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Abstract
The modularity score is one of the most important measures for assessing the quality of clusterings
of undirected graphs. In the notoriously difficult Modularity problem, one is given an undirected
graph G and the task is to find a clustering with maximum modularity. We show that Modularity
is fixed-parameter tractable with respect to the max leaf number of G. This improves on a previous
result by Meeks and Skerman [Algorithmica ’20] who showed an XP-algorithm for this parameter.
In addition, we strengthen previous hardness results for Modularity by showing W[1]-hardness for
the parameter vertex deletion distance to disjoint union of stars.
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1 Introduction

One of the most central topics in network science is the detection of community structure [18].
This can be achieved via graph clustering. In its most simple form, this is the task of
searching for a partition of the vertex set into clusters and the underlying assumption is that
edges are more likely to be present inside clusters than between them. The corresponding
optimization goal is to maximize the edge coverage of the partition, that is, the number of
intracluster edges. Of course, the trivial partition into one single cluster trivially maximizes
the number of intracluster edges. To counter this, several approaches have been proposed,
for example one may demand that clusters form highly connected subgraphs [11, 12] or one
may penalize missing edges inside clusters [19].

The arguably most popular way of achieving clusterings with high edge coverage while
avoiding the trivial clustering is to maximize modularity [17]. In the modularity measure, the
contribution of a cluster consists of two parts: the first part corresponds to the edge coverage
and the second part is a degree tax which penalizes clusters that have many high-degree
vertices. The idea behind the degree tax is that such clusters are expected to contain many
edges simply because there are many edges that are incident with the cluster vertices. Hence,
for a positive contribution to the modularity score, the number of present edges should
exceed the number of expected ones. More formally, a clustering of a graph G = (V, E) is a
partition of V and for a vertex set C ⊆ V , E(C) denotes the set of edges with both endpoints
in C. Now the definition of modularity reads as follows.

▶ Definition 1.1. The modularity of a clustering C of a graph G with m edges is given by

q(C) =
∑
C∈C

|E(C)|
m

−
(∑

v∈C deg(v)
)2

4m2 .
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16:2 Modularity Clustering Parameterized by Max Leaf Number

The problem of computing an optimal clustering under this measure is now defined as follows.

Modularity
Input: A graph G = (V, E).
Task: Find a clustering C with maximum modularity q(C).

Modularity is NP-hard [4] and therefore heuristics, for example greedy algorithms [5] or
local search [3], are prevalent in practice. The modularity measure has some counterintuitive
behavior [4]. Consequently, some research focuses on better understanding the properties of
optimal clusterings [4] or on providing bounds for the modularity values of certain graph
classes [1, 14, 15, 8, 20]; for an overview, refer to the work of Skerman [20].

The importance of the modularity measure has motivated further research into the
complexity of Modularity. For example, computing the best clustering with exactly two
clusters is also NP-hard [4] even when the input graphs are restricted to be d-regular for
any d ≥ 9 [7]. Meeks and Skerman [16] initiated the analysis of Modularity within the
framework of parameterized complexity obtaining the following results: They showed that
Modularity can be solved in polynomial time on graphs with constant treewidth and that
Modularity is fixed-parameter tractable with respect to the vertex cover number of the
input graph G. Moreover, it was shown that Modularity is W[1]-hard with respect to
the parameter pathwidth of G plus feedback vertex set number of G, so presumably there
exists no FPT-algorithm for this parameter. For the parameter max leaf number of G,
denoted λ(G), an XP-algorithm was shown. That is, the algorithm has a polynomial running
time for constant values of λ(G), but the degree of the polynomial depends on λ(G). The
precise parameterized complexity of Modularity with respect to the max leaf number of G

was left open.
In this work, we continue this line of research. We show that the XP-algorithm for the

max leaf number λ(G) can be improved to an FPT-algorithm. While the max leaf number,
one of the most classic structural parameters [10], is quite restrictive, our result provides only
the second nontrivial FPT-algorithm for this very important problem. Roughly speaking, our
algorithm exploits that large graphs with bounded max leaf number contain very long paths
consisting of degree-2 vertices and that the clustering for these paths follows a relatively
regular pattern. The algorithm consists of three steps. In a first branching, the global
structure of the clustering is constrained. In particular, it is determined how the vertices of
degree at least 3 are clustered and with which degree-2 paths these clusters share vertices.
To prepare the next step, it is shown that the clusters consisting of degree-2 vertices have
roughly the same size and, based on this, that the clusters containing high-degree vertices
also deviate by at most 22 λ(G)2 from the size of the path clusters. This allows us to find
the correct cluster sizes via branching. The remaining problem of computing an optimal
clustering under these size constraints is then solved via an ILP formulation.

Our algorithm works also on disconnected graphs G, where we define λ(G) to be the
sum of the max leaf numbers of the connected components of G. The only proofs where
we assume connectivity are those that bound the number of high-degree vertices in terms
of λ(G) and they are easily seen to also hold for disconnected graphs by summing over the
connected components.

On the negative side, we strengthen the previous W[1]-hardness for Modularity para-
meterized by pathwidth plus feedback vertex set number by showing that Modularity is
W[1]-hard with respect to the vertex deletion distance of G to a disjoint union of stars. This
parameter is obviously at least as large as the feedback vertex set number of G. Moreover,
the parameter is also lower-bounded by pathwidth + 1: Any vertex deletion set S to a
disjoint union of stars gives a path decomposition where every bag contains S plus a star
center plus one leaf of the star.
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In our opinion, this W[1]-hardness for distance to stars puts the FPT-algorithm for
the admittedly large parameter max leaf number into context by underlining once more
that Modularity is resistant to quite large structural parameterizations. Due to space
constraints for statements marked with a star (*), the proofs are deferred to the long version
of this work.

