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Abstract
We study the fundamental scheduling problem 1 | rj |

∑
wjUj : schedule a set of n jobs with weights,

processing times, release dates, and due dates on a single machine, such that each job starts after its
release date and we maximize the weighted number of jobs that complete execution before their
due date. Problem 1 | rj |

∑
wjUj generalizes both Knapsack and Partition, and the simplified

setting without release dates was studied by Hermelin et al. [Annals of Operations Research, 2021]
from a parameterized complexity viewpoint.

Our main contribution is a thorough complexity analysis of 1 | rj |
∑

wjUj in terms of four key
problem parameters: the number p# of processing times, the number w# of weights, the number d#

of due dates, and the number r# of release dates of the jobs. 1 | rj |
∑

wjUj is known to be weakly
para-NP-hard even if w# + d# + r# is constant, and Heeger and Hermelin [ESA, 2024] recently
showed (weak) W[1]-hardness parameterized by p# or w# even if r# is constant.

Algorithmically, we show that 1 | rj |
∑

wjUj is fixed-parameter tractable parameterized by p#

combined with any two of the remaining three parameters w#, d#, and r#. We further provide
pseudo-polynomial XP-time algorithms for parameter r# and d#. To complement these algorithms,
we show that 1 | rj |

∑
wjUj is (strongly) W[1]-hard when parameterized by d# + r# even if w# is

constant. Our results provide a nearly complete picture of the complexity of 1 | rj |
∑

wjUj for p#,
w#, d#, and r# as parameters, and extend those of Hermelin et al. [Annals of Operations Research,
2021] for the problem 1 ||

∑
wjUj without release dates.
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19:2 Single-Machine Scheduling to Minimize the Number of Tardy Jobs

1 Introduction

The problem of scheduling jobs to machines is one of the core application areas of combinatorial
optimization [25]. Typically, the task is to allocate jobs to machines in order to minimize
a certain objective function while complying with certain constraints. In our setting, the
jobs are characterized by several numerical parameters: a processing time, a release date,
a due date, and a weight. We have access to a single machine that can process one job
(non-preemptively) at a time. We consider one of the most fundamental objective functions,
namely to minimize the weighted number of tardy jobs, where a job is considered tardy if it
completes after its due date. In the standard three-field notation for scheduling problems by
Graham [8], the problem is called 1 | rj |

∑
wjUj . We give a formal definition in Section 2.

The interest in 1 | rj |
∑

wjUj comes from various sources. It generalizes several
fundamental combinatorial problems. In the most simple setting, without weights and release
dates, the classic algorithm by Moore [24] computes an optimal schedule in polynomial
time. When weights are added, the problem (1 ||

∑
wjUj) encapsulates the Knapsack

problem, a cornerstone in combinatorial optimization and one of Karp’s 21 NP-complete
problems [15]. Precisely, when all jobs are released at time zero and all jobs have a common
due date, we obtain the Knapsack problem. Karp’s NP-hardness proof (from his seminal
paper [15]) is the first example of a reduction to a problem involving numbers. The problem
1 ||

∑
wjUj is one of the most extensively studied problems in scheduling and can be solved

in pseudopolynomial time by the classic algorithm by Lawler and Moore [19]. Hermelin et
al. [14] showed that this algorithm can be improved in various restricted settings. Better
running times have been achieved for the special case where the weights of the jobs equal
their processing times [3, 6, 17, 26].

The problem 1 ||
∑

wjUj (so without release dates) has been studied from the perspective
of parameterized complexity by Hermelin et al. [13]. They considered the number p# of
different processing times, the number d# of different due dates, and the number w# of
different weights as parameters and showed fixed-parameter tractability for w# +p#, w# +d#,
and p# + d# as well as giving an XP-algorithm for the parameters p# and w#. These results
are presumably tight, as Heeger and Hermelin [9] recently showed (weak) W[1]-hardness for
the parameters p# and w#. The problem has also been studied under fairness aspects [10].

The addition of release dates is naturally motivated in every scenario where not all jobs
are initially available. The aim of this paper is to study the parameterized complexity of
the problem (1 | rj |

∑
wjUj) in this setting. Here, it encapsulates Partition and becomes

weakly NP-hard [20], even if there are only two different release dates and two different
due dates and all jobs have the same weight. It has previously been studied for the case of
uniform processing times, both on a single machine [7] and for parallel machines [2, 11], as
well as for the special case of interval scheduling [1, 12, 18, 27].

Our Contributions. In this paper, we deploy the tools of parameterized complexity to study
the computational complexity of 1 | rj |

∑
wjUj . In the spirit of “parameterizing by the

number of numbers” [5], we analyze the complexity picture with respect to (i) the number p#
of distinct processing times of the jobs, (ii) the number w# of distinct weights of the jobs, (iii)
the number d# of distinct due dates of the jobs, and (iv) the number r# of distinct release
dates of the jobs. Thereby, we extend and complement the results obtained by Hermelin et
al. [13] for the case where all release dates are zero.

