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Abstract
Over the past decades, various metrics have emerged in graph theory to grasp the complex nature of
network vulnerability. In this paper, we study two specific measures: (weighted) vertex integrity
(wVI) and (weighted) component order connectivity (wCOC). These measures not only evaluate the
number of vertices that need to be removed to decompose a graph into fragments, but also take into
account the size of the largest remaining component. The main focus of our paper is on kernelization
algorithms tailored to both measures. We capitalize on the structural attributes inherent in different
crown decompositions, strategically combining them to introduce novel kernelization algorithms
that advance the current state of the field. In particular, we extend the scope of the balanced crown
decomposition provided by Casel et al. [5] and expand the applicability of crown decomposition
techniques.

In summary, we improve the vertex kernel of VI from p3 to 3p2, and of wVI from p3 to
3(p2 + p1.5pℓ), where pℓ < p represents the weight of the heaviest component after removing a
solution. For wCOC we improve the vertex kernel from O(k2W + kW 2) to 3µ(k + √

µW ), where
µ = max(k, W ). We also give a combinatorial algorithm that provides a 2kW vertex kernel in
fixed-parameter tractable time when parameterized by r, where r ≤ k is the size of a maximum
(W + 1)-packing. We further show that the algorithm computing the 2kW vertex kernel for COC
can be transformed into a polynomial algorithm for two special cases, namely when W = 1, which
corresponds to the well-known vertex cover problem, and for claw-free graphs. In particular, we
show a new way to obtain a 2k vertex kernel (or to obtain a 2-approximation) for the vertex cover
problem by only using crown structures.
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1 Introduction

In the study of graph theory different scales have emerged over the past decades to capture
the complex nature of network vulnerability. While the main focus is on the connectivity of
vertices and edges, subtle aspects of vulnerability such as the number of resulting components,
the size distribution of the remaining components, and the disparity between them are
becoming increasingly interesting [3, 13, 14, 16, 15, 20]. Our focus in this study is on two
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1:2 Combining Crown Structures for Vulnerabilty Measures

specific ways to measure vulnerability: (weighted) vertex integrity and (weighted) component
order connectivity. These measures not only evaluate the number of vertices that need to
be removed to decompose a graph into fragments, but also take into account the size of the
largest remaining component. Incorporating these aspects provides a more comprehensive
understanding of network resilience.

Informally, vertex integrity (VI) is a model for the right balance between removing
few vertices and keeping small connected parts of a graph. More formally, given a graph
G = (V, E) and a number p ∈ N, the task for VI is to find a set of vertices S ⊆ V such
that |S| plus the size of the largest component when removing S from G is at most p. In
the vertex weighted version (wVI), the goal is bounding the total weight of the removed
vertices plus the weight of the heaviest component by p. This problem was introduced by
Barefoot et al. [2] as a way to measure vulnerability of communication networks. Recently, it
has drawn the interest of the parameterized complexity community due to its status as a
natural parameter that renders numerous NP-hard problems amenable to fixed parameter
tractability (FPT). This means that for these problems, solutions can be computed within a
time frame represented by f(p) ·nO(1), where f is a computable function [20]. It is interesting
to see how vertex integrity relates to other well-known measures of network structure. It
imposes greater constraints compared to metrics such as treedepth, treewidth, or pathwidth,
as the vertex integrity of a graph serves as an upper bound for these parameters. However,
it encompasses a wider range of scenarios compared to vertex cover, where a vertex cover of
a graph is an upper bound for its vertex integrity. This makes it a key in understanding how
to efficiently solve problems in the world of network analysis.

The measure component order connectivity (COC) can be seen as the refined version of
VI. Given a graph G = (V, E) and two parameters k, W ∈ N, the goal of COC is to remove k

vertices such that each connected component in the resulting graph has at most W vertices –
also known in the literature as the W -separator problem or α-balanced separator problem,
where α ∈ (0, 1) and W = α|V |. In the vertex-weighted version (wCOC), the goal is to
remove vertices of total weight at most k such that the weight of the heaviest remaining
component is at most W . An equivalent view of this problem is to search for the minimum
number of vertices required to cover or hit every connected subgraph of size W + 1. In
particular, W = 1 corresponds to covering all edges, showing that the COC is a natural
generalization of the vertex cover problem.

The focus of the paper is on kernelization algorithms tailored for both weighted and
unweighted versions of VI and COC when parameterized by p and k + W , respectively.
Kernelization algorithms can be thought of as formalized preprocessing techniques aimed to
reduce optimization problems. Of particular interest in this work are crown decompositions,
which are generally used as established structures for safe instance reduction – where “safe”
in this case means that any optimal solution to the reduced instance can efficiently be
transformed into an optimal solution of the original. Essentially, a crown decomposition
partitions the vertex set into distinct components: crown, head, and body. Here, the
head acts as a separator between the crown and the body. This structural arrangement
becomes useful when specific relationships between the head and the crown are required.
Such relationships ultimately enable us to shrink instances by eliminating these designated
parts from the graph. The properties of this structural layout, coupled with its existence
depending on the instance size, enable the development of efficient kernelization algorithms
for different problem domains. Notably, crown decompositions have also recently found
utility in approximation algorithms for graph packing and partitioning problems [5]. For
further exploration of crown decompositions, including their variations and applications, we
recommend the comprehensive survey paper by Jacob et al. [17].
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Our methods take advantage of the structural characteristics found in various crown
decompositions, leading to the development of new kernelization algorithms that improve
the state of the art. In essence, this work expands upon the applications of the balanced
crown decomposition introduced by Casel et al. [5], specifically by integrating different crown
decompositions into this framework.

