
Kick the Cliques
Gaétan Berthe
LIRMM, Université de Montpellier, CNRS, Montpellier, France

Marin Bougeret
LIRMM, Université de Montpellier, CNRS, Montpellier, France

Daniel Gonçalves
LIRMM, Université de Montpellier, CNRS, Montpellier, France

Jean-Florent Raymond
Univ. Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, Lyon, France

Abstract
In the Kr-Hitting problem, given a graph G and an integer k one has to decide if there exists a set
of at most k vertices whose removal destroys all r-cliques of G.

In this paper we give an algorithm for Kr-Hitting that runs in subexponential FPT time on
graph classes satisfying two simple conditions related to cliques and treewidth. As an application we
show that our algorithm solves Kr-Hitting in time

2Or(k(r+1)/(r+2) log k) · nOr(1) in pseudo-disk graphs and map-graphs;
2Ot,r(k2/3 log k) · nOr(1) in Kt,t-subgraph-free string graphs; and
2OH,r(k2/3 log k) · nOr(1) in H-minor-free graphs.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Fixed parameter tractability; Theory of computation → Computational geometry

Keywords and phrases Subexponential FPT algorithms, implicit hitting set problems, geometric
intersection graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2024.13

Related Version arXiv Version: https://arxiv.org/abs/2407.01465

Funding Jean-Florent Raymond: Supported by the ANR project GRALMECO (ANR-21-CE48-
0004).

1 Introduction

In the Kr-Hitting problem, given a graph G and an integer k one has to decide if there are
k vertices in G whose deletion yields a Kr-free graph. This problem falls within the general
family of (implicit) hitting problems and encompasses several extensively studied problems
such as the case r = 2 better known under the name Vertex Cover and the case r = 3
that we usually refer to as Triangle Hitting. Already for these small values the problem
is NP-complete.

In this paper we are interested in subexponential parameterized algorithms for Kr-Hitting,
i.e., algorithms that run in Fixed Parameter Tractable (FPT) time (that is, time f(k) · nO(1)

for some computable function f) and where additionally the contribution of the parameter
k is subexponential, in other words f(k) ∈ 2o(k). Under the Exponential Time Hypothesis
of Impagliazzo and Paturi [10], such algorithms do not exist in general for vertex deletion
problem to nontrivial hereditary properties [13] (like Kr-Hitting problem) and so we have
to focus on particular graph classes.

Historically, subexponential graph algorithms were first obtained for specific problems in
sparse graph classes such as planar graphs. The techniques used have then been unified and
extended by Demaine, Fomin, Hajiaghayi, and Thilikos in the meta-algorithmic theory of

© Gaétan Berthe, Marin Bougeret, Daniel Gonçalves, and Jean-Florent Raymond;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Parameterized and Exact Computation (IPEC 2024).
Editors: Édouard Bonnet and Paweł Rzążewski; Article No. 13; pp. 13:1–13:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0017-6922
https://orcid.org/0000-0002-9910-4656
https://orcid.org/0000-0003-3228-9622
https://orcid.org/0000-0003-4646-7602
https://doi.org/10.4230/LIPIcs.IPEC.2024.13
https://arxiv.org/abs/2407.01465
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Kick the Cliques

bidimensionality [7], which provides a generic machinery to solve a wide range of problems in
subexponential FPT time on H-minor free graphs. Initially bidimensionality was defined
for graph classes with some “flatness” property similar to planar graphs, typically graphs of
bounded genus and H-minor-free graphs. Over the years, the theory saw several improvements
and extensions in order to deal with different settings like map graphs and other classes of
intersection graphs, which are initially not sparse as they contain large cliques for example,
but where we can branch in subexponential-time to reduce to sparse instances (see for
instance the bibliography cited in [4]). However, despite its generality, bidimensionality can
only handle the so-called bidimensional problems where, informally, as soon as the instance
(G, k) contains a large t × t grid as a minor (for t ∈ o(k), typically t =

√
k), we know

that (G, k) is necessarily a no-instance (or yes-instance depending on the problem). This
is the case of Vertex Cover but unfortunately not of Triangle Hitting (as grids are
triangle-free) and more generally not of Kr-Hitting for r ≥ 3.

The focus of this paper is on this blind spot: subexponential FPT algorithms for a
problem that is not bidimensional, namely Kr-Hitting. About this problem, we note that
using arguments developed in the context of approximation [9], the following subexponential
FPT algorithm can be obtained for apex-minor free graphs (which are sparse).

▶ Theorem 1 (from [9]). For every apex1 graph H and every r ∈ N there is an algorithm
solving Kr-Hitting in H-minor-free graphs in time 2OH,r(√

k) · nOr(1).

Regarding classes that are not sparse, Triangle Hitting received significant attention
in the last years in classes of intersection graphs such as (unit) disk graphs2, pseudo-disk
graphs, and subclasses of segment graphs3 [14, 2, 4, 3]. We only recall below the most general
results and do not mention those that require a geometric representation.

▶ Theorem 2. There are algorithms that given a parameter k and a n-vertex graph (without
a geometric representation) solve Triangle Hitting in time
1. 2O(k3/4 log k)nO(1) in disk graphs [2];4
2. 2O(k3/4 log k)nO(1) in contact-segment5 graphs [4];
3. 2Ot,d(k2/3) log knO(1)in Kt,t-subgraph-free d-DIR6 graphs [4].

▶ Theorem 3 ([4]). Assuming the Exponential Time Hypothesis, there is no algorithm solving
Triangle Hitting in time
1. 2o(n) in 2-DIR graphs;
2. 2o(

√
∆n) in 2-DIR graphs with maximum degree ∆; and

3. 2o(
√

n) in K2,2-free contact-2-DIR graphs of maximum degree 6.

Our contribution
Our main result is the following subexponential parameterized algorithm for Kr-Hitting
in graph classes satisfying two conditions related to cliques and treewidth. Notice that the
statement of the following theorem is a simplified version of the actual Theorem 22 that we
prove in Section 5.

1 A graph is apex if the deletion of some vertex yields a planar graph.
2 (Unit) disk graphs are intersection graphs of (unit) disks in R2.
3 Segment graphs are intersection graphs of segments in R2.
4 The published version of the paper gives a bound of 2O(k4/5 log k)nO(1) but it can easily be improved to

2O(k3/4 log k)nO(1), as confirmed to us by the authors of [2] (private communication).
5 Contact-segment graphs are the intersection graphs of non-crossing segments in R2.
6 A graph is d-DIR if it is the intersection graph of segments of R2 with at most d different slopes.

G. Berthe, M. Bougeret, D. Gonçalves, and J.-F. Raymond 13:3

▶ Theorem 4. Let r ∈ N, α ∈ (0, 1), µ ∈ R>0 and let G be a hereditary graph class where
every G ∈ G with n vertices and clique number ω has Or(ωµn) cliques of order less than r

and treewidth Or(ωµnα). There exists ε < 1 and an algorithm that solves Kr-Hitting on G
in time 2kε · nOr(1).