In summary, we obtain an almost complete classification into tractable cases (meaning
that we find a fixed-parameter algorithm) and intractable cases (meaning that we show the
problem to be W[1]-hard) depending on which subset of parameters from {p#, w#, d#, r#}
we consider.
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First note that for some parameter combinations, the problem complexity has already
been resolved. In particular, 1 | rj |

∑
wjUj is known to be weakly NP-hard for d# = 1 and

r# = 1, as this setting captures the Knapsack problem [15]. Furthermore, 1 | rj |
∑

wjUj

is known to be weakly NP-hard for d# = 2, w# = 1, and r# = 2 [20]. For parameter p# as
well as w#, Heeger and Hermelin [9] showed weak W[1]-hardness even if r# = 1.

That leaves open the parameterized complexity for several parameter combinations. We
extend the known hardness results by showing the following:

1 | rj |
∑

wjUj is (strongly) W[1]-hard parameterized by d# + r# even if w# = 1.
This result is obtained by a straightforward reduction showing that 1 | rj |

∑
wjUj generalizes

Bin Packing. Our main results are on the algorithmic side, where we show the following:
1 | rj |

∑
wjUj is fixed-parameter tractable parameterized by p# + d# + r#.

1 | rj |
∑

wjUj is fixed-parameter tractable parameterized by p# + w# + d# or
p# + w# + r#.
1 | rj |

∑
wjUj can be solved in pseudo-polynomial time for constant r# or constant d#.

For the first two, we employ reductions to Mixed Integer Linear Programming (MILP),
and for the latter, we give a dynamic programming algorithm. Due to space constraints,
proofs of results marked with ⋆ are deferred to a full version [16].

With our results, we resolve the parameterized complexity of 1 | rj |
∑

wjUj for almost all
parameter combinations of {p#, w#, r#, d#} and hence give the first comprehensive overview
thereof. The remaining question is whether 1 | rj |

∑
wjUj is polynomial-time solvable

for constant p# or fixed-parameter tractable for p# + w#. It also remains open whether
1 | rj |

∑
wjUj is fixed-parameter tractable parameterized by p# if all numbers are encoded

in unary. A technical report [4] claims (strong) NP-hardness even for p# = 2 and w# = 1. If
that result holds, then it would also settle the parameterized complexity for the parameter
combination p# + w#, and for p# when all processing times and weights are encoded in
unary. Otherwise, those questions would remain open.

Our results contribute to the growing body of investigating the parameterized complexity
of fundamental scheduling problems [23]; for reference, we refer to the open problem collection
by Mnich and van Bevern [22].

2 Preliminaries

Scheduling. The problem considered in this work is denoted 1 | rj |
∑

wjUj in the standard
three-field notation for scheduling problems by Graham [8]. In this problem, we have n

jobs and one machine that can process one job at a time. Each job j ∈ {1, . . . , n} has a
processing time pj , a release date rj , a due date dj , and a weight wj , where we pj , rj , dj ,
and wj are non-negative integers. We use p#, r#, d#, and w# to denote the number of
different processing times, release dates, due dates, and weights, respectively.

A schedule σ : {1, . . . , n} → N assigns to each job j a starting time σ(j) to process it
until its completion time σ(j) + pj , so no other job j′ ≠ j must start during j’s execution
time σ(j), . . . , σ(j) + pj − 1. We call a job j early in a schedule σ if σ(j) + pj ≤ dj ; otherwise
we call job j tardy. We say that the machine is idle at time s in a schedule σ if no job’s
execution time contains s. The goal is to find a schedule that minimizes the weighted number
of tardy jobs or, equivalently, maximizes the weighted number of early jobs

W =
∑

j|σ(j)=s∧s+pj≤dj

wj .

IPEC 2024



19:4 Single-Machine Scheduling to Minimize the Number of Tardy Jobs

We call a schedule that maximizes the weighted number of early jobs optimal. Formally, the
problem is defined as follows:

1 | rj |
∑

wjUj

Input: A number n of jobs, a list of processing times (p1, p2, . . . , pn), a list of
release dates (r1, r2, . . . , rn), a list of due dates (d1, d2, . . . , dn), and a list of
weights (w1, w2, . . . , wn).

Task: Compute an optimal schedule, that is, a schedule σ that maximizes W =∑
j|σ(j)=s∧s+pj≤dj

wj .

Given an instance I of 1 | rj |
∑

wjUj , we make the following observation:

▶ Observation 1. Let I be an instance of 1 | rj |
∑

wjUj and let dmax be the largest due
date of any job in I. Let I ′ be the instance obtained from I by setting r′

j = dmax − dj and
d′

j = dmax − rj for each job j. Then I admits a schedule where the weighted number of early
jobs is W if and only if I ′ admits a schedule where the weighted number of early jobs is W .

Observation 1 holds, as we can transform a schedule σ for I into a schedule σ′ for I ′ (with
the same weighted number of early jobs) by setting σ′(j) = dmax − σ(j) − pj . Intuitively,
this means that we can switch the roles of release dates and due dates to obtain instances
with the same objective value.