Related Work

Recently, the vertex integrity problem (VI) was extensively studied as a structural graph
parameter [3, 13, 15, 20]. Gima et al. [14] conducted a systematic investigation into structural
parameterizations of computing the VI and wVI which was further extended by Hanaka et
al. [16]. Additionally, there are notable results concerning special graph classes [1, 8, 10, 18, 23].
In our context, regarding related work on VI and wVI, Fellows and Stueckle presented an
algorithm that solves the problem in O(p3pn) [11]. This was subsequently improved by Drange
et al. [10], even for the weighted case, to O(pp+1n). In the same paper, they presented the
first vertex-kernel of size p3 for both VI and wVI.

Considering, COC and wCOC, it is unlikely that kernelization algorithms for these
problems can be achieved by considering k or W alone in polynomial time. Indeed, W = 1
corresponds to the NP-hard vertex cover problem, which shows that W (alone) is not a
suitable parameter. For the parameter k, the problem is W [1]-hard even when restricted
to split graphs [10]. These lower bounds lead to the study of parameterization by k + W .
The best known algorithm with respect to these parameters finds a solution in time nO(1) ·
2O(log(W )·k) [10]. Unless the exponential time hypothesis fails, the authors prove that this
running time is tight in the sense that there is no algorithm that solves the problem in time
nO(1) · 2o(log(W )·OPT). The best known approximation algorithm has a multiplicative gap
guarantee of O(log(W )) to the optimal solution with a running time of nO(1) · 2O(W ) [21].
In [21], they also showed that the superpolynomial dependence on W may be needed to
achieve a polylogarithmic approximation. Using this algorithm as a subroutine, the vertex
integrity can be approximated within a factor of O(log(OPT)), where OPT is the vertex
integrity.

Regarding kernelization algorithms, there is a sequence of results which successively
improve the vertex-kernel of COC. The first results came from Chen et al. [7] and Drange et
al. [10], who provided kernels of size in O(kW 3) and O(k2W +kW 2), respectively. The result
of Drange et al. also holds for wCOC and is the only result for this case. This was improved
simultaneously by Xiao [24] as well as by Kumar and Lokshtanov [19] to a O(kW 2) kernel.
These works also provide the first O(kW ) kernels, but with different constants and running
times. Kumar and Lokshtanov [19] present a 2kW kernel in a running time of nO(W ) by using
linear programming (LP) methods with an exponential number of constraints. The runtime
can be improved to 2O(W ) · nO(1) as already mentioned in the book of Fomin et al. [12]
(Section 6.4.2). Roughly speaking, the idea is to use the ellipsoid method with separation
oracles to solve the linear program, where the separation oracle uses a method called color
coding to find violated constraints that makes it polynomial in W . Note that if W is a
constant this 2kW kernel is a polynomial time kernel improving on some previous results.
This includes for instance the improvement of the 5k kernel provided by Xiao and Kou [25]
to a 4k kernel for the well-studied P2-covering problem, where a P2 is a path with 2 edges.
The first linear kernel in both parameters in polynomial time, i.e. an O(kW ) vertex kernel,
is presented by Xiao [24], who provides a 9kW vertex kernel. Finally, this was improved by
Casel et al. [5] to a 3kW vertex kernel, which also holds for a more general setting. Namely,
to find k vertices in a vertex weighted graph such that after their removal each component
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1:4 Combining Crown Structures for Vulnerabilty Measures

weighs at most W . Note that the weights of the separator, i.e. the chosen k vertices, play no
role in this problem compared to wCOC. With the exception of the O(k2W + kW 2) vertex
kernel of Drange et al. [10], all achieved vertex kernels essentially use crown structures.

Our Contribution

The provided running times are based on an input graph G = (V, E). We improve the
vertex kernel for VI from p3 to 3p2 in time O

(
log(p)|V |4|E|

)
. For wVI, we improve it to

3(p2 + p1.5pℓ) in time O
(
log(p)|V |4|E|

)
, where pℓ ≤ p represents the weight of the heaviest

component after removing a solution.
To better explain the results of COC and wCOC, consider the problem of a maximum

λ-packing for λ ∈ N. Given a (vertex weighted) graph G, this problem aims to maximize
the number of disjoint connected subgraphs, each of size (or weight) at least λ. It is worth
noting that the size of a maximum (W + 1)-packing serves as a lower bound on the size of
an optimal solution of COC (or wCOC), since each element in the packing must contain at
least one vertex of it – in terms of linear programming, it is the dual of COC.

For wCOC we improve the vertex kernel of O(k2W + kW 2) to 3µ(k + √
µW ) in time

O
(
r2k|V ||E|

)
, where µ = max(k, W ) and r ≤ |V | is the size of a maximum (W + 1)-

packing. For the unweighted version, we provide a 2kW vertex kernel in an FPT-runtime of
O(r3|V ||E| · rmin(3r,k)), where r ≤ k is the size of a maximum (W + 1)-packing. Comparing
this result with the state of the art, disregarding the FPT-runtime aspect, we improve upon
the best-known polynomial algorithm, achieving a kernel of size 3kW [5]. A 2kW vertex
kernel is also presented in [19], albeit with an exponential runtime using linear programming
methods, which, as mentioned, can be enhanced to an FPT-runtime regarding parameter W .
In contrast, our result is entirely combinatorial and has an FPT-runtime in the parameter
of a maximum (W + 1)-packing r ≤ k. It should be noted that, strictly speaking, the 2kW

vertex kernel of [19] and our work cannot be considered a kernel, given that the runtime
dependency is exponential with respect to the parameters W and k, respectively. However,
for the sake of simplicity, we will refer to it as a kernel, with an explicit mention of the
runtime dependency. As previously stated, note that it is unlikely that an FPT-runtime will
be able to solve COC (or wCOC) when considering either W or k alone. We further show
that the algorithm computing the 2kW vertex kernel for COC can be transformed into a
polynomial algorithm for two special cases. The first case arises when W = 1, i.e., for the
vertex cover problem. Here, we provide a new method for obtaining a vertex kernel of 2k

(or obtaining a 2-approximation) using only crown decompositions. The second special case
is for the restriction of COC to claw-free graphs. Unfortunately, we currently do not know
whether COC is hard on claw-free graphs and defer this question to future work.