One additional motivation for this work was to generalize to Kr-Hitting the techniques
used in previous work to solve Triangle Hitting (in specific graph classes) and to extract
the minimal requirements for such an approach to work in more general settings. We believe
we met this goal as we actually describe a single generic approach that solves Kr-Hitting
on any input graph, for any r. The properties of the class in which the inputs are taken is
only used to bound its running time. Such a generalization effort can be fruitful and indeed
it allowed us afterwards to identify natural graph classes where subexponential algorithms
exist as a consequence of our general result, as we detail now.

In Section 6 we derive from Theorem 22 the following applications.

▶ Theorem 5. There is an algorithm solving Kr-Hitting in pseudo-disk graphs in time
2Or(k(r+1)/(r+2) log k) · nOr(1).

Pseudo-disk graphs are a classical generalization of disk graphs where to each vertex is
associated a pseudo-disk (a subset of the plane that is homeomorphic to a disk), two vertices
are adjacent if the corresponding pseudo-disks intersect and additionally we require that for
any two intersecting pseudo-disks, their boundaries intersect on at most two points. Disk
graphs and contact segment graphs are pseudo-disk graphs, so Theorem 5 applies to the two
settings handled by the algorithms of [2] and [4] mentioned at items 1 and 2 of Theorem 2.
Another application is the following:

▶ Theorem 6. There is an algorithm solving Kr-Hitting in map graphs7 in time
2Or(k(r+1)/(r+2) log k) · nOr(1).

We cannot expect a similar consequence for the more general class of string graphs.8
Indeed, there are n-vertex string graphs that are triangle-free and have treewidth Ω(n), for
instance the balanced bicliques.9 Note that such graphs prevent string graphs from satisfying
the requirement of Theorem 4. Also, and more importantly, by Theorem 3 under ETH there
is no 2o(n)-time algorithm for K3-Hitting in 2-DIR graphs, a restricted subclass of string
graphs. As we will show, large bicliques are the only obstructions in the sense that forbidding
them in string graphs allows us to solve the problem in subexponential FPT time. For this
we use the following light version of Theorem 4 (also consequence of Theorem 22) suited for
classes where the clique number is already bounded.

▶ Theorem 7. Let r ∈ N, α ∈ (0, 1) and let G be a hereditary graph class where every G ∈ G
with n vertices has O(n) cliques of order less than r and treewidth O(nα). There exists an
algorithm that solves Kr-Hitting on G in time 2Or(k2/(1+1/α) log k) · nOr(1).

As a consequence we obtain a subexponential FPT algorithm for string graphs excluding
large bicliques.

7 Map graphs are intersection graphs of interior-disjoint regions of R2 homeomorphic to disks.
8 String graphs are intersection graphs of Jordan arcs in R2. They generalize many of the most studied

classes of intersection graphs of geometric objects in the plane such as disk graphs, pseudo-disk graphs,
segment graphs, chordal graphs, etc.

9 Kn,n can be drawn as a 2-DIR graph with n horizontal disjoint segments that are all crossed by n
vertical disjoint segments.

IPEC 2024

13:4 Kick the Cliques

▶ Theorem 8. There is an algorithm solving Kr-Hitting in Kt,t-subgraph-free string graphs
in time 2Ot,r(k2/3 log k) · nOr(1).

Theorem 8 is a generalization in two directions (the objects to hit and the graph to consider)
of item 3 of Theorem 2. We note that under ETH the contribution of k cannot be improved
to 2o(

√
k), according to Theorem 3. Finally we observe that Theorem 4 can also be applied

to certain classes of sparse graphs.

▶ Theorem 9. For every graph H, there is an algorithm solving Kr-Hitting in H-minor-free
graphs in time 2OH,r(k2/3 log k) · nOr(1).

This is a more general statement than Theorem 1 in the sense that we are not limited to
apex-minor free graphs, with the price of a slightly larger time complexity.

Our techniques
Our subexponential algorithm for Kr-Hitting of Theorem 4 is obtained as follows. Given
(G, k), we first perform in Section 3 a preliminary branching step whose objective is to get
rid of large cliques (i.e., cliques of order at least kε for some ε ∈ (0, 1) that we will fix
later). This step is a folklore technique which is frequently used for any problem where a
solution has to contain almost all vertices of a large clique, like Triangle Hitting (or in
general Kr-Hitting), Feedback Vertex Set, or Odd Cycle Transversal. After this
preprocessing has been performed we can assume that the instances to solve have no clique
on more than kε vertices. Then, we greedily compute an r-approximate Kr-hitting set M . If
|M | > kr we can already answer negatively, so in the following we may assume |M | ≤ kr

and will use the fact that there is no Kr in G − M .
Now, the crucial part of the algorithm is Section 4. Informally, the goal of the algorithms

described in this section is to extend M into a superset M ′ together with a new parameter
k′ ≤ k, such that |M ′| = O

(
k1+cε

)
(for some c > 0) and that vertices of V (G) \ M ′ are

irrelevant for the problem of hitting r-cliques. In that way, we can remove them, and it remains
only to solve (G[M ′], k′), whose treewidth can be typically bounded by

√
ω(G)|M ′| in the

graph classes we consider. As
√

ω(G)|M ′| = O
(

k1/2+ c+1
2 ε

)
, this leads to a subexponential

algorithm. We stress that the high-level description above is not a kernelization because first
we actually do not produce a single reduced instance but instead we have to branch and
obtain a subexponential (in k) number of sub-instances and second because the reduction
steps are not carried out in polynomial time, but in subexponential (in k) time.

To obtain this set M ′, we use lemmatas 14 and 21 that are inspired from the following
“virtual branching” procedure of [14, Lemma 6.5]. This routine was introduced for Triangle
Hitting and works as follows. It starts with a triangle hitting set M (obtained by greedily
packing disjoint triangles), and outputs a slightly larger superset M ′ such that vertices
in G − M ′ are almost useless, in the sense that every triangle has at least two vertices
in M ′ (we do not detail here how to handle the triangles with exactly two vertices in M ′

and refer to [14]). This is done as follows. For a vertex v ∈ M , consider a maximum
matching M(v) ⊆ N(v) ∩ (V (G) \ M). If for every v ∈ M such a matching is small, meaning
|M(v)| ≤ kε, then we can define M ′ = M ∪

⋃
v∈M M(v). We are done as |M ′| = O(k1+ε)

remains small, and there is no longer a v ∈ M ′ with an edge in N(v) \M ′ (as this would form
a triangle outside M). Otherwise, if for some v ∈ M , |M(v)| > kε, a solution of Triangle
Hitting should either take v, or otherwise hits all edges of M(v). In the second case, it
would be too costly to guess which vertex is taken in each e ∈ M(v), so instead the procedure
“absorbs” M(v) by defining M ′ = M ∪ M(v). This absorption increases the size of M , but

G. Berthe, M. Bougeret, D. Gonçalves, and J.-F. Raymond 13:5

“virtually” decreases the parameter k, as it increases by |M(v)| the size of a matching that the
solution will have to hit. This leads to a running time typically dominated by the recurrence
f(k) = f(k − 1) + f(k − kε), which is subexponential in k.