2 Preliminaries

We consider undirected graphs G = (V, E) and let n denote the number of vertices of G and m

the number of edges of G. The neighborhood of a vertex v ∈ V is defined as N(v) = {u ∈
V | {u, v} ∈ E} and for a set of vertices V ′ ⊆ V we define N(V ′) = (

⋃
v∈V ′ N(v)) \ V ′. The

degree of a vertex v is denoted by deg(v) = |N(v)|. We define V=1 = {v ∈ V | deg(v) = 1}
and analogously V=2 = {v ∈ V | deg(v) = 2} and V≥3 = {v ∈ V | deg(v) ≥ 3}.

We denote the degree sum of a vertex set C, also called volume of C, by vol(C) :=∑
v∈C deg(v). For two clusterings C and C′ we say that C is better than C′ if q(C) > q(C′).

Since we are often not interested in the actual value of the modularity of a clustering, but
only whether it is better than another clustering, we define the function q̃(C) = 4m2q(C) =
4m
∑

C∈C |E(C)| −
∑

C∈C vol(C)2. Clearly, for two clusterings C and C′ of the same graph
we have q(C) ≥ q(C′) if and only if q̃(C) ≥ q̃(C′).

A 2-path is a path (v1, v2, . . . , vk) with deg(vi) ≤ 2 for all i ∈ [k]. A 2-path is maximal if
it is not contained in a longer 2-path. For a maximal 2-path P = (v1, v2, . . . , vk) we refer
to v1 and vk as the endpoints of P and define V (P ) = {v1, v2 . . . , vk}. A 2-path is pendent
if deg(v1) = 1 or deg(vk) = 1. A branch of a graph G is a maximal path or cycle in which
every internal vertex of the path has degree 2 in G. We denote with BG the set of all
branches in G and with β(G) = |BG| the number of all branches in G. Note that β(G) can
be computed in O(n + m) time. Let G be a connected graph. The maximum leaf number
λ(G) of G (or just max leaf number) is the maximum number of leaves in any spanning tree
of G. When the graph G is clear from the context we just write λ for the max leaf number.

▶ Lemma 2.1 ([4]). There is always a clustering with maximum modularity, in which each
cluster induces a connected subgraph.

▶ Lemma 2.2 ([4]). A clustering with maximum modularity has no cluster that consists of a
single vertex with degree 1.

In our correctness proofs, we are often concerned with the effect of removing one vertex
from some cluster Ci and adding some vertex to another cluster Cj . In particular, we are
interested in the change of the total degree tax for these two clusters. The following lemma
describes a situation where the degree tax decreases.

▶ Lemma 2.3. Let Ci and Cj be two clusters and let u and v be two vertices of the same
degree such that u ∈ Ci and deg(u) > 0. If vol(Ci\{u}) > vol(Cj), then vol(Ci)2+vol(Cj)2 >

vol(Ci \ {u})2 + vol(Cj ∪ {v})2.

Proof. The claim holds trivially if v ∈ Cj , thus assume v /∈ Cj . Since u ∈ Ci, we
have vol(Ci) = vol(Ci \ {u}) + deg(u). Therefore,

vol(Ci)2 = (vol(Ci \ {u}) + deg(u))2 = vol(Ci \ {u})2 + 2 · vol(Ci \ {u}) · deg(u) + deg(u)2.

Since deg(u) = deg(v), we similarly have

vol(Cj ∪ {v})2 = (vol(Cj) + deg(u))2 = vol(Cj)2 + 2 · vol(Cj) · deg(u) + deg(u)2.

IPEC 2024



16:4 Modularity Clustering Parameterized by Max Leaf Number

Thus,

vol(Ci)2 + vol(Cj)2 − (vol(Ci \ {u})2 + vol(Cj ∪ {v})2)
= 2 · vol(Ci \ {u}) · deg(u) + deg(u)2 − (2 · vol(Cj) · deg(u) + deg(u)2)
= 2 · deg(u) · (vol(Ci \ {u}) − vol(Cj)) > 0. ◀

We now show that the number of vertices v ∈ V with deg(v) ≥ 3 is bounded by a function of
the max leaf number. More precisely, we give a bound on the sum of the degrees of these
vertices. This bound is obtained via bounding the number of branches in G. Eppstein [9]
already showed that this number is O(λ(G)2). We give a precise bound on the hidden
constant since we will use it in our algorithm.

▶ Lemma 2.4 (*). Let G = (V, E) be a connected graph. Then we have β(G) ≤ 21 λ(G)2.

The next statement directly follows from Lemma 2.4, since each edge incident with a
vertex v ∈ V≥3 corresponds to a branch and each branch contains at most two vertices
in V≥3.

▶ Corollary 2.5. Let G = (V, E) be a connected graph. Then we have
∑

v∈V≥3
deg(v) ≤

42 λ(G)2.

3 Preclusterings and Cluster Sizes

3.1 Preclustering Branching
The general approach of the algorithm is to consider in a branching step all the possibilities
of how some optimal clustering might interact with the vertices of degree at least 3. The
structure containing this information is a partial clustering defined as follows.

