
Subexponential Algorithms for Clique Cover on
Unit Disk and Unit Ball Graphs
Tomohiro Koana #

Utrecht University, The Netherlands

Nidhi Purohit #

National University of Singapore, Singapore

Kirill Simonov #

Hasso Plattner Institute, University of Potsdam, Germany

Abstract
In Clique Cover, given a graph G and an integer k, the task is to partition the vertices of G into
k cliques. Clique Cover on unit ball graphs has a natural interpretation as a clustering problem,
where the objective function is the maximum diameter of a cluster.

Many classical NP-hard problems are known to admit 2O(n1−1/d)-time algorithms on unit ball
graphs in Rd [de Berg et al., SIAM J. Comp 2018]. A notable exception is the Maximum Clique
problem, which admits a polynomial-time algorithm on unit disk graphs and a subexponential
algorithm on unit ball graphs in R3, but no subexponential algorithm on unit ball graphs in
dimensions 4 or larger, assuming the ETH [Bonamy et al., JACM 2021].

In this work, we show that Clique Cover also suffers from a “curse of dimensionality”, albeit
in a significantly different way compared to Maximum Clique. We present a 2O(

√
n)-time algorithm

for unit disk graphs and argue that it is tight under the ETH. On the other hand, we show that
Clique Cover does not admit a 2o(n)-time algorithm on unit ball graphs in dimension 5, unless
the ETH fails.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Clique cover, diameter clustering, subexponential algorithms, unit disk
graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2024.10

Related Version Preprint: https://arxiv.org/abs/2410.03609

Funding Tomohiro Koana: Supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (project CRACKNP under grant agreement
No. 853234).
Kirill Simonov: Supported by DFG Research Group ADYN via grant DFG 411362735.

1 Introduction

Clustering is a general method of partitioning data entries, normally represented by points
in the Euclidean space, into clusters with the goal of minimizing a certain similarity function
for the points in the same cluster. Many popular similarity objectives such as k-means and
k-center are center-based, i.e., the objective function of the cluster is defined in terms of
distance to the additionally selected center of the cluster. On the other hand, arguably the
most natural similarity measure that is defined solely in terms of distances between the given
datapoints, is the maximum diameter of a cluster. That is, the objective function of the
clustering is the maximum distance between any pair of points in the same cluster. Formally,

© Tomohiro Koana, Nidhi Purohit, and Kirill Simonov;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Parameterized and Exact Computation (IPEC 2024).
Editors: Édouard Bonnet and Paweł Rzążewski; Article No. 10; pp. 10:1–10:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tomohiro.koana@gmail.com
https://orcid.org/0000-0002-8684-0611
mailto:nidhipurohit95@gmail.com
https://orcid.org/0000-0003-4869-0031
mailto:kirillsimonov@gmail.com
https://orcid.org/0000-0001-9436-7310
https://doi.org/10.4230/LIPIcs.IPEC.2024.10
https://arxiv.org/abs/2410.03609
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Subexponential Algorithms for Clique Cover on Unit Disk and Unit Ball Graphs

we consider the following k-Diameter problem: Given a set of points P in the Euclidean
space Rd, and parameters k, D, is there a partitioning of P into disjoint C1, . . . , Ck, such
that for each j ∈ [k], and each x, y ∈ Cj , ||x − y|| ≤ D?1

The k-Diameter problem admits a natural geometric interpretation. Consider a set of
disks with centers in P and of the same radius D/2. The problem asks to partition the disks
into k sets so that disks in each set pairwise intersect. Given a graph G and an integer k,
let Clique Cover be the problem of partitioning the vertex set of G into k vertex-disjoint
cliques. k-Diameter in Rd is thus equivalent to Clique Cover on unit ball graphs in Rd.
Note that Clique Cover is equivalent to k-Coloring on general graphs by taking the
complement of the graph; however, unit ball graphs are not closed under complements,
therefore Clique Cover on unit ball graphs does not necessarily have the same complexity
as k-Coloring on unit ball graphs.

The main question we ask in this work is the following: Does k-Diameter in Rd, or
equivalently Clique Cover on d-dimensional unit ball graphs, admit subexponential-time
algorithms? Given that Clique Cover is a natural graph problem akin to Maximum
Clique and k-Coloring, our question fits into the recent line of advances for algorithms
on geometric intersection graphs.

In a seminal work, de Berg et al. [6] gave a framework for 2O(n1−1/d)-time algorithms
on, in particular, d-dimensional unit ball graphs, which covers problems such as Maximum
Independent Set, Dominating Set, and Steiner Tree. At the heart of the framework
lies a special kind of tree decomposition, that essentially guarantees that each bag is covered
by O(n1−1/d/ log n) cliques. The target problem is then solved via dynamic programming
over the decomposition, given that the interaction of the solution with the cliques in the bag
could be succinctly represented. For example, in the Maximum Independent Set problem
the solution can have at most one element per clique, and storing the intersection between
the solution and the bag is therefore sufficient for the running time above.

However, Clique Cover stands aside from the problems covered by the framework of
de Berg et al., as the interaction between the smallest clique cover and the given clique cover
of the bag does not immediately seem to admit a succinct representation. Moreover, one can
easily observe that finding the smallest clique cover is still NP-hard even if a clique cover of
the graph of constant size is given. Indeed, it is famously NP-hard to determine whether
a 4-colorable graph admits a 3-coloring [12, 8], and colorings turn into clique covers under
taking the complement of the graph.

Previously in the literature, another problem shown to not exhibit such a “gradually
subexponential” behavior was the Maximum Clique problem. Already since the 1990s,
a polynomial-time algorithm for Maximum Clique on unit disk graphs was known [5].
Recently, Bonamy et al. [2] have shown that Maximum Clique only admits a subexponential-
time algorithm on 3-dimensional unit ball graphs, while no 2o(n)-time algorithm is possible
in dimension 4, assuming the ETH.

Our results. As the first step, we show a subexponential algorithm for Clique Cover
on unit disk graphs. Our starting point is the weighted treewidth approach of de Berg et
al. [6]; however, as per the discussion above, on its own this characterization does not seem
to be sufficient. Intuitively, the geometric structure of unit disk graphs has to play a role not

1 Since one can binary search over the value of D, and there are at most |P |2 different distances between
the pairs of points, this decision version of the problem is equivalent to the optimization version, up to
logarithmic factors in the running time.

T. Koana, N. Purohit, and K. Simonov 10:3

only in the decomposition itself, but also in representing the solution with respect to the
decomposition. In order to accommodate this, we build upon the classical lemma due to
Capoyleas, Rote and Woeginger [4], that was rediscovered several times in the literature [7, 13].
Simply put, there always exists an optimal clique cover where all cliques are well-separated,
i.e., the convex hulls of the respective disk centers do not intersect. As only constantly many
cliques may lie in direct vicinity of another clique in an optimal solution, we can show that
there are at most polynomially many possible configurations for each clique in the optimal
solution. This characterization, coupled with the dynamic programming approach, results in
the following theorem.

▶ Theorem 1. Clique Cover can be solved in time 2O(
√

n) on n-vertex unit disk graphs,
when a geometric representation of the graph is given in the input, with bit-length of the
vectors bounded by poly(n).

Note that recognizing unit disk graphs is, in general, NP-hard [3] and even ∃R-complete [11],
which means that one cannot expect to be able to compute a geometric representation of a
given unit disk graph efficiently.

