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Abstract
A graph G is locally irregular if no two of its adjacent vertices have the same degree. The authors of
[Fioravantes et al. Complexity of finding maximum locally irregular induced subgraph. SWAT, 2022]
introduced and provided some initial algorithmic results on the problem of finding a locally irregular
induced subgraph of a given graph G of maximum order, or, equivalently, computing a subset S of
V (G) of minimum order, whose deletion from G results in a locally irregular graph; S is called an
optimal vertex-irregulator of G. In this work we provide an in-depth analysis of the parameterised
complexity of computing an optimal vertex-irregulator of a given graph G. Moreover, we introduce
and study a variation of this problem, where S is a subset of the edges of G; in this case, S is denoted
as an optimal edge-irregulator of G. We prove that computing an optimal vertex-irregulator of a
graph G is in FPT when parameterised by various structural parameters of G, while it is W[1]-hard
when parameterised by the feedback vertex set number or the treedepth of G. Moreover, computing
an optimal edge-irregulator of a graph G is in FPT when parameterised by the vertex integrity of
G, while it is N P-hard even if G is a planar bipartite graph of maximum degree 6, and W[1]-hard
when parameterised by the size of the solution, the feedback vertex set or the treedepth of G. Our
results paint a comprehensive picture of the tractability of both problems studied here.
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1 Introduction

A fundamental problem in graph theory is “given a graph G, find an induced subgraph H of
G, of maximum order, that belongs in the family of graphs verifying a property Π”, in which
case we say that H ∈ Π:

Largest Induced Subgraph with Property Π (ISP-Π)[19]
Input: A graph G = (V, E), an integer k, a property Π.
Task: Does there exist a set S ⊆ V such that |S| ≤ k and G − S ∈ Π?
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18:2 Parameterised Distance to Local Irregularity

There is a plethora of classical problems that fall under this general setting. Consider, for
example, the Vertex Cover and the Feedback Vertex Set, where Π is the property
“the graph is an independent set” and “the graph is a forest”, respectively.

In this paper we study the ISP-Π problem where Π is the property “the graph is locally
irregular”, recently introduced in [16]. A graph G = (V, E) is called locally irregular if no two
adjacent vertices in V have the same degree. We extend the work of [16], by more thoroughly
investigating the parameterised behaviour of the problem. In addition, we take the first step
towards the problem of finding large locally irregular (not necessarily induced) subgraphs of
a given graph G. In particular, we introduce the problem where the goal is to find a subset
of edges of G of minimum order, whose removal renders the graph locally irregular. Our
results allow us to paint a rather clear picture concerning the tractability of both problems
studied here in relation to various standard graph-structural parameters (see Figure 1 for an
overview of our results).
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Figure 1 Overview of our results. A parameter A appearing linked to a parameter B with A

being below B is to be understood as “there is a function f such that f(A) ≥ f(B)”. The bold
font is used to indicate the parameters that we consider in this work. The asterisks are used to
indicate that the corresponding result follows from observations based on the work in [16]. In light
blue (olive resp.) we exhibit the FPT results we provide for finding an optimal vertex (edge resp.)
irregulator. In red we exhibit the W[1]-hardness results we provide for both problems. The clique
number of the graph is denoted by ω.

ISP-Π and hereditarity. The ISP-Π problem has been extensively studied for hereditary
properties. That is, a property Π is hereditary if, for any graph G verifying it, any induced
subgraph of G also verifies that property. The properties “the graph is an independent set”
or “the graph is a forest” are, for example, hereditary. It was already shown in [29] that
ISP-Π is an N P-hard problem for any non-trivial hereditary property. On the positive side,
the ISP-Π problem always admits an FPT algorithm, when parameterised by the size of the
solution, if Π is a hereditary property [8, 25]. This is an important result, as it allows us to
conceive efficient algorithms to solve computationally hard problems, as long as we restrict
ourselves to graphs verifying such properties.

It is also worth mentioning the work in [17], which provides a framework that yields exact
algorithms that are significantly faster than brute-force to solve a more general version of the
ISP-Π problem: given a universe, find a subset of maximum cardinality which verifies some



F. Fioravantes, N. Melissinos, and T. Triommatis 18:3

hereditary property. On a high level, the algorithm proposed in [17] builds the solution which
is a subset H of maximum cardinality with the wanted property, by continuously extending
a partial solution X ⊆ H. Note that this approach only works if Π is indeed a hereditary
property. More recently, this approach was generalised by the authors of [14], who provide a
framework that yields exponential-time approximation algorithms.

However, not all interesting properties are hereditary. E.g., “all vertices of the induced
subgraph have odd degree”, and “the induced subgraph is d-regular”, where d is an integer
given in the input (recall that a graph is d-regular if all of its vertices have the same degree d),
are non-hereditary properties. The authors of [5] studied the ISP-Π problem for the former
property, showing that it is an N P-hard problem, and providing an FPT algorithm that
solves it when parameterised by the rank-width. Also, the authors of [1, 3, 31] studied the
ISP-Π problem for the latter property. It is shown in [3] that finding an induced subgraph of
maximum order that is d-regular is N P-hard to approximate, even on bipartite or planar
graphs. The authors of [3] also provide a linear-time algorithm to solve this problem for
graphs with bounded treewidth. Lastly, it is also worth mentioning [7], where the authors
consider the non-hereditary property “the induced subgraph is k-anonymous”, where a graph
G is k-anonymous if for each vertex of G there are at least k − 1 other vertices of the same
degree.