Regarding these special cases, until 2017, a 2k vertex kernel for W = 1 was known
through crown decompositions, albeit computed using both crown decompositions and linear
programming. Previously, only a 3k vertex kernel was known using crown decompositions
alone. In 2018, Li and Zhu [22] provided a 2k vertex kernel solely based on crown structures.
They refined the classical crown decomposition, which possessed an additional property
allowing the remaining vertices of the graph to be decomposed into a matching and odd cycles
after exhaustively applying the corresponding reduction rule. In contrast, our algorithm
identifies the reducible structures, which must exist if the size of the input graph exceeds 2k.
Unfortunately, we were unable to transform the FPT-runtime algorithm into a polynomial-
time algorithm in general. Nevertheless, we believe that our insights into the structural
properties of certain crown decompositions potentially pave the way to achieving this goal.

Lastly, all missing details, i.e. omitted proofs and algorithms as well as more detailed
explanations can be found in the extended arxiv version [6].
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2 Preliminaries

In this section, we briefly discuss terminology related to graphs and parameterized complexity
that we use in the extended abstract (the complete terminology can be found in the extended
arxiv version [6]). Additionally, we introduce the crown structures that are utilized throughout
this paper.

Graph and Parameterized Terminology

We use a standard terminology for graphs G = (V, E). The following is not necessarily
common: For sets of vertex sets V ⊆ 2V we abuse notation and use V (V) =

⋃
Q∈V Q and

N(V) :=
(⋃

Q∈V N(U)
)

\ V (V). We define CC(G) ⊆ 2V as the connected components of
G as vertex sets. Let G = (V, E, w : V → N) be a vertex weighted graph. For V ′ ⊆ V and
G′ ⊆ G we define w(V ′) and w(G′) as

∑
v∈V ′ w(v) and

∑
v∈V (G′) w(v), respectively.

For improved readability, we extend the notation of the inverse function f−1. Henceforth,
sometimes it returns a vertex set that is the union of the corresponding vertex sets, which is
always clear from the context. For instance, for a function f : V → V on the vertices of a
graph G = (V, E), h ∈ V and V ′ ⊆ V we use f−1(h) also for V (f−1(h)), and f−1(V ′) for
V (f−1(V ′)), respectively.

For parameterized complexity we use the standard terminology, which is also used, for
example, in [9, 12]. Of particular interest in this work are kernelizations, which can be roughly
described as formalized preprocessings. More formally, given an instance (I, k) parameterized
by k, a polynomial algorithm is called a kernelization if it maps any (I, k) to an instance
(I ′, k′) such that (I ′, k′) is a yes-instance if and only if (I, k) is a yes-instance, |I ′| ≤ g(k),
and k′ ≤ g′(k) for computable functions g, g′.

Crown Decompositions

We present a more general variant of crown decomposition that also captures commonly used
crown decompositions or expansions (strictly speaking the relevant parts of it), which we
explain in a moment. This novel decomposition can be easily derived from existing results
of [5], but to the best of our knowledge has never been used in this form before. (See Figure 1
(left) for an illustration.)

▶ Definition 1 (Demanded balanced expansion and weighted crown decomposition). For a
graph G = (A ∪ B, E, w), a partition A1 ∪ A2 of A, a function f : CC(G[B]) → A, demands
D = {da}a∈A with da ∈ N for each a ∈ A and y ∈ N the tuple (A1, A2, y, f, D) is a demanded
balanced expansion (DBE) if
1. w(Q) ≤ y for each Q ∈ CC(G[B])
2. f(Q) ∈ N(Q) for each Q ∈ CC(G[B])
3. N(f−1(A1)) ⊆ A1

4. w(a) + w
(
f−1(a)

) {
> da − y + 1 for each a ∈ A1

≤ da + y − 1 for each a ∈ A2

To simplify the notation we introduce two further special cases of a DBE:
If the demands are the same for each a ∈ A, e.g. da = x for every a ∈ A with x ∈ N,
then we write only the value x instead of a vector D = {da}a∈A in a DBE-tuple,
i.e. (A1, A2, y, f, D) = (A1, A2, y, f, x).

IPEC 2024
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B A }
A1

}
A2

Figure 1
Left: Let A = {a1, a2, a3, a4} be ordered in a top down manner, w(Q) = 1 for every Q ∈ CC(G[B])
and w(a) = 1 for every a ∈ A. Then, ({a1, a2}, {a3, a4}, 1, f, {3, 1, 3, 4}) is a DBE, where the
assignment f are depicted with corresponding colored bold edges.
Right: A λ-balanced crown decomposition, where the assignment f are depicted with corresponding
colored bold edges. The two dashed lines illustrate that w(h) + w(f−1(h)) > λ for every h ∈ H

while w(Q) ≤ λ for every Q ∈ CC(G[C]).

For q ∈ N we call (C, H, f) a (q, y) crown decomposition ((q, y)-CD) if it is a (H,∅, y, f, q+
y − 1) DBE with H = A and C = B = f−1(H). (This term simplifies the reference to
the reducible structure of crown C and head H.)

Considering a graph instance G = (V, E), e.g. from VI or COC, Definition 1 usually
describes only a subgraph where the reducible structure is sought, i.e. A, B are vertex subsets
of V . What is crucial is that A already separates B from V \ B. Then, the vertex set A1 ⊆ A

(cf. Definition 1) typically represents the structure targeted for reduction and can be seen
as the “head” of a crown decomposition. The components within CC(G[B]) assigned to A1
(the separated part through A1), denoted by f−1(A1), form the “crown”. In the context of
optimization problems such as the vertex cover problem, a successful reduction often involves
the head being part of an optimal solution. Subsequently, upon its removal, the crown –
separated by the head – no longer needs to be considered.