Using the lower bound machinery of de Berg et al. [6], we also observe that the running
time above is tight. Moreover, the lower bound holds for higher dimensions as well.

▶ Theorem 2. Assuming the ETH, Clique Cover on n-vertex unit ball graphs in Rd does
not admit a 2o(n1−1/d)-time algorithm, for any d > 1, even if the geometric representation of
polynomial bit-length is given in the input.

The next natural question is whether the algorithmic result of Theorem 1 could also be
extended to higher dimensions. Unfortunately, the separation property that plays the key role
in Theorem 1 only holds in the two-dimensional case: the original work of Capoyleas, Rote
and Woeginger already observes that the analogous statement in three dimensions admits
a counterexample [4]. This, however does not exclude other potential ways for a succinct
representation of the solution, or another completely unrelated approach. We show that the
separation property is indeed crucial, that is, Clique Cover does not admit subexponential
algorithms on unit ball graphs in constant dimension.

▶ Theorem 3. Assuming the ETH, Clique Cover on n-vertex unit ball graphs in R5 does
not admit a 2o(n)-time algorithm, even if the geometric representation of polynomial bit-length
is given in the input.

To put Theorem 3 into context, recall the result of Bonamy et al. [2], showing that
Maximum Clique does not admit a subexponential algorithm on unit ball graphs in R4.
Their approach is to first argue that Maximum Independent Set is as hard on 2-subdivisions
(graphs obtained by replacing each edge with a path of length 3) as it is on general graphs,
which holds simply because a maximum independent set of a graph can be extracted from
a maximum independent set of its 2-subdivision. Then their key structural observation is
that a complement of any 2-subdivision admits a unit ball representation in R4, therefore
showing hardness of Maximum Clique on unit ball graphs in R4. Note that Maximum
Independent Set turns into Maximum Clique by taking the complement.

Since we target the Clique Cover problem on unit ball graphs, a natural idea is to
conduct the reduction in a similar spirit, but starting from k-Coloring. However, the
obstacle is that 2-subdivisions do not in general preserve the existence of a k-coloring – only
for k = 2, which is not suitable for a hardness reduction. Therefore, instead of replacing
each edge by its 2-subdivision, we need to use a more complicated edge gadget, and the

IPEC 2024

10:4 Subexponential Algorithms for Clique Cover on Unit Disk and Unit Ball Graphs

4-dimensional representation of Bonamy et al. is no longer applicable. The straightforward
triangle-like edge gadget that preserves 3-colorings could be used in place of the 2-subdivision,
see Figure 1 for an illustration. However, it is not clear whether the resulting graph would
admit a sufficiently low-dimensional representation, namely below dimension 7. Instead,
the gadget that we use is based on two parallel 2-subdivisions, plus special vertices that
impose a list-coloring-like condition on the internal vertices of the subdivisions; this choice of
the gadget allows us to decrease the dimension to 5 (see Figure 1 for the illustration of the
gadget).

u v u v u vu v

c1

c2

. . .

. . .

Figure 1 Edge gadgets encoding the edge between vertices u, v: left, 2-subdivision of the edge,
suitable for maximum independent sets; center, triangle-like gadget suitable for 3-colorings; right,
improved gadget preserving 3-colorings – here vertices c1 and c2 are connected in the same way to
all edge gadgets.

2 Preliminaries

Sets, vectors and coordinates

For an integer n, we use [n] to denote the set {1, 2, . . . , n}. We use the tuple notation for
points in Rd, i.e., a point is defined by the tuple (a1, a2, . . . , ad), where ai ∈ R is the respective
coordinate for each i ∈ [d]. The variables x1, x2, . . . , xd are used to denote the respective
axes. We denote the origin by O = (0, 0, . . . , 0), and by Oxixj , i, j ∈ [d] we denote the plane
spanned on the respective axes; the same notation is used for higher-dimensional subspaces
too. For two points A, B ∈ Rd, −−→

AB denotes the vector pointing from A to B, its coordinates
are expressed as B − A. We use || · || to denote the standard Euclidean norm in R2, therefore,
||B − A|| is the Euclidean distance between the points A and B, and also the length of the
vector −−→

AB.

Unit ball graphs

Let P = {p1, . . . , pn} be a set of points in Rd and B be a set of balls bi of radius 1, centered
at pi. A unit ball graph on P is a graph over the vertex set P , in which two vertices pi and
pj are adjacent if and only if the balls bi and bj intersect.

Exponential-time hypothesis

The exponential-time hypothesis (ETH), due to Impagliazzo, Paturi and Zane [9, 10], implies
that there is no algorithm that solves 3-SAT in 2o(n) time, where n is the number of variables
in the formula. Since by the Sparsification Lemma [10] this holds even for linearly-many
clauses in the formula, ETH also excludes 2o(n+m)-time algorithms for 3-SAT, where m is
the number of clauses. By the standard linear-size reduction from 3-SAT to 3-Coloring,
ETH implies that 3-Coloring does not admit a 2o(n+m)-time algorithm, where n is the
number of vertices and m is the number of edges in the graph.

T. Koana, N. Purohit, and K. Simonov 10:5

Tree decomposition

For a graph G = (V, E), a tree decomposition is a pair (T, σ), where T = (VT , ET) is a tree
and σ : VT → 2V such that

for each uv ∈ E, there exists t ∈ VT with u, v ∈ σ(t), and
for each v ∈ V , the set of nodes t ∈ VT with v ∈ σ(t) forms a connected subtree in T .

The width of (T, B) is maxx∈V (T)(|B(x)| − 1). The tree-width of G is the minimum width of
all tree decompositions of G.

A nice tree decomposition is a tree decomposition more amenable to the design of dynamic
programming algorithms. Formally, a tree decomposition (T = (VT , ET), σ) rooted at r ∈ VT

is called nice if σ(r) = ∅ and each node t ∈ VT is one of the following types:
Leaf node. t is leaf in T and σ(t) = ∅.
Introduce node. t has exactly one child t′, and σ(t) = σ(t′) ∪ {v} for a vertex v in G.
Forget node. t has exactly one child t′, and σ(t) = σ(t′) \ {v} for a vertex v in G.
Join node. t has exactly two children t′, t′′, and σ(t) = σ(t′) = σ(t′′).
It is known that given a tree decomposition, a nice tree decomposition of the same width
can be computed in polynomial time [1].

3 Subexponential algorithm for unit disks

In this section, we design a subexponential-time algorithm for Clique Cover on unit disk
graphs.

▶ Theorem 1. Clique Cover can be solved in time 2O(
√

n) on n-vertex unit disk graphs,
when a geometric representation of the graph is given in the input, with bit-length of the
vectors bounded by poly(n).

To design a subexponential-time algorithm, let us introduce two known techniques. We
start with the “separation theorem” of Capoyleas, Rote and Woeginger [4]. Recall that we
aim to partition the vertex set of a given unit disk graph into a collection of k cliques. Each
clique is defined by the convex hull of the centers of disks in the clique. In principle, these
convex hulls may arbitrarily intersect each other. The following states that we may assume
that they are disjoint in an optimal solution.

▶ Theorem 4 (Capoyleas, Rote and Woeginger [4]). For Clique Cover on unit disk graphs,
there exists an optimal solution (C1, . . . , Cℓ) such that the convex hulls of the centers in Ci

are pairwise disjoint.