An important observation is that, in the case of non-hereditary properties, the ISP-Π
problem does not necessarily admit an FPT algorithm parameterised by the size of the
solution. Indeed, the authors of [31] proved that when considering Π as “the induced subgraph
is regular”, the ISP-Π problem is W[1]-hard when parameterised by the size of the solution.
This indicates the importance of considering graph-structural parameters for conceiving
efficient algorithms for such problems. This is exactly the approach followed in [18, 27],
where the authors consider a generalisation of Vertex Cover, the ISP-Π problem where Π
is “the graph has maximum degree k”, for an integer k given in the input.

Distance from local irregularity. In some sense, the property that interests us lies on the
opposite side of the one studied in [1, 3, 31]. Recall that a graph G is locally irregular if
no two of its adjacent vertices have the same degrees. This notion was formally introduced
in [4], where the authors take some steps towards proving the so-called 1-2-3 Conjecture
proposed in [23] and recently proven in [24]. Roughly, this conjecture is about functions
assigning weights from [k] = {1, . . . , k} to the edges of a graph, called proper k-labellings, so
that all adjacent vertices have different weighted degrees; the conjecture states that for any
non-trivial graph, this is always achievable for k ≤ 3.

The authors of [16] introduced the problem of finding a locally irregular induced subgraph
of a given graph G of maximum order (a non-hereditary property). Equivalently, find a set
of vertices of minimum cardinality whose deletion renders the given graph locally irregular;
such sets are named optimal vertex-irregulators. The main focus of [16] was to study the
complexity of computing optimal vertex-irregulators. It was shown that this problem is
N P-hard even for subcubic planar bipartite graphs, W[2]-hard parameterised by the size of
the solution and W[1]-hard parameterised by the treewidth of the input graph. Moreover, for
any constant ε < 1, there cannot be a polynomial-time O(n1−ε)-approximation algorithm
(unless P=N P). On the positive side, there are two FPT algorithms that solve this problem,
parameterised by the maximum degree of the input graph plus either the size of the solution
or the treewidth of the input graph. Note that the notion of vertex-irregulators proved to be
fruitful in the context of proper labellings. Indeed, the authors of [6] observed a connection
between finding large locally irregular induced subgraphs and constructing proper k-labellings
that also maximise the use of weight 1 on the edges of the given graph.
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Apart from improving the results of [16], in this paper we also introduce the novel problem
of computing a subset of a graph’s edges, of minimum order, whose deletion renders the graph
locally irregular; such sets are named optimal edge-irregulators. This problem is introduced
as a first step towards understanding the problem of finding large locally irregular (not
necessarily induced) subgraphs of a given graph. Problems concerned with finding maximum
subgraphs verifying a specific property have also been extensively studied (e.g., [9, 10, 2]). One
might expect that finding edge-irregulators could be easier than finding vertex-irregulators as
it is often the case with graph theoretical problems concerned with subsets of edges, whose
versions considering subsets of vertices are intractable (recall, e.g., Edge Cover, Feedback
Edge Set and even Min Weighted Lower-Upper-Cover [33]). As it turns out, however,
finding small edge-irregulators is also a computationally hard problem.

Our contribution. In this paper we study the complexity of computing optimal vertex
and edge-irregulators. We identify the parameters for which the tractability of the former
problem changes, considering a multitude of standard graph-structural parameters. We also
take steps towards the same goal for the latter problem. In Section 2 we introduce the needed
notation and provide some first results. In particular, we observe that computing optimal
vertex-irregulators is W[1]-hard when parameterised by the treedepth or the feedback vertex
set of the given graph. Section 3 provides FPT algorithms for the problem of finding optimal
vertex-irregulators. The considered parameters are the neighborhood diversity, the vertex
integrity, or the clusted deletion number of the input graph. In Section 4, we focus on the
problem of finding optimal edge-irregulators. First, we prove that this problem is N P-hard,
even when restricted to planar bipartite graphs of maximum degree 6. We also show that
the problem is W[1]-hard parameterised by the size of the solution or the feedback vertex
set of the input graph. Lastly, we modify the FPT algorithm for computing an optimal
vertex-irregulator parameterised by the vertex integrity in order to provide an FPT algorithm
that solves the edge version of the problem (once more parameterised by the vertex integrity).
We close the paper in Section 5, where we propose some directions for further research.

2 Preliminaries

We follow standard graph theory notations [12].
Let G = (V, E) be a graph and G′ = (V ′, E′) be a subgraph of G (i.e., created by deleting

vertices and/or edges of G). Recall first that the subgraph G′ is induced if it can be created
only by deleting vertices of G; in this case we denote G′ by G[V ′]. That is, for each edge
uv ∈ E, if u, v ∈ V ′, then uv ∈ E′. For any vertex v ∈ V , let NG(v) = {u ∈ V : uv ∈ E}
denote the neighbourhood of v in G and dG(v) = |NG(v)| denote the degree of v in G. Note
that, whenever the graph G is clear from the context, we will omit the subscript and simply
write N(v) and d(v). Also, for S ⊆ E, we denote by G − S the graph G′ = (V, E \ S). That
is, G′ is the graph resulting from the deletion of the edges of S from the graph G.