Mixed Integer Linear Programming. For several of our algorithmic results, we use re-
ductions to Mixed Integer Linear Programming (MILP). This problem is defined as
follows:

Mixed Integer Linear Programming (MILP)
Input: A vector x of n variables, a subset S of the variables which are considered integer

variables, a constraint matrix A ∈ Rm×n, and two vectors b ∈ Rm, c ∈ Rn.
Task: Compute an assignment to the variables (if one exists) such that all integer variables

in S are set to integer values, Ax ≤ b, x ≥ 0, and c⊺x is maximized.

If all variables are integer variables, the problem is simply called Integer Linear
Programming (ILP). Due to Lenstra’s well-known result for MILP [21], we have that:

▶ Theorem 2 ([21]). MILP is fixed-parameter tractable when parameterized by the number
of integer variables.

3 Hardness Results

In this section, we first discuss known hardness results for 1 | rj |
∑

wjUj , and then present
a novel parameterized hardness result. Observe that for rj = 0 and dj = d (that is, all jobs
have the same deadline), the problem 1 | rj |

∑
wjUj is equivalent to Knapsack, which

is known to be weakly NP-hard [15]. Further, there is a straightforward reduction from
Partition to 1 | rj |

∑
wjUj that only uses two release dates and two due dates, and

uniform weights [20]. Finally, Heeger and Hermelin [9] recently showed that the special
case of 1 | rj |

∑
wjUj without release dates is weakly W[1]-hard when parameterized by

either p# or w#. Hence, (together with Observation 1) we have that:

▶ Proposition 3 ([9, 15, 20]). The problem 1 | rj |
∑

wjUj is
weakly NP-hard even if d# = 1 and r# = 1,
weakly NP-hard even if r# = d# = 2 and w# = 1,
and weakly W[1]-hard when parameterized by either p# or w# even if r# = 1 or if d# = 1.
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The reduction from Partition to 1 | rj |
∑

wjUj by Lenstra et al. [20] can straightfor-
wardly be extended to a reduction from Bin Packing, which yields the following result:

▶ Theorem 4 (⋆). The problem 1 | rj |
∑

wjUj is strongly NP-hard, and strongly W[1]-hard
when parameterized by r# + d#, even if w# = 1.

4 1 | rj | ∑
wjUj parameterized by p# + r# + d#

In this section, we present the following result.

▶ Theorem 5. The problem 1 | rj |
∑

wjUj is fixed-parameter tractable when parameterized
by p# + r# + d#.

To prove Theorem 5, we present a reduction from 1 | rj |
∑

wjUj to MILP that creates
instances of MILP where the number of integer variables is upper-bounded by a function of
p#, r#, and d#. The result then follows from Theorem 2.

Given an instance of 1 | rj |
∑

wjUj , we say that two jobs j and j′ have the same type
if they have the same processing time, the same release date, and the same due date, that
is, pj = pj′ , rj = rj′ , and dj = dj′ . Let T denote the set of all types. Note that we have
|T | ≤ p# · r# · d#. Furthermore, we sort all release dates and due dates such that if the
kth release date equals the ℓth due date, we require the release date to appear later in the
ordering. Let L denote an ordered list of all release dates and due dates that complies to the
aforementioned requirement. Note that we have |L| ≤ r# + d#.

We now create an integer variable xt
a,b for all t ∈ T and all a, b ∈ L with a < b. Intuitively,

if a and b are consecutive in L, then this variable tells us how many jobs of type t to schedule
in the time interval [a, b]. If a and b are not consecutive in L, then xt

a,b is a zero-one variable
that tells us whether we schedule a job of type t in a way such that its processing time
intersects all c ∈ L with a < c < b.

We create the following constraints. The first set of constraints is

∀t ∈ T :
∑

a,b∈L|a<b

xt
a,b ≤ nt, (1)

where nt denotes the number of jobs of type t in the 1 | rj |
∑

wjUj instance. Intuitively,
these constraints ensure that we do not try to schedule more jobs of type t than there are
available.

The second set of constraints is

∀a, b ∈ L with a < b and ∀t ∈ T with rt > b or dt < a : xt
a,b = 0, (2)

where rt denotes the release date of jobs of type t and dt denotes the due date of jobs of
type t. Intuitively, these constraints prevent us from trying to schedule a job of a certain
type into an interval that conflicts with the job’s release date or due date.

The third set of constraints is

∀c ∈ L :
∑
t∈T

∑
a,b∈L|a<c<b

xt
a,b ≤ 1 . (3)

Intuitively, these constraints ensure that for each c ∈ L at most one job is scheduled that
intersects c.

IPEC 2024



19:6 Single-Machine Scheduling to Minimize the Number of Tardy Jobs

The fourth set of constraints is

∀a, b ∈ L with a < b :

∑
t∈T

 ∑
a′,b′∈L|a′≥a,b′≤b,a′<b′

pt · xt
a′,b′ +

∑
a′,b′∈L|a′<a,b′>b

(b− a) · xt
a′,b′

 ≤ b− a, (4)

where pt denotes the processing time of jobs of type t. Intuitively, these constraints make
sure that for every interval [a, b] with a, b ∈ L we do not schedule jobs with total processing
time more than b− a into that interval.