This was first proven by Capoyleas, Rote and Woeginger [4] but also by Dumitrescu and
Pach [7] and Pirwani and Salavatipour [13] later. Theorem 4 relies crucially on the fact
that for two intersecting convex polygons P1, P2 of diameter at most d, there exists two
disjoint convex polygons P ′

1, P ′
2 of diameter at most d such that the vertices of P1 and P2 are

contained in P ′
1 ∪ P ′

2. In view of Theorem 4, we will show that there are polynomially many
“relevant” cliques in Lemma 6. To prove this, we will also use the following simple fact.

▶ Lemma 5 (Dumitresku and Pach, Lemma 2 [7]). Let (G, ℓ) be an instance of Clique
Cover on unit disk graphs, and (C1, . . . , Cℓ) be an optimal solution satisfying the condition
of Theorem 4. For a set S of vertices contained in a square of constant side length, there are
O(1) cliques Ci that intersect S.

See Dumitrescu and Pach [7] for a concrete bound in the above lemma. Now we prove a
polynomial bound on the number of relevant cliques.

IPEC 2024

10:6 Subexponential Algorithms for Clique Cover on Unit Disk and Unit Ball Graphs

▶ Lemma 6. Let (G, ℓ) be an instance of Clique Cover on unit disk graphs. Given S ⊆
V (G), we can find in polynomial time a collection R of cliques in G such that |R| ∈ |S|O(1),
and for each optimal solution (C1, . . . , Cℓ) satisfying the condition of Theorem 4, S ∩ Ci ∈ R
for all i ∈ [ℓ].

Proof. Let C = S ∩ Ci be a clique with C ̸= ∅. We will say that a clique Cj is close to C if
their closest vertices have distance at most two and far from C otherwise.

We first show how to separate C from far cliques, i.e., we find a collection of closed regions
P such that C lies within P and any far clique lies outside P . Suppose that u, v ∈ C are
two vertices with the largest distance r ≤ 2 in C. Then, C is contained in the intersection
of two disks of radius r centered at u and v, and every vertex of every far clique from C

is outside of these disks. For each u, v ∈ S, let Pu,v be the intersection of such two disks,
and let Ru,v be the vertices of S that lie in Pu,v. Let R′ be the collection of vertex sets
containing Ru,v for each u, v ∈ S. We then have |R′| ∈ O(|S|2), and for every C = S ∩ Ci

there exists R ∈ R′ that does not intersect any clique far from C.
Next, we discuss how to separate C from close cliques. By the above characterization, C

is contained in a 2 × 4-rectangle (not necessarily axis-aligned). For each close clique C ′ of C,
there exists a vertex t in C ′ with distance at most 2 to a vertex in C, and every vertex in C ′

has distance at most 2 to t, so every vertex of C ′ is at most at distance 4 from some vertex
of C. Therefore by extending the 2 × 4 rectangle containing C by 4 in every direction, we
obtain a 10 × 12 rectangle that contains every close clique of C. Thus, by Lemma 5, there are
O(1) close cliques Cj with j ∈ [ℓ]. For a clique Cj , j ∈ [ℓ], since the convex hulls of C and Cj

do not overlap by Theorem 4, there is a line that separates C and Cj , this line also separates
the convex hulls of C and Cj ∩ S. Moving this line, we find two vertices on the boundary of
the convex hull of C or two vertices on on the boundary of the convex hull of S ∩ Cj , such
that the line through them separates C and S ∩ Cj in the plane. Let P ′′ be the collection of
regions obtained as the intersection of constantly2 many open or closed semi-planes whose
boundaries go through two points of S. Let R′′ be the collection of vertex sets such that for
each region in P ′′, there is a vertex set in R′′ containing exactly the vertices of S lying in
this region.

Finally, let R be the collection of intersections of R′ and R′′ for R′ ∈ R′ and R′′ ∈ R′′.
Clearly, |R| ∈ |S|O(1). By the above, we have that for C = S ∩ Ci, there exists R′ ∈ R′ that
is disjoint from S ∩ Cj for every clique Cj that is far from C, and there exists R′′ ∈ R′′

that is disjoint from S ∩ Ch for every clique Ch close to C; on the other hand, R′ and R′′

contain C. Therefore, R′ ∩ R′′ is disjoint from S ∩ Cj for every j ≠ i, and contains C. Since
V (G) = C1 ∪ . . . ∪ Cℓ and R′, R′′ ⊆ S ⊆ V (G), R′ ∩ R′′ contains no vertices outside of C,
and C = R′ ∩ R′′ ∈ R. Moreover, every R ∈ R is a clique since every R′ ∈ R′ is a clique.
This completes the proof of the lemma. ◀

We will also use the framework of de Berg et al. [6] for the design of subexponential-time
algorithms for geometric intersection graphs. First, let us introduce some terminology. For a
graph G = (V, E) and κ ∈ N, a κ-partition of G is a partition (P1, . . . , Pν) of V such that
every Pi induces a connected subgraph which is a union of at most κ cliques. For a κ-partition
P of G, the P-contraction of G, denoted by GP , is the graph obtained by contracting every
Pi into a single vertex, that is, V (GP) = {P1, . . . , Pν} and E(GP) = {PiPj | ∃vi ∈ Pi, vj ∈
Pj : vivj ∈ E(G)}. Let γ : N → N be a weight function. For a tree decomposition (T, σ)
of GP , its weighted width with respect to γ is defined by maxt

∑
Pi∈σ(t) γ(|Pi|), where the

maximum is over the nodes t of T .

2 The constant depends on Lemma 5.

T. Koana, N. Purohit, and K. Simonov 10:7

The main technical step of the algorithmic framework of de Berg et al. is the following
theorem, restricted to the case of unit disk graphs.

▶ Theorem 7 ([6], Theorem 2.11 applied to unit disk graphs). For a weight function γ such
that γ(t) ∈ O(t1/2−ε) for ε > 0, there exists a κ-partition P for κ ∈ O(1) such that GP has
weighted treewidth O(

√
n) that can be computed in 2O(

√
n) time.

As in Berg et al. [6], we will apply Theorem 7 with γ(t) = O(log t). To design a 2O(
√

n)-
time algorithm, one essentially needs to show that there are |P |O(1) possibilities for each
partition class P ∈ P. We obtain this polynomial bound from Lemma 6. Specifically, let
(C1, . . . , Cℓ) be an optimal solution satisfying the condition of Theorem 4. For P ∈ P, let
R(P) be the collection of cliques returned by Lemma 6, applied to the subset P ⊆ V (G). By
the lemma, for every i ∈ [ℓ], P ∩Ci ∈ R(P). On the other hand, every clique is contained in a
2 × 4 rectangle, therefore by Lemma 5 only constantly many cliqes from C1, . . . , Cℓ intersect
this clique. Since P is covered by at most κ cliques, it also holds that only constantly many
cliqes from C1, . . . , Cℓ intersect P , where the constant depends on κ and Lemma 5; denote
this constant by λ. Later in the algorithm, we will characterize the solution (C1, . . . , Cℓ) on
P by listing the λ cliques from R(P) that result from intersecting (C1, . . . , Cℓ) with P . We
now proceed to the proof of the theorem.

Proof of Theorem 1. We first apply Theorem 7 with γ(t) = ε log t+1 for a sufficiently small
constant ε > 0, obtaining a κ-partition P of G, and a tree decomposition of GP of weight at
most O(

√
n). For P ∈ P, let R(P) be a collection of relevant cliques in P as per Lemma 6.