Let G = (V, E) be a graph. We say that G is locally irregular if, for every edge uv ∈ E, we
have d(u) ̸= d(v). Now, let S ⊆ V be such that G[V \ S] is a locally irregular graph; any set
S that has this property is denoted as a vertex-irregulator of G. Moreover, let Iv(G) be the
minimum order that any vertex-irregulator of G can have. We will say that S is an optimal
vertex-irregulator of G if S is a vertex-irregulator of G and |S| = Iv(G). Similarly, we define
an edge-irregulator of G to be any set S ⊆ E such that G − S is locally irregular. Moreover,
let Ie(G) be the minimum order that any edge-irregulator of G can have. We will say that S

is an optimal edge-irregulator of G if S is an edge-irregulator of G and |S| = Ie(G).
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We begin with some simple observations that hold for any graph G = (V, E).

▶ Observation 1. If G contains two vertices u, v such that uv ∈ E and d(u) = d(v), then any
edge-irregulator of G contains at least one edge incident to u or v. Also, any vertex-irregulator
of G contains at least one vertex in N(u) ∪ N(v).

▶ Observation 2. If G contains two vertices u, v ∈ V that are twins, i.e., N(u) \ {v} =
N(v) \ {u}, such that uv ∈ E, then any vertex-irregulator of G contains at least one vertex
in {u, v}.

The importance of upcoming Lemma 3 lies in the fact that we can repeatedly apply it,
reducing the size of the graph on which we are searching for a vertex-irregulator. This is a
core argument behind the algorithms of Theorems 7 and 11.

▶ Lemma 3. Let G = (V, E) be a graph and u, v ∈ V be a pair of adjacent twins. Let
G′ = (V ′, E′) be the graph resulting from the deletion of either u or v from G. Then,
Iv(G) = Iv(G′) + 1.

Proof. Assume w.l.o.g. that u /∈ V ′. We first prove that Iv(G) ≤ Iv(G′) + 1. Indeed, assume
that Iv(G) > Iv(G′) + 1 and let S′ be an optimal vertex-irregulator of G′. Next, consider the
graph G̃ = G[V \ (S′ ∪ {u})]. From the construction of G′, it follows that G̃ = G′[V ′ \ S′].
Since S′ is a vertex-irregulator of G′, we obtain that G̃ is locally irregular. In other words,
the set S′ ∪ {u} is a vertex-irregulator of G and |S′ ∪ {u}| = Iv(G′) + 1, a contradiction.

Next, assume that Iv(G) < Iv(G′) + 1 and let S be an optimal vertex-irregulator of G. It
follows from Observation 2 that |{u, v} ∩ S| ≥ 1. Assume w.l.o.g. that u ∈ S. Thus, and by
the construction of G′, we have that G′[V ′ \ (S \ {u})] = G[V \ S] and the set S \ {u} is a
vertex-irregulator of G′. In other words, Iv(G′) ≤ |S| − 1 = Iv(G) − 1, a contradiction. ◀

We close this section with some observations on the proof that computing Iv(G) is W[1]-hard
parameterised by the treewidth of G, initially presented in [16], which allows us to show that
this result holds even if we consider more “restricted” parameters, such as the treedepth or
the feedback vertex set number (i.e., size of a minimum feedback vertex set) of the input
graph. Recall that the treedepth of a graph G = (V, E) can be defined recursively: if |V | = 1,
then G has treedepth 1. Then, G has treedepth k if there exists a vertex v ∈ V such that
every connected component of G[V \ {v}] has treedepth at most k − 1. Given a graph G and
a tree T rooted at a vertex u, by attaching T on a vertex v of G, we mean the operation of
adding T to G and identifying u with v, i.e., V (T ) ∩ V (G) = {u} = {v}.

▶ Observation 4. Let G be a graph with vertex cover number ( i.e., size of a minimum vertex
cover) k1 and T be a rooted tree of depth k2. Let G′ be the graph after attaching an arbitrary
number of copies of T directly on vertices of G. Then G′ has treedepth O(k1 + k2) and
feedback vertex set number O(k1).

The reduction presented in [16, Theorem 16] starts with a graph G which is part of an
instance of the List Colouring problem, and constructs a graph G′ by attaching some
trees of depth at most 3 on each vertex of G. The List Colouring problem was shown
to be W[1]-hard in [15] when parameterised by the vertex cover number of the input graph.
Thus, by Observation 4, we obtain the following:

▶ Corollary 5. Given a graph G, it is W[1]-hard to compute Iv(G) parameterised by either
the treedepth or the feedback vertex set number of G.

IPEC 2024
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3 FPT algorithms for vertex-irregulators

In this section we present two FPT algorithms that compute an optimal vertex-irregulator of
a given graph G, when parameterised by the neighbourhood diversity or the vertex integrity
of G. The latter algorithm is then used to show that this problem is in FPT also when
parameterised by the cluster deletion number of G. We begin by recalling the needed
definitions.

The twin equivalence of G is the relation on the vertices of V where two vertices belong
to the same equivalence class if and only if they are twins.

▶ Definition 6 ([26]). A graph G has neighbourhood diversity k (denoted as nd(G) = k) if
its twin equivalence has k classes.

Let G = (V, E) be a graph with nd(G) = k and let V1, . . . , Vk be the partition of V

defined by the twin equivalence of G. Observe that for any i ∈ [k], we have that G[Vi] is
either an independent set or a clique.

▶ Theorem 7. Given a graph G = (V, E) such that nd(G) = k, there exists an algorithm
that computes Iv(G) in FPT-time parameterised by k.