Now we specify the objective function. If we want to schedule a certain number of
jobs with type t early, we take the ones with the largest weight in order to minimize the
weighted number of tardy jobs. Let xt =

∑
a,b∈L;a<b xt

a,b. Intuitively, xt is the number of
jobs with type t that are scheduled early. For each type, t ∈ T , order the jobs of type t in
the 1 | rj |

∑
wjUj instance by their weight (largest to smallest) and let wt

i denote the ith

largest weight of jobs with type t. The objective function we aim to maximize is

∑
t∈T

xt∑
i=1

wt
i . (5)

Note that constraints (1), (2), (3), and (4) are linear. The objective function (5) is
convex [13] and it is known that we can obtain an equivalent MILP with a linear objective
function at the cost of introducing additional fractional variables and constraints [13].
Furthermore, we can observe the following:

▶ Observation 6. The number of integer variables in the created MILP instance is in
O(p# · r# · d# · (r# + d#)2).

Next, we show the correctness of the reduction.

▶ Lemma 7 (⋆). If the 1 | rj |
∑

wjUj instance admits a schedule where the weighted
number of early jobs is W , then the created MILP instance admits a feasible solution that
has objective value at least W .

▶ Lemma 8. If the created MILP instance is feasible and admits a solution with objective
value W , then the 1 | rj |

∑
wjUj instance admits a schedule where the weighted number of

early jobs is at least W .

Proof. Suppose we are given a solution to the MILP instance with objective value W . We
create a schedule σ as follows.

We iterate through pairs a, b ∈ L with a < b as follows. We start with the smallest
element a ∈ L and the smallest element b ∈ L with a < b according to the ordering. We
maintain a current starting point s that is initially set to s = a. Furthermore, we consider
all jobs initially as “unscheduled”. We proceed as follows.

We iterate through all t ∈ T in some arbitrary but fixed way. If xt
a,b > 0, take the xt

a,b

unscheduled jobs of type t with the maximum weight and schedule those between s and
s + xt

a,b · pt, where pt is the processing time of jobs of type t. Now consider those jobs
scheduled and set s← s + xt

a,b · pt. Continue with the next type.
Replace b with the next-larger element in L. If b is the largest element in L, then replace a

with the next-larger element in L, set b to the smallest element b ∈ L with a < b according
to the ordering, and set s← max{a, s}. If a is the largest element of L, terminate the
process. Otherwise, go to the first step.
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Since the solution to the MILP obeys constraint (1), we have that there are sufficiently
many jobs of each type that can be scheduled. All jobs that remained unscheduled after the
above-described procedure are scheduled in some arbitrary but feasible way.

We claim that the above procedure produces a schedule where the weighted number of
early jobs is at least W . We start by showing that the procedure indeed produces a schedule.
Clearly, there are no two jobs in conflict in the produced schedule. Furthermore, since we
always have s ≥ a and since the solution to the MILP obeys constraints (2), we have that no
job is scheduled to start before their release date.

In the remainder of the proof, we show that we schedule xt =
∑

a,b∈L;a<b xt
a,b jobs of

type t early. In particular, we schedule the xt jobs of type t with the largest weights early.
As the solution to the MILP has objective value W , it follows that the total weight of early
jobs is at least W .

We show that all jobs scheduled in the first step of the above-described procedure are
early. To this end, we identify where the procedure inserts idle times and argue that all jobs
scheduled in the first step between two consecutive idle times by the procedure are early. An
idle time is inserted by the procedure whenever we set s ← max{a, s} and we have a > s.
Consider the case where we set s← max{a, s} = a for some a ∈ L. (Note that, for technical
reasons, this includes the case where a = s.) Let a′ ∈ L denote the next larger element
of L for which we set s← max{a′, s} = a′. Now suppose, for the sake of contradiction, that
there is a job with a starting time between a and a′ that is scheduled in the first step of the
procedure and is tardy. Let j be the first such job, that is, the one with the smallest starting
time. Let xt

a′′,b ≥ 1 with some a ≤ a′′ ≤ a′ be the variable that was considered by the
procedure when j was scheduled. Then we have that dj ≥ b, since otherwise constraints (2)
are not met. We make the following case distinction:
1. If a = a′′, then the completion time of j is at most a +

∑
t∈T

∑
b′∈L|b′≤b,a<b′ pt · xt

a,b′ .
However, since constraints (4) are met by the solution to the MILP, in particular the one
for a, b ∈ L, we have that

a +
∑
t∈T

∑
b′∈L|b′≤b,a<b′

pt · xt
a,b′ ≤ b .

