthmus edge e′ in Q−
i . That

crossing is already accounted for in the initial sum by the crossing in D(Q−
i ) between e′

and edge vcj labelled (v, w, Pvw).
Case 2. Consider next a crossing between e and an isthmus edge e′ labelled (x, y, Pxy), where

x ∈ Q−
i and y ∈ G[Tr], with r ∈ Ui. 2a) If r ̸= j (so e and e′ are not sibling isthmus

edges), then crossing between e and e′ was accounted for as well in the initial sum by the
crossing in D(Q−

i ) between the edge vcj labelled (v, w, Pvw) and the edge xcr labelled
(x, y, Pxy). 2b) If r = j, it must be that v ̸= x as otherwise e and e′ cannot cross. By
construction both w and y are in the disk Cr. In the construction of G, G[Tj ] is added
via a (⩽ k)-clique-sum to Gi (with parent clique Pj). Thus at most k · ∆(G) (isthmus)
edges cross the cycle bounding Cr. Thus e can be crossed by at most k∆(G) such edges
e′. We charge these at most k · ∆(G) crossings to e.

Case 3. Consider next a crossing between e and any edge e′ where both endpoints of e′ are
in G[Tj ]. The endpoints of e′ are thus in Q−

a and Q−
b where j ⩽ a ⩽ b. We charge the

crossing to e′. (Think of that crossing being charged to e′ in Q−
a ). As argued above, at

most k · ∆(G) (isthmus) edges cross the cycle Ca that replaced the dummy vertex ca thus
each such edge e′ is charged at most k · ∆(G) new crossings.

Case 4. Finally consider a crossing between e and an isthmus edge e′ labelled (x, y, Pxy),
where x ∈ Q−

f with f < i. Then there exists g ∈ Uf such that i ∈ Tg. In that case both
endpoints of e are in G[Tg] and we are in Case 3 with the roles of e and e′ reversed. Thus
at most k · ∆(G) crossings are charged to e.

By the arguments above, each edge of G is charged at most 2 · k · ∆(G) new crossings (at
most k · ∆(G) in Case 2b and at most k · ∆(G) in Case 4). Together with the initial sum
that results in at most (c + 2) · k · ∆(G) · ||G|| crossings. ◀
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3.2 Rectilinear Drawings of Multigraphs via Graph Partitions
As mentioned previously, in order to prove our main result, (Theorem 13), we will use as a
main tool the theorem that we have just proved, Theorem 14. Theorem 12 tells us that in
order to use Theorem 14, we need to show that planar graphs and bounded treewidth graphs
are (3, c)-agreeable for some constant c. In this section, we define graph partitions and prove
a lemma that will be helpful in proving that planar graphs are (3, c)-agreeable in Section 3.3
and that bounded treewidth graphs are (k, c)-agreeable for any k ⩾ 1 in Section 3.4.

An H-partition of a (multi)graph G is comprised of a graph H and a partition of vertices
of G such that

each vertex of H is a non-empty set of vertices of G (called a bag),
every vertex of G is in exactly one bag of H, and
if an edge of G has one endpoint in A and the other endpoint in B and A and B are
distinct, then AB is an edge of H.

The width of a partition is the maximum number of vertices in a bag. The density of a
bag of an H-partition is the number of edges of G with at least one endpoint in that bag.
The density of an H-partition is the maximum density over all bags of H. A bag is said to
be solitary if it contains exactly one vertex of G.

The proof of the following lemma is a slight modification of a similar result by Wood and
Telle [41].

▶ Lemma 15. Let K be a multigraph and H a simple graph such that K has an H-partition
of width w and density d. Let X be the set of all vertices of K that are not in solitary bags
of H. Then we have the following.
1. cr(K) ⩽ cr(H) · w2 · ∆(K)2 + (w − 1) ·

∑
v∈X degK(v)2

2. if H is planar, then
(a) there exists a rectilinear drawing of K with a most 2 · d crossings per edge.
(b) if in addition, the non-solitary bags of H form an independent set in H, then there is

a rectilinear drawing of K with at most d crossings per edge.

Proof. We start with a rectilinear drawing D(H) of H with cr(H) crossings. Consider any
vertex (bag) B of H. Let Cϵ(B) be a disk of radius ϵ > 0 centered at B in D(H). For each
edge AB of H, let Cϵ(AB) be the region defined by the union of all the line segments with
one endpoint in Cϵ(A) and the other in Cϵ(B). Note that there exists an ϵ small enough
such that all of the following conditions are met:

Cϵ(A) ∩ Cϵ(B) = ∅ for all distinct bags A and B of H;
Cϵ(AB) ∩ Cϵ(PQ) = ∅ for every pair of edges AB and PQ of H that have no endpoints
in common and do not cross in D(H);
Cϵ(AB) ∩ Cϵ(Q) = ∅ for every triple of distinct bags A, B, Q of H where AB is an edge
of H;
For each crossing-pair of edges AB and PQ in D(H), Cϵ(AB) ∩ Cϵ(PQ) is non-empty.
We call that region, Cϵ(AB) ∩ Cϵ(PQ), of the plane busy region of pair AB and PQ.
Finally, the busy regions of all distinct pair of edges are pairwise disjoint.

For each vertex v of K such that v is in a bag B of H, draw v as a point in Cϵ(B) such
that the final set of points representing V (K) is in general position. Draw every edge of K

straight. This defines a rectilinear drawing D(K) of K, since no edge in D(K) contains a
vertex other than its own endpoints and no three edges of D(K) cross at one point.
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We first prove that the number of crossings in D(K) is at most cr(H) · w2 · ∆(K)2 + (w −
1) ·

∑
v∈X degK(v)2 which will prove the first part of the theorem. Consider two crossing

edges e and f in D(K). There are two cases to consider (based on two types of crossings
that can occur in D(K)).

Case 1: there is bag B of H that has at least one endpoint of e and at least one endpoint
of f . Order all the vertices of B = {v1, v2, · · · , vℓ}, l ⩽ w such that degK(v1) ⩽ · · · ⩽
degK(vℓ). Let vi be an endpoint of e and vj and endpoint of f , i < j. We charge the
crossing between e and f to vj .
Thus the number of crossings charged to vj is at most∑

i<j

degK(vi) · degK(vj) ⩽
∑
i<j

degK(vj)2 ⩽ (ℓ − 1) · degK(vj)2 ⩽ (w − 1) · degK(vj)2

The vertices in the solitary bags of H are charged 0 crossings, rendering the total number
of crossings in Case 1 is at most (w − 1)

∑
v∈X degK(v)2.

Case 2: there is no bag of H that has both an endpoint of e and an endpoint of f . This
implies that four endpoints of e and f are in four distinct bags, A, B, P, Q of H. Let
e ∈ Cϵ(AB) and f ∈ Cϵ(PQ). Since e and f cross, their crossing point must be the
busy region of AB and PQ. Denote that region by R. There are at most ∆(K) · w

edges of K drawn inside Cϵ(AB) that intersect R and at most ∆(K) · w edges of K

drawn inside Cϵ(PQ) that intersect R. We charge the crossings between these pairs
of edges to the busy region R. Thus the number of crossings charged to R is at most
w∆(K) · w∆(K) = w2 · ∆(K)2. Since D(H) has cr(H) crossings, there are exactly cr(H)
busy regions determined by crossing edges in D(H). Thus the total number of crossings
in Case 2 is at most cr(H) · w2 · ∆(K)2.

Thus cr(K) ⩽ cr(H) · w2 · ∆(K)2 + (w − 1) ·
∑

v∈X degK(v)2 as stated in part 1.
We now prove the second part of the theorem. In this case, H is planar. By the Fáry-

Wagner theorem [40, 21], there is a rectilinear drawing D(H) of H with no crossings. Starting
with such crossing-free drawing D(H), we produce a rectilinear drawing D(K) of K using
the algorithm described above. Let e be an edge of K with an endpoint in some bag A of H .
We now prove that the number of crossings on e in D(K) is at most 2d as claimed in part
2a. There are two cases to consider:

Case 1: both endpoints of e are in A. Then, e is only crossed by the edges that have at
least one endpoint in A. As there are at most d such edges, there is at most d crossings
on e in D(K).
Case 2: the other endpoint of e is in a bag B of K distinct from A. Then, since D(H) is
crossing-free, e can only be crossed by the edges that have at least one endpoint in A or
in B. There is at most 2d such edges, thus there is at most 2d crossings on e in D(K).

In either case, e is crossed by at most 2d edges in D(K) as required by part 2a.
Finally, consider the case when the non-solitary bags of H form an independent set in H .

Let e be an edge of K. If two endpoints of e are in two distinct solitary bags of H then no
edge of K crosses e since D(H) is crossing-free. Therefore, in that case, trivially, there are
at most d crossings on e in D(K). Thus we may assume that at least one endpoint of e is
in a non-solitary bag of H. Let A denote that bag. If the other endpoint of e is also in A,
the result follows from Case 1 above. Therefore, we may assume that the other endpoint, v,
of e is in a bag B of H distinct from A. B is then a solitary bag (by the independent set
assumption). Since the edges incident to the same vertex (v in this case) cannot cross, the
only edges that can cross e are those with an endpoint in A. There is at most d edges with
endpoints in A and thus there are at most d crossings on e in D(K). ◀
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3.3 Rectilinear Crossing Number of Simplicial Blowups of Planar Graphs
Theorem 12 tells us that in order to use Theorem 14, it is enough to consider (⩽ 3)-simplicial
blowups of planar graphs with no separating triangles. In other words, it is enough to prove
that planar graphs with no no separating triangles are (3, c)-agreeable for some constant c.
The next lemma achieves that.

▶ Lemma 16. Every planar graph G that has no separating triangles is (3, 3)-agreeable.

Proof. Since every induced subgraph of G is also planar and with no separating triangles, it
is enough to show that every (⩽ 3)-simplicial blowup Q of G has rectilinear crossing number
cr(Q) ⩽ 3 · ∆(Q) · ||Q||.

Let S = V (Q)−V (G). Since adding a 1-simplicial or 2-simplicial vertex to a planar graph
results in a planar graph, we may assume that each vertex in S has exactly 3 neighbours in
G. We now define an H-partition of Q. To start, we make H isomorphic to G and put each
v ∈ V (G) in the bag Bv in H. Currently, all the bags in H are solitary bags. Since G, and
therefore the current H, has no separating triangles and since S is an independent set in Q,
we have that for each v ∈ S, NQ(v) induces a face in an embedding of G and thus it is a
face in the equivalent embedding of H. For each vertex set {x, y, z} in H that forms such a
face, we add a bag Bxyz adjacent to x, y and z in H. The resulting graph H is simple and
planar. For each vertex v ∈ S adjacent to x, y and z in Q, add v to the corresponding bag
Bxyz in H. Thus the defined graph H and the assignment of the vertices of Q to its bags
defines an H-partition of Q.

As every vertex of Q in bag Bxyz is adjacent to all vertices in {x, y, z}, the maximum
number of edges of Q with an endpoint in a non-solitary bag Bxyz is at most degQ(x) +
degQ(y) + degQ(z) ⩽ 3 · ∆(Q). The maximum number of edges of Q with an endpoint in a
solitary bag of H is clearly ∆(Q). Thus the density of the H-partition is at most 3 · ∆(Q).
Additionally, the non-solitary bags of H form an independent set in H which, by Lemma 15
(2b), implies that Q has a rectilinear drawing with at most 3 · ∆(Q) crossings per edge, giving
the desired result, cr(Q) ⩽ 3 · ∆(Q) · ||Q||. ◀

3.4 Rectilinear Crossing Number of Simplicial Blowups of Treewidth-k
Graphs

In this section, we prove that bounded treewidth graphs are (k, c)-agreeable for some constants
k and c. We start with the following trivial bound applicable to all graphs.

▶ Lemma 17. Every graph G is (|G|, |G| − 1)-agreeable.

Proof. If |G| = 1, the statement is trivial since every (⩽ 1)-simplicial blowup of G is a star
thus the crossing number of every such blowup is zero. Assume now that |G| ⩾ 2. Since
every induced subgraph of G is also in the class of all graphs, it is enough to show that every
(⩽ |G|)-simplicial blowup Q of G has rectilinear crossing number cr(Q) ⩽ (|G|−1)·∆(Q)·||Q||.

Let S = V (Q) − V (G). We build an H-partition of Q as follows. Start with H := K2
with V (H) = {v, w}. Place one vertex of G in Bv and all the remaining vertices of G in Bw.
Add an independent set of |S| of vertices to H and make each connected to v and w. It is
simple to verify that H is a simple planar graph. Place each vertex of S in a new vertex
(bag) of H. That defines an H-partition of Q where H is a simple planar graph and where
all bags of H are solitary except for one bag, that is Bw. Trivially, that one non-solitary bag
forms an independent set in H. Since H is planar and since the density of H is at most
(|G| − 1) · ∆(Q), we obtain the desired result, cr(Q) ⩽ (|G| − 1) · ∆(Q) · ||Q|| by Lemma 15
(2b). ◀
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The following result, obtained by setting |G| = t, is an immediate corollary of Lemma 17.

▶ Corollary 18. The complete graph, Kt, is (t, t − 1)-agreeable.

We are now ready to prove that every bounded treewidth graph G has cr(G) ∈ O(∆(G) · |G|).

▶ Theorem 19. For k ⩾ 1, let G denote a family of graphs of treewidth at most k. For every
graph G ∈ G , cr(G) ⩽ k · (k + 2) · ∆(G) · ||G||.

Proof. It is well known (see [6] for example) that G can be obtained by (⩽ k)-clique-sums on
graphs G1, G2 · · · , where each Gi, is the complete graph on at most k+1 vertices. Corollary 18
implies that, for each i, i ∈ [h], Gi is (k + 1, k)-agreeable and thus (k, k)-agreeable. This
fulfills the sole condition of Theorem 14. Thus cr(G) ⩽ k · (k + 2) · ∆(G) · ||G||. ◀

Theorem 19 gives an O(∆(G) · |G|) bound for the rectilinear crossing number of bounded
treewidth graphs G. As discussed in the introduction, the bound is optimal and it improves
on the previously known bounds (see Theorems 6 and 7).

Since every k-simplicial blowup of any graph of treewidth at most k itself has treewidth
at most k, we get the following immediate corollary of Theorem 19.

▶ Lemma 20. For every positive integer k, every graph of treewidth at most k is (k, k ·(k+2))-
agreeable.

3.5 Proof of Theorem 13
Recall that Theorem 13 of Robertson and Seymour states that each piece in the decomposition
is either a graph of treewidth at most t or it is a planar graph with no separating triangle.
Lemma 16 then implies that every planar piece Gi of the decomposition is (3, 3)-agreeable.
Consider the non-planar pieces of the decomposition. By Theorem 12, they have treewidth
at most t, where t ⩾ 3, as graphs of treewidth at most 2 are planar [6]. Lemma 20 states
that every treewidth at most t graph is (t, t · (t + 2))-agreeable. Since every non-planar piece
of the decomposition has treewidth at most t with t ⩾ 3, these pieces are (3, t · (t + 2))-
agreeable. Since t ⩾ 1 for all pieces of the decomposition, if we choose c := t · (t + 2)
all the pieces of the decomposition are (3, c)-agreeable. Theorem 14 (and Theorem 12
by Robertson and Seymour) then implies that G has rectilinear crossing number at most
3 · (t · (t + 2) + 2) · ∆(G) · ||G|| = 3 · (t2 + 2t + 2) · ∆(G) · ||G||, as claimed.

4 Conclusion and Open Problems

In this article, we proved that n-vertex bounded degree single-crossing minor-free graphs
have O(n) rectilinear crossing number. More strongly we proved that for any single-crossing
graph X, every n-vertex X-minor-free graph G has rectilinear crossing number at most
O(∆(G) · n) and the bound is best possible. The result represents a strong improvement
over the previous state of the art on the rectilinear crossing numbers of minor-closed families
of graphs, as argued in the introduction.

The ultimate goal for future work would be to obtain the above result for any fixed graph
X. For such families an O(f(∆) · n) bound is not known for any function f . In fact, the
best known bound on the rectilinear crossing number of bounded degree proper minor-closed
families is O(n log n) [38].

In order to attempt to prove an O(f(∆) · n) bound, that is, a linear rectilinear crossing
number for all proper minor-closed families of graphs of bounded degree, Robertson and
Seymour’s graph minor theory tells us that one should provide two ingredients. The first
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ingredient is to prove the result for k-almost embeddable graphs. The second is to be able to
handle clique-sums of those. Proving the result for almost embeddable graphs entails proving
it for bounded Euler genus graphs, that is, proving a result akin to Theorem 2 by Pach and
Tóth [1] but with the crossing number replaced by the rectilinear crossing number. However,
such a result is not even known for all bounded degree toroidal graphs.

The second ingredient however, handling the clique-sums of rectilinear drawings, can be
achieved by our Theorem 14. In particular, one can change the definition of (k, c)-agreeable
to (k, f(∆))-agreeable so as to allow for any function f(∆) and not just the linear function,
c · ∆, and then recall that the proof of Theorem 14 in fact shows that the rectilinear
drawings of (k, f(∆))-agreeable graphs can be joined by (⩽ k)-clique sums into a rectilinear
drawing of the resulting graph G while only increasing the total number of crossings by
2 · k · ∆(G) · ||G||. Suppose, in the future, one could provide the first ingredient above, that
is, show that almost embeddable n-vertex graphs G have linear rectilinear crossing number,
that is cr(G) ⩽ g(∆) · n for some function g. In that case the following lemma, Lemma 21,
would imply that simplicial blowups of almost embeddable graphs are (k, f(∆))–agreeable
with f(∆) ∈ O(∆4) · g(∆). That and Theorem 14, as discussed in this paragraph, would
imply that all proper minor-closed families of graphs of bounded degree have linear rectilinear
crossing number.

▶ Lemma 21. For every graph G and every (⩽ k)-simplicial blowup Q of G, cr(Q) ⩽
(∆(Q) + 1)2 · cr(G) + ∆(Q)4 · ||Q||.

Proof. Let S = V (Q) − V (G). We now define an H-partition of Q. To start, we make H

isomorphic to G and put each v ∈ V (G) in the bag Bv in H. For each vertex u ∈ S, u

is adjacent to all the vertices of some clique C in G. Place u in a bag Bv where v ∈ C.
This does not change H since v is adjacent to all the neighbours of u in G. This defines an
H-partition of multigraph Q.

For each v ∈ H, each vertex of S in Bv is adjacent to v in Q thus the width of H is at
most ∆(Q) + 1. Thus by Lemma 15, cr(Q) ⩽ (∆(Q) + 1)4 · cr(H) + ∆(Q)2 · ||Q|| which is
equal to (∆(Q) + 1)4 · cr(G) + ∆(Q)2 · ||Q|| since H is isomorphic to G. ◀
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Abstract
We show that every 4-regular planar graph has a straight-line embedding in the plane where all
edges have integer length. The construction extends earlier ideas for finding such embeddings for
4-regular planar graphs with diamond subgraphs or small edge cuts.
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1 Introduction

In this paper, graphs are simple, i.e., they do not have self-loops or parallel edges. A Fáry
embedding of a graph is an embedding in the plane where each edge is drawn as a straight
line segment. It is a well-known fact that such drawings exist for all planar graphs [6, 12, 15],
and a longstanding conjecture of Harborth (see [8]) posits that every planar graph has a
Fáry embedding where every edge has integer (or equivalently, rational) length. Geelen, Guo,
and McKinnon [7], using a result of Berry [2], showed that all planar graphs of maximum
degree 3 satisfy Harborth’s conjecture. Since then, there have been simpler proofs of the
cubic case [3, 13] and extensions of their application of Berry’s theorem to graphs of higher
maximum degree [1, 3, 5].

Sun [14] showed how these ideas can be used to find rational Fáry embeddings of two
families of 4-regular graphs. We correct an error in one of those constructions and show that
those techniques can be strengthened to cover all 4-regular planar graphs:

▶ Theorem 1. Every 4-regular planar graph has a rational Fáry embedding.

2 Background

Given a planar graph G = (V, E), we treat Fáry embeddings of G as injective mappings
ϕ : V → R2. We say that a Fáry embedding is rational if all its edge lengths are rational
and fully rational if it is rational and the vertices are at rational coordinates. Two Fáry
embeddings ϕ and ϕ′ of G are said to be ε-close if, for every vertex v ∈ V , the Euclidean
distance d(ϕ(v), ϕ′(v)) between the images of v is less than ε. A planar graph G is said to be
fully approximable if, for every Fáry embedding ϕ of G and every ε > 0, there exists a fully
rational Fáry embedding ϕ′ that is ε-close to ϕ. Geelen, Guo, and McKinnon [7] were the
first to consider such a property because of the following result on Diophantine equations:

▶ Theorem 2 (Berry [2]). Let x, y, and z be non-collinear points in the plane such that
d(x, y), d(y, z)2, and d(z, x)2 are rational. Then, the set of points at rational distance from
all three points is dense in the plane.
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We note that the squares of the distances are automatically rational if the points have rational
coordinates. Using Theorem 2, Geelen et al. constructed fully rational Fáry embeddings of
planar graphs of maximum degree 3, but Biedl [3] was the first to observe that their method
extends to a more general family of graphs. Let G be a graph on n vertices. An ordering of
its vertices v1, . . . , vn is said to be a 3-elimination order if:

G has only one vertex, i.e., n = 1, or
v1 has degree at most 2 and v2, . . . , vn is a 3-elimination order for G − v1, or
v1 has degree 3 and there are two neighbors u and u′ of v1 such that v2, . . . , vn is a
3-elimination order for (G − v1) ∪ {uu′}.

Given a 3-elimination order, one can recursively construct a fully rational Fáry embedding of
G − v1 or (G − v1) ∪ {uu′}, and then add v1 using Theorem 2:

▶ Theorem 3 (Geelen et al. [7], Biedl [3]). Every planar graph with a 3-elimination order is
fully approximable.

A graph is called (2, 1)-sparse if every nonempty induced subgraph H satisfies |E(H)| ≤
2|V (H)| − 1. Biedl [3] identified the (2, 1)-sparse graphs as a rich family of graphs with
3-elimination orders, but unfortunately, the original proof has an error. For our purposes, we
do not explicitly need (2, 1)-sparseness (a discussion and a corrected proof are deferred to
Appendix A). Instead, we rely on just a special case: a graph is said to be subquartic if it has
maximum degree 4, but is not 4-regular. Biedl [3] showed that connected subquartic graphs
are (2, 1)-sparse while Benediktovich [1] directly proved that such graphs have 3-elimination
orders:

▶ Theorem 4 (Benediktovich [1], Biedl [3]). Every connected subquartic graph has a 3-
elimination order. Hence, planar connected subquartic graphs are fully approximable.

4-regular planar graphs cannot have 3-elimination orders because there is no possible first
vertex v1. To circumvent this, Sun [14] considered two approaches. If the graph has low edge
connectivity, then a rational Fáry embedding can be pieced together from its subquartic
blocks. The other idea is to apply a theorem of Kemnitz and Harborth [8] to remove a vertex
of a diamond subgraph. In Theorems 5 and 14, we improve upon each approach.

3 The low connectivity case

Using rigidity theory, Sun [14] proved that 4-regular planar graphs with edge connectivity 2
have rational Fáry embeddings. We upgrade this result to vertex cuts of size 2:

▶ Theorem 5. Every connected 4-regular planar graph that is not 3-connected has a rational
Fáry embedding.

Proof. By the handshaking lemma, minimal edge cuts in 4-regular graphs must have even
size. If the graph has an edge cut of size 2 (which includes when the graph has a cutvertex),
then the result of Sun [14] applies. Now suppose the graph G is 4-edge-connected and has
a vertex cut {u, v}. Deleting the cut disconnects the graph into exactly two connected
components C1 and C2. Furthermore, since G does not have an edge cut of size 2, u and v

both have exactly two neighbors in both C1 and C2.
For i = 1, 2, define Hi to be the induced subgraph G[V (Ci) ∪ {u, v}], with the edge uv

added. Since C3−i is connected, there is a path in C3−i from u to v, so Hi is planar. Choose
Fáry embeddings of H1 and H2 where uv is on the boundary of the embeddings’ convex
hulls. By applying Theorem 4, we obtain two nearby rational Fáry embeddings of H1 and
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H2. As shown in Figure 1, after applying a rational scaling to one of the embeddings so that
the length of the edge uv is the same in both, they can be glued together at this edge to
obtain a rational Fáry embedding of G. ◀

v

u

H1 H2

v

u

v

u

G ∪ {uv}

Figure 1 Pasting together two rational Fáry embeddings at two vertices.

4 The 3-connected case

4.1 The geometric part

Let vpqr be a quadrilateral where vq is an internal diagonal and d(v, p), d(v, q), d(v, r),
d(p, q)2, and d(q, r)2 are rational. Kemnitz and Harborth [8] applied the theory of Diophantine
equations to find a point u on the line vq at rational distance from v, p, q, r. If v, p, q, r are
vertices of a graph, then the lengths required to be rational form a complete bipartite graph
K1,3, where v is the vertex of degree 3. We say that a Fáry embedding of K1,3 is permissible
if the rational constraints above are satisfied and Kemnitz and Harborth’s solution for u lies
on the interior of the line segment vq.

Sun [14] gave an explicit example of a permissible quadrilateral: we call a Fáry embedding
of K1,3 a good kite if vpqr forms a convex quadrilateral, d(p, q) = d(p, v) = 3, d(r, q) =
d(r, v) = 4, and d(q, v) = 5. A good kite and the location of the new vertex u are shown in
Figure 2(a) and (b), respectively.

q

r

p

v

(a)

q

r

p

v
u

(b)

Figure 2 A special “one-sided” polygon (a) enables a useful solution to a certain system of
Diophantine equations (b).

▶ Proposition 6 (Sun [14]). Let ϕ be a permissible embedding of K1,3. Then, there exists
ε0 > 0 such that any fully rational Fáry embedding ϕ′ that is ε0-close to ϕ has a point on the
interior of the line segment qv at rational distance to each of v, p, q, r.
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However, when trying to use Proposition 6, Sun [14] erroneously claimed that any drawing
of an internal face as a convex polygon can be extended to a Fáry embedding of the entire
graph. A simple counterexample is the wheel graph on 5 vertices whose quadrangular face is
drawn as a square: the only way to add the remaining vertex is inside of the square.

Fortunately, the convex quadrilateral found in a good kite can be extended. Using the
terminology in Mchedlidze, Nöllenburg, and Rutter [10], given a maximal plane graph with
a specified unbounded face, we say that a cycle is outerchordless if all of its chords are in
the interior of the cycle. A convex polygon is said to be one-sided if there is a point in the
exterior of the polygon which is visible from every vertex of the polygon.

▶ Theorem 7 (Mchedlidze et al. [10], Theorem 2). Let G be a maximal plane graph, and let
C be an outerchordless cycle in G. Then any drawing of C as a one-sided polygon can be
extended to a Fáry embedding ϕ of G, possibly with a different unbounded face, where a face
is internal to C in ϕ if and only if it is internal to C in G.

The original statement of the above result in [10] does not mention preserving internal
faces, but it is implicit in their proof. We note that this is not their main result (Theorem 4
in [10]), which applies to arbitrary convex polygons and is able to preserve the unbounded
face, though it has additional requirements on so-called “petals” of the cycle.

▶ Lemma 8. Let G be a plane graph, where the rotation at some vertex v is of the form
(. . . p, q, r . . . ), and p and r are not adjacent. Then, there is a Fáry embedding of G where
the restriction to the K1,3 subgraph formed by the edges vp, vq, and vr forms a good kite,
and vq is the only edge that intersects the interior of the convex hull of the K1,3 subgraph.