Ideally, we wish to have A1 = A, but even when this is not the case the balanced part
of a DBE ensures that the elements mapped to A2 are bounded, which finally allows us to
bound the number of vertices (or the sum of the vertex weights) of A2 ∪ V (f−1(A2)).

Consider a crown decomposition, which is a partition of the vertex set into body, head
and crown, where the head separates the body from the crown. The head and crown of the
classical crown decomposition corresponds to a (1, 1)-CD, the q-expansion for q ∈ N to a
(q, 1)-CD and the weighted crown decomposition for q ∈ N to a (q, x)-CD. The last known
structure captured by Definition 1 is the balanced expansion which corresponds for x, y ∈ N
to a (A1, A2, y, f, x) DBE. The essential new structural property of a DBE compared to a
balanced expansion are the varying demands for A.

Let G = (A ∪ B, E) be a graph. For A′ ⊆ A we define BA′ as the components Q ∈
CC(G[B]) with N(Q) ⊆ A′. The following theorem, easily derived as modification of the
results of [5], gives the runtime to find a DBE and the existence guarantee of A1 depending
on the size or weight in the graph.

▶ Theorem 2 (Demanded balanced expansion). Let G = (A ∪ B, E, w) be a graph with no
isolated components in CC(G[B]), i.e. every component of CC(G[B]) contains at least one
neighbor of A. Let y ≥ maxQ∈CC(G[B]) w(Q) and D = {da}a∈A demands with da ∈ N for
each a ∈ A. A demanded balanced expansion (A1, A2, y, f, D) can be computed in O (|V | |E|)
time. Furthermore, if there is an A′ ⊆ A with w(A′) + w(V (BA′)) ≥

∑
a∈A′ da, then A1 ≠ ∅.
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The next graph structure that we use for our kernelization algorithms is introduced by
Casel et al. [5] and is a combination of a balanced connected partition and a weighted crown
decomposition, which is called balanced crown decomposition. Formally it is defined as follows
(see also Figure 1 (right) for an illustration).

▶ Definition 3 (λ-balanced crown decomposition). A λ-balanced crown decomposition of a
graph G = (V, E, w) is a tuple (C, H,R, f), where {H, C, R} is a partition of V , the set R is
a partition of R, and f : CC(G[C]) → H, such that:

1. w(Q) ≤ λ for each Q ∈ CC(G[C]),
2. f(Q) ∈ N(Q) for each Q ∈ CC(G[C]),
3. N(C) ⊆ H,
4. w(h) + w(f−1(h)) > λ for each h ∈ H and

 (λ, λ)-CD

5. G[R′] is connected and λ < w(R′) ≤ 3λ for each R′ ∈ R.

We use λ-BCD as an abbreviation for a λ-balanced crown decomposition. Looking at the
original definition of a λ-BCD in [5] (Definition 6), we shift the λ value by one, which allows
us to change several inequalities between strict and non-strict for a clearer representation,
while still keeping the definition the same. Furthermore, λ must be at least two in the original
definition, but to simplify the understanding of the application to the problems considered
in this paper, it makes more sense that a λ-BCD can also exist with λ = 1.

The authors in [5] provide an algorithm that finds a λ-BCD in polynomial time, as given
in the following.

▶ Theorem 4 (Balanced crown decomposition theorem, [5] Theorem 7). Let G = (V, E, w) be
a graph and λ ∈ N, such that each connected component in G has weight larger than λ. A
λ-balanced crown decomposition (C, H,R, f) of G can be computed in O

(
r2 |V | |E|

)
time,

where r = |H| + |R| < |V | is at most the size of a maximum (λ + 1)-packing.

We end the preliminary section with a formal definition of the subgraph packing problem.
Given a graph G = (V, E) and two parameters r, λ ∈ N. We say that P1, . . . , Pm ⊆ V is a
λ-packing if for all i, j ∈ [m] with i ̸= j the induced subgraph G[Pi] is connected, |Pi| ≥ λ,
and Pi ∩ Pj = ∅. The task is to find a λ-packing of size at least r.

3 Improved Kernels for VI, wVI and wCOC

The vertex integrity of a graph models finding an optimal balance between removing vertices
and keeping small connected parts of a graph. As a reminder: In the formal definition, a
graph G and a parameter p are given. The task is to find a vertex set S ⊆ V such that
|S| + maxQ∈CC(G−S) |Q| is at most p. In the weighted vertex integrity problem (wVI), i.e. the
vertices have weights, the aim is that w(S) + maxQ∈CC(G−S) w(Q) is at most p. We improve
the vertex kernel of p3 provided by Drange et al. [10] for both variants VI and wVI. To obtain
such a kernel, they essentially established that vertices v ∈ V with w(v) + w(N(v)) > p

belong to a solution if we have a yes-instance in hand. A simple counting argument after
removing those vertices provides a p3 vertex kernel. We improve this by employing crown
decompositions, which offer valuable insights into the structural properties of vertex sets
rather than focusing solely on individual vertices. Directly applying this method to problems
like COC, as seen in prior works such as [5, 7, 19, 25], is challenging because we lack prior
knowledge about the size of remaining components after solution removal. However, if we
had at least a lower bound, we could theoretically safely reduce our instance accordingly. To
establish such a bound, we engage in an interplay between packings and separators, where

IPEC 2024



1:8 Combining Crown Structures for Vulnerabilty Measures

the balanced crown decomposition (BCD) proves instrumental. By identifying reducible
structures in the input instance through embedding a DBE into BCD after determining a
suitable bound, we prove the following theorems regarding VI and wVI.

▶ Theorem 5. The vertex integrity problem admits a vertex kernel of size 3p2 in time
O

(
log(p)|V |4|E|

)
.

▶ Theorem 6. The weighted vertex integrity problem admits a vertex kernel of size 3(p2 +
p1.5pℓ) in time O

(
log(p)|V |4|E|

)
, where pℓ is at most the size of the largest component after

removing a solution.

Closely related to wVI is the weighted component order connectivity problem (wCOC).
Given a vertex-weighted graph G = (V, E, w) and two parameters k, W ∈ N, the task is
to find a vertex set S ⊆ V such that w(S) ≤ k where each component weighs at most W .
The techniques employed to derive the kernel for wVI can be seamlessly applied to wCOC,
thereby enhancing the current state of the art vertex kernel of kW (k + W ) + k. This kernel
is also provided by Drange et al. [10] in a similar way as for wVI.

▶ Theorem 7. The weighted component order connectivity problem admits a vertex kernel of
size 3µ(k + √

µW ), where µ = max(k, W ). Furthermore, such a kernel can be computed in
time O

(
r2k|V ||E|

)
, where r is the size of a maximum (W + 1)-packing.

Before we prove these theorems, we give some notations that we use in this section. We
define them for the weighted case, as the unweighted case can be viewed in the same way
with unit weights. We say that S is a solution if it satisfies w(S) + maxQ∈CC(G−S) w(Q) ≤ p

for wIV or w(S) ≤ k and maxQ∈CC(G−S) w(Q) ≤ W for wCOC. We denote an instance of
wIV by (G, p) and an instance of wCOC by (G, k, W ). We say that (G, p) or (G, k, W ) is a
yes-instance if there is a solution, otherwise, we say that it is a no-instance. Let S ⊆ 2V (G) be
all solutions for (G, p). We define pℓ := minS∈S

(
maxQ∈CC(G−S) w(Q)

)
which is the optimum

lower bound on the size of the connected components after the removal of any solution; where
for no-instances we set pℓ = p. For all instances (G, p) of wVI, we assume w(v) < p for every
v ∈ V and that G contains a connected component of weight more than p.

3.1 Vertex Integrity
The rest of this section is dedicated to the proof of Theorem 5. First, we discuss the reducible
structure we are looking for and then show how to find it. Note that for a, b ∈ N with a < b

a (p, a)-CD is also a (p, b)-CD, but not vice versa. This means that even if we do not know
pℓ exactly, any (p, c)-CD with c ≤ pℓ is a (p, pℓ)-CD that can be used in the following lemma.

▶ Lemma 8.1 Let (G, p) be an instance of VI and let (C, H, f) be a (p, pℓ)-CD in G, such
that N(C) ⊆ H. Then, (G, p) is a yes-instance if and only if (G − {H ∪ C}, p − |H|) is a
yes-instance.

In order to use Lemma 8, we must first determine a suitable lower bound for pℓ. Addi-
tionally, we need to ensure the existence of a corresponding weighted crown decomposition
when the input graph size exceeds 3p2, and that we can find it efficiently. This is where the
BCD comes into play. For λ ∈ N a λ-BCD (C, H,R, f) in G can only be computed within
the components of G that have a size (or weight) greater than λ. For a better readability,

1 This result is an incorrect simplification to describe the idea. Please refer to the Full Version for the
more technical correct reduction.
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we will consistently assume that when computing a λ-BCD, we disregard small components,
meaning that if (C, H,R, f) is a λ-BCD for G, then C ∪ H ∪ V (R) are only the vertices that
are contained in a component of size (or weight) more than λ of G.

We specify the following lemma directly in the weighted version to also use it later. The
lemma provides a lower bound for pℓ by a λ-BCD (C, H,R, f), where we essentially use that
a λ-BCD is also a (λ + 1)-packing of size |H| + |R|. This results from the fact that each
element R ∈ R has the size (or weight) λ + 1 and is connected and that for each h ∈ H the
subgraph G[{h} ∪ V (f−1(h))] is connected and has at least the size (or weight) λ + 1. Note
that the vertex sets {{h} ∪ V (f−1(h))}h∈H ∪ R are pairwise disjoint.

▶ Lemma 9. Let (G, p) be an instance of wVI and for λ ∈ [p] let (C, H,R, f) be a λ-BCD
in G. If |H| + |R| > p, then λ < pℓ for the instance (G[C ∪ H ∪ V (R)], p).

Note that the lower bound λ + 1 of pℓ in Lemma 9 is applicable to the induced graph of
V ′ = C ∪ H ∪ V (R) within G. This implies that the isolated components of G − V ′, defined
as having a size (or weight) of at most λ, can be safely removed. Their removal does not
affect the decision problem of VI or wVI concerning p. Moreover, note that an additional
advantage of a (λ + 1)-BCD (C, H,R, f) is that the balanced part R can be upper bounded
by 3(λ + 1)|R| ≤ 3pℓ|R| < 3p|R|, while a suitable λ choice also upper bounds |R| by p. In
particular, if H = C = ∅ and |R| ≤ p, then we would already have an instance with a size
(or weight) of at most 3p2.

Clearly, a yes-instance cannot have a lower bound for pℓ larger than p as stated in the
following corollary.

▶ Corollary 10. Let (G, p) be an instance of wVI. If for a p-BCD (C, H,R, f) it holds that
|H| + |R| > p, then (G, p) is a no-instance.

The next lemma shows under which conditions we can find a (p, λ)-CD in G with respect
to a λ-BCD and the current graph size.

▶ Lemma 11. Let (G, p) be an instance of VI and for λ ∈ [p] let (C, H,R, f) be a λ-BCD in
G with |H| + |R| ≤ p. If |C| + |H| + |V (R)| ≥ 3p2, then G′ = G[C ∪ H] contains a (p, λ)-CD
in G. Furthermore, we can extract it from G′ in time O(|V (G′)||E(G′)|) ⊆ O(|V (G)||E(G)|).