Proof. Let V1, . . . , Vk be the partition of V defined by the twin equivalence of G. Note that
this partition can be computed in linear time [26]. We begin by constructing an induced
subgraph G′ = (V ′, E′) of G by applying the following procedure: for each i ∈ [k], if G[Vi] is
a clique on at least two vertices, delete all the vertices of Vi except one; let D be the set of
vertices that were deleted and d = |D|. This procedure terminates after k iterations and,
thus, runs in polynomial time. Moreover, it follows from Lemma 3 that Iv(G) = Iv(G′) + d.
Thus, it suffices to solve the problem on G′. For every i ∈ [k], let V ′

i = Vi ∩ V ′.
Observe that for every locally irregular graph H, there exists a prime number p such

that dH(u) − dH(v) ̸= 0 mod p for every uv ∈ E(H). In our case, since for every uv ∈ E′ we
have that u ∈ V ′

i and v ∈ V ′
j for i < j ≤ [k], it follows that there can be at most

(
k
2
)

possible
differences modulo p between the degrees of adjacent vertices in G∗, where G∗ = (V ∗, E∗) is
a locally irregular induced subgraph of G′.

We claim that p ≤ (k2 log n+1)(log(k2 log n+1)+log log(k2 log n+1)− 1
2 ). Indeed, since

each one of the differences we considered in the previous paragraph is at most n, each one of
them has at most log n prime divisors. Thus, p is at most the k2 log n + 1th prime number.
This, in conjunction with the classical results from [32] gives us the claimed inequality.

For every i ∈ [k], let V ∗
i = V ′

i ∩ V ∗. For every such prime p, we consider all the possible
cases for pi = |V ∗

i | mod p, for every i ∈ [k]; there are at most pk such instances. Let us
consider any such instance such that dG∗(u)−dG∗(v) ̸= 0 mod p for every uv ∈ E∗. Checking
this inequality is straightforward from the pis. We store the maximum orders of the V ∗

i s such
that |V ∗

i | mod p = pi for every i ∈ [k]. Having repeated this procedure for all such instances,
we are certain to have computed a locally irregular induced subgraph of G′ of maximum
order. In total, this procedure takes time pk+1nO(1) which is in FPT due to the upper bound
on p by [32] and since logk n ≤ f(k)n, for some computable function f [22]. ◀

We now present an FPT algorithm to compute an optimal vertex-irregulator of an
input graph G when parameterised by the vertex integrity of G, which can be computed in
FPT-time [13].

▶ Definition 8. A graph G = (V, E) has vertex integrity k if there exists a set U ⊆ V such
that |U | = k′ ≤ k and all connected components of G[V \ U ] are of order at most k − k′.
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▶ Theorem 9. Given a graph G = (V, E) with vertex integrity k, there exists an algorithm
that computes Iv(G) in FPT-time parameterised by k.

Proof. Let U ⊆ V be such that |U | = k′ ≤ k and C1, . . . , Cm be the vertex sets of the
connected components of G[V \ U ] such that |Cj | ≤ k − k′, j ∈ [m]. Assume that we know
the intersection of an optimal vertex-irregulator S of G and the set U , and let S′ = S ∩ U

and U ′ = U \ S (there are at most 2|U | ≤ 2k possible intersections S′ of U and S). Notice
that the graph G[V \ S′] has an optimal vertex-irregulator that contains only vertices from⋃

i∈[m] Ci. Indeed, assuming otherwise contradicts that S′ is the intersection of an optimal
vertex-irregulator and U . Thus, in order to find an optimal vertex-irregulator S of G, it
suffices to compute S∗ ⊆

⋃
i∈[m] Ci, which is an optimal vertex-irregulator of G[V \ S′], for

every set S′ ⊆ U . Then, we return the set S∗ ∪ S′ of minimum order. We compute S∗

through an ILP with bounded number of variables. To do so, we define types and sub-types
of graphs G[U ′ ∪ Cj ], j ∈ [m].

Informally, the main idea is to categorise the graphs G[U ′ ∪ Cj ], j ∈ [m], into types based
on their structure (formally defined later), whose number is bounded by some function of k.
Each type i is associated with a number noi that represents the number of the subgraphs
G[U ′ ∪ Cj ], j ∈ [m], that belong in that type. Then, for each type i, we will define sub-types
based on the induced subgraphs G[(U ′ ∪Cj)\Sq], for Sq ⊆ Cj . We also define a variable noi,q

that is the number of the subgraphs G[U ′ ∪ Cj ], j ∈ [m], that are of type i and of sub-type q

in G[V \ S]. Note that knowing the structure of these types and sub-types, together with
noi,q, is enough to compute the order of S∗. Finally, for any j ∈ [m], the graph G[U ′ ∪ Cj ] is
of order at most k. Thus, the number of types, sub-types and their corresponding variables,
is bounded by a function of k. We will present an ILP formulation whose objective is to
minimise the order of S∗.

We begin by defining the types. Two graphs G[U ′ ∪ Ci] and G[U ′ ∪ Cj ], i, j ∈ [m], are of
the same type if there exists a bijection1 f : Ci ∪ U ′ → Cj ∪ U ′ such that f(u) = u for all
u ∈ U ′ and NG[U ′∪Ci](u) = {f−1(v) | v ∈ NG[U ′∪Cj ](f(u))} for all u ∈ Ci. Note that if such
a function exists, then G[U ′ ∪ Ci] is isomorphic to G[U ′ ∪ Cj ].

Let p be the number of different types. Notice that p is bounded by a function of k as
any graph G[U ′ ∪ Ci] has order at most k. Also, we can decide if two graphs G[U ′ ∪ Ci] and
G[U ′ ∪ Cj ], i, j ∈ [m], are of the same type in FPT-time parameterised by k. For each type
i ∈ [p], set noi to be the number of graphs G[U ′ ∪ Cj ], j ∈ [m], of type i. Furthermore, for
each type i ∈ [p] we select a Cj , j ∈ [m], such that G[U ′ ∪ Cj ] is of type i, to represent that
type; we will denote this set of vertices by Ri.

We are now ready to define the sub-types. Let i ∈ [p] be a type represented by Ri and
Si

1, . . . , Si
2|Ri|be an enumeration of the subsets of Ri. For any q ∈ [2|Ri|], we define a sub-type

(i, q) which represents the induced subgraph G[(U ′ ∪ Ri) \ Si
q]. Let noi,q be the variable

corresponding to the number of graphs represented by G[U ′ ∪ Ri], i ∈ [p], that is of type
(i, q) in G[V \ S∗], for a vertex-irregulator S∗ such that S∗ ∩ Ri = Si

q.
Notice that, given a vertex-irregulator S∗ ⊆

⋃
j∈[m] Cj of G[V \S′], there exists a sub-type

(i, q), i ∈ [p], q ∈ [2|Ri|], for each j ∈ [m], such that the graph G[(U ′ ∪ Cj) \ S∗] is of sub-type
(i, q). Also, assuming that we know the order of |Si

q| and the number noi,q for all i ∈ [p],
q ∈ [2|Ri|], then |S∗| =

∑
i∈[p]

∑
q∈[2|Ri|] noi,q|Si

q|.

1 Recall that a function f : A → B is a bijection if, for every a1, a2 ∈ A with a1 ̸= a2, we have that
f(a1) ̸= f(a2) and for every b ∈ B, there exists an a ∈ A such that f(a) = b. Recall also that the
inverse function of f , denoted as f−1, exists if and only if f is a bijection, and is such that f−1 : B → A
and for each b ∈ B we have that f−1(b) = a, where f(a) = b.

IPEC 2024
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Before giving the ILP formulation whose goal is to find a vertex-irregulator S∗ while
minimising the above sum, we guess the (i, q) such that noi,q ̸= 0. Let S2 be the set of
pairs (i, q), i ∈ [p] and q ∈ [2|Ri|], such that there are two vertices u, v ∈ Ri \ Si

q where
uv ∈ E(G[(U ′ ∪ Ci) \ Si

q]) and dG[(U ′∪Ri)\Si
q ](u) = dG[(U ′∪Ri)\Si

q ](v). For every (i, q) ∈ S2,
we have that noi,q = 0. Indeed, assuming otherwise contradicts the fact that S∗ is a vertex-
irregulator. We guess S1 ⊆ {(i, q) | i ∈ [p], q ∈ 2|Ri|}\S2 such that noi,q ̸= 0 for all (i, q) ∈ S1.
Observe that the number of different sets that are candidates for S1 is bounded by some
function of k.

Constants
noi i ∈ [p] number of components of type i

euv ∈ {0, 1} u, v ∈ U ′ set to 1 iff uv ∈ E(G[U ′])

ei,q
u,v ∈ {0, 1} i ∈ [p], q ∈ [2|Ri|], u ∈ U ′ set to 1 iff uv ∈ E(G[(U ′ ∪ Ri) \ Si

q])
and v ∈ Ri \ Si

q

bi,q
u ∈ [n] i ∈ [p], q ∈ [2|Ri|] and u ∈ U ′ set to dG[({u}∪Ri)\Si

q ](u)

di,q
u ∈ [n] i ∈ [p], q ∈ [2|Ri|] and u ∈ Ri \ Si

q set to dG[(U′∪Ri)\Si
q ](u)

Variables noi,q i ∈ [p], q ∈ [2|Ri|] number of graphs of types (i, q)

Objective

min
∑

i∈[p]

∑
q∈[2|Ri|]

noi,q|Si
q| (3.1)

Constraints

noi,q = 0 iff (i, q) /∈ S1 (3.2)∑
q∈[2|Ri|]

noi,q = noi ∀i ∈ [p] (3.3)

∑
w∈U ′

ewv +
∑
i∈[p]

noi,qbi,q
v ̸=

∑
w∈U ′

ewu +
∑
i∈[p]

noi,qbi,q
u ∀u, v ∈ U ′, euv = 1 (3.4)

di,q
v ̸=

∑
w∈U ′

ewu +
∑
i∈[p]

noi,qbi,q
u ∀ei,q

u,v = 1 and (i, q) ∈ S1 (3.5)

Assume that we have found the values noi,q for (i, q), i ∈ [p], q ∈ [2|Ri|]. We construct
an optimal vertex-irregulator of G[V \ S′] as follows. Start with an empty set S∗. For each
i ∈ [p] take all components Cj of type i. Partition them into 2|Ri| sets Ci

q such that any set
q ∈ [2|Ri|] contains exactly noi,q of these components. For any component C ∈ Ci

q, select all
vertices represented by the set Si

q (as it was defined before) and add them to S∗. The final
S∗ is an optimal vertex-irregulator for G[V \ S′].

Let S = S′ ∪ S∗. We show that S is a vertex-irregulator of G. To do so, it suffices to
verify that in the graph G[V \ S] there are no two adjacent vertices with the same degree.
Let u, v be a pair of adjacent vertices in a component represented by Ri \ S, which is of type
(i, q). If dG[V \S](u) = dG[V \S](v), then (i, q) ∈ S2. Therefore, noi,q = 0 and we do not have
such a component in G[V \ S]. Thus, it suffices to focus on adjacent vertices such that at
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least one of them is in U ′. Notice that, in G[V \ S], the degree of vertex u ∈ U ′ is equal to∑
w∈U ′ ewv +

∑
i∈[p] noi,qbi,q

v . In other words, no two adjacent vertices in U ′ have the same
degree due to the constraint 3.4. Lastly, the constraint 3.5 guarantees that no vertex in U ′ is
adjacent to a vertex in Ci \ S (for some i ∈ [p]) such that both of them have the same degree
in G[V \ S]. Moreover, both S′ and S∗ are constructed to be minimum such sets. Thus, S is
an optimal vertex-irregulator of G. Finally, since the number of variables in the model is
bounded by a function of k, we can obtain S∗ in FPT time parameterised by k (by running
for example the Lenstra algorithm [28]). ◀

The previous algorithm can be used to find an optimal vertex-irregulator of a graph G in
FPT-time when parameterised by the cluster deletion number of G. Note that the cluster
deletion number of a graph can be computed in FPT-time parameterised by k [21].

▶ Definition 10 ([21]). A graph G = (V, E) has cluster deletion number k if there exists a
set S ⊆ V such that all the connected components of G[V \ S] are cliques, and S is of order
at most k.

▶ Theorem 11. Given a graph G = (V, E) with cluster deletion number k, there exists an
algorithm that computes Iv(G) in FPT-time parameterised by k.

Proof. Let S be such that |S| = k and G[V \ S] is a disjoint union of cliques C1, . . . Cm for
m ≥ 1. Our goal is to reduce the size of these cliques so that each one of them has order
at most 2k. We achieve this through the the following procedure. Let i ∈ [m] be such that
the clique Ci = (VCi

, ECi
) has |VCi

| > 2k. Let V1, . . . , Vp be the partition of VCi
defined by

the twin equivalence of G[VCi
∪ S]. That is, two vertices u, v ∈ VCi

belong in a Vj , j ∈ [p],
if and only if u and v are twins. Note that p ≤ 2k. Observe that, since Ci is a clique, the
graphs Ci[Vj ], j ∈ [p], are also cliques. In other words, for each j ∈ [p], all the vertices of
Vj are adjacent twins. We delete all but one vertex of Vj , for each j ∈ [p], and repeat this
process for every i ∈ [m] such that |VCi

| > 2k. Let G′ = (V ′, E′) be the resulting subgraph
of G and d = |D|, where D is the set of vertices that were removed throughout this process.
It follows from Lemma 3 that Iv(G) = Iv(G′) + d. Observe also that S ⊆ V ′ and that each
connected component of G′[V ′ \ S] is a clique of at most 2k vertices. In other words, G′ has
vertex integrity at most 2k + k. To sum up, to compute Iv(G) it suffices to compute Iv(G′),
which can be done in FPT-time by running the algorithm presented in Theorem 9. ◀

4 Edge-irregulators

In this section we begin the study of finding an optimal edge-irregulator of a given graph. It
turns out that the decision version of this problem is N P-complete, even for quite restrictive
classes of graphs (see Theorem 12). Furthermore, it is also W[1]-hard parameterised by the
size of the solution.

▶ Theorem 12 (⋆). Let G be a graph and k ∈ N. Deciding if Ie(G) ≤ k is N P-complete,
even if G is a planar bipartite graph of maximum degree 6.

Sketch of Proof. The problem is clearly in N P. We focus on showing it is also N P-hard.
This is achieved through a reduction from the Planar 3-SAT problem which is known to
be N P-complete [30]. In that problem, a 3CNF formula ϕ is given as an input. We say that
a bipartite graph G′ = (V, C, E) corresponds to ϕ if it is constructed from ϕ in the following
way: for each literal xi (resp. ¬xi) that appears in ϕ, add the literal vertex vi (resp. v′

i) in
V (for 1 ≤ i ≤ n) and for each clause Cj of ϕ add a clause vertex cj in C (for 1 ≤ j ≤ m).

IPEC 2024
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u1

u3

u2

u4

u5

v′
i

vi

u6

u8

u7

u12

u11

u10

u9

e4
i

e2
i

e1
i

e3
i

cj

Figure 2 The construction in the proof of Theorem 12. The dashed lines are used to represent
the edges between the literal and the clause vertices.

Then the edge vicj (resp. v′
icj) is added if the literal xi (resp. ¬xi) appears in the clause

Cj . Finally, we add the edge viv
′
i for every i. A 3CNF formula ϕ is valid as input to the

Planar 3-SAT problem if the graph G′ that corresponds to ϕ is planar. Furthermore,
we may assume that each variable appears in ϕ twice as a positive and once as a negative
literal [11]. The question is whether there exists a truth assignment to the variables of X

satisfying ϕ. Starting from a 3CNF formula ϕ, we construct a graph G such that Ie(G) ≤ 3n

if and only if ϕ is satisfiable.

Construction. We start with the graph G′ that corresponds to the formula ϕ. Then, for
each 1 ≤ i ≤ n, we remove the edge viv

′
i, and attach the gadget illustrated in Figure 2 to vi

and v′
i. Let Ei denote the edges of the gadget attached to vi and v′

i plus the edges e1
i , e2

i and
e3

i . Finally, for each 1 ≤ j ≤ m, we attach two leaves to cj and then we add the star with 7
vertices and identify one of its leaves as the vertex cj . Note that the edges e1

i , e2
i correspond

to the two positive appearances of the literal xi, while the edge e3
i corresponds to the one

negative appearance of the same literal. We stress that the edge e4
i is a “simple” edge leading

to a vertex of degree 1, and does no correspond to any appearance (positive or negative) of
xi. Observe that the resulting graph G is planar, bipartite and ∆(G) = 6. This finishes the
construction.

The rest of the reduction is based on some useful observations about the constructed
graph. Indeed, we prove that for every edge-irregulator S of G, for every 1 ≤ i ≤ n, we have
that |S ∩ Ei| ≥ 3. Also, if S is such that |S| ≤ 3n, then, for every 1 ≤ i ≤ n, we have that
if |S ∩ {e1

i , e2
i }| ≥ 1 then |S ∩ {e3

i , e4
i }| = 0 and if |S ∩ {e3

i , e4
i }| ≥ 1 then |S ∩ {e1

i , e2
i }| = 0.

Finally, we show that there exists a satisfying truth assignment of ϕ if and only if Ie(G) ≤ 3n,
where G is the graph constructed from the input formula ϕ as explained above. Starting
from a satisfying truth assignment of ϕ, we insert {v′

iu6, e1
i , e2

i } ({viu6, e3
i , e4

i } resp.) into the
constructed edge-irregulator S if xi is set to true (false resp.). For the reverse direction, we
set the variable xi to true if and only if S ∩ {e1

i , e2
i } ≠ ∅. ◀

▶ Theorem 13 (⋆). Let G be a graph and k ∈ N. Deciding if Ie(G) ≤ k is W[1]-hard
parameterised by k.

The proof of this theorem is based on a reduction from k-Multicoloured Clique.
Additionally, this problem exhibits a similar behaviour to finding optimal vertex-

irregulators, as it also remains intractable even for “relatively large” structural parameters.

▶ Theorem 14. Let G and k ∈ N. Deciding if Ie(G) ≤ k is W[1]-hard parameterised by
either the feedback vertex set number or the treedepth of G.
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ui,j

ui

. . . . . . . . . . . . . . . . . .

. . . . . . . . .
. . .

di,j − 1 di,j − 1

n2 stars

di,j − 2 di,j − 2

n2 stars

di,j − n2 di,j − n2

n2 + q stars

2in4 − a′
j stars

Figure 3 The tree Ti,j that is attached to the vertex ui, where j is such that aj ∈ L(ui), in the
proof of Theorem 14. The value of q is such that, in total, d(ui,j) = 2in4 − a′

j + 1.

Proof. The reduction is from the General Factor problem:

General Factor
Input: A graph H = (V, E) and a list function L : V → 2∆(H) that specifies the
available degrees for each vertex u ∈ V .
Task: Does there exist a set S ⊆ E such that dH−S(u) ∈ L(u) for all u ∈ V ?

This problem is known to be W[1]-hard when parameterised by the vertex cover number
of H [20].

Starting from an instance (H, L) of General Factor, we construct a graph G such
that Ie(G) ≤ n2, where n = |V (H)|, if and only if (H, L) is a yes-instance. Moreover,
the constructed graph G will have treedepth and feedback vertex set O(vc), where vc is
the vertex cover number of H. For every vertex u ∈ V (H), let us denote by L(u) the set
{0, 1, . . . , dH(u)} \ L(u). In the case where {0, 1, . . . , dH(u)} \ L(u) = ∅, we set L(u) = {−1}.
On a high level, the graph G is constructed by adding some trees on the vertices of H.
In particular, for each vertex u ∈ V (H) and for each element a in L(u), we will attach a
tree to u whose purpose is to prevent u from having degree a in G − S, for any optimal
edge-irregulator S of G. We proceed with the formal proof.

Construction. We begin by defining an arbitrary order on the vertices of H. That is,
V (H) = {u1, u2, . . . , un}. Next, we describe the trees we will use in the construction of
G. In particular, we will describe the trees that we attach to the vertex ui, for every
1 ≤ i ≤ n. First, for each aj ∈ L(ui), define the value a′

j = dH(ui) − aj . Also, for each j, let
di,j = 2in4 − a′

j . For each “forbidden degree” aj in the list L(ui), we will attach a tree Ti,j

to ui. We define the tree Ti,j as follows.
First, for every 0 ≤ k ≤ n2 − 1, create n2 copies of Sdi,j−k (the star on di,j − k vertices)

and q additional copies of Sdi,j−n2+1 (the exact value of q will be defined in what follows).
Then, choose one leaf from each one of the above stars, and identify them into a single vertex
denoted as ui,j ; the value of q is such that d(uij) = di,j − 1 = 2in4 − a′

j − 1. Let Ti,j be the
resulting tree and let us say that ui,j is the root of Ti,j (see Figure 3).

Let us now describe the construction of G. For each vertex ui ∈ V (H) and for each
aj ∈ L(ui), add the tree Ti,j to H and the edge ui,jui. Then, for each vertex ui ∈ V (H), for
any j such that ui,j is a neighbour of ui, add pi additional copies of the tree Ti,j , as well
as the edges between ui and the roots of the additional trees, so that dG(ui) = 2in4. The
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resulting graph is G. Note that, for each vertex of V (H), we are adding at most O(n) trees,
each one containing at most O(n10) vertices. Thus, the construction of G is achieved in
polynomial time.
Reduction. Assume first that (H, L) is a yes-instance of General Factor, and let S ⊆ E

be such that dH−S(u) ∈ L(u) for all u ∈ V (H). We claim that S is also an edge-irregulator
of G. By the construction of G, and since S only contains edges from H, there are no
two adjacent vertices in G[V (G) \ V (H)] that have the same degree in G − S. Thus, it
remains to check the pairs of adjacent vertices x, y such that, either both x and y belong
to V (H), or, w.l.o.g., x ∈ V (H) and y ∈ V (G − H). For the first case, let x = ui and
y = ui′ , for 1 ≤ i < i′ ≤ n. Then, assuming that dG−S(ui) = dG−S(ui′), we get that
2in4 − p = 2i′n4 − p′, where S contains 0 ≤ p ≤ n2 and 0 ≤ p′ ≤ n2 edges incident to ui and
ui′ respectively. Thus, 2n4(i − i′) = p − p′, a contradiction since −n2 ≤ p − p′ ≤ n2, i < i′

and −n ≤ i − i′ ≤ n. For the second case, for every i, let dG−S(ui) = 2in4 − p, where the set
S contains 1 ≤ p ≤ n2 edges of H incident to ui. Also, by the construction of G and since S

only contains edges from H, we have that for every j, dG−S(ui,j) = dG(ui,j) = 2in4 − a′
j ,

where, recall, a′
j = dH(ui) − aj for aj ∈ L(ui) (see Figure 3). Assume now that there

exist i, j such that dG−S(ui) = dG−S(ui,j). Then, 2in4 − p = 2in4 − dH(ui) + aj and thus
dH(ui) − p = aj . But then dH−S(ui) = aj , which is a contradiction since aj ∈ L(ui). Thus,
S is an edge-irregulator of G and |S| ≤ n2 since S only contains edges of E(H).

For the reverse direction, assume that Ie(G) ≤ n2 and let S be an optimal edge-irregulator
of G. We will show that S is also such that dH−S(ui) ∈ L(ui), for every i. Let us first prove
the following claim.

▷ Claim 15. Let S be an optimal edge-irregulator of G. Then either S ⊆ E(H) or |S| > n2.

Proof. Assume there exist i, j such that |S ∩ Ei,j | = x ≥ 1 and x ≤ n2. Among those edges,
there are x1 ≥ 0 edges incident to u and x2 ≥ 0 edges incident to children of u (but not to
u), with x1 + x2 = x ≤ n2.

Assume first that x1 = 0. Then x = x2 and there is no edge of S ∩ Ei,j that is incident
to u. Then dG−S(u) = dG(u) and observe that dG(u) is strictly larger than that of any of its
children (by the construction of G). It follows that S \ Ei,j is also an edge-irregulator of G,
contradicting the optimality of S. Thus x1 ≥ 1. It then follows from the construction of G

that there exist at least n2 children of u, denoted by z1, . . . , zn2 , such that dG−S(u) = dG(zk),
for every 1 ≤ k ≤ n2. Since x ≤ n2, there exists at least one 1 ≤ k ≤ n2 such that
dG−S(u) = dG−S(zk), contradicting the fact that S is an edge-irregulator. Thus x > n2. ◁

It follows directly from Claim 15 that S contains only edges of E(H). Assume that there
exist i, j such that dH−S(ui) = aj and aj ∈ L(ui). Then dG−S(ui) = 2in4 − a′

j . Also, by
the construction of G, ui is adjacent to a vertex ui,j for which (since S contains only edges
of E(H)) we have that dG−S(ui,j) = dG(ui,j) = 2in4 − a′

j . This is contradicting the fact
that S is an edge-irregulator of G. Thus, for every i, j, we have that if dH−S(ui) = aj , then
aj ∈ L(ui), which finishes our reduction.

Finally, if H has vertex cover number vc, then, by Observation 4, we have that G has
treedepth and feedback vertex set O(vc). ◀

We close this section by observing that the proof of Theorem 9 can be adapted for the case
of edge-irregulators. Indeed, it suffices to replace the guessing of vertices and the variables
defined on vertices, by guessing of edges and variables defined on the edges of the given
graph. Finally, the definition of the sub-types is done through subgraphs produced only by
deletion of edges. This leads us to the following:
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▶ Corollary 16. Given a graph G with vertex integrity k, there exists an algorithm that
computes Ie(G) in FPT-time parameterised by k.

5 Conclusion

In this work we continued the study of the problem of finding optimal vertex-irregulators,
and introduced the problem of finding optimal edge-irregulators. In the case of vertex-
irregulators, our results are somewhat optimal, in the sense that we almost characterise
which are the “smallest” graph-structural parameters that render this problem tractable. The
only “meaningful” parameter whose behaviour remains unknown is the modular-width of the
input graph. The parameterised behaviour of the case of edge-irregulators is also somewhat
understood, but there are still some parameters for which the problem remains open. Another
interesting direction is that of approximating optimal vertex or edge-irregulators. In particular
it would be interesting to identify parameters for which either problem becomes approximable
in FPT-time (recall that vertex-irregulators are not approximable within any decent factor
in polynomial time [16]). Finally, provided that the behaviour of edge-irregulators is better
understood, we would also like to propose the problem of finding locally irregular minors, of
maximum order, of a given graph G.
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