Proof. Triangulate the graph to obtain a maximal plane graph G′ so that there are faces
[v, q, p] and [v, r, q] (which may require changing the locations of the edges pq and qr, if they
already exist) and the edge pr is still missing, introducing additional vertices if necessary.
Draw the K1,3 subgraph as a good kite and consider the cycle vpqr. Since the edge vq is in
the interior of the cycle and there is no edge pr, the cycle is outerchordless. In Figure 2(a),
there is a point in the shaded region that extends perpendicularly from qr where all four
vertices are visible from that point, so the cycle has been drawn as a one-sided quadrilateral.
Thus, we may apply Theorem 7 to vpqr to obtain a Fáry embedding of all of G′. Since
G′ is 3-connected, Whitney’s theorem ensures that the new drawing has the same set of
rotations, and hence the same set of faces. Consequently, no other edge besides vq intersects
the interior of the convex quadrilateral vpqr. ◀

Adding a vertex using Proposition 6 creates what we call a diamond, two triangular faces
meeting at an edge. We call that intersecting edge the central edge and its endpoints central
vertices. As seen in Figure 2, undoing the vertex addition is combinatorially equivalent to
contracting the edge uv. We can subsequently summarize the aforementioned geometric
results in a graph-theoretic manner:

▶ Lemma 9. Let G be a plane graph with a diamond where one of its central vertices
has degree 4, and the two non-central vertices are not adjacent. Let G′ be the graph after
contracting the diamond’s central edge. If G′ has a 3-elimination order, then G has a rational
Fáry embedding.

Proof. Reusing earlier notation, let the rotation at u be (v, p, q, r) and let the diamond’s
faces be [u, p, v] and [u, v, r]. Contract the edge uv and call the new vertex v. Apply Lemma 8
to obtain a Fáry embedding ϕ of G′. There exists ε1 > 0 such that, in any Fáry embedding
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ε1-close to ϕ, the quadrilateral vpqr is convex, and no other edge intersects the interior
of vpqr (i.e., the same guarantees as in Lemma 8). In particular, adding a new vertex
anywhere in the interior of vpqr and connecting it to v, p, q, r would not create any crossings.
Since G′ has a 3-elimination order, use Theorem 3 to find a fully rational Fáry embedding
min(ε0, ε1)-close to ϕ. Finally, use Proposition 6 to find a point in the interior of vq to add
back vertex u and its incident edges so that those edges have rational length. ◀

Guaranteeing non-adjacency for applications of Lemma 9 is aided by the following facts:

▶ Proposition 10 (Sun [14]). In a 4-edge-connected 4-regular plane graph, every 3-cycle is
facial.

▶ Corollary 11. In a 4-edge-connected 4-regular plane graph, if the rotation at a vertex is of
the form (a, b, c, d), then a and c are not adjacent.

We note that, for 4-regular graphs, 3-connectivity implies 4-edge-connectivity by the same
parity argument mentioned in the proof of Theorem 5.

4.2 The combinatorial part
Given a 3-connected 4-regular plane graph, we say that a vertex is of type (t1, t2, t3, t4),
where t1 ≤ t2 ≤ t3 ≤ t4, if the lengths of the faces f1 ≤ f2 ≤ f3 ≤ f4 incident with the vertex
satisfy fi ≤ ti, for i = 1, . . . , 4.

▶ Theorem 12 (Lebesgue [9]). Every 3-connected 4-regular plane graph has a vertex of type
(3, 3, 3, ∞), (3, 3, 4, 11), (3, 3, 5, 7), or (3, 4, 4, 5).

We extract a few configurations of faces from Lebesgue’s criterion. A bowtie consists of
two triangular faces intersecting at a vertex, and a house consists of a triangular face and a
quadrangular face intersecting at an edge.

▶ Corollary 13. Every 3-connected 4-regular plane graph contains a diamond, a bowtie, or a
house.

Proof. If the vertex in Theorem 12 is incident with at least two triangular faces, then there
is a diamond or a bowtie. Otherwise, the vertex is of type (3, 4, 4, 5). At least one of the
quadrangular faces intersects the triangular face at an edge, forming a house. ◀

Note that the latter two configurations are necessary: of the three configurations above,
the medial graphs of the dodecahedron and cuboctahedron graphs have only bowties and
houses, respectively.

▶ Theorem 14. Every planar 3-connected 4-regular graph has a rational Fáry embedding.

Proof. For each such graph G, we will create a diamond (if one does not already exist) by
adding an edge near a triangular face, and then verify that this graph satisfies the conditions
in Lemma 9. In each case, the diamond’s non-central vertices will not be adjacent by
Corollary 11, so it remains to show that contracting the diamond’s central edge yields a graph
G′ with a 3-elimination order. If G already has a diamond, then G′ would be connected and
subquartic, so assume otherwise.

We note that in the remaining cases, the inclusion of another edge causes G′ to have
degree sequence 3, 4, . . . , 4, 5, which implies that it has too many edges to be (2, 1)-sparse.
Instead, we will have to specify the first few vertices of the 3-elimination order until we are
able to invoke Theorem 4 to generate the rest of the ordering.
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By Corollary 13, G must have a bowtie or a house. If there is a bowtie, let its two
triangular faces be [x, a, b] and [x, c, d], as seen on the left of Figure 3. In the subsequent
drawings, blue triangles and red pentagons denote vertices of degree 3 and 5, respectively.
Suppose that the rotation at vertex d is (c, x, y, z). By Corollary 11, x and z are not adjacent.
Adding the edge cz creates a diamond where the edge cd is shared between two triangular
faces, and vertex d has degree 4. After contracting cd, x and c are the vertices of degree 3
and 5, respectively. Let x be the first vertex in the 3-elimination order for G′, and choose a

and b to be its neighbors. The subsequent graph (G′ − x) ∪ {ab} = G′ − x is subquartic and
connected, since it is a spanning supergraph of G − {x, d}, and G is 3-connected.

x
b

a

c

d

z

y

x
b

a

c

z

y

b

a

c

z

y

Figure 3 Reducing a bowtie by specifying the first vertex in the 3-elimination order.

If there is a house, label the vertices so that its two faces are [w1, wℓ, b, c] and [w1, c, d],
the rotation at vertex d is (c, w1, y, z), and [w1, w2, . . . , wℓ] is the face sharing the edge w1wℓ

with the quadrangular face. Since the graph is simple, there are four distinct neighbors of w1.
If, say, c = wi, for some i ∈ {2, . . . , ℓ − 1}, then deleting w1 and c would disconnect w2 from
wℓ, contradicting the assumption that G is 3-connected. Similarly, d ̸= wi as well. Thus, the
vertices c, d, w1, . . . , wℓ are all distinct.

Like in the bowtie case, add the edge cz and contract the edge cd. As depicted in Figure 4,
the first vertices in the 3-elimination order are w1, w2, . . . , wℓ, where the neighbors u, u′ of
wi, for each i = 1, . . . , ℓ − 1, are chosen to be the two that are not wi+1. Each vertex wi has
degree 3 by the time it is deleted, since they each started with degree 4. For wℓ, we choose b

and c as its neighbors. The edges bc and bwℓ are in the original graph, but cwℓ was only
added when deleting vertex w1.

The resulting graph is now subquartic, so it remains to check that it is connected. It is a
spanning supergraph of (G/cd) − {w1, . . . , wℓ}, but since c, d ̸= wi, we obtain the same graph
if we reverse the order of these two operations. Face boundaries in 3-connected plane graphs
are non-separating cycles (see, e.g., Proposition 2.4.7 of Diestel [4]). Thus, deleting w1, . . . , wℓ

does not disconnect the graph, and neither would contracting the edge cd afterwards. ◀

5 Future Directions

We showed that the solutions to certain Diophantine equations [2, 8] can be used to construct
rational Fáry embeddings for all 4-regular planar graphs. However, the proof of Theorem 2
is quite complicated and does not give an explicit method for calculating the locations of
such points. Is there a simpler construction, perhaps exploiting the additional condition that
vertices are placed at rational coordinates?

Because the proof of Theorem 5 possibly applies a rotation to a Fáry embedding, the
vertices are not guaranteed to be at rational coordinates. Is it possible to use the proof
technique for 3-connected graphs (or other methods) to find fully rational Fáry embeddings
in the low connectivity case?
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w1

w2w3
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b

y

d
w1

w2w3
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y
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wℓ

c
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c
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b

y

c
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Figure 4 Reducing a house by transforming the quadrangular face into a triangular one.

Finally, Harborth’s conjecture is still wide open. Are there any methods for finding a
point at rational distance to families of five-point sets? What other interesting families of
graphs, especially those with 3n − O(1) edges, have 3-elimination orders?

References
1 Vladimir I. Benediktovich. On rational approximation of a geometric graph. Discrete Math-

ematics, 313(20):2061–2064, 2013. doi:10.1016/J.DISC.2013.06.018.
2 T. G. Berry. Points at rational distance from the vertices of a triangle. Acta Arithmetica,

62:391–398, 1992.
3 Therese Biedl. Drawing some planar graphs with integer edge-lengths. In Canadian Conference

on Computational Geometry, pages 291–296, 2011.
4 Reinhard Diestel. Graph Theory, volume 173. Springer, 2017.
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A (2, 1)-sparse graphs have 3-elimination orders

u′

u

v1

Figure 5 A potential dead end in a graph with a 3-elimination order.

The original proof in [3] attempts to show that (2, 1)-sparse graphs have 3-elimination
orders via induction. In particular, the inductive step claimed that when deleting a vertex
v1 of degree 3, adding any edge between its neighbors still results in a (2, 1)-sparse graph.
Figure 5 illustrates a case where the choice of neighbors is important: deleting vertex v1 and
adding an edge between its neighbors u and u′ create a 4-regular component. Consequently,
this new graph is not (2, 1)-sparse and does not have a 3-elimination order, even though the
original graph is connected and subquartic.

Given a subset of vertices X ⊆ V , let e(X) denote the number of edges in the subgraph
induced by X. In this notation, a graph is (2, 1)-sparse if for all nonempty X ⊆ V ,
e(X) ≤ 2|X| − 1. The key argument in the following proof is due to Nixon and Owen [11],
who used it to characterize the (2, 1)-sparse graphs G with exactly |E(G)| = 2|V (G)| − 1
edges.

▶ Lemma 15 (Biedl [3]). Every (2, 1)-sparse graph has a 3-elimination order.

Proof. We induct on the number of vertices. Given a (2, 1)-sparse graph G, the result is
true when G has one vertex. Since G has average degree strictly less than 4, there is a vertex
v of degree at most 3. If v has degree at most 2, or has degree 3 and two of its neighbors are
adjacent, then G − v is also (2, 1)-sparse by definition. The remaining case is when v has
degree 3, and none of its neighbors w1, w2, w3 are adjacent.

We show that there is at least one choice of neighbors wi and wj such that (G−v)∪{wiwj}
is still (2, 1)-sparse. Assume that no such choice exists, so that for each pair of neighbors wi and
wj , there is a subset of vertices Xij such that v ̸∈ Xij , wi, wj ∈ Xij , and e(Xij) = 2|Xij | − 1
(i.e., a subset that cannot afford having another edge). Then, consider the subgraph induced
by X ′ = X12 ∪ X23 ∪ {v}. This graph has
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e(X ′) = e(X12 ∪ X23) + 3
= e(X12) + e(X23) − e(X12 ∩ X23) + 3
= (2|X12| − 1) + (2|X23| − 1) − e(X12 ∩ X23) + 3
≥ (2|X12| − 1) + (2|X23| − 1) − (2|X12 ∩ X23| − 1) + 3
= 2|X12 ∪ X23| + 2
= 2|X ′|

edges, violating (2, 1)-sparseness. The inequality relies on the fact that X12 ∩X23 is nonempty
(since w2 is in it), which allows us to apply the definition of (2, 1)-sparseness to it. ◀
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Abstract
We study algorithms for drawing planar graphs and 1-planar graphs using cubic Bézier curves
with bounded curvature. We show that any n-vertex 1-planar graph has a 1-planar RAC drawing
using a single cubic Bézier curve per edge, and this drawing can be computed in O(n) time given a
combinatorial 1-planar drawing. We also show that any n-vertex planar graph G can be drawn in
O(n) time with a single cubic Bézier curve per edge, in an O(n) × O(n) bounding box, such that
the edges have Θ(1/degree(v)) angular resolution, for each v ∈ G, and O(
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n) curvature.
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1 Introduction

A Bézier curve is a parametric curve defined by a set of control points that determine a
smooth, continuous curve in the plane [14, 30]. For example, one of the most common types,
a cubic Bézier curve, is defined by four points, P0, P1, P2, P3, such that the curve starts at
P0 tangent to the line segment P0P1 and ends at P3 tangent to the line segment P2P3, with
the lengths of P0P1 and P2P3 determining “how fast” the curve turns towards P1 before
turning towards P2. Formally, a cubic Bézier curve, f , has the following explicit form (see
Figure 1):

f(t) = (1 − t)3P0 + 3(1 − t)2tP1 + 3(1 − t)t2P2 + t3P3, for 0 ≤ t ≤ 1.

The speed in which a curve turns can be characterized by its curvature, which is a
measure of the the instantaneous rate of change of direction of a point that moves on the
curve; hence, the larger the curvature, the larger this rate of change. For example, the
curvature of a line is zero, the curvature of a polygonal chain with a bend is +∞, and the
curvature of a circle is the reciprocal of its radius.

Formally, the curvature of a twice-differentiable parameterized curve, c(t) = (x(t), y(t)),
can be defined as follows (e.g., see [33, p. 890]):

κ(t) = |x′y′′ − y′x′′|
(x′2 + y′2)3/2 ,

where x′ and x′′ are the first and second derivatives of x, and y′ and y′′ are the first and
second derivatives of y, with respect to t. For this to be well-defined the curve must be
smooth enough to have a second derivative, which is not true for polylines. In such cases the
curvature can be thought of as infinite, as a limiting case of smooth perturbations of the
given curve.
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39:2 Drawing Planar Graphs and 1-Planar Graphs Using Cubic Bézier Curves

Figure 1 An example cubic Bézier curve. Public domain image by MarianSigler.

For a graph drawing, we desire the curvatures of the edges to be small, where we define
the curvature of a drawing of a graph G to be the maximum curvature for a non-vertex
point on an edge of G, taken over all edges in the drawing of G. For example, Xu, Rooney,
Passmore, Ham, and Nguyen [36] empirically show that user performance on network tasks
is better for low-curvature drawings than for high-curvature drawings.

Unfortunately, minimizing curvature may conflict with other goals for a drawing. For
example, curvature can conflict with angular resolution for planar drawings of planar graphs.1
For example, we can draw an n-vertex planar graph without crossings using straight edges
(i.e., with curvature 0) but this can cause angular resolution to be O(1/n), even for low-degree
vertices, e.g., see [9, 28, 31], or even worse, e.g., see Tutte [35]. Indeed, Garg and Tamassia [22]
show that, in general, the best angular resolution that any algorithm for drawing a degree-d
planar graph G using straight-line drawing can achieve is O(

√
(log d)/d3). Ideally, we would

like the angular resolution for a drawing of a graph G, to be Ω(1/degree(v)), for each v ∈ G,
which Goodrich and Wagner show how to achieve [23], but their methods for achieving this
bound either use polylines with bends (hence, with infinite curvature) or with Bézier curves
that the authors admit have high curvature, and they pose as an open problem whether one
can simultaneously achieve good angular resolution and relatively low curvature for planar
graph drawings with edges represented with cubic Bézier curves.2

In terms of another trade-off for drawings with curves, Huang, Eades, Hong, and Duh [25]
empirically show that users performing network tasks were quickest with drawings with curved
crossing edges rather than mixed drawings with no crossings, and the authors conclude that
for better human graph comprehension, it might be better to use curves to increase crossing
angle, rather than to remove them completely. Similarly, Huang, Hong, and Eades [26]
report on user studies showing that crossings with large angles are much less harmful to the
readability of drawings than shallow crossings. Relatedly, there is considerable prior work on
right angle crossing (RAC) drawings, where every pair of crossing edges must cross at right
angles, but these drawings are typically achieved by using polygonal paths with bends, e.g.,

1 Recall that a planar graph can be drawn in the plane without edge crossings and a 1-planar graph can
be drawn in the plane so that each edge crosses at most one other edge. Also recall that the angular
resolution for each vertex is the minimum angle between two edges incident on v in the drawing.

2 For the sake of normalization of the curvature parameter, we assume in this paper that a drawing has
an O(n) × O(n) bounding box, as is common for drawings of planar and 1-planar graphs.
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see [1, 2, 10, 11, 32, 34]; hence, these drawings can have unbounded curvature. Therefore,
we are interested in methods for producing RAC drawings of 1-planar graphs using curves
having bounded curvature, e.g., such as can be achieved with cubic Bézier curves.

Bézier curves are used extensively in computer graphics applications, where it is common
to concatenate Bézier curves together to form a composite Bézier curve, e.g., see [30]. As long
as each connection point is collinear with its two adjacent control points, then the resulting
composite Bézier curve will be C1 continuous, but it will not necessarily have continuous
curvature. In addition, such representations can be quite complex, depending on the number
of pieces used, and the curvature at connection points might not be well-defined or, even if
it exists, it might not be easy to bound. Thus, we are interested in this paper on studying
drawings of planar graphs and 1-planar graphs using cubic Bézier curves where each edge is
represented with a single cubic Bézier curve, so that each edge has bounded curvature. In
the case of 1-planar graph drawings, we desire edge crossings to be at right angles, and in
the case of planar graph drawings, we would like to simultaneously achieve good angular
resolution and low curvature.

1.1 Related Prior Work

There is some notable previous work on using Bézier curves for graph drawing, which we
review below, but we are not aware of previous work on using Bézier curves to draw planar
graphs with low curvature per edge and optimal angular resolution or for RAC drawings of
1-planar graphs.3

In addition to the work cited above, there is some interesting prior work on using Bézier
curves in graph drawing systems. For example, the Graphviz system of Gansner [21] can
render edges using Bézier curves. Finkel and Tamassia [20] describe a force-directed graph
drawing implementation that uses Bézier curves to render graph edges by integrating control
points into the force equations. Brandes and Wagner [3] visualize railroad systems with some
edges rendered using Bézier curves, and Fink, Haverkort, Nöllenburg, Roberts, Schuhmann,
and Wolff [19] provide a similar type of system for drawing metro maps. The GDot system
of Hong, Eades, and Torkel [24] uses Bézier curves to draw edges in graphs visualized as dot
paintings. In addition, the CelticGraph system of Eades, Gröne, Klein, Eades, Schreiber,
Hailer, and Schreiber [15] draws graphs using Celtic knots with edges represented as Bézier
curves with limited curvature.

In terms of additional theoretical work, Eppstein, Goodrich, and Meng [17] show how
to draw confluent layered drawings using Bézier curves that combine multiple edges, and
Eppstein and Simons provide a similar result for Hasse diagrams [18]. In addition, there is
considerable prior work on Lombardi drawings, where edges are drawn using circular arcs,
e.g., see [5, 12, 13, 16, 18, 29], which we consider to be related work even though circular
arcs are not Bézier curves. Cheng, Duncan, Goodrich, and Kobourov [4] show how to draw
an n-vertex planar graph G with asymptotically optimal angular resolution, O(1/degree(v)),
for each v ∈ G, using 1-bend polylines or circle-arc chains, both of which have unbounded
curvature.

3 At a workshop affiliated with GD 2023 to celebrate the 60th birthday of Beppe Liotta, Peter Eades
advocated for more research on the topic of using Bézier curves to draw graphs, including results
involving curvature guarantees.

GD 2024



39:4 Drawing Planar Graphs and 1-Planar Graphs Using Cubic Bézier Curves

1.2 Our Results
In this paper, we show how to draw 1-planar graphs as RAC drawings using a single cubic
Bézier curve for each edge; hence, with bounded curvature. We also show how to draw planar
graphs in an O(n) × O(n) grid with good angular resolution by rendering each edge using a
cubic Bézier curve with O(

√
n) curvature. Our methods involve careful constructions and

proof techniques for proving bounded curvature results, which may be applicable in other
settings.

Our constructions are also based in part on refinements of the convex hull property of
Bézier curves, which is that every point of a Bézier curve lies inside the convex hull of its
defining control points, e.g., see [14]. In our results, however, the convex hull property is not
sufficient, since the regions in which we desire Bézier curves to traverse are more restrictive
than just the convex hulls of control points. Moreover, the convex hull property says nothing
about right-angle crossing points for pairs of Bézier curves, which is an important component
of our work, and one that requires considerable work, as we show.

2 Constrained Constructions for Pairs of Bézier Curves

We show in this paper that we can draw any 1-planar graph in the plane with right angle
crossings, i.e., a RAC drawing, using Bézier curves for every pair of intersecting edges and
straight line segments for the rest.

Bekos, Didimo, Liotta, Mehrabi, and Montecchiani [2] show that one can draw any 1-
planar graph as a RAC drawing where each edge is represented by a polyline that has at most
one bend. Their algorithm starts from a 1-planar (combinatorial) embedding of a 1-planar
graph G, and proceeds via an induction proof involving augmentation and contraction steps
to produce a RAC drawing of G with edges represented with polylines with at most one
bend per edge. We show how to adapt their proof to use a single cubic Bézier curve per
edge in place of a 1-bend polyline. To achieve this, we develop a number of constructions
for pairs of Bézier curves that cross at right angles in specific ways while fitting in specified
polygonal regions. As mentioned above, our constructions go well beyond the convex hull
property for Bézier curves. We describe each of these constructions in this section and we
show in the subsequent section how to use these constructions to prove our main result for
RAC drawings of 1-planar graphs, which is the following.

▶ Theorem 1. Any n-vertex 1-planar graph has a 1-planar RAC drawing using a single cubic
Bézier curve per edge. Further, if a 1-planar embedding of the graph has been provided, a
1-planar RAC drawing using such cubic Bézier curves can be computed in O(n) time.

Since Bézier curves have bounded curvature, we achieve a RAC drawing of any 1-planar
graph using edges with bounded curvature. We give each of our constructions for constrained
pairs of Bézier curves in the subsections that follow. Our constructions make use of another
property of Bézier curves; namely, that applying an affine transformation (e.g., a rotation,
reflection, translation, or scaling) to a Bézier curve is equal to the Bézier curve defined by
applying that same transformation to the original control points, e.g., see [14].

2.1 Right-angle Crossing in a Triangle and Outside a Quadrilateral
Our first construction is for defining two cubic Bézier curves that have a right-angle crossing
inside a triangle, each with two endpoints that form a quadrilateral with the base of the
triangle, such that the curves lie outside of that quadrilateral. The curves that we describe
are actually quadratic Bézier curves but any quadratic Bézier curve is also a cubic Bézier
curve by de Casteljau’s algorithm [7, 8]. See Figure 2.



D. Eppstein, M. T. Goodrich, and A. M. Illickan 39:5

C

BA

F E

Figure 2 Triangle ABC with quadrilateral ABEF and pair of cubic Bézier curves that cross in a
right angle outside the quadrilateral but inside ABC.

▶ Theorem 2. For any triangle ABC, there is a quadrilateral ABEF contained in ABC

such that there is a pair of Bézier curves with pairs of endpoints {A, E} and {B, F} that
intersect each other at right angles, are contained within ABC, and lie outside of ABEF .
The coordinates of E and F and the control points of the Bézier curves can be computed
efficiently, given the coordinates of A, B and C.

Proof. It is enough to consider the case of an isosceles triangle with base AB, since such a
triangle can be found within any given triangle ABD. By the equivalence property for Bézier
curves under angle-preserving affine transformations, let us assume A = (0, 0), B = (1, 0), C =
(1/2, Cy). Let E =

(
1
4

(
4C2

y + 6Cy +
√

16C4
y + 48C3

y + 40C2
y + 12Cy + 1 + 3

)
, Cy/2

)
with

Cy > 0 and F = (1 − Ex, Cy/2). Let us define g1(t) = At2 + 2Ct(1 − t) + E(1 − t)2 and
g2(t) = Bt2 + 2Ct(1 − t) + F (1 − t)2. In the range (0, 1), these curves only meet at one point,1

2 ,

(
−
√

4C2
y + 8Cy + 1 + 6Cy + 1

)(√
4C2

y + 8Cy + 1 + 2Cy − 1
)

24Cy

 ,

when t = 4Cy+1
6Cy

−
√

4C2
y+8Cy+1
6Cy

for both curves. At this point, the slope of one curve is −1

and the other is +1, so they intersect at a right angle. At t =
√

−4E2
x+8Ex−3−2Ex+1

2(1−Ex) , g2 is atEx, −
Cy

(√
−4E2

x + 8Ex − 3 − 1
)(

3
√

−4E2
x + 8Ex − 3 − 8Ex + 5

)
8(Ex − 1)2

 ,

which is always higher than Ey = Cy/2. Thus, g2 cannot intersect EB or EF except at B

and F respectively because it is a parabola and E is inside it. Similarly, g1 does not intersect
AF or EF except at A and F respectively. ◀

2.2 Right-angle Crossing of a Diagonal of a Convex Quadrilateral
Our next construction is for a cubic Bézier curve f that replaces a diagonal of a convex
quadrilateral so that f has a right-angle crossing with the other diagonal. See Figure 3.

We actually prove a slightly stronger result, for which, w.l.o.g., we assume the diagonal
to be replaced is horizontal.
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AB

E

F

Figure 3 Pair of intersecting diagonals, EF and AB, inside a convex quadrilateral, AEBF . We
replace AB with a Bézier curve that intersects EF at a right angle.

▶ Theorem 3. For any convex quadrilateral with horizontal diagonal, AB, a point X on
AB, and any real number, m, there is a simple cubic Bezier curve with endpoints A and B

such that the Bézier curve intersects AB at X and makes slope m at X and the curve is
contained in the quadrilateral and also stays in a pair of opposite quadrants around X. For
m ̸= 0, the curve intersects AB only at A, X, and B. The control points of the Bézier curve
can be computed efficiently, given the vertices of the quadrilateral.

We will work with the points A and B being at (1, 0) and (0, 0) respectively. For any
other pair of points we can apply an angle-preserving affine transformation. W.l.o.g., we
also work with the point of intersection being on the line segment from (0, 0) to (8/9, 0), the
portion of AB closer to B, by symmetry. We will first show a curve that is perpendicular at
X in Lemma 4. This first curve can be bounded by any arbitrary quadrilateral with AB as
diagonal and also leaves two opposite quadrants around X free for the other diagonal to be
drawn as a straight line segment. Then, in Lemma 5, we show a curve that is a monotonic
straight line that reaches X at the same value of the parameter, t, as defines the first curve.
(See Figure 4.) Finally, in Lemma 6, we take a convex combination of these curves to get the
required slope. This third curve is the one that we use.

▶ Lemma 4. Let A = (1, 0), B = (0, 0), and X = (x0, 0) be a point on the line segment AB.
For any convex quadrilateral with AB as diagonal, there is a cubic Bézier curve with A and
B as endpoints and C1 and D1 as control points that intersects the line segment AB at X at
a right angle at the parameter value t = t0 = C1,x−2D1,x

−1+3C1,x−3D1,x
, and is contained within this

quadrilateral and also within any pair of opposite quadrants around the point of intersection.

Proof. Assume x0 < 8/9. Otherwise mirror the plane. Let D1 = (D1,x, −r) and C1 =
( 1

2 (D1,x −
√

4D1,x − 3D2
1,x), 1−2C1,x+D1,x

2D1,x−C1,x
r) where r ∈ R. We will define D1,x later. Let

f1(t) = At3 + 3C1t2(1 − t) + 3D1t(1 − t)2 + B(1 − t)3 be the Bézier curve we are constructing.
Then the y-coordinate function for f1 is

f1,y(t) = −31 − 2C1,x + D1,x

2D1,x − C1,x
rt2(1 − t) + 3rt(1 − t)2.

At t = t0, f1,y(t) = 0. Note that there are three roots for the cubic polynomial f1,y and the
other two are at t = 0 and t = 1. The x-coordinate function for f1 is

f1,x(t) = t3 + 31
2(D1,x −

√
4D1,x − 3D2

1,x)t2(1 − t) + 3D1,xt(1 − t)2.
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AB

Figure 4 Bézier curves intersecting the line segment, AB, between the endpoints at different
angles. The red curve is a curve which meets the line segment at that point at right angles. The blue
curve is obtained by taking a convex combination with a curve that remains on the line segment
and has the same parameter t as the red curve at the point of intersection.

At t = t0, f1,x(t) =
D1,x

(
3D1,x+

√
−D1,x(3D1,x−4)

)
3D1,x+3

√
−D1,x(3D1,x−4)+2

and we choose D1,x to be x0 + 3
√

x2
0 − x3

0

which is a root of f1,x(t0) = x0 when treated as an equation in D1,x. This root is valid
whenever C1,x is real, which happens when 4D1,x − 3D2

1,x ≥ 0, which is true when 0 ≤
D1,x ≤ 4/3. This happens when 0 ≤ x0 ≤ 8/9. Moreover,

df1,y

dt
= −

3r
(
C1,x

(
9t2 − 8t + 1

)
+ D1,x

(
−9t2 + 10t − 2

)
+ (2 − 3t)t

)
C1,x − 2D1,x

and

df1,x

dt
= 3

(
t(C1,x(2 − 3t) + t) + D1,x

(
3t2 − 4t + 1

))
.