Now, coming back to Kr-Hitting, given a set M , let us say10 that a type-i clique
is an r-clique X such that |X ∩ M | = i. We could remove type-1 cliques by using the
previous virtual branching procedure, defining now M(v) as a packing of r − 1 cliques
instead of a packing of edges, but the problem is that, if we want to obtain a set M ′ as
promised (where vertices of V (G) \ M ′ are useless), we also have to remove type-i cliques
for i ∈ {2, . . . , r − 1}. However, there is a first obstacle to remove such type-i cliques: as
the part common with M (which was before a single vertex in M) is now an i-clique, we
cannot afford to enumerate all possible choices X ′ of such an i-clique in M . Indeed, already
for i = 2 we would possibly consider a quadratic number of sets X ′, so absorbing every
packing (of (r − i)-cliques) M(X ′) (in the unfortunate case where these are all small) would
result in a set M ′ = M ∪

⋃
X′⊆M,|X′|=2 M(X ′) with |M ′| = Ω(k2), which is too large for our

purpose. To circumvent this issue, we identified a key property that holds in many geometric
graph classes like pseudo-disk or Kt,t-subgraph-free string graphs: in such graphs, there is
only a linear (in the number of vertices) number of i-cliques for fixed i, and for fixed clique
number ω. In our case, as ω is small, and i ≤ r is fixed, this implies that there are O(|M |)
such i-cliques in M . Hence, it allows us to control the size of M ′. Of course, dealing with
r-cliques instead of triangles also raises other problems, in particular related to the way we
hit their intersection with M which is no longer a single vertex but a clique. To deal with
this issue we had to introduce an annotated variant of the problem where additional sets of
vertices have to be hit besides r-cliques.

Organization of the paper
In Section 2 we give the necessary definitions. We describe the first branching in Section 3
and the second in Section 4. The algorithm is given in Section 5. We give applications to
selected graph classes in Section 6. We conclude with open questions in Section 7.

2 Preliminaries

Running times
When stating results related to algorithms, the variable n in the running time always refers to
the number of vertices of the graph that is part of the input. For any parameter p (typically
a graph H, or an integer r) and integer k, and any functions f(p, k) and g(k), we write
f = Op(g(k)) to indicate that for any fixed p, the restricted function k → f(p, k) is O(g(k)).
To simplify the presentation we will assume that r is a fixed constant instead of explicitly
give it as a parameter in all our algorithms and lemmas.

Graphs
Unless otherwise stated we use standard graph theory terminology. A clique in a graph G is
a complete subgraph and when there is no ambiguity we also use clique to denote a subset
of V (G) inducing a complete subgraph. The clique number of G is the maximum number
of vertices of a clique it contains and we denote it by ω(G). For any i ∈ N, an i-clique is a

10 This notion of type-i clique will not be used later and is just introduced for this sketch.

IPEC 2024

13:6 Kick the Cliques

clique on i vertices and a (< i)-clique is a clique on less than i vertices. For any graph G

and subset of vertices X ⊆ V (G), we denote G − X the graph whose vertex set is V (G) \ X

and edge set is {e ∈ E(G) : e ∩ X = ∅}. Let H be a graph. We say that G is H-free if G

does not contain H as induced subgraph.

Hypergraphs and hitting sets
A hypergraph is simply a collection of sets, where any set is referred as an hyperedge. So
|D| refers to the number of sets in the hypergraph D and we define V (D) =

⋃
D∈D D. By

Kr(G) (resp. K<r(G)) we denote the hypergraph of r-cliques (resp. (< r)-cliques) of G, i.e.
Kr(G) = {X ⊆ V (G), X is an r-clique}.

A hitting set of D is a subset X ⊆ V (D) that intersects every hyperedge of D. A matching
of D is a collection of disjoint hyperedges. The maximum size of a matching in D is denoted
by ν(D). Note that a hitting set of D has always size at least ν(D) as it needs to intersect
each of the elements of a maximum matching, which are disjoint.

Special cases of hitting sets of hypergraphs are the hitting sets of subgraphs of a graph.
For G, H two graphs, an H-hitting set in G is a subset X ⊆ V (G) such that G − X is
H-free. In other words it is a hitting set of the hypergraph of the (induced) subgraphs of G

isomorphic to H. In the H-Hitting problem, given a graph G and an integer k ∈ N, one
has to decide whether G has a H-hitting set of size at most k.

3 Dealing with large cliques

A Kr-Hitting can be useful to detect large cliques, as we explain now. This will allow us to
identify cliques on which to branch.

▶ Lemma 10. Given a graph G, a Kr-hitting set M , and an integer p > r, one can find a
p-clique of G, or correctly conclude none exists, in O(p2|M |pnr−1) steps.

Proof. For each choice of p − r + 1 vertices of M and r − 1 other vertices of G we check
whether they form a clique (which takes O(p2) time), in which case return it and stop. If
no clique is found we return that G is Kp-free. The correctness follows from the following
observation: as G − M is Kr-free, every p-clique of G has at least p − r + 1 of its vertices
in M . ◀

As noted in the proof of Lemma 10, every large clique of the input graph will have most
of its vertices in a Kr-hitting set so we can branch on which these are.

▶ Lemma 11. There is an algorithm that, given two integers r ≥ 1 and p > r, an instance
(G, k) of Kr-Hitting and a Kr-hitting set M of G, runs in 2kr(log p)/p|M |pnO(r) steps and
returns a collection Y of 2kr(log p)/p · |M |p instances of the same problem such that:
1. (G, k) is a yes-instance if and only if Y contains a yes-instance;
2. for every (G′, k′) ∈ Y, G′ has no p-clique.

Proof. The algorithm is the following:
1. Using the algorithm of Lemma 10 on G and M , we find a p-clique K (if none is found

return Y = {(G, k)}).
2. We initialize Y = ∅.
3. Observe that any solution contains at least p − r + 1 vertices from K. For every subset

X of K with p − r + 1 ≤ |X| ≤ k vertices:

G. Berthe, M. Bougeret, D. Gonçalves, and J.-F. Raymond 13:7

M

D ∈ D

X
Y ∈ Petals5(G,X)

Figure 1 A 3-clique X with two 5-petals that live in G − M . Here D contains two hyperedges,
represented in orange. Observe that no hyperedge of D is contained in X, so X is a lush 3-clique.

a. We look for solutions S that contain X with a recursive call on (G − X, k − |X|) and
M \ X;

b. We then add the resulting collection of instances to Y.
4. Return Y.

Regarding correctness, Item (2) follows from the base case of the recursion (step 1) and
Item (1) can be proved by induction on the number of recursive calls, using the observation
that (G, k) has a solution containing a set X if and only if (G − X, k − |X|) has a solution.

We denote by Tr,p(n, k) the time complexity of the above algorithm with parameters
r, p, (G, k) where |G| = n. The time taken by each computation step is the following:
1. Finding a p-clique takes time O(p2|M |pnr−1) by Lemma 10.
2. When a p-clique K is found we consider at most pr−1 subsets X on which we perform a

recursive call of cost at most Tr,p(n − p + r − 1, k − p + r − 1).