We define a configuration of P by a pair (C, χ) as follows. The first element, C ⊆ R(P), is
a collection of at most λ cliques such that

⋃
C = P . The second element, χ : C → {0, 1},

is a mapping, which we will use to indicate whether a clique C ∈ C has been covered. We
denote the set of configurations of P by ΓP . Since |R(P)| ∈ |P |O(1) by Lemma 6, there are
at most λ · |R(P)|λ · 2λ ∈ |P |O(1) many configurations. Thus, for a bag t, the number of all
combinations of configurations of nodes in t is at most

∏
P ∈σ(t)

|P |O(1) = exp

c
∑

P ∈σ(t)

log |P |

 ∈ 2O(
√

n).

Here, c is a constant, and the second equality is due to the fact that the weighted treewidth
is O(

√
n). The running time will be dominated by this factor.

Our dynamic programming constructs a table ct for a bag t indexed by a configuration
for each P ∈ σ(t) and an integer ℓ. We describe the configuration by a mapping f that maps
P ∈ σ(t) to one of its configurations in ΓP . We use the notation f(P) = (fC(P), fχ(P)).
The table ct stores Boolean values, where the entry ct[f, ℓ] is true if and only if there is a
collection (C1, . . . , Cℓ) of ℓ cliques such that⋃

i∈[ℓ] Ci covers all vertices appearing strictly below t (i.e., every vertex in P ∈ P \ σ(t)
such that P appears in the subtree rooted at t is covered by

⋃
i∈[ℓ] Ci)⋃

i∈[ℓ] Ci covers all cliques C ∈ fC(P) with P ∈ σ(t) and fχ(P)(C) = 1, and
every clique Ci, i ∈ [ℓ], contains a vertex appearing strictly below t.

Our dynamic programming will maintain this invariant.
Now we describe our dynamic programming procedure over a nice tree decomposition

(see Section 2 for the definition). It follows from our invariants that the input graph admits
a clique cover of size ℓ if and only if cr[f, ℓ] = 1 for the root r. For a non-leaf node t, we will
denote its children by t′, t′′ (t′ if t has one child).

IPEC 2024

10:8 Subexponential Algorithms for Clique Cover on Unit Disk and Unit Ball Graphs

Leaf node. Suppose that t is a leaf node, i.e., σ(t) = ∅. Then, ct[f, ℓ] is true if and only if
ℓ = 0.

Introduce node. Suppose that t is an introduce node, i.e., σ(t) = σ(t′) ∪ {P}.

ct[f, ℓ] =
{

ct′ [f |σ(t′), ℓ] if fχ(P)(C) = 0 for every C ∈ fC(P),
false otherwise.

Here, f |σ(t′) denotes the restriction of f to σ(t′). As we only consider cliques that intersect
a node strictly below t, we set the table entry to false if fχ(P) is not uniformly zero.

Forget node. Suppose that t is a forget node, i.e., σ(t) = σ(t′) \ {P}. We have the following
recurrence:

ct[f, ℓ] =
∨

ℓ′∈{0,...,ℓ},f ′

ct′ [f ′, ℓ′]

where
∨

ranges over all f ′ and ℓ′ that satisfy the following condition. Let Hf ′ be an auxiliary
graph as follows. For every C ∈ f ′

C(P) with fχ(P)(C) = 0, we add a vertex hC . Moreover,
for every P ′ ∈ σ(t) and C ∈ fC(P ′), we add a vertex hC to H if (i) C has not been covered
at t′, i.e., f ′

χ(P ′)(C) = 0 and (ii) C is covered at t, i.e., fχ(P ′)(C) = 1. Two vertices hC

and hC′ are adjacent in Hf ′ if and only if C ∪ C ′ is a clique in the graph G. This concludes
the construction of Hf ′ . Note that Hf ′ has size O(

√
n). Then

∨
ranges over f ′ and ℓ′ such

that Hf ′ has a clique cover (D1, . . . , Dℓ−ℓ′) of size ℓ − ℓ′ such that every clique Di contains a
vertex hC for C ∈ f ′

C(P). Whether f ′ and ℓ′ fulfills this condition can be checked in 2O(
√

n)

time via dynamic programming.
Specifically, we proceed in a standard fashion for a k-Coloring/Clique Cover subset-

based dynamic programming. For each subset S ⊆ V (Hf ′) and each integer k, 0 ≤ k ≤ ℓ − ℓ′,
we compute the Boolean value d[S, k] that is equal to true if and only if the subgraph Hf ′ [S]
admits a clique cover of size k, where additionally every clique contains a vertex hC for some
C ∈ f ′

C(P). We initialize by setting d[∅, 0] = true, d[S, 0] = false for each S ≠ ∅, and for each
S ⊆ V (Hf ′), k ∈ [ℓ − ℓ′], compute d[S, k] =

∨
D is an admissible clique in Hf′ [S] d[S \ D, k − 1].

Clearly, the dynamic programming table above is computed in time 2O(|V (Hf′)|) = 2O(
√

n).
As there are 2O(

√
n) many choices for the configuration f ′, we can compute ct[f, ℓ] in overall

time 2O(
√

n).
Let us verify that the invariant is maintained by the computation above. If ct[f, ℓ] is set

to true, then there exist f ′ and ℓ′ satisfying the aforementioned condition, for which ct′ [f ′, ℓ′]
is also true. Since ct′ [f ′, ℓ′] is true, there exists a collection (C1, . . . , Cℓ′) of cliques. Also,
Hf ′ admits clique cover of size ℓ − ℓ′, which is also a collection of cliques in G. Combining
these cliques indeed satisfies the conditions.

Join node. Suppose that t is a join node, i.e., σ(t) = σ(t′) = σ(t′). We have the recurrence:

ct[f, ℓ] =
∨

ℓ′∈{0,...,ℓ}, f ′, f ′′

(ct′ [f ′, ℓ′] ∧ ct′′ [f ′′, ℓ − ℓ′]),

where
∨

ranges over functions f ′, f ′′ that map P ∈ σ(t) to one of its configurations such
that for every P ∈ σ(t),

P is partitioned in cliques in the same way, i.e., fC(P) = f ′
C(P) = f ′′

C (P), and
for every C ∈ fC(P), fχ(P)(C) = 1 if and only if C is covered in one of the children, i.e.,
f ′

χ(P)(C) = 1 or f ′′
χ (P)(C) = 1.

T. Koana, N. Purohit, and K. Simonov 10:9

To see why the invariant is maintained, note that if ct[f, ℓ] is set to true, then there are
ℓ′ cliques certifying ct′ [f ′, ℓ′] being true and ℓ − ℓ′ cliques certifying ct′′ [f ′′, ℓ − ℓ′] being true.
Putting them together, we obtain a collection of ℓ cliques satisfying the conditions.

Observe that each entry can be computed in 2O(
√

n) time. Since there are 2O(
√

n) entries,
the running time is bounded by 2O(

√
n). Note that all arithmetic operations can be performed

in polynomial time: we only require comparing distances between the given points and
orientations between triples of given points; see the proof of Lemma 6. Theorem 7 is
representation-agnostic, meaning that no additional arithmetic operations are required,
except for constructing the graph from the given geometric representation.

This concludes the proof of Theorem 1. ◀

4 Subexponential lower bound for d ≥ 2

In this section, we establish the impossibility of solving the Clique Cover problem on
d-dimensional unit ball graphs in time better than 2O(n1−1/d). For this, we use the result
of de Berg et al. [6], which states that, assuming ETH, Grid Embedded SAT cannot be
solved in time 2o(n) time, where n is the number of variables of the given formula.