At t = t0,

df1,x

df1,y
=

df1,x

dt
df1,y

dt

= 0,

which means that the angle at the point of intersection is π/2. Also, the value of C1,x

is such that df1,x

dt
= 3t2(−3C1,x + 3D1,x + 1) + 3t(2C1,x − 4D1,x) + 3D1,x is a quadratic

polynomial in terms of t with discriminant 0. This means that t0 is a repeated root and,
hence, f1,x is monotonic. Thus, the curve remains in a pair of opposite quadrants, de-
termined by the sign of r. Next, we show that this curve is bounded by the quadrilateral
(0, 0), (x0, −rx0

D1,x
), (1, 0), (x0,

r(1−2C1,x+D1,x)(x0−1)
(C1,x−1)(2D1,x−C1,x) ). This is obtained by the convex hull prop-

erty of Bézier curves in conjunction with the fact that f1,x is monotonic. For any value of
x0, these values are bounded. The value of r can be adjusted such that this quadrilateral is
contained within any quadrilateral with the diagonal AB. ◀

We next address the case for the point of intersection X having x-coordinate in (0, 8/9)
and forming an angle of 0.

▶ Lemma 5. Let A = (1, 0), B = (0, 0), and X = (x0, 0) a point on the line segment AB.
There is a cubic Bézier curve with A and B as endpoints that is at X when t = t0 as obtained
from Lemma 4 for the same X and monotonically traces the straight line segment AB.
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Proof. Assume x0 < 8/9. Otherwise, mirror the plane. Let C2 = D2 = ( x0−t3
0

3(1−t0)t0
, 0) and

f2(t) = At3 + 3C2t2(1 − t) + 3D2t(1 − t)2 + B(1 − t)3 be the Bézier curve we are constructing.
It is easy to see that for f2’s y-coordinate function, f2,y = 0 throughout. The x-coordinate
function is

f2,x(t) = t3 + (1 − t)t(x0 − t3
0)

(1 − t0)t0
.

At t = t0, f2,x(t) = x0. Also, C2 and D2, the repeated control points are between A and B.
This means that the curve is always moving from B to A when t goes from 0 to 1, without

turning back or overshooting A. ◀

Given the previous two lemmas, we now can use them in convex combination.

▶ Lemma 6. Let A = (1, 0), B = (0, 0), X = (x0, 0) a point on the line segment AB and m

a real number. For any convex quadrilateral with AB as a horizontal diagonal, there is a
simple cubic Bézier curve with A and B as endpoints that intersects the line segment AB

at X with slope m for the parameter value t = t0 as obtained from Lemma 4 for the same
X and is contained within this quadrilateral and also within any pair of opposite quadrants
around the point of intersection.

Proof. Let C3 = kC1 + (1 − k)C2 and D3 = kD1 + (1 − k)D2 for k ∈ [0, 1] where C1, D1 are
control points of a curve f1(t) obtained from the proof of Lemma 4 and C2, D2 are control
points of a curve f2(t) obtained from the proof of Lemma 5. Let

f3(t) = At3 + 3C3t2(1 − t) + 3D3t(1 − t)2 + B(1 − t)3 = kf1(t) + (1 − k)f2(t)

be the more-general Bézier curve we are now constructing as a convex combination of f1 and
f2. Clearly, f3(t) is at X when t = t0. In addition, we can write the slope of f3 at t0 as
follows:

df3,y

df3,x
=

df3,y

dt
df3,x

dt

=
k

df1,y

dt

k
df1,x

dt
+ (1 − k)df2,x

dt

.

To get a positive slope, we use a positive value of r. To get a negative slope, we use a negative
value of r. Values of k in [0, 1] will span the full range of slopes (either positive or negative)
for every value of r. To get a specific slope m at t = t0, we set

k =
m

df2,x

dt

m(df1,x

dt
− df2,x

dt
) + df1,y

dt

.

Now, we need to show that this curve does not self-intersect. f3,x is monotonic as it is a
convex combination of monotonic functions. This means that no x-coordinate is repeated
and the curve does not self intersect The curve, f3, is also bounded by the quadrilateral,
(0, 0), (x0, −rx0

D1,x
), (1, 0), (x0,

r(1−2C1,x+D1,x)(x0−1)
(C1,x−1)(2D1,x−C1,x) ), as it is a convex combination of the curves

from Lemma 4 and Lemma 5, which are bounded by the same. The value of r can be adjusted
such that this quadrilateral is contained within any arbitrary quadrilateral. Again this curve
also remains in a pair of opposite quadrants around X since f3,x is monotonic. ◀
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3 RAC Drawings of 1-Planar Graphs with Bézier Curves

We are now ready to prove Theorem 1, which is the following.

▶ Theorem 1. Any n-vertex 1-planar graph has a 1-planar RAC drawing using a single cubic
Bézier curve per edge. Further, if a 1-planar embedding of the graph has been provided, a
1-planar RAC drawing using such cubic Bézier curves can be computed in O(n) time.

The proof goes through three stages, adapting a proof of Bekos, Didimo, Liotta, Mehrabi,
and Montecchiani [2] for RAC drawings of 1-planar graphs with 1-bend polygonal edges.

3.1 Augmentation

We start with a 1-plane combinatorial drawing G of the graph. We call every connected
region of the plane bounded by edges and parts of edges a face. The number of such edges
or parts is called the length of the face. The induction will be using triangulated 1-plane
multigraphs, that is, 1-plane multigraphs in which every face is of length 3. For every pair of
crossing edges ab, cd, add edges ac, cb, bd, ad such that the only edges contained within the
cycle acbd are ab and cd. We call the subgraph consisting of these edges an empty kite. If
there are 2-length faces in this drawing, remove one of the edges recursively until there are
no more. Also remove any parallel edge that was crossed. Now all faces in this drawing are
either of length three with 2 vertices and a crossing point or bounded only by vertices and
no crossing points. In every face longer than 3 add a new vertex and connect it to all the
vertices on the face. We call this 1-plane multigraph G+.

3.2 Contraction

A separation pair is a pair of vertices {u, v} whose removal disconnects the graph. Lemma 5
in [2] states that between any separation pair {u, v}, there exist two parallel edges e, e′ such
that {u, v} is not a separation pair for the graph obtained by removing everything inside
the cycle ⟨e, u, e′, v⟩. We call this removed subgraph along with the cycle Guv. Replace Guv

with a thick edge and iterate until there are no separation pairs. We call this graph G∗. G∗

is a simple triangulated 1-plane graph.

3.3 Drawing

Obtain graph H∗ by removing all crossing pairs in G∗. All the faces of H∗ have either three
or four vertices. Lemma 7 in [2] states that H∗ is 3-connected. We can draw it with all faces
convex and the outer face as a trapezoid or triangle using Tutte’s method [35] or the method
of Chiba et al. [6] to do it in linear time. Insert all the crossing edges in the interior four
length faces by first drawing one of the edges as a straight line segment and then the other
with the required slope using Theorem 3. If the outer face is of length four, use Theorem 2
with any large triangle.

For any thick edge (u, v) with a triangle uvx that Guv could be contained in (here x need
not be a vertex, it could be any point), consider Huv obtained by removing all crossing pairs.
This is also 3-connected like H∗. If the outer face of Huv is of length three and of the form
uvw, recursively draw it inside uvx. If the outer face is of length four, use Theorem 2 to
obtain the trapezoid and crossing pair and continue recursively.
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4 Drawing Planar Graphs Using Bézier curves

Suppose we are given an n-vertex planar graph G. In this section, we describe a method of
drawing G with asymptotically optimal angular resolution, Θ(1/degree(v)), for each v ∈ G,
using a single cubic Bézier curve of curvature O(

√
n) for each edge. We start from an

O(n) × O(n) grid drawing D with asymptotically optimal angular resolution obtained by
algorithm OneBend from Cheng, Duncan, Goodrich, and Kobourov [4], which uses one-bend
edges. We describe some properties of this drawing in Section 4.1. We describe our new
drawing using Bezier curves in Section 4.2. We show that the edges do not cross each other
in Section 4.2.1. We show that the vertices in our drawing have asymptocially optimal
angular resolution in Section 4.2.2. We show that the curvature of our drawing is O(

√
n) in

Section 4.2.3.

4.1 The Drawing Obtained by the OneBend Algorithm
In the OneBend algorithm, G is drawn in a drawing, D, in an O(n) × O(n) grid such that
every vertex, v, has a joint box – a square rotated π/4 of width and height 4degree(v) + 4,
centered at v. Each joint box is divided into six regions. (See Figure 5.)

MM

RRLL

ee22

00

vv R1

Rd
Ld

L1

M2d
M1

Md Md+1

Figure 5 A joint box for a degree-d vertex, v, with left ports, L1, . . . , Ld, right ports, R1, . . . , Rd,
and middle ports, M1, . . . , M2d, and free regions, L, M , and R. Image from [4].

The regions of a joint box are of two types, free regions and port regions. The free regions
are as follows – M is π/4 on either side of the top corner and L (resp., R) is π/4 below the
left (resp., right) corner. The port regions are as follows – M is opposite the free M region,
L (resp., R) is between the free M and L (resp., R) regions. The sides of the square on port
regions have d evenly spaced ports. Every edge in the drawing is between a free M region
and a port M region, a free L region and a port R region, or a free R region and a port L

region. Every edge is drawn as two line segments starting at the endpoints of the edge and
meeting at a distinct port on the port region [4].

In our construction, we treat each of the M regions as two regions such that we have 8
regions which are congruent. However, only one of the two free M regions will have an edge.
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4.2 Drawing a Planar Graph using Cubic Bézier Curves
We take the same embedding of the vertices as given by the OneBend algorithm. Since these
curves can be rotated, translated and reflected without changing the curvature, for any edge
(A, B) which is a 1-bend polyline with the port region at A and free region at B, without
loss of generality, we may assume the following: A is at the origin, (0, 0), and B = (b1, b2)
is in the region bounded below by the x-axis and above by the line y = x − 1. After this
transformation the edges through the same port region of A in the drawing obtained by the
OneBend algorithm are ported through (d + 1, d + 1) + (i, −i) for distinct values of i which
follow the same order along the vertex and 1 ≤ i ≤ d. In our construction, we replace the
polyline edges of the OneBend algorithm with cubic Bézier curves of the form

γ(t) = Bt3 + 3Pt2(1 − t) + 3Pt(1 − t)2,

where P = (1 − k)(1, 1) + kQ, Q = (1 − s)(1, 0) + s(3/2, 1/2), s = b2/b1, and k = i/(d + 1).
The repeated control point, P , is a convex combination of (1, 1) and Q depending on the
parameter, k. Q, in turn, is a convex combination of (1, 0) and (3/2, 1/2), depending on the
angle b2/b1 that B makes with the x-axis. See Figure 6.

Figure 6 Bézier curve for an edge, (A, B).

4.2.1 Planarity
In this subsection, we show that the cubic Bézier curves representing edges with a common
endpoint do not cross each other. First we show that edges that meet at a common endpoint
but through different ports do not intersect. We show that an edge through the ported R

region does not intersect with an edge through the free R region or the free M region of the
same vertex. A similar argument shows that an edge through the ported L region or either
half of the ported M region does not intersect with an edge through an adjacent region.

▶ Lemma 7. γ(t) lies in the region x > y > 0 for t ∈ (0, 1).

Proof. The proof follows from the convex hull property of Bézier curves and the fact that
this region itself is convex. The control points except A are within this region. Only A could
be on the boundary of the region. Since all points on the curve except for the endpoints will
have a positive coefficient for the two intermediate control points, these points will lie within
the region. ◀

In other words, an edge ported through the R region will remain in the wedge of this R

region extended to infinity. Let us next consider whether such an edge will intersect another
one in the free M region. The control points of any edge through the free M region lie in the
region y ≥ x and therefore can’t intersect with γ. The control points of any edge through
the free R region lie in the region y ≤ 0 and therefore can’t intersect with γ.
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Next we show that two curves through the same ported region do not intersect. We will
show this for the ported R region but the argument is similar for ported L region and both
halves of the ported M region. We actually prove a stronger result, namely, that even if we
allowed for parallel edges with the same two endpoints, they would not cross.

▶ Lemma 8. Suppose γ1 and γ2 are two edge curves with the same endpoints using different
values of k, k1 > k2, respectively. The curves γ1 and γ2 do not intersect except at the
endpoints, and, except at the endpoints, γ2 is above γ1.

Proof. For the common endpoint of γ1 and γ2, which has the same s = b2/b1, the different
values of k give different values of P along a line of slope 1 − 2/s. For the values of B under
consideration, 0 ≤ s < 1 and hence the slope of this line is less than −1. (See Figure 7.)
Consider a rotation such that this line is now perpendicular to the x-axis and the two
corresponding values of P such that P2 is above P1. All points of γ2 would lie directly above
the corresponding points of γ1. Both curves are monotonic in the horizontal direction since
the repeated control point is between the two endpoints in the horizontal direction. The
curves do not intersect except at the endpoints. γ2 is above γ1. ◀

Figure 7 Parallel edges would not cross. As k decreases, all point except the endpoints move up
in a direction parallel to P1P2. The curve itself moves monotonically in the perpendicular direction
with t.

We next show that two curves with exactly one common endpoint and ported through
the same R region do not cross.

▶ Lemma 9. Let γ1 and γ2 be two curves with the same value of k but different vertices B

and C which are endpoints of edges incident on A through the same region in the OneBend
algorithm, with B coming counterclockwise first. The curves intersect only at A and γ2 lies
above γ1 everywhere else.

Proof. Let P1 and P2 be the corresponding values of P . Since the 1-bend edge BC has
to pass through a pair of ports as described in Section 4.1, the straight line BC has to
make an angle between π/4 and 3π/4 with the x-axis. When moving from B to C, s

increases or remains the same. This means that P2 is the same as P1 or is further away
along a line making angle π/4 with the x-axis.(See Figure 8.) Consider the transformation
{x, y} 7→ {x − y, x + y}. Within this proof, unless noted otherwise, everything will be
considered under this transformation. For any value of P , the x-coordinate is k, which is
between 0 and 1 and the y-coordinate is 2 − k(1 − s) which is between 1 and 2. A has both
coordinates less than those of P1 and P2. B and C have both coordinates greater than
those of P1 and P2 respectively. This means that both curves are monotonic along both
axes. Cx ≤ Bx and Cy ≥ By with at least one of the inequalities strict. Suppose there
are t1, t2 such that γ1(t1) = γ2(t2). γ2(t1)y ≥ γ1(t1)y = γ2(t2)y with equality only when
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By = Cy. Monotonicity implies that t1 ≥ t2. Similarly, γ2(t1)x ≤ γ1(t1)x = γ2(t2)x with
equality only when Bx = Cx. Monotonicity implies that t1 ≤ t2. The curves do not intersect
unless B = C which is not the case. γ2 lies above γ1 because γ2(t)y ≥ γ1(t)2 and the curves
do not intersect. ◀

For two curves through the same ported region, they will have different endpoints and
different values of k. The curve with the same value of k as the upper edge and the endpoint
the same as the lower edge, lies below the curve representing the upper edge and above the
curve representing the lower edge. Therefore, the curves representing the upper and lower
edges do not intersect.

Figure 8 When the endpoint changes from B to C and k remains the same, all points except A

move in the direction P1P2 which is the same as Q1Q2 or remain where they are. In the perpendicular
direction, they move to the left, away from γ1.

4.2.2 Angular Resolution
We next show that for each vertex, v ∈ G, in this drawing, we achieve angular resolution
Ω(1/degree(v)).

▶ Lemma 10. Let v ∈ G be a vertex with degree degree(v). The angular resolution of v in
our drawing of G using cubic Bézier curves is Ω(1/degree(v)).

Proof. Without loss of generality, let us assume that the vertex v is at A = (0, 0) and has
degree d. We will consider the angle between any pair of adjacent edges, at least one of
which is ported through the R region. The other cases are similar. We first consider the
case when both edges are ported through the R region. The tangent of each Bézier curve
for an edge incident to v, at the point of contact is the same direction as the line segment
between A and the control point P . For a pair of curves with the same pair of endpoints but
different values of P , that is, P1 and P2 due to different values of k due to different values of
i, consider the triangle P1AP2. P1P2 has length at least 1/(

√
2d). From the law of sines,

1/(
√

2d)
sin∠P1AP2

= P1A

sin∠P1P2A
,

1√
2d sin∠P1AP2

≤
√

10/2
1/

√
2

, and

sin∠P1AP2 ≥ 1√
10d

.
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From, the Taylor expansion of sin−1,

∠P1AP2 ≥ 1√
10d

.

Thus, we have Ω(1/d) angle between this pair of parallel edges. From Lemma 9, we know
that the second curve would be above these edges and would have an even larger angle. Note
that these curves also leave at least the same angle with the boundaries of ported R region
since we use k = i/(d + 1) and i ranges from 1 to d and 0 and 1 correspond to the corners.
This means that this minimum angle is maintained with any edge incident to v through any
other region as well. ◀

4.2.3 Curvature

We next show that the curvature of our construction is O(
√

n).

▶ Lemma 11. The curvature of γ is O(
√

b1) ⊆ O(
√

n).

Proof. We denote the curvature by κ. By the definition of curvature,

∂(κ2/b1)
∂b1

=

8(t − 1)2t2 (k (s2 − s + 2
)

+ 2(s − 1)
)2(

−2
(
5b2

1
(
s2 + 1

)
t4 − 8b1(s + 1)t3 + 4t2(b1s + b1 − 2) + 8t − 2

)
+4k(s − 1)(2t − 1)

(
b1st2 + 2t − 1

)
+ k2 (s2 − 2s + 2

)
(1 − 2t)2

)
9
(

2b2
1
(
s2 + 1

)
t4 − 2k(s − 1)(2t − 1)

(
b1st2 − 4t + 2

)
−8b1(s + 1)t3 + 4t2(b1s + b1 + 4) + k2 (s2 − 2s + 2

)
(1 − 2t)2 − 16t + 4

)4 .

In terms of b1, the numerator of ∂(κ2/b1)
∂b1

is a quadratic polynomial with the coefficient of
the degree-2 term being negative. The denominator is a fourth power and hence always
non-negative. For values of b1, s, k and t that we care about, ∂(κ2/b1)

∂b1
has at most one root,

−(2t − 1)
(√

2k2 (7s4 − 14s3 + 17s2 − 10s + 10) + 8k (7s3 − 5s2 + 3s − 5) + 8 (7s2 + 4s + 7)
−2ks2 + 2(k − 2)s − 4

)
10 (s2 + 1) t2 ,

if t < 0.222 and no roots otherwise. It is negative everywhere except possibly before this
root. In addition, κ2/b1 decreases as b1 increases after this point for fixed k, s and t, because
this a quadratic with a negative leading coefficient. At b1 = 4, the curvature is

128(t − 1)2t2 (k (s2 − s + 2
)

+ 2(s − 1)
)2

9

 k2 (s2 − 2s + 2
)

(1 − 2t)2

−4k(s − 1)(2t − 1)
(
2st2 − 2t + 1

)
+4
(
8
(
s2 + 1

)
t4 − 8(s + 1)t3 + 4(s + 2)t2 − 4t + 1

)
3 .

This is less than 3 for all values of s, k and t between 0 and 1. We evaluate κ2/b1 at the
possible root of ∂(κ2/b1)

∂b1
and get the following:4

4 We verified this expression, as well as the others in this proof, using Mathematica [27].
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12500

(
s2 + 1

)2 (
k
(
s2 − s + 2

)
+ 2(s − 1)

)2 2ks2 − 2(k − 2)s + 4

−

√
2k2 (7s4 − 14s3 + 17s2 − 10s + 10

)
+8k

(
7s3 − 5s2 + 3s − 5

)
+ 8
(
7s2 + 4s + 7

)
 (t − 1)2

243



4k2 (2s4 − 4s3 + 7s2 − 5s + 5
)

+k(s − 1)

s

(√
2k2 (7s4 − 14s3 + 17s2 − 10s + 10

)
+8k

(
7s3 − 5s2 + 3s − 5

)
+ 8
(
7s2 + 4s + 7

) − 8

)
+32s2 + 40



+2


s

(√
2k2 (7s4 − 14s3 + 17s2 − 10s + 10

)
+8k

(
7s3 − 5s2 + 3s − 5

)
+ 8
(
7s2 + 4s + 7

) − 8

)

+

√
2k2 (7s4 − 14s3 + 17s2 − 10s + 10

)
+8k

(
7s3 − 5s2 + 3s − 5

)
+ 8
(
7s2 + 4s + 7

) + 16s2 + 16





3

(2t − 1)5

.

This is a product of two expressions, one independent of t and the other entirely in t. The
magnitude of the expression in t is bounded by 12 for all 0 ≤ t ≤ 0.222. The magnitude of
the other expression is bounded by 1/128 for all values of s and k between 0 and 1. Putting
these together we get that κ2/b1 is bounded by 12/128. The curvature of these curves is
O(

√
b1) and hence O(

√
n) since b1 is O(n). ◀

To sum up, we have the following theorem.

▶ Theorem 12. Given an n-vertex planar graph, G, we can draw G in an O(n) × O(n) grid
and Ω(1/degree(v)) angular resolution, for each vertex v ∈ G, using a single cubic Bézier
curve with curvature O(

√
n) per edge in O(n) time.

5 Conclusion

In this paper, we have studied methods for drawing 1-planar and planar graphs using cubic
Bézier curves with bounded curvature. Possible directions for future work and open problems
include the following:

Can the curvature for drawing an n-vertex planar graph using a single Bézier curve
for each edge be improved from O(

√
n) while still maintaining an angular resolution of

Ω(1/degree(v)), for each vertex v in the drawing?
Our algorithm used to produce a RAC drawing of an n-vertex 1-planar graph G, given
a combinatorial 1-planar drawing of G, is based on the recursive construction of Bekos,
Didimo, Liotta, Mehrabi, and Montecchiani [2]. This allows us to achieve bounded
curvature for each edge in the drawing, but it does not give us a bound on the curvature
in terms of n. Is it possible to achieve such a bound?
Our algorithm used to produce a RAC drawing of an n-vertex 1-planar graph uses
“S”-shaped Bézier curves. Can the same result be achieved with “C”-shaped Bézier curves,
e.g., quadratic Bézier curves, which are arguably more aesthetically pleasing?
As mentioned above, Lombardi drawings are drawings where edges are drawn using
circular arcs, e.g., see [5, 12, 13, 16, 18, 29], but circular arcs are not Bézier curves. Can
every graph with a Lombardi drawing also be drawn with the same edge crossings using
a single Bézier curve of bounded curvature for each edge?
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Abstract
We give an algorithm to morph planar graph drawings that achieves small grid size at the expense of
allowing a constant number of bends on each edge. The input is an n-vertex planar graph and two
planar straight-line drawings of the graph on an O(n) × O(n) grid. The planarity-preserving morph
is composed of O(n) linear morphs between successive pairs of drawings, each on an O(n) × O(n)
grid with a constant number of bends per edge. The algorithm to compute the morph runs in O(n2)
time on a word RAM model with standard arithmetic operations – in particular no square roots or
cube roots are required.

The first step of the algorithm is to morph each input drawing to a planar orthogonal box
drawing where vertices are represented by boxes and each edge is drawn as a horizontal or vertical
segment. The second step is to morph between planar orthogonal box drawings. This is done by
extending known techniques for morphing planar orthogonal drawings with point vertices.
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1 Introduction

Algorithms to compute a straight-line drawing of a planar n-vertex graph on an O(n) × O(n)
grid have been known since the 1980’s [7, 12], but it is an open problem to achieve such
straight-line small-grid results for planar graph morphing. To make this precise, let P and
Q be two planar straight-line drawings of a graph G that are compatible, meaning that
they have the same faces and the same outer face. A linear morph sequence from P to Q

is a sequence of explicit intermediate drawings of G starting with P and ending with
Q. By taking a linear morph, i.e., a linear interpolation of vertex positions, between each
successive pair of explicit intermediate drawings, we obtain a continuous piece-wise linear
morph from P to Q indexed by time t ∈ [0, 1]. The morph is planarity-preserving if the
drawing at every time t ∈ [0, 1] is planar. A straight-line drawing of a graph lies on a grid
if the points representing the vertices lie at grid points; in case edges are drawn as poly-lines
with bends, the bends must also lie at grid points. The following problem is open:
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40:2 Morphing Planar Graph Drawings via Orthogonal Box Drawings

▶ Open Problem. For a planar graph G with n vertices and a compatible pair of planar
straight-line drawings P and Q of G on an O(n) × O(n) grid, is there a planarity-preserving
piece-wise linear morph from P to Q where each explicit intermediate drawing is a straight-line
drawing on an O(n) × O(n) grid?

The morphing algorithm of Alamdari, Angelini, Barrera-Cruz, Chan, Da Lozzo, Di
Battista, Frati, Haxell, Lubiw, Patrignani, Roselli, Singla, and Wilkinson [1] – which is based
on Cairns’ edge contraction method – finds a planarity-preserving linear morph sequence of
length O(n) but with no guarantee on the grid size of the explicit intermediate drawings. In
fact, the vertex coordinates are computed using cube roots on a real RAM model, and vertices
may become almost coincident to imitate edge contractions. The recent morphing algorithm
of Erickson and Lin [9] achieves the same bound of O(n) linear morphs for the subclass of
3-connected graphs and avoids the edge-contraction paradigm by following Floater’s method
of interpolating the matrix of barycentric coordinates/weights. However, computing the
barycentric weights requires square roots, and, even if that were avoided, the reliance on
Tutte/Floater drawings means that the vertex coordinates can require Ω(n) bits of precision,
and thus a grid of size Ω(2n × 2n) [8]. The open problem was solved for the special case of
Schnyder drawings by Barrera-Cruz, Haxell, and Lubiw [2].

Note that the Open Problem asks about the existence of a small-grid morph, regardless
of algorithmic considerations. Of course, one would also like a fast algorithm to find the
morph, and current research has been much more successful with regard to run-time than
grid-size. The general morphing algorithm of Alamdari et al. [1] runs in O(n3) time. This
was improved to O(n2 log n), and to O(n2) for 2-connected graphs, by Klemz [10]. The
morphing algorithm of Erickson and Lin [9], which involves solving linear systems and only
applies to 3-connected graphs, runs in O(n1+ω/2) time, where ω < 2.371552 is the matrix
multiplication exponent [14]. Note that a runtime of O(n2) is optimal if all the explicit
intermediate drawings must be given as output, since Ω(n) such drawings may be required [1].

We approach the Open Problem by insisting that explicit intermediate drawings lie on an
O(n) × O(n) grid, but we relax the condition that edges be drawn as straight line segments,
and allow a constant number of bends per edge. Our main result is as follows.

▶ Theorem 1. Let G be a connected planar graph with n vertices. For a compatible pair
of planar straight-line drawings P and Q of G on an O(n) × O(n) grid, there exists a
planarity-preserving linear morph sequence from P to Q of length O(n), where each explicit
intermediate drawing lies on an O(n) × O(n) grid and has O(1) bends per edge. Moreover,
this sequence can be found in O(n2) time.

This result improves the algorithm of Lubiw and Petrick [11] that finds a linear morph
sequence of length O(n6) with explicit intermediate drawings on an O(n3) × O(n3) grid
with O(n5) bends per edge and has run-time O(n6). Besides the bad bounds, the algorithm
introduces bends at non-grid points, which our present result avoids.

For Theorem 1, the way we keep vertices of the explicit intermediate drawings on the
grid is to impose an even stronger condition that every edge is drawn as a poly-line with
all segments along grid lines (in particular, orthogonal) except for the two segments at its
endpoints. The non-orthogonal segments incident to a vertex will live in an orthogonal
rectangle called a box. Expressed differently, the first step of the algorithm is to morph each
of the input straight-line drawings to a planar orthogonal box drawing where a vertex
is represented by a box, and an edge is drawn as an orthogonal poly-line, a sequence of
horizontal and vertical segments, joining two vertex boxes. See Figure 1. In this way, we
reduce our problem to the problem of morphing planar orthogonal box drawings. In fact, we
only need the special case where the input orthogonal box drawings have no bends.