▶ Definition 3.1. A preclustering is a set P := {C1, . . . , Cs} of nonempty disjoint subsets
of V .

▶ Definition 3.2. A clustering C = {C ′
1, . . . , C ′

t} extends a preclustering P = {C1, . . . , Cs} if
for each Ci ∈ P there is exactly one cluster C ′

j ∈ C such that Ci ⊆ C ′
j and each cluster C ′

j ∈ C
has nonempty intersection with at most one cluster of P.

To find an optimal solution efficiently from a preclustering, we will need to fix not only which
vertices of degree 3 are contained in which clusters but also how these clusters interact with
the potentially very long 2-paths connecting them. The necessary information is provided by
what we call full preclusterings, defined as follows (see Figure 1 for an example).

▶ Definition 3.3. A preclustering P = {C1, . . . , Cs} is a full preclustering if every vertex
of V≥3 is contained in some cluster of P and for every maximal 2-path P = (v1, v2, . . . , vk)
of G either

all vertices of P are contained in some common cluster Ci,
no vertex of P is contained in any cluster Ci, or
k ≥ 2, for each cluster Ci we have Ci ∩ V (P ) ⊆ {v1, vk} and if v1 ∈ Ci then also u1 ∈ Ci,
where u1 is the unique neighbor of v1 in V≥3, and if vk ∈ Ci then also uk ∈ Ci, where uk

is the unique neighbor of vk in V≥3.
The idea of full preclusterings is as follows. For the fully contained maximal 2-paths P , the
cluster is already fixed. For the endpoints of the other maximal 2-paths, we know that they
are either 1) in different clusters than their high-degree neighbors which helps us to separate
the instance in smaller pieces, or 2) in the same cluster as their high-degree neighbors which
allows us to use the clusters with these high-degree vertices in some exchange arguments
because they also contain some degree-2 vertices.
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p2
1 p2

2 p2
3

p1
1

p3
1

p3
2

p3
3

p3
4

Figure 1 Example of a full preclustering P = {C1, C2}. The cluster C1 is encircled in red,
the cluster C2 is encircled in blue. Cluster C1 contains the complete maximal 2-path (p1

1),
cluster C2 contains one endpoint of the maximal 2-path (p2

1, p2
2, p2

3) and no vertex of the max-
imal 2-path (p3

1, p3
2, p3

3, p3
4) is contained in any cluster in P.

▶ Definition 3.4. A clustering C legally extends a full preclustering P if
C extends P,
a cluster C ∈ C contains {u, v} where u is an endpoint of a maximal 2-path P and v is a
neighbor of u in V≥3 only if some cluster of P does.

Note that for a given clustering C, there is exactly one full preclustering P such that C legally
extends P. We say that P is the preclustering that corresponds to C.

Let us first show that we may indeed consider all full preclusterings within FPT time.

▶ Lemma 3.5. Any graph G has λ(G)O(λ(G)2) full preclusterings.

Proof. A full preclustering P can be identified by
1. the partition of V≥3 that it induces,
2. for each 2-path, the information whether that 2-path is fully contained in some cluster

of P , disjoint from all clusters of P , or whether its endpoints are contained in some cluster
of P.

In the latter case, the cluster which contains an endpoint is uniquely determined to be
the cluster containing the neighbor of the endpoint in V≥3. By Corollary 2.5, the number
of vertices in V≥3 is O(λ(G)2) and thus the number of partitions of V≥3 is λ(G)O(λ(G)2).
By Lemma 2.4, the number of branches and thus the number of 2-paths is O(λ(G)2).
For each 2-path, we need to distinguish altogether five cases, hence there are 2O(λ(G)2)

possibilities for the 2-path information. The total number of full preclusterings is thus
λ(G)O(λ(G)2) · 2O(λ(G)2) = λ(G)O(λ(G)2). ◀

A full preclustering P constrains some edges of the graph to not be contained in any cluster
of a clustering that legally extends P. This set of edges is defined as follows.

▶ Definition 3.6. Let P = {C1, . . . , Cs} be a full preclustering of G. The separation induced
by P is the edge set

S(P) :=
⋃

i∈[s]

{{u, v} ∈ E | u ∈ Ci ∩ V≥3 and v /∈ Ci}.

As the name suggests a separation fully separates some parts of the instance. These are
exactly the connected components of G − S(P), they are called the separated components
of P. By Lemma 2.1 it is sufficient to consider clusterings such that every cluster induces a
connected subgraph. For any such clustering C that legally extends a full preclustering P,
we have that every cluster C is completely contained in some separated component of P . We
thus compute an optimal clustering of each separated component of P individually.

IPEC 2024



16:6 Modularity Clustering Parameterized by Max Leaf Number

We will distinguish those clusters that contain at least one vertex from V≥3, these are
called base clusters, from those clusters that are contained in the 2-paths, these are called
path clusters. The two main parts that are not yet determined by a full preclustering are how
far each base cluster extends into the neighboring 2-paths and how large the clusters which
are fully contained in 2-paths are. The next step is now to show that the 2-path clusters
inside a separated component have roughly the same size. Note that this is not true for all
full preclusterings but rather that there is some preclustering which has a globally optimal
legal extension for which this is the case.

▶ Lemma 3.7. There exists an optimal clustering C such that
C legally extends some full preclustering P, and
in every separated component S of P, there is some number p such that the path clusters
in S have size p or p + 1.

The approach to show Lemma 3.7 is, roughly speaking, to show that a big size difference
between path clusters leads to suboptimality because we can exchange some degree-2 vertices
to balance the cluster sizes. This exchange may need to involve base clusters which contain
some vertices of 2-paths. To distinguish whether a base cluster contains some vertices of a
2-path or not, we say a base cluster C extends into a 2-path P if |C ∩ P | ≥ 1. Note that
per definition a base cluster C extends into a 2-path P if and only if in the corresponding
preclustering there is a cluster CP ⊆ C such that |CP ∩ P | ≥ 1.

▶ Definition 3.8. Two clusters C ∈ C and C ′ ∈ C are neighboring clusters or neighbors if
{u, v} ∈ E for some u ∈ C, v ∈ C ′.

For a clustering C with neighboring path clusters C1 = {ui, . . . , uj} and C2 = {uj+1, . . . , uj+ℓ}
on a 2-path P = (u1, . . . , ut), we define the clustering C′ obtained by the swap of C1 and C2
as the clustering that is the same as C except for clusters C1 and C2 which are replaced
by the clusters C ′

1 = {ui, . . . , ui+ℓ−1} and C ′
2 = {ui+ℓ, . . . , uj+ℓ}. In other words, the swap

exchanges the lengths of two neighboring path clusters. Clearly, the clustering resulting from
applying a swap to C has the same modularity as C.

3.2 Difference in Cluster Sizes is bounded in λ

We now prove a series of lemmas which are needed for the proof of Lemma 3.7. We distinguish
those path clusters that contain a degree-1 vertex which we call pendent path clusters and
those that do not contain a degree-1 vertex which are called nonpendent path clusters.

Note that a separated component consisting of a 2-path with two vertices of degree 1 is
an isolated path, a graph with constant treewidth, for which the optimal clustering can be
computed directly in polynomial time [16]. We therefore assume in the following that there
is at most one pendent path cluster per 2-path.

The first lemma shows that in optimal solutions, pendent clusters are at least as large as
neighboring nonpendent clusters.

▶ Lemma 3.9 (*). Let G = (V, E) be a graph and C a clustering of G. Let P be a pendent
2-path and C1 ∈ C and C2 ∈ C be path clusters in P such that C2 is pendent, C1 is nonpendent,
and |C1| > |C2|. Then, C is not optimal.

The next lemma shows that path clusters from the same 2-path in G can only differ in size
by at most one vertex.

▶ Lemma 3.10. Let G = (V, E) be a graph and C a clustering of G. Let P be a 2-path and
C1 ∈ C and C2 ∈ C be path clusters in P with |C1| > |C2| + 1. Then, C is not optimal.
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Proof. Recall that we can assume that not both of C1 and C2 are pendent, since otherwise P

is an isolated path for which the optimal clustering can be computed directly in polynomial
time. Since P is a 2-path, we can swap neighboring clusters of P without changing the
modularity, so we can assume that C1 and C2 are neighboring clusters.

Let v1 ∈ C1 ∩ N(C2) be the neighbor of C2 in C1. Consider the clustering C′ where C1
and C2 are replaced by clusters C ′

1 = C1 \ {v1} and C ′
2 = C2 ∪ {v1}, respectively, and all

other clusters are unchanged.
Note that we only have to consider the contribution of C1 and C2 to q̃(C) and the

contribution of C ′
1 and C ′

2 to q̃(C′) since the other clusters are identical for both clusterings.
Furthermore, since v1 is part of a 2-path, we have |E(C ′

1)| = |E(C1)| − 1 and |E(C ′
2)| =

|E(C2)| + 1, so the total number of intracluster edges remains the same.
Moreover, by Lemma 3.9, we may assume that C2 is nonpendent. Now, if C1 is nonpendent,

then vol(C1 \ {v1}) = 2|C1| − 2 > 2|C2| = vol(C2) since |C1| > |C2| + 1. Thus Lemma 2.3
implies vol(C1)2 + vol(C2)2 > vol(C1 \ {v1})2 + vol(C2 ∪ {v1})2. Finally, if C1 is pendent,
then again vol(C1 \ {v1}) = 2|C1| − 3 ≥ 2|C2| + 1 > 2|C2| = vol(C2) since |C1| > |C2| + 1
and thus |C1| ≥ |C2| + 2. Hence, C′ is a better clustering. ◀

The next lemma shows that two path clusters with the same base cluster as a neighbor can
only differ in size by at most one vertex.

▶ Lemma 3.11 (*). Let G = (V, E) be a graph and C a clustering of G. Let C ∈ C be a base
cluster that extends into a 2-path P1 and a 2-path P2. Let CP1 ∈ C be a path cluster in P1
and CP2 ∈ C be a path cluster in P2 with |CP1 | > |CP2 | + 1. Then, C is not optimal.

We are now ready to show Lemma 3.7.

▶ Lemma 3.7. There exists an optimal clustering C such that
C extends some full preclustering P, and
in every separated component of P, there is some number p such that the path clusters
have size p or p + 1.

For the proof of Lemma 3.7 we need the following definition.

▶ Definition 3.12. Let C be a clustering that extends some full preclustering P and let S be
a separated component of P. Let C and C̃ be path clusters in S contained in the 2-paths P

and P̃ , respectively. Since C and C̃ are part of the same separated component, there is a
smallest number ℓ ≥ 1 for which there is a sequence of 2-paths P1, . . . , Pℓ and a sequence
of extended base clusters B1, . . . , Bℓ−1 such that P = P1, P̃ = Pℓ and Bi extends into Pi

and Pi+1 for each i ∈ [ℓ − 1]. We then say that C and C̃ have path cluster distance ℓ.

Proof (of Lemma 3.7). Assume towards a contradiction that for every optimal clustering C
and its corresponding full preclustering P , there is a separated component of P that contains
path clusters C1 and C2 with |C1| − |C2| ≥ 2. We choose C in such a way that there is a
separated component S of P such that S contains path clusters C and C̃ with

p := |C| and p̃ := |C̃| = p + c for some c > 1,
the clusters C and C̃ have path cluster distance r, and
r is the minimal path cluster distance of any two path clusters C1, C2 with |C1|− |C2| ≥ 2
in the same separated component of any optimal clustering.

Let P be the 2-path that contains C and P̃ be the 2-path that contains C̃. Let P1, . . . , Pr

and B1, . . . , Br−1 be the sequences of 2-paths and extended base clusters for C and C̃ as
described in Definition 3.12.

IPEC 2024



16:8 Modularity Clustering Parameterized by Max Leaf Number

If r = 1, then we have p̃ ∈ {p, p+1} by Lemma 3.10 and the optimality of C, contradicting
the assumption p̃ = p + c. If r = 2, then there is a base cluster B1 that extends into both P

and P̃ , so we have again p̃ ∈ {p, p + 1}, since otherwise C would not be optimal according to
Lemma 3.11, contradicting the assumption p̃ = p + c. Now consider the case r ≥ 3. First,
we show that we can assume that C and B1 are neighboring clusters: If C is pendent and
has a neighboring nonpendent path cluster C ′ of size p + 1, then the clustering C is not
optimal by Lemma 3.9. Hence, if C is pendent and not a neighboring cluster of B1, then we
may choose the nonpendent cluster C ′ instead of C. Now, if C is nonpendent, since P1 is
a 2-path, we can swap neighboring clusters of P1 until we reach B1 without changing the
modularity. Altogether, we can assume that C and B1 are neighboring clusters. Let Ĉ be
the path cluster of P2 neighboring B1. Note that |Ĉ| ∈ {p − 1, p, p + 1} due to Lemma 3.11.
If |Ĉ| ∈ {p − 1, p}, then we have a contradiction to C and C̃ having minimal path cluster
distance, since |C̃| − |Ĉ| ≥ 2 and Ĉ and C̃ have path cluster distance r − 1. Thus, let
|Ĉ| = p + 1. Let v1 ∈ B1 ∩ N(C) be the neighbor of C in B1 and let v2 ∈ Ĉ ∩ N(B1) be
the neighbor of B1 in Ĉ. Consider the clustering C′ where B1, C, and Ĉ are replaced by
clusters B′

1 = (B1 \ {v1}) ∪ {v2}, C ′ = C ∪ {v1}, and Ĉ ′ = Ĉ \ {v2}, respectively. Clearly, we
have q̃(C′) = q̃(C), so C′ is also an optimal clustering. Note that in C′ the clusters Ĉ ′ and C̃

are in the same separated component of the preclustering P ′ corresponding to C′. Moreover,
in C′ the clusters Ĉ ′ and C̃ have path cluster distance r − 1 and |Ĉ ′| = p. Altogether, we
thus have a contradiction to C and C̃ having minimal path cluster distance. ◀

By Lemma 3.7 for each separated component we can distinguish between small and big path
clusters of size p and p + 1, respectively. The next lemma shows that for an extended base
cluster and a neighboring path cluster the size difference is bounded by a function of λ(G).

▶ Lemma 3.13. Let G = (V, E) be a graph and C a clustering of G. Let C ∈ C be a base cluster
that extends into a 2-path P and let CP ∈ C be a path cluster in P . If |CP | > |C| + 22 λ(G)2

or |CP | < |C| − 2, then C is not optimal.

Proof. Without loss of generality, we may assume that CP is a neighboring cluster of the
base cluster C, as otherwise all exchanges between C and CP can be carried out by moving
the path clusters between C and CP .

First, consider the case where |CP | > |C| + 22 λ(G)2. Let v ∈ CP ∩ N(C) be the
neighbor of C in CP . Consider the clustering C′ where CP and C get replaced by clusters
C ′

P = CP \ {v} and C ′ = C ∪ {v}, respectively, and all other clusters are not changed.
Note that we only have to consider the contribution of CP and C to q̃(C) and the

contribution of C ′
P and C ′ to q̃(C′) since the other clusters are identical for both clusterings.

Furthermore, since v is part of a 2-path, we have |E(C ′
P )| = |E(CP )| − 1 and |E(C ′)| =

|E(C)| + 1, so the total number of intracluster edges remains the same. We can express the
volume of the base cluster C as the sum vol(C) = vol(C ∩V=1) +vol(C ∩V=2) +vol(C ∩V≥3).
According to Lemma 2.5 we have vol(V≥3) ≤ 42 λ(G)2 and therefore also vol(C ∩ V≥3) ≤
42 λ(G)2. Thus, if CP is nonpendent, we have

vol(CP \ {v}) = 2|CP | − 2 > 2|C| + 44 λ(G)2 − 2 > vol(C).

Similarly, if CP is pendent, then

vol(CP \ {v}) = 2|CP | − 3 > 2|C| + 44 λ(G)2 − 3 > vol(C).

Thus, in both cases Lemma 2.3 implies vol(CP )2 + vol(C)2 > vol(CP \ {v})2 + vol(C ∪ {v})2

and C′ is a better clustering.
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Second, consider the case |CP | < |C| − 2. Let v ∈ C ∩ N(CP ) be the neighbor of CP

in C. Consider the clustering C′ where C and CP get replaced by clusters C ′ = C \ {v} and
C ′

P = CP ∪ {v}, respectively, and all other clusters are not changed.
Again, we only have to consider the contribution of CP and C to q̃(C) and the contribution

of C ′
P and C ′ to q̃(C′) since the other clusters are identical for both clusterings. Furthermore,

note that since v is part of a 2-path, we have |E(C ′
P )| = |E(CP )|+1 and |E(C ′)| = |E(C)|−1,

so the total number of intracluster edges remains the same. Moreover, since C is connected
we have vol(C) > 2|C| − 2. Hence, vol(C \ {v}) > 2|C| − 4 = 2(|C| − 2) > 2|CP | ≥ vol(CP ).
Thus, Lemma 2.3 implies vol(C)2 + vol(CP )2 > vol(C \ {v})2 + vol(CP ∪ {v})2 and therefore
the clustering C is not optimal. ◀

▶ Lemma 3.14. Let G = (V, E) be a graph and C a clustering of G. Let C ∈ C and Ĉ ∈ C
be base clusters of the same separated component such that |C| + 22 λ(G)2 < |Ĉ|. Then, C is
not optimal.

Proof. Let (C = C1, C2, . . . , Ct = Ĉ) be a sequence of clusters such that Ci and Ci+1 extend
into the same 2-path Pi. Consider the clustering C′ obtained as follows: Cluster C1 gains
one vertex from P1, all path clusters on P1 are shifted by one position on the path, C2 loses
one vertex on P1 and gains one vertex on P2 and so on until we reach Ĉ which only loses
one vertex on Pt−1.

The number of edges covered by C′ is the same as for C. Moreover, the only two
clusters whose volume has changed are C and Ĉ with C gaining a degree-2 vertex u

and Ĉ losing a degree-2 vertex v. By Corollary 2.5, we have vol(C) ≤ 2|C| + 42λ(G)2

and vol(Ĉ \{v}) ≥ 2(|C|+22λ(G)2 −1) = 2|C|+44λ(G)2 −2 > 2|C|+42λ(G)2 since Ĉ \{v}
is connected and |Ĉ \ {v}| ≥ |C| + 22λ(G)2 and λ(G) ≥ 2. Thus, C, Ĉ, u, and v fulfill the
conditions of Lemma 2.3 and C′ is a better clustering than C. ◀

▶ Lemma 3.15. There exists an optimal clustering C such that
C extends some full preclustering P, and
in every separated component of P there is some number p such that each path cluster
has size p or p + 1 and the base clusters have a size in the range [p − 22 λ2, p + 2].

Proof. Note that the second statement is true for every separated component S that does
not contain any path clusters, since we can set p as the size of the largest base cluster and
all other base clusters in S then have a size in the range [p − 22 λ2, p] according to Lemma
3.14. Thus it is sufficient to consider separated components that contain a path cluster.

Moreover, due to Lemma 3.7, we can assume that there is a non-empty family F of
optimal clusterings where in every separated component of the corresponding preclustering
there is some number p such that the path clusters have size p or p + 1. We thus assume
towards a contradiction that for every optimal clustering C ∈ F and its corresponding full
preclustering P, there is a separated component S of P that contains a base cluster C of
size |C| /∈ [p − 22 λ2, p + 2], where p and p + 1 are the sizes of path clusters in S.

Now, let C ∈ F be an optimal clustering with its corresponding full preclustering P
and let S be a separated component of P such that in S there is a base cluster C with
|C| /∈ [p − 22 λ2, p + 2]. Let P be a 2-path in S that C extends into and let CP be a path
cluster in P of size p. Since |CP | = p > |C| + 22 λ2 or |CP | = p < |C| − 2, according to
Lemma 3.13 the clustering C is not optimal, a contradiction to the assumption. ◀
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4 Solving Separated Components

We now show how to compute an optimal clustering extending a given full preclustering P
under the assumption that the full preclustering can be legally extended to an optimal
clustering. The algorithm considers the separated components one by one. We thus assume
in the following, that we are given one separated component H. Let C1, . . . , Ct denote the
base clusters of the full preclustering that are contained in H, and let P1, . . . , Pq denote the
maximal 2-paths of vertices in H that are not contained in any cluster Ci. The problem
is thus to determine how far the clusters extend into the paths Pi and how large the path
clusters in each 2-path Pi are.

The main observations from Section 3.2 are that for each separated component there is
a number p such that the path clusters have size p or p + 1 and that the size of each base
cluster Ci is in [p − 22 λ2, p + 2]. The algorithm to compute the optimal clustering will now
consist of two main steps. First, we perform a branching to fix p and the size of each base
cluster. Afterwards, we formulate the problem as an ILP.

For the branching step, first observe that the number of choices for p is less than n. Now
the number of different choices for the base clusters is λO(λ2) since there are O(λ2) base
clusters, and for each the number of possible sizes is 22 λ2 +3. Hence, the total number of
created branches is n · λO(λ2).

Now, for each branch we search for an optimal clustering of H that legally extends the
preclustering and fulfills all the cluster size constraints of the branch. Let c1, . . . , ct denote
the cluster size constraints for the base clusters.

The first observation now is that the modularity of a cluster C ′
i containing a cluster Ci is

determined by the branch assumption: the only aspect of the cluster Ci that is not fixed
by the preclustering is the total number of vertices from neighboring 2-paths of Ci that are
contained in C ′

i \ Ci. This number is fixed by the branching, it is precisely ci − |Ci|. Each of
these additional vertices contributes a value of 2 to vol(C ′

i) and one additional edge to |E(C ′
i)|.

Hence, the contribution of the final clusters C ′
i ⊇ Ci is fixed for all base clusters Ci.

Moreover, for each path cluster C the modularity contribution is
q1 := (p − 1)/m − (2p)2/4m2 when C is nonpendent and |C| = p, and
q2 := p/m − (2p + 2)2/4m2 when C is nonpendent and |C| = p + 1.
q′

1 := (p − 1)/m − (2p − 1)2/4m2 when C is pendent and |C| = p, and
q′

2 := p/m − (2p + 1)2/4m2 when C is pendent and |C| = p + 1.
Consequently, the only unknown quantity that influences the modularity of the clustering is
the number of pendent and nonpendent path clusters that have size p and the number of
pendent and nonpendent path clusters that have size p + 1.

With this discussion in mind, we find the optimal clustering by the following ILP. For
each 2-path Pi we introduce variables x1,i and x2,i representing the number of path clusters
contained in Pi of size p and p + 1, respectively. If Pi is pendent, then we also introduce
variables x′

1,i and x′
2,i representing the number of pendent clusters of size p and p + 1,

respectively. For each 2-path Pi, we declare one endpoint to be the right endpoint of Pi and
one to be the left endpoint of Pi, we also introduce variables er

i and eℓ
i that represent the

number of vertices of Pi that do not belong to path clusters but to the base clusters that
extend into Pi containing the right and left endpoint, respectively. Now, for a base cluster Ci,
we let Nr

i denote the set of 2-paths Pj such that Ci extends from the right into Pj (that
is, Ci contains the neighbor of the right endpoint of Pj) and N ℓ

i denote the set of 2-paths Pj

such that Ci extends from the left into Pj . All variables are constrained to be nonnegative
integers. Then, the ILP reads as follows.
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max
∑
Pi

q1 · x1,i + q2 · x2,i + q′
1 · x′

1,i + q2 · x′
2,i (1)

s.t. p · x1,i + (p + 1) · x2,i + er
i + eℓ

i = |Pi| ∀ nonpendent Pi (2)
p · x1,i + (p + 1) · x2,i + p · x′

1,i + (p + 1) · x′
2,i + er

i = |Pi| ∀ pendent Pi (3)∑
Pj∈Nr

i

er
j +

∑
Pj∈Nℓ

i

eℓ
j = ci − |Ci| ∀ Ci (4)

x′
1,i + x′

2,i ≤ 1 ∀ 1-pendent Pi (5)
x′

1,i + x′
2,i ≤ 2 ∀ 2-pendent Pi (6)

Here, a 1-pendent path is a pendent path with one vertex of degree 1, and a 2-pendent path
is a path with two vertices of degree 1.1

By the discussion above, the objective function (1) maximizes the modularity of the
clustering for the separated component given the size constraints. Constraint (2) guarantees
that the number of length-p and length-(p + 1) paths together with the path vertices that
end up in base clusters gives the total path length for nonpendent paths. Constraint (3)
guarantees the same for pendent paths. Constraint (4) guarantees that the base clusters
fulfill the size constraints of the current branch. Finally, observe that Lemma 2.4 implies that
the ILP has O(λ2) variables since we have a constant number of variables for each branch of
the separated component.

We now have all the necessary parts to prove the main result of this work.

▶ Theorem 4.1. Modularity can be solved in λO(λ2) ·nO(1) time.

Proof. The algorithm enumerates all full preclusterings. For each full preclustering P, a
clustering is computed that legally extends P. The correctness of the algorithm can be
seen as follows. Fix an optimal clustering C. Then, there is a full preclustering P such
that C legally extends P . By Lemma 3.15, there exists for each separated component of P a
number p such that all path clusters of the component have size p or p + 1 and the size of
each base cluster Ci is in [p − 22 λ2, p + 2]. For each separated component, the algorithm
considers one branch where p and the sizes of the base clusters in the component are the
same as the sizes of the corresponding clusters in C. For this branch, the ILP computes a
clustering of the component which has maximum modularity under the constraints. Thus,
the modularity of the computed clustering for each separated component is the same as the
modularity of C for this component, and the returned clustering is globally optimal.

It remains to show the running time bound. By Lemma 3.5, the number of full preclus-
terings is λO(λ2). For each of them, the algorithm branches for each separated component
into n · λO(λ2) cases for the sizes of the path and base clusters. For each branch, an ILP
with O(λ2) variables is solved. This can be done in λO(λ2) ·nO(1) time [6]. The overall
running time follows. ◀

5 Parameterization by distance to stars

In this section, we strengthen previous hardness results for Modularity by showing W[1]-
hardness for the parameter vertex deletion distance to disjoint union of stars. This parameter
is defined as follows. Let G = (V, E) be a graph. A modulator set to a disjoint union of

1 These are isolated paths for which the optimal clustering can be also computed directly in polynomial
time, but for the sake of brevity, we decided to describe a unified approach that can solve all separated
components.
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stars for G is a set of vertices S ⊆ V , such that G[V \ S] is a disjoint union of stars. For a
graph G, the vertex deletion distance to disjoint union of stars dts(G) is the size of a smallest
modulator set to a disjoint union of stars for G.

We show W[1]-hardness for Modularity parameterized by dts(G) by presenting a
reduction from Unary Bin Packing defined as follows.

Unary Bin Packing
Input: A number of bins r, a capacity of a single bin k, and a multi-set of integers
A = {a1, . . . , an} such that

∑
a∈A a = rk and r and k are encoded in unary.

Question: Is there a surjective mapping α : A → [r] such that for every j ∈ [r] we
have

∑
a∈α−1(j) a = k?

Unary Bin Packing is W[1]-hard for the parameter number of bins r [13]. Our reduction is
an adaption of a parameterized reduction for showing the hardness of Equitable Connected
Partition parameterized by the vertex deletion distance to various graph classes [2]. A main
difficulty that needs to be overcome for our proof is that the sizes of the different gadgets
need to be carefully balanced to achieve that a clustering corresponds to a bin packing and
that a size-balanced clustering achieves the optimal modularity. In our proof, we consider
the decision variant of Modularity where we ask if there is a clustering C for G with a
modularity score q(C) (or equivalently q̃(C)) of at least some threshold value q∗.

Construction: Let I = (A = {a1, . . . an}, r, k0) be an instance of Unary Bin Packing.
Let k = k0 · r2 · n2 and a∗

i = ai · r2 · n2. Clearly,
∑n

i=1 a∗
i = r · k. Note that the instance I∗ =

(A∗ = {a∗
1, . . . , a∗

n}, r, k) of Unary Bin Packing is equivalent to I, since each item and
bin size is scaled by the same factor r2 · n2. We construct an instance I ′ = (G, q∗) of
Modularity that is equivalent to I∗ as follows. Let G be an initially empty graph. For
every number a∗

i ∈ A∗, we create an item gadget Si which is a star with a∗
i − 1 leaf vertices

and star center vertex ci. Next, we create r bin gadgets B1, . . . , Br. Each of these gadgets Bj

consists of a star with p := 5r2k2n2 leafs and a star center vertex bj . We add an edge between
every center vertex bj of a bin gadget and every center vertex ci of an item gadget. Finally,
we add x := 8pk = 40r2k3n2 isolated edges e1, . . . , ex. Since

∑n
i=1 a∗

i = r · k, the constructed
graph G has m := rn + rp + (rk − n) + x edges. This concludes the construction, except for
the concrete modularity threshold q∗ whose definition is deferred to the long version of this
work.

Observe that after deleting all star centers bj of bin gadgets Bj for j ∈ [r] each connected
component of the resulting graph G′ = G − (

⋃
j∈[r]{bj}) is either an isolated edge eℓ, an item

gadget Si or an isolated vertex that was a leaf vertex of a bin gadget Bj , all of which are
stars. Thus dts(G) ≤ r where r is the number of bins for I∗. Since Unary Bin Packing is
W[1]-hard for the number of bins, it thus remains to show the correctness of the construction.

First, observe that, by Lemmas 2.1 and 2.2, in every optimal clustering the vertices of a
star Si belong to the same cluster. The same is true for a star Bj . Moreover, each of the
isolated edges eℓ forms a separate cluster and we denote E := {eℓ | ℓ ∈ [x]}. Thus from here
on out we can assume that an optimal clustering C for G has the form C = {C1, . . . , Ct} ∪ E ,
where Ci contains ri ∈ [0, r] bin gadgets Bi

1, . . . , Bi
ri

as well as ni ∈ [0, n] items gadgets,
where the item gadgets have si leafs in total. For the value of q̃(C) we thus get

q̃(C) = 4m

(
t∑

i=1
|E(Ci)|

)
−

t∑
i=1

vol(Ci)2 + q̃(E) (7)

= 4m

(
t∑

i=1
rip + rini + si

)
−

t∑
i=1

(2rip + rin + rni + 2si)2 + q̃(E), (8)

where q̃(E) is the contribution of the partial clustering E to the total modularity score.
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The idea of the reduction is as follows. A modularity score for G of at least q∗ can only be
achieved by a clustering where each cluster (that is not an isolated edge eℓ) contains exactly
one bin gadget and some item gadgets with total number of vertices k. Such a clustering
corresponds to a partition of the items in A into r bins of size k0, scaled by the factor r2 · n2.
The values for p and x as well as the scaling factor r2 · n2 for the items and bin sizes are
chosen accordingly.

▶ Theorem 5.1 (*). Modularity is W[1]-hard when parameterized by the vertex deletion
distance to disjoint union of stars dts.

6 Conclusion

We provided an FPT-algorithm for Modularity parameterized by a classic graph parameter,
the max leaf number. Clearly, improvements of the running time for the max leaf number
parameterization and FPT-algorithms for smaller structural parameters are desirable. In
terms of running time improvements, it would also be interesting to reconsider and improve
the FPT-algorithm for Modularity parameterized by the vertex cover number of G [16].
A particularly interesting question is whether one can replace the quadratic programming
part for the vertex cover parameterization by a purely combinatorial algorithm or by an ILP
formulation. The W[1]-hardness for the parameterization by distance to stars underlines
once more the algorithmic difficulty of the problem. One approach that is not ruled out
by our reduction would be to combine parameterizations by vertex deletion distance to
tractable graph classes with other parameterizations, for example the maximum degree of
the input graph. Another approach could be to consider FPT-approximation algorithms for
Modularity with structural parameterizations.
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