
The Parameterized Complexity Landscape of
Two-Sets Cut-Uncut
Matthias Bentert #

University of Bergen, Norway

Fedor V. Fomin #

University of Bergen, Norway

Fanny Hauser #

Technische Universität Berlin, Germany
University of Bergen, Norway

Saket Saurabh #

The Institute of Mathematical Sciences, Chennai, India
University of Bergen, Norway

Abstract

In Two-Sets Cut-Uncut, we are given an undirected graph G = (V, E) and two terminal sets S

and T . The task is to find a minimum cut C in G (if there is any) separating S from T under the
following “uncut” condition. In the graph (V, E \ C), the terminals in each terminal set remain
in the same connected component. In spite of the superficial similarity to the classic problem
Minimum s-t-Cut, Two-Sets Cut-Uncut is computationally challenging. In particular, even
deciding whether such a cut of any size exists, is already NP-complete. We initiate a systematic study
of Two-Sets Cut-Uncut within the context of parameterized complexity. By leveraging known
relations between many well-studied graph parameters, we characterize the structural properties of
input graphs that allow for polynomial kernels, fixed-parameter tractability (FPT), and slicewise
polynomial algorithms (XP). Our main contribution is the near-complete establishment of the
complexity of these algorithmic properties within the described hierarchy of graph parameters.

On a technical level, our main results are fixed-parameter tractability for the (vertex-deletion)
distance to cographs and an OR-cross composition excluding polynomial kernels for the vertex cover
number of the input graph (under the standard complexity assumption NP ̸⊆ coNP/poly).

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Problems, reductions and completeness; Mathematics of
computing → Paths and connectivity problems; Mathematics of computing → Graph algorithms;
Mathematics of computing → Graph coloring

Keywords and phrases Fixed-parameter tractability, Polynomial Kernels, W[1]-hardness, XP, para-
NP-Hardness

Digital Object Identifier 10.4230/LIPIcs.IPEC.2024.14

Funding Matthias Bentert: Supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No. 819416).
Fedor V. Fomin: Supported by the Research Council of Norway via the project BWCA (grant no.
314528).
Fanny Hauser : Supported by the German Academic Exchange Service under the Erasmus+ program
(Grant Agreement 2023#009).
Saket Saurabh: Supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 819416).

© Matthias Bentert, Fedor V. Fomin, Fanny Hauser, and Saket Saurabh;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Parameterized and Exact Computation (IPEC 2024).
Editors: Édouard Bonnet and Paweł Rzążewski; Article No. 14; pp. 14:1–14:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matthias.bentert@uib.no
mailto:fedor.fomin@uib.no
https://orcid.org/0000-0003-1955-4612
mailto:f.hauser@tu-berlin.de
mailto:saket@imsc.res.in
https://orcid.org/0000-0001-7847-6402
https://doi.org/10.4230/LIPIcs.IPEC.2024.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 The Parameterized Complexity Landscape of Two-Sets Cut-Uncut

1 Introduction

We study Two-Sets Cut-Uncut, a natural optimization variant of 2-Disjoint Connec-
ted Subgraphs. In 2-Disjoint Connected Subgraphs, we are given an undirected
graph G and two disjoint sets S, T of vertices. The question is whether there are two
disjoint sets R, B of vertices such that S ⊆ R, T ⊆ B, and both G[R] and G[B] (the graphs
induced by R and B, respectively) are connected. 2-Disjoint Connected Subgraphs
is the special case of Disjoint Connected Subgraphs with two sets of terminals (a
problem that played a crucial role in the graph-minors project by Robertson and Sey-
mour [20]). Consequently, 2-Disjoint Connected Subgraphs has received considerable
research attention, particularly from the graph-algorithms and the computational-geometry
communities [7, 12, 13, 15, 18, 22]. In Two-Sets Cut-Uncut, we not only want to decide
whether there are disjoint connected sets containing terminal sets S and T , respectively,
but also minimize the size of the corresponding cut (if it exists). Formally, Two-Sets
Cut-Uncut is defined as follows. Therein, an S-T -cut (R, B) is a partition of the set of
vertices into R and B with S ⊆ R and T ⊆ B. The set cutG(R) contains all edges in G with
exactly one endpoint in R (and the other in B).

Input: A connected undirected graph G = (V, E), two sets S, T ⊆ V , and an integer ℓ.
Question: Is there an S-T -cut (R, B) of G with | cutG(R)| ≤ ℓ such that the vertices of S

are in the same connected component of G[R] and the vertices of T are in the
same connected component of G[B]?

Two-Sets Cut-Uncut

We mention in passing that we assume the input graph to be connected as it becomes
trivial if there are at least two connected components containing terminal vertices (vertices
in S ∪ T) and if all terminals belong to one connected component, then we can discard all
other connected components. When G is connected, it is also easy to see that any optimal
solution for Two-Sets Cut-Uncut cuts the graph in exactly two connected components
as any connected component not containing any terminal can be merged with any other
connected component reducing the size of the cut in the process. Finally, if S ∩ T ≠ ∅, then
the instance is a trivial no-instance.

Related work. 2-Disjoint Connected Subgraphs was intensively studied and its com-
plexity is quite well understood. Gray et al. [12] showed that 2-Disjoint Connected
Subgraphs is NP-hard on planar graphs and van ’t Hoft et al. [13] showed NP-hardness even
if |S| = 2 and on P5-free split graphs. Note that the problem becomes trivial if |S| = 1. Since
split graphs are chordal, their results also show that 2-Disjoint Connected Subgraphs
is NP-hard on split graphs. They also complemented the NP-hardness on P5-free graphs by
providing a polynomial-time algorithm for P4-free graphs (also known as cographs). Kern et
al. [15] generalized this result by showing that for each graph H, 2-Disjoint Connected
Subgraphs is polynomial-time solvable on H-free graphs if and only if H is a subgraph
of a P4 together with any number of isolated vertices (and otherwise NP-hard). Cygan et
al. [7] studied the parameterized complexity with respect to the number k = n − |S ∪ T | of
non-terminal vertices in the graph. They showed that 2-Disjoint Connected Subgraphs
cannot be solved in O∗((2 − ε)k) time for any ε > 0 unless the strong exponential time
hypothesis fails. Moreover, they showed that it does not admit a polynomial kernel for this
parameter unless NP ⊆ coNP/poly. As 2-Disjoint Connected Subgraphs is the special
case of Two-Sets Cut-Uncut where ℓ = m, all of the above hardness results directly
transfer to Two-Sets Cut-Uncut.

M. Bentert, F. V. Fomin, F. Hauser, and S. Saurabh 14:3

The problem Two-Sets Cut-Uncut was introduced by Bentert et al. [2] who showed
that the problem is W[1]-hard parameterized by |T | even if |S| = 1 in general graphs but
fixed-parameter tractable when parameterized by |S ∪ T | in planar graphs. They also showed
fixed-parameter tractability on planar graphs, when parameterized by the minimum size
of a set of faces in any planar embedding such that each terminal is incident to one of the
faces in the set. Moreover, Two-Sets Cut-Uncut is a special case of Mixed Multiway
Cut-Uncut. In this problem, one is not restricted to two sets of terminals and one is given
two integers k and ℓ as input. The question is whether one can delete at most k vertices
and at most ℓ edges to separate all terminals in different sets while maintaining connectivity
within each terminal set. Rai et al. [19] showed that this problem is fixed-parameter tractable
when parameterized by k + ℓ which immediately implies that Two-Sets Cut-Uncut is
fixed-parameter tractable when parameterized by ℓ.

Another related problem is called Largest Bond. Here, we are looking for a largest cut
that cuts a connected graph into exactly two connected components (and no terminal sets
are given). Duarte et al. [9] showed that the problem is NP-hard on bipartite split graphs,
fixed-parameter tractable when parameterized by treewidth, does not admit a polynomial
kernel when parameterized by the solution size, can be solved in f(k)nO(k) time, where k is
the clique-width of the input graph, but not in f(k)no(k) time unless the exponential time
hypothesis fails. In particular, this also excludes fixed-parameter tractability.

Last but not least, Two-Sets Cut-Uncut is closely related to Network Diversion,
which has been studied extensively by the operations-research and networks communit-
ies [5, 6, 10, 14, 16]. In this problem, we are given an undirected graph G, two terminal
vertices s and t, an edge b = {u, v}, and an integer ℓ. The question is whether it is possible
to delete at most ℓ edges such that the edge b will become a bridge with s on one side and t

on the other. Equivalently, is there a minimal s-t-cut of size at most ℓ + 1 containing b.
While this problem seems very similar to the classic Minimum s-t-Cut, the complexity
status of this problem (polynomial-time solvable or NP-hard) is widely open. This problem
is a special case of Two-Sets Cut-Uncut where |S| = |T | = 2 as there are only two cases.
Either s is in the same component as u or s is in the same component as v. These two
cases correspond to instances of Two-Sets Cut-Uncut with S = {s, u} and T = {t, v}
and S = {s, v} and T = {t, u}, respectively.

Our contribution. We provide an almost complete tetrachotomy for Two-Sets Cut-
Uncut distinguishing between parameters that allow for polynomial kernels, fixed-parameter
tractability, or slicewise polynomial (XP-time) algorithms. Our results are summarized in
Figure 1. The rest of this work is organized as follows. In Section 2, we introduce concepts
and notation used throughout the paper. In Section 3, we present fixed-parameter tractable
and slicewise polynomial (XP-time) algorithms. In Section 4, we exclude the possibility for
further fixed-parameter tractable or XP-time algorithms by presenting W[1]-hardness and
para-NP-hardness results, respectively. Section 5 is devoted to both positive and negative
results regarding the existence of polynomial kernels and we conclude with Section 6.

2 Preliminaries

For a positive integer n, let [n] = {1, 2, . . . , n}. We use standard graph-theoretic terminology
and all graphs in this work are undirected. In particular, for an undirected graph G = (V, E)
we set n = |V | and m = |E|. For a subset V ′ ⊆ V of the vertices, we use G[V ′] to denote the
subgraph of G induced by V ′ and denote by G − V ′ the subgraph G[V \ V ′]. Moreover, for

IPEC 2024

14:4 The Parameterized Complexity Landscape of Two-Sets Cut-Uncut

Minimum Vertex Cover Max Leaf #Distance to Clique Solution Size# of Terminals

Minimum
Clique Cover

Distance to
Co-Cluster

Distance to
Cluster

Distance to
disjoint Paths

Feedback
Edge Set Bandwidth

Maximum
Independent Set

Distance to
Cograph

Distance to
Interval

Feedback
Vertex Set

Treedepth Maximum
Degree

Bisection
Width

Minimum
Dominating Set

Distance to
Chordal

Distance to
Bipartite

Distance to
Outerplanar

Pathwidth
h-index

Genus
Max Diameter
of Components

Distance to
Perfect

Treewidth

Clique-width

Acyclic
Chromatic #

Distance to
PlanarAverage

Distance

Degeneracy

Boxicity

Chromatic #

Chordality

Average
Degree

Minimum
Degree

Distance to
Disconnected

Domatic #Maximum
Clique

Girth

Figure 1 Overview of our results. An edge between two parameters α and β, where α is above β,
indicates that in any instance, the value of β is upper-bounded by a function only depending on
the value of α. Any hardness result for α immediately implies the same hardness result for β and
any positive result for β immediately implies the same positive result for α (where we additionally
require that the dependency is polynomial if we show or exclude a polynomial kernel). Green
boxes indicate the existence of polynomial kernels, yellow boxes show that the parameter admits
fixed-parameter tractability but no polynomial kernel, an orange box indicates polynomial-time
algorithms for constant parameter values (XP) but no fixed-parameter tractability, and a red box
shows that the parameter is NP-hard for some constant parameter value. We mention that the
status of Two-Sets Cut-Uncut parameterized by distance to interval graphs, number of terminals
(XP/para-NP-hard), and clique-width (fixed-parameter tractable/W[1]-hard) remain open.

an edge set E′ ⊆ E, we denote by G − E′ = (V, E \ E′) the graph resulting from deleting the
edges in E′ from G. The degree degG(v) of v is the number of vertices adjacent to v in G.
A path P = (v1, v2, . . . , vℓ) on ℓ vertices is a graph with vertex set {v1, v2, . . . , vℓ} and edge
set {{vi, vi+1} | i ∈ [ℓ − 1]}. The vertices v1 and vℓ are called endpoints. The length of a path
is its number of edges. A connected component in a graph is a maximal set V ′ of vertices
such that for each pair u, v ∈ V ′, there is a path in the graph with endpoints u and v. A cut
in a graph is the set of edges between any partition of the vertices of a graph into two disjoint
subsets. A separation in a graph G = (V, E) is a pair (X, Y) of sets of vertices with X ∪Y = V

and no edges between X \ Y and Y \ X. The size of the separation is X ∩ Y . The disjoint
union of two graphs G1 = (V1, E1) and G2 = (V2, E2) results in the graph (V1 ∪ V2, E1 ∪ E2).
The join of G1 and G2 results in the graph (V1 ∪ V2, E1 ∪ E2 ∪ {{u, v} | u ∈ V1 ∧ v ∈ V2}),
that is, we first take the disjoint union and then add all possible edges between the two
graphs. We refer to the Bachelor’s thesis of Schröder [21] for an overview over how the
different parameters are related to one another.

To streamline some of our arguments, we use the following natural reinterpretation of
Two-Sets Cut-Uncut. The task is to color each vertex in the graph red or blue such that
all vertices in S are red, all vertices in T are blue, the graphs induced by the set of all red

M. Bentert, F. V. Fomin, F. Hauser, and S. Saurabh 14:5

vertices (and all blue vertices, respectively) are connected, and there are at most ℓ edges with
a red and a blue endpoint. We call such edges multicolored. We often keep sets R and B of
red and blue vertices, respectively, and we use the notation Nr

X(v) and N b
X(v) to denote all

red and blue neighbors of v in a set X of vertices, respectively.

Parameterized complexity. A parameterized problem is a set of instances (I, k) where I ∈ Σ∗

is a problem instance from some finite alphabet Σ and the integer k is the parameter.
A parameterized problem L is fixed-parameter tractable if (I, k) ∈ L can be decided
in f(k) · |I|O(1) time, where f is a computable function only depending on k. We call (I, k)
a yes-instance (of L) if (I, k) ∈ L. The class XP contains all parameterized problems which
can be decided in polynomial time if the parameter k is constant, that is, in f(k) · |I|g(k) time
for computable functions f and g. It follows from the definition that each fixed-parameter
tractable problem is contained in XP. To show that a problem is not contained in XP, one
can show that the problem remains NP-hard for some constant parameter value. To show
that a parameterized problem L is presumably not fixed-parameter tractable, one may use
a parameterized reduction from a W[1]-hard problem to L [8]. A parameterized reduction
from a parameterized problem L to another parameterized problem L′ is an algorithm that,
given an instance (I, k) of L, computes an instance (I ′, k′) of L′ in f(k) · |I|O(1) time such
that (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance and k′ ≤ g(k) for two
computable functions f and g. A kernelization is an algorithm that, given an instance (I, k)
of a parameterized problem L, computes in |I|O(1) time an instance (I ′, k′) of L (the kernel)
such that (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance and |I ′| + k′ ≤ f(k)
for some computable function f only depending on k. We say that f measures the size
of the kernel. If f is a polynomial, then we say that P admits a polynomial kernel. A
problem is fixed-parameter tractable if and only if it admits a kernel of any size. Assuming
NP ̸⊆ coNP/poly, one can show that certain parameterized problems do not admit a polyno-
mial kernel. This can for example be done via OR-cross-compositions. For the definition
of OR-cross-compositions, we first need the following. Given an NP-hard problem L, an
equivalence relation R on the instances of L is a polynomial equivalence relation if one can
decide for any two instances in polynomial time whether they belong to the same equivalence
class, and for any finite set S of instances, R partitions the set into at most (maxI∈S |I|)O(1)

equivalence classes.

▶ Definition 1 (OR-cross-composition [3]). Given an NP-hard problem Q, a parameterized
problem L, and a polynomial equivalence relation R on the instances of Q, an OR-cross-
composition of Q into L (with respect to R) is an algorithm that takes t instances I1, I2, . . . , It

of Q belonging to the same equivalence class of R and constructs in time polynomial
in

∑t
i=1 |Ii| an instance (I, k) of L such that k is polynomially upper-bounded by maxi∈[t] |Ii|+

log(t) and (I, k) is a yes-instance of L if and only if there exists an i ∈ [t] such that Ii is a
yes-instance of Q.

If a parameterized problem admits an OR-cross-composition, then it does not admit a
polynomial kernel unless NP ⊆ coNP/poly [3].

Graph parameters and classes. We give an overview of the different graph parameters
and graph classes used throughout the paper. To this end, let G = (V, E) be a graph.
The maximum degree of G is the largest degree of any vertex in V . The distance to Π for
some graph class Π is the minimum number of vertices needed to be removed from G such
that it becomes a graph in Π. A cograph is a graph without induced paths of length three.

IPEC 2024

14:6 The Parameterized Complexity Landscape of Two-Sets Cut-Uncut

Equivalently, a cograph is a graph that can be represented by a cotree. A cotree is a rooted
binary tree in which the leaves correspond to the vertices in the cograph and the internal
nodes correspond to taking the disjoint union or the join of the cographs corresponding
to the two children. A join of two graphs G1 = (V1, E1) and G2 = (V2, E2) results in the
graph (V1 ∪ V2, E1 ∪ E2 ∪ {{u, v} | u ∈ V1 ∧ v ∈ V2}), that is, we first take the disjoint union
and then add all possible edges between the two graphs. An interval graph is a graph where
each vertex can be represented by an interval of real numbers such that two vertices are
adjacent if and only if their respective intervals overlap. An independent set in a graph is a
set of pairwise non-adjacent vertices. The vertex set of a bipartite graph can be partitioned
into two independent sets. The vertex cover number of G is the distance to an independent
set. A clique in a graph is a set of pairwise adjacent vertices. The minimum clique cover
of G is the minimum number of cliques needed to partition V . A dominating set in a graph
is a set of vertices such that each vertex not contained in the set has at least one neighbor in
the set. A tree decomposition of G is a tree T with nodes X1, X2, . . . , Xp, where each Xi is a
subset of V such that each vertex in V and both endpoints of each edge in E are contained
in some Xi and all Xi that contain some vertex v form one connected component in T . The
width of a tree decomposition is the size of its largest set Xi minus one and the treewidth
of G is the minimum width of any tree decomposition of G. The clique-width of G is defined
as the minimum number of labels needed to construct G using the following operations in
which i and j are some arbitrary labels: Creating a single vertex with label i, the disjoint
union of two graphs, adding all possible edges between the vertices of label i and the vertices
of label j, and changing the label of all vertices of label i to label j. The feedback edge
number of G is the minimum size of a set F of edges such that G − F is a forest. Given an
injective function f that maps the vertices in V to distinct integers, the bandwidth cost of f

for G is defined as max{u,v}∈E |f(u) − f(v)|. The bandwidth of G is the minimum bandwidth
cost for G over all possible injective functions. The bisection width of G is the minimum size
of a set F of edges such that the vertices of G − F can be partitioned into two parts of equal
size (or with a difference of one in case n is odd) with no edges between the two parts.

3 Parameterized Algorithms

In this section, we present some parameterized algorithms for Two-Sets Cut-Uncut. We
start with the distance to cographs.

▶ Theorem 2. Two-Sets Cut-Uncut parameterized by the distance k to cographs can be
solved in kO(k)n3 time.

Proof. Let (G = (V, E), S, T, ℓ) be an instance of Two-Sets Cut-Uncut. We transform G

into a weighted graph by assigning a weight of one to each edge in G. We denote the weight
of an edge e by w(e). We first compute in O(3.303k(m + n)) time a set X ⊆ V of size at
most k such that G′ = (V ′, E′) = G − X is a cograph [17]. A cotree T of G′ is a rooted
binary tree where each vertex of G′ corresponds to a leaf node of T and an inner node t of T
either represents taking the disjoint union or the join of the cographs corresponding to the
two children of t. Each cograph has a cotree which can be computed in linear time. For each
node t of T , let Tt be the subtree of T rooted in t, let Gt = (Vt, Et) be the graph represented
by Tt, and let nt = |Vt|. For technical reasons, we want to assume that X contains at least
one red and one blue vertex in an optimal solution. Hence, if X does not contain a terminal
from S already, then we add an arbitrary vertex from S to X. We do the same for T .

M. Bentert, F. V. Fomin, F. Hauser, and S. Saurabh 14:7

We begin by guessing1 the coloring of X. Then, we remove all edges between a red and a
blue vertex in X. Let ℓ′ be the number of edges that we removed. We then contract each
component of X into a single vertex. If the resulting (multi)graph has j edges with the same
endpoints (with one endpoint in X and one in V ′), then we remove all but one of the edges
and set its weight to j.

We compute a coloring for the remaining vertices of G by computing optimal solutions
for partial instances for each node of T via dynamic programming. A partial instance is a
tuple (t, r, Cr, Cb) where t is a node of T , r is an integer at most nt and Cr, Cb are partitions
of subsets of X including ∅. For each partial instance, we want to store in a table D the
minimum number of edges between blue and red vertices in G[Vt ∪ X] after all vertices in Vt

are colored and exactly r vertices are colored red. Additionally, we require that for each
set C ∈ Cr, there exists a connected component with vertex set Z in G[(Vt ∪ X) ∩ R] such
that Z ∩ X ∩ R = C. Analogously for each set C ∈ Cb, there has to exist a connected
component with vertex set Z in G[(Vt ∪ X) ∩ B] such that Z ∩ X ∩ B = C. We will use these
sets to store whether the red vertices are connected in G[Vt ∪ X], while also storing which
vertices of X ∩ R are connected to the same connected component in Gt[R]. We use this
information to ensure that in a coloring for the entire graph G, the graph G[R] is connected.
We do the same for the blue vertices with the set Cb.

In the end, the optimal solution (minus the ℓ′ edges we already removed between vertices
in X) will be stored in D[w, r, Cr, Cb] for some value of r, where w is the root of T and Cr = ∅
if r = 0 and Cr = {X ∩ R}, otherwise. Similarly, Cb = ∅ if r = nw and Cb = {X ∩ B},
otherwise. Note that this corresponds to a solution where all vertices of either color form a
single connected component as all vertices are connected to all vertices of the same color
in X (which is at least one vertex as constructed above).

Before we present the algorithm, we first define two operations on sets of sets. For two
sets A, B of sets of vertices, if there exists a ∈ A and b ∈ B with a∩b ̸= ∅, then we recursively
define A ⊎ B as ((A \ a) ⊎ (B \ b)) ⊎ {a ∪ b} and as A ∪ B otherwise. This operation can be
seen as taking the union of the connected components of two subgraphs. If there are two
connected components (one in A and one in B) which share a vertex, then both components
are merged into one. The components that do not share a vertex with any other component
remain as they are. We also define A⋓B as A if B = ∅, as B if A = ∅ and as {

⋃
X∈A∪B X},

otherwise. With these definitions at hand, we compute the entries of D based on the type of
node t as follows.

Leaves. Let t be a leaf node and let a be the vertex of G corresponding to t. We set

D[t, r, Cr, Cb] =

∑
v∈Nb

X
(a)

w({a, v}), if r = 1, Cr = {Nr
X(a)}, Cb = ∅ and a /∈ T∑

v∈Nr
X

(a)
w({a, v}), if r = 0, Cr = ∅, Cb = {N b

X(a)} and a /∈ S

∞, else.

We show that the solutions for all partial instances are computed correctly. It is easy to
verify that whenever a table entry of D is set, then this corresponds to a valid solution for
the partial instance. So it remains to show that each optimal solution for any partial instance
is considered. Let (t, r, Cr, Cb) be a partial instance and consider an optimal solution for

1 Whenever we pretend to guess something, we actually iterate over all possibilities and consider for the
presentation/proof an iteration leading to an optimal solution.

IPEC 2024

14:8 The Parameterized Complexity Landscape of Two-Sets Cut-Uncut

it. Note that the partial instance only has a valid solution if r ∈ {0, 1}. If r = 1, then the
vertex a has to be colored red. This is only possible if a /∈ T since all vertices in T have
to be colored blue. The red vertices of X which are adjacent to vertices of Gt[R] are the
vertices in Nr

X(a). If a is not adjacent to any red vertices of X, then Cr = {∅} or there is
no solution to the partial instance. Since Gt cannot have any blue vertices, Cb has to be
the empty set (and not the set containing the empty set). Note that all edges between a

and blue neighbors of a in X are multicolored and this is precisely what we computed above.
The argument for r = 0 (coloring a blue) is symmetric.

Disjoint union. Let t be a disjoint-union node with children t1 and t2. We set

D[t, r, Cr, Cb] = min
r1

Cr=Cr1 ⊎Cr2
Cb=Cb1 ⊎Cb2

(D[t1, r1, Cr1 , Cb1] + D[t2, r − r1, Cr2 , Cb2]).

We again show that each optimal solution for any partial instance is considered. To
this end, we assume that the table entries for the children t1 and t2 are computed correctly.
Let (t, r, Cr, Cb) be a partial instance and consider an optimal solution for it. Since the
disjoint union of two graphs does not create any edges, it holds that all multicolored edges
in the solution are contained in G[Vt1 ∪ X] and G[Vt2 ∪ X]. This gives a partitioning
of the multicolored edges in the solution as there are no edges between vertices in X.
Let r1 be the number of red vertices in Vt1 in the solution and consider the connected
components in G[(Vt1 ∪ X) ∩ R]. Denote the respective partitioning by Cr1 and do the
same for Cb1 , Cr2 , and Cb2 . Note that Cr corresponds to the union of the connected
components corresponding to Cr1 and Cr2 (and the same for Cb). Hence, it holds that Cr =
Cr1 ⊎ Cr2 and Cb = Cb1 ⊎ Cb2 . It now also holds that the size of the considered solution
is D[t1, r1, Cr1 , Cb1] + D[t2, r − r1, Cr2 , Cb2], which is precisely what we computed.

Join. Let t be a join node with children t1, t2. We set (with r2 = r − r1)

D[t, r, Cr, Cb] = min
r1

Cr=Cr1 ⋓ Cr2
Cb=Cb1 ⋓ Cb2

{D[t1, r1, Cr1 , Cb1] + D[t2, r2, Cr2 , Cb2] + r1(n2 − r2) + r2(n1 − r1)}.

We show a final time that each optimal solution for any partial instance is considered
when the table entries for the children t1 and t2 are computed correctly. Let (t, r, Cr, Cb) be a
partial instance and consider an optimal solution for it. Similar to the disjoint union, we can
partition all multicolored edges of the solution. In this case, we partition the multicolored
edges into four parts, the edges in G[Vt1 ∪ X], G[Vt2 ∪ X], the newly created edges between
red vertices in Vt1 and blue vertices in Vt2 and similarly between blue vertices in Vt1 and
red vertices in Vt2 . Let r1 be the number of red vertices in Vt1 in the solution and again
consider the connected components in G[(Vt1 ∪ X) ∩ R]. Denote the respective partitioning
by Cr1 and do the same for Cb1 , Cr2 , and Cb2 . If there is at least one red vertex in each of Vt1

and Vt2 , then all red vertices of Gt will be connected in Gt[R]. Thus the red vertices of X

which where connected to any vertex of Gt[R] will be in the same set in Cr. If either Vt1 or
Vt2 do not contain any red vertices in the considered solution, then no edges between two red
vertices are added and the connected components of Gt[R] are the same as of Gt1 [R] ∪ Gt2 [R]
(as at least one of the two sets is the empty set). This is precisely what the ⋓ operator
computes and the argument for the blue vertices is analogous. Hence, the optimal solution
is D[t1, r1, Cr1 , Cb1] + D[t2, r − r1, Cr2 , Cb2] + r1(n2 − (r − r1)) + (r − r1)(n1 − r1), which is
what we compute in the dynamic program.

M. Bentert, F. V. Fomin, F. Hauser, and S. Saurabh 14:9

It remains to analyze the running time. Note that both ⊎ and ⋓ can be computed
in O(k2) time. The number of possible guesses for the coloring of X is at most 2k. The number
of partial instances is at most O(n2(k + 2)k+2) as there are at most n possibilities for t and r

each and both Cr and Cb are partitions of subsets of X which have size at most k + 2 (as we
added a terminal of S and of T to X). Computing each entry takes O((k+2)4(k+2)+2 ·n) time.
Thus, the overall runtime is in O(2k · (k + 2)6k+14 · n3) ⊆ kO(k) · n3. ◀

We next show fixed-parameter tractability for the parameter treewidth. We mention
that the algorithm is a simple adaptation of a dynamic program for Largest Bond [9].
In essence, each entry in the dynamic program over the tree decomposition (except for the
leaves) are computed by combining the solutions for the children using a maximum over
all combinations of solutions that color the vertices in the given bag in a certain way and
ensure certain connectivity conditions. By replacing the maximum with a minimum, we can
solve a version of Two-Sets Cut-Uncut without terminals (which is not a hard problem
to solve). However, we can also incorporate terminals by setting the value of all leaf nodes
corresponding to a vertex v to infinity whenever v ∈ S and the given coloring of the bag
colors v blue (or analogously v ∈ T and the coloring for v is red). This yields the following.

▶ Observation 3. Two-Sets Cut-Uncut is solvable in nkO(k) time when parameterized
by treewidth k.

We now turn towards XP-time algorithms, that is, polynomial-time algorithms for constant
parameter values. We show that Two-Sets Cut-Uncut parameterized by the maximum
size of an independent set is in XP. The main idea is to first observe that the graphs induced
by the vertices in S (and in T , respectively) cannot have too many connected components
as this would imply a large independent set in the input graph. Next, these connected
components cannot be too far apart from one another as any long induced path contains a
large independent set. Based on these two observations, it is enough to guess a small number
of vertices to ensure connectivity between all vertices in S and in T , respectively. For each
guess, we can then compute a minimum cut between the vertices we already colored red and
blue to find an optimal solution.

▶ Proposition 4. Two-Sets Cut-Uncut parameterized by the size k of a maximum
independent set in the input graph can be solved in O(n4k2) time.

Proof. Let (G = (V, E), S, T, ℓ) be an instance of Two-Sets Cut-Uncut where G has a
maximum independent set of size k. Let S1, S2, . . . Sp be the connected components of G[S]
and let T1, T2, . . . Tq be the connected components of G[T]. Note that p ≤ k and q ≤ k as we
can otherwise chose one vertex from each component to get an independent set of size k + 1,
a contradiction. In the beginning only the vertices of S are colored red and the vertices
of T are colored blue. We claim that in any solution, at most (k − 1)(2k − 2) additional
red vertices are needed to connect all vertices of S and at most (k − 1)(2k − 2) additional
blue vertices are needed to connect all vertices of T . To show this, consider any solution. To
connect two connected components Si and Sj of G[S], there has to exist a path between Si

and Sj such that all vertices of the path are colored red. Note that this also implies that
there is an induced path between them where all vertices are colored red. It is now possible
to bound the length of this path by the size of the maximum independent set. Any induced
path between Si and Sj contains at most 2k vertices as any induced path of length 2k + 1
contains an independent set of size k + 1. Hence, to connect Si and Sj in any solution at

IPEC 2024

14:10 The Parameterized Complexity Landscape of Two-Sets Cut-Uncut

most 2k − 2 additional red vertices are needed. Since there are p connected components and
p ≤ k, at most (k − 1)(2k − 2) vertices have to be colored red to make G[R] connected. The
argument for the vertices of T is analogous.

Our algorithm now guesses two sets R′, B′ ⊆ V , each of size at most (k − 1)(2k − 2).
We discard any guess where T ∩ R′ ̸= ∅ or S ∩ B′ ≠ ∅. Additionally, we discard all guesses
where G[S ∪ R′] or G[T ∪ B′] are not connected. Finally, we color all remaining vertices of V

by computing a minimum S ∪ R′-T ∪ B′-cut. If there are at most ℓ multicolored edges in G,
then (G, ℓ) is a yes-instance.

We next show that the running time is in O(n4k). Note that for k = 1, we do not need to
guess any vertices and therefore the running time is O(m1+o(1)) ⊆ O(n4) as we only need to
find a minimum cut [4]. For k ≥ 2, we need to guess 2(k −1)(2k −2) = 4k2 −8k +4 ≤ 4k2 −4
vertices. Hence, there at most n4k2−4 possible guesses and for each guess finding a minimum
cut can be done in m1+o(1) ∈ O(n4) time. Thus, the overall runtime is in O(n4k2). ◀

Finally, we show that Two-Sets Cut-Uncut parameterized by clique-width is in XP.
We note that it remains open whether this parameter allows for fixed-parameter tractability.
Our algorithm is an adaptation of an algorithm for Largest Bond due to Duarte et al. [9].
They use dynamic programming over a k-expression of the input graph where they store the
size of a largest cut with exactly si red vertices of each label i under certain connectivity
conditions. As in the case of treewidth, we can replace a maximum in their calculation by
a minimum to solve a version of Two-Sets Cut-Uncut without any terminals. We can
then incorporate terminals by first modifying the k-expression into a 3k-expression where all
vertices in S of label i get label iS instead and all vertices in T of label i get label iT instead.
We then simply discard any table entry in which the number of red vertices of label iS does
not equal the number of vertices of label iS or where there are any red vertices of label iT .
Since their algorithm runs in O(n2k+436·2k) time, this yields the following.

▶ Observation 5. Two-Sets Cut-Uncut can be solved in O(n6k+436·8k) time when
parameterized by the clique-width k.

4 Parameterized Hardness

In this section, we show a number of hardness (both para-NP-hardness and W[1]-hardness)
results for Two-Sets Cut-Uncut and 2-Disjoint Connected Subgraphs. As 2-
Disjoint Connected Subgraphs is a special case of Two-Sets Cut-Uncut, all hardness
results for the former directly translate to the latter. First, 2-Disjoint Connected
Subgraphs remains NP-hard even in bipartite graphs of bisection width one. The idea for
the reduction is to first add a copy of the graph (without any terminals) and connect one
vertex of the graph to a vertex in S. Note that all vertices in the copy can be colored red
and hence the size of an optimal solution remains the same. Next, we can make the graph
bipartite by subdividing each edge once. This results in an equivalent bipartite instance of
bisection width one and shows the following.

▶ Observation 6. 2-Disjoint Connected Subgraphs is NP-hard in bipartite graphs with
bisection width one.

Next, we show that Two-Sets Cut-Uncut is W[1]-hard when parameterized by the
clique cover number even if the size of a smallest dominating set is one. Our reduction is
based on a reduction by Bentert et al. [2] and we prove a couple of additional properties of
the reduction that will be useful when excluding polynomial kernels for the solution size.

M. Bentert, F. V. Fomin, F. Hauser, and S. Saurabh 14:11

v1 v2 v3 v4

t1

t2

t3

t4

s

. .
.v5

1

v1
1

Figure 2 Illustration of the reduction by Bentert et al.. The dashed edges represent n + 2m

parallel P3’s as indicated between s and v1.

▶ Proposition 7. Two-Sets Cut-Uncut is W[1]-hard when parameterized by the clique
cover number of the input graph even if the input graph contains a dominating set of size one,
when |S| = 1, and when there exist constants c1 ≥ 0, c2 > |T | such that (i) ℓ = c1+|T |(c2−|T |)
and (ii) any cut that keeps any set of j terminals in T connected to at least one other terminal
in T while separating the terminal in S from all terminals in T has size at least c1 + j(c2 − j).

Proof. Our proof is based on a reduction by Bentert et al. [2]. We first summarize their
reduction, which shows that Two-Sets Cut-Uncut is W[1]-hard when parameterized by
the number of terminals even if |S| = 1. Starting from an instance (G, k) of Regular
Multicolored Clique, a version of Multicolored Clique where each vertex in the
input graph has degree exactly d for some d, they construct an equivalent instance (H, S, T, ℓ)
of Two-Sets Cut-Uncut as shown next and depicted in Figure 2. They start with an

IPEC 2024

14:12 The Parameterized Complexity Landscape of Two-Sets Cut-Uncut

induced copy of G, set S = {s} and T = {t1, t2, . . . , tk}, and make ti adjacent to all vertices
of color i in G. Moreover, they add vertices vj

i for each vertex vi in G and each j ∈ [n + 2m],
where n and m are the number of vertices and edges in G, respectively. Each vertex vj

i is
made adjacent to vi and s. Finally, they set ℓ = n − k + k(n + 2m) + k(d − k + 1).

We next modify the construction to make s adjacent to all vertices in the induced copy
of G in H and adjacent to all vertices in T . Next, we assume that there are the same
number n/k of vertices of each color in G as this version of the problem is also known to
be NP-hard. We further modify the reduction to make each vertex vi in H adjacent to
all other vertices that have the same color (in G) and all vertices of the form vj

i pairwise
adjacent. We adjust the value of ℓ = 2n + k(n + 2m + d − k + 1). Note that the new graph H

has a dominating set of size one (the vertex s is adjacent to everything) and has a clique
cover number of at most k + 1. The latter holds as all vertices of one color in G form a
clique together with one vertex from T and all other vertices (s and all vertices vj

i) form one
clique Cs. Moreover, observe that ℓ = c1 + |T |(c2 −|T |) for c1 = 2n and c2 = (n+2m+d+1).

It remains to prove that the adjusted instance is equivalent to the input instance of
Regular Multicolored Clique and that any cut that keeps a set of j terminals in T

connected to at least one other terminal in T while separating all terminals in T from s

has size at least c1 + j(c2 − j). We start with the latter. First note that any cut of size at
most ℓ cannot cut through the clique Cs. Moreover, in order for any set of j vertices T ′ ⊆ T

to be connected to at least one other vertex in T , we need to add at least one neighbor
of ti to the connected component of ti for each ti ∈ T ′. Since the neighborhoods of two
vertices ti and tj are by construction disjoint, this also implies that we need to separate
at least j of the original vertices in G from Cs. Moreover, any such cut is minimized
when we pick exactly one neighbor of each ti as each neighbor is adjacent to n + 2m

vertices in Cs and only n/k + d < n + 2m vertices outside of Cs. So consider any cut that
separates all of T and j additional vertices from Cs. Observe that the size of the cut is at
least n + k − j + j(n + 2m + d − j + 1 + n/k) as the vertices in T are incident to n + k edges
and all but j of them are in the cut. Moreover, each of the j additional vertices are adjacent
to n/k − 1 vertices of the same color (which are not separated from Cs), at least d − j + 1
vertices of different colors that are not separated from Cs, and n + 2m + 1 vertices in Cs.
Since we may assume that n/k > k (otherwise there is a simple kk time algorithm), it holds
that n + k − j + j(n + 2m + d − j + 1 + n/k) ≤ 2n + j(n + 2m + d + 1 − j) = c1 + j(c2 − j).

To show that the constructed instance is equivalent to the original instance of Regular
Multicolored Clique, we closely follow the proof by Bentert et al. [2]. If the constructed
instance is a yes-instance, then we separate exactly one neighbor of each vertex in T from Cs

as shown above. Let C be the set of these vertices. In order for a cut between T ∪ C

and the rest of the graph to be of size at most ℓ, we show that C needs to induce a
clique in G. First, each vertex in T is incident to exactly n/k edges in the cut, that is, the
vertices in T are incident to exactly n edges in the cut. This leaves a remaining budget
of n + k(n + 2m + d − k + 1) for edges incident to the vertices in C. Hence, each of these
vertices can be adjacent to (n + 2m + d − k + 1 + n/k) edges in the cut on average. Note
that every vertex is adjacent to exactly n + 2m + 1 vertices in Cs and to exactly n/k − 1
vertices of the same color (which are all not separated from Cs). Hence, on average each
vertex in C can be incident to at most d − k + 1 edges to vertices of other colors in G that
are not separated from Cs. As all of these edges are exactly the edges in G and since G

is d-regular, each vertex needs to be incident to k − 1 edges to other vertices in C, that is, C

needs to be a clique of size k.

M. Bentert, F. V. Fomin, F. Hauser, and S. Saurabh 14:13

x1
1 x2

1 x3
1 x4

1 x5
1 x6

1

x1
1 x2

1 x3
1 x4

1 x5
1 x6

1

x1
2 x2

2 x3
2 x4

2 x5
2 x6

2

x1
2 x2

2 x3
2 x4

2 x5
2 x6

2

x1
n x2

n x3
n x4

n x5
n x6

n

x1
n x2

n x3
n x4

n x5
n x6

n

f1 f2

c1 c2
. . .

cm

Figure 3 An illustration of the reduction behind Proposition 8 with C1 = (x1 ∨ x2 ∨ xn).

If there is a (multicolored) clique C of size k in G, then consider the cut in H between T ∪C

and the rest of the graph. Each vertex in T is incident to n/k + 1 edges and adjacent to
one other vertex in T ∪ C. Hence, the cut contains k(n/k) edges incident to vertices in T .
Moreover, it contains k(n/k − 1 + d − (k − 1)) edges between the original vertices in G in H

and k(n + 2m + 1) edges between vertices in C and vertices in Cs. In total, the cut has
size k(2n/k + d − k + n + 2m + 1) = 2n + k(n + 2m + d − k + 1) = ℓ. This concludes the
proof. ◀

Finally, we show that 2-Disjoint Connected Subgraphs remains NP-hard on graphs
of maximum degree three based on a reduction due to van ’t Hof et al. [13]. Note that both
2-Disjoint Connected Subgraphs and Two-Sets Cut-Uncut become trivial on graphs
of maximum degree at most 2 as the input graph is then restricted to a path or a cycle.

▶ Proposition 8. 2-Disjoint Connected Subgraphs is NP-hard even if the input graph
has maximum degree three.

Proof. We give a reduction from 3,4-SAT, which is known to be NP-hard [23]. Therein, one
is given a Boolean formula ϕ in which each clause contains at most three literals and each
variable appears in at most four clauses. Let X = {x1, x2, . . . , xn} and X = {x | x ∈ X} be
a set of all positive and negative literals in ϕ and let C = {C1, C2, . . . , Cm} be the set of
clauses in ϕ. We construct an instance (G, S, T) of 2-Disjoint Connected Subgraphs
as follows. For each clause Ci, we add a vertex ci to G and for each variable xi, we add
paths Pi = (x1

i , x2
i , . . . , x6

i) and P i = (x1
i , x2

i , . . . , x6
i) to G. If a literal xi ∈ X ∪ X appears in

the clause Cj , then we add an edge between cj and one vertex of {x2
i , x3

i , x4
i , x5

i } which is not
adjacent to any other vertex cj′ . Such a vertex always exists as each variable appears in at
most four clauses. Finally, we add edges {x6

i , x1
i+1}, {x6

i , x1
i+1}, {x6

i , x1
i+1} and {x6

i , x1
i+1} for

all i ∈ [n − 1] and vertices f1 and f2 with edges {f1, x1
1}, {f1, x1

1}, {f2, x6
n} and {f2, x6

n}. We
conclude the construction by setting S = {f1, f2} and T = C. See Figure 3 for an illustration.

We next show that the maximum degree in G is three. Note hat each vertex ci has degree
at most three as each clause in ϕ contains at most three variables. For each path Pi, the
vertices xj

i with 2 ≤ j ≤ 4 have degree at most 3 because each xj
i is only adjacent to xj−1

i

and xj+1
i and at most one vertex of C. The vertices x1

i and x6
i have degree 3 since they are

not adjacent to any vertices in C and only have edges to x6
i−1, x6

i−1, x2
i and x1

i+1, x1
i+1, x5

i ,
respectively (or to f1 or f2 in the case of x1

1, x1
1, x6

n, and x6
n). The vertices f1 and f2 each

only have degree two and the entire graph has therefore maximum degree three.

IPEC 2024

14:14 The Parameterized Complexity Landscape of Two-Sets Cut-Uncut

Since the reduction can clearly be computed in polynomial time, it only remains to show
that the constructed instance is a yes-instance of 2-Disjoint Connected Subgraphs
if and only if ϕ is satisfiable. To this end, first assume that the constructed instance is
a yes-instance and let (R, B) be a coloring of G such that G[R] and G[B] are connected
and S ⊆ R and T ⊆ B. We set each variable xi to true if and only if any vertex of Pi is
colored blue. We next prove that this is a satisfying assignment. The vertices f1 and f2
are both colored red. Any path that connects f1 to f2 in G[R] cannot contain any vertices
of C as C = T . Hence, any path between f1 and f2 has to contain all vertices of Pi or all
vertices of P i for each i ∈ [n]. As a result, all vertices of Pi or all vertices of P i are colored
red. Since the vertices of C = T are independent, one neighbor x of each vertex cj has to
be colored blue by the solution. If x = xp

i for some i ∈ [n] and 2 ≤ p ≤ 5, then we set xi

by construction to true and cj is satisfied. If x = xp
i for some i ∈ [n] and 2 ≤ p ≤ 5, then

coloring one vertex of P j blue forces all vertices of Pj to be colored red and thus xi was by
construction set to false. The vertex ci is only adjacent to a vertex of P j if xi appears in Ci

and therefore setting xj to false satisfies Ci. This proves that ϕ is satisfiable.
Now assume that there is a truth assignment β that satisfies ϕ. We color all vertices of Pi

blue and all vertices of P i red if xi is set to true by β and we color all vertices of Pi red and
all vertices of P i blue, otherwise. Next, we color the vertices of C blue and f1 and f2 red. In
this coloring exactly one path of Pi and P i is colored red and the other is colored blue. All
paths Pi and P i are connected to Pi−1, P i−1, Pi−1, and P i+1 (which the exception of P1, P 1
and Pn, P n which are connected to f1 and f2 instead). Hence, all red vertices in the paths
are connected and all blue vertices in the paths are connected as well. The vertices f1 and f2
are by construction adjacent to one red vertex in one of the paths Finally for each ci ∈ C,
since β satisfies Ci, there has to be a blue neighbor of ci in one of the paths. This shows
that both G[R] and G[B] are connected in the constructed coloring and this concludes the
proof. ◀

5 Polynomial Kernels

In this section, we analyze which parameters allow for polynomial kernels. Note that we
can restrict our attention to parameters that allow for fixed-parameter tractability as this is
equivalent to having a kernel of any size [8]. We first show that Two-Sets Cut-Uncut
does not admit a polynomial kernel when parameterized by the vertex cover number of
the input graph plus the number of terminals. Note that for this parameter, 2-Disjoint
Connected Subgraphs has a simple kernel of size O(k3). We can 2-approximate a vertex
cover in polynomial time by repeatedly taking both endpoints of any uncovered edge into
the solution. We can then, for each pair of vertices in this vertex cover, mark k non-terminal
vertices in the common neighborhood (or all such vertices if there are less than k). Removing
all unmarked non-terminal vertices that do not belong to the approximated vertex cover
results in a cubic kernel as we keep at most 2k vertices in the approximate vertex cover and
at most (2k)2 · k = 4k3 marked vertices.

▶ Theorem 9. Two-Sets Cut-Uncut parameterized by vertex cover number plus number
of terminals does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. We present an OR-cross composition from Vertex Cover in 3-regular graphs, which
is known to be NP-hard [11]. We start with t instances, all with the same number n of
vertices and the same solution size k. Note that since all graphs have the same number of
vertices and are 3-regular, they also have the same number m of edges.

M. Bentert, F. V. Fomin, F. Hauser, and S. Saurabh 14:15

v1 d1v2 d2v3 d3.vt dt

s w1 w2 w3
. . .

w4(n
2)

Instance Selection

x1
1

x1
n+1

z1

y1
1,2

y1,2
1Vertex Selection

b1 c3
1c2

1c1
1

a1
5 a3

5

Verification

Figure 4 An illustration of the construction in the proof of Theorem 9. The solid boxes indicate
cliques and the dashed boxes indicate independent sets.

Our OR-cross composition consists of three different gadgets. The first gadget is called
the instance-selection gadget and it consists of one vertex vj for each input instance and t

additional dummy vertices D. These 2t vertices all form an independent set. Next, we add a
vertex s and make it adjacent to all vertices vj and a set W of 4

(
n
2
)

vertices and make them
adjacent to each vertex in the instance-selection gadget. We add s to S and W to T .

The second gadget is called a vertex-selection gadget. We start with a clique of (n + 1) · k

vertices xj
i for each i ∈ [n + 1] and each j ∈ [k]. All vertices xj

n+1 are contained in T . Next,
for each pair xp

i and xq
i with p ̸= q ∈ [k] and each i ∈ [n], we add a vertex yp,q

i , add it to T and
make it adjacent to xp

i and xq
i . We do the same for each pair xj

p and xj
q for each p ̸= q ∈ [n]

and each j ∈ [k] and call the constructed terminal yj
p,q. Finally, for each j ∈ [k], we create a

vertex zj , add it to S, and make it adjacent to each vertex xj
i for i ∈ [n].

The third and final gadget is called the verification gadget and it consists of a clique
of 3

(
n
2
)

vertices aj
i for i ∈ [

(
n
2
)
] and j ∈ [3]. For each i ∈ [

(
n
2
)
], we add four additional

vertices bi, c1
i , c2

i , c3
i . The vertex bi is added to S and the other three are added to T . We

make bi adjacent to all vertices aj
i for j ∈ [3]. Moreover, c1

i is adjacent to a1
i and a2

i , vertex c2
i

is adjacent to a1
i and a3

i , and c3
i is adjacent to a2

i and a3
i .

It remains to connect the different gadgets. We arbitrarily order the vertices in each input
instance and assign them numbers in [n]. Next, we pick an arbitrary bijection f between
numbers in [

(
n
2
)
] and pairs {p, q} with p ̸= q ∈ [n]. For each i ∈ [

(
n
2
)
], the vertex a1

i is adjacent
to vj if and only if f(i) is not an edge in the instance corresponding to vj . Moreover, a1

i

is adjacent to some arbitrary vertices in D to ensure that it has exactly t neighbors in the
instance-selection gadget. The vertices a2

i and a3
i are adjacent to the t vertices in D.

Next, for each i ∈ [
(

n
2
)
], we make a1

i adjacent to xj
n+1 in the vertex-selection gadget for

all j ∈ [k]. Let f(i) = {p, q} with p < q. Then, we make a2
i adjacent to xj

p and a3
i adjacent

to xj
q for all j ∈ [k]. Finally, we set ℓ = 2

(
n
2
)2 +

(
n
2
)
(t+k+7)+k2n+k(3n+2k−4)+t−m−1.

Note that the instance-selection gadget contains an independent set of size 2t which does
not contain any terminals. There are only 1 + 4

(
n
2
)

+ k(n + 2) + k
(

n
2
)

+ n
(

k
2
)

+ 7
(

n
2
)

< 14n3

other vertices. Thus, the vertex cover number and the number of terminals of the resulting

IPEC 2024

14:16 The Parameterized Complexity Landscape of Two-Sets Cut-Uncut

graph is in O(n3). Since the instance can be computed in polynomial time (in n + t), it only
remains to show that the constructed instance is a yes-instance if and only if at least one of
the input instances of Vertex Cover is a yes-instance.

To this end, first assume that one of the t instances of Vertex Cover is a yes-instance,
that is, the respective graph Gj contains a vertex cover K = {p1, p2, . . . , pk} of size k. Let vj

be the vertex in the instance-selection gadget corresponding to that instance. We show that
the constructed instance is also a yes-instance by describing the connected component CS

containing S. This component contains all the vertices of S as well as vj , xi
pi

for each i ∈ [k],
and the following vertices of the verification gadget. For each i ∈

(
n
2
)
, if f(i) = {p, q}

(with p < q) is not an edge in Gj , then we add a1
i to CS . Otherwise, at least one of the

endpoints p or q is contained in K and we add a2
i if p ∈ K and a3

i if p /∈ K. Note that
we added exactly one vertex of each column in the vertex-selection gadget and exactly one
vertex in each row of the verification gadget. It remains to show that the cut between CS

and the rest of the graph is of size at most ℓ.
We first analyze the sizes of cuts within each of the gadgets. Note s is incident to exactly t

edges and exactly one of the neighbors (vj) is contained in CS . Hence, s is incident to t − 1
edges in the cut between CS and the rest of the graph. Next, observe that vj is incident
to 4

(
n
2
)

vertices in W (which are not contained in CS). Each vertex zj in the vertex-selection
gadget is incident to n vertices exactly one of which is in CS . Each of the other k vertices
in CS in the vertex-selection gadget are adjacent to ((n + 1)k − 1) + (n − 1) + (k − 1) + 1 other
vertices in the vertex-selection gadget, exactly k of which belong to CS . Next, each vertex bi

is adjacent to exactly two vertices not contained in CS and each vertex aj
i in CS is adjacent

to exactly 2
(

n
2
)

+ 2 vertices in the verification gadget that are not contained in CS .
We next analyze the number of edges in the cut between CS and the rest of the graph that

go between different gadgets. Note that there are no edges between the instance-selection
gadget and the vertex-selection gadget. Hence, we only need to consider edges leaving the
verification gadget. We start with the size of such a cut assuming that no vertex in the
verification gadget belongs to CS . Note that vj has

(
n
2
)

− m edges to the verification gadget
and each of the k vertices xj

i in the vertex-selection gadget that belong to CS have n − 1
edges to the verification gadget. This leads to a baseline cut of size

(
n
2
)

− m + k(n − 1). Now
notice that adding any vertex in the verification gadget to CS increases the described cut
by (t + k) if none of the neighbors of the vertex in other gadgets are contained in CS and
by t + k − 2 if one neighbor belongs to CS . By construction, it never happens for a vertex
in the verification gadget that two neighbors outside the verification gadget are contained
in CS . Moreover, we constructed the solution such that one neighbor is always contained
in CS . Hence, the overall size of the described cut is

(
n
2
)

− m + k(n − 1) +
(

n
2
)
(t + k − 2).

Combined with the size of the cuts within each gadget, the total cut size is

t − 1 − m +
(

n

2

)
(t − k + 5) + k(nk + 3n + 2k − 4) +

(
n

2

)
(2

(
n

2

)
+ 2)

= 2
(

n

2

)2
+

(
n

2

)
(t + k + 7) + k2n + k(3n + 2k − 4) + t − m − 1 = ℓ.

Note that both CS and the rest of the graph induce a single connected component each.
For the reverse direction, suppose that the constructed instance of Two-Sets Cut-

Uncut is a yes-instance. Let CS ⊇ S be the set of vertices in the connected component
containing S after removing the edges of a solution (a cut of size at most ℓ). First, we will
argue that we can assume without loss of generality that CS \S contains exactly one vertex vj ,
exactly one vertex from the set {a1

i , a2
i , a3

i } for each i ∈
(

n
2
)
, exactly one vertex from the

M. Bentert, F. V. Fomin, F. Hauser, and S. Saurabh 14:17

set {xj
1, xj

2, . . . , xj
n} for each j ∈ [k], and at most one vertex from each set {x1

i , x2
i , . . . , xk

i }
for each i ∈ [n]. Note that this also implies that CS \ S contains exactly

(
n
2
)

+ k + 1 vertices
as all other vertices belong to S or T . Assume that CS \ S contains at least two vertices from
the instance-selection gadget. If connectivity within CS is not of concern, then removing
one of the two vertices from CS will always decrease the size of the cut as each vertex in the
instance-selection gadget is adjacent to at most 3

(
n
2
)

vertices in CS but also to 4
(

n
2
)

vertices
in W (which are contained in T and therefore not in CS). Moreover, since all vertices in
the verification gadget that have neighbors in the instance-selection gadget (all a-vertices)
form a clique and vertices in the instance-selection gadget are only incident to such vertices
and s, two vertices are never required to ensure connectivity within CS . On the other hand,
at least one vertex from the vertex-selection gadget needs to be contained in CS in order to
connect s ∈ S with the rest of S.

Next, assume that two vertices from a set {a1
i , a2

i , a3
i } are contained in CS . Then, these

two vertices have a common neighbor cj
i for some j ∈ [3] which is contained in T but only

has these two neighbors. This contradicts the fact that we started with some solution to
Two-Sets Cut-Uncut. Again, at least one such vertex needs to be included in CS in order
to connect bi ∈ S with the rest of S. The same arguments apply to the sets {xj

1, xj
2, . . . , xj

n}
and {x1

i , x2
i , . . . , xk

i } with the exception that there is no vertex in S enforcing that at least
one vertex of {x1

i , x2
i , . . . , xk

i } belongs to CS .
We next show that the vertices K encoded by the set of vertices in CS \ S in the vertex-

selection gadget form a vertex cover in the instance corresponding to the vertex vj ∈ CS \S in
the instance-selection gadget. As in the forward direction, the size of the cut between CS and
the rest of the graph has size at least ℓ = 2

(
n
2
)2 +

(
n
2
)
(t+k+7)+k2n+k(3n+2k−4)+t−m−1

and this bound is only achieved if each vertex in CS \ S in the verification gadget (each
a vertex in CS) has exactly one neighbor in CS \ S outside the verification gadget. We
call such a neighbor the buddy of the vertex. For each i ∈ [

(
n
2
)
], if a1

i is in CS and has a
buddy, then this buddy must be vj indicating that f(i) is not an edge in vj . If a2

i or a3
i is

contained in CS and has a buddy, then at least one of the endpoints of f(i) is contained
in K. This implies that for each pair {p, q} of vertices it holds that {p, q} is not an edge in
the instance corresponding to vj or p or q is contained in K, that is, K is a vertex cover in
this instance. Note that the set K has size k as CS \ S does not contain two vertices from
the set {xj

1, xj
2, . . . , xj

n} for any j ∈ [k]. This concludes the proof. ◀

We can make the instance-selection gadget into a clique in the above proof without
changing any of the proof details except for the fact that the size of an optimal solution
increases by exactly 2t−1 (as we still need to include exactly one vertex of the vertex-selection
gadget in the connected component containing S). This gives the following.

▶ Corollary 10. Two-Sets Cut-Uncut parameterized by distance to clique plus the number
of terminals does not admit a polynomial kernel unless NP ⊆ coNP/poly.

We next show that Two-Sets Cut-Uncut admits a linear kernel in the feedback edge
number of the graph by simple data reduction rules for vertices of degree one and two.

▶ Proposition 11. Two-Sets Cut-Uncut parameterized by feedback edge number k admits
a kernel with at most 5k vertices and 6k edges.

Proof. We present data-reduction rules that eliminate all degree-1 vertices and bound the
length of maximal induced paths, that is, paths whose internal vertices have degree two in
the input graph. Using standard arguments, this will result in a kernel with O(k) vertices
and edges [1].

IPEC 2024

14:18 The Parameterized Complexity Landscape of Two-Sets Cut-Uncut

First, note that since the input graph is connected, we can assume without loss of
generality that there are no isolated vertices (vertices without any neighbors). Next, consider
a vertex u with exactly one neighbor v. If u /∈ S ∪ T , then we can simply remove u as in
any optimal solution, we will color u with the same color as v and therefore u will not be
incident to any solution edges. If u ∈ S ∪ T (we assume without loss of generality in S),
then there are two cases. If S = {u}, then the instance is trivial as if T = ∅, then it is a
yes-instance and if T ̸= ∅, then the instance is a yes-instance if and only if ℓ ≥ 1 as deleting
the edge {u, v} is an optimal solution (as the input graph is connected). If |S| ≥ 2, then u

needs to be in the same connected component as v in any optimal solution. Hence, we can
remove u and add v to S instead. If v was already contained in T , then we return a trivial
no-instance.

After applying the above procedure exhaustively, we are left with a graph without any
vertices of degree at most one. Consider any maximal induced path, that is, a path P =
(v0, v1, . . . , vp) for some p such that degG(v0), degG(vp) > 2 and degG(vi) = 2 for all i ∈ [p−1].
Let I = {vi | i ∈ [p − 1]} be the set of internal vertices of P . We consider the following cases
based on whether I ∩ S = ∅ and I ∩ T = ∅. If I ∩ S = ∅ and I ∩ T = ∅, then we remove all
vertices in I except for v1 and add the edge {v1, vp}. Let P ′ = (v0, v1, vp) be the resulting
maximal induced path. Note that if v0 and vp are colored with the same color, then the
internal vertices of P can be colored with the same color and therefore do not increase the
solution size. If v0 and vp are colored differently, then we need to remove exactly one of
the edges in P and this also holds true for P ′. If I ∩ S ̸= ∅ and I ∩ T = ∅, then we again
replace P by P ′ but this time we add v1 to S. In this case, we can assume without loss of
generality that all vertices in I are colored red as we need to delete at least one edge for each
of v0 and vp that are colored blue and we can assume without loss of generality that these
edges are {v0, v1} and/or {vp−1, vp}. The case where I ∩ S = ∅ and I ∩ T ̸= ∅ is analogous.
Finally, assume that I ∩ S ̸= ∅ and I ∩ T ̸= ∅. Then let vi ∈ S and vj ∈ T such that no
vertex between vi and vj is contained in S ∪ T . Note that such a pair of vertices always
exists. We assume without loss of generality that i < j. Since some edge between vi and vj

has to belong to any solution, we can remove the edge {vi, vi+1} without loss of generality
and reduce ℓ by one. Note that both vi and vi+1 now have degree one and applying the
above procedure for degree-1 vertices exhaustively removes all vertices in I (or produces a
trivial kernel).

Hence, we can now assume that the graph does not contain any degree-1 vertices and
all maximal induced paths have at most one internal vertex. Using standard arguments,
the graph contains now at most 5k vertices and at most 6k edges, where k is the feedback
edge number of the constructed graph [1, Lemma 2]. Note that the feedback edge number
of the graph never increases in the above procedures. Hence, the produced instance has at
most 5k vertices and 6k edges, where k is the feedback edge number of the input graph. This
concludes the proof. ◀

We next show that the solution size does not allow for a polynomial kernel. Therein, we
use Proposition 7 to construct an OR-cross composition in which a solution to the entire
instance can only consist of a solution to one of the input instances.

▶ Proposition 12. Two-Sets Cut-Uncut parameterized by solution size ℓ does not admit
a polynomial kernel unless NP ⊆ coNP/poly.

Proof. We present an OR-cross composition from Two-Sets Cut-Uncut, where |S| = 1
and there exist constants c1 ≥ 0, c2 > |T | such that ℓ = c1 + |T |(c2 − |T |) and any cut
that keeps any set of j terminals in T connected to at least one other terminal in T while

M. Bentert, F. V. Fomin, F. Hauser, and S. Saurabh 14:19

G1 G2 Gt

T1 T2 Tt

u

v

Wu,v

. . .

...
...

...
...

...
...

...
...

Figure 5 An illustration of the reduction behind Proposition 12.

separating the terminal in S from all terminals in T has size at least c1 + j(c2 − j). This
variant is NP-hard by Proposition 7. We consider the polynomial equivalence relation
where all instances in the same equivalence class have the same solution size ℓ′, the same
constants c1, c2, and the same number k = |T | of terminals in T . We assume that the
number t of input instances is 2q for some integer q. Note that this can be achieved by
duplicating one of the input instances at most t times.

Given t instances I1 = (G1, S1, T1, ℓ′), I2 = (G2, S2, T2, ℓ′), . . . , It = (Gt, St, Tt, ℓ′) of the
same equivalence class, we construct an instance (H, S, T, ℓ) of Two-Sets Cut-Uncut as
follows. We start with H being the disjoint union of all graphs Gi and S being the union
of all Si. Let w = k log(t) + 1. We replace each edge {u, v} in the current graph by w

paths of length two, that is, we add a set Wu,v of w new vertices and for each p ∈ Wu,v,
we add the edges {u, p} and {p, v}. Next, we add k binary trees of depth log(t), add the
roots of these trees to T , and identify the ith leaf of each of these trees with one vertex
in Ti in such a way that each vertex in Ti is identified with the leaf of exactly one tree. See
Figure 5 for an illustration. Finally, we add edges between each pair of vertices in S and
set ℓ = wℓ′ + k log(t). This concludes the construction.

Since the solution size ℓ is by construction polynomially upper-bounded by n + log(t) and
the reduction can be computed in polynomial time (in n + t), it only remains to show that
the constructed instance is a yes-instance if and only if at least one of the input instances
is a yes-instance. To this end, first assume that one input instance Ii is a yes-instance.
We construct a solution of size at most ℓ in the constructed instance as follows. For each
edge {u, v} in the solution, we add all edges between vertices in Wu,v and u to our solution
cut. Note that this cut has size at most wℓ′. Next, for each of the k binary trees, we separate
the path from the root to the vertex in Gi from the rest of the tree. Note that this cuts
exactly one edge in each layer and hence exactly log(t) edges per tree. Thus, the constructed
cut has size at most wℓ′ + k log(t) = ℓ. Note that all vertices in T (the roots of the binary
trees) are connected to one another through the graph Gi and are separated from all other
graphs Gj with j ̸= i as they are separated from all other leaves in the binary tree and
within Gi they are separated from Si. Since all vertices in S are connected by construction,
this shows that the constructed instance is a yes-instance.

IPEC 2024

14:20 The Parameterized Complexity Landscape of Two-Sets Cut-Uncut

Gi Gi+1

Si

Ti Si+1

Ti+1
u

v

Figure 6 A connection gadget in the proof of Proposition 13.

For the reverse direction, assume that the constructed instance is a yes-instance and
let F be a solution cut of size at most ℓ in H. First note that if for some pair u, v of vertices,
an edge incident to a vertex in Wu,v is contained in F , then we can assume without loss of
generality that for each vertex in Wu,v exactly one incident edge is cut. Since w > k log(t),
this means that we can assume that F contains edges incident to at most ℓ′ sets Wu,v. Let F ′

be the set of edges in the t original graphs corresponding to these ℓ′ sets. Note that if
some set of j terminals in T are connected through some graph Gi in H − F , then they are
connected through a path in their respective binary trees and the j corresponding terminals
in Gi have to be separated from Si. By assumption, such a cut (in the original graph Gi)
has size at least c1 + j(c2 − j) and in H, this corresponds to a cut of size w(c1 + j(c2 − j)).
In order to connect all terminal pairs, we have to connect all k through one graph Gi as if
we use at least two graphs to connect sets of size j1, j2, . . . , jp with

∑p
i=1 ji ≥ k, then this

cut has size at least
p∑

i=1
w(c1+ji(c2−ji)) ≥

p∑
i=1

w(c1+ji(c2−k)) ≥ w(pc1+k(c2−k)) ≥ w(c1+1+k(c2−k)) > ℓ,

a contradiction. If all terminals are connected through a single graph Gi, then the vertices
in Ti remain connected to one another in H − F and are separated from Si. That is, there
is a set of ℓ′ edges in Gi to separate all vertices in Ti from Si while keeping all vertices
in Ti connected. Since |Si| = 1, this shows that instance Ii is a yes-instance of Two-Sets
Cut-Uncut and this concludes the proof. ◀

Finally, we show that 2-Disjoint Connected Subgraphs does not admit a polynomial
kernel parameterized by bandwidth.

▶ Proposition 13. 2-Disjoint Connected Subgraphs parameterized by bandwidth does
not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. We present an OR-cross composition from 2-Disjoint Connected Subgraphs.
Given t instances I1 = (G1, S1, T1), I2 = (G2, S2, T2), . . . , It = (Gt, St, Tt), we construct a
new instance (H, S, T) as follows. Initially H is the disjoint union of all Gi and S and T are
the unions of all Si and Ti respectively, where we put graph Gi+1 to the right of graph Gi.
We then use the gadget depicted in Figure 6 to connect Gi and Gi+1 for all i ∈ [t − 1]. We
call this gadget a connection gadget and it simply consists of two vertices u and v. We
make u adjacent to all vertices in Si and Ti+1 as well as one arbitrary vertex in Ti and one
arbitrary vertex in Si+1. The vertex v is adjacent to all vertices in Ti and Si+1 as well as
one arbitrary vertex in each of Si and Ti+1. This concludes the construction.

Since the instance can be computed in polynomial time, it only remains to show that the
bandwidth of the constructed instance is polynomial in the maximum number n of vertices in
any of the instances and that the constructed instance is a yes-instance if and only if at least

M. Bentert, F. V. Fomin, F. Hauser, and S. Saurabh 14:21

one of the input instances is a yes-instance. For the former, note that placing all vertices
of G1 (in any ordering) first, then the two vertices of the connection gadget between G1
and G2, then all vertices of G2 and so on results in an ordering where each edge within one
of the graphs has length at most n − 1 and each edge incident to a vertex in the connection
gadget has length at most n + 1. Since this covers all edges in the constructed instance, this
shows that the bandwidth is upper-bounded by n + 1.

We next show that the constructed instance is a yes-instance if and only if one of the input
instances is a yes-instance. To this end, first assume that one instance Ii is a yes-instance.
We construct a cut in the constructed instance as follows. We start with the solution cut
in Gi that leaves both Si and Ti connected and separates the two within Gi. Next, for the
connection gadget between Gj and Gj+1 for all j ≥ i, we color u blue and v red. For all
other connection gadgets, we color u red and v blue. Finally, in each graph Gj with i ̸= j,
we compute a minimum Sj-Tj-cut (ignoring connectivity) and add it to the solution. Note
that all terminals in Sj and Tj for all j ̸= i are connected to one another by a vertex in a
connection gadget and also connected to one vertex of the same color in the next graph Gj+1.
Hence, the constructed instance is a yes-instance.

For the reverse direction, assume that the constructed instance is a yes-instance. Note that
in each connection gadget, any optimal solution colors both vertices of the gadget differently
as otherwise at least one set of terminals is separated. Consider the set of connection gadgets
in which u is colored red. If this set is empty, then we consider I1 and otherwise we consider
the instance directly to the right of the last connection gadget in the set. We claim that the
considered instance Ii is a yes-instance. As we assume that the u vertex in the connection
gadget between Gi−1 and Gi is colored red (if it exists) and the u vertex in the connection
gadget between Gi and Gi+1 is colored blue (again assuming it exists), each vertex in a
connection gadget is adjacent to one terminal of the same color in Gi, that is, they do not
provide any additional connectivity between vertices in Si and Ti. Hence, the solution for
the constructed instance contains a cut in Gi such that all vertices of Si remain connected,
are separated from all vertices in Ti, which in turn remain connected to one another. That
is, the instance Ii is a yes-instance. This concludes the proof. ◀

6 Conclusion

In this work, we studied the parameterized complexity of Two-Sets Cut-Uncut, a natural
optimization variant of 2-Disjoint Connected Subgraphs. We gave an almost complete
tetrachotomy in terms of the existence of polynomial kernels, fixed-parameter tractability,
and XP-time algorithms. We conclude with a couple of open questions. First, the complexity
with respect to the distance to interval graphs remains unclear, with everything between
fixed-parameter tractability and para-NP-hardness still being possibilities. In particular,
the complexity of Two-Sets Cut-Uncut on interval graphs (polynomial-time solvable
or NP-hard) is unknown. Second, we showed that there is an XP-time algorithm for the
parameter clique-width. Moreover, it is known that Largest Bond is W[1]-hard when
parameterized by the clique-width. We conjecture that the same holds true for Two-Sets
Cut-Uncut. Finally, it is known that Two-Sets Cut-Uncut is W[1]-hard parameterized
by the number of terminals (vertices in S ∪ T) [2]. However, it is not known whether there is
an XP-time algorithm and in particular, even whether Network Diversion, a special case
of Two-Sets Cut-Uncut with four terminals, is polynomial-time solvable or not has been
a long-standing open question, which we repeat here.

IPEC 2024

14:22 The Parameterized Complexity Landscape of Two-Sets Cut-Uncut

References
1 Matthias Bentert, Alexander Dittmann, Leon Kellerhals, André Nichterlein, and Rolf Nieder-

meier. An adaptive version of Brandes’ algorithm for betweenness centrality. Journal of Graph
Algorithms and Applications, 24(3):483–522, 2020. doi:10.7155/JGAA.00543.

2 Matthias Bentert, Pål Grønas Drange, Fedor V. Fomin, Petr A. Golovach, and Tuukka
Korhonen. Two-sets cut-uncut in planar graphs. In Proceedings of the 51st International
Colloquium on Automata, Languages, and Programming (ICALP), pages 22:1–22:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.ICALP.2024.22.

3 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds
by cross-composition. SIAM Journal on Discrete Mathematics, 28(1):277–305, 2014. doi:
10.1137/120880240.

4 Jan van den Brand, Li Chen, Richard Peng, Rasmus Kyng, Yang P. Liu, Maximilian Probst
Gutenberg, Sushant Sachdeva, and Aaron Sidford. A deterministic almost-linear time algorithm
for minimum-cost flow. In Proceedings of the 64th IEEE Annual Symposium on Foundations of
Computer Science (FOCS), pages 503–514. IEEE, 2023. doi:10.1109/FOCS57990.2023.00037.

5 Christopher Cullenbine, R. Kevin Wood, and Alexandra M. Newman. Theoretical and
computational advances for network diversion. Networks, 62(3):225–242, 2013. doi:10.1002/
NET.21514.

6 Norman D. Curet. The network diversion problem. Military Operations Research, 6(2):35–44,
2001.

7 Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. Solving
the 2-disjoint connected subgraphs problem faster than 2n. Algorithmica, 70(2):195–207, 2014.
doi:10.1007/S00453-013-9796-X.

8 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Springer, 2013. doi:10.1007/978-1-4471-5559-1.

9 Gabriel L. Duarte, Hiroshi Eto, Tesshu Hanaka, Yasuaki Kobayashi, Yusuke Kobayashi, Daniel
Lokshtanov, Lehilton L. C. Pedrosa, Rafael C. S. Schouery, and Uéverton S. Souza. Computing
the largest bond and the maximum connected cut of a graph. Algorithmica, 83(5):1421–1458,
2021. doi:10.1007/S00453-020-00789-1.

10 Ozgur Erken. A branch-and-bound algorithm for the network diversion problem. PhD thesis,
Naval Postgraduate School, 2002.

11 Herbert Fleischner, Gert Sabidussi, and Vladimir I. Sarvanov. Maximum independent sets
in 3- and 4-regular Hamiltonian graphs. Discrete Mathematics, 310(20):2742–2749, 2010.
doi:10.1016/J.DISC.2010.05.028.

12 Chris Gray, Frank Kammer, Maarten Löffler, and Rodrigo I. Silveira. Removing local extrema
from imprecise terrains. Computational Geometry: Theory and Applications, 45(7):334–349,
2012. doi:10.1016/J.COMGEO.2012.02.002.

13 Pim van ’t Hof, Daniël Paulusma, and Gerhard J. Woeginger. Partitioning graphs into
connected parts. Theoretical Computer Science, 410(47-49):4834–4843, 2009. doi:10.1016/J.
TCS.2009.06.028.

14 Benjamin S. Kallemyn. Modeling Network Interdiction Tasks. PhD thesis, Air Force Institute
of Technology, 2015.

15 Walter Kern, Barnaby Martin, Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen.
Disjoint paths and connected subgraphs for H-free graphs. Theoretical Computer Science,
898:59–68, 2022. doi:10.1016/J.TCS.2021.10.019.

16 Chungmok Lee, Donghyun Cho, and Sungsoo Park. A combinatorial Benders decomposition
algorithm for the directed multiflow network diversion problem. Military Operations Research,
24(1):23–40, 2019.

17 James Nastos and Yong Gao. Bounded search tree algorithms for parametrized cograph
deletion: Efficient branching rules by exploiting structures of special graph classes. Discrete
Mathematics, Algorithms and Applications, 4(1), 2012. doi:10.1142/S1793830912500085.

https://doi.org/10.7155/JGAA.00543
https://doi.org/10.4230/LIPICS.ICALP.2024.22
https://doi.org/10.1137/120880240
https://doi.org/10.1137/120880240
https://doi.org/10.1109/FOCS57990.2023.00037
https://doi.org/10.1002/NET.21514
https://doi.org/10.1002/NET.21514
https://doi.org/10.1007/S00453-013-9796-X
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/S00453-020-00789-1
https://doi.org/10.1016/J.DISC.2010.05.028
https://doi.org/10.1016/J.COMGEO.2012.02.002
https://doi.org/10.1016/J.TCS.2009.06.028
https://doi.org/10.1016/J.TCS.2009.06.028
https://doi.org/10.1016/J.TCS.2021.10.019
https://doi.org/10.1142/S1793830912500085

M. Bentert, F. V. Fomin, F. Hauser, and S. Saurabh 14:23

18 Daniël Paulusma and Johan M. M. van Rooij. On partitioning a graph into two connected
subgraphs. Theoretical Computer Science, 412(48):6761–6769, 2011. doi:10.1016/J.TCS.
2011.09.001.

19 Ashutosh Rai, M. S. Ramanujan, and Saket Saurabh. A parameterized algorithm for mixed-cut.
In Proceedings of the 12th Latin American Symposium on Theoretical Informatics LATIN,
pages 672–685. Springer, 2016. doi:10.1007/978-3-662-49529-2_50.

20 Neil Robertson and Paul D. Seymour. Graph minors XIII: The disjoint paths problem. Journal
of Combinatorial Theory, Series B, 63(1):65–110, 1995. doi:10.1006/JCTB.1995.1006.

21 Johannes C. B. Schröder. Comparing graph parameters. Bachelor’s thesis, Technische
Universität Berlin, 2019.

22 Jan Arne Telle and Yngve Villanger. Connecting terminals and 2-disjoint connected subgraphs.
In Proceedings of the 39th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG), pages 418–428. Springer, 2013. doi:10.1007/978-3-642-45043-3_36.

23 Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Mathematics,
8(1):85–89, 1984. doi:10.1016/0166-218X(84)90081-7.

IPEC 2024

https://doi.org/10.1016/J.TCS.2011.09.001
https://doi.org/10.1016/J.TCS.2011.09.001
https://doi.org/10.1007/978-3-662-49529-2_50
https://doi.org/10.1006/JCTB.1995.1006
https://doi.org/10.1007/978-3-642-45043-3_36
https://doi.org/10.1016/0166-218X(84)90081-7

	1 Introduction
	2 Preliminaries
	3 Parameterized Algorithms
	4 Parameterized Hardness
	5 Polynomial Kernels
	6 Conclusion