T. Biedl, A. Lubiw, and J. Spalding-Jamieson 40:3

Our second main result is an algorithm to find a planarity-preserving morph between two
compatible planar orthogonal box drawings. For a precise definition of such a morph, see
Section 1.1. When the drawings lie on a small grid with few bends, our analysis of grid size,
bends, and run-time allows us to prove Theorem 1.

▶ Theorem 2. Let G be a connected planar graph with n vertices. If P and Q are a compatible
pair of planar orthogonal box drawings of G on an O(n) × O(n) grid with O(1) bends per
edge, then there exists a planarity-preserving linear morph sequence from P to Q of length
O(n) where each explicit intermediate drawing is an orthogonal box drawing that lies on an
O(n) × O(n) grid with O(1) bends. Moreover, this sequence can be found in O(n2) time.

We prove Theorem 2 by building on algorithms to morph between planar orthogonal
drawings where a vertex is drawn as a point and an edge is drawn as an orthogonal poly-line, a
more limited setting since vertices must have degree at most 4. For these algorithms, n is the
number of vertices plus bends. The algorithm of Biedl, Lubiw, Petrick, and Spriggs [4] uses
O(n2) linear morphs and runs in O(n3) time. Van Goethem, Speckmann, and Verbeek [13]
improved the number of linear morphs to O(n) by performing operations simultaneously,
however without a run-time analysis. We follow the two phases of Biedl et al.: (1) morph so
that for each directed edge, its sequence of directions of edge segments (ignoring segment
lengths) is the same in both drawings; and (2) morph between such “parallel” orthogonal
graph drawings. We use the second phase as-is. However, we must do some work to extend
the first phase to the setting of orthogonal box drawings, and to improve the number of
linear morphs to O(n) by performing many operations simultaneously as in Van Goethem et
al., while keeping the grid size small and the run-time fast.

1.1 Preliminaries
Most graph drawing methods represent the vertices as points. In a straight line drawing an
edge is drawn as a line segment between the vertex points, whereas in a poly-line drawing
an edge is drawn as a simple poly-line – a non-self-intersecting path of line segments joined
at bends.

In a linear morph from drawing P to Q, the position of a defining point representing
a vertex or bend is linearly interpolated between its position in P and in Q, so the point
travels on a straight line at constant speed. A unidirectional morph is a special case of a
linear morph where the lines along which the points move are all parallel. In a horizontal
[vertical] morph, these lines are horizontal [vertical].

Our algorithm works with poly-line drawings, and the algorithm may add degenerate
bends at existing vertices/bends or at a grid point along an edge segment. The algorithm
may also delete such degenerate bends. We separate the steps of a linear morph sequence
into: steps that add/delete degenerate bends; and steps that linearly interpolate between
drawings that have the same number of bends along every edge, in which case their orders of
appearance along the edge in the two drawings determines their correspondence.

In an orthogonal point drawing vertices are represented by points and edges by
orthogonal poly-lines. In an orthogonal box drawing a vertex is represented by a positive
area box with two horizontal sides and two vertical sides, and edges are represented by
orthogonal poly-lines. The point where an edge attaches to a vertex box is called a port.
An orthogonal box drawing is planar if there are no extraneous feature intersections: no
coincident ports, no intersecting vertex boxes, no intersections between an edge and another
edge, no intersection between an edge and a vertex box except at a port. One exception is
that we will allow a port at a corner of a vertex box. For orthogonal box drawings, there is
one more type of degenerate bend in addition to those defined above: a bend at a port.
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Figure 1 The two straight-line point drawings (A) and (J) are (respectively) morphed to admitted
drawings of the orthogonal box drawings (B) and (H), by introducing two bends to each edge. A
morph from (B) to (H) (see the relevant part of Figure 2) then induces a morph from (A) to (J).
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Figure 2 Morphing between orthogonal box drawings where one drawing has bends. The input
drawings are (B) and (I). Phase Ia morphs (B) to (C), port-aligned with (I). Phase Ib morphs (C)
to (D) and (I) to (H), eliminating zig-zags. In (D) we need 4 clockwise twists of b to match spirality
with (H). Twisting once morphs (D) to (E), and eliminating zig-zags gives (F). Three more twists
and zig-zag eliminations give (G), which is morphed to the parallel drawing (H) in Phase II.
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We use the following relationship between box drawings and poly-line drawings. Any
planar orthogonal box drawing has a corresponding planar admitted poly-line drawing,
where the vertex box is replaced by a vertex point at the center of the box joined by straight
segments to the ports, which become bends in the edges. Thus an edge drawn with k bends
in the orthogonal box drawing becomes an edge with k + 2 bends in the admitted drawing.
Figure 2 shows extra segments for the admitted drawings with dotted lines.

A morph of an orthogonal box drawing D is specified in terms of its defining points
which are the vertex box corners, the ports, and the edge bends. In a linear morph between
two orthogonal box drawings the positions of the defining points are linearly interpolated.
We restrict to structure-preserving linear morphs that meet the following conditions:
1. At every time during the morph the positions of the four corners of a vertex box determine

a vertex rectangle which is a rectangle of positive area, though not necessarily with
horizontal and vertical sides, and ports stay attached to their vertex rectangle.

2. For an edge from u to v, every segment along the edge remains orthogonal (horizontal or
vertical) and does not change its direction (upward, downward, rightward or leftward). If
a segment has length zero at a strictly intermediate time during the morph, then it has
length zero throughout the morph.

By allowing non-axis-aligned vertex rectangles in condition (1) we can “twist” a square vertex
box as shown in Figure 31. The figure shows a clockwise twist where each corner moves to
the position of its clockwise neighbouring corner, so two of the corners move horizontally
and the other two move vertically. Ports and bends may move non-orthogonally. Twists will
be defined formally in Section 4.3.1. Apart from twists, all our morphs of orthogonal box
drawings will in fact be horizontal or vertical.

Figure 3 An example of a twist at a vertex box. Red arrows show motion to come; dashed
portions show past motion.

A linear morph of an orthogonal box drawing is planarity-preserving if the drawing
is planar at every time during the morph. When we say a planarity-preserving linear
morph of an orthogonal box drawing we always mean that the morph is also structure-
preserving. We prove in Section 3 that a planarity-preserving linear morph of an orthogonal
box drawing induces a planarity-preserving linear morph of its admitted poly-line drawing.

We morph orthogonal box drawings using a sequence of intermediate goals. Two orthogonal
box drawings of the same graph are port-aligned if, for each vertex v, when we compare the
two vertex boxes representing v, then for every side (top, bottom, right left) the sequence of
edges attached to that side of the vertex box is the same in both drawings. Two drawings
without degenerate bends are parallel if they are port aligned and for every directed edge
the two directed poly-lines representing the edge have the same sequence of left/right turns.
To make drawings parallel, we use twists and zig-zag eliminations (to be defined), where a
zig-zag is a sequence of two opposite turns, left then right, or right then left.

1 This is similar to the “rotation” steps used to morph rectangular duals [5].
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40:6 Morphing Planar Graph Drawings via Orthogonal Box Drawings

2 Algorithm Overview

This section gives the main steps of the algorithm that will prove Theorem 1. The input is a
pair of compatible straight-line planar drawings of a graph G on n vertices.

▶ Algorithm 1 (Reduction to orthogonal box drawings).

Morph each of the straight-line drawings to an admitted poly-line drawing of an orthogonal
box drawing in which edges are drawn as single horizontal/vertical segments. See Figure 1
for an example. We prove in Lemma 3 that a morph of an orthogonal box drawing induces a
morph of its admitted poly-line drawing, so this step reduces the problem to that of morphing
orthogonal box drawings with zero bends per edge. Details of the reduction are in Section 3.

▶ Algorithm 2 (Morphing between planar orthogonal box drawings).

The input consists of a pair of compatible planar orthogonal box drawings P and Q of a
graph G on n vertices. P and Q may have bends, which is more general than the output of
Algorithm 1. We describe steps of the morph “from both ends”, modifying P and Q until
they meet in the middle, which is legitimate since linear morphs are reversible.

Phase I: Morph P and Q to become parallel. Building on the approach of Biedl et al. [4]
for the case of orthogonal point drawings, we use the following steps:
Phase Ia: Morph P to become port-aligned with Q. This adds bends in edges of P .
Phase Ib: Morph P and Q to eliminate zig-zags. (In the situation required to prove

Theorem 1, Q has no bends and thus no zig-zags.)
Phase Ic: Morph P so that for every directed edge the difference between its number

of left and right turns (the “spirality”) is the same in P as in Q, while preserving
port-alignment. This is accomplished via twists, which are interspersed with zig-zag
eliminations. We use the property that if P and Q are port-aligned with matching
spirality and no zig-zags or degenerate bends, then they are parallel.

Details of Phase I can be found in Section 4.
Phase II: Morph between the two parallel orthogonal box drawings. To do this, we imagine

ports, corners, and bends as vertices and appeal directly to the result of Biedl et al. [4]
for morphing parallel orthogonal point drawings. See the full version for details.

See Figure 2 for a sketch of all these steps. Although most of the detailed proofs that
our morphs are planarity-preserving appear only in the full version, it is worth noting that,
apart from twists (which are handled in Section 4.3.1) and the reduction to orthogonal box
drawings, all of our morphs are horizontal or vertical, which simplifies the task. We prove in
the full version that a horizontal morph between planar orthogonal box drawings P and Q is
planarity-preserving so long as every horizontal line intersects the same sequence of defining
points and edge/box segments.

3 Reduction to Orthogonal Box Drawings

In this section we morph a straight-line planar graph drawing to an admitted poly-line
drawing of an orthogonal box drawing, and we prove that a morph between two orthogonal
box drawings induces a morph between their admitted drawings. In all cases “morph” means
satisfying all our conditions, as detailed below. We begin with the second result:
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▶ Lemma 3. Let P and Q be planar orthogonal box drawings of the same graph. Let P ′ and
Q′ be the admitted planar poly-line drawings of P and Q, respectively. Suppose there is a
planarity-preserving linear morph from P to Q. Then the linear morph from P ′ to Q′ is also
planarity-preserving.

The idea is that a linear combination is preserved throughout a linear morph, and the
center of a vertex box/rectangle is a linear combination (the average) of the four corners.
For details, see the full version.

We now turn to the problem of morphing a straight-line planar drawing to an admitted
drawing of an orthogonal box drawing.

▶ Theorem 4. Let P be a planar straight-line drawing of a graph G with n vertices drawn
on an O(n) × O(n) integer grid. Then there is a planar orthogonal box drawing D of G

on an O(n) × O(n) grid with no bends, and there is a planarity-preserving linear morph
sequence of length O(n) from P to P ′, the admitted poly-line drawing of D, where each
explicit intermediate drawing lies on an O(n) × O(n) grid. Moreover, this sequence can be
computed in O(n2) time.

(a) (b) (c)

Figure 4 (a) a straight-line drawing P ; (b) the corresponding orthogonal box drawing D and
admitted drawing P ′ with every vertex at the same y-coordinate as in P ; (c) adding two bends to
each edge of P would allow a horizontal morph to P ′, but this is forbidden since the bends are not
on the grid.

We prove Theorem 4 in two steps: (1) construct an orthogonal box drawing D with
certain properties as described below; (2) show how to morph from P to P ′.

For (1) a vertex v of P at y-coordinate c will be replaced in D by a vertex box that is
skinny in the y-direction: we add a new grid line just below c and a new grid line just above
c and construct a vertex box between these new grid lines. Adding the grid lines refines the
grid in the y direction by a factor of 3. See Figure 4. The properties for D are that edges
have no bends, each vertex has the same y-coordinate in P and in the refined grid of P ′, and
every horizontal line intersects the same sequence of edges in P and P ′. We construct D in
O(n log n) time by turning an existence result due to Biedl [3] into an efficient algorithm. Her
result says that any planar straight-line drawing can be redrawn so that each vertex becomes
a horizontal segment (or “bar”) with the same y-coordinate, and each non-horizontal edge
becomes a vertical segment incident to the bars representing its endpoints, while maintaining
the order of edges and vertices crossed by any horizontal line. Thickening the vertex bars to
boxes gives the result we need. For details, see the full version.

For (2), we show how to morph from P to the admitted drawing P ′. It would be straight-
forward to add degenerate bends where each edge crosses the newly added horizontal grid
lines (see Figure 4(c)), and perform a single horizontal morph to move those bends to the
position of the corresponding ports. However, our rule is that new bends can only be added
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40:8 Morphing Planar Graph Drawings via Orthogonal Box Drawings

at grid points, so we are forced to a more complicated solution. Imagine P ′ drawn strictly to
the left of P . Order the edges and vertices of P left-to-right, with priority given to edges.
One by one, in this order, pull the edges and vertices of P to their positions in P ′. To handle
one edge of P we add two new bends at its endpoints, and morph them to the positions of
the corresponding ports. See Figure 5 for a sketch of the algorithm and the full version for
more details.

one operation for each
remaining edge/vertex. . .

Figure 5 Morphing from a straight-line drawing on the right to (the admitted drawing of) an
orthogonal box drawing on the left by moving edges/vertices one-by-one. Each pane shows the newly
morphed edge/vertex in red.

4 Morphing Orthogonal Box Drawings

This section contains the algorithm to morph between orthogonal box drawings (Algorithm 2).
The algorithm works for any two compatible planar orthogonal box drawings, but the bounds
needed to prove our main theorem (number of linear morphs, run-time, grid size, and number
of bends) apply only when the input drawings lie on an O(n) × O(n) grid and have O(1)
bends per edge. Informally, we call these small drawings but lemma statements are precise.
Let f(D) denote the number of defining points of orthogonal box drawing D. A count of
box corners, ports, and bends shows that f(D) is O(n) if the number of bends is O(n).

Recall from Section 2 that the algorithm has two phases. Phase I morphs the drawings P

and Q to become parallel, and is described in this section. Phase II morphs between the
resulting parallel drawings, and is deferred to the full version, since it follows directly from
Biedl et al. [4].

Phase Ia, port alignment, is in Section 4.1. Port aligned drawings are parallel if each
directed edge has the same sequence of left/right turns in both drawings. Following Biedl
et al. [4], we define the spirality of a directed orthogonal poly-line to be its number of left
turns minus its number of right turns2 ignoring degenerate bends. An edge drawn without
zig-zags has only left turns or only right turns. Thus if the two drawings of an edge have the
same spirality, no degenerate bends, and no zig-zags, then they have the same sequence of
left/right turns. We eliminate zig-zags in Section 4.2 and adjust spirality in Section 4.3. A
main novel contribution is the twist operation for boxes in Section 4.3.1.

4.1 Phase Ia: Port Alignment
We morph P to be port-aligned with Q by successively “turning” a port around the corner of
a vertex box as shown in Figure 6. Each turn operation uses O(1) planarity-preserving linear
morphs, and adds 3 bends and 3 grid lines. We prove in the full version that O(1) such turn

2 This is different from the definition of spirality in [13].
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Figure 6 A sketch of how a port can be morphed around a corner by introducing 3 bends bi and
3 new grid lines (in red).

operations per edge suffice. For small drawings, we use in total O(n) linear morphs, and
remain on an O(n) × O(n) grid with O(1) bends per edge. The run-time is O(n2). Note that
a port may be coincident with a corner of a vertex box in explicit intermediate drawings.
However, after Phase Ia, we never allow a port at a corner.

4.2 Phase Ib: Zig-zag Elimination
Zig-zag elimination is used in Phases Ib and Ic. It performs a sequence of horizontal and
vertical morphs to get rid of all the zig-zags in an orthogonal box drawing, and produces
a drawing D with grid size f(D). This is O(n) if each edge has O(1) bends, but the exact
bound f(D) will be important when we apply zig-zag elimination O(n) times in Phase Ic.

In Phase Ib, we apply zig-zag elimination once to P , and, if necessary, once to Q. Note
that during Phase I, the drawing Q is altered only in Phase Ib, and is not altered at all in
the situation arising from Theorem 1.

A zig-zag is horizontal [vertical] if the segment between the two turns is horizontal
[vertical]. Biedl et al. [4] were the first to show that a horizontal linear morph can be used to
eliminate one horizontal zig-zag in an orthogonal point drawing. Figure 7 shows the idea as
applied to an orthogonal box drawing. Van Goethem et al. [13] observed that all horizontal
zig-zags in a drawing P can be eliminated simultaneously with a single horizontal linear
morph to a drawing P ′. Their result also applies to orthogonal box drawings, but we must
improve the grid size and runtime, see below.

Figure 7 An orthogonal box drawing with a horizontal zig-zag, and the zig-zag elimination that
converts its segment into two coinciding degenerate bends.

One could determine P ′ by pretending to perform O(n) individual zig-zag eliminations
in P , but this would be too slow and result in a large grid. Instead we compute P ′ via
compaction techniques. We encode the relative x-order of all maximal vertical segments of
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(a) A drawing P with a vertical zig-zag
and no horizontal zig-zags.

(b) A drawing P ′ with a horizontal zig-zag resulting
from a zig-zag elimination on P .

Figure 8 An example of a vertical zig-zag elimination that results a new horizontal zig-zag.

a drawing P in an auxiliary directed acyclic graph GT (P ) of size at most f(P ). Then we
modify GT (P ) to capture that the segments of horizontal zig-zags must vanish, and determine
the target-drawing P ′ simply by computing longest paths in GT (P ) to get the x-coordinates
of defining points (y-coordinates remain unchanged). Graph GT (P ) can be computed in
O(n log n) time using a so-called trapezoidal map; the run-time can be reduced to O(n) when
P represents a connected graph using Chazelle’s triangulation results [6]. The computed
x-coordinates are at most the number of defining points of P ′, not counting degenerate bends
(which we are about to eliminate). More details of this morph to eliminate all horizontal
zig-zags are given in the full version.

By repeatedly eliminating horizontal zig-zags and then eliminating vertical zig-zags we
can eliminate all zig-zags, which yields the main result of this section:

▶ Lemma 5. Let G be a planar graph with n vertices. Let P be a planar orthogonal box
drawing of G on an O(n) × O(n) grid with O(1) bends per edge. Then there is a planarity-
preserving linear morph sequence of length O(1) from P to a zig-zag-free orthogonal box
drawing P ′ with the same port alignment and edge spiralities as P such that P ′ is drawn on
an f(P ′) × f(P ′) (hence O(n) × O(n)) grid. Furthermore, during the linear morph sequence,
the number of bends never increases, and the width and height of the grid may increase but
never beyond f(P ). Finally, the linear morph sequence can be computed in O(n) time.

Proof. Repeat the following four steps (a “round”) until no bends have been removed for an
entire round:
1. eliminate all horizontal zig-zags with one horizontal morph as described above,
2. remove degenerate bends,
3. eliminate all vertical zig-zags with one vertical morph,
4. remove degenerate bends.

Note that we need multiple rounds in general because eliminating vertical zig-zags may
create horizontal ones, and vice versa (see Figure 8). Except for the last round, each round
eliminates at least one zig-zag – and thus at least two bends – from every edge that has
zig-zags. No bends are ever added. Thus the number of rounds (hence also the number of
morphs) is O(1). Each drawing in the linear morph sequence can be computed in O(n) time,
so the run-time to compute all of them is also in O(n).

Each morph preserves port alignment and edge spiralities. Steps 1 and 2 do not change
the grid height and result in a drawing of width at most the (current) number of defining
points, which is at most the initial number f(P ). Symmetrically, steps 3 and 4 do not change
the grid width and result in a drawing of height at most the current number of defining
points, which is at most f(P ). At the end, the final drawing P ′ lies on an f(P ′) × f(P ′) grid
since the last round did not decrease the number of defining points. ◀
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4.3 Phase Ic: Adjusting Spirality
In Phase Ic we morph P so that the spirality of each edge matches its spirality in Q. The
basic operation we use is a “twist”, a morph that essentially turns all the ports around a
vertex box: in a clockwise twist the ports on the top of the box become ports on the right,
while ports on the right become ports on the bottom, and so on around the box. (Note that
doing this by turning edges around corners as in Section 4.1 would require a linear number
of morphs.) We describe twists in Section 4.3.1.

How do twists adjust spirality? We will see that a clockwise twist of a vertex box adds two
left turns and one right turn to all edges leaving the vertex box. This guides the calculation
of how many twists to apply at each vertex box. We also need a multiple of four twists
for each vertex box in order to maintain port alignment. The question of how many twists
to apply and what order to apply them in is addressed in Section 4.3.2. We also keep the
drawing zig-zag free, and on a small grid.

4.3.1 Performing twists
In this section we focus on how to perform one twist simultaneously on a set of vertex boxes.
We need a preliminary set-up step that makes all the vertex boxes square and clears some
space around them. More precisely, the k-proximal region of the vertex box of vertex v

consists of all points within L∞ distance k · deg(v) from the box, where deg(v) is the degree
of v (thus the k-proximal region is a rectangle formed by enlarged the vertex box by k · deg(v)
on each side). The vertex boxes of a drawing are k-spaced if their k-proximal regions are
disjoint and the only edge segments intersecting a k-proximal region are those incident to the
vertex box. With a constant number of linear morphs we can make all vertex boxes square
and 2-spaced (as shown in the first pane of Figure 9), while keeping the drawing port-aligned,
and preserving the spirality of each edge. See the full version.

We next describe how to take an orthogonal box drawing that has square 2-spaced vertex
boxes, and perform one twist of one vertex box. The twist will only alter the drawing inside
the 2-proximal region of the vertex box, so we can twist multiple vertices simultaneously, see
Lemma 7 below.

A clockwise twist operation is defined as follows, see Figure 9. (Counterclockwise twists
are defined analogously.) Let v be a vertex of degree deg(v) and let S be its square vertex
box. In the first step of the morph we add 3 degenerate bends in each edge incident to S.
The second step is the actual linear morph. We give exact coordinates for the bends added
to the ith edge ei (in clockwise order) that is attached to the top side of S, say at port pi.
Other coordinates are analogous. Bend bi,1 is placed at pi. Bends bi,2 and bi,3 are placed on
the edge ei, at distance deg(v) + i above pi.

During the linear morph, each corner of S moves to the next clockwise corner. Each port
on S is a linear combination of two box corners; this is maintained throughout the morph. It
remains to describe the positions of the bends. As before, we give exact coordinates only for
edge ei attached to the top side. Let p′

i be the new position for port pi. Bend bi,3 does not
move, so b′

i,3 = bi,3. Bend bi,1 moves to a point b′
i,1 that is i units to the right of p′

i. Bend
bi,2 moves horizontally to a point b′

i,2 directly above b′
i,1.

▶ Lemma 6. The clockwise twist is structure-preserving and planarity-preserving.

Proof outline. We need only focus on the 2-proximal region of S. We first show that the
twist is structure-preserving. Because S is square, it remains square throughout the morph.
Also, each port stays attached to its side of S. The edge segment pibi,1 remains horizontal,
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Figure 9 Performing a clockwise twist. Bends are drawn as small red circles. The top left box
corner (marked with a hollow circle) moves to the top right.

starting at length zero and ending at length i. Segment bi,1bi,2 remains vertical of positive
length, and segment bi,2bi,3 remains horizontal, starting at length zero and ending at positive
length.

We next show that the twist is planarity-preserving. It follows from the above that edges
do not intersect the vertex box during the morph. It remains to show that no two edges
intersect. For edges incident to the same side (say the top side) of S, observe that: the
vertical segments bi,1bi,2 maintain their left-to-right ordering; the horizontal segments bi,2bi,3
remain at constant, distinct y-coordinates, and the horizontal segments pibi,1 maintain their
top-to-bottom ordering. For edges incident to different sides of S, we define four disjoint
subregions of the 2-proximal region of S as shown in Figure 10, and argue that edges remain in
their subregion as we morph the edges and the subregions (details are in the full version). ◀

Because a twist does not change the drawing outside the 2-proximal region of a vertex box,
we can indeed (as promised before) twist multiple vertices simultaneously, which immediately
gives the following:

▶ Lemma 7. Let G be a connected planar graph with n vertices. Let P be a planar
orthogonal box drawing of G drawn on an O(n) × O(n) grid with O(1) bends per edge. Let
t : V (G) → {−1, 0, 1} specify the twists to be performed at vertices, where −1 indicates a
clockwise twist and 1 indicates a counterclockwise twist. Then there is a planarity-preserving
sequence of length O(1) from P to an orthogonal box drawing P ′ that effects the twists of t,
where each explicit intermediate drawing is drawn on an O(n) × O(n) grid with O(1) bends
per edge. Moreover, the linear morph sequence can be computed in O(n2) time.
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Figure 10 The subregion of the 2-proximal region of S corresponding to the top side of an initial
box, throughout the morph.

4.3.2 Planning twists
There are two aspects to planning twists in P : (1) decide how many twists to perform at
each vertex box; and (2) schedule the twists into rounds where each round twists each vertex
box at most once, so that one round can be performed simultaneously as in Lemma 7. For
(1) we solve a set of equations, the same as in Biedl et al. [4]. Step (2) is new, as are the
improved bounds on the number of linear morphs and the grid size that complete Phase Ic.

Numbers of twists. We need some notation. For edge e = uv and any orthogonal box
drawing D, let sD(u, v) denote the spirality of the edge in D. Our goal is to morph P

(while leaving Q unchanged) until for every edge uv its spirality difference, ∆sP (u, v) :=
sP (u, v)−sQ(u, v), becomes zero. The final P must also be port-aligned with Q (equivalently,
port-aligned with the initial P ), although this need not be true of the explicit intermediate
drawings. These two conditions together constitute the requirements for our twists.

Observe that a clockwise twist (as defined in the previous section) at u’s vertex box
adds two left turns and one right turn to every edge leaving u, for a net change of +1 in
the spirality of edges uv leaving u, and a net change of −1 for edges vu entering u. These
are reversed for a counterclockwise twist. For example, if ∆sP (u, v) is positive, we should
apply counterclockwise twists to u and/or clockwise twists to v. For vertex v, let t(v) be the
number of twists to be performed on v’s vertex box in P , where a positive value indicates
counterclockwise twists and a negative value indicates clockwise twists. Necessary and
sufficient conditions to meet the requirements for our twists are:

for each edge uv ∆sP (u, v) = t(u) − t(v) (1)
for each vertex v t(v) ≡ 0 mod 4 (2)

▶ Lemma 8. A solution to the above equations with |t(v)| ∈ O(n) can be found in O(n) time.

Proof outline. The lemma was proved by Biedl et al. [4] for orthogonal point drawings. As
a main ingredient, they prove that it suffices to impose condition (2) for a single vertex v0,
and to impose condition (1) for the edges of a spanning tree T rooted at v0. The idea is
that a non-tree edge e creates a cycle with T which corresponds to a face of the drawing.
Condition (1) is then proved for e using the fact that a planar orthogonal cycle has 4 more
right turns than left turns when traversed clockwise. We prove that this main ingredient
carries over to orthogonal box drawings – the difference is that a face of the point drawing
has edges meeting at vertices, whereas a face of a box drawing contains portions of box sides.
See the full version.
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Given this main ingredient, we assign t(v0) := 0, and assign t(v) to be t(v0) plus the sum
of the spirality differences on edges of the path from v0 to v in T . This takes O(n) time, and
gives t(v) ∈ O(n) since the spirality difference of each edge is constant. ◀

Allocating twists to rounds. We allocate the twists t(v) to rounds ri, where i ranges from
1 to k := maxv |t(v)| so that each vertex box is twisted at most once in each round. For
vertex v, we put its twists into rounds 1 through |t(v)|.

Algorithm for Phase Ic. Let P ′
0 := P . For i = 1, . . . , k, perform the simultaneous twists of

round ri on input P ′
i−1 according to Lemma 7 to obtain Pi, and then do zig-zag elimination

on Pi according to Lemma 5 to obtain P ′
i . Output P ′

k.

Analyzing the algorithm. Note that the algorithm does O(n) linear morphs. It remains
to bound the grid size, the number of bends, and the run-time for Phase Ic. Since zig-zag
elimination is called O(n) times it becomes important to give absolute bounds to avoid hiding
a “growing constant” inside the O(n) bound on grid size. The main idea is to analyze the
number of bends, since that determines the grid size after zig-zag elimination.

▶ Lemma 9. There are constants c and d, independent of i, such that Pi and P ′
i , i = 1, . . . , k

lie on a grid of size cn × cn with at most d bends per edge.

Proof. We first prove a bound on bends for P ′
i for i = 0, . . . , k. The drawing P ′

i is zig-zag-free
so the number of bends on edge uv is the absolute value of its spirality, which is the same
as in Pi since zig-zag elimination preserves spirality (Lemma 5). Our method of allocating
twists to rounds ensures that the spirality of an edge stays the same except during a constant
number of rounds where it improves. More formally:

▷ Claim 10 (Proof in the full version). After each round of simultaneous twists, the spirality
of an edge remains the same or gets closer to its spirality in Q, i.e., sPi

(u, v) lies in the closed
interval between sPi−1(u, v) and sQ(u, v).

Thus |sPi
(u, v)| ≤ max{|sP (u, v)|, |sQ(u, v)|} which is bounded by some constant d′ since

edges in P and Q each have a constant number of bends.
We now turn to the grid size. For i = 0, . . . , k drawing P ′

i is the result of applying
Lemma 5 and hence its grid size is f(P ′

i ) × f(P ′
i ), where f(P ′

i ) is the number of defining
points of P ′

i . Counting box corners, ports and bends, gives f(P ′
i ) ≤ 4n + 2m + d′m, where G

has m ≤ 3n − 6 edges, so f(P ′
i ) ≤ c′n for some c′ ≤ 10 + 3d′. Pi is obtained from P ′

i−1 by
applying one round of simultaneous twists as in Lemma 7. This may add a constant term to
the bound d′ on the number of bends, and may increase the bound c′n × c′n on the grid size
by a constant factor, which gives the final values of d and c. ◀

We summarize Phase Ic as follows:

▶ Lemma 11. Let G be a connected planar graph with n vertices. Let P and Q be compatible
port-aligned zig-zag-free planar orthogonal box drawings of G on an O(n) × O(n) grid with
O(1) bends per edge. Then there is a planarity-preserving linear morph sequence of length
O(n) from P to a zig-zag-free orthogonal box drawing P ′ with the same port-alignment and
edge spiralities as Q (thus P ′ and Q are parallel) such that all explicit intermediate drawings
are on an O(n) × O(n) grid with O(1) bends per edge. Moreover, the linear morph sequence
can be computed in O(n2) time.
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5 Conclusions

We have now assembled all the ingredients for proving our two main theorems. In summary,
Theorem 2 (morphing planar orthogonal box drawings) is proved by the steps of Algorithm 2:
Phase Ia (port-alignment) is sketched in Section 4.1, with details in the full version; Phase Ib
(zig-zag elimination in both drawings) is handled by Lemma 5; Phase Ic (spirality) is handled
by Lemma 11; and Phase II (morphing parallel drawings) simply appeals to [4] (details are
in the full version).

Theorem 1 (morphing straight-line drawings on a small grid) is proved by the reduction
to morphing orthogonal box drawings (see Theorem 4 in Section 3) plus Theorem 2.

In conclusion, our main result is an algorithm to morph compatible planar straight-line
drawings with a linear number of linear morphs for which all explicit intermediate drawings
lie on small grids, have few bends per edge, and can be computed quickly. Extending the
result to disconnected graphs involves further details, and is left for future work.

The biggest remaining open problem is the one from the introduction: Is there a piece-wise
linear morph with small explicit intermediate drawings without bends? If so, can we limit to
a short linear morph sequence? And if not, can we at least limit the number of bends per
edge to a very small constant, such as 1 or 2?
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Abstract
This report describes the 31st Annual Graph Drawing Contest, held in conjunction with the 32nd
International Symposium on Graph Drawing and Network Visualization (GD’24) at TU Wien,
Vienna, Austria. The mission of the Graph Drawing Contest is to monitor and challenge the current
state of the art in graph-drawing technology. This year’s edition featured two categories, a creative
track in which participants visualized a dataset based on the Olympic medal track-record of countries
and a live challenge held at the conference where participants had to draw a graph on a given
point-set with as few crossings as possible.
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1 Introduction

Following the tradition of the past years, the Graph Drawing Contest was divided into two
parts: the creative topic and the live challenge.

As in the 2023 edition, the creative contest focused on only one dataset this year. In this
year the topic was Medals Won by Countries at the Olympic Games: The data consisted of
countries and their gold, silver, and bronze medals won per category of sports. Additionally,
the contestant had access to a wide set of metadata which we describe below. The data set
was published about half a year in advance, and contestants submitted their visualizations
before the conference started.

The live challenge took place during the conference in a format similar to a typical
programming contest. Teams were presented with a collection of challenge graphs and
had one hour to submit their highest scoring drawings. As is tradition, this year’s topic
was repeated from the last year: given an undirected simple graph and a point set, find
straight-line drawing of the graph with the vertices drawn on top of the points such that the
number of crossing edges is minimized.
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Overall, we received 33 submissions: 9 submissions for the creative topics and 24 submis-
sions for the live challenge (17 manual and 7 automatic).

2 Creative Topic

The dataset for the Creative Topic represents countries participating and their medals won
at the modern Olympic games since 1896 and until 2020. In the final dataset each country
formed a vertex and was connected via an edge to a category of sports if it ever won any
medal in a discipline contained in that category. The categories we chose were:

Athletics
Boating
Equestrian
Fighting
Gymnastics
Racquet
Shooting
Swimming
Teams
Other

Similar to the directly preceding contests we decided to keep a large set of metadata
attached to each edge. In contrast though, we explicitly asked contestants to formulate a
question or hypothesis about the data and try to answer or explore it with their visualization.

Vertices came with an id and name. The ones representing countries additionally contained
a feel noc with the international abbreviation of that country. Every edge had a large record
connected to it containing the following information for each medal won by the country in
this category:

{
" athlete ": {

"name": "<NAME OF ATHELETE >",
"sex": "<MALE OR FEMALE >",
"born": "<DATE OF BIRTH yyyy -mm -dd >",
" height ": "< HEIGHT IN cm OR na IF NOT AVAILABLE >",
" weight ": "< WEIGHT IN kg OR na IF NOT AVAILABLE >"

},
" sport": "< OLYMPIC SPORT >",
" event": "<NAME OF EVENT >",
"year": "<YEAR OF THE RESULT >",
"city": "<CITY >",
" medal": "<MEDAL TYPE >"

}

The total graph had 163 vertices and 700 edges.
The raw data forming the basis of the dataset was taken from a Kaggle repository.1 Using

Python scripts we formed the categories mentioned above and extracted the final dataset.

1 https://www.kaggle.com/datasets/josephcheng123456/olympic-historical-dataset-from-
olympediaorg/data

https://www.kaggle.com/datasets/josephcheng123456/olympic-historical-dataset-from-olympediaorg/data
https://www.kaggle.com/datasets/josephcheng123456/olympic-historical-dataset-from-olympediaorg/data
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The general goal of the creative topic was to visualize the dataset with complete artistic
freedom, and with the aim of answering a question or hypothesis about the data which
the contestants were free to form themselves. For inspiration we provided examples on the
contest website:
Temporal. How has the graph structure evolved over time with each Olympic event? Are

there any noticeable changes in the graph’s topology across different Olympic years?
Comparative. How do the subgraphs of male and female athletes differ in terms of structure

and connectivity?
Clustering. Can clusters or communities of countries with similar Olympic success profiles

be identified within the graph? Are there distinct communities within the graph based on
geographical or cultural similarities? For instance, are countries that excel in swimming
close to the sea?

We received 9 submissions for the creative challenge. Submissions were evaluated according
to four criteria:
1. readability and clarity of the visualization,
2. aesthetic quality,
3. novelty of the visualization concept, and
4. design quality.
We noticed overall that it is a complex combination of several aspects that make a submission
stand out. These aspects include but are not limited to the understanding of the structure
of the data, investigation of the additional data sources, applying intuitive and powerful
data visual metaphors, careful design choices, combining automatically created visualizations
with post-processing by hand, as well as keeping the visualization, especially the text labels,
readable. We selected the top six submissions before the conference, which were printed on
large poster boards and presented at the Graph Drawing Symposium. We also made all
the submissions available on the contest website in the form of a virtual poster exhibition.
During the conference, we presented the top six submissions and announced the winners.
For a complete list of submissions, refer to https://www.graphdrawing.org/gdcontest/
2024/results/.

GD 2024
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3rd Place: Dominik Dürrschnabel and Gerd Stumme (University of
Kassel)

Ordering Nations by Olympic Gold and Silver Medals (1896 – 2020)

Dominik Dürrschnabel and Gerd Stumme
Knowledge and Data Engineering Group, University of Kassel, Germany

Ordering Nations by Olympic Gold and Silver Medals (1896 – 2020)

Dominik Dürrschnabel and Gerd Stumme
Knowledge and Data Engineering Group, University of Kassel, Germany
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This submission stood out for its unique interpretation of the data: With no universal
metric available to rank nations, based on the medals they won, this submission suggests to
use a partial ordering of the nations. The result is a drawing that has many properties of a
classic Hasse diagram. The contest committee appreciates that even with the abundance of
meta data to visualize, this submissions’ focal point is a drawing with nodes and links.

“Our submission uses order as the guiding principle to rank nations based on their gold
and silver medal counts, ensuring a two-dimensional layout. Each nation is represented
by a pill-shaped dot containing its flag, medal tally, and a scarf plot showing the
distribution of medals across sports. Bronze medals are indicated by the width of a
box surrounding each nation’s pill. This approach is an application of formal concept
analysis, which is applied to compute the ranking.
D. Dürrschnabel and G. Stumme ”

GD 2024
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2nd Place: Matthias Preymann, Philipp Vanek, Michael Eickmeyer, and
Raphael Kunert (TU Wien)

Sources

Europe

The Americas

Africa

Asia

Oceania

Merges

Deletions

Rus. Olympic Commi�ee [ROC]

Netherlands Antilles [AHO]

Bohemia [BOH]

West Germany [FRG]

Utd. Arab Rep. [UAR]

Hongkong [HKG]

Shooting

Racquets

Teams

Fighting

Swimming

Gymnastics

Other

Boating

Equestrian

Cycling

Athletics

Datasets

h�ps://data.worldbank.org/

h�ps://mozart.diei.unipg.it/gdcontest/assets/2024/olympics.json

h�ps://www.cia.gov/the-world-factbook/references/country-data-codes/

h�ps://en.wikipedia.org/wiki/Comparison_of_IOC,_FIFA,_and_ISO_3166_country_codes

(converted with h�ps://wikitable2csv.ggor.de/)

Icons

h�ps://github.com/djaiss/mapsicon

h�ps://svgsilh.com/

Remaining icons: wikipedia.org

Other

Blum, U. (2019). The eastern German growth trap: Structural limits to convergence?.

Intereconomics. h�ps://www.intereconomics.eu/contents/year/2019/number/6/

article/the-eastern-german-growth-trap-structural-limits-to-convergence.html

Preymann Ma�hias          Vanek Philipp          Kunert Raphael          Eickmeyer Michael
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The committee found that this submission was of excellent visual quality and appreciated
the idea of contrasting GDP and medals at Olympia. The radial style makes the drawing
intuitive and well legible without sacrificing space. The small hypergraph visualization in
the center is nice and the committee found it well executed, but would have liked it to be
integrated better and maybe more prominently into the visualization. The committee also
found that the GDP data could have been better focused or put in a more interesting relation
as the medal count is given per year, but the GDP isn’t.

“Our poster is shaped by our main design decision to use a radial figure which emulates
a medal. The large amount of data prompted combining countries and regions, which
was further guided by taking various geopolitical events into account. By overlaying
the medal count timeline with a GDP regression spiral, clear trends can be observed.
Finally, to incorporate the full bipartite nature of the input graph, a very compact
country-category mapping is included in the center.
M. Preymann, P. Vanek, M. Eickmeyer, and R. Kunert ”

GD 2024
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1st Place: Hoang An Nguyen, Nico Martin, Jannik Brandstetter, and
Micha Fauth (University of Tübingen)

GRAPH
DRAWING
CONTEST

Rising Contenders

In recent years, Asia has continuously 
increased its medal count and has 
emerged as a leading contender in 
combat sports and shooting. Meanwhile, 
Africa has demonstrated its growing 
prowess in athletics. These trends 
highlight the rising influence of Asia and 
Africa in the Olympics, ushering in a new 
era of global competition and top-tier 
athletes. Will they be able to continue 
this upward trajectory during the 2024 
Olympics in Paris?

Medal heavyweight
Europe stands out as the dominant force in Olympic 
success, amassing an exceptionally high number of 
medals across various disciplines, nearly doubling the 
medal count of the second-highest continent. This 
remarkable achievement highlights the region’s 
dedication to excellence in sports and its emphasis on 
unity through diversity, with competitors from a wide 
array of nationalities all representing Europe as a symbol 
of camaraderie and mutual respect.

Underdogs no more
Underdog stories are an integral part of the Olympic 
narrative. Even underestimated continents like Africa 
have shown remarkable achievements in athletics and 
continue to improve their dedication to this sport, 
holding most of the world records in running disciplines. 
Another prime example of a fierce competitor, once only 
sparsely present, Asia now holds a prominent position in 
the medal count for swimming disciplines.

The Olympic Times
Wednesday, July 31, 20244 3,80€

Clash of the Continents
No. 29

America 3621
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Asia 3288
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Medal Statistic

Fierce RivalRy
The Olympics spotlight intense rivalries, 
with Europe, Asia, and America clashing 
in combat sports to determine the top 
medal holders in these relentless 
disciplines. Meanwhile, in athletics, 
Europe’s versatile competitors 
continually challenge America’s top 
athletes for the most medals, but Africa 
is quickly catching up. Swimming is 
another attention-worthy discipline, with 
almost all continents amassing similar 
numbers of medals. Only time will tell if 
the balance of power will shift in the 
upcoming Olympics this year.
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The committee valued the graphical choices of this submission. The presentation and
execution of the idea of a newspaper article as a drawing point works well and the small
articles are interesting to read. The visualization itself is well executed. It is arguably more
reduced than the preceding contenders, but it accomplishes it goals cleanly and with good
ideas to overcome the challenge of presenting a very dense dataset. The committee thinks
that the glyphs used for the amounts of medals won could have been improved by more
coarse categories, removing them for too small amounts, or actually using none at all as the
diagrams are for the most part sufficient in communicating the amounts.

“The goal of our visualization is to offer users an intuitive and visually engaging way to
understand the data without sacrificing key information. At first glance, it provides a
high-level overview of the “Clash of the Continents,” highlighting which ones excel in
specific sports categories. As viewers explore further, the visualization reveals more
granular details, such as absolute figures, providing clear reference points for better
understanding and comparing performances across countries. Maintaining a cohesive
design was also essential, leading us to choose a newspaper theme to emphasize the
timeliness and relevance of the topic, particularly in light of the upcoming Paris
Olympics 2024, further enhancing reader engagement.
H. An Nguyen, N. Martin, J. Brandstetter, and M. Fauth ”
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3 Live Challenge

The live challenge took place during the conference and lasted exactly one hour. During
this hour, local participants of the conference could take part in the manual category (in
which they could attempt to draw the graphs using a supplied tool: http://graphdrawing.
org/gdcontest/tool/), or in the automatic category (in which they could use their own
software to draw the graphs). As in the last year, we allowed everybody in both categories to
participate remotely. To coordinate the contest, give a brief introduction, answer questions,
and give participants the possibility to form teams, we were kindly provided with both a
room in the conference building, and a Zoom stream for the conference. A small bug emerged
during the contest related to the submission system. The contest committee determined
that the manual category could best be evaluated by each team sending a screenshot. The
automatic category turned out to be not affected afterall. The error has by now been found
and corrected.

The challenge focused on placing the vertices of an undirected simple graph on a given
point set with the goal to minimize the edge crossings in the resulting straight-line drawing.
We allowed for points of the point set to be collinear and for vertices to lie on top of edges.
For each proper crossings we added one to the quality measure and for each vertex-edge
overlap we added n to the quality measure where n was the number of vertices. Embedding
vertices at fixed or constraint locations is a researched topic in information visualization and
graph drawing often with a focus on achieving plane drawings. With this challenge we hope
to point to the possibility in this topic to also look at classic quality measures, such as edge
crossings.

3.1 The Graphs
In the manual category, participants were presented with seven graphs. These were arranged
from small to large with the exception of the last graph and chosen to contain different types
of graph structures. In the automatic category, participants had to draw the same seven
graphs as in the manual category, and in addition another eight larger graphs. Again, the
graphs were constructed to have different structures.

Provided drawing

invalid drawing

Best manual solution
ThePointless
2 crossings

Best automatic solution
Graph Gladiators
2 crossings

For illustration, we include below the third graph, where the contestants were given
a planar graph plus one edge on a symmetric pointset. The best manual and automatic
solutions managed to find drawings with 2 crossings. While the best manual and automatic

GD 2024
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solutions reached the same number of crossings, the manual ones show on average a better
and clearer embedding of the graph on the pointset. For example in the drawings we show
below, the automatic solution has a worse angular resolution around the vertices than the
manual one.

This example fits into similar observations throughout the past years. The committee
sees repeatedly that manual (human) drawings of graphs display a deeper understanding of
the underlying graph structure than automatic and therefore gain in readability. Moreover,
on all but three of the smaller graphs the humans were able to find a solution with the same
number of crossings (presumably the best possible) as the automatic solutions.

For the complete set of graphs and submissions, refer to the contest website at https:
//www.graphdrawing.org/gdcontest/2024/results/. The graphs are still available for ex-
ploration and solving Graph Drawing Contest Submission System: https://www.graphdraw
ing.org/gdcontest/tool/.

3.2 Results: Manual Category
Below we present the full list of scores for all teams. The numbers listed are the edge-length
ratios of the drawings; the horizontal bars visualize the corresponding scores.

Third place: FPTourists, consisting of Mathis Rocton and Vaishali Surianarayanan.

“ In this contest, we aimed to minimize edge crossings by manually rearranging the
vertices of a given graph. We started by analyzing the graph’s structure, identifying
dense and sparse regions, and distinguishing low-degree from high-degree vertices to
extract as much visual structure as possible. This gave us an intuitive understanding
of the graph’s shape – like connected components and symmetries – before considering
the specific point set.
From there, we worked on finding an embedding with fewer crossings and used local
optimization, swapping small sets of vertices to further reduce crossings. While
we didn’t actually use fixed-parameter techniques, our team, humorously called the
“FPTourists,” did a pretty good job of improving the graph’s visual clarity!
M. Rocton and V. Surianarayanan ”

https://www.graphdrawing.org/gdcontest/2024/results/
https://www.graphdrawing.org/gdcontest/2024/results/
https://www.graphdrawing.org/gdcontest/tool/
https://www.graphdrawing.org/gdcontest/tool/
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Second place: The Gronemanns, consisting of Fouli Argyriou, Mirko Wagner, and Henry
Förster

“ In this year’s contest, we applied a three-phase approach. The first phase, called the
“Pressure phase,” focused on quickly submitting solutions to assert pressure on other
contestants by achieving a high score on the leader board. The second phase, known
as “Drag around until no edge is colored orange,” used greedy heuristics to reduce
edge-vertex overlaps, which incurred penalties, though this year’s instances made it
easier to find solutions without overlaps. In the third phase, a vertex swap heuristic
and a pattern recognition approach were employed to refine the layout. The vertex
swaps iteratively improved the solution, while pattern recognition suggested macro
adjustments, yielding near-optimal solutions even for the most difficult challenges.
F. Argyriou, M. Wagner, and H. Förster ”

Winner: 94_crossings, consisting of Tim Hegemann and Johannes Zink.

“We asked ChatGPT to write us a victory speech. Here is what we got: GD’24, day two,
Vienna 17:45. With just the two of us, Team 94_crossings assembles once more for
another exciting challenge. 17:50. Armed with geometry, strategy, and a shared birth
year (but let’s keep that a secret!), we dive into the vibrant contest. 18:00. Navigating
through vertices and the intricate dance of crossing minimization, we remain focused
on our ambition. Ending with 97 crossings – slightly above our namesake goal – the
outcome is clear: another victory in a field brimming with exceptional teams. Here’s
to close contests and the spirit of collaboration in beautiful Vienna!
T. Hegemann and J. Zink ”

3.3 Results: Automatic Category
In the following we present the full list of scores for all teams that participated in the
automatic category. The numbers listed are the number of crossings of the drawings; the
horizontal bars visualize the corresponding scores. Given that node-edge overlaps added
the number of vertices to the number of crossings relatively high numbers of crossings were
present in the results.

Third place: Baseline, consisting of Maximilian Pfister.

“As the title already suggests, the approach is as straightforward as you can think of:
An initial (random) assignment of the vertices to the points is generated, which is
consequently improved by either using a (i) “swap-operation”, where the position of
two vertices is exchanged, or a (ii) “replace-operation”, where a vertex is moved to
an unused point. Random restarts were deployed to escape local minima and new
assignments were accepted in a greedy fashion, i.e., whenever they did not increase
the number of crossings. The decent performance of the algorithm can be attributed
to the efficient update of the number of crossings (enabled by the small local changes)
which allowed to perform many iterations in a short number of time.
M. Pfister ”

GD 2024
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Table 1 Results of the automatic live challenge.
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Second place: Graph Gladiators, consisting of Philipp Kindermann, Alexander Kutscheid,
and Jan-Niclas Loosen.

“We started with an ILP formulation to solve the problem exactly, which as expected
turned out to be too slow, even for the larger manual graphs; but we could solve the
problem for convex point sets and double chains quickly with a specialized ILP. For the
larger instances, we first created random and force-directed layouts (Tutte, Eades and
FruchtermannReingold) and matched the vertices to the closest points. It turned out
that FruchtermannReingold works the best, and computing a greedy matching is more
effective than finding the optimum one. We then used a simulated annealing approach
to move either a single vertex or a vertex plus its closest neighbors to different points.
We selected the vertices to move randomly weighted by the number of edge crossings
it is involved in. The main difficulty for us was to update the vertex weights and the
number of crossings during the movements without recomputing them from scratch.
P. Kindermann, A. Kutscheid, and J.-N. Loosen ”

Winner: OMeGA, consisting of Julien Bianchetti, Pauline Blavy, Guilhem Gerouille, Laurent
Moalic, and Dominique Schmitt.

“The algorithm we used this year is the one we implemented for last year’s challenge,
with some improvements. We generate a first embedding of the graph with the FMME
algorithm from the OGDF library. Every node of the embedding is then assigned to
its closest available point. Different assignments are tested, and the one providing the
best score is kept. Using a simulated annealing approach, the nodes are then randomly
moved to other locations. The move is always accepted if it improves the current
solution. If the solution is degraded, the move is accepted with a certain probability
depending on the temperature reached by the simulated annealing. The initial value
of the temperature and its variations are automatically computed to be best adapted
to the graph being processed. We ran our program on a 10-core CPU, simultaneously
on the 15 given graphs. It crashed on graphs 3 and 13. We solved graph 3 manually
and submitted graph 13 in its original version (without improvement).
J. Bianchetti, P. Blavy, G. Gerouille, L. Moalic, and D. Schmitt ”

4 Conclusion

The 2024 edition of the Graph Drawing Contest was again a success in participation and
result. The high numbers from the 2023 edition could almost be replicated, which the
committee, given that in the 2023 iteration several participants of the yWorks company were
present due to an overlap in events in Sicily, values as a success. The participation in the
automatic category especially was stronger the last two iterations than the iterations before.
The committee nonetheless believes that some changes should be made to the format to
make it even more attractive for participants from the Graph Drawing community. The
manual live challenge is in a good spot the committee believes, the participation numbers are
high and from talking at the conference the committee gathers that the participants enjoy
the format. Finally, the creative contest has seen an increase in submissions and, arguably,
overall quality in the last years. The turn to only one category made the contest more
focused and targeted, the committee believes.

GD 2024





From Planar via Outerplanar to Outerpath –
Engineering NP-Hardness Constructions
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Abstract
A typical question in graph drawing is to determine, for a given graph drawing style, the boundary
between polynomial-time solvability and NP-hardness. For two examples from the area of drawing
graphs with few slopes, we sharpen this boundary. We suggest a framework for a certain type of
NP-hardness constructions where graphs have some parts that can only be realized as rigid structures,
whereas other parts allow a controllable degree of flexibility. Starting with an NP-complete problem
involving planarity (here, we use planar monotone rectilinear 3-SAT), we consider first a reduction
to a planar graph, which can be adjusted to an outerplanar graph, and finally to an outerpath.
An outerplanar graph is a graph admitting an outerplanar drawing, that is, a crossing-free drawing
where every vertex lies on the outer face, and an outerpath is a graph admitting an outerplanar
drawing where the weak dual is a path. The (weak) dual of a graph drawing is the graph that has a
node for every (inner) face and a link if two faces share an edge.

Specifically, we first show that, for every upward-planar directed outerpath G, it is NP-hard
to decide whether G admits an upward-planar straight-line drawing where every edge has one of
three distinct slopes, and we second show that, for every undirected outerpath G, it is NP-hard to
decide whether G admits a proper level-planar straight-line drawing where every edge has one of
two distinct slopes. For both problems, NP-hardness has been known before for outerplanar graphs.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases NP-hardness, outerplanar, outerpath

Digital Object Identifier 10.4230/LIPIcs.GD.2024.42

Category Poster Abstract

1 The Framework

Consider a problem where the input is a graph G with specific properties and the task is to
draw G in a specific drawing style without crossings. When reducing from planar monotone
rectilinear 3-SAT [2], we model variables by variable gadgets, and clauses by clause gadgets.
The gadgets are subgraphs of G that can only be drawn in a specific way – the boundaries
(/frames/skeletons) are rigid building blocks, while other parts can be drawn with a small
degree of flexibility allowing a mapping of truth values to variable gadgets and a crossing-free
drawing of a clause gadget only if the clause is satisfied. First, we construct G such that it is
planar and connected by following the planar incidence graph of the 3-SAT instance.

Second, we try to make G an outerplanar graph G′ while the reduction remains applicable.
To this end, we add gaps to the rigid boundary such that every vertex in a drawing of G′

lies on the outer face but G′ stays connected. Note that not every NP-hardness construction
in this flavor is directly suited here because the rigid and flexible structures should be “thin”.

Third, we try to make G′ an outerpath G′′ while the reduction remains applicable. To this
end, we trace the boundary of the embedding of G′. Note that this boundary is a cycle that
encounters every vertex of G′. Replace the boundary by a chain of the same rigid building
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blocks as before (just “smaller”). For the flexible parts, one needs to carefully re-design them
as (multiple parts of) outerpaths such that the functionality in the reduction is preserved.
We keep a gap in the boundary such that the weak dual is not a wheel graph but a path.

2 Upward-Planar 3-Slope Drawings

An upward-planar graph is a directed graph that admits a planar drawing where every
directed edge uv is drawn as a y-monotone curve such that y(u) < y(v). Determining for a
directed graph whether it is upward planar is NP-hard in general [4], but polynomial-time
solvable if an embedding is given [1] or if the input graph is outerplanar [13]. We consider the
setting of straight-line drawings with a limited number of slopes. Determining the minimum
number of slopes is ∃R-hard for undirected and directed graphs [7, 14]. For three slopes
(w.l.o.g., 45, 90, 135 degrees w.r.t. the x-axis), Klawitter and Zink [9, 10] observe that a
specific (sub)graph can only be drawn as a square with a diagonal (we call them rigid square
here). Using them as the rigid structure, and using as the flexible structure sliders, which
are two parallel edges attached to rigid squares that can extend only in one dimension, they
show NP-hardness for directed outerplanar graphs. We extend their result as follows.

▶ Theorem 1. Given a directed outerpath G, which optionally can be equipped with an upward-
planar outerpath embedding, it is NP-hard to decide whether G admits an upward-planar
straight-line drawing where every edge has one of three distinct slopes.

According to the framework, we arrange rigid squares and triangles along the boundary.
We replace each slider by two sliders that are attached to two chains of rigid squares that are
twisted into each other such that we cannot move the two sliders much and the replacement
of the slider behaves like the original. For details see the theses by Geis [5] and Zink [15].