Grid Embedded SAT is defined as follows. Let G2(n) denote the n × n-grid graph,
where there is a vertex (i, j) for every i, j ∈ [n] and an edge between (i, j) and (i′, j′) are
adjacent if and only if |i − i′| = |j − j′| = 1. We say that a graph H is embedded in G2(n) if a
subdivision of H is isomorphic to a subgraph of G2(n). For a CNF formula ϕ, the incidence
graph Gϕ of ϕ is the bipartite graph, where there is a vertex for each variable and each clause,
and there is an edge between a variable vertex and a clause vertex if and only if the variable
appears in the clause. A (3, 3)-CNF formula is a CNF formula where each variable appears
at most 3 times and each clause has size at most 3.

Input: A (3, 3)-CNF formula ϕ together with an embedding of its incidence graph
Gϕ in G2(n).

Task: Is there a satisfying assignment for ϕ?

Grid Embedded SAT

▶ Proposition 8 ([6], Theorem 3.2). Grid Embedded SAT can not be solved in time 2o(n)

unless ETH fails.

To show ETH-hardness for Rd, d ≥ 3, we use the cube wiring theorem due to de Berg et
al. [6]. Let Bd(n) denote [n]d and Gd(n) denote the d-dimensional hypercube over Bd(n).
Also, for p ∈ Bd−1(n) and h ∈ [n], let ξh(p) = (p1, . . . , pd−1, h) ∈ Bd(n). For s ∈ N, a
set P ⊆ Zd−1 is said to be s-spaced if there is an integer 0 ≤ r < s such that for every
p = (p1, . . . , pd−1) ∈ P and i ∈ [d − 1], pi ≡ r mod 2.

▶ Theorem 9 (Cube wiring theorem [6]). For d ≥ 3, let P and Q be two 2-spaced subsets
of Bd−1(n) and let M be a perfect matching in the bipartite graph (P ∪ Q, P × Q). Then,
for n′ ∈ O(n), Gd(n′) contains vertex-disjoint paths that connect ξ1(p) and ξn′(q) for every
pq ∈ M .

Now we prove our theorem.

▶ Theorem 2. Assuming the ETH, Clique Cover on n-vertex unit ball graphs in Rd does
not admit a 2o(n1−1/d)-time algorithm, for any d > 1, even if the geometric representation of
polynomial bit-length is given in the input.

IPEC 2024

10:10 Subexponential Algorithms for Clique Cover on Unit Disk and Unit Ball Graphs

Proof. We first present a reduction from Grid Embedded SAT to Clique Cover on
unit disk graphs. Let ϕ be a (3, 3)-CNF formula. We may assume that each variable in ϕ

appears twice positively and once negatively: For every variable v where its occurrences are
all positive or negative, delete the clauses containing v. Also, for every variable v appears
twice negatively and once positively, flip its sign. We first describe how to construct a Grid
Embedded SAT instance (G, k) from ϕ, and specify the embedding later.

For each variable x, we create a variable gadget, which is obtained by gluing K3 and
K2 over one vertex, i.e., it is a paw, consisting of four vertices ux, u′

x, vx, wx and edges
uxu′

x, uxvx, u′
xvx, vxwx. We will call ux, u′

x, wx connection vertices.
For each clause, we introduce a single vertex C. We call it a clause gadget.
We construct a wire gadget, which will be used to connect a variable gadget to a clause
gadget in the embedding. A wire corresponding to a positive literal x is a path with an
even number of edges, starting at ux or u′

x from the variable gadget of x, and ending at
the corresponding clause vertex. For a negative literal, the path starts at wx instead. We
call a wire activated if the value of the corresponding literal of the connection vertex is
true. We call a wire if the corresponding literal is set to true.

This completes the construction of G. Let L be the total edge length of all wires. We show
that the formula ϕ has a satisfying assignment if and only if G has a clique cover of size
k = n + L/2, where n is the number of variables.

Correctness. Suppose that formula ϕ has a satisfying assignment. We construct a clique
cover of G as follows. For each variable x, we pick a clique {ux, u′

x, vx} if x is assigned true
and {vx, wx} otherwise. For each wire with 2ℓ edges, pick ℓ edges as K2’s so that all inner
vertices and the connection vertex is covered if the wire is activated, and all inner vertices
and the clause vertex is covered otherwise. Since the assignment satisfies all the clauses,
every clause gadget has at least one activated wire. If more than one wire ends with K2
containing a clause, then arbitrarily pick one wire and reduce the internal vertices of the
remaining wires into a K1 and pick it into the solution. Hence, all vertices in the variable,
wire and clause gadget are covered. We obtain a clique partition of G with k = n + L/2
cliques.

Conversely, assume G has a clique cover of size k. Each variable gadget contains at least
one clique that covers the common vertices of the gadget. Since in a wire of length 2ℓ, there
are 2ℓ − 1 internal vertices, and only two vertices of a wire can be covered by a clique. Thus,
wire gadgets contain at least L/2 cliques. Since k = n + L/2, the solution contains exactly
one clique for every variable gadget and each wire of length 2ℓ will have exactly ℓ cliques.
Since every clause vertex belongs to a clique in the solution, a literal exists such that the
corresponding wire is activated. Then, the respective connection vertex is not a part of the
wire clusters and thus is a part of the vertex cluster. We assign the variable’s value based on
which side the clique in each variable gadget picks. If the clique picks connection vertices
corresponding to K3, we set the variable to be true. If the clique contains connection vertices
corresponding to K2, then we set the variable to be false. Otherwise, we set variable values
arbitrarily.

Embedding. Suppose that d = 2. Let D be a grid embedding of Gϕ. We start by taking a
2-refinement of D. This will ensure that each wire gadget has even length. For every vertex
in Gϕ, we introduce a disk (of diameter 1) centered at its coordinate, unless it is a variable
vertex. For a variable x, let (i, j) be its coordinate in D. Without loss generality, assume
that three vertices adjacent to x in Gϕ are at (i − 1, j), (i, j + 1), and (i + 1, j). There are
three cases depending on which edge in Gϕ incident with x connects to a negative literal.

T. Koana, N. Purohit, and K. Simonov 10:11

Figure 2 Two cases for a variable gadget. The coordinate (i, j) is marked by the black dot. The
dotted disks are part of wire gadgets. Note that the variable gadget has exactly one disk intersecting
a dotted disk.

First, suppose that the edge between (i, j) and (i, j + 1) leads to a negative literal. Then,
introduce four disks centered at (i − 1/2, j − 1/2), (i + 1/2, j − 1/2) (corresponding to ux and
u′

x), (i, j − 1/2) (corresponding to vx), and (i, j + 1/2) (corresponding to wx). Otherwise,
suppose that the between (i, j) and (i + 1, j) leads to a negative literal. Then, introduce
four disks centered at (i − 1/2, j), (i, j + 1/2) (corresponding to ux and u′

x), (i, j − 1/2)
(corresponding to vx), and (i + 1/2, j − 1/2) (corresponding to wx). See Figure 2 for an
illustration.

Note that only polynomial precision in coordinates is required to construct the instance,
therefore the hardness also holds if the representation is given.

For d ≥ 3, for every variable, we place three vertices adjacent to its variable gadget in a
(d−1)-hypercube of side length 3. We then place all these hypercubes into a (d−1)-hypercube
of side length nO(1

d−1). Placing the clause gadgets on Bd−1(m
1

d−1), we apply the cube wiring
theorem (Theorem 9) to obtain an embedding into Bd(n′) for n′ ∈ O(n). We then embed
the variable gadgets similarly to the case d = 2. ◀

5 Exponential lower bound for d = 5

In this section, we present a hardness reduction excluding better-than-exponential running
time for Clique Cover on unit ball graphs in dimension at least 5. We restate the result
next.