If we now combine Lemma 9 and Lemma 11, we can finally use Lemma 8 by finding
a λ ∈ [p − 1] such that a (λ + 1)-BCD (C, H,R, f) satisfies |H| + |R| ≤ p, while a λ-
BCD (C ′, H ′,R′, f ′) satisfies |H ′| + |R′| > p, which only adds a factor of O(log(p)) to the
computation cost. Formulated more precisely: For Q ∈ CC(C) we have |Q| ≤ λ + 1 ≤ pℓ as
λ < pℓ by Lemma 9. Further, we remove all vertices that are in components of size at most
λ, which is a safe reduction rule as explained above. If the vertex size of the remaining input
graph, i.e. G[C ∪ H ∪ V (R)] is at least 3p2, then we can find a (p, λ)-CD for G in G[C ∪ H]
in polynomial time by Lemma 11, which is a reducible structure by Lemma 8.

With these facts in hand we can design a kernelization algorithm. It takes as input an
instance (G, p) of VI and returns an equivalent instance with at most 3p2 vertices.

Find reducible structures (AlgVI)

1. Compute a p-BCD (C1, H1,R1, f1). If |H1| + |R1| > p return a trivial no-instance.
2. Compute a 1-BCD (C2, H2,R2, f2). Let V ′ = V (G)\(C2∪H2∪V (R2)). If |H2|+|R2| ≤ p

and V ′ ̸= ∅, then return (G − V ′, p).2 If |H2| + |R2| ≤ p and V ′ = ∅, then compute a
(p, 1)-CD (H ′

2,C ′
2,f ′

2) in G[H2 ∪ C2] and return (G − {H ′
2 ∪ C ′

2}, p − |H ′
2|).

2 Note that in this case V ′ is the set of isolated vertices in G, as we compute BCD only on components of
size larger than λ = 1.
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3. Otherwise, for λ ∈ [p − 1] find a (λ + 1)-BCD (C, H,R, f) and a λ-BCD (C ′, H ′,R′, f ′),
such that |H| + |R| ≤ p and |H ′| + |R′| > p. Let V ′′ = V (G) \ (C ∪ H ∪ V (R)). If
V ′′ ̸= ∅, then return (G − V ′′, p). Otherwise, compute a (p, λ + 1)-CD (H ′′,C ′′,f ′′) in
G[C ∪ H] for G and return (G − {C ′′ ∪ H ′′}, p − |H ′′|).

We already explained why we can safely remove V ′ or V ′′ in steps 2 and 3 if these are
not empty. Note that if V ′ or V ′′ is empty, then the vertex sets of the corresponding BCD’s,
i.e. C2, H2, V (R2) and C, H, V (R), respectively, form a partition of V (G). The correctness
of step 1 is implied by Corollary 10. Step 2 is correct because pℓ ≥ 1 and if V ′ = ∅ we
obtain by Lemma 11 and |V | = |C2| + |H2| + |V (R2)| ≥ 3p2 that there must be a (p, 1)-CD
if |H2| + |R2| ≤ p. Analogously, for step 3 as pℓ ≥ λ + 1 by Lemma 9 in this step. For the
overall correctness of algorithm AlgVI, it remains to be proven that if we reach step 3, the
required λ exists. For a λ-BCD in a binary search, we cannot ensure that |H| + |R| increases
with decreasing λ values, because the sizes of H and R are not necessarily monotonic with
respect to λ. Note, for example, that the elements in R have a size range from λ + 1 to 3λ.
For a successful binary search, however, it is sufficient to know that there is a λ that satisfies
the desired properties for step 3. Since we only enter this step if the extreme cases (p-BCD
and 1-BCD) in step 1 and 2 hold, there has to exist at least one such λ value in-between.

Finally, we prove the specified running time of Theorem 5, which completes the proof of
Theorem 5. Note that for a yes-instance we have to call the algorithm AlgVI at most |V |
times to guarantee the desired kernel.

▶ Lemma 12. Algorithm AlgVI runs in time O(log(p)|V |3|E|).

3.2 Weighted Vertex Integrity and Component Order Connectivity
In this section, we shift our focus to the weighted variants, namely wVI and wCOC. While
utilizing the packing size of the associated BCD offers a starting point for deriving a lower
bound for VI, it proves insufficient for improvements in the weighted setting. Therefore,
we integrate the weight of the separator H within a BCD (C, H,R, f) into our analysis.
Additionally, we incorporate two distinct DBE’s into a BCD in case a reduction is not
achievable within the respective setting. This approach enables us to establish a tighter lower
bound for pℓ, estimate the remaining instance size more accurately to obtain the desired
kernelization results (cf. Theorems 6 and 7), or identify a no-instance.

Let us start by explaining the type of reducible structure we are searching for.

▶ Lemma 13.3 Let G = (V, E, w) be a vertex weighted graph, a, b ∈ N, (H, H ′, b, f, D) a
DBE in G with D = {dh}h∈H , where dh = a − 2 + b · (w(h) + 1) for each h ∈ H, and let
C = f−1(H) with N(C) ⊆ H.
1. Let (G, p) be an instance of the weighted vertex integrity problem, a = p and 1 ≤ b ≤ pℓ.

Then, (G, p) is a yes-instance if and only if (G − {H ∪ C}, p − w(H)) is a yes-instance.
2. Let (G, k, W ) be an instance of the weighted component order connectivity problem and

a, b = W . Then, (G, k, W ) is a yes-instance if and only if (G − {H ∪ C}, k − w(H), W ) is
a yes-instance.