3 Proper Level-Planar 2-Slope Drawings

A level-planar graph drawing is crossing free and every vertex is placed at a specific level
(levels are equidistant horizontal lines). A level-planar drawing is proper if, for every edge e,
the endpoints of e lie on consecutive levels. The setting where a leveling of the vertices
is given in addition to the graph is most common. This is testing upward planarity with
prescribed y-coordinates, which is polynomial-time solvable [3, 6, 8]. We focus on the case of
straight-line edges with a limited set of slopes. Brückner, Krisam, and Mchedlidze show for
this case that deciding if a graph given with a leveling and an arbitrary number of slopes
admits a level-planar drawing can be solved in polynomial time if the leveling is proper, but
otherwise it is NP-hard even for just two slopes. Here, we study the case where no leveling (or
edge directions) are given but the generated drawing shall be proper. The problem becomes
NP-hard with two slopes even for outerplanar graphs as shown by Kraus [11]. Again, squares
are used as rigid structure and the flexible structure are edges going either a level up or down,
and edges having either the first or the second slope. We extend this result to outerpaths.

▶ Theorem 2. Given an outerpath G, it is NP-hard to decide whether G admits a proper
level-planar straight-line drawing where every edge has one of two distinct slopes.
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4 Conclusion and Open Questions

The framework seems to be suited for settings with a small number of edge slopes or edge
lengths. The two NP-hardness constructions presented here are very similar to each other and
to Nöllenburg’s [12] NP-hardness proof for planar octilinear metro maps. However, it is not
obvious how to change his construction to work for outerplanar graphs or even outerpaths.
Are there more examples of graph drawing problems where NP-hardness for (outer)planar
graphs is known, while the “simpler” trees and cactus graphs are polynomial-time solvable,
and the known construction can be adjusted to outerplanar graphs or outerpaths?
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Abstract
In cased drawings of graphs, edges are drawn in front of others in order to decrease the negative
impact of crossings on readability. In this context, a switch on an edge is defined as two consecutive
crossings, where the edge is drawn in the front at one crossing and behind another edge at the
next crossing. We investigate the problem of minimizing the maximum number of switches on any
edge – both in a fixed drawing as well as for non-embedded graphs. We resolve an open question
by Eppstein, van Kreveld, Mumford, and Speckmann (2009) by establishing the NP-hardness of
minimizing the number of switches in a fixed drawing, provide a fixed-parameter algorithm for this
problem, and obtain a full characterization of the problem for non-embedded graphs.
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1 Introduction

Edge casing is a frequently used visual rendering method to improve the readability of
crossings in non-planar graph drawings. In a cased drawing – introduced by Eppstein et
al. [2] – two crossing edges are locally ordered into an upper and a lower edge and the curve
representing the lower edge (called the tunnel) is locally interrupted to let the upper edge
(called the bridge) pass through the created gap. This can be particularly important for
graph drawings with regions of high feature density and many edge crossings, which, in
non-cased drawings, are hard to discern from the small disk symbols typically representing
the vertices; see Figure 1.

(a) (b)

Figure 1 (a) A drawing of a graph with crossings; (b) The same drawing with edge casing.
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Switch

Tunnel

Bridge

Figure 2 Cased drawing of K5; the close-up shows a tunnel, bridge, and switch of the black edge.

Eppstein et al. defined several optimization problems, either concerning the number,
length, or distance of the tunnels per edge, or concerning the number of switches, which are
pairs of consecutive crossings of an edge e, one of which is a tunnel for e and the other one a
bridge (see Figure 2). We revisit cased drawings and focus on the problem of minimizing the
number of switches.

2 Results

We resolve an open question of Eppstein et al. [2] on the complexity of the MinMaxSwitches
problem of minimizing the maximum number of switches per edge for a given graph drawing.
We show that this problem is NP-complete even when the target number of switches per
edge is 1, i.e., when we need to decide whether a given drawing δG can be embedded with
at most 1 switch per edge. On the other hand, it is known that deciding whether δG can
be embedded with 0 switches per edge is polynomial-time solvable [2]. We complement our
hardness proof with a fixed-parameter algorithm. The structure of the input graph can be
assumed to be trivial as every instance can be transformed into an equivalent matching.
Therefore, we use the vertex cover number of the cell adjacency graph of the input drawing
as a parameter. All results obtained also directly carry over to the straight-line setting.

▶ Theorem 1. MinMaxSwitches is NP-complete.

Proof Sketch. Inclusion in NP is immediate; we show hardness by reducing from NAE
3-SAT, i.e., the NP-complete variant of 3-SAT where clauses are required to contain at least
one satisfied and at least one unsatisfied literal [4]. ◀

The structural parameter we use to achieve our tractability result is the vertex cover
number ℓ of χG. The cell adjacency graph χG = (F , E′) is the graph, whose vertices are
precisely the cells F of δG (i.e., the connected regions of R2 \ δG) and where two cells are
adjacent if and only they touch, i.e., share a edge segment or crossing on their boundary.

▶ Theorem 2. MinMaxSwitches is fixed-parameter tractable when parameterized by the
vertex cover number ℓ of χG.

Proof Sketch. Two reduction rules are applied. First, remove any edge e with at most 2
crossings. Secondly, split the drawing into bridgeless subproblems. A drawing δG is bridgeless
if there is no edge segment between two crossing points whose removal would disconnect δG.
We claim that – after exhaustively applying the aforementioned reduction rules – the size of
the obtained kernel is upper-bounded by O(ℓ4). ◀
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Moreover, following the definition of k-gap-planar graphs by Bae et al. [1], we define a
graph to be k-switch-planar if it admits a cased drawing with at most k switches per edge.
We give a full characterization of this notion. Recall that a graph G is biplanar if it has
thickness at most 2, i.e., its edge set can be partitioned into two planar subgraphs.

▶ Theorem 3. A graph G is 0-switch-planar if and only if it is biplanar.

Theorem 3 implies that determining whether a graph admits a cased drawing without
switches is NP-complete, as this is the case for testing a graph for biplanarity [3].

▶ Theorem 4. Every graph G is 1-switch-planar.
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Abstract
We consider the real-world problem of identifying a set of “influential” students at schools for a
workshop on tolerance. We report on a tool that visualizes the networks of social connections
between students, identifies sets of influential students, and lets one explore and understand the
solution space with a focus on usability for teachers who are untrained in network analysis.
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1 Problem Scenario

The “Together for Tolerance” (T4T) intervention (a subproject of the “INCLUSIVITY”
project [5, 6], led by developmental psychologists and education workers) aims at promoting
intergroup tolerance in high schools, especially under polarized conditions where schools
become increasingly divided into groups with contrasting opinions, beliefs about social issues,
and conflictual behavior. The central idea is to conduct special week-long workshops for the
students, led by (school-external) trained personnel.

Since a typical German high school has about 1000 students, it is cost-prohibitive to do
so with all students. Thus, the workshops are done with only a comparably small group of
students, between 15 and 20, called social referents [4], who are highly connected to others
via social relationships and have outstanding network positions within the school. Their
network positions are thought to make them most influential, as their behavior is exemplary
for and observed most by other students. The formally “best” way to select students is an
active field of research and part of the T4T project lead by developmental psychologists.

We know, however, that teachers are not accurate in identifying social referents; one
intervention even showed that teacher-selected social referents (instead of selections done by
other adolescent students) had no or even detrimental influences on their fellow students [2].
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Figure 1 (left) Network of a school with 1000 students, regions are colored according to class
year, nodes according to gender, social referent selection in black borders. (middle) Visualizing
distances to the selected students. (right) Comparing two different selections (red=better and
blue=worse than second selection).

Thus, we design a web-tool to not only select students, but equally important to visually
and intuitively “explain” the selection to the involved teachers. Overall, our web-tool can be
seen as the core of step 2 in a 3-step pipeline:
1. Acquiring the social network between the students via questionnaires by developmental

psychologists [5]. The network is a multi-graph with node attributes, and edges are
mapped to their originating question (“with whom do you spend time?”, “with whom
would you like to spend time?”, “whom do you avoid?”, etc.).

2. The T4T WebTool allows to visualize and inspect the network. It also computes one or
more social referent selections (independent of the specific visualization), and allows to
investigate, modify, and compare them.

3. The students of the final social referent selection are invited to the workshop. Their
knowledge and behavior acquired at the workshop should permeate through the network.

In the current test schools, step 2 is performed by researchers. With the project being
conducted in more schools, this task should be done by teachers who will be trained in T4T
workshops, but have no further experience in network analysis. Furthermore, several practical
decisions – e.g., the “best” questions to ask in step 1, how to aggregate the questions into
edges, which measure to use for the selection process, etc. – are still ongoing research in the
psychological community. As such, the T4T WebTool shall also play a double role for the
researchers to help them investigate these questions. They, of course, expect and can deal
with a much richer network visualization interface.

2 T4T WebTool

The frontend is written in JavaScript using Vue.js; the backend server in Python using the
Django framework. Within the backend server, there is a SQLite database and a C++-
bridge to the Open Graph Drawing Framework [1]. The tool supports the computation and
numerical comparison of several different group centrality measures (sometimes enriched by
node-attribute specific adaptations) to use for the social referent selection; despite being
an interesting topic in itself, this is beyond the scope of this abstract. Apart from typical
operations like zooming, panning, node inspection, etc., the tool has some distinctive features:

The graphs are drawn using OGDF’s implementation of the FM3 algorithm [3]. To obtain
context-aware drawings, we temporarily extend the network with suitably weighted
dummy edges to, e.g., (a) cluster students within the same class, and (b) spread the
students of the social referent selection over the drawing area, cf. Fig. 1(left). Clearly, we
can obtain different drawings for different social referent selections.
Within the drawing, we compute Voronoi regions around the nodes which are used both
as clickable regions corresponding to the nodes, as well as for coloring purposes.
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The social referent selection can be visualized, Fig. 1(middle), where the saturation of a
region’s color encodes the distance between the student and their closest social referent.
Two selections can be visually compared, Fig. 1(right), where a region’s color encodes
which selection is better for the respective student; the saturation encodes by how much.
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Abstract
networkX is a well-established Python library for network analysis. With gdMetriX, we aim to
extend the functionality of networkX and provide common quality metrics used in the field of graph
drawing, such as the number of crossings or the angular resolution. In addition, the package provides
easy-to-use access to the graph datasets provided by the ’Graph Layout Benchmark Datasets’ project
from the Northeastern University Visualization Lab.
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1 Introduction

networkX is a well-established and commonly used Python package for working with graph
structures [1]. In their own words, networkX is intended for “the creation, manipulation, and
study of the structure, dynamics, and functions of complex networks” [1]. It supports various
data structures and algorithms useful in graph theory [4]. networkX also supports some
basic graph drawing algorithms, such as for drawing planar graphs or spring embedding. Its
focus however does not lie on graph drawing, but rather on graph analytics.

With the gdMetriX package, we aim to extend the functionality of networkX and provide
common quality metrics used in graph drawing, such as the number of crossings or the
angular resolution. In addition, the package provides easy-to-use access to the graph
datasets provided by the “Graph Layout Benchmark Datasets” project from the Northeastern
University Visualization Lab [3].

The project is published on the Python packaging index (see https://pypi.org/
project/gdMetriX/). More information about all implemented metrics and additional
features can be found at the project homepage (see https://livus.github.io/gdMetriX/)
or the GitHub repository (see https://github.com/livus/gdMetriX).
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Visual Symmetry

Figure 1 Runtime of symmetry metrics of random graphs with edge densities ranging from
10% − 90%.

Table 1 Overview of all implemented graph drawing metrics.

Category Metrics

Crossings Crossing number, percentage of crossings compared to maximum number
of crossings, crossing angles, crossing angular resolution

Area and boundary Area, tight area, height, width, aspect ratio
Node distribution Center of mass, closest pair of points, closest pair of elements, concentration,

homogeneity, horizontal balance, vertical balance, node orthogonality,
Gabriel ratio

Edge directions Angular resolution, average flow, upwards flow, coherence to average flow,
edge orthogonality

Symmetry Node-based symmetry, edge-based symmetry, stress, even neighborhood
distribution, visual symmetry

2 Graph Drawing Quality Metrics

Graph drawing quality measures are a practical and important tool to evaluate the aesthetics
and readability of existing drawings and guide the creation of new drawings as well as the
development of new drawing algorithms. However, for a large amount of metrics, no publicly
accessible Python implementation is available. This increases implementation efforts for new
projects and impedes standardization. Indispensable for collecting a set of suitable metrics
were the publications by Taylor and Rodgers [7], Purchase [6], Bennett et al. [2], as well as
the recent paper by Mooney et al. [5]. A list of all metrics can be found in Table 1.

The framework aims to provide efficient implementations for all metrics. Especially the
symmetry metrics offer measures with similar properties but vastly different runtimes (see
Figure 1). As some symmetry metrics are infeasible to compute for larger instances, we
provide a novel metric – called “visual symmetry” – with linear runtime, aimed to quickly
asses the symmetry of a drawing. The metric works by creating a constant-size image of a
graph drawing. From this image, rotated and mirrored versions are subtracted and the ink
left in the drawing is summed together. The less ink is left, the more symmetric the graph
drawing is assumed to be. A more in-depth analysis can be found on the project homepage.

3 Access to Common Benchmark Datasets

Di Bartolomeo et al. [3] collected commonly used benchmark datasets for evaluating graph
layout algorithms. To ease the usage of the datasets and make the collection more visible,
we have implemented a module to download and parse the provided datasets automatically
with a single line of code. The module downloads requested datasets, caches them for reuse,
and parses the data for use with networkX.
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AdMaTilE: Visualizing Event-Based Adjacency
Matrices in a Multiple-Coordinated-Views System
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Abstract
Conventional dynamic networks represent network changes via a discrete sequence of timeslices, which
usually entails loss of information on fine-grained dynamics. Recently, event-based networks emerged
as an approach to model this temporal (event-based) information more precisely. Adjacency-matrix-
based visualizations of temporal networks are under-investigated in related literature and present a
promising research direction for network visualization. Our approach AdMaTilE (Adjacency Matrix
and Timeline Explorer) is designed to visualize event-based networks using multiple matrix views,
timelines, difference maps, and staged transitions.
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1 Introduction

Dynamic graphs/networks extend the already versatile graph model with explicitly time-
varying nodes, links, and/or attributes. Traditional dynamic network visualization [4] models
graph dynamics as a sequence of states (i.e. timeslices) resulting in large memory requirements
or loss of temporal information through aggregation. Event-based networks [7, 10] (i.e.
temporal graphs) emerged as a solution to preserve these fine-grained changes, by recording
the timestamps of individual graph events, i.e. (dis)appearances of nodes, links, or attributes.
Current approaches to visualizing dynamic networks mostly utilize node-link diagrams to
represent the graph’s structure [4] and visualize the temporal information using juxtaposition,
animation, and space-time cubes [1, 3, 10, 2]. Juxtaposition encodes the temporal dimension
as discrete timeslices side by side, obscuring fine temporal details that may be crucial,
such as in contact tracing networks. Animation, on the other hand, a more natural way
to encode time, avoids such issues but has limitations in tasks involving a comparison of
distant timeslices [5]. The event-based space-time cube (2D + t) [10, 2] has been used for
node-link diagrams/animations that capture finer details, particularly when many changes
occur. Space-time-cubes have also been projected down to 2D [6], depicting node trajectories
and guiding to interesting intervals (“when”) or structures in the graph (“where”). Our
research contributes to temporal graph drawing with an adjacency-matrix-based visualization
of temporal networks, addressing some drawbacks of existing methods. Adjacency matrices
provide an alternative representation of (dynamic) graphs, which, unlike node-link diagrams,
doesn’t suffer from (link-)overplotting as a graph’s size and density grow. By integrating
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multiple matrix views with timelines, animation [9], difference maps [8], and animated staged
transitions, our approach mitigates perceptual issues associated with animation and the
information loss with juxtaposition.

Figure 1 AdMaTilE displaying two juxtaposed views of the same temporal network. (A) Shows
the state of the graph at a specific point in time. (B) A difference map between the primary selected
time (red cursor on timeline) and the right-clicked time (grey cursor).

2 AdMaTilE

Our approach, AdMaTilE, available at admatile.web.app, parses dynamic (event-based)
graphs encoded in the GEXF file format. These are visualized in interactive views that
combine adjacency matrices, timelines, difference maps, and animated staged transitions.
Multiple graphs and multiple views of each graph can be displayed simultaneously enabling
a comparison of patterns between specific moments in time or between graphs using juxtapo-
sition (small-multiples) approach (see Figure 1). The evolution of the graph can be observed
through animation. Left-clicking the timeline and brushing enables analyst-driven navigation
of the temporal dimension (see Figure 1-A).

Right-clicking on the timeline evokes one of two views: (i) a staged transition between the
selected and the right-clicked point in time; or (ii) a difference map of the two timestamps. In
a staged transition, first “removed” links are highlighted red and shrink away, then “added”
links are highlighted blue and grow to full dots, indicating the emergence of new relationships.
Difference maps display the same information instantly, with links either colored so as to
emphasize changes (see Figure 1-B), or emphasizing unchanged links. The instant behavior
allows brushing the timeline (holding the right-click) to search and identify particularly
different (or similar) states of the graph in time.

To aid the identification of edges’ source and target nodes, the node labels and their
respective diagonal cells are colored in a cyclical color scheme. Furthermore, hovering over
matrix cells displays a crosshair and highlights the source and target nodes.

https://admatile.web.app
https://gexf.net/
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Abstract
Given a rooted binary tree T and a tuple (w, h), we wish to test whether there exists a strict

upward drawing of T on a w × h grid; that is, a planar grid drawing with straight-line edges where
every vertex has a strictly lower y-coordinate than its parent.

Biedl and Mondal [2] prove that this problem is NP-hard for general trees; their construction
crucially uses nodes of very high degree. Akatiya et al [1] prove that the problem is also NP-hard for
binary trees with a fixed combinatorial embedding; their construction crucially relies on the fixed
embedding. Both pose the question for binary trees and a free embedding as an open problem.

Here, we show that this problem is also NP-hard.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Upward drawings, grid drawings, minimal area

Digital Object Identifier 10.4230/LIPIcs.GD.2024.47

Category Poster Abstract

1 Result

▶ Theorem 1. Testing whether a rooted binary tree T admits a strict upward planar embedding
on a w × h grid is NP-complete.

We reduce from monotone not-all-equal-3SAT, which is NP-hard by Schaefer’s dichotomy
theorem [3]. In this problem, we are given a n variables and m clauses (triples of variables,
since negative literals do not occur), and we need to find a variable assignment such that all
variables in each clause are neither all true nor all false.

Given a 3SAT formula, we set w = n + 4 and h = n + 4m + 1 and construct a tree T as
follows.

Variables

x1x2 x3 x4x5 x6x1 x2 x3 x4 x5 x6 x1x2x3x4x5x6

xa and xn+1

pattern A pattern B pattern C

xb xc

row 0

row 1

row 2

row 3

row 4

Figure 1 (left) Three embeddings of the permutation gadget. (right) The three clause patterns.

Variables are represented by paths in T of length h. In a strict upward drawing, these
paths must have one vertex on every row of the grid.

The top n + 1 rows contain the permutation gadget. In the ith row, we can choose to
place the path representing xi either on the left or on the right, which encodes the true and
false states of xi. We also add a dummy variable xn+1, which has no truth assignment.
Refer to Figure 1 (left).
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The vertices in the n + 1st row, and thus the paths hanging from them, have 2n possible
permutations. Specifically, these permutations have all true variables to the left with
increasing indices, and all false variables to the right with decreasing indices; these groups
are separated by xn+1.

Clauses

valid permutations invalid permutation

? ??

A A C BA A CB A A CB A AC B A B AC

Figure 2 The clause gadget can be embedded if not both outermost paths use pattern A.

Each clause is represented by four rows, which we index 1—4; we also refer to the last
row of the previous gadget as row 0. A clause (xa, xb, xc) with a < b < c is encoded using
the four paths for xa, xb, xc, and xn+1. Each of these has 3 additional vertices in one or
two subtrees, for 12 additional vertices in total. The total width of the construction is n + 4;
there are three “empty columns”, giving 12 empty spots in these four rows. Our gadget will
allow us to fill exactly these spots if and only if the clause is satisfied. We use 3 different
patterns for attaching the additional vertices, where we use the same pattern for both xa

and xn+1. Refer to Figure 1 (right).

▶ Lemma 2. There is a valid embedding if and only if the two outermost patterns are not
both A.

Proof sketch. For the “if” part, refer to Figure 2 for example valid embeddings. For the
“only if” part, when both outermost paths use pattern A, then both of them must fill rows
1, 2, and 3 of the gadget, which leaves three empty spots in row 4 but only two remaining
paths, which is impossible. ◀

Note that the variable assignment in which xa, xb, and xc are all true results in the
permutaton xa, xb, xc, xn+1, and the assignment in which they are all false results in the
symmetric permutaton xn+1, xc, xb, xa, both of which have xa and xn+1 on the outside,
and all other variable assignments will not have xn+1 on the outside. Therefore, by Lemma 2
we encode exactly the not-all-equal property of a clause.

Full construction

Our full construction (refer to accompanying poster for an example) uses straight paths
without additional vertices for each variable that is not part of a clause. The correctness
relies the ability of these paths to not influence the gadget.

▶ Lemma 3. The presence or absence of any vertical paths separating the four subtrees in a
clause gadget has no influence on the satisfiability of the gadget.

We also need the clause gadgets to be independent; that is, additional vertices in one
clause gadget should not fill empty spots in different gadgets.

▶ Lemma 4. The entire construction can be embedded if and only if each clause can be
individually satisfied.
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2 Future Work

Our construction relies critically on the strictness of the drawings. What is the complexity
of finding non-strict upward planar embeddings of trees on a given grid?
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Abstract
Traditional implementations of the Sugiyama algorithm optimize aesthetic criteria such as the
number of backward edges, edge length, or edge crossings. If we, however, utilize the model order,
as provided e. g. by a textual graph input file, we can determine the topology of a Sugiyama layout
in a one-pass algorithm while controlling the secondary notation and with it the intention expressed
by the underlying model, which typically cannot be captured by layout algorithms.
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1 Introduction

Jünger and Mutzel [4] pointed out that in “many cases, such as the drawing of flowcharts,
the input data can be expected to determine the choice” of edge reversal when explaining
the cycle breaking step of the Sugiyama [6] algorithm.

We here propose to go even further and to use the “input data“, also referred to as model
order [1, 2], to determine the whole topology of a layered layout.

2 Efficient Solutions to Layered Layout Topology

The Sugiyama or layered algorithm is divided into five phases: the topological phases cycle
breaking, layer assignment, and crossing minimization and the geometrical phases node
placement and edge routing. Domrös et al. [1] presented an approach to partially solve the
topological phases in linear time, but requiring intermediate processors that sorted the nodes
before each step. They argued that a manually written input model, e. g. a program in a
domain-specific language, carries intention and secondary notation that can be transferred
into the layout, which can typically not be captured by static layout algorithms [5]. We here
showcase under which assumptions this is possible and show obviously not optimal (ONO)
layouts that might be created by this approach. Directly controlling the layout by the input
model increases control over the layout without introducing additional layout constraints. It
also is naturally embedded in the typical editing workflow for programming.

We assume a directed ordered graph G = (V, E) with an ordered set of nodes V and
|V | = n and ordered set of edges E with |E| = e that corresponds to an input model with
nodes ordered breadth-first based on their desired position and edges ordered based on their
desired destination, as visualized in Figure 1.

The cycle breaking step can be trivially solved in O(e) by iterating over all edges and
reversing all edges for which the source node has a higher model order than the target
node [1], as seen in Figure 1a at the edges between n5 and n2. Note that this solution might
not find the minimal feedback arc set, but assuming that the model order of the input model
is intended this would be acceptable.
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n2

n3

n4

n5

n6

n1

(a) ONO backward edges and edge crossings.

n1

n2

n3 n4

(b) ONO edge length.

Figure 1 Two example drawings that determine topology from model order. Figure 1a is not
optimal regarding backward edges and edges crossings. Figure 1b is not optimal regarding edge
length. However, both layouts reflect model order.

The layer assignment step assigns the first node to the first layer and continues iterating
over all nodes and assigns them to the current layer until a node occurs that is connected
to an already placed node, which creates a new layer, as seen in Figure 1b. By marking
each target node of all already handled nodes as a node that needs to be in a new layer and
assuming the breadth-first order of nodes, we can limit the runtime of the layer assignment
to O(n + e) without considering dummy nodes. Additionally, we need to mark potential
positions for long edge dummy nodes that need to be introduced if an edge spans multiple
layers to create a proper layered graph. By considering the sources of a dummy node and
the nodes in the previous layer, the dummy nodes can be directly assigned to their correct
position in a layer without an additional sorting step. This improves the layer assignment
post-processing proposed by Domrös et al. [1], which requires a sorting step. Again, this
layer assignment may not minimize the edge length but instead expresses the model order.

Crossing minimization can be skipped entirely since the nodes are already in the intended
order and the edge order corresponds to the order of the nodes in a sensible model. The
order of outgoing edges on a node and the position of the dummy nodes introduced for long
edges already determine the order of nodes, dummy nodes, and edges and hence the whole
topology. Since this, however, limits the position of dummy nodes and can only statically
assign dummy nodes to a specific position relative on real nodes, sorting, as proposed by
Domrös et al. [1], or greedily switching nodes and edge anchor points as proposed by Eades
and Kelly [3] might still be beneficial, which would increase the runtime complexity.

3 Obviously not Optimal Input Models

When comparing dummy nodes to real nodes that are part of the input model when deciding
for potential routes during layer assignment, one has to statically decide whether a dummy
node is below or above a so-called dangling source node that has no connection to a previous
layer. E. g., in Figure 1a dummy node are placed above real nodes and as a result n4 is below
the edges from n5 to n2. This means, we cannot control this by reordering the input model.

Another concern are edges that require an additional edge dummy in the same layer to
route the edge around its node, which we also refer to as feedback edges. Here, similar to the
dummy nodes compared to dangling source nodes, we cannot statically decide whether the
feedback edge dummy should be above or below a node without creating unnecessary edge
crossings that cannot be prevented by controlling the input model.

Finally, the approach presented here, while very fast, is probably only sensible if the model
order of the input model carries indeed intention, as it does not aim to optimize standard
aesthetic criteria such as crossing minimization. If only the order of nodes is intentional, or
only the order of edges, one might prefer to fall back to approaches proposed by Domrös et
al. [1, 2] that enforce node or edge order selectively, use them only as a tie-breaker, or utilize
different partial ordering groups to only consider model order that corresponds to intention.
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Abstract
Information visualization tools are an essential component of many data-driven decision-making
systems that rely on human feedback. The aim of this paper is to propose a novel research direction
focused on fair visualizations of graphs.
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1 Motivation and Contribution

In a recent survey focused on bias in machine learning, Mehrabi et al. [7] define fairness as
the absence of any prejudice or favoritism toward an individual or a group based on their
inherent or acquired characteristics.

Information visualization tools are an essential component of many data-driven decision-
making systems that rely on human feedback. Although there is a substantial body of
literature on fairness in artificial intelligence and related fields, fairness issues in information
visualization have been surprisingly overlooked. The aim of this paper is to propose a novel
research direction on this topic, focused on fair visualizations of graphs.

Borrowing an example from [3], imagine two competing parties, the reds and the blues.
Also, suppose we are given a visualization of the graph modeling the relationships among
the parties’ members. Using recent layout algorithms, we can optimize a desired set of
quality criteria (see, e.g., [1]), hence producing a readable and effective layout of our graph.
However, the global optimization process underlying our layout algorithm will not provide any
guarantee that the readability of the visualization “around” red vertices will be of the same
quality as for blue vertices. In fact, while nearly every graph drawing algorithm optimizes
global metrics for the computed layout and can readily incorporate local constraints, only a
few algorithms are capable of handling more general constraints at the subgroup level [2, 5].
In contrast, a fair visualization should ensure that no party is favored in terms of readability.

© Seok-Hee Hong, Giuseppe Liotta, Fabrizio Montecchiani, Martin Nöllenburg, and Tommaso Piselli;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Graph Drawing and Network Visualization (GD 2024).
Editors: Stefan Felsner and Karsten Klein; Article No. 49; pp. 49:1–49:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:seokhee.hong@sydney.edu.au
https://orcid.org/0000-0003-1698-3868
mailto:giuseppe.liotta@unipg.it
https://orcid.org/0000-0002-2886-9694
mailto:fabrizio.montecchiani@unipg.it
https://orcid.org/0000-0002-0543-8912
mailto:noellenburg@ac.tuwien.ac.at
https://orcid.org/0000-0003-0454-3937
mailto:tommaso.piselli@dottorandi.unipg.it
https://orcid.org/0000-0002-7088-920X
https://doi.org/10.4230/LIPIcs.GD.2024.49
https://doi.org/10.2312/mlvis.20241124
https://github.com/tommaso-piselli/fairness-MLVis/tree/main
https://archive.softwareheritage.org/swh:1:dir:378c9ba331d5a22b515264c6de24c45f6a40c065;origin=https://github.com/tommaso-piselli/fairness-MLVis;visit=swh:1:snp:7e54800235823d873ba35413e8102752ca14df26;anchor=swh:1:rev:80d1755d57aa88f388ac86e4fe12dbcc4c0d1f5a
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


49:2 Introducing Fairness in Graph Visualization

MIN STRESS

𝑢

𝑢

𝑣

𝑣

(a)

STRESS 20 % WORSE

𝑢
𝑣

𝑢
𝑣

(b)

Figure 1 Two straight-line drawings of the same graph. (a) is obtained by optimizing the stress
function, while (b) is obtained starting from (a) and by subsequently optimizing the fairness function
without worsening the stress by more than 20%. One can observe (zoomed windows) the increase on
the readability around the two red vertices u and v when optimizing fairness (the red vertices are
fewer than the blue ones). In particular, in (a), the edge incident to u overlaps with a blue vertex,
while v overlaps with an edge between two blue vertices. Both ambiguities are resolved in (b).

This means that the potential visual complexity of the representation is equally distributed
between the two sets, which becomes especially challenging when the cardinalities of the
two sets are unbalanced. Although a fair drawing might be suboptimal in terms of overall
readability, it offers greater insight to end users by balancing readability between the two
vertex groups. Figure 1 illustrates an example of the impact of fairness on the readability of
a straight-line drawing with several blue vertices and few red vertices.

Our results are as follows.

We provide a conceptual contribution by formalizing the notion of fair straight-line graph
drawings, based on the concept of stress, a well-known and widely adopted quality function
(see, e.g., [4]). Clearly, the concept of fair straight-line drawings can be transferred to
other quality criteria, as well as to other graph drawing paradigms.
We present empirical results concerning the price of fairness to be paid in terms of
additional stress with respect to stress-minimal (but potentially unfair) solutions. To
this aim, we implement a gradient-descent based algorithm that can optimize multiple
drawing criteria. Our investigation reveals that multi-objective functions that optimize
fairness and stress together can output straight-line drawings with good fairness at the
expenses of a relatively small increment of global stress.

Due to space limitations, we present below our fairness model for straight-line drawings,
and we point the reader to [6] for an extended abstract of the paper.

2 Fairness of Straight-line Drawings

Let G = (V, E) be a graph and let Γ be a straight-line drawing of G. For a pair of vertices
u, v ∈ V , let δ(u, v) be the length of any shortest path in G between u and v. Also, let
||Γ(u) − Γ(v)||2 be the Euclidean distance of u and v in Γ. Moreover, let ω : V × V → Q be
a weighting function. The stress of Γ is defined as follows:

stress(Γ) =
∑

u,v∈V

ω(u, v)(||Γ(u) − Γ(v)||2 − δ(u, v))2.
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Assume now that the vertex set V of G is the union of two non-empty disjoint subgroups
of vertices, that is, V = VR ∪ VB (with VR ≠ ∅ and VB ̸= ∅); vertices in VR (VB) are called
red (blue). Thus, let G = (VR ∪ VB , E) be a graph and let Γ be a straight-line drawing of G.
To convey the notion of fairness in Γ, we can refine the concept of stress by either focusing
exclusively on the red vertices or on the blue vertices.

stressR(Γ) =
∑

u∈VR,v∈V

ω(u, v)(||Γ(u) − Γ(v)||2 − δ(u, v))2

stressB(Γ) =
∑

u∈VB ,v∈V

ω(u, v)(||Γ(u) − Γ(v)||2 − δ(u, v))2

Ideally, Γ should not be unfair to any of the two sets of vertices, that is, the difference
between stressR(Γ) and stressB(Γ) normalized by their cardinalities should be as close to
zero as possible. More formally, we conveniently define the unfairness λ(Γ) of Γ, whose
minimization leads to a fair drawing: λ(Γ) =

(
stressR(Γ)

|VR| − stressB(Γ)
|VB |

)2
.
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Abstract
We consider three simple quadratic-time algorithms for Level Planarity and give a level-planar
instance that they either falsely classify as negative or for which they output a non-planar drawing.
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1 Introduction

Given a graph G = (V, E) and a level assignment ℓ : V (G) → N, the problem Level
Planarity asks for a crossing-free drawing of G where vertices have their prescribed level
as y-coordinate and all edges are y-monotone. When initially considering the problem in
1988, Di Battista and Nardelli [1] gave a linear-time algorithm for the restricted case where
the graph is a hierarchy, i.e., only one vertex has no neighbors on a lower level. A subsequent
attempt to extend this algorithm to the general case [7] was shown to be incomplete [10].
Jünger et al. finally gave the first linear-time algorithm for testing [11] and embedding [8, 9]
level graphs around the turn of the millennium. Because this algorithm is quite involved,
slower but simpler algorithms were developed by Randerath et al. [12], Healy and Kuusik [6],
as well as Harrigan and Healy [5] in the decade thereafter. All these algorithms consider
the pairwise ordering of vertices on the same level, greedily fixing an order for a (certain)
pair and then checking for further orders implied by this. If the process terminates without
finding a contradiction, we obtain a total vertex order for each level and thereby a level
planar embedding. In the following, we give a level-planar counterexample that each known
variant of this algorithm either incorrectly classifies as negative instance or correctly identifies
as positive instance but outputs a drawing that is not planar. To the best of our knowledge,
this leaves no correct simple embedding algorithm for level graphs. In particular, we are not
aware of any correct implementation for embedding level-planar graphs.

Randerath et al. use an explicit 2-SAT formulation for the pairwise orders of vertices on
the same level. Due to known gaps in the proof of Randerath et al., Brückner et al. [2, 3]
showed this characterization via a 2-SAT formula is equivalent to the Hanani-Tutte-style
characterization of Level Planarity [4]. Thereby, our counterexample only breaks the
proof of correctness as well as the embedder by Randerath et al., while their 2-SAT formulation
still yields a correct test for Level Planarity via this indirect proof [2, 3].
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2 Randerath et al.

The algorithm by Randerath et al. [12] works as follows. First, edges spanning multiple levels
are subdivided such that subsequently edges only occur between adjacent levels, resulting
in a proper level graph. The planarity of the resulting graph is then tested using a 2-SAT
formula. The formula contains a variable (a < b) for every pair a, b of vertices that appear
on the same level, encoding the relative order of these two vertices. For every pair of edges
uv, xy ∈ E with ℓ(u) = ℓ(x) = ℓ(v) + 1 = ℓ(y) + 1 with u ̸= x, v ̸= y it adds the 2-SAT
constraint (u < x) ⇔ (v < y). Combining this with the constraints for antisymmetry
((a < b) ⇔ ¬(b < a)) and transitivity ((a < b) ∧ (b < c) ⇒ (a < c)) necessary for finding
total orders yields a 3-SAT formula. However, Randerath et al. [12] show that omitting the
transitivity constraints yields an equisatisfiable 2-SAT formula. To prove this equivalence,
they show that the 2-SAT formula can be used to compute a level-planar embedding of the
input graph. They greedily pick and assign equivalence classes of the formula in arbitrary
order, but prioritize transitive closures where possible. Figure 1 shows a counterexample
where the algorithm gives a false-negative answer when assigning classes in the shown order.

3 Healy and Kuusik & Harrigan and Healy

The algorithms by Healy and Kuusik [6] as well as the one by Harrigan and Healy [5] uses a
similar concept. Instead of working with equivalence classes of a 2-SAT formula, they work
with connected components of the closely related vertex exchange graph (ve-graph). This
graph contains one vertex for every ordered pair of vertices that appear on the same level.
Two vertices of the ve-graph are adjacent if they correspond to a pair of independent edges
between the same levels. Starting with an arbitrary drawing L of the input graph, the edges
of the ve-graph are first labeled with + or −, depending on whether the corresponding edges
cross in L. Subsequently, a DFS is used to test the ve-graph for odd-labeled cycles, which
corresponds to a contradiction within a 2-SAT equivalence class. The two algorithms now
differ slightly in how they continue to construct an embedding. Similar to Randerath et al.,
Healy and Kuusik [6] fix the orders of vertex pairs (i.e., whether all pairs of a connected
ve-graph component are swapped or not) in an arbitrary order, also performing the transitive
closure if possible. Thus, the processing order from Figure 1 also breaks this approach.

The later Harrigan and Healy approach [5] is slightly more involved. During the DFS
traversal, they already change the relative order of some vertex pairs compared to the initial
drawing L [5, Algorithm 1]. Subsequently, the ve-graph is traversed again in a specific order
and, for some vertices of L, the chosen vertex order is flipped [5, Algorithm 2]. Using choices
as shown in Figure 2, this does not yield a planar embedding even for a positive instance.

a b c d e

f g h i j

k l (a)

a b c d e

f g h i j

k l (b)

a b c d e

f h i j

k l

g

(c)

Figure 1 (a) A level-planar graph G. (b) The green, blue, and red 2-SAT equivalence classes
can be greedily assigned in this order. Subsequently, transitive closure forces a < b as well as i < g,
but the planarity constraints force a < b ↔ f < h ↔ k < l ↔ g < i (c), yielding a contradiction.
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Figure 2 (a) An initial drawing L for Figure 1a. (b) The corresponding labeled ve-graph. Arrows
mark the chosen DFS entry points, pairs marked as swapped by Algorithm 1 are shown in gray. (c)
The processing order for the vertices of the ve-graph in Algorithm 2.
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Abstract
Evolutionary algorithms (EAs) are universal solvers inspired by principles of natural evolution. In
many applications, EAs produce astonishingly good solutions. To complement recent theoretical
advances in the analysis of EAs on graph drawing [1], we contribute a fundamental empirical study.

We consider the so-called One-Sided Bipartite Crossing Minimisation (OBCM): given two
layers of a bipartite graph and a fixed horizontal order of vertices on the first layer, the task is to order
the vertices on the second layer to minimise the number of edge crossings. We empirically analyse the
performance of simple EAs for OBCM and compare different mutation operators on the underlying
permutation ordering problem: exchanging two elements (exchange), swapping adjacent elements
(swap) and jumping an element to a new position (jump). EAs using jumps easily outperform all
deterministic algorithms in terms of solution quality after a reasonable number of generations. We
also design variations of the best-performing EAs to reduce the execution time for each generation.
The improved EAs can obtain the same solution quality as before and run up to 100 times faster.
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1 Empirical Performance Comparison

We study the mutations swap, exchange, and jump on a simplistic (1+1)-type EA [7], on One-
Sided Bipartite Crossing Minimisation [3]. The (1 + 1)-EAs (Swap-EA, Exchange-EA,
Jump-EA) start with a random permutation and apply the corresponding operator k times,
following a Poisson distribution with λ = 1. We also consider the randomised local search
(RLS), where we set k = 1 constant. We compare the EAs to four state-of-the-art algorithms:
The Barycenter and Median algorithms [3], Nagamochi’s algorithm [6], and a heuristic known
as Sifting [5]. Nagamochi’s algorithm gives the best theoretical approximation ratio, but its
performance was never empirically evaluated; a gap we aim to close with this work. We note
that there are other well-performing algorithms, for which evaluations are readily available.
We believe that the chosen subset is sufficient for this comparison.

We performed tests on three different instances, similar to [2]. Due to space limitations,
and as there are no significant differences, we present only the results for random instances,
with n = 100 vertices on both layers, where we added each edge with a fixed probability p.
Note that we also considered differently sized layers and increasing density p; the behaviour
of RLS/EAs was basically the same, while the other algorithms were slightly affected, most
of which was also covered in [2]. We computed the optimum solution using an ILP [4], which
can solve instances of size up to n ≈ 190. EAs and RLS perform a preprocessing step of
computing the cross table [2], which takes Θ(nm) steps.
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Figure 1 (a) Wall-clock times averaged over the same 100 random instances with increasing n.
Evolutionary algorithms were stopped when no improvement was found throughout n1.5 subsequent
generations. The costs for initialising the crossing matrix for the EAs and the Sifting algorithm are
subtracted and shown separately. (b) & (c) Difference between the final evolved crossing number
(for EAs) or the returned crossing number (for deterministic algorithms) and the optimal crossing
number plotted over generations for classical algorithms and evolutionary algorithms. The plots
show averages taken over a suite of instances.

Previous theoretical work [1] suggests that jump is the most effective mutation operator,
which we confirm empirically. When given enough time, Jump-RLS/EA almost find nearly-
optimal solutions, see Figure 1(b). We verify with statistical significance (using the Wilcoxon
rank sum test [8]) that swaps are worse than exchange, which are in turn worse than jumps
on the tested instances. The jump-operator also clearly outperforms all other state-of-the-art
algorithms when given enough time.

While the jump-algorithms show the best performance, their running times are amongst
the highest, see Figure 1. We improve the convergence-speed of Jump-RLS by not performing
jumps at random, but by scanning for acceptable jumps (i.e. not increasing the crossings
number), which does not increase the expected running time asymptotically. We propose
three different strategies to make a choice among the acceptable moves found by the algorithm:
Performing the first acceptable jump (JFIRLS), scanning all jumps and selecting an acceptable
one uniformly at random (JRIRLS), and choosing the best jump (JSRLS). We tested the
three algorithms on the same datasets. We verified with statistical significance that the
JFIRLS is worse than the other two variants, which show roughly the same performance, see
Figure 1(c). The JRIRLS and the JSRLS converge up to 100 times faster than a normal
Jump-RLS or Jump-EA on these instances, which coincides with a factor of n.



J. Baumann, I. Rutter, and D. Sudholt 51:3

References
1 Jakob Baumann, Ignaz Rutter, and Dirk Sudholt. Evolutionary computation meets graph

drawing: Runtime analysis for crossing minimisation on layered graph drawings. In Xiaodong Li
and Julia Handl, editors, Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2024, Melbourne, VIC, Australia, July 14-18, 2024. ACM, 2024. To appear. doi:
10.1145/3638529.3654105.

2 Camil Demetrescu and Irene Finocchi. Removing cycles for minimizing crossings. ACM J.
Exp. Algorithmics, 6:2–es, 2001. doi:10.1145/945394.945396.

3 Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(4):379–403, 1994. doi:10.1007/BF01187020.

4 Michael Jünger and Petra Mutzel. 2-layer straightline crossing minimization: Performance of
exact and heuristic algorithms. J. Graph Algorithms Appl., 1(1):1–25, 1997. doi:10.7155/
jgaa.00001.

5 Christian Matuszewski, Robby Schönfeld, and Paul Molitor. Using sifting for k-layer straightline
crossing minimization. In Graph Drawing, 7th International Symposium, GD’99, Stirín
Castle, Czech Republic, September 1999, Proceedings, pages 217–224. Springer, Springer, 1999.
doi:10.1007/3-540-46648-7_22.

6 Hiroshi Nagamochi. An improved bound on the one-sided minimum crossing number in
two-layered drawings. Discrete & Computational Geometry, 33:569–591, 2005. doi:10.1007/
s00454-005-1168-0.

7 Pietro S. Oliveto, Jun He, and Xin Yao. Time complexity of evolutionary algorithms for
combinatorial optimization: A decade of results. International Journal of Automation and
Computing, 4(3):281–293, 2007. doi:10.1007/S11633-007-0281-3.

8 Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80–83,
1945.

GD 2024

https://doi.org/10.1145/3638529.3654105
https://doi.org/10.1145/3638529.3654105
https://doi.org/10.1145/945394.945396
https://doi.org/10.1007/BF01187020
https://doi.org/10.7155/jgaa.00001
https://doi.org/10.7155/jgaa.00001
https://doi.org/10.1007/3-540-46648-7_22
https://doi.org/10.1007/s00454-005-1168-0
https://doi.org/10.1007/s00454-005-1168-0
https://doi.org/10.1007/S11633-007-0281-3




Polygonally Anchored Graph Drawing
Alvin Chiu
University of California, Irvine, CA, USA

Ahmed Eldawy
University of California, Riverside, CA, USA

Michael T. Goodrich
University of California, Irvine, CA, USA

Abstract
We investigate force-directed graph drawing techniques under the constraint that some nodes
must be anchored to stay within a given polygonal region associated with it (i.e. some positional
information is known). The low energy layouts produced by such algorithms may reveal geographic
information about nodes with no such knowledge a priori. Some applications of graph drawing with
partial positional information include location-based social networks and rail networks, where the
geographical locations need not be precise.
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1 Introduction

We explore polygonally anchored graph drawing, where some nodes may have positional
information in the form of a polygonal region. In particular, we use the standard force-
directed graph layout algorithm by Fruchterman-Reingold [4], modified to restrict nodes to
their associated “anchor” region (if specified). The low energy layouts produced by such
algorithms may reveal geographic information about nodes with no such knowledge a priori.
Some applications of graph drawing with partial positional information include location-based
social networks and rail networks. Work by social scientists supports the idea that one’s
social network (of family, friends, coworkers, etc.) is one of the best predictors for the region
they identify with [1]. And in rail networks, stations and connections are often associated
with the area they bring service to, so their placement in a map may be ambiguous [7, 2].

Related work has considered anchored graph drawing, where the input graph is assumed
to have full positional information that must be respected in some way [6]. Other works have
used centroidal forces as we do to keep a node inside a given region [8].

We investigate three different metrics of forces used to constrain a node to its associated
region. We call this region its anchor, and a node with an anchor is called a vessel. In
the Fruchterman-Reingold algorithm, repulsive forces between nodes and attractive forces
between adjacent nodes are applied iteratively until the global “temperature” of the system
decays to 0, a quantity that controls the amount of displacement [5]. Our modification is to
introduce an additional force from the vessel nodes to their anchors that is applied in each of
these iterations. In order to ensure that the vessel remains tethered to its anchor region, we
apply a displacement force towards the region (where exactly is determined by the metric),
multiplied by a sufficiently large constant to act as if it were an “infinite force”.
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(a) Input Graph. (b) Centroidal Force. (c) Inside-Out Force. (d) Closest Point Force.

Figure 1 The black nodes and edges denote the original input graph, while the teal denotes the
anchor regions. The anchoring forces are shown with a red edge connecting the vessel to the last point
to pull it (the red node may overlap the vessel). The top image shows an input graph of the Vienna
subway map with real geographical locations, where the 10 stations with intersections/transfers
are anchored geographically. The bottom image shows a social network in Queens, one of the 5
boroughs of NYC. 5 nodes are then anchored to one of the 5 boroughs.

In the first metric that we call the centroidal force, every point in the anchor region
applies an displacement force (the displacement vector from the vessel to the point) on the
vessel node. We show later that this metric is identical to applying one singular force from
the anchor’s centroid, scaled up by the anchor’s area. Hence, this force degenerates into the
case where the anchors are simply points, which has been explored in prior work [3].

The second metric, inside-out force, is similar to the first in that we pull a vessel node
inside to the anchor’s centroid, but we only apply this force if the vessel is outside the anchor
region (and so zero force is applied if inside).

Finally, the third metric is the closest point force that also applies zero force if the vessel
node is already inside the anchor region, but otherwise applies a force from the closest point
in the anchor to the vessel.

We now show that applying a force from all points in a region is indeed equivalent to
applying one singular force from the region’s centroid, scaled by the region’s area. Let
v = (vx, vy) be a vessel point attached to an anchor point (x, y). Then the force vector F we
apply on the vessel is F = C · ⟨x − vx, y − vy⟩ for some large constant C.

Let P be the region defined by an anchor with area A. Its centroid will be given by the
point c = (cx, cy), where

cx =
∫∫

P
x dx dy∫∫

P
dx dy

=
∫∫

P
x dx dy

A
, cy =

∫∫
P

y dx dy∫∫
P

dx dy
=

∫∫
P

y dx dy

A
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If every point (x, y) in an anchor region P applies a force C · ⟨x − vx, y − vy⟩ on the vessel
point, then the total force applied will be

Fx =
∫∫

P

C · (x − vx) dx dy = C ·
∫∫

P

x dx dy −Cvx ·
∫∫

P

dx dy = CA(cx − vx)

Fx =
∫∫

P

C · (x − vx) dx dy = C ·
∫∫

P

x dx dy −Cvx ·
∫∫

P

dx dy = CA(cx − vx)

Notice that this force is equal to just one force being applied from the centroid c, scaled
up by the anchor’s area A.
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Abstract
Cops and Robbers is a well-studied pursuit-evasion game in which a set of cops seeks to catch a
robber in a graph G, where cops and the robber move along edges of G. The cop number of G is the
minimum number of cops that is sufficient to catch the robber. The game of Cops and Robbers
has been well-studied on beyond-planar graphs (that is, graphs that can be drawn with only few
crossings) [1, 4] as well as intersection graphs (that is, graphs where the vertices represent geometric
objects, and an edge exists between two vertices if the corresponding objects intersect). We consider
a well-known subclass of intersection graphs called string graphs where the objects are curves. So
far no string graph with cop number larger than three was known. We construct the first string
graph with cop number four, which improves the previous bound and answers an open question by
Gavenčiak et al. [5].

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases point set embedding, upward planar path embedding, dynamic programming

Digital Object Identifier 10.4230/LIPIcs.GD.2024.53

Category Poster Abstract

The game of cops and robbers

One of the most common and well-studied pursuit-evasion problems is the game of Cops and
Robbers on graphs, which was formalized by Quilliot [8] and Nowakowski and Winkler [7] in
the 1980s; see also the recent book by Bonato and Nowakowski [2]. The game is played in a
graph by two players: the robber player and the cop player. The common assumption that
we also adopt here is that each player has full information about the graph and the other
player’s moves. The game consists of rounds (or steps) on a given graph. In the initial round,
the cop player selects starting vertices for a set of cops, and then the robber player selects a
starting vertex for a robber. In the subsequent rounds, the players alternate turns; during
the cops’ turn, the cop player may move some of the cops to adjacent vertices. Similarly,
the robber player may move the robber to an adjacent vertex during the robber’s turn. The
cop player wins if the robber and any of the cops are simultaneously on the same vertex;
otherwise, when the game continues indefinitely, the robber player wins. If a single cop
suffices to catch the robber in a graph G, even when the robber plays adversarially, then G is
a cop-win graph; otherwise, G is a robber-win graph. The minimum number of cops necessary
to catch the robber in G, denoted c(G), is called the cop number of G.

String graphs

The class of string graphs is the class of intersection graphs of strings where each string is a
bounded curve in the plane, i.e., a continuous image of the interval [0, 1] into R2. One of the
most notable subclasses of string graphs is the class of k-string graphs, which are the graphs
admitting a string representation in which every two curves intersect in at most k points. It
is known that k-string graphs is a strict subclass of k + 1-string graphs for all k ≥ 1 and this
inclusions is strict [3, 6].
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Figure 1 Rhombicosidodecahedron.

The girth of a graph is the length of a shortest cycle in the graph.

▶ Lemma 1 ([1]). A graph with min degree δ and girth at least five has cop number at least δ.

In the following we construct a 1-string graph with minimum degree four and girth five. And
thus, as implied by Lemma 1, its cop number is at least four. This answers an open question
by Gavenčiak et al. [5] as well as an open question on Math Stack Exchange [9].

1-string graph with cop number 4

▶ Theorem 2. There is a 1-string graph G with minimum degree four and girth at least five.

Proof. Our construction is based on an Archemidian solid Rhombicosidodecahedron R; see
Figure 1. We consider a planar drawing of R and subdivide each edge incident to a triangular
face with a subdivision vertex, let the resulting graph be R′; see Figure 2b. To distinguish
the vertices of R in R′ from the subdivision vertices (marked with dots in Figure 2b), we call
the vertices of R the original vertices (the crossings in Figure 2b).

To construct our string graph G we cover the edges of R′ with the strings so that the
strings cross internally (that is, on each string s participating in the crossing, the crossing is
between two other intersections on s) at the original vertices and the endpoints of the strings
intersect at the subdivision vertices. More precisely, we partition the edges of R′ into twelve
colored cycles; see colored cycles in Figure 2b. Each such cycle consists of five strings. Each
string is between two consecutive subdivision vertices of a cycle and two consecutive strings
in the cycle intersect at their endpoints. Figure 2a shows a straight-line embedding of G.

(a) Straight-line drawing of the graph G. (b) Planar drawing of the graph R′ and the
string representation of the graph G.

Figure 2 The string graph G and its string representation.
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It is easy to check that every string s intersects with exactly four other strings: two
strings intersect s at its endpoints and two strings cross s internally.

Now let us reassure that there are no cycles of length three or four in G. Notice that
such a cycle, must have its edges from at most four different colored cycles in Figure 2b. By
simply checking every set of at most four colored cycles, we can see that there is no cycle of
length three or four. ◀
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Abstract
We present a deterministic n2+o(1)-time algorithm that approximates the crossing number of any
graph G of order n up to an additive error of o(n4), as well as a randomized polynomial-time
algorithm that constructs a drawing of G with cr(G) + o(n4) crossings. These results imply a
(1 + o(1))-approximation algorithm for the crossing number of dense graphs. Our work builds on the
machinery used by Fox, Pach and Súk [10], who obtained similar results for the rectilinear crossing
number.
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1 Preliminaries and previous work

Let G be a finite simple graph. The crossing number of G, denoted by cr(G), is the minimum
number of crossing points between edges, where the minimum is taken over all drawings of
G on the plane. A straight-line drawing of G is a drawing such that each edge is represented
by a segment joining the corresponding endpoints. The rectilinear crossing number of G,
cr(G), is the least number of crossings amongst all straight-line drawings of G. Clearly,
cr(G) ≤ cr(G), and it is known that there are graphs for which the inequality is strict [5].
The crossing number and the rectilinear crossing number have been studied extensively, and
we refer the reader to the comprehensive monograph of Schaefer [17] for a review of the
existing literature and several interesting questions.

Computing the crossing number is known to be NP-complete [11], while determining the
rectilinear crossing numbers is complete for the existential theory of reals [4], and hence
NP-hard. For any fixed k, there is a linear time algorithm that decides whether cr(G) ≤ k.
In contrast, it is NP-hard to determine if cr(G) ≤ k holds. A considerable amount of work
has been put into developing approximation algorithms for both cr(G) and cr(G). A graph
drawing technique of Bhatt and Leighton [3] and the approximation algorithm for optimal
balanced cuts of Arora et al. [2] can be used to find, in polynomial time, a straight-line
drawing of any bounded degree n-vertex graph G with no more than O(log4 n(n + cr(G))
crossings. It wasn’t until several years later that Chuzhoy [6], using the edge planarization
method from [8], found a polynomial-time O(n9/10)-approximation algorithm for cr(G) for
bounded degree graphs (by this, we mean a multiplicative approximation). Building on this
method further, Kawarabayashi and Sidiropoulos [12, 13] improved the approximation ratio
to O(n1/2), and then Mahabadi and Tan [7] found a randomized O(n1/2−δ)-approximation
algorithm, where δ > 0 is a constant.
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It is well known that if an n-vertex graph G is dense (i.e., it has Ω(n2) edges) then both
cr(G) and cr(G) are of order Ω(n4) (this follows from the celebrated crossing lemma of Ajtai
at al. [1] and Leighton [14]). Fox, Pach and Suk [10] presented an algorithm that constructs
a straight-line drawing of G with cr(G) + o(n4) crossings. If G is dense then this algorithm
produces a drawing with (1 + o(1))cr(G) crossings.

2 Our results

We have obtained a close analog of the result from [10] for the crossing number.

▶ Theorem 1. There exists a deterministic n2+o(1)-time algorithm that for any given n-vertex
graph G approximates cr(G) up to an additive error of O(n4/(log log n)δ). Furthermore,
there is a randomized polynomial-time algorithm that, with probability 1 − o(1), computes a
drawing of G with cr(G) + O(n4/(log log n)δ) crossings. Here, δ denotes an absolute positive
constant.

The approximation part of the algorithm follows the same strategy as the one for rectilinear
crossing numbers:
1. We are given an n-vertex graph G = (V, E) as input.
2. Set ε = (log log n)− 1

2c for some suitable absolute constant c and find an equitable Frieze-
Kannan ε-regular partition P = {V1, V2, . . . , Vk} of G using the algorithm in [9], where
k ≤ O(2

√
log log n). This takes n2+o(1) time.

3. Construct the edge weighted graph G/P which has a vertex for each Vi and where the
edge between Vi and Vj has weight equal to the number of edges between these two sets.
Then, compute the crossing number of G/P (a crossing between edges of weights w1 and
w2 has weight w1w2) by brute force and output this quantity. This can be done in no(1)

time.

3 Overview of the proof of correctness

The main novel ingredient which makes it possible to prove the correctness of the above
algorithm is the following bound on the difference between the crossing numbers of two
graphs on the same vertex set in terms of their distance in the (labeled) cut metric. The
definition of this metric can be found, for example, in [15].

▶ Theorem 2. Let G1 and G2 be graphs with the same vertex set V . If d□(G1, G2) ≥ n−4,
then | cr(G1) − cr(G2)| ≤ Cd□(G1, G2)1/4n4, where C is an absolute constant.

Proof sketch. Start with a drawing D of G1 which attains cr(G1); we will use D as a
blueprint to construct a drawing of G2 with few crossings. After adding a node at each
crossing of D, we arrive at a planar map. By carefully and repeatedly applying a planar
cycle separator theorem due to Miller [16], along with some packing and covering arguments,
for any t ∈ (0, 1) it is possible to subdivide the plane into r = O(1/t2) connected regions
which contain no more than ⌈t2n⌉ vertices of G and satisfy the following key property: Any
vertex of G inside the region and any point on its boundary can be connected by a curve
that has no more than tn2 intersection points with the edges of the drawing that have no
endpoint in that same region.

Let P1, P2, . . . , Pr denote the sets of vertices within each of the r regions of the subdivision.
As long as d□(G1, G2) is small, the number of edges between Pi and Pj will be similar in
G1 and G2. For each edge e in G2 between Pi and Pj (i ̸= j), choose an edge e′ of G1
between the same sets uniformly at random and route e along e′. Since e and e′ might have
different endpoints, we need to do some adjustments near the endpoints of e. Because of the
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aforementioned property that the regions of the subdivision posses, this adjustments can be
carried out without incurring in too many additional crossings. The edges of G2 that have
both endpoints in Pi can be added to the drawing at the end without many complications.
One con show that the expected number of crossings in such a drawing of G2 is no more
than cr(G1) + Cd□(G1, G2)1/4n4. ◀
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Abstract
Graph visualizations help with complex data analysis but often require expert knowledge to apply
and configure advanced algorithms. yFiles, a diagramming SDK, bridges this gap by enabling
developers to create interactive visualizations easily. This work demonstrates how yFiles helps
transform raw data into accessible graph visualizations.
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1 yFiles – From Data to Graph Visualizations

Graph visualizations help users gain insights from complex data. Depending on the structure
of the data, different methods can be applied to place the graph nodes and route the edges. For
instance, hierarchical data is well represented with layered drawings, whereas social network
data often benefits from force-directed layouts. Research provides powerful algorithms for
drawing graphs [1, 4], but their application generally requires expert knowledge. Meanwhile,
many users outside the field of graph drawing seek simple, effective tools to visualize their
data without the need to understand the technical details. This work shows how yFiles1,
a diagramming SDK, bridges the gap between sophisticated algorithms and the practical
needs of users. We demonstrate how this library can transform raw data into interactive
graph visualizations accessible to anyone without needing to “reinvent the wheel”.

Challenge 1: From Data to Graph Structures. In typical use cases, users of the dia-
gramming SDK aim to answer questions based on structured data. The first step involves
understanding the data structure and identifying specific characteristics. yFiles offers a
range of graph analysis algorithms, including k-means or k-core clustering, and centrality
algorithms, to help users understand the graph’s structure. This step is crucial for selecting
the most appropriate layout algorithm; see Fig. 1 for examples.

Challenge 2: From Graph Structures to Layouts. Once the data structure is understood,
users select a specific layout that best fits the graph structure, for instance, a layered [5] or
force-based layout [2]. However, most users are not experts in graph drawing and prefer to
configure layouts using visual parameters rather than technical ones, such as force strengths.
Visual parameters might include node distances, node sizes, edge thickness/bends, labels,
or more sophisticated constraints such as group nodes, node ordering, layer assignment,
or port constraints. yFiles maps these visual settings onto appropriate algorithms and
their parameters, making advanced layout techniques accessible without requiring users
to understand the underlying details. For example, the organic layout consists of several
force-based algorithms that are applied depending on the graph structure [2, 3].

1 https://yfiles.com
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Figure 1 Examples of layouts offered by yFiles. From left to right: orthogonal, tree, organic
(force-based), hierarchic (layered drawing), single cycle, circular layout.

Adapting algorithms from research to complex use cases, regardless of graph size or
constraints, is a significant challenge. Among others, yFiles addresses this by allowing the
combination of different layout algorithms. For instance, a graph with group nodes might
use a force-based method for top-level nodes and a layered layout for the groups’ contents.
yFiles provides a powerful pipeline mechanism for assembling various layouts using both
built-in and user-defined algorithms. The SDK also supports customizing layout algorithms
with a wide range of configuration options. Additionally, it offers features such as automatic
substructure detection and enhanced visualization of elements such as cycles, stars, and
parallel structures. Moreover, yFiles strongly emphasizes generic and common features, such
as labeling, group nodes, edge grouping, restricted port locations, and table-like structures,
all of which are supported out of the box.

Challenge 3: From Layouts to Network Visualizations. Beyond arranging graph elements,
their visual representation – including colors, shapes, and edge thickness – is crucial as these
visual aspects encode additional information. yFiles offers a variety of predefined styles for
graph elements and also allows users to create custom styles. The SDK integrates seamlessly
with various rendering engines, such as SVG or WebGL, depending on the platform.

All layout algorithms can be applied to graphs with animations, helping users understand
transitions between different visualizations. This is facilitated by a generic animation
framework and morphing algorithms.

Challenge 4: Making the Graph Interactive and Dynamic. Interactivity allows users to
explore and edit the graph structure and the underlying data. Common interactions include
navigation (zooming and panning), basic modifications, and more complex actions such as
collapsing/expanding group nodes and filtering elements. These require layout algorithms
that can adapt to changes, which yFiles supports through features such as fixed node subsets
and incremental element placement.

Conclusion

yFiles bridges the gap between formal algorithms and the practical needs of users. By
providing advanced layout algorithms and integration with existing frameworks, it enables
users to create not only visually appealing but also meaningful visualizations of their data.
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Abstract
The Eclipse Layout Kernel (ELK) is an open-source framework1 written in Java, which is transpiled
to the JavaScript library elkjs2. ELK provides extensible and modular algorithms, visibility for
diagramming research, and has an active community. The ELK project is both a validation platform
for graph drawing algorithm researchers, and a freely available library put in production use to
provide automatic layout for academic and commercial applications.

The report by Domrös et al. [3] presents an overview of the available algorithms, the development
history, related publications, as well as lessons learned from developing the open-source framework.
ELK welcomes new users as well as new contributors.
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1 ELK’s Infrastructure and Applications

ELK provides infrastructure to develop algorithms for arbitrary types of graphs including
digraphs, hypergraphs, and compound graphs that may be layouted bottom-up or top-
down [6] and allows using different algorithms in different subgraphs. ELK’s phase and
processor infrastructure supports pre- and post-processors that can be modularly inserted
into any algorithm. This allows solving domain-specific layout questions as well as comparing
layout strategies without reimplementing whole algorithms.

ELK contains highly configurable3 algorithms for layered layouts, rectangle packing, tree
drawing, force and stress layouts, radial layouts, and packing of disconnected components.
The flagship algorithm is ELK Layered based on the Sugiyama algorithm [11]. It can be
configured with over 140 layout options to control details such as spacing for edges, nodes,
disconnected components and ports, as well as what strategies for different phases of the
layout algorithm. These include model order, node and port constraints, node size constraints,
compaction, edge wrapping, label placement, self-loop arrangement, and layout direction.

Notable layout strategies that have been implemented for elk Layered based on
published research include Forster constraint resolving during barycenter crossing minimiza-
tion [4], Brandes and Köpf node placement [1], edge bundling for dataflow diagrams [9] and
size-aware and port-aware horizontal node coordinate assignment by Rüegg et al. [8], and
port constraints in dataflow diagrams by Spönemann et al. [10]. Moreover, Jabrayilov et al.
and Rüegg et al. have worked on the graph layering problem for general directed graphs [5, 7].

1 https://eclipse.dev/elk/
2 https://www.npmjs.com/package/elkjs
3 https://eclipse.dev/elk/reference/options.html
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ELK and elkjs are integrated into popular diagramming tools such as mermaid, GLSP,
reactflow, Lingua Franca, Sirius, Sprotty, and KIELER, which provide real world layout
problems to solve and makes graph drawing research results visible and usable. Particularly
elkjs has become very popular4 in recent years, as it lets users embed automatic graph
visualizations within web applications. elkjs has received about 1700 “stars” on GitHub and
has currently over 800 000 weekly downloads.

Much of ELK’s value stems from community interaction. This interaction provides us
with valuable insights on how real applications utilize graph drawing. GitHub or gitter5

can be used to ask layout questions or report problems. The elklive tool6 allows sharing
graph configurations in the online editor via a simple link. One key insight of the community
interaction is that users do not want complicated solutions but rather control over the layouts.

2 Future Work

Future work focuses on laying the groundwork for visualizing large hierarchical models and
exploring how model order [2] can be utilized by layout algorithms.

Top-down layout is an approach to draw nested graphs that serves as an alternative to
the bottom-up approach [6]. By drawing nested graphs starting at the root instead of at the
leaves we obtain better high-level overviews, especially for large nested graphs.

Model order aims to bring secondary notation and with it intention from a textual model
into a diagram. This can determine the whole topology of a layered graph by model order.
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Abstract
The design space for interactive graph visualisation in immersive environments creates opportunities
to improve on established solutions in traditional desktop settings. Exploiting this potential requires
careful analysis of achievable benefits, required tradeoffs, and disadvantages for particular designs and
use-cases. GAV-VR is a modular and user-extensible framework for graph visualisation and analysis
in Virtual Reality (VR). It provides the platform to easily create interactive graph visualisations,
facilitating both applied graph analysis and evaluation of approaches and methods for visualisation
of and interaction with graphs in VR.
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1 Introduction

Interactive 3D graph visualisation, especially in VR, has shown potential in enhancing graph
structure understanding and analysis across various applications [3]. The large design space
for graph representation and interaction in VR offers significant opportunities for improving
analysis processes. Features such as stereoscopic 3D visualisation, user tracking, and direct
interaction need to be properly investigated and integrated into efficient designs in order to
make use of these opportunities. The effort to implement a VR-based graph visualisation from
scratch, but also to re-assemble basic functionalities for each new project, is a large obstacle
for quick prototyping and design comparison and distracts researchers and practitioners from
their main focus, e.g. graph analysis or evaluation of methods [1].
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Figure 1 Screenshot of a multilayer network visualisation in GAV-VR, with parts of the user
interface in the foreground.

We demonstrate Graph Analysis and Visualisation in VR (GAV-VR) [2], a framework
designed for interactive graph visualisation and analysis in VR. The framework facilitates
prototyping, method comparison, and interactive graph analysis. GAV-VR’s modular
architecture supports various VR headsets, data formats, and visualisation methods, enabling
easy integration of new functionalities.

2 GAV-VR Structure and Use

GAV-VR serves two types of users: analysts and contributors. Analysts use the system
to investigate graphs with a pre-implemented build that requires no coding but includes
ready-to-use features for graph analysis in VR. Contributors enhance GAV-VR by developing
new features within a modular Unity C# environment. They utilise abstract classes and
pre-defined routines without needing a deep understanding of the entire framework.

The architecture of GAV-VR includes a core that handles core functionalities and manages
modular features, and modules that represent the custom content added by contributors.
The core provides user interfaces and controls for interaction with graphs, edges, and vertices.
Modules can be script-based, implementing new methods and features through C# classes,
or file-based, altering object representations through prefab files.

Script-based modules extend functionalities such as file parsing and movement modes,
using abstract classes to integrate new features. File-based modules modify visual aspects
such as vertex and edge representations, which are automatically integrated into the UI. To
integrate modules, contributors either add C# files for script-based modules or place custom
prefab files for file-based modules.

In GAV-VR, graphs are visualised as node-link diagrams. The representation of vertices
and edges can be customised. The UI is adjustable and supports raycast point-and-click
interactions. Users can manipulate graphs directly, e.g. through rotation and translation.
Data handling and analysis are managed by the core, which ensures data integrity and
validates file formats. Graphs are saved in a simple, human-readable “.gavvr” format that
captures essential attributes. Performance varies with interactive and non-interactive modes,
supporting up to 2,000 objects interactively and 20,000 objects non-interactively, depending
on hardware capabilities.
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3 Conclusion

The GAV-VR framework offers a robust solution for interactive graph visualisation and
analysis within VR environments. By supporting both analysts and contributors, GAV-VR
caters to diverse user needs. The architecture ensures seamless integration of new features
while maintaining core functionality. With its support for both script-based and file-based
modules, GAV-VR allows extensive customisation, from adding new graph analysis methods
to modifying visual representations. Licenced under the GNU Affero General Public License
V3, GAV-VR promotes open, non-commercial use, fostering innovation and collaboration in
the field of graph visualisation.
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Abstract
We present Graph Harvester, a website for extracting graphs from illustrations in scientific papers.
For every graph that has been extracted, Graph Harvester queries the graph database House of
Graphs. If the graph is not already present there, the user can upload the graph into the database,
possibly after modifying it, and with a reference to the paper that contains the drawing of the graph.
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1 Graph Harvester

In graph theory, certain graphs are pivotal in numerous publications, serving as key tools
in proving or refuting theorems. Hence, having a collection of significant graphs previously
used in publications is highly beneficial. This is the idea behind the website House of Graphs
(HoG) set up by Coolsaet et al. [3, 4]. It explicitly does not aim at making all possible
graphs (of a certain size) available, but only “interesting” ones. On the site, one can search
graphs using many criteria, draw graphs, and upload new graphs. Still, from a graph drawing
perspective, the HoG database is far from being complete. Out of 293 potentially interesting
graphs (with at least seven vertices and maximum vertex degree of at least 3) that we
extracted from figures in papers presented at GD 2023, the HoG database contained only 57.

Unfortunately, extending the HoG collection is time-consuming. Currently, graphs must
be uploaded in one of two formats: either as an adjacency matrix or in graph6 string
representation. HoG users, however, may have their graphs represented differently, e.g., as a
drawing. Converting a drawing to the required formats by hand is prone to errors for smaller
graphs, and practically impossible for larger ones.

To address this problem, we present Graph Harvester [6], a website that extracts graphs
from drawings of graphs in PDF files. Whereas there has been work on extracting graphs
from bitmap images [1], we focus on the simpler problem of extracting graphs from vector
data, which is the primary format used in publications nowadays. Graph Harvester works as
follows. A user uploads a publication as a PDF file. Then, the website displays each detected
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figure in the file next to a drawing of the extracted graph for review. Furthermore, the
website computes a representation in the format accepted by HoG and checks whether the
graph is already present in the HoG database. To this end, the following steps are performed.

The initial extraction process is based on modules of the KIETA [7] pipeline. Graphical
and textual elements within the PDF file are extracted using PyMuPDF, a Python library for
data extraction, analysis, conversion, and manipulation of PDF documents. The graphical
elements are clustered to find a cohesive group that contains a figure in vector format (SVG).
Then, the corresponding figure caption is determined using a keyword-based approach.

Next, the graphs are extracted from the figures. For this step, four geometric objects are
of importance: circles and rectangles, which represent potential vertices; and line segments
and curves, which represent potential edges. We call two line segments or Béziers curves
connected if they share an endpoint (i.e., their endpoints are closer than a given threshold).

Because the PDF format does not support circle objects natively, these are typically
represented by cubic Béziers curves. Therefore, any connected sequence of three or more
curves forming a cycle, with endpoints at similar distances from their joint barycenter, is
considered a circle. The latter condition is used to filter out elliptic shapes, which typically
do not represent vertices (but are rather used for highlighting).

Next, the potential vertices are filtered for duplicates and by size. Curves that form
cycles but have not been classified as vertices are retained for further consideration, as they
may represent edges. Rectangles whose four corners coincide with potential vertices are
split into four line segments. Then, edges are handled. Any sequence of connected line
segments or Béziers curves is considered an edge candidate if both endpoints match vertex
candidates. (Otherwise, they usually represent axes or other annotations.) Edge candidates
are subdivided if they contain vertex candidates in their relative interior.

Finally, the graph of all vertex and edge candidates is built and split into connected
components. The adjacency matrix is set up separately for each component. Graphs (or
components) with fewer than seven vertices or a maximum vertex degree of less than 3 are
filtered out, as they are not considered interesting. The remaining matrices are converted to
graph6 format and sent to the HoG interface to check whether the corresponding graphs are
already present in the HoG database. If they are, their HoG identifiers are reported.

The graph6 representations, HoG identifiers, figure captions, and geometric objects used
to represent the graphs are displayed by the Graph Harvester website. The latter are drawn
as they were found in the paper. Additionally, a picture of the figure extracted from the
original PDF is provided to allow the user to validate Graph Harvester’s extraction. If a
graph already exists in the HoG database, a link to the HoG entry is shown. Otherwise,
users can choose to add the graph to the HoG database, possibly after modifying it with the
HoG graph editor. Figure 1 shows a screenshot of the Graph Harvester website.

Figure 1 Output of Graph Harvester for Figure 8(b) of a paper of Bekos et al. [2].

https://github.com/pymupdf/PyMuPDF
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Abstract
CentralityVis is a software tool designed for visualizing large graphs using two community-centric
methods: spiral visualization and linear visualization. Both visualizations are highly scalable, capable
of handling networks with hundreds of thousands of nodes and edges. The tool leverages community
detection algorithms to group nodes into communities and then orders the nodes of community
on centrality in descending order, arranging them in either a spiral or linear layout. CentralityVis
provides clear insights into both node and community properties, facilitating the analysis of complex
networks. Each visualization method has its strengths: spiral visualization is intuitive and resembles
traditional node-link diagrams, while linear visualization facilitates easy comparison of communities
and offers greater scalability in terms of the number of communities that can be represented. To
minimize visual clutter, edges are drawn only when needed, ensuring that even large graphs remain
clear and comprehensible. CentralityVis is a powerful tool for understanding complex networks,
emphasizing both individual nodes and the communities to which they belong.
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1 Introduction

CentralityVis is a powerful community-centric network visualization tool specifically designed
for undirected, unweighted, and static networks. It has three primary goals: (I) drawing
large networks in a compact and intuitive format, (II) visualizing node centrality within
network communities, and (III) visualizing both node and community properties.

CentralityVis helps users comprehend large networks through two interactive visual
solutions: (I) Spiral Visualization, published in VIS 2023 [5], can represent networks with
up to 10,000 nodes, and (II) Linear Visualization, capable of visualizing up to 50,000 nodes.
The tool offers flexibility in selecting the centrality measure, which determines the ordering
of nodes within each community in descending order. In Spiral Visualization, these ordered
nodes are arranged in a spiral layout, with higher centrality nodes positioned closer to the
center, effectively highlighting node rankings within the community. Linear Visualization, on
the other hand, organizes nodes in a wrap-around linear format with uniform spacing between
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nodes, facilitating comparisons of node centrality. Additionally, the Linear Visualization
aids users in identifying important communities by ranking and arranging them sequentially
based on user-selected attributes such as size (number of nodes in a community), edge density
(ratio of intra-community connections to total possible connections), or inter-community
connections (number of connections to other communities).

The source code for the Spiral visualization and Linear Visualization is available at https:
//github.com/Garima17/SpiralVisualization and https://github.com/Garima17/
Linear-visualization/.

2 Key Features

Both spiral visualization and linear visualization makes it easier to identify, interpret, and com-
prehend different network properties, such as (1) identifying the number of communities within
the network, (2) visualizing and comparing the sizes of different communities, (3) visualizing
and comparing the edge-density of communities (i.e., the ratio of actual links within a com-
munity to the total number of possible links), (4) identifying important or central nodes [1, 6]
within communities, (5) understanding centrality distribution within communities, (6) compre-
hending connections between communities, and (7) comprehending node connections. The fol-
lowing two videos briefly demonstrate Spiral Visualization https://youtu.be/cvLdXAThIXY
and Linear Visualization https://youtu.be/ROmKgpJF3Kw.

Interactive Elements. CentralityViz supports zooming, panning, and tooltips for detailed
exploration, as well as an interlinked view to support the comprehension of different features.
Users can filter data for selective exploration. The “Find Node” option allows users to search
for a node in the visualization based on node ID. Users can also select different centrality
measures (i.e., degree [6], closeness [8], betweenness [2], or eigen centrality [10]) based on
which they want to visualize the data. The CentralityViz dashboard also provide the option
to rank communities based on size, edge-density and number of community connections (as
demonstrated in https://youtu.be/ROmKgpJF3Kw).

3 Applications

Visualizing large networks [15] is challenging due to visual clutter. In large networks,
communities [3] emerge as subsets of nodes that are more connected within themselves
compared to the rest of the network. Community detection and analysis of central nodes
[6, 2, 10, 8, 1] in communities has diverse applications across multiple fields. In criminology
[9, 14, 12], it is used to identify criminal or terrorist groups, understand their networks, and
identify key players or masterminds behind an attack. In epidemiology [11, 4, 13], community
analysis can facilitate tracking the spread of diseases, while node centrality analysis within a
community can help identify key individuals who may contribute to widespread transmission.
In smart advertising and targeted marketing [7], identifying influential communities and
key individuals can optimize the impact of marketing campaigns. Therefore, detecting and
analyzing communities and central nodes is a crucial problem in data science. To the best of
our knowledge, no other graph drawing technique effectively visualizes node centrality within
communities in large networks [5].
Our software provides substantial value to the graph drawing community by introducing
an innovative approach to visualizing and analyzing large networks. Both, spiral and linear
visualization are intuitive and can be mastered by users in just 15-20 minutes of training. Our
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tool provides insights into both community and node-centric properties. It provides a global
network overview while allowing users to explore specific details. It enables comprehensive
interpretations of node centrality, connectivity patterns within and between communities,
and supports informed decision-making based on these insights.
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Abstract
Network analysis and visualization are crucial for unraveling complex relationships across diverse
fields, from social networks to biological systems. NodeXL is a versatile network analysis tool that
supports a wide range of network data types and provides seamless access to various social media
platforms.
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Introduction

Network analysis and visualization are essential for understanding complex relationships
across various fields, from social networks to biological systems. As data complexity increases,
the need for accessible tools that enable researchers, journalists, and market specialists to
derive meaningful insights grows. NodeXL addresses this need by providing a user-friendly
platform integrated with Microsoft Excel, allowing users to perform network analysis without
programming expertise.

NodeXL is widely used in academic institutions, research labs, newsrooms, and marketing
departments. Its accessibility and versatility have made it a popular choice for analyzing
community structures in online conversations, particularly on social media platforms. This
abstract highlights NodeXL’s purpose, key features, and its applications.

Purpose

NodeXL aims to democratize network analysis, making it accessible to users of all skill
levels. Whether a novice or an advanced researcher, NodeXL offers comprehensive tools for
exploring, visualizing, and analyzing network data. The integration with Microsoft Excel
leverages a familiar interface, reducing the learning curve and allowing users to focus on
analysis rather than software mechanics.

Main Features

NodeXL offers two versions: NodeXL Basic and NodeXL Pro. NodeXL Basic is free and
provides essential tools for network visualization and analysis, including:

Importing network data from various sources.
Calculating basic network metrics.
Group Clustering Algorithms: Clustering to detect communities within networks.
Visualizing simple networks with customizable layouts.
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Figure 1 NodeXL screenshot.

NodeXL Pro is a paid version with advanced features for in-depth analysis:
Social Media Data Importers: Seamless integration with platforms like X (formerly
Twitter), YouTube, Instagram, Reddit, Wikipedia, and Flickr.
Graph Metrics Calculation: Includes advanced metrics such as betweenness and eigen-
vector centrality.
Content and Sentiment Analysis: Tools for analyzing text and sentiment in social media
data.
Time Series Analysis: Tracks how network structures evolve over time.
Task Automation: Automates complex analysis tasks, saving time and streamlining
workflows.
Export to NodeXL Pro INSIGHTS: Explore network data sets in a Microsoft Power BI 1

report template with a huge variety of data visualizations – from simple tables to hashtag
clouds, from image grids to scatter plots.

Applicability

NodeXL’s versatility makes it suitable for a wide range of applications. In academia, it
is used to study social networks and collaboration patterns. In journalism, it visualizes
information spread on social media and identifies key influencers. In marketing, it analyzes
brand networks and tracks message diffusion. Its ability to handle diverse data types and
social media integration makes it particularly valuable for analyzing online conversations,
revealing how information flows and communities form.

Conclusion

NodeXL is a powerful yet accessible tool for network analysis and visualization. Its integration
with Microsoft Excel, combined with robust features, makes it suitable for users ranging from
novices to experienced researchers. NodeXL empowers users across disciplines to explore the
complex relationships that define our interconnected world, advancing network science and
enabling new discoveries.

1 https://powerbi.microsoft.com/

https://powerbi.microsoft.com/
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Abstract
Knowledge graphs improve many information retrieval tasks over structured and unstructured data.
However, knowledge graph construction can be challenging even for domain experts. The Knowledge
Graph Builder is an application incorporating advanced techniques for deriving a knowledge graph
from unstructured data using an LLM.
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1 Knowledge graph builder – Summary

A knowledge graph is a self-descriptive data structure that represents real-world information
using the elements of a graph by storing values on both nodes and relationships. Deriving a
knowledge graph from arbitrary text produces a graph with two complementary sections: a
lexical graph that preserves the structure of the source text and a domain graph that distills
the entities and relationships described by the source text. The Knowledge graph builder is
an application which constructs a viable knowledge graph from unstructured data.

2 Knowledge graph construction

Knowledge graph construction follows a 3 phase process.

Content decomposition

1. A document node is created to represent the text source.
2. The text content is split into chunks, which are stored as graph nodes.
3. Chunks are connected to each other and the document node.

Content cross-linking

1. Highly similar chunks are connected with a SIMILAR relationship to form a K-Nearest
Neighbors graph.

2. Embeddings are computed, stored as properties on the chunk nodes, and backed by a
vector index.
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Entity extraction

1. An LLM is used to process each chunk, to identify entities and their inter-relationships.
2. Entities are stored in the graph and connected to the originating chunks.
3. Entity relationships are stored in the graph, creating a rich network of concepts.

The entity extraction can be unbounded, allowing the LLM to extract and classify any
entities and relationships it finds, or it can be constrained to conform with a pre-determined
collection of entity and relationship types.

3 Knowledge graph model

The resulting knowledge graph is amenable to multiple GraphRAG access patterns.

3.1 Lexical graph
The lexical graph section preserves the implicit structure of the original source text, including
the sequential flow of text and also any hierarchies up to the enclosing document itself.

Chunks are part of a document

(a:Chunk)-[:PART_OF]->(d:Document)

Chunks form a linked list of sequential text

(a:Chunk)-[:NEXT_CHUNK]->(b:Chunk)

Neighborhoods of similar chunks

(a:Chunk)-[:SIMILAR]->(b:Chunk)

3.2 Domain graph
Entities are connected to chunk that mentions them

(a:Chunk)-[:HAS_ENTITY]->(e1)

The (e1) node matches any entities which have been extracted, with corresponding labels
determined by the LLM.

Entities related to each other

(e1)-[r]->(e2)

The [r] relationship will be determined by the LLM.

4 Conclusion

This brief description of the operation of the Knowledge Graph Builder application is just
an introduction to the construction of knowledge graphs. More techniques are available
to continue elaborating upon and enriching the graph, and connecting to structured data.
The broad topic of GraphRAG then leverages the resulting knowledge graph for use with
Generative AI applications.
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