▶ Theorem 3. Assuming the ETH, Clique Cover on n-vertex unit ball graphs in R5 does
not admit a 2o(n)-time algorithm, even if the geometric representation of polynomial bit-length
is given in the input.

Proof. We show a reduction from 3-Coloring to Clique Cover, where the target instance
is a unit ball graph in Rd. Let G be the graph in the instance of 3-Coloring. We first
construct an enhanced graph G′ from G and argue that this makes an equivalent instance of
3-Coloring. Then, we show that the complement of the enhanced graph G′ admits a unit
ball representation in R5. Since solving 3-Coloring on G′ is equivalent to solving 3-Clique
Cover on G′, and 3-Clique Cover on unit ball graphs in R5 is the special case of Clique
Cover with k = 3 on the same class of graphs, this completes the reduction.

We now move to the details. First, we define the enhanced graph G′. The vertex set
of G′ contains one vertex for each vertex of G, four vertices for each edge of G, and two
additional special vertices. Formally, V (G′) = W ∪ T ∪ B ∪ C, where W = {wv : v ∈ V (G)},
T = {t1

e, t2
e : e ∈ E(G)}, B = {b1

e, b2
e : e ∈ E(G)}, C = {c1, c2}. The edges are as follows: for

every edge e = uv ∈ E(G), we construct wut1
e, t1

et2
e, t2

ewv, and wub1
e, b1

eb2
e, b2

ewv Additionally,
c1 is adjacent to all vertices of T , c2 is adjacent to all vertices of B, and c1 and c2 are
adjacent. Formally, the edge set of G′ is

IPEC 2024

10:12 Subexponential Algorithms for Clique Cover on Unit Disk and Unit Ball Graphs

E(G′) = {wut1
e, t1

et2
e, t2

ewv, wub1
e, b1

et2
e, b2

ewv, t1
ec1, t2

ec1, b1
ec2, b2

ec2 : e ∈ E(G)} ∪ {c1c2}.

Intuitively, G′ is obtained from G by replacing each edge e ∈ E(G) with two copies of its
2-subdivision: the vertices t1

e and t2
e are internal vertices of the first copy, and the vertices

b1
e and b2

e are internal vertices of the first copy. Moreover, there are two special vertices c1
and c2 that are adjacent to each other, and c1 is adjacent to the internal vertices of the
first 2-subdivision, while c2 is adjacent to internal vertices of the second 2-subdivision. See
Figure 3 for an illustration of the edge gadget.

wu wv

c1

c2

. . .

. . .

t1e t2e

b1e b2e

Figure 3 Edge gadget in G′, encoding the edge e between vertices u, v in G. Vertices c1 and c2

are connected in the same way to all edge gadgets.

We now argue that G′ is equivalent to G in terms of 3-colorings.

▷ Claim 10. G admits a 3-coloring if and only if G′ admits a 3-coloring.

Proof. Let c : V (G) → {1, 2, 3} be the 3-coloring of G, we construct a 3-coloring c′ of G′.
Let c′ coincide with c on the vertices of W ; let c′(c1) = 1 and c′(c2) = 2. We now assign
colors to vertices th

e and bh
e for e ∈ E(G), h ∈ [2].

Consider an edge e = uv ∈ E(G), so that u is adjacent to t1
e and b1

e in G′. The vertex t1
e

has an available color since only c1 and u have assigned colors among its neighbors; assign
this color to t1

e. Now, assume there is no available color for t2
e, therefore all three colors

appear among c1, v, t1
e. Since c′(c1) = 1, either c′(v) = 2 and c′(t1

e) = 3, or the other
way around. In the former case, c′(u) ̸= 2 since c(·) is a proper 3-coloring of G. Assign
c′(t1

e) = 2 and c′(t2
e) = 3; all edges between the considered vertices are properly colored. In

the alternative case, the argument is symmetric: c′(v) = 3 and c′(u) ̸= 3; assign c′(t1
e) = 3

and c′(t2
e). The argument for the vertices b1

e and b2
e is analogous.

In the other direction, consider a 3-coloring c′ of G′; we claim that the restriction c of c′

to V (G) is a proper 3-coloring of G. Assume this is not the case, therefore there exists an
edge e = uv ∈ E(G) with c′(u) = c(u) = c(v) = c′(v). Since c1 and c2 are adjacent in G′,
they receive different colors under c′ and so either c′(c1) ̸= c′(u) or c′(c2) ̸= c′(u); w.l.o.g.
assume the former case. The vertex t1

e has only one available color since it cannot coincide
with c′(u) and c′(c1), which are two distinct colors. Then the neighborhood of t2

e contains all
three colors, since c′(u) = c′(v). This contradicts the fact that t2

e is properly colored by c′.
◁

Then we proceed to construct a unit ball representation of the complement of G′ in R5.
To this end, we describe the locations of all vertices in G′ under the embedding, and argue
that the distance between the locations exceeds a certain value if and only if the respective
pair of vertices is adjacent in G′.

T. Koana, N. Purohit, and K. Simonov 10:13

First, we embed the vertices of T , B in C in the first three dimensions, i.e., their images
are always zero in coordinates 4 and 5. Then, we embed the vertices of W in the other two
dimensions, i.e., such the coordinates 1–3 are zeroed out. Finally, we shift the embedding of
T and B slightly to achieve the desired edges between W and T ∪ B.

Let ϵ > 0 be a constant to be defined later. We place c1 and c2 symmetrically across the
origin at distance of

√
3 −

√
2/2 + ϵ along the first coordinate; that is,

π(c1) = (
√

3 −
√

2/2 + ϵ, 0, 0, 0, 0),

π(c2) = (−
√

3 +
√

2/2 − ϵ, 0, 0, 0, 0).

We then position the set T on the circumference of a circle with the center on the Ox1 axis
lying in the plane orthogonal to the axis, with radius r = 1 + ϵ′, and such that its center
is

√
2/2 − ϵ away from the origin towards −∞. We shall define the precise value of ϵ′ later.

The points of T1 occupy the “top cap” of the circumference, i.e., a small arc close to x2 = r,
and the points of T2 occupy the “bottom cap”, i.e., close to x2 = −r. We aim that for each
e ∈ E(G), t1

e lies directly opposite to t2
e, while the remaining points are sufficiently close to

each of them. Let E(G) = {e1, . . . , em}, we position the points t1
e1

, . . . , t1
em

evenly along the
arc starting from the “top” of the circle, such that the angle between the two consecutive
points is always δ/m, measured from the center of the circle. We then place the points t2

e1
,

. . . , t2
em

similarly, directly opposite to their counterparts. We define the exact positions as
follows:

π(t1
ej

) = (−
√

2/2 + ϵ, r · cos(δ · j/m), r · sin(δ · j/m), 0, 0),

π(t2
ej

) = (−
√

2/2 + ϵ, −r · cos(δ · j/m), −r · sin(δ · j/m), 0, 0).

The points of B are positioned very similarly, except that they are placed in a circle placed
opposite across the origin to the circle above, i.e., its center is the point (

√
2/2, 0, 0, 0, 0).