So

Tr,p(n, k) ∈ |M |pnO(r) + pr−1 · Tr,p(n − p + r − 1, k − p + r − 1).

We deduce

Tr,p(n, k) ∈ pk(r−1)/(p−r+1)|M |pnO(r)

∈ 2kr(log p)/p|M |pnO(r),

as desired. Note that a similar recurrence can be used to bound the number of output
instances. ◀

4 Picking petals

Let i ∈ {1, . . . , r − 1} and let X be an i-clique in a graph G. An r-petal of X is a subset of
vertices of G − X that together with X forms an r-clique. We denote by Petalsr(G, X) the
hypergraph of r-petals of X, i.e., Petalsr(G, X) = {Y ⊆ V (G) \ X, X ∪ Y ∈ Kr(G)}. See
Figure 1 for an illustration.

In order to deal more easily with the recursive steps in our algorithms we introduce
Ann.-Kr-Hitting, an annotated version of Kr-Hitting where a number of choices have
already been made, which is recorded by extra vertex subsets that the solution is required to
hit.

IPEC 2024

13:8 Kick the Cliques

In the Ann.-Kr-Hitting problem, one is given a triple (G, D, k) where G is a graph,
D ⊆ K<r(G) and k is an integer. A solution to this instance is a set of vertices that hits
Kr(G) and D and has at most k vertices. The question is whether the input instance admits
a solution.

In the forthcoming algorithms it will also be more convenient to consider, together with
an instance, a non-optimal solution M . This motivates the following definition. A context is
a pair ((G, D, k), M) where (G, D, k) is an instance of Ann.-Kr-Hitting, M is a Kr-hitting
set (possibly larger than k), and V (D) ⊆ M . We say that a context is positive if the instance
of Ann.-Kr-Hitting it contains is a yes-instance, and negative otherwise.

Given a context ((G, D, k), M) and i ∈ {1, . . . , r − 1}, a lush i-clique is an i-clique X of
G[M] that has an r-petal in G − M and such that no D ∈ D is subset of V (X). See Figure 1
for an example.

Informally, if X is a lush clique then we are not guaranteed that hitting D alone does
always also hit the cliques induced by X and its petals, so we have to take care of them
separately. Ideally we would like to get rid of lush cliques so that we can focus on D to solve
the problem. We say that the context ((G, D, k), M) is i-stripped if for every i′ < i it has no
lush i′-clique. These notions are motivated by the following easy lemma.

▶ Lemma 12. Let ((G, D, k), M) be an r-stripped context. The instances (G, D, k) and
(G[M], D, k) of Ann.-Kr-Hitting are equivalent.

Proof. First, recall that as ((G, D, k), M) is a context, V (D) ⊆ M so (G[M], D, k) is indeed
a valid instance of Ann.-Kr-Hitting. Also as Kr(G[M]) ⊆ Kr(G), if (G, D, k) has a solution
then (G[M], D, k) does. So we only need to show the other direction. Let v ∈ V (G) \ M and
suppose that G contains some r-clique X with v ∈ X. The set M ∩ X is not empty because
M is a Kr-hitting set. Note that X ∩ M has a petal X \ M disjoint from M . It cannot
form a lush i-clique (for i = |M ∩ X| < r) as this would contradict the assumption that the
considered context is r-stripped, so there is some D ∈ D that is subset of X ∩ M . Therefore
every solution of (G[M], D, k) does hit X in G, as it hits D. As this holds for every v and X

as above, every solution of (G[M], D, k) is a solution of (G, D, k), as desired. ◀

By the above lemma, if we manage to get rid of lush cliques, we can obtain an equivalent
instance whose graph is not larger than G[M]. As we will see, we are able to handle lush
cliques with the price of slightly increasing the size of M and producing several instances to
represent the solutions of the original instance.

▶ Lemma 13. There is an algorithm that, given an integer i < r and an i-stripped context
((G, D, k), M), runs in time nO(r) and either correctly concludes that the context is (i + 1)-
stripped, or returns a lush i-clique X.

Proof. The input context is i-stripped so we only have to check whether it contains a lush
i-clique. We iterate over the i-cliques of G[M]. For every such clique X, we first check if
D ⊆ V (X) for some D ∈ D. If so X is not a lush i-clique so we can move to the next choice
of X. Otherwise we check if the common neighborhood of the vertices of X in G − M has
an (r − i)-clique. If so this is an r-petal so X is lush and we can return it. Otherwise we
continue to the next choice of X. If the iteration terminates without detecting a lush i-clique,
we can safely return that the input context is (i + 1)-stripped. The complexity bound follows
from the fact that |D| = nO(r) and that G[M] has nO(r) i-cliques. ◀

The following lemma is the key branching step in our subexponential algorithms for
Kr-Hitting.

G. Berthe, M. Bougeret, D. Gonçalves, and J.-F. Raymond 13:9

▶ Lemma 14. There is an algorithm that, given i ∈ {1, . . . , r − 1} and λ ∈ {1, . . . , k} and an
i-stripped context ((G, D, k), M) where we denote by ζ the number of i-cliques in G[M], runs
in time 2O((k/λ)·log ζ) · nO(r) and returns a collection Z of size 2O((k/λ)·log ζ) of (i + 1)-stripped
contexts such that:
1. ((G, D, k), M) is a positive context if and only Z contains one; and
2. for every ((G′, D′, k′), M ′) ∈ Z, M ⊆ M ′, |M ′| ≤ |M | + r(λζ + k), and k′ ≤ k.

Proof. Let us define an auxiliary algorithm that takes as input (i, λ, (G, D, k), M, P∗), where
(i, λ, (G, D, k), M) is as specified in the statement of the lemma, and P∗ is a matching of D,
and output the promised collection Z. Such an auxiliary algorithm will imply the lemma, as
we will run it with parameters (i, λ, (G, D, k), M, ∅). For simplicity, as i and λ will not change
between recursive calls: we denote by ((G, D, k), M, P∗) the parameter of this auxiliary
algorithm, which is defined as follows:
1. If k < |P∗|, we can immediately return Z = ∅.
2. Run the algorithm of Lemma 13 on i and ((G, D, k), M). If no lush i-clique is found

then the input context is already (i + 1)-stripped so we return Z = {((G, D, k), M)}.
Otherwise let X denote the lush i-clique we found.

3. Construct the hypergraph BX of those r-petals of X that are subset of V (G) \ M .
4. Greedily compute a maximal matching P in BX .
5. If ν̃X ≤ λ, we return the result of the recursive call with parameters ((G, D, k), M ∪

V (P), P∗) (and quit).
6. Otherwise, we investigate the different ways to hit the r-cliques induced by X and BX

(via X or via BX) as follows.
a. Solutions containing some (yet unspecified) vertex of X: this is done by a recursive

call with parameters ((G, D ∪ {X}, k), M, P∗). We call Z1 the resulting family.
b. Solutions hitting P.11 As P is disjoint from M (hence from P∗), such solutions exist

only if k ≥ |P∗| + |P|. In this case we define Z2 as the result of the recursive call with
parameters

((G, D ∪ P, k), M ∪ V (P), P∗ ∪ P).

Otherwise we set Z2 = ∅.
7. We return Z1 ∪ Z2.

Observe first that in step (6b), the last parameter P∗ ∪ P is a matching as required, as
in particular V (P) ⊆ V (G) − M and V (P∗) ⊆ M , by definition. We first prove the following
fragment of item (2).

▷ Claim 15. For every ((G′, D′, k′), M ′) ∈ Z, M ⊆ M ′ and k′ ≤ k.

Proof. The only places where M is updated are steps 5 and 6b, where new vertices are added
to it. Besides we never change the value of the parameter k. ◁

Let us describe the recursion tree T of the above algorithm on some input ((G, D, k), M, P).
The nodes of this tree are inputs. The root is ((G, D, k), M, ∅) and a node s′ is child of a
node s if a call of the above algorithm on the input s triggers a call on the input s′. So the
leaves of this tree are the inputs that do not trigger any recursive call.

11 Notice that some of these solutions have possibly already been investigated in the previous step. For
our purpose it is not an issue however to consider several times the same solution.

IPEC 2024

13:10 Kick the Cliques

Let us consider a path from the root of T to some leaf. We denote by

((Gj , Dj , kj), Mj , P∗
j)j∈{1,...,ℓ}

the inputs along this path, and by Cj = ((Gj , Dj , kj), Mj) the corresponding contexts,
with ((G1, D1, k1), M1, P∗

1) = ((G, D, k), M, ∅) and ((Gℓ, Dℓ, kℓ), Mℓ, P∗
ℓ) corresponding to

the aforementioned leaf. Also, for every j ∈ {1, . . . , ℓ − 1} we denote by Xj the lush i-clique
of Cj that is considered in the corresponding call.

We first show that all lush i-cliques considered along this path belong to the hitting set
M = M1 of the initial context.

▷ Claim 16. For every j ∈ {1, . . . , ℓ − 1}, Xj ⊆ M .

Proof. Suppose towards a contradiction that for some j, Xj ⊈ M . Observe that since Cj is
not a leaf, BXj is not empty so Xj induces an r-clique together with some r-petal B ∈ BXj .
Recall that B is disjoint from Mj , by definition of BXj

. As Mj is a superset of M (Claim 15),
B is disjoint from M as well. So M intersects Xj otherwise the r-clique Xj ∪ B would not
be hit by M . Let i′ = |Xj ∩ M |. Note that Xj ∩ M is a lush i′-clique of C1 since it has an
r-petal B ∪ (X \ M) disjoint from M (the fact that no set of D is subset of Xj ∩ M follows
from the fact that this property holds for Xj). By our initial assumption and as |Xj | = i, we
have i′ < i. This contradicts the fact that C1 is i-stripped. ◁

With a similar proof we can show the following (so the recursive calls are indeed made
on valid inputs).

▷ Claim 17. For every i ∈ {1, . . . , ℓ}, Ci is i-stripped.

Let us now show that each lush clique is only considered once.

▷ Claim 18. For every distinct j, j′ ∈ {1, . . . , ℓ − 1}, Xj ̸= Xj′ .

Proof. Suppose towards a contradiction that for some j < j′ we have Xj = Xj′ . Then in the
call on the context Cj , the next context Cj+1 was obtained at step 5 or 6b (since at step 6a
we would include Xj in Dj , preventing it to be considered in future calls). In any of these
two possibilities we set Mj+1 = Mj ∪ V (Pj), where Pj denotes the maximal matching of
step 4 in the call on context Cj .

Besides, as Xj is a lush i-clique in the context Cj′ , then it has some r-petal B subset
of V (Gj′) − Mj′ . As Mj+1 ⊇ Mj′ (Claim 15), B is also an r-petal of Xj and is subset
of V (Gj) − Mj and by the above observation, it is disjoint from Pj . This contradicts the
maximality of Pj . ◁

Recall that the number of i-cliques in M is ζ. As a consequence of Claim 16 and Claim 18,
we get the following.

▷ Claim 19. The recursion tree has depth at most ζ.

We can now conclude the proof of item (2).

▷ Claim 20. For every ((G′, D′, k′), M ′) ∈ Z, |M ′| ≤ |M | + r(λζ + k).

Proof. When considering the context Cj , and given the chosen maximal matching Pj of the
petals of Xj , the set Mj+1 is defined from Mj by:

either adding the at most λ(r − 1) new vertices of Pj , if we make the recursive call at
step 5,
or by adding the vertices of the petals of Pj , if we recurse at step 6b. Recall that in this
case we also have Dj+1 = Dj ∪ Pj and P∗

j+1 = P∗
j ∪ Pj

G. Berthe, M. Bougeret, D. Gonçalves, and J.-F. Raymond 13:11

In the later case the number of added vertices is not directly bounded however we have
|P∗

j+1| = |P∗
j | + |Pj |. Because of the stopping condition of step 1, we will overall (from C1

to Cℓ) add at most k petals to the hypergraph and each petal has at most r − 1 vertices.
Hence we get |M ′| ≤ |M | + r(λζ + k), as claimed. ◁

Let us now show that the algorithm is correct, i.e., item 1 of the statement of the lemma.
The proof is by induction on the depth of the recursion tree (i.e., ℓ − 1 with the notation
above). When the depth is 0, there is no recursive call. This corresponds to the two base
cases in this algorithms: step 1, when the “budget” k is insufficient, and step 2, when the
input context is already (i + 1)-stripped. Clearly the outputs in these cases satisfy 1.

So we now consider the case of a run of the algorithm where the recursion tree has depth
at least 1 and suppose that item 1 holds for all runs with recursion trees of smaller depth.

If the recursive call is made at step 5 then item 1 trivially holds because the instance is
unchanged.
Otherwise, note that any solution has to hit the r-cliques induced by X and BX . So any
solution either contains a vertex of X, or hits BX (or both). These are exactly the two
branches that are explored in steps 6a and 6b, respectively, by our induction hypothesis.

The above shows that the algorithm is correct. It remains to prove that it has the claimed
running time. Note that we do not update the graph neither the parameter between recursive
calls: we will always work on the graph G with n vertices and with the parameter k. So the
induction proving the time bound will use two different parameters as we explain now. For
every x, y ∈ N, let us denote by T (x, y) the worst-case running time of the above algorithm
on an input ((G, D, k), M, P∗) with |G| = n such that there is at most x (non-necessarily
disjoint) lush i-cliques in G[M] and such that |P∗| ≥ y. Let Sr(n) be the sum of the
worst-case complexity of all subroutines needed in the different steps of item (1) to item (7)
to the exception of recursive calls (one such subroutine is the algorithm of Lemma 13, another
one is the construction of the hypergraph BX). Observe that T (x, y) ≤ Sr(n) when y > k

(as we fall into base case of step 1) or when x = 0 (as we fall into base case of step 2). Notice
also that by definition we have T (x, y) ≤ T (x′, y) for any x ≤ x′, and T (x, y) ≤ T (x, y′) for
any y′ ≤ y.

If we make a recursive call at step 5, we return in time at most T (x − 1, y) (by induction)
as, by Claim 18, no lush i-clique of the original instance is considered twice. Otherwise, we will
make recursive calls in step 6 which by induction take time at most T (x−1, y)+T (x−1, y+|P|)
as, in the first branch 6a of recursion, Claim 18 implies again that no lush i-clique is considered
two times, and in the second branch 6b, we know in addition that the size of the matching
given as parameter increases by |P|. Thus, in both cases (and including the other computation
steps which take time Sr(n)), we obtain the upper bound:

T (x, y) ≤ T (x − 1, y) + T (x − 1, y + |P|) + Sr(n)
≤ T (x − 1, y) + T (x, y + λ) + Sr(n).

(For the last line recall that T is anti-monotone with respect to its second parameter.)
Let us now show that for every x, y ∈ N, T (x, y) ≤ xT (x, y + λ) + (x + 1)Sr(n). The proof

is by induction on x. The base case x = 0 holds as observed above. Suppose the inequality
holds for x − 1. As proved above

T (x, y) ≤ T (x − 1, y) + T (x, y + λ) + Sr(n)
≤ (x − 1)T (x − 1, y + λ) + xSr(n) (by induction)

+ T (x, y + λ) + Sr(n)
≤ xT (x, y + λ) + (x + 1)Sr(n), as claimed. (1)

IPEC 2024

13:12 Kick the Cliques

We now prove that for every x, y ∈ N,

T (x, y) ≤ x
k+1−y

λ +
(

1 + k + 1 − y

λ

)
(x + 1)Sr(n).

This time the induction is on y. The base case y > k hold as observed above. Let x ≥ 1 and
y ≤ k and suppose the inequality holds for any pair (x′, y′) with y′ > y. Then as proved
above in Eq. 1,

T (x, y) ≤ xT (x, y + λ) + (x + 1)Sr(n)

≤ x · x
k+1−y−λ

λ +
(

1 + k + 1 − y − λ

λ

)
(x + 1)Sr(n) + (x + 1)Sr(n)

≤ x
k+1−y

λ +
(

1 + k + 1 − y

λ

)
(x + 1)Sr(n).

Observe that Sr(n) is dominated by the time spent in the algorithm of Lemma 13, and
thus Sr(n) ∈ nO(r). As we initially have x ≤ ζ and y ≥ 0, we obtained the claimed running
time. A similar analysis can be used to bound the size of the output family Z. ◀

By iterating the algorithm of Lemma 14 for increasing values of i we can obtain a collection
of r-stripped contexts, as we explain now.

▶ Lemma 21 (picking petals). There is an algorithm that, given i ∈ {1, . . . , r}, λ ∈ R≥1,
a context ((G, D, k), M), where we denote by ζ the number of (< r)-cliques in G[M], runs
in time 2O((i·k/λ)·log ζ) · nO(r) and returns a collection Z of size 2O((i·k/λ)·log ζ) of i-stripped
contexts such that:
1. (G, D, k) is a yes-instance if and only if some input of Z contains one; and
2. for every ((G′, D′, k′), M ′) ∈ Z, M ⊆ M ′, |M ′| ≤ |M | + ir(λζ + k), and k′ ≤ k.

Proof. Again for the sake of clarity we assume λ is a fixed constant.
The proof is by induction on i. For the base case i = 1 we simply observe that

((G, D, k), M) is already 1-stripped so there is nothing to do.
So let us now suppose that i > 1 and that the statement holds for i − 1. So from the

input context ((G, D, k), M) and i − 1 we can use the induction hypothesis to construct
a collection Zi−1 of (i − 1)-stripped contexts satisfying the statement for i − 1. Now we
apply the algorithm of Lemma 14 to i − 1 and each context in Zi−1 and call Zi the union
of the obtained collections. Item 1 follows from the properties of Zi−1 and the correctness
of the algorithm of Lemma 14. Constructing Zi−1 takes time 2O(((i−1)·k/λ)·log ζ) · nO(r) (by
induction) and then we run the

(
2O((k/λ)·log ζ) · nO(r)) -time algorithm of Lemma 14 on each of

its 2O(((i−1)·k/λ)·log ζ) contexts. This results in an overall running time of 2O((i·k/λ)·log ζ) ·nO(r),
as claimed. In each context of Zi−1 the set M ′ has size at most |M | + (i − 1)r(λζ + k)
(by induction) and after the run of the algorithm Lemma 14, the corresponding set in the
produced instances has at most r(λζ + k) vertices more so we get the desired bound. Finally,
as in the proof of Lemma 14 the value of k never changes. ◀

5 Kick the cliques

For every ϕ, γ ∈ R≥0 and α ∈ (0, 1), we say that graph class G has property Pr(ϕ, γ, α) if
there are functions f(x) ∈ O(xϕ) and g(x) ∈ O(xγ) such that for G ∈ G with n vertices and
clique number less than ω,
(P1) G has at most f(ω) · n cliques of order less than r; and
(P2) tw(G) ≤ g(ω)nα.

G. Berthe, M. Bougeret, D. Gonçalves, and J.-F. Raymond 13:13

Our main contribution is the following.

▶ Theorem 22. For every hereditary graph class G that has property Pr(ϕ, γ, α) for some
α ∈ (0, 1), ϕ, γ ∈ R≥0, there is an algorithm that solves Kr-Hitting on G in time

2Or,ϕ(kε log k) · nOr(1) with ε = γ + α(ϕ + 2)
γ + α(ϕ + 1) + 1 < 1,

i.e., subexponential FPT time.

Proof. Let f : x 7→ cf · xϕ and g : x 7→ cg · xγ (for some cf , cg > 0) be as in the definition of
property Pr(ϕ, γ, α). For the sake of readability we will here use (when deemed useful) exp
to denote the function x 7→ 2x defined over reals. Given an instance (G, k) of Kr-Hitting,
we consider the context ((G, D, k), M) where D = ∅ and M is an r-approximation of a
Kr-hitting set computed in nO(r) time by greedily packing disjoint r-cliques. If |M | > kr we
can already answer negatively, so in what follows we suppose that |M | ≤ kr. We run the
algorithm of Lemma 11 with p = ⌈kε⌉ for some constant ε ∈ (0, 1) that we will fix later. In
time

2O(rk1−ε log k)nO(r)

we obtain a set Y of 2O(rk1−ε log k) contexts that have no p-clique. For each such context we
apply the petal-picking algorithm of Lemma 21 with

λ = kε and
ζ = f(p) · |M |

∈ O
(
rk1+εϕ

)
.

Let Z denote the union of the outputs families of these algorithms. Computing this set then
takes time

|Y| · 2O((r·k/λ)·log ζ) · nO(r) ∈ 2O(r·k1−ε(log k+log ζ)) · nO(r)

∈ 2O(r2·(1+εϕ)k1−ε log k) · nO(r).

For every ((G′, D′, k), M ′) ∈ Z we have

|M ′| ≤ |M | + r2(λζ + k) by Lemma 21
∈ O

(
kr + r2(rk1+εϕ+ε + k)

)
∈ O

(
r3k1+ε(ϕ+1)

)
.

So given any such context, we can decide whether it is positive or not in time

2g(p)|M ′|α

nO(1) ∈ exp
(

O
(

pγ ·
(

r3k1+ε(ϕ+1)
)α))

· nOr(1)

∈ exp
(

O
(

r3α · kεγ+α(1+ε(ϕ+1))
))

· nOr(1)

as follows: first we use Lemma 12 to delete irrelevant vertices and obtain an equivalent
instance H on |M ′| vertices, then we use property Pr(ϕ, γ, α) to bound the treewidth of H and
then we solve the problem by dynamic programming on an approximate tree-decomposition in
2O(tw(H))nO(1) time by noting that every r-clique and every D′ ∈ D′ (which is an (< r)-clique)
has to be contained in a bag.

IPEC 2024

13:14 Kick the Cliques

So overall, computing Z and solving the problem in each sub-instance takes time

exp
(

Or

(
(1 + εϕ)k1−ε log k + kεγ+α(1+ε(ϕ+1))

))
· nOr(1)

∈ exp
(

Or

(
(1 + εϕ)k1−ε log k + kε(γ+α+αϕ)+α

))
· nOr(1).

As we aim for algorithms where the contribution of k to the time complexity is of the
form 2o(k), the above bound sets the following constraint: ε < 1−α

γ+α+αϕ . Let ε = 1−α−δ
γ+α+αϕ for

some constant δ ∈ (0, 1) that we will fix later. Then the above complexity becomes:

exp
(
Or

(
(1 + εϕ)k1−ε log k + k1−δ

))
· nOr(1).

We optimize (ignoring logarithmic factors) by choosing the value of δ so that 1 − ε = 1 − δ,
i.e., δ = 1−α

γ+α(ϕ+1)+1 . This gives the following overall time bound:

2Or

(
(1+εϕ)kε′

log k
)

· nOr(1) with ε′ = γ + α(ϕ + 2)
γ + α(ϕ + 1) + 1 .

As α < 1 we have ε′ < 1 so the algorithm runs in subexponential FPT time, as desired. ◀

6 Applications

In this section we give applications of Theorem 22 to specific graph classes. First we have to
show that the considered classes satisfy property Pr (recall that this property is defined at
the beginning of Section 5).

6.1 Pseudo-disk graphs and map graphs
In this subsection we will prove the following lemma.

▶ Lemma 23. Pseudo-disk graphs and map graphs have the property Pr(r − 2, 1/2, 1/2).

As a consequence we get the two following results.

▶ Theorem 5. There is an algorithm solving Kr-Hitting in pseudo-disk graphs in time
2Or(k(r+1)/(r+2) log k) · nOr(1).

▶ Theorem 6. There is an algorithm solving Kr-Hitting in map graphs12 in time
2Or(k(r+1)/(r+2) log k) · nOr(1).

To prove Lemma 23, we first need to state some external results. For d ∈ N we say that
a graph G is d-degenerate if every subgraph of G (including G itself) has a vertex of degree
at most d. In order to bound the number of small cliques in the considered graphs we can
bound their degeneracy and then rely on the following result of Chiba and Nishizeki.

▶ Theorem 24 ([6]). Any string graph G with n vertices and degeneracy d has O(idi−1n)
i-cliques.

Actually [6] gives a time bound for the enumeration of i-cliques in graphs of arboricity d.
As arboricity and degeneracy are linearly bounded by each other and since the time bound
implies a bound on the number of enumerated objects (up to a constant factor), we get the
above statement.

12Map graphs are intersection graphs of interior-disjoint regions of R2 homeomorphic to disks.

G. Berthe, M. Bougeret, D. Gonçalves, and J.-F. Raymond 13:15

▶ Theorem 25 ([3]). Pseudo-disk graphs on n vertices with clique number ω have at most
3eωn edges and treewidth O(

√
ωn). In particular they are (3eω)-degenerate.

▶ Theorem 26 ([5]). Map graphs on n vertices with clique number ω have at most 7ωn edges.
In particular they are (7ω)-degenerate.

To bound the treewidth of map graphs we use the following combination of results on balanced
separators of string graphs of Lee and the links between separators and treewidth of Dvořák
and Norin.

▶ Theorem 27 ([12] and [8]). Any m-edge string graph has treewidth O(
√

m).

As a consequence of Theorem 26 and Theorem 27 we get the following.

▶ Corollary 28. Map graphs on n vertices with clique number ω have treewidth O(
√

ωn).

Proof of Lemma 23. Let G be a pseudo-disk graph with n vertices and clique number ω. By
Theorem 25 the pseudo-disk graphs with n vertices and clique number ω are (3eω)-degenerate,
so by Theorem 24 they have O((r − 1)2(3eω)r−2n) cliques of order less than r. So property
P1 holds with ϕ = r − 2. By Theorem 25 property P2 is satisfied with α = 1/2 and γ = 1/2.
The proof for map graphs is very similar, using Theorem 26 and Corollary 28. ◀

6.2 String graphs
We now move to string graphs where, as discussed in the introduction, forbidding large
bicliques is necessary. Actually for Kt,t-subgraph free string graphs the branching of Lemma 10
to reduce the clique number is not necessary in the algorithm of Theorem 22 as the number
of small cliques and the treewidth are already suitably bounded. This explains the zeroes in
Lemma 29 hereafter. In this subsection we will prove the following lemma.

▶ Lemma 29. Kt,t-subgraph-free string graphs have the property Pr(0, 0, 1/2).

As a consequence we get the following result.

▶ Corollary 30. There is an algorithm solving Kr-Hitting in Kt,t-subgraph-free string
graphs in time

2Ot,r(k2/3 log k) · nOr(1).

The contributions of t and r to the complexity in Corollary 30 are not explicit due to the
way we stated the bound of Theorem 22 but can be extracted from the proof of this theorem.

▶ Theorem 31 ([12]). For every t ∈ N, Kt,t-subgraph-free string graphs on n vertices have
degeneracy O(t log t) and treewidth O(

√
n · t log t).

Proof of Lemma 29. Combining Theorem 24 and Theorem 31 we get that the number of
(< r)-cliques in Kt,t-subgraph-free string graphs is Or((t log t)r−2n), i.e. P1 holds with ϕ = 0.
Theorem 31 gives P2 with α = 1/2 and γ = 0. ◀

6.3 Minor-closed classes
In this subsection we will prove the following lemma.

▶ Lemma 32. For every graph H, H-minor-free graphs have the property Pr(0, 0, 1/2).

IPEC 2024

13:16 Kick the Cliques

As a consequence we get the following result.

▶ Theorem 9. For every graph H, there is an algorithm solving Kr-Hitting in H-minor-free
graphs in time 2OH,r(k2/3 log k) · nOr(1).

To prove Lemma 32, we first need to state some external results.

▶ Theorem 33 (see [16]). Every d-degenerate graph with n ≥ d vertices has at most
2d(n − d + 1) cliques.

▶ Theorem 34 ([11, 15]). For every h-vertex graph H there is a constant d = O(h
√

log h)
such that H-minor-free graphs are d-degenerate.

▶ Theorem 35 ([1]). For every graph H, n-vertex H-minor-free graphs have treewidth
OH(

√
n).

Proof of Lemma 32. As a consequence of Theorem 34 and Theorem 33, H-minor-free graphs
have a linear number of cliques (regardless of their clique number). Hence they satisfy P1
with ϕ = 0. By Theorem 35 they also satisfy P2 with α = 1/2 and γ = 0. ◀

7 Open problems

As discussed in the introduction, our main result provides a generic way to obtain subex-
ponential parameterized algorithms for Kr-Hitting, which can in particular be applied to
several graph classes for which such algorithms were know from previous work (for Triangle
Hitting, the special case r = 3). Nevertheless there is still a gap between the running times
of these different applications of our algorithm and the best time bounds for these specific
classes. One can for instance compare our Theorem 5 (resp. Theorem 9) with the previous
results corresponding to items 1 and 2 of Theorem 2 (resp. Theorem 1). It would be nice to
match these known bounds, or to improve them when possible. More generally we can ask
about the infimum ε such that Kr-Hitting can be solved in time 2O(kε)nO(1) in the classes
we considered. We recall that under ETH, K3-Hitting cannot be solved in time 2o(

√
n) (so

ε ≥ 1/2) even for a very restricted subclass of string graphs (Theorem 3).
A second research direction is to understand for which graphs H our results can be

extended to the H-Hitting problem (where one wants to hit any subgraph isomorphic to
H). In disk graphs for example, it is already known [14] that there exist subexponential
FPT algorithms for Pℓ-Hitting when ℓ ≤ 5.

Recall that in this paper we gave sufficient conditions for a hereditary graph class to
admit a subexponential FPT algorithm for Kr-Hitting. It remains an open problem to
characterize such classes.

References
1 Noga Alon, Paul Seymour, and Robin Thomas. A separator theorem for nonplanar graphs.

Journal of the American Mathematical Society, 3(4):801–808, 1990. URL: http://www.jstor.
org/stable/1990903.

2 Shinwoo An, Kyungjin Cho, and Eunjin Oh. Faster algorithms for cycle hitting problems
on disk graphs. In Pat Morin and Subhash Suri, editors, Algorithms and Data Structures
- 18th International Symposium, WADS 2023, Montreal, QC, Canada, July 31 - August 2,
2023, Proceedings, volume 14079 of Lecture Notes in Computer Science, pages 29–42, Berlin,
Heidelberg, 2023. Springer. doi:10.1007/978-3-031-38906-1_3.

http://www.jstor.org/stable/1990903
http://www.jstor.org/stable/1990903
https://doi.org/10.1007/978-3-031-38906-1_3

G. Berthe, M. Bougeret, D. Gonçalves, and J.-F. Raymond 13:17

3 Gaétan Berthe, Marin Bougeret, Daniel Gonçalves, and Jean-Florent Raymond. FVS for
pseudo-disk graphs in subexponential FPT time. In Proceedings of WG 2024. LNCS, Springer,
2024.

4 Gaétan Berthe, Marin Bougeret, Daniel Gonçalves, and Jean-Florent Raymond. Subexponential
Algorithms in Geometric Graphs via the Subquadratic Grid Minor Property: The Role of
Local Radius. In Hans L. Bodlaender, editor, 19th Scandinavian Symposium and Workshops on
Algorithm Theory (SWAT 2024), volume 294 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 11:1–11:18, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.SWAT.2024.11.

5 Zhi-Zhong Chen, Michelangelo Grigni, and Christos H Papadimitriou. Map graphs. Journal
of the ACM (JACM), 49(2):127–138, 2002. doi:10.1145/506147.506148.

6 Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM
Journal on computing, 14(1):210–223, 1985. doi:10.1137/0214017.

7 Erik D Demaine, Fedor V Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and h-minor-free graphs.
Journal of the ACM (JACM), 52(6):866–893, 2005. doi:10.1145/1101821.1101823.

8 Zdeněk Dvořák and Sergey Norin. Treewidth of graphs with balanced separations. J. Comb.
Theory B, 137:137–144, 2019. doi:10.1016/j.jctb.2018.12.007.

9 Fedor V Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Bidimensionality
and EPTAS. In Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete
Algorithms, pages 748–759. SIAM, 2011. doi:10.1137/1.9781611973082.59.

10 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer
and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

11 A Kostochka. On the minimum of the Hadwiger number for graphs with given average degree.
Metody Diskret. Analiz., 38:37–58, 1982. English translation: AMS Translations (2), 132:15-32,
1986.

12 James R. Lee. Separators in Region Intersection Graphs. In Christos H. Papadimitriou, editor,
8th Innovations in Theoretical Computer Science Conference (ITCS 2017), volume 67 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 1:1–1:8, Dagstuhl, Germany,
2017. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ITCS.2017.1.

13 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is np-complete. J. Comput. Syst. Sci., 20(2):219–230, 1980. doi:10.1016/0022-0000(80)
90060-4.

14 Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi. Subex-
ponential parameterized algorithms on disk graphs (extended abstract). In Proceedings
of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2005–
2031. SIAM, 2022. Full version available at https://sites.cs.ucsb.edu/~daniello/papers/
subexpDiskOCTandFriends.pdf. doi:10.1137/1.9781611977073.80.

15 Andrew Thomason. An extremal function for contractions of graphs. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 95(2), pages 261–265. Cambridge
University Press, 1984.

16 David R Wood. On the maximum number of cliques in a graph. Graphs and Combinatorics,
23(3):337–352, 2007. doi:10.1007/s00373-007-0738-8.

IPEC 2024

https://doi.org/10.4230/LIPIcs.SWAT.2024.11
https://doi.org/10.1145/506147.506148
https://doi.org/10.1137/0214017
https://doi.org/10.1145/1101821.1101823
https://doi.org/10.1016/j.jctb.2018.12.007
https://doi.org/10.1137/1.9781611973082.59
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.4230/LIPIcs.ITCS.2017.1
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://sites.cs.ucsb.edu/~daniello/papers/subexpDiskOCTandFriends.pdf
https://sites.cs.ucsb.edu/~daniello/papers/subexpDiskOCTandFriends.pdf
https://doi.org/10.1137/1.9781611977073.80
https://doi.org/10.1007/s00373-007-0738-8

	1 Introduction
	2 Preliminaries
	3 Dealing with large cliques
	4 Picking petals
	5 Kick the cliques
	6 Applications
	6.1 Pseudo-disk graphs and map graphs
	6.2 String graphs
	6.3 Minor-closed classes

	7 Open problems