We are now introducing the two DBE’s mentioned in conjunction with a BCD. Let
G = (V, E, w) be a vertex weighted graph, a, s, λ ∈ N, (C, H,R, f) a λ-BCD with λ ∈ [a]
and |H| + |R| ≤ s, where maxv∈V w(v) ≤ max(a, s) =: µ. Let DY = {dY

h }h∈H and

3 This result is an incorrect simplification to describe the idea. Please refer to the Full Version for the
more technical correct reduction.
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DZ = {dZ
h }h∈H be demands, where dY

h = a−2+λ · (w(h)+1) and dZ
h = w(h)−1+(

√
s+1)λ

for each h ∈ H. Let (Y1, Y2, λ, fY , DY ) and (Z1, Z2, λ, fZ , DZ) be DBE’s in G[C ∪ H]
with Y1, Y2, Z1, Z2 ⊆ H and f−1

Y (Y1), f−1
Y (Y1), f−1

Z (Z1), f−1
Z (Z2) ⊆ CC(C). Observe that if

Y1 ̸= ∅ (resp. Z1 ̸= ∅) then this set separates f−1
Y (Y1) (res. f−1

Z (Z1)) from the rest of the
graph, since H separates C from the rest of the graph. Thus, if a = p and λ ≤ pℓ considering
wVI or a, λ = W considering wCOC and Y1 ̸= ∅, then in both cases we would have a
reducible structure for the corresponding problem (cf. Lemma 13). We conclude this section
by presenting two crucial lemmas. These lemmas serve as the foundation for designing the
algorithms needed to prove Theorems 6 and 7. The first lemma aims to estimate the instance
size, while the second lemma helps establish a more precise lower bound for pℓ or identify
instances with no feasible solutions.

▶ Lemma 14. Let w(Z1) ≤ 2µ1.5. If Y1 = ∅, then w(V ) < 3µ(s + √
µλ).

▶ Lemma 15. If w(Z1) > 2µ1.5, then there is no separator S such that w(S) ≤ s and
maxQ∈CC(G−S) w(Q) ≤ λ.

4 Kernels for Component Order Connectivity

In this section, we consider COC, a refined version of VI. Given a graph G = (V, E) and
parameters k, W ∈ N, COC aims to remove at most k vertices so that resulting components
have at most W vertices each. We present a kernelization algorithm that provides a 2kW

vertex-kernel in an FPT-runtime when parameterized by the size of a maximum (W + 1)-
packing, as stated in the following theorem.

▶ Theorem 16. A vertex kernel of size 2kW for the component order connectivity problem
can be computed in time O(r3|V ||E| · rmin(3r,k)), where r ≤ k is the size of a maximum
(W + 1)-packing.

A kernel of size 2kW is also presented in [19], however with an FPT-runtime in the
parameter W and using linear programming methods. In contrast, our result has an FPT-
runtime in the parameter of a maximum (W + 1)-packing r ≤ k and is fully combinatorial.
Moreover, we showcase how our algorithm transforms into a polynomial one for two cases:
when W = 1 (Vertex Cover) and for claw-free graphs. While generalizing our FPT-runtime
algorithm into polynomial time eludes us, our understanding of crown decomposition’s
structural properties holds promise for future progress.

For VI, wVI, and wCOC, crown structures were integrated into the head and crown of
the BCD. In contrast, we now incorporate them into the body of the BCD. Of particular
interest are the so-called strictly reducible pairs introduced by Kumar and Lokshtanov [19]
who prove that such a structure must exist in graphs with more than 2kW vertices.

▶ Definition 17 ((strictly) reducible pair). For a graph G = (V, E) and a parameter W ∈ N,
a pair (A, B) of vertex disjoint subsets of V is a reducible pair for COC if the following
conditions are satisfied:

N(B) ⊆ A.
The size of each Q ∈ CC(G[B]) is at most W .
There is an assignment function g : CC(G[B]) × A → N0, such that

for all Q ∈ CC(G[B]) and a ∈ A, if g(Q, a) ̸= 0, then a ∈ N(Q)
for all a ∈ A we have

∑
Q∈CC(G[B]) g(Q, a) ≥ 2W − 1,

for all Q ∈ CC(G[B]) we have
∑

a∈A g(Q, a) ≤ |Q|.
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In addition, if there exists an a ∈ A such that
∑

Q∈CC(G[B]) g(Q, a) ≥ 2W , then (A, B) is a
strictly reducible pair.

We say (A, B) is a minimal (strictly) reducible pair if there does not exist a (strictly) reducible
pair (A′, B′) with A′ ⊂ A and B′ ⊆ B. A (strictly) reducible pair is basically a weighted
crown decomposition where A is the head and B is the crown.

In essence, the kernelization algorithm outlined below focuses on analyzing pairs (A, B)
in a W -BCD. We show that the head vertices A have specific traits in a W -BCD, making
it possible to locate them. Structurally, the algorithm operates as a bounded search tree,
hence it is presented recursively. It takes an instance (G, k, W ) of COC as input, where
|V (G)| > 2kW and each component of G has at least W + 1 vertices. The size limits for
the input graph are not arbitrary; if |V (G)| ≤ 2kW , there is nothing to do, and removing
components smaller than W + 1 is a safe reduction.

For V ′ ⊆ V we define sepW (V ′) ∈ N as the cardinality of a minimum W -separator in
G[V ′], and arg sepW (V ′) ⊂ V as an argument suitable to this cardinality. For a graph G′ ⊆ G

let G>W (G′) be the graph obtained by removing all components of size at most W from G.
Lastly, for a W -BCD (C, H,R, f) we define R′ := {R ∈ R | |R| > 2W and sepW (R) = 1}
and SR′ :=

⋃
R∈R′ arg sepW (R). (uniqueness of arg sepW (R) for R ∈ R′ is shown in the

full version [6]).

Find reducible structures (AlgCOC)

1. Compute a W -BCD (C, H,R, f) in G and initialize t = |H| + |R| and S = ∅.
2. Let G′ = G>W (G − S). If G′ is an empty graph return a trivial yes-instance. Otherwise,

compute a W -BCD (C, H,R, f) in G′.
a. If |H| + |R| > k return a trivial no-instance.
b. Let Q be the connected components of size at most W in G − S. Let A = S ∪ H and

B = C∪V (Q). Compute a DBE (A1, A2, W, f, 2W −1) in G[A∪B] by using Theorem 2.
If A1 ̸= ∅, then terminate the algorithm and return (G − (A1 ∪ f−1(A1)), k − |A1|, W ).

3. If the depth of the recursion is more than min(3t, k), then break.
4. For each v ∈ H ∪ SR′ :

Add v to S and recurse from step 2.
5. Return a trivial no-instance.

The interesting part of the algorithm is the localization of a minimal strictly reducible
pair if it exists in the graph. Let (A, B) be a minimal strictly reducible pair in G. As already
mentioned, algorithm AlgCOC is basically a bounded search tree with a working vertex
set S, which are potential head vertices. The crucial step is ensuring that S consistently
matches the vertex set A. Once this alignment is achieved, localization of (A, B) is assured,
as step 2b (specifically Theorem 2) guarantees its extraction.

We conclude this part of the section by presenting a crucial lemma along with its
implication for a depth-wise progression within the bounded search tree towards S = A in
algorithm AlgCOC. Let (A, B) be a minimal strictly reducible pair in G = (V, E) and let
S ⊂ V . Let (C, H,R, f) be a W -BCD in G>W (G − S).

▶ Lemma 18. If S ∩ B = ∅ and S ⊈ A, then (H ∪ SR′) ∩ A ̸= ∅.

If we reach step 4, we have no reducible pair in hand so far and can therefore assume that
S ̸= A. Thus Lemma 18 provides the following relation to the algorithm: if S ⊂ A (where S

is possibly empty), then we can find at least one vertex of A in H ∪ SR′ . Since the algorithm
considers expanding S for each vertex of H ∪ SR′ , at least one of which comes from A, and
repeats this process with the resulting vertex set, we finally arrive at the case S = A.



K. Casel, T. Friedrich, A. Niklanovits, K. Simonov, and Z. Zeif 1:13

Next, we introduce another algorithm designed to compute a 2kW vertex kernel for COC.
This algorithm shares the same principles as AlgCOC but exhibits polynomial running
times for two specific cases.

Find reducible structures (AlgCOC-2)

1. Initialize S = ∅ and G′ = G.
2. While G′ ̸= (∅,∅):

a. Compute a W -BCD (C, H,R, f) in G′, such that for a minimal strictly reducible pair
(A, B) in G we have B ∩ SR′ = ∅.

b. If |H| + |R| > k, or R′ = ∅ and H = ∅, then terminate the while-loop.
c. Add the vertices SR′ and H to S.
d. Let Q be the connected components of size at most W in G − S. Let A = S ∪ H,

B = C∪V (Q). Compute a DBE (A1, A2, W, f, 2W −1) in G[A∪B] by using Theorem 2.
If A1 ̸= ∅, then terminate the algorithm and return (G − (A1 ∪ f−1(A1)), k − |A1|, W ).

e. Update G′ by G>W (G − S).
3. Return a trivial no-instance.

The correctness proof of AlgCOC-2 can be found in the extended version [6]. The
crucial difference to the previous algorithm is step 2a. Unfortunately, we have not succeeded
in finding a polynomial algorithm in general for this step.

To introduce a novel approach for computing a 2k vertex kernel for the vertex cover
problem, we present a result that establishes a 2kW vertex kernel for COC, applicable
for any given W . However, the corresponding algorithm achieves polynomial runtime only
when W = 1. This limitation arises because computing a maximum (W + 1)-packing is
polynomially solvable only for W = 1 where it corresponds to a maximum matching. To
understand how we can apply algorithm AlgCOC-2 (basically ensuring B ∩ SR′ = ∅ in
any iteration of the while-loop) we need to extend the algorithm to compute a W -BCD
(C, H,R, f). First observe that P = R ∪ {{h} ∪ V (f−1)(h)}h∈H forms a (W + 1)-packing of
size |H| + |R|. In order to find R and H in the algorithm computing a W -BCD there are
two according working sets, R′ and H ′, that always guarantee a (W + 1)-packing of size
|H ′| + |R′|. In particular, these sets measure the progress in a sense that the corresponding
packing can only increase. The crucial point now is that we can start the algorithm with an
arbitrary maximal (W + 1)-packing and if this is a maximum (W + 1)-packing, then after the
termination of the algorithm, P corresponds also to a maximum (W + 1)-packing. In fact,
the original algorithm initializes R′ in the beginning as the connected components of the
input graph and H ′ = ∅, but it is also possible to initialize R′ as a maximal (W + 1)-packing
instead (see [5], proof sketch of Theorem 7). The relationship between a W -BCD, where
P represents a maximum (W + 1)-packing, and a reducible pair (A, B) yields a significant
property: every element in P intersects with at most one vertex of A. However, if a vertex
of B is in SR′ in algorithm AlgCOC-2, then the according R ∈ R′ must contain at least
two vertices of A. This contradicts the aforementioned property. These findings form the
key point of the following theorem.

▶ Theorem 19. For W = 1, i.e. for the vertex cover problem, algorithm AlgCOC-2 works
correctly and provides a 2k vertex kernel in polynomial time.

We also demonstrate the application of AlgCOC-2 for claw-free graphs, i.e., graphs
without induced K1,3’s. To achieve this, we use a vertex partitioning algorithm tailored for
such graphs, as proposed by Borndörfer et al. [4]. Essentially, we establish that claw-free
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graphs can be represented by a W -BCD (C, H,R, f) with C and H being empty, and at
most one element of R exceeding size 2W . Utilizing this along with Lemma 18 ensures that
B ∩ SR′ = ∅ in any iteration of the while-loop and provides basically the following theorem.

▶ Theorem 20. The component order connectivity problem admits a 2kW vertex-kernel on
claw-free graphs in polynomial time.
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