And the points of B1 (B2) are placed close to x3 = r (x3 = −r). Formally,

π(b1
ej

) = (
√

2/2 − ϵ, −r · sin(δ · j/m), r · cos(δ · j/m), 0, 0),

π(b2
ej

) = (
√

2/2 − ϵ, r · sin(δ · j/m), −r · cos(δ · j/m), 0, 0).

Note that the image of every point in T ∪ B is exactly R1 =
√

(
√

2/2 − ϵ)2 + r2 away
from the origin. Assume ϵ is such that R1 < 4, and let R2 =

√
4 − R2

1. We place the points
of W in the plane Ox4x5 exactly at the distance of R2 from the origin. Namely, consider
the circle in Ox4x5 centered at the origin with the radius of R2. We place the points of
W = {w1, . . . , wn} evenly along the circumference, such that the angle between consecutive
points is exactly δ/n:

π(wi) = (0, 0, 0, R2 · cos(δ · i/n), R2 · sin(δ · i/n)).

See Figure 4 for the illustration of the embedding π.
We now show that π “nearly” gives the desired embedding of G′. That is, we show that

every adjacent pair is at distance strictly more than 2 and every non-adjacent pair is at
distance strictly less than 2, except for the pairs of form (w, v), w ∈ W , v ∈ T ∪ B, which
are at distance exactly 2. Later we will slightly modify the embedding π to make sure that
exactly the required pairs of this form are sufficiently far from each other.

IPEC 2024

10:14 Subexponential Algorithms for Clique Cover on Unit Disk and Unit Ball Graphs

O x1c1c2

T1

T2

B

r

√
2/2 − ϵ

√
3 −

√
2/2 + ϵ

x2

O x3c1

T1

T2

B1

r

x2

B2

O x5T ∪B ∪ C

W

R2

x4

Figure 4 Illustration of the embedding π, showed by schematic projections on the three planes.

▷ Claim 11. There exists ξ > 0 such that the following holds:

||π(w) − π(v)|| = 2, for each w ∈ W, v ∈ T ∪ B, (1)
||π(t1

e) − π(t2
e)|| ≥ 2 + ξ, for each e ∈ E(G), (2)

||π(b1
e) − π(b2

e)|| ≥ 2 + ξ, for each e ∈ E(G), (3)
||π(th

e) − π(c1)|| ≥ 2 + ξ, for each e ∈ E(G), h ∈ [2], (4)
||π(bh

e) − π(c2)|| ≥ 2 + ξ, for each e ∈ E(G), h ∈ [2], (5)
||π(c1) − π(c2)|| ≥ 2 + ξ, (6)

and for any other two vertices v, u of G′, the distance ||π(v) − π(u)|| is at most 2 − ξ.

Proof. Let ξ = ϵ′/2. Equation (1) holds immediately by construction, since each v ∈ T ∪ B

is situated exactly R1 away from the origin, each w ∈ W exactly R2 away from the origin,
T ∪ B is contained in the 3-dimensional subspace Ox1x2x3 which is orthogonal to the plane
Ox4x5 where W is contained, and R2

1 + R2
2 = 4 by definition of R2.

For Equation (2), observe that ||π(t1
e) − π(t2

e)|| = 2 + 2ϵ′ for each e ∈ E(G) since these
two points are situated diametrically opposite to each other on a circle of radius 1 + ϵ′.
Therefore, ||π(t1

e) − π(t2
e)|| ≥ 2 + ξ since ϵ′ = 2ξ ≥ ξ/2. On the other hand, consider the

points t1
e and t2

e′ for e ≠ e′. Since t2
e′ lies on the same circle at the angle of at least δ/m away

from t2
e, the distance between t1

e and t2
e′ is at most 2(1 + ϵ′) cos(δ/2m). Therefore, if it holds

that (1 + ϵ′) cos(δ/2m) ≤ 1 + ξ/2 = 1 + ϵ′/4, then all distances between the points of T are
as desired. Moreover, exactly the same arguments hold for Equation (3) and the distances
between the points of B. We now show this bound given that ϵ′ is sufficiently small:

ϵ′ ≤ δ2

20m2 =⇒ 1 + ϵ′

ϵ′ ≥ 20m2

δ2 =⇒ δ2

16m2 ≥ 5
4 · ϵ′

1 + ϵ′

=⇒ 1 − δ2

16m2 ≤ 1 − 5
4 · ϵ′

1 + ϵ′ = 1 − ϵ′/4
1 + ϵ′

=⇒ (1 + ϵ′) · cos δ

2m
≤ (1 + ϵ′) · (1 − δ2

16m2) ≤ 1 − ϵ′/4.

T. Koana, N. Purohit, and K. Simonov 10:15

Here, we also use that δ is a sufficiently small constant.
Consider now Equation (4), the distance between π(c1) and π(th

e) is equal to
√

3 + r2 for
each e ∈ E(G) and h ∈ [2]. It is therefore sufficient to have

√
3 + (1 + ϵ′)2 ≥ 2 + ξ, which

holds since ϵ′ = 2ξ, and the same argument holds for Equation (5) because of the symmetry.
Note that the distance between π(c2) and π(th

e) for any e ∈ E(G), h ∈ [2] is equal to√
(
√

3 −
√

2 + 2ϵ)2 + r2 =
√

(
√

3 −
√

2)2 + 1 + O(ϵ + ϵ′) < 1.5 ≤ 2 − ξ,

for sufficiently small ϵ, ϵ′ and ξ. The same holds for π(c1) and π(bh
e) for any e ∈ E(G),

h ∈ [2].
For Equation (6),

||π(c1) − π(c2)|| = 2
√

3 −
√

2 + 2ϵ ≥ 2.049 ≥ 2 + ξ

when ξ is sufficiently small.
It remains to verify that pairwise distances not discussed above are bounded by 2 − ξ.

Consider first w ∈ W and ch for h ∈ [2], the respective squared distance is

||π(w) − π(ch)||2 = R2
2 + (

√
3 −

√
2/2 + ϵ)2 = 4 − R2

1 + (
√

3 −
√

2/2)2 + O(ϵ)

≤ 5.025 − R2
1 + O(ϵ) = 5.025 − (

√
2/2 − ϵ)2 − (1 + ϵ′)2 + O(ϵ)

= 5.025 − 1/2 − 1 + O(ϵ + ϵ′) = 3.525 + O(ϵ + ϵ′) ≤ 3.8

for sufficiently small ϵ and ϵ′. Therefore, ||π(w) − π(ch)|| ≤ 2 − ξ when ξ is sufficiently small.
Note also that when δ is a sufficiently small constant, distances between all pairs of

vertices in W under π are at most 1, since the images occupy an arc which is a small fraction
of a constant-radius circle, and the same holds for pairs in T1, T2, B1, B2.

Finally, it remains to consider pairs of the form t ∈ T , b ∈ B. Observe that when
projecting T and B orthogonally on the plane Ox2x3, these sets lie on the same circle of
radius r = 1 + ϵ′, and the radial distance between a point in T and a point in B is always at
most π/2 + δ, since T1, B1, T2, B2 are each rotated π/2 further away from the previous set,
and each of the four sets occupies an arc of radial length at most δ. Therefore,

(2 − ξ)2 − ||π(t) − π(b)||2 ≥ (2 − ξ)2 − (
√

2 − 2ϵ)2 − 2(1 + ϵ′)2(1 + sin δ)

≥ 4(
√

2 − 1)ϵ − 4ξ − 6ϵ′ − 8δ,

by using ϵ′, ϵ ≤ 1 and sin δ ≤ δ. The above value is greater than zero if ϵ ≥ 8(ϵ′ + ξ + δ).
To conclude the proof of the claim, we note that the parameters ξ, ϵ′, δ, ϵ clearly admit

values that satisfy all the restrictions above. Indeed, it is only required that each of them
does not exceed a certain constant independent of the other parameters, and additionally
that 2ξ = ϵ′ ≤ δ2

20m2 , and ϵ ≥ 8(ϵ′ + ξ + δ). ◁

Finally, we construct the embedding π′ that gives the desired representation of G′. For
that, we modify π in the following way: we only change the images of vertices in T ∪ B.
Namely, π′(v) = π(v) for v ∈ V (G′) \ (T ∪ B), and for each e = uv ∈ E(G),

π′(t1
e) = π(t1

e) + θ ·
−−−−→
π(u)O,

π′(b1
e) = π(b1

e) + θ ·
−−−−→
π(u)O,

π′(t2
e) = π(t2

e) + θ ·
−−−−→
π(v)O,

π′(b2
e) = π(b2

e) + θ ·
−−−−→
π(v)O,

where θ > 0 is a small value to be defined later. We show that the embedding π′ is indeed a
unit ball representation of the complement of G′.

IPEC 2024

10:16 Subexponential Algorithms for Clique Cover on Unit Disk and Unit Ball Graphs

▷ Claim 12. For every u, v ∈ V (G′), uv ∈ E(G′) if and only if ||π′(u) − π′(v)|| > D, for
some D > 2.

Proof. First, we consider distances between the pairs π′(w), π′(v), where w ∈ W , v ∈ T ∪ B.
Let v ∈ T ∪ B and let w be the unique vertex in W such that π′(v) = π(v) + θ ·

−−−−→
π(w)O.

The respective squared distance is then ||π′(v) − π′(w)||2 = R2
1 + (R2 + θ)2. On the other

hand, consider a vertex w′ ∈ W with w′ ≠ w. For v and w′, the squared distance is
||π′(v) − π′(w′)||2 ≤ R2

1 + R2
2 + θ2 + 2R2θ cos(δ/n), since the distance is independent in

Ox1x2x3 and Ox4x5, and in the latter plane the vertex w′ is at least at angle of δ/n away
from the line

−−−−→
Oπ(w), which by the law of cosines gives the upper bound above.

By setting D =
√

R2
1 + R2

2 + θ2 + 2R2θ cos(δ/n) we therefore achieve that ||w′ − v|| ≤ D

for each w′ ̸= w, while ||w − v|| > D since

(R2
1 + (R2 + θ)2) − (R2

1 + R2
2 + θ2 + 2R2θ cos(δ/n)) = 2R2θ · (1 − cos(δ/n)) > 0.

Observe that 2 < D since R2
1 + R2

2 = 4, and that D < 2 + ξ/2 for a sufficiently small value
of θ; fix θ so that the latter holds. We now verify the distance condition for the remaining
pairs. First, the distance between vertices of W and c1/c2 is the same under π and π′, so
it is at most 2 < D. It remains to consider distances between pairs of vertices in X, where
X = T ∪ B ∪ C. For each v, u ∈ X,

||π′(u) − π′(v)||2 − ||π(u) − π(v)||2 ≤ 2θ2R2
2

since the change from π to π′ shifts each vertex by at most the vector of θ ·
−−−−→
π(w)O for some

w ∈ W ; the length of this vector is θR2, and π acts only into the subspace Ox1x2x3 on X.
Clearly, for sufficiently small θ we get that

−ξ/2 < ||π′(u) − π′(v)|| − ||π(u) − π(v)|| < ξ/2.

Therefore, all distances that were at most 2 − ξ (at least 2 + ξ, respectively) under π

from Claim 11 remain at most 2 − ξ/2 (at least 2 + ξ/2, respectively) under π′. Since
2 − ξ/2 < 2 < D < 2 + ξ/2, the proof of the claim is concluded. ◁

By Claim 12, we get the correctness of the presented reduction. It remains to observe
that the reduction can be done in polynomial time: Only precision polynomial in input size
is required for the parameters used for the computation of the coordinates. Since in the
resulting instance of Clique Cover there are O(n + m) vertices, and 3-Coloring does not
admit a 2o(n+m)-time algorithm under the ETH, the statement of the theorem follows. ◀

References
1 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.

SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.
2 Marthe Bonamy, Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, Panos Giannopoulos,

Eun Jung Kim, Pawel Rzazewski, Florian Sikora, and Stéphan Thomassé. EPTAS and
subexponential algorithm for maximum clique on disk and unit ball graphs. J. ACM, 68(2):9:1–
9:38, 2021. doi:10.1145/3433160.

3 Heinz Breu and David G. Kirkpatrick. Unit disk graph recognition is np-hard. Computational
Geometry, 9(1):3–24, 1998. Special Issue on Geometric Representations of Graphs. doi:
10.1016/S0925-7721(97)00014-X.

4 Vasilis Capoyleas, Günter Rote, and Gerhard J. Woeginger. Geometric clusterings. J.
Algorithms, 12(2):341–356, 1991. doi:10.1016/0196-6774(91)90007-L.

https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1145/3433160
https://doi.org/10.1016/S0925-7721(97)00014-X
https://doi.org/10.1016/S0925-7721(97)00014-X
https://doi.org/10.1016/0196-6774(91)90007-L

T. Koana, N. Purohit, and K. Simonov 10:17

5 Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discret. Math.,
86(1-3):165–177, 1990. doi:10.1016/0012-365X(90)90358-O.

6 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der
Zanden. A framework for exponential-time-hypothesis-tight algorithms and lower bounds
in geometric intersection graphs. SIAM J. Comput., 49(6):1291–1331, 2020. doi:10.1137/
20M1320870.

7 Adrian Dumitrescu and János Pach. Minimum clique partition in unit disk graphs. Graphs
Comb., 27(3):399–411, 2011. doi:10.1007/s00373-011-1026-1.

8 Venkatesan Guruswami and Sanjeev Khanna. On the hardness of 4-coloring a 3-colorable
graph. SIAM J. Discret. Math., 18(1):30–40, 2004. doi:10.1137/S0895480100376794.

9 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

10 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.
1774.

11 Ross J. Kang and Tobias Müller. Sphere and dot product representations of graphs. Discret.
Comput. Geom., 47(3):548–568, 2012. doi:10.1007/S00454-012-9394-8.

12 Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the hardness of approximating the
chromatic number. Comb., 20(3):393–415, 2000. doi:10.1007/S004930070013.

13 Imran A. Pirwani and Mohammad R. Salavatipour. A weakly robust PTAS for minimum
clique partition in unit disk graphs. Algorithmica, 62(3-4):1050–1072, 2012. doi:10.1007/
S00453-011-9503-8.

IPEC 2024

https://doi.org/10.1016/0012-365X(90)90358-O
https://doi.org/10.1137/20M1320870
https://doi.org/10.1137/20M1320870
https://doi.org/10.1007/s00373-011-1026-1
https://doi.org/10.1137/S0895480100376794
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1007/S00454-012-9394-8
https://doi.org/10.1007/S004930070013
https://doi.org/10.1007/S00453-011-9503-8
https://doi.org/10.1007/S00453-011-9503-8

	1 Introduction
	2 Preliminaries
	3 Subexponential algorithm for unit disks
	4 Subexponential lower bound for d > = 2
	5 Exponential lower bound for d = 5