Since b ≤ dj , this contradicts the assumption that j is tardy.
2. Assume that a < a′′ ≤ a′. We argue that in this case, for all xt′

a′′′,b′ with t′ ∈ T and
a′′′, b′ ∈ L with a ≤ a′′′ < a′′ and b′ > b we must have that xt′

a′′′,b′ = 0. Assume
that xt′

a′′′,b′ for some t′ ∈ T and a′′′, b′ ∈ L with a ≤ a′′′ < a′′ and b′ > b. Consider the
constraint (4) for a′′, b ∈ L. Then we have

∑
t∈T

 ∑
a′,b′∈L|a′≥a′′,b′≤b,a′<b′

pt · xt
a′,b′ +

∑
a′,b′∈L|a′<a′′,b′>b

(b− a′′) · xt
a′,b′

 ≤ b− a′′ .

However, we also have that

b− a′′ < pt · xt
a′′,b + (b− a′′) · xt′

a′′′,b′

≤
∑
t∈T

 ∑
a′,b′∈L|a′≥a′′,b′≤b,a′<b′

pt · xt
a′,b′ +

∑
a′,b′∈L|a′<a′′,b′>b

(b− a′′) · xt
a′,b′

 ,

contradicting the assumption that xt′

a′′′,b′ ≥ 1. It follows that the completion time of
job j is at most a +

∑
t∈T

∑
a′,b′∈L|a′≥a,b′≤b,a′<b′ pt · xt

a′,b′ . Since constraint (4) is met
for a, b ∈ L, we have that

a +
∑
t∈T

∑
a′,b′∈L|a′≥a,b′≤b,a′<b′

pt · xt
a′,b′ ≤ b .

IPEC 2024



19:8 Single-Machine Scheduling to Minimize the Number of Tardy Jobs

Since b ≤ dj , this contradicts the assumption that j is tardy.
We conclude that all jobs scheduled by the above-described procedure in the first step are
early. Since for every a, b ∈ L and t ∈ T , the procedure schedules the xt

a,b jobs of type t

with the largest weights early, we have that the total weight of early jobs is at least W . This
concludes the proof. ◀

Now we have all the pieces available that are needed to prove Theorem 5.

Proof of Theorem 5. Theorem 5 follows directly from Observation 6, Lemmas 7 and 8, and
Theorem 2. ◀

5 1 | rj | ∑
wjUj parameterized by p# + w# + d#

In this section, we present the following result.

▶ Theorem 9. The problem 1 | rj |
∑

wjUj is fixed-parameter tractable when parameterized
by p# + w# + r# or when parameterized by p# + w# + d#.

We show the second part of Theorem 9, that is, 1 | rj |
∑

wjUj is fixed-parameter tractable
when parameterized by p# + w# + d#. By Observation 1, from this immediately follows
that 1 | rj |

∑
wjUj is also fixed-parameter tractable when parameterized by p# + w# + r#.

To prove the second part of Theorem 9, present a reduction from 1 | rj |
∑

wjUj to MILP.
Given an instance of 1 | rj |

∑
wjUj , we create a number of instances of MILP where in each

of them, the number of integer variables is upper-bounded by a function of p#, w#, and d#.
We solve each instance using Theorem 2 and prove that the 1 | rj |

∑
wjUj instance admits

a schedule where the weighted number of early jobs is at least W if and only if one of the
generated instances admits a solution with objective value at least W . Furthermore, we can
upper-bound the number of created MILP instances by a function of p#, w#, and d#.

Given an instance of 1 | rj |
∑

wjUj , we say that two jobs j and j′ have the same type
if they have the same processing time, the same weight, and the same due date, that is,
pj = pj′ , wj = wj′ , and dj = dj′ . Let T denote the set of all types. Note that we have
|T | ≤ p# · w# · d#. For some r ∈ N0 and some t ∈ T we denote by t(r) the set of jobs with
type t whose release date is at least r. Further, we denote by pt the processing time of jobs
with type t. Let d1, . . . , dd# be the sorted sequence of due dates. We denote with dℓ the ℓth

due date and we use dj to denote the due date of job j (same with release dates). To keep
the notation concise we will use d0 = 0 occasionally.

We fix some optimal schedule σ : {1, . . . , n} → N for the instance so that we may guess
some part of it by enumeration. If for a job j and a due date dℓ we have σ(j) < dℓ < σ(j)+pj ,
we will say that the job overlaps the due date. Notice that in any schedule, any due date is
overlapped by at most one job, but a job may overlap multiple due dates.

We now want to enumerate all possible ways due dates can be overlapped by early
jobs from some type t ∈ T in σ. That is, we consider all ways to partition d1, . . . , dd#

into subsequences of consecutive due dates. There are 2d# such partitions. For each such
subsequence S we consider all job types that might be scheduled overlapping all due dates
in S. For the subsequences containing only a single due date, we also consider the case that
no job overlaps that due date. This gives p# · w# · d# + 1 choices for each subsequence,
of which there are d#. Thus we end up with at most 2d# · dp#·w#·d#+1

# possible overlap
structures to consider. By enumerating them it is now possible to assume that we know
which overlap structure is present in σ.
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We make a small simplification at this stage. Suppose we know that some sequence of due
dates da, da+1, . . . , db is overlapped by the same job. Then σ schedules every job with one of
these due dates such that it is either scheduled to end before da, or it is late. Therefore, we
can decrease the due date of such jobs to be da without changing the optimality of σ. We
may thus assume that every job overlaps at most one due date. So suppose that for each dℓ

we are given the job type T (dℓ) = t overlapping that due date, or an assertion that no job
overlaps dℓ, represented by T (dℓ) = ∅. If the due date of jobs of type T (dℓ) is at most dℓ we
can reject the arrangement immediately, so assume that the due date of jobs of type T (dℓ)
is larger than dℓ. We can formulate a MILP that computes an optimal schedule under the
constraint that this structure of overlaps is respected. It uses the following variables:
1. xℓ

t ∈ N0 counts the number of jobs of type t to be scheduled between dℓ−1 and dℓ.
2. oℓ

a, oℓ
b ∈ N0 are the portions of the job scheduled overlapping dℓ that is processed before

and after dℓ, respectively.
3. xj ∈ [0, 1] indicates whether job j is scheduled. These variables are fractional, but we

will be able to show that they can be rounded.
We could omit generating variables xℓ

t that are known to schedule jobs late, that is, those
where jobs of type t have a due date that is earlier than dℓ. For simplicity, we keep these
variables, but one can assume them to be set to 0.

The MILP needs the following sets of constraints. The first constraint sets handle the
overlaps around due dates:

∀ℓ ∈ {1, . . . , d# − 1} : oℓ
a + oℓ

b = pt, if T (dℓ) = t. (6)
∀ℓ ∈ {1, . . . , d# − 1} : oℓ

a + oℓ
b = 0, if T (dℓ) = ∅. (7)

∀ℓ ∈ {1, . . . , d# − 1} : dℓ + oℓ
b ≤ dℓ+1. (8)

∀ℓ ∈ {1, . . . , d# − 1} : dℓ−1 + oℓ
a ≤ dℓ . (9)

The next set of constraints ensures that we do not try to schedule more jobs of a certain
type than there are available:

∀t ∈ T :
∑

j has type t

xj =
∑

ℓ∈{1,...,d#}

xℓ
t + |{dℓ | T (dℓ) = t}| . (10)

The next two sets of constraints, intuitively, ensure that we respect the release dates of
the jobs, and that we do not schedule too many jobs between two consecutive due dates.

∀ℓ ∈ {1, . . . , d#}, ℓ′ ∈ {1, . . . , r#} with rℓ′ ≤ dℓ

oℓ
a +

∑
t∈T

pt ·

 ∑
j∈t(rℓ′ )

xj −
∑
ℓ′′>ℓ

xℓ′′

t − |{dℓ′′ | T (dℓ′′) = t, ℓ′′ ≥ ℓ}|

 ≤ dℓ − rℓ′ . (11)

∀ℓ ∈ {1, . . . , d#} : oℓ
a + oℓ−1

b +
∑
t∈T

pt · xℓ
t ≤ dℓ − dℓ−1 . (12)

The objective function (to be maximized) of the MILP is simply∑
j

wj · xj . (13)

We observe the following:
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▶ Observation 10. The number of created MILP instances is in O(2d# · dp#·w#·d#+1
# ) and

the number of integer variables in each instance is in O(p# · w# · d2
#).

Next, we show the correctness of the reduction.

▶ Lemma 11 (⋆). If the 1 | rj |
∑

wjUj instance admits a schedule where the weighted
number of early jobs is W , then one of the created MILP instances admits a feasible solution
that has objective value at least W .

It remains to show that we can construct a schedule from a solution to the MILP. We
will first show some auxiliary result for the case of a single due date.

▶ Lemma 12. Consider any instance I of 1 | rj |
∑

wjUj with a common due date d. If for
all release dates rj we have∑

j′∈I|rj′ ≥rj

pj′ ≤ d− rj .

then we can schedule all jobs early.

Proof. The statement holds if the instance I contains a single job. Otherwise, we apply
induction on the number of jobs. Let j∗ be a job with maximum release date. We schedule
that job at time d− pj∗ . This yields a new instance I ′ of 1 | rj |

∑
wjUj with one fewer job

and common due date d− pj∗ . For any of the release dates r′
j of this new instance, it holds

that ∑
j′∈I′|rj′ ≥r′

j

pj′ =
∑

j′∈I′|rj′ ≥r′
j

pj′ − pj∗ ≤ d− r′
j − pj∗ .

The lemma statement follows. ◀

▶ Lemma 13. If one of the created MILP instances admits a solution that has objective
value W , then the 1 | rj |

∑
wjUj instance admits a schedule where the weighted number of

early jobs is at least W .

Proof. Assume we are given a feasible solution with objective value W to one of the MILP
instances. We will begin by rounding the xj such that they are integral. Suppose there
is some job j with xj ∈ (0, 1). Due to constraint (10) there exists some other job j′ with
the same type as j and with xj′ ∈ (0, 1). Assume, without loss of generality, that j has
an earlier release date than j′. Then we claim that setting xj := min{1, xj + xj′} and
xj′ := max{0, xj′ + xj − 1} maintains feasibility. Note that xj + xj′ does not change, xj′

decreases, and in any constraint where xj occurs, xj′ occurs also because j has the earlier
release date and they have the same type. Therefore, the left-hand sides of constraint (10)
are unchanged, and those of constraint (11) do not increase, maintaining feasibility. Since j

and j′ have the same type, the objective value is unchanged. By repeating this rounding
operation, we can increase the number of integral xj until all of them are integral. The same
argument can also be used to ensure that no job j has xj = 1 if there is another job j′ with
the same type and an earlier release date having xj′ = 0.

We now show how to schedule every early job j with xj = 1. Note that this implies
that the weighted number of early jobs is at least W . First, let J1

t , . . . , J
r#
t be the list

of jobs with type t sorted by their release dates, and omitting all jobs with xj = 0. It
will suffice to prove that we can schedule the last x

d#
t jobs from each list into the interval

I := [dd#−1 + o
d#−1
b , dd# ], and that we can then schedule a job of type T (dd#−1) into

[dd#−1 − o
d#−1
a , dd#−1 + o

d#−1
b ].
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Notice that constraint (11) simplifies for dd# to be
∑

t∈T
∑

j∈t(rℓ′ ) pt · xj ≤ dd# − rℓ′ .
Further, for the purposes of scheduling into I, we may consider the x

d#
t jobs from each type t

with the latest release dates to have release date at least dd#−1 + o
d#−1
b , which transforms

constraint (12) into
∑

t∈T
∑

j∈t(dd#−1+o
d#−1
b

)
pt ·xj ≤ dd#−dd#−1−o

d#−1
b . From Lemma 12

we see that we can indeed schedule all the required jobs into I.
Remove all the jobs we just scheduled from the instance, and update the MILP solution by

setting to 0 the x
d#
t , as well as all xj for the scheduled jobs. Now we need to schedule the job j∗

with the latest due date from the jobs of type T (dd#−1) into [dd#−1− o
d#−1
a , dd#−1 + o

d#−1
b ].

By constraints (6)-(9) we see that the interval has the correct length for the job, and that
the job will not be late. We only need to ensure that it is not scheduled before its release
date rj∗ . We use constraint (11) to observe

o
d#−1
a +

∑
t∈T

pt·

 ∑
j∈t(rj∗ )

xj −
∑

ℓ′′>d#−1
xℓ′′

t − |{dℓ′′ | T (dℓ′′) = t, ℓ′′ ≥ d# − 1}|

 ≤ dd#−1−rj∗

=⇒ rj∗ − pj∗ +
∑
t∈T

pt ·
∑

j∈t(rj∗ )

xj ≤ dd#−1 − o
d#−1
a

=⇒ rj∗ ≤ dd#−1 − o
d#−1
a .

We see that j∗ can be scheduled as desired. Now we update the MILP solution again by
setting dd#−1 to dd#−1 − o

d#−1
a , as well as xj∗ , o

d#−1
b , and o

d#−1
a to 0. We also update

T (dd#−1) := ∅. This yields a feasible solution to the MILP of the residual instance where we
discard the constraints for the final due date. We can iterate this until all jobs j with xj = 1
have been scheduled. We schedule the remaining jobs in an arbitrary but feasible way. Since
the objective value of the solution for the MILP is W , we have that the weighted number of
early jobs is also at least W . ◀

Now we have all the pieces available that are needed to prove Theorem 9.

Proof of Theorem 9. Between Lemma 11 and Lemma 13 we see that the MILP is equivalent
to the original scheduling problem if the correct overlap structure is chosen. By Observation 10
the number of MILPs we need to solve and the number of integer variables in each MILP
depends only on p#+w#+d#, and thus Theorem 9 follows from Theorem 2 and Observation 1.

◀

6 Unary 1 | rj | ∑
wjUj parameterized by r#

Recall that 1 | rj |
∑

wjUj is weakly NP-hard in the case where there is only one due date
and one release date. Thus even for instances of 1 | rj |

∑
wjUj with constant r# or d#, we

cannot expect a polynomial-time algorithm solving them in general. However, we show in
the following that such instances can be solved in pseudo-polynomial time2, using dynamic
programming, thus generalizing the folklore algorithm for Knapsack. Formally, we prove
the following:

2 A problem can be solved in pseudo-polynomial time if it can be solved in polynomial time when all
numeric values are encoded unarily.
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▶ Theorem 14. The problem 1 | rj |
∑

wjUj is in XP when parameterized by r# or d# if
all numbers are encoded in unary.

By Observation 1, we can focus on r# as a parameter, and the result for d# as a parameter
follows. We begin by ordering the release dates and denote with rℓ and rk the ℓth and kth

release date, respectively, and we use ri and rj to denote the release date of jobs i and j,
respectively (same with due dates). We also use ≤d to denote a fixed order of the jobs such
that their due dates are non-descending. We encode this directly into the indexing of the
jobs, that is, i ≤d j if and only if i ≤ j.

We can now assume that there exists some optimal schedule such that at every release
date rℓ there is a job scheduled to start exactly at rℓ. This can be ensured by enumerating
the possible overlap structures of the optimal schedule with respect to the release dates, as
in Section 5. To do this, we need to guess for each release date rℓ if there is a job scheduled
there and what the completion time of that job is. We know the completion time to be in
[rℓ + 1, rℓ + pmax], so in reality we will need to solve (pmax)r# dynamic programs and return
the best solution found. This is only a pseudo-polynomial time overhead, so we will suppress
it in the following.

Notice that between two consecutive release dates, we can now assume the scheduled
early jobs to be ordered according to ≤d, that is, by the earliest due date (all tardy jobs
are scheduled later on in a feasible but arbitrary way). If they are not ordered as such two
adjacent out-of-order jobs can be swapped while maintaining feasibility.

This structural simplification allows us to write a dynamic program with the following
recursive definition of the dynamic programming table:

T [j, t1, . . . , tr# ] = max
ℓ with rℓ ≥ rj

and rℓ + tℓ ≤ dj

{T [j−1, t1, . . . , tr# ], T [j−1, t1, , . . . , tℓ−pj , . . . , tr# ]+wj}.

The base cases for the recursion are:
T [0, 0, . . . , 0] = 0,
T [0, t1, . . . , tr# ] = −∞ if any of the tℓ are not zero,
T [j, ·, tℓ, ·] = −∞ if tℓ > rℓ+1 − rℓ or tℓ < 0 for some ℓ.

The entry T [j, t1, . . . , tr# ] intuitively represents the most valuable schedule attainable
using only the first j jobs according to ≤d, and with a total scheduled job time of tℓ starting
at rℓ.

We will first notice that the DP-table T has at most n · (n · pmax)r# finite entries.
Furthermore, each of those entries can be computed in time O(r#) if we process them in
increasing order of the first index. It remains to show that there exists a schedule attaining
the value maxt1,...,tr#

(T [|J |, t1, . . . , tr# ]), as well as that there is some cell T [|J |, t1, . . . , tr# ]
that has value at least as high as that of an optimal schedule.

▶ Lemma 15 (⋆). If the 1 | rj |
∑

wjUj instance admits a schedule where the weighted
number of early jobs is W , then there exists some entry of the dynamic programming table T

with value at least W .

▶ Lemma 16 (⋆). Let T [i, t1, . . . , tr# ] be a cell of the dynamic program with finite value W .
Then there is a schedule where at most the first i jobs are early, that attains a weighted
number of early jobs W , and which schedules a total processing time of tℓ immediately after
release date rℓ.

We may now conclude the following:
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▶ Corollary 17. Let W = maxt1,...,tr#
{T [n, t1, . . . , tr# ]}. Then W is the maximum weighted

number of jobs that can be scheduled early in the 1 | rj |
∑

wjUj instance.

Proof. By Lemma 15 we have that the maximum weighted number of jobs that can be
scheduled early in the 1 | rj |

∑
wjUj instance is ar least W . However, let T [n, t1, . . . , tr# ]

be an entry with value W . Then Lemma 16 guarantees that there exists a schedule for the
1 | rj |

∑
wjUj instance such that the weighted number of early jobs is W . ◀

Now we have all the pieces to prove a running time upper bounds for our dynamic-
programming algorithm for 1 | rj |

∑
wjUj .

▶ Lemma 18. The problem 1 | rj |
∑

wjUj can be solved in time O(pr#
max ·n ·(n ·pmax)r# ·r#).

Proof. We first need to guess the correct overlap structure between jobs and release dates of
which there are at most p

r#
max many. For each of these overlap structures, we then compute

the dynamic programming in time O(n · (n ·pmax)r# ·r#). We finally return the best objective
value found in any of the dynamic programming tables. By Corollary 17, this is the maximum
weighted number of jobs that can be scheduled early in the 1 | rj |

∑
wjUj instance. ◀

Now we have all the pieces to prove Theorem 14.

Proof of Theorem 14. Theorem 14 follows directly from Lemma 18 and Observation 1. ◀

Notice that the proof of Lemma 16 also gives a backtracking procedure which allows us
to compute an optimal schedule in time O(n · r#) for a given filled in dynamic programming
table with the maximum entry already computed.

7 Conclusion

In this work, we give a comprehensive overview of the parameterized complexity of 1 | rj |∑
wjUj for the parameters number p# of processing times, number w# of weights, number

r# of release dates, and number d# of due dates. We leave several questions for future
research, in particular:

Is 1 | rj |
∑

wjUj in XP when parameterized by p#?
Is 1 | rj |

∑
wjUj fixed-parameter tractable when parameterized by p# + w#?

Is 1 | rj |
∑

wjUj fixed-parameter tractable when parameterized by p# and all numbers
are encoded unarily?

We remark that a technical report [4] claims (strong) NP-hardness even for p# = 2 and
w# = 1. If that result holds, then it would also settle the parameterized complexity for the
parameter combination p# + w#, and for p# even when all processing times and weights are
encoