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Abstract
In the Feedback Vertex Set in Tournaments (FVST) problem, we are given a tournament T

and a positive integer k. The objective is to determine whether there exists a vertex set X ⊆ V (T )
of size at most k such that T − X is a directed acyclic graph. This problem is known to be equivalent
to the problem of hitting all directed triangles, thereby using the best-known algorithm for the
3-Hitting Set problem results in an algorithm for FVST with a running time of 2.076k · nO(1)

[Wahlström, Ph.D. Thesis]. Kumar and Lokshtanov [STACS 2016] designed a more efficient algorithm
with a running time of 1.6181k · nO(1). A generalization of FVST, called Subset-FVST, includes
an additional subset S ⊆ V (T ) in the input. The goal for Subset-FVST is to find a vertex set
X ⊆ V (T ) of size at most k such that T − X contains no directed cycles that pass through any
vertex in S. This generalized problem can also be represented as a 3-Hitting Set problem, leading
to a running time of 2.076k · nO(1). Bai and Xiao [Theoretical Computer Science 2023] improved this
and obtained an algorithm with running time 2k+o(k) · nO(1). In our work, we extend the algorithm
of Kumar and Lokshtanov [STACS 2016] to solve Subset-FVST, obtaining an algorithm with a
running time O(1.6181k + nO(1)), matching the running time for FVST.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Parameterized algorithms, Feedback vertex set, Tournaments, Fixed para-
meter tractable, Graph partitions

Digital Object Identifier 10.4230/LIPIcs.IPEC.2024.17

Funding Satyabrata Jana: Supported by the Engineering and Physical Sciences Research Council
(EPSRC) via the project MULTIPROCESS (grant no. EP/V044621/1)
Saket Saurabh: Supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 819416); and he also
acknowledges the support of Swarnajayanti Fellowship grant DST/SJF/MSA-01/2017-18.

1 Introduction

In the d-Hitting Set problem, given a set family F over a universe U of sets of size at most
d and an integer k, the goal is to find a set S ⊆ U of size at most k that intersects every
set in F . The importance of the d-Hitting Set problem stems from the number of other
problems that can be re-cast in terms of it. For example, in the Feedback Vertex Set in
Tournaments (FVST) problem, the input is a tournament T together with an integer k.
The task is to determine whether there exists a subset S of vertices of size at most k such
that the sub-tournament T − S obtained from T by removing S is acyclic. It turns out that
FVST is a d-Hitting Set problem, where the vertices of T are the universe, and the family
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17:2 Subset FVS in Tournaments as Fast as Without the Subset

F is the family containing the vertex set of every directed cycle on three vertices (triangle) of
T . Indeed, it can easily be shown that for every vertex set S, T − S is acyclic if and only if S

is a hitting set for F . Another example is the Cluster Vertex Deletion (CVD) problem.
Here, the input is a graph G and an integer k, and the task is to determine whether there
exists a subset S of at most k vertices such that every connected component of G − S is a
clique (such graphs are called cluster graphs). Also, this problem can be formulated as a
d-Hitting Set problem where the family F contains the vertex sets of all induced P3’s of G.
An induced P3 is a path on three vertices where the first and last vertex are non-adjacent in
G. Other examples include Subset Feedback Vertex Set (SFVS) on chordal graphs,
Triangle Packing in tournaments, Induced P3-Packing, etc.

The best-known fixed-parameter tractable (FPT) algorithm for d-Hitting Set runs in
time O∗((d−0.7262)k)1 [21]. It is also known that d-Hitting Set admits O((2d−1)kd−1 +k)
kernel [1]. This implies an algorithm with running time O∗(2.270k) and a O(k2) elements
kernel for the 3-Hitting Set problem. However, 3-Hitting Set can also be solved in time
O∗(2.076k) [23]. For a long time, advancements in its kernel size and FPT algorithms have
stagnated. In response, researchers have shifted focus towards designing algorithms and
kernels for implicit 3-Hitting Set problems such as FVST, CVD.

The design of algorithms with a running time better than O∗(2k) and kernels with
subquadratic elements for implicit 3-Hitting Set problems has emerged as a highly active
and significant area of research. In pursuit of this objective, several important problems
have been investigated, leading to notable successes. Fomin et al. in [9] broke the kernel
barrier of some of the implicit 3-Hitting Set problems and obtained subquadratic kernels
for several problems such as O(k3/2) vertex kernel for FVST, O(k5/3) vertex kernel for CVD,
O(k3/2) vertex kernel for Triangle Packing in tournaments (TPT), and O(k5/3) vertex
kernel for Induced P3-Packing. Recently, Bessy et al. [3] introduced a novel technique
called rainbow matching to design kernels for implicit 3-Hitting Set problems. They

demonstrated that TPT and FVST admit (almost linear) kernels of O(k
1+ O(1)√

log k ) vertices.
Utilizing the same technique, they showed that Induced 2-Path-Packing and Induced
2-Path Hitting Set admit kernels of O(k) vertices.

Another well-studied implicit 3-Hitting Set problem is Subset Feedback Vertex
Set (SFVS) on chordal and split graphs. A feedback vertex set in a graph G is a vertex set
whose removal makes the remaining graph acyclic. The Feedback Vertex Set problem
(FVS) is to decide whether a graph has a feedback vertex set of size at most k. In the more
general SFVS problem, an additional subset S of vertices is given, and we want to find a
vertex set of size at most k that hits all cycles passing through a vertex in S. SFVS has been
shown to admit an algorithm with a running time of O∗(4k) [15, 16]. However, on chordal
and split graphs, Philip et al. [22] showed that this problem could be solved in O∗(2k) time.

In this paper, we focus on Subset Feedback Vertex Set in Tournaments (Subset-
FVST). Below, we formally define the problem.

Subset Feedback Vertex Set in Tournaments (Subset-FVST) Parameter: k

Input: A tournament T = (V, A), a vertex set S ⊆ V , and a positive integer k.
Task: Find X ⊆ V with |X| ≤ k such that T − X has no cycle containing a vertex of S.

A tournament is a directed graph formed by a complete graph with oriented arcs.
Motivated by applications such as voting systems and rank aggregation, FVST has drawn
certain interests. It is well known that a tournament has a directed cycle if and only if there

1 We use O∗ notation to hide factors polynomial in the input size.
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is a directed triangle [7]. The fastest algorithm for FVST runs in time O∗(1.619k) [19] and
by the rainbow matching technique of Bessy et al. [3] FVST admit (almost linear) kernel of

O(k
1+ O(1)√

log k ). Subset-FVST can also be framed as a 3-Hitting Set problem, resulting
in an algorithm with running time O∗(2.076k) and an O(k2) kernel. Recently, in 2023,
Bai and Xiao [2] improved this and obtained an algorithm that runs in time O∗(2k+o(k));
however, the question to obtain an algorithm with running time better than O∗(2k) was left
open. In our research, we build upon the algorithm of Kumar and Lokshtanov [19] to tackle
Subset-FVST, achieving an algorithm with running time O∗(1.6181k), that matches the
running time for FVST. We obtain the following theorem.

▶ Theorem 1. Subset-FVST is solvable in O(1.6181k + nO(1)) time.

Ideas for Theorem 1. We closely follow the approach of Kumar and Lokshtanov [19], but
due to the inherent generality of our problem, we need to deviate significantly from it while
implementing the outline. Let (T, S, k) be an instance of Subset-FVST. The algorithm relies
on a simple observation that T has no S-cycle (directed cycle containing a S vertex) if and
only of T has no S-triangle. Our algorithm enumerates subexponential many sets (2o(k)) or
branches with a branching vector (1, 2). The algorithm first identifies 2o(k) subsets of S, such
that for every solution H, there is at least one set, say M , that is disjoint from it. The set M

allows us to discover several structures and apply reduction rules. For example, we know that
T [M ] is a directed acyclic graph (DAG). In other words, if any vertex v ∈ V (T )−M , we have
that T [M ∪ {v}] has a directed cycle, then v must be in H. Let σ be a unique topological
ordering of T [M ]. This immediately gives us the notion of M -block: the set of vertices which
are common out-neighbors and in-neighbors of two consecutive vertices of M in σ (and not
containing any M vertex). Now we analyze S-triangles: those that are fully contained inside
a block (local triangle) or contain vertices of at least 2 blocks (shared triangle). Our main
objective is to reduce the case of shared triangles to a vertex-cover like branching (either a
vertex or its neighbors must be in a solution) and independently solve the problem of hitting
local triangles. In the latter case, we use the fact that each block has at most logO(1) k many
vertices from S and hence any solution must contain at most logO(1) k many vertices from
each block. Thus, using the fact that Subset-FVST has a polynomial kernel of size O(k2),
we can solve these instances in kO(logO(1) k) time. The most interesting part of the algorithm
is to reduce to this case. This requires branching on “backward arcs” between two blocks. If
there is a vertex v with at least two incident backward arcs, then we branch on v, leading
to a branching vector (1, 2). When this is not possible, then we have that these backward
arcs form a matching. In this case if no block has many backward arcs incident then we can
partition these edges and decompose the problem. This leads to a divide-and-conquer step
in our algorithm. This concludes a brief description of our algorithm.

Related Work on Feedback Vertex Set

The Feedback Vertex Set problem (FVS) is one of the earliest known NP-complete
problems shown in the influential paper by Karp [18] and has been thoroughly explored in
the realm of parameterized complexity. The earliest known FPTalgorithms for FVS date
back to the late 1980s and early 1990s. These algorithms relied on the groundbreaking
Graph Minor Theory by Robertson and Seymour. Over time, there have been multiple
advancements and refinements, leading to the current best deterministic FPT algorithm
for FVS, which runs in O∗(3.460k) time [14]. The fastest known randomized algorithm for
this problem given by Li and Nederlof [20] runnning in time O∗(2.7k). Recently a factor
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17:4 Subset FVS in Tournaments as Fast as Without the Subset

(1 + ϵ) approximation algorithm for FVS, which has better running time than the best-known
(randomized) FPT algorithm for every ϵ ∈ (0, 1) is given by Jana et al. [17]. In directed graphs,
FVS becomes harder in terms of parameterized algorithms. Whether FVS in directed graphs
is FPT has been a long-standing open problem. Finally, Chen et al. [4] gave a FPT algorithm
running in time O∗(4kk!).

Subset Feedback Vertex Set problem (SFVS) was first systematically studied by
Even et al. [8] where they showed that SFVS in undirected graphs admits an 8-approximation.
Cygan et al. [6] showed that SFVS in undirected graphs admits an FPT algorithm running
in time O∗(2O(k log k)). Recently, Iwata et al. [15, 16] improved this to single-exponential
algorithm with running time O∗(4k). This problem is also studied in special graph classes.
Philip et al. [22] showed that in split and chordal graphs this problem can be solved in time
O∗(2k). Regarding kernelization, Hols and Kratsch [13] obtained a randomized kernel with
O(k9) vertices. Chitnis et al. [5] considered this problem in directed graph and provide a
FPT algorithm running in time giving a O∗(2O(k3)).

2 Preliminaries

Let [n] be the set of integers {1, . . . , n}. For a pair a, b of integers with a < b, we denote
the set {a, a + 1, . . . , b} by [a, b]. For a directed graph D, we denote the set of vertices of
D by V (D) and the set of arcs by A(D). For a subset X of vertices X ⊆ V (D), we use the
notation D − X to mean the graph D[V (D) \ X]. Given a digraph D, a vertex set X ⊆ V (D)
is called a feedback vertex set (in short, fvs) of D if there is no directed cycle in the graph
D −X. Given a directed graph D and a vertex set S, a vertex v ∈ V (D) is called an S-vertex
if v ∈ S. A directed cycle in D is called an S-cycle if the cycle contains at least one S-vertex.
A S-cycle is called an S-triangle if it is a cycle of three vertices. D is called S-acyclic if D

has no S-cycle. A vertex set X ⊆ V (D) is called an S-feedback vertex set of D (in short,
S-fvs) if D − X is S-acyclic. Let σ be an ordering of V (D). For a pair of adjacent vertices
u, v with an arc (u, v), we say the arc is backward (resp, forward) with respect to the ordering
σ if v ≤σ u (resp, u ≤σ v). It is called an S-backward arc (resp, S-forward arc) if there exists
some S-vertex s such that v ≤σ s ≤σ u (resp, u ≤σ s ≤σ v). We call an ordering without
S-backward arcs an S-topological ordering. A directed graph is called a tournament if there
is an arc between every pair of vertices. Unless specified, we use cycle to mean directed cycle.

Fixed parameter tractable. A parameterized problem Π is a subset of Γ∗ × N for some
finite alphabet Γ. An instance of a parameterized problem consists of (X, k), where k is
called the parameter. A parameterized problem L is considered to have a fixed parameter
tractable (FPT) algorithm if there is an algorithm A that can determine whether (X, k) ∈ L

in time f(k) · nO(1) for some computable function f , where n is the size of the input. An
important tool from the FPT toolkit is kernelization [10, 11]. A kernelization replaces, in
polynomial time, an instance by a decision equivalent instance (the kernel) whose size can be
bounded by a function of the parameter k, that is, it will not depend on the original problem
size n anymore.

3 FPT algorithm for SUBSET-FVST

In this section, we prove the following result.

▶ Theorem 1. Subset-FVST is solvable in O(1.6181k + nO(1)) time.

A schematic diagram showing the main steps of our algorithm is shown in Figure 1.
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Figure 1 A summary of the steps of our algorithm.

3.1 Preprocessing Step
It is well-known that a tournament is acyclic if and only if it does not contain any triangle [7],
which allows us to formulate FVST as a 3-Hitting Set problem. We first observe a similar
statement for the subset variant in the next lemma proved in [2].

▶ Lemma 2 ([2, Lemma 2]). A tournament is S-acyclic if and only if it does not contain an
S-triangle.

Lemma 2 immediately gives rise to a greedy 3-approximation algorithm for Subset-FVST.
However, Gupta et al. [12] designed a 2-factor approximation algorithm for Subset-FVST.
Using this result, we get the following lemma.

▶ Lemma 3. Given a tournament T with n vertices, a subset S ⊆ V (T ) and integer k, in
nO(1) time we correctly conclude that T has no S-feedback vertex set of size at most k or
outputs a S-feedback vertex set of size at most 2k.

The initial phase of our algorithm for Subset-FVST involves reducing the problem to
its kernel. By reducing the instance of the Subset-FVST problem into an instance of the
3-Hitting Set problem, by using a kernel for 3-Hitting Set [1], one can derive a kernel
on O(k2) vertices for Subset-FVST, which is an induced subgraph of the input tournament.
Formally, we have the following lemma.

▶ Lemma 4 ([1, 2]). Given a tournament T with n vertices, a subset S ⊆ V (T ) and an
integer k, in nO(1) time we can output a tournament T ′ (an induced subgraph), a vertex set
S′ ⊆ V (T ′) and an integer k′ such that |V (T ′)| ≤ O(k2), k′ ≤ k, and T ′ has a S′-feedback
vertex set of size at most k′ if and only if T has a S-feedback vertex set of size at most k.

In what follows, we assume that we have applied Lemma 4 and obtained an equivalent
instance, (T, S, k), such that |V (T )| ≤ O(k2). We call such instances reduced.

3.2 Discovering Structure I: Universal Undeletable Family M
In the second step of our algorithm, we find a family of subsets of S such that any solution
avoids at least one set in our family. Toward defining the family we first need a notion of
block which relies on the notion of between and consecutive.

IPEC 2024



17:6 Subset FVS in Tournaments as Fast as Without the Subset

▶ Definition 5 (Between and Consecutive). Let D be a directed graph.
For any pair of vertices u, v ∈ V (D), the set between(D; u, v) is defined as N+(u) ∩
N−(v) \ {u, v}.
Let X ⊆ V (D). Two vertices u, v ∈ X are called X-consecutive if (u, v) ∈ A(D) and
between(D; u, v) ∩ X = ∅.

▶ Definition 6 (X-block). Let D be a directed graph and X ⊆ V (D). We define the set of
X-blocks in D as follows.

For each pair of X-consecutive vertices u and v, we define the X-block, denoted by
block(X; u, v), as between(D; u, v). That is, block(X; u, v) = between(D; u, v).
For each vertex u ∈ X with no in-neighbors in X we define the X-block, denoted by
block(X; u), as N−(u). That is, block(X; u) = N−(u).
For each vertex v ∈ X with no out-neighbors in X we define the X-block, denoted by
block(X; v), as N+(v). That is, block(X; v) = N+(v).

These definitions immediately imply the following observation for an acyclic tournament.

▶ Observation 7. Let T be an acyclic tournament and X ⊆ V (T ). Furthermore, let σ be
the unique topological order of V (T ). Then the following holds.
1. For any pair of vertices u, v ∈ V (T ) the set between(T ; u, v) is exactly the set of vertices

in T that appear between u and v in σ.
2. Two vertices u, v ∈ X are X-consecutive if no vertex of X appears between u and v in σ.
3. X-blocks form a unique partition of V − X, where two vertices belong to a different block

if and only if there exists a vertex of X that appears between them in σ.

Now we are ready to define the notion of universal undeletable family.

▶ Definition 8 (Universal Undeletable Family). Let (T, S, k) be an instance of Subset-FVST.
A universal undeletable family, M, is a family of subsets of S, which satisfies the following
properties. For every S-feedback vertex set H of T size at most k there exists a set M ∈ M
such that
1. H ∩ M = ∅;
2. in each M -block B in T − H we have |B ∩ S| ≤ 2 log2 k.
Our main result in this section is the following.

▶ Lemma 9. Let (T, S, k) be a reduced instance. There exists an algorithm that takes (T, S, k)
as input and outputs a universal undeletable family M of size 2O( k

log k ).

Proof. Let X be a S-feedback vertex set of size at most 2k obtained using Lemma 3. Let
Y := V (T ) \ X, SX := X ∩ S, SY := Y ∩ S and v1, v2, . . . , v|SY | be the topological sort of
T [SY ] such that the edges in T [SY ] are directed from left to right. We color SY using ⌊log2 k⌋
colors {1, 2, . . . , ⌊log2 k⌋} such that for each d ∈ [|SY |], vd gets color d mod ⌊log2 k⌋. For
each c ∈ [⌊log2 k⌋], let Sc be the set of vertices in SY which get color c. Each M ∈ M is
specified by a 4-tuple ⟨c, Ĥ, R̂, X̂⟩ where

c is a color in [⌊log2 k⌋],
Ĥ ⊆ Sc such that |Ĥ| ≤ k

log2 k
,

R̂ ⊆ SY \ Sc, |R̂| ≤ |Ĥ|, and
X̂ ⊆ X such that |X̂| ≤ 2k

log2 k
.

For each 4-tuple ⟨c, Ĥ, R̂, X̂⟩, let M := (Sc \ Ĥ) ∪ R̂ ∪ X̂. Hence |M| is upper bounded
by the maximum possible number of such 4-tuples.
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|M| ≤ log2 k ×
(

O(k2)
k

log2 k

)
×

(
O(k2)

k
log2 k

)
×

(
2k
2k

log2 k

)
≤ 2log(log2 k) × O(k2)

2k
log2 k × (2k)

2k
log2 k

= 2O( k
log k )

This completes the description of the enumeration of M. Next, we prove the correctness
of the above algorithm by showing that for every S-feedback vertex set H of T with size
at most k, M contains a set M that satisfies the properties listed in the statement of the
lemma. Consider an arbitrary S-feedback vertex set H of T with size at most k.

For each j ∈ [⌊log2 k⌋], let Hj := Sj ∩ H. By the pigeonhole principle, there is a color c

such that 0 < |Hj | ≤ k
log2 k

. For this color c, let Ĥ := Hc. Note that Hc ⊆ Sc ⊆ SY . Now,
consider a set R̂ obtained as follows: for every vertex v ∈ Hc, pick the first vertex after v

(if there is any) in SY \ (Sc ∪ H), in the topological ordering of T [SY ]. Note that T [X \ H]
is S-acyclic. Let SH

X := S ∩ (X \ H). Now |SH
X | ≤ 2k and there is a topological ordering

of T [SH
X ]. We then color SH

X using ⌊log2 k⌋ colors in a similar way as we did for SY . Let
X̂ ⊆ SH

X be the set of all vertices with color 1 in this coloring. Clearly, |X̂| ≤ 2k
log2 k

.
The 4-tuple ⟨c, Ĥ, R̂, X̂⟩ described above satisfies all the properties listed in the construc-

tion of M. Let M := (Sc \ Ĥ) ∪ R̂ ∪ X̂. Clearly, M ⊆ S, M ∩ H = ∅, and M ∈ M. Since in
any [(Sc \ Hc) ∪ R̂]-block B in Y , it holds |B ∩ S| ≤ log2 k, it also holds in each M -block B

in T − H that |B ∩ S| ≤ 2 log2 k. ◀

3.3 Discovering Structure II: Forced Deletable Set I
Lemma 9 gets us one step closer to our goal. Let H be a hypothetical solution of size at
most k of (T, S, k). We know that there exists a set M ∈ M such that in each M -block in
T − H, we have a small number of S-vertices, i.e., each M -block contains a small number
(≤ 2 log2 k) of non-solution S-vertices. However, it is possible that there is a M -block of T

that contains too many vertices of S, because that block contains many solution S-vertices,
that is, vertices of H ∩ S. In this section, we deal with this case. We assume that we know
M corresponding to the hypothetical solution H. Indeed, we can achieve this by going over
each set in M, and that will only cost us a factor of 2O( k

log k ) in the running time of our
algorithm. It will be useful to remember that T [M ] is a directed acyclic tournament.

We start with a simple definition that will be useful.

▶ Definition 10 (Consistency). Let T be a tournament and M ⊆ V (T ). For a vertex
v ∈ V (T ), we say that v is consistent with M if there is no {v}-cycle in T [M ∪ v].

Observe that if v is not consistent with M , then there is a v-cycle in T [M ∪ v], which
is also a S-cycle, since M ⊆ S. Thus, since we know that M ∩ H = ∅, v must belong to
H. We next integrate such vertices and blocks that may contain a lot of S vertices (in the
solution) into the notion of universal undeletable families. We call this notion universal
(deletable-undeletable) families (in short, du-family).

▶ Definition 11 (du-Family). Let (T, S, k) be an instance of Subset-FVST. A du family,
F =

{
(M1, P1), . . . , (Mℓ, Pℓ)

}
, is a family of disjoint pairs of vertex sets, which satisfies the

following properties. For every S-feedback vertex set H of T size at most k there exists a set
pair (M, P ) ∈ F such that the following holds.
1. M ⊆ S, M ∩ H = ∅.
2. P ⊆ H (recall, M ∩ P = ∅).

IPEC 2024



17:8 Subset FVS in Tournaments as Fast as Without the Subset

3. Every vertex of T − P is consistent with M .
4. In each M -block B in T − P , we have |B ∩ S| ≤ 2 log4 k.
Furthermore, the set H is said to be compatible with the pair (M, P ).

▶ Lemma 12. Let (T, S, k) be a reduced instance. There exists an algorithm that takes
(T, S, k) as input and outputs a du-family F of size 2O( k

log k ).

Proof. We define a function f that for a given tournament T and a subset M ⊆ V (T ),
outputs a set of vertices that are not consistent with M . We denote this output set as
f(T, M). More specifically

f(T, M) :=
{

v | v ∈ V (T ) \ M and T [M ∪ {v}] has a {v}-cycle
}

Observe that each v-cycle here is also a S-cycle since M ⊆ S. Thus, since we know that
M ∩ H = ∅, v must belong to H. Furthermore, we define another function g that, given
a tournament T , two subsets M ⊆ S ⊆ V (T ), and an integer k, outputs the S-vertices
contained within some M -block B in T − f(T, M) with |B ∩ S| > 2 log4 k. We denote this
output set as g(T, S, M, k). We can compute f and g in time kO(1).

We use the algorithm of Lemma 9 to compute M. Then for each M ∈ M, we compute
the sets f(T, M) and g(T, S, M, k). For each Z ⊆ g(T, S, M, k) such that |Z| ≤ 2k

log2 k
, we

output a pair of sets (M, P ) = (M, f(T, M) ∪ (g(T, S, M, k) \ Z)). The family F is the
collection of all such pairs of sets.

We prove that the algorithm satisfies the stated properties. Consider a S-feedback vertex
set H of size at most k. By Lemma 9 there exists M ∈ M such that M ⊆ S and M ∩ H = ∅.
Because of the definition of f(T, M) and M ∩ H = ∅, the vertex set f(T, M) must be
contained in H. Now for every vertex u ∈ V (T − M) \ f(T, M) the induced subtournament
T [M ∪{v}] of T is acyclic. So u can be placed uniquely in the topological order of T [M ∪{v}].
Hence, for each u ∈ V (T − M) \ f(T, M), there is a unique M -block containing it. Since in
each M -block B in T − H we have |B ∩ S| ≤ 2 log2 k, we also have in each M -block B in
T − f(T, M) that |B ∩ S| ≤ k + 2 log2 k.

We say that a M -block B in T − C is large if |B ∩ S| ≥ 2 log4 k. From each large M -block
at least (2 log4 k − 2 log2 k) many S-vertices belong to H. So the number of large blocks is
bounded by k

2 log4 k−2 log2 k
. Hence in total at most k

2 log4 k−2 log2 k
× 2 log2 k ≤ 2k

log2 k
many

S-vertices from the union of large M -blocks do not belong to H. Since the algorithm loops
over all choices of subsets Z ⊆ g(T, S, M, k) with |Z| ≤ 2k

log2 k
, the family F contains a pair

(M, P ) satisfying the properties listed in the lemma.
Moreover, |F| is bounded by the product of |M| and the number of subsets Z. Now Z ⊆ S

and |Z| ≤ 2k
log2 k

together imply that the number of subsets Z is at most O(k2)
2k

log2 k = 2O( k
log k ).

Hence |F| = |M| × 2O( k
log k ) ≤ 2O( k

log k ) × 2O( k
log k ) = 2O( k

log k ). ◀

Our algorithm for Subset-FVST applies Lemma 12 and obtains a du-family F . The
algorithm then iterates over each pair (M, P ) ∈ F , and looks for a S-feedback vertex set H

of size at most k that is compatible with (M, P ). Henceforth, our problem reduces to the
following.

Given an instance (T, S, k), and a pair (M, P ) of vertex sets in T . The objective is to
find a S-feedback vertex set H for T of size at most k that is compatible with (M, P ).

We first apply the following reduction rule to make the instance smaller. The correctness
of Reduction Rule 1 follows from the fact that we are looking for a S-feedback vertex set H

for T of size at most k that is compatible with (M, P ) (Lemma 12).
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▶ Reduction Rule 1. Delete P from the graph. The resultant instance is (T −P, S\P, k−|P |).

The pair (M, P ) naturally partitions the vertices of T − (P ∪ M) into local subtournaments
corresponding to the induced graphs on the M -blocks in T − P . For clarity of notation,
we denote the reduced instance (T − P, S \ P, k − |P |) by (T, S, k) itself. The properties of
(T − P, S \ P, k − |P |) = (T, S, k) that we need in the future are encapsulated below.

1. For all v ∈ V (T ) \ M , we have that T [M ∪ {v}] does not contain a {v}-cycle. In
particular, T [M ∪ {v}] is acyclic.

2. In each M -block B in T , we have |B ∩ S| ≤ 2 log4 k.

Following the implementation of Reduction Rule 1, we categorize S triangles in T into
two distinct groups, as described below.
(i) Local S-triangle: All three vertices are within one M -block in T .
(ii) Shared S-triangle: Those that are not local.

Notice that in each shared S-triangle (not containing a vertex of M) there exists a pair of
vertices in the triangle that belong to different M -blocks in T − P . Next, we understand how
M participates in a S-triangle. Observe that every S-triangle contains at most one vertex
from M . Furthermore, we show that every S-triangle containing a M vertex (which we say
M -triangle) must be a shared S-triangle.

▶ Observation 13. Every M-triangle is a shared S-triangle. That is, there is no pair of
vertices u, v such that both vertices u, v belong to the same M-block in T and there is a
vertex w ∈ M that forms a triangle with u, v.

Proof. Let u, v be a pair of vertices in T . Since we have applied Reduction Rule 1, it
follows that the vertex u ∈ V (T ) is consistent with M , meaning that there is no {u}-cycle
in T [M ∪ {u}]. That implies T [M ∪ {u}] is a DAG. Thus, there exists a unique partition
M1 ·∪ M2 of M such that for all x ∈ M1, y ∈ M2 we have (x, u), (u, y) ∈ V (T ). Similarly,
since T [M ∪ {v}] is also a DAG, there exists a unique partition M ′

1 ·∪ M ′
2 of M such that for

all x′ ∈ M1, y′ ∈ M2 we have (x′, v), (v, y′) ∈ V (T ). Furthermore, since u and v belong to
the same M -block, it must be that M1 = M ′

1 and M2 = M ′
2. Therefore, both T [M1 ∪ {u, v}]

and T [M2 ∪ {u, v}] are DAGs. Now, the vertex w is in either M1 or M2. In either case, w

cannot form a cycle with {u, v}. This concludes the proof. ◀

Next, we show that having shared S-triangle is equivalent to having a M -triangle

▶ Lemma 14. If there is a shared S-triangle uvw, then there exists a vertex m ∈ M such
that there is a shared S-triangle umw.

Proof. If there is a shared S-triangle, say uvw, then it must contain vertices from two
different M blocks, say B1 and B2, where the vertices in B1 appear before B2 and there
is an arc (v, u) with u ∈ B1 and v ∈ B2. Let m be a vertex of M that appears before any
vertex of B2 and after every vertex of B1. This implies we have arcs (u, m) and (m, v). This
implies that we have a triangle umv containing a M vertex. ◀

Observation 13 and Lemma 14 imply the following.

▶ Lemma 15. There is a shared S-triangle if and only if there is a M -triangle.
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Before we proceed further, we design an algorithm for Subset-FVST that runs in time
2k+o(k) + nO(1). Branch on each of the triangles containing M -vertices. This will lead to 2k

branching factor. Lemma 15 implies that the only S-triangle that remains after branching are
local S-triangles, and hence we can solve the problem independently on each block. However,
observe that in each M -block B in T , we have |B ∩ S| ≤ 2 log4 k. This implies that the size
of an optimal solution in B is upper-bounded by 2 log4 k. Thus, we can solve the problem
for each block independently in time kO(log4 k). This results in the following.

▶ Theorem 16. Subset-FVST is solvable in time 2k+o(k) + nO(1).

This algorithm is comparable to the best known algorithm of Bai and Xiao [2]. We move on
to designing the faster algorithm. This algorithm also follows the route of Theorem 1. We
move on to Section 3.4 when there is at least one shared S-triangle, otherwise we move to
Section 3.7.

3.4 Branching Structure I: Shared S-triangle
Our objective is to reduce to “vertex cover” (either a vertex or all of its neighbors must go in
any solution) like branching in this case. Towards this, we first define the set of edges for
which we need vertex cover.

Dealing with shared S-triangles. Consider the ordered partition of the vertices of T based
on M vertices in the following way: each M vertex is a singleton and they are ordered
according to the unique topological ordering σ of T [M ]. The other parts are defined by
M -block with corresponding order. For example, let |M | = ℓ and m1, . . . , mℓ be the vertices
of M such that m1 < · · · < mℓ in σ. Then our ordered partition of T would be

B1 = block(X, m1) ·∪ {m1} ·∪ B2 = block(M ; m1, m2) ·∪ . . . ·∪ {mℓ} ·∪ Bℓ+1 = block(X, mℓ).

Observe that every vertex v not in M belongs to a unique block as T [M ∪ {v}] is acyclic.
Let R be the set of arcs (u, v) of A(T ) such that u ∈ Bj and v ∈ Bi and i, j ∈ [ℓ + 1],

and i < j. We call R a set of red arcs. Next, we show that dealing with shared triangles is
equivalent to hitting arcs in R.

▶ Lemma 17. Every shared S-triangle has a red arc. Furthermore, for every red arc
e = (u, v) ∈ R we have a M-triangle containing e. This implies that we have a shared
S-triangle if and only if there is a red arc.

Proof. If a S-triangle is not local, then it contains vertices of two distinct blocks or two
vertices of the same block and a M vertex. By Observation 13 we know that there is no
S-triangle containing two vertices of the same block and a M vertex. It is clear that any
S-triangle containing vertices of two distinct blocks contains a red arc.

Let e = (u, v) ∈ R. Then there exists i, j ∈ [ℓ + 1] such that u ∈ Bj and v ∈ Bi where
i < j. Let m be a vertex of M that appears before any vertex of Bj and after every vertex of
Bi. We know from the properties of the M blocks that we have arcs (v, m) and (m, u). This
implies that we have a triangle vmu containing a M vertex. This concludes the proof. ◀

▶ Lemma 18. Let H be a solution to (T, S, k). Then H is a vertex cover of R (that is, it
intersects each edge in R).

Proof. For every red arc e = (u, v) ∈ R we have a M -triangle containing e (Lemma 17).
Since, by construction no red arc has an end-point in M and M ∩ H = ∅ by assumption, we
have that H must contain either u or v. This concludes the proof. ◀
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We first consider the case where there are some vertices that are incident to more than
one red arc. Once we deal with that case, the only situation left is that all the red arcs that
remain to hit form a matching. Now we describe a recursive algorithm which searches for a
potential solution H of size at most k by branching. Let G = (V (T ), R) be an undirected
graph with vertex set V (T ) and edge set R (without orientation). For any vertex v, let Red(v)
(the red-degree) denote the degree of v in G. Consider a vertex v of highest red-degree. We
know Red(v) > 0. If k = 0, then return No. From now on, assume that k ≥ 1. If Red(v) ≥ 2,
the algorithm branches into two cases: v ∈ H or v /∈ H. In the branch where v is added to
H, k drops by 1. Hence, we return the instance (T − v, S \ {v}, k − 1). In the other branch
where v is not added to H, we know that all the neighbors in G must be in the solution (by
Lemma 18). Hence, we return the instance

(
T − NG(v), S \ NG(v), k − Red(v)

)
. Here, NG(v)

denotes the neighbors of v in G. This (1, 2) branching step dominates the running time of
the algorithm and corresponds to O(1.6181k × kO(1)) time.

Now we assume that maximum red-degree of any vertex is at most 1. In this case, all
the red arcs form a matching in G. We refer to these kind of red arcs as matching arcs. Let
(T, S, k, M) obtained after branching be called the matching instance. In Section 3.5, we look
for more structure in the input and take advantage of it.

3.5 Discovering Structure III: Matching Arcs
We now introduce the notion of a bad block to represent blocks that are incident to a large
number of matching arcs.

▶ Definition 19 (Bad block). An M -block B is said to be bad if the number of matching arcs
incident to the vertices in B is at least log4 k. Otherwise we say that the block B is good.

Now, in the following observation, we show that the number of bad blocks will be bounded.

▶ Observation 20. The number of bad M -blocks in T is at most 2k
log4 k

.

Proof. We know that from each matching-arc, at least one end-point of the arc must belong
to H (by Lemma 18). If the number of bad M -blocks in T is more than 2k

log4 k
, then the

number of vertices incident to the matching arcs is more than 2k which in turn implies that
the number of matching arcs are more than k. So we cannot hit all the matching arcs using
at most k vertices. ◀

▶ Lemma 21. Let (T, S, k, M) be a matching instance of Subset-FVST. Then there exists
an algorithm that in 2O( k

log k ) time outputs a family F ′ = {(M ′
1, P ′

1), . . . , (M ′
ℓ, P ′

ℓ)} of sets
with |F ′| = 2O( k

log k ) such that if there exists a S-feedback vertex set H of T of size at most k

such that H ∩ M = ∅ and there exists (M ′, P ′) ∈ F ′ satisfying:
1. M ∩ M ′ = ∅
2. M ′ ∪ P ′ ⊆ S,
3. M ′ ∩ H = ∅, P ′ ⊆ H,
4. In each (M ∪ M ′)-block B in T − P ′ we have |B ∩ S| ≤ 2 log4 k.
5. In each (M ∪ M ′)-block B in T − P ′ either B has no S-vertex or B is good.

Proof. Let B be the set of all bad M -blocks. Let Q denote the set of all S-vertices in B.
For each Q ⊆ Q such that |Q| ≤ 4k

log2 k
, we output a pair of sets (M ′, P ′) = (Q, Q \ Q). The

family F ′ is the collection of all such pairs of sets.
We prove that the algorithm satisfies the stated properties. Clearly, M ′∪P ′ ⊆ S. Consider

a S-feedback vertex set H of size at most k such that H ∩M = ∅. Due to the Lemma 9, in any
M -block B in T −H, we have |B ∩S| ≤ 2 log2 k. So from each bad M -block in T there are at
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17:12 Subset FVS in Tournaments as Fast as Without the Subset

most 2 log2 k many non solution S-vertices. As the number of bad M -blocks in T is bounded
by 2k

log4 k
(by Observation 20), in total there are at most 2k

log4 k
× 2 log2 k many S-vertices

from the union of bad M -blocks that do not belong to H. Since the algorithm loops over
all choices of subsets Q ⊆ Q, |Q| ≤ 4k

log2 k
, the family F ′ contains a pair (M ′, P ′) such that

M ′ ∩ H = ∅, P ′ := Q \ M ′ ⊆ H. As in each of the M -block in T we have |B ∩ S| ≤ 2 log4 k

(by Lemma 12), we also have in each M ∪ M ′-block B in T − P ′ that |B ∩ S| ≤ 2 log4 k. It
remains to show that in each M ∪ M ′-block B in T − P ′ either B has no S-triangle or B is
good. Note that we only refine the partition for bad blocks. So if any M ∪ M ′-block B is not
good in T − P ′, then it must be obtained by partitioning a bad block but in that case, we
brute force over all non-solution S vertices (part of M ′) and delete all the solution S vertices
(part of P ′). So, there is no S-triangle inside (in fact, there are no S-vertices at all) if it is
not good.

Now Q ⊆ S and |Q| ≤ 4k
log2 k

together imply that the number of pair of sets (Q, Q \ Q)

(i.e., (M ′, P ′)) is at most (k2)
4k

log2 k = 22 log k× 4k
log2 k = 2O( k

log k ). Hence |F ′| = 2O( k
log k ) and

this can be computed in 2O( k
log k ) time. ◀

Our algorithm for Subset-FVST applies Lemma 21 and obtains a family F ′. The
algorithm then iterates over each pair (M ′, P ′) ∈ F ′ and looks for a S-feedback vertex set
H of size at most k that is compatible with (M ∪ M ′, P ′). In particular, we delete all the
vertices of P ′ and obtain an instance (T − P ′, S \ P ′, k − |P ′|, M ∪ M ′) = (T, S, k, M) such
that the following holds.

1. For all v ∈ V (T ) \ M , we have that T [M ∪ {v}] does not contain a {v}-cycle. In
particular, T [M ∪ {v}] is acyclic.

2. In each M -block B in T , we have |B ∩ S| ≤ 2 log4 k.
3. Either each block B is good or it does not have a S-vertex.

We also need the following lemma, which will allow us to show that Lemma 21 is not applied
more than once.

▶ Observation 22. Let T be a tournament and M ⊆ M⋆, then every M⋆ block is a refinement
of M block. That is, for each M⋆ block B⋆, there exists a block M block B such that B⋆ ⊆ B.

This implies that if we add vertices to M to get M⋆, then a good M block can be partitioned
into several good blocks or if it does not have a S vertex, then none of the resulting blocks
after partitioning will have a S vertex.

3.6 Branching Structure II: High Red Degree Again

In the beginning of Section 3.5, we were in the situation where red arcs only formed matching
arcs in T . That is, we had (T, S, k, M) which was a matching instance. However, after
application of Lemma 21, M -blocks can get partitioned and can have a set of red arcs which
share a common vertex. This is possible because some local S-triangle for M -blocks in T can
become a shared S-triangle for (M ∪ M ′)-blocks in T − P ′. Thus, in this scenario, we return
to the case of Section 3.4. Therefore, we can use the same branching algorithm as before in
Section 3.4. However, because of Observation 22 Lemma 21 is not applied more than once.

If the previous scenario does not happen, this means that the collection of red arcs indeed
form matching arcs. In that case, we proceed to Section 3.7.
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3.7 Discovering Structure IV: Matching Reduction Rule
Let (T, S, k, M⋆) be an instance such that the following holds.

1. For all v ∈ V (T ) \ M⋆, we have that T [M⋆ ∪ {v}] does not contain a {v}-cycle. In
particular, T [M⋆ ∪ {v}] is acyclic.

2. In each M⋆-block B in T , we have |B ∩ S| ≤ 2 log4 k.
3. Either each block B is good or it does not have a S-vertex.
4. Red arcs form a matching in G = (V (T ), R).

Now observe that, any M -block of T which contains no local S-triangle still may contain
end-points of too many (more than log4 k) matching arcs. In other words, T can have some
bad M -blocks that have no local S-triangles. We address this issue in this section.

▶ Definition 23 (inner and outer). Given a directed graph D with an ordered partition V1 ·∪
V2 ·∪ . . . ·∪Vt of V (D), and an integer i ∈ [t], we define two functions inner : {V1, V2, . . . , Vt} →
V (D) and outer : {V1, V2, . . . , Vt} → V (D) as follows.

inner(Vi) = {v : (v, u) ∈ A(D), v ∈ Vi, u ∈ Vj , j ∈ [i − 1]} ∪ {v : (w, v) ∈ A(D), v ∈
Vi, w ∈ Vj′ , j′ ∈ [i + 1, t]}
outer(Vi) = {u : (v, u) ∈ A(D), v ∈ Vi, u ∈ Vj , j ∈ [i − 1]} ∪ {w : (w, v) ∈ A(D), v ∈
Vi, w ∈ Vj′ , j′ ∈ [i + 1, t]}

Notice that we are in the situation where all the red arcs are matching arcs in the ordered
partition of M -blocks in T . Consider the directed graph D = (V (T ), R) with partitions
accorded by M⋆. This leads us to the following observation.

▶ Observation 24. For each M -block B in T we have |inner(B)| = |outer(B)|.

Now consider a bad block B that does not contain any local S-triangle. We will now
prove that for an Yes-instance, there is always a solution of size at most k which is disjoint
from inner(B).

▶ Lemma 25. Let H be a solution of size at most k for an instance (T, S, k, M⋆) of Subset-
FVST and let B be a bad M⋆-block in T . Then H⋆ := (H \ inner(B)) ∪ outer(B) is also a
solution for (T, S, k, M⋆) of Subset-FVST with |H⋆| ≤ |H|.

Proof. By Observation 24, |H⋆| ≤ |H|. It remains to show that H⋆ is also a solution. In
contrary, assume that H⋆ is not a solution. So, there exists a S-triangle denoted by △
in T − H⋆ and the the triangle △ must contain a vertex v from inner(B) where V (△) is
disjoint from outer(B). Now we have following two cases.

Case 1: △ is a shared S-triangle. Observe that this case can not happen because this
triangle △ must contain a matching-arc (red arc) whose one end point is v ∈ inner(B).
Hence the other end point, say u must be in outer(B) which is also a vertex of the
triangle △, which is a contradiction to the fact that outer(B) ⊆ H.

Case 2: △ is a local S-triangle. In this case V (△) ⊆ B. That means the block B contains
a local S-triangle which implies that B is good (by condition 5 of Lemma 21), which is a
contradiction to the assumption that B is a bad M⋆-block.

This concludes the proof. ◀

Now we obtain the following reduction rule whose correctness follows from Lemma 25.
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▶ Reduction Rule 2. If B is a bad M⋆-block in T then we delete inner(B) ∪ outer(B) from
T . The resultant instance is (T − {inner(B) ∪ outer(B)}, S \ {inner(B) ∪ outer(B)}, k −
|outer(B)|, M⋆).

After the exhaustive application of Reduction Rule 2, we have the following observation.

▶ Observation 26. Every M⋆-block in T is good.

Currently, we are in the situation where every M⋆-block in T is good, which means that
the number of matching arcs incident to the vertices of every M⋆-block is at most log4 k. In
the following section, we will construct an undirected multigraph of bounded degree. This
graph will guide us in developing a divide-and-conquer algorithm that achieves our final goal.

3.8 Balanced Edge Partitioning
In this section we deal with the case where every block is good.

Construction of a undirected multigraph. Given (T, S, k, M⋆) we construct an undirected
multigraph T as follows:

Each M⋆-block B in T corresponds to a vertex vB in V (T ).
For every matching-arc (u, v), u ∈ Bi and v ∈ Bj where Bi, Bj are two different M⋆-blocks
in T , we introduce an edge between vBi

and vBj
in E(T ).

At this stage, according to Observation 26, every M -block in T is good. Therefore by
definition, the number of matching arcs that are incident to the vertices of every M⋆-block
is at most log4 k. This leads us to the next observation.

▶ Observation 27. The maximum degree of T is bounded by log4 k.

The following fact is known regarding graph partitioning which will be useful for us.

▶ Proposition 28 (Theorem 15 [19]). Given an undirected multigraph without self-loops and
isolated vertices G of maximum degree at most d and |E(G)| = m, there exists a partition
(A, B) of V (G) such that

m
4 − d

2 ≤ |E(G[A])| ≤ m
4 + d

2 ,
m
4 − d

2 ≤ |E(G[B])| ≤ m
4 + d

2 , and
m
2 − d ≤ |E(G[A, B])| ≤ m

2 + d.
where E(G[A, B]) is the set of edges with one endpoint in A and other in B. Furthermore,
there is a polynomial time algorithm to obtain this partition.

Recursive algorithm. We are now ready to describe our recursive algorithm to deal with
good M⋆-blocks. First, we construct an undirected multigraph T from (T, S, k, M⋆). We
then use Theorem 28 to find a balanced partition of the M⋆-blocks with respect to the
number of matching-arcs. We then guess which endpoints of these matching-arcs to add to H

and solve the two sides independently. Our algorithm starts with an empty set W ⊆ V (T ),
initialized as ∅. If T is disconnected, then the algorithm solves each connected component
independently and outputs W as the union of solutions returned for each component. Now
we have following two cases.

Case 1. |E(T )| = 0: This case implies that there is no matching-arc in T . In that case, we
solve the problem independently in each M⋆-block (by brute force) and return W as the
union of solutions returned for each M -block.
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Case 2. |E(T )| > 0: In this case, first we run the algorithm of Proposition 28 to get a
partition (A, B) of the multigraph T . For a vertex set X ⊆ V (T ) and edge set Y ⊆ E(T ),
the set VX(Y ) denotes the set of all the vertices in T that are incident on the matching-arcs
corresponding to Y and belong to M⋆-blocks in X. Our algorithm loops over all subsets
C ⊆ E(A, B), calling itself recursively on T (V (T ) \

(
VA(C) ∪ VB(E(A, B) \ C)

)
) (the

multigraph corresponding to the subgraph of T without VA(C) and VB(E(A, B) \ C))
and computes WC := VA(C) ∪ VB(E(A, B) \ C)) ∪ S′ where S′ is the set returned at
the recursive call. Finally, the algorithm outputs the smallest set WC over all choices of
C ⊆ E(A, B).

3.9 Correctness and Running Time
The correctness of the algorithm follows from each individual pieces we have proved. For the
running time observe the following steps:
1. Apply kernelization algorithm in polynomial time. (Lemma 4)
2. Obtain a universal undeletable family M of size 2O( k

log k ). (Lemma 9).
3. Obtain a du-family F of size 2O( k

log k ). (Lemma 12).
4. Let G = (V (T ), R) be an undirected graph with the vertex set V (T ) and the edge set

R (without orientation). Branch on vertices of red-degree at least 2 in G. This leads to
(1, 2) branching and corresponds to O(1.6181k × kO(1)).

5. Making each block B good or it does not have a S-vertex by branching in 2O( k
log k ) ways

(followed by (1, 2) branching). (Lemma 21).
6. Getting rid of blocks that do not contain any S-vertex in kO(1) time. (Lemma 25)
7. All blocks are good. In this situation, we do divide and conquer based on Proposition 28.

Now we proceed to the runtime analysis of this step of the algorithm. When |E(T )| = 0,
we do brute force on the instance and that takes kO(log4 k) = 2O(log5 k) time. Because
when |E(T )| = 0, in each connected component the number of S-vertices gets bounded
by 2 log4 k (Lemma 12), so the size of an optimal solution in each component is bounded
by 2 log4 k. Let h(k, d) be the maximum number of leaves in the recursion tree of the
algorithm when run on an input with parameter k and maximum degree d. Since in each
recursive call, k decreases by at least 1, the depth of the recursion tree is at most k. In
each internal node of the recursion tree, the algorithm spends kO(1) time plus constant
time for each child (which are at most h(k, d)) and in each leaf, it spends at most 2O(log5 k)

time (as in leaf |E(T )| = 0). Thus, the running time of the algorithm on any input with
parameters k and d is upper bounded by h(k, d) × 2O(log5 k) × kO(1). To upper bound
h(k, d), first note that h(a, d) + h(b, d) ≤ h(a + b, d) because h(a, d) and h(b, d) represent
the number of leaves of two independent sub-trees. Now for each C ⊆ E(X, Y ) there are
no edges between A and B in T (V (T )\(VA(C)∪VB(E(A, B)\C))). Hence, the algorithm
effectively solves T (V (T ) \ (VA(C))) and T (V (T ) \ (VB(E(A, B) \ C))) independently. By
Proposition 28 and since we know that we need to hit all edges in T , the number of edges
in E(A, B) is at most k

4 + d
2 . As we have seen for each C, the algorithm calls itself twice

for each C and so in total, the algorithm makes 2 k
2 +d+1 recursive calls with parameter

k
4 + d

2 (and d does not increase). Thus h(k, d) is upper-bounded by the recurrence
relation h(k, d) ≤ 2 k

2 +d+1h( k
4 + d

2 , d) and h(k, 0) = 2O(log5 k) ≤ 2O(log5 k). This solves to
h(k, d) = 1.5874k · 2O(d log5 k). Hence, the running time of the algorithm is bounded by
h(k, d) × 2O(log5 k) × kO(1) = 1.5874k · 2O(d log5 k) · 2O(log5 k) · kO(1). As d ≤ log4 k, the
running time is bounded by 1.5874k · 2O(log9 k) · kO(1).

8. Taking into account running time in each step we get that the algorithm runs in time
O(1.6181k + nO(1)). This concludes the proof of Theorem 1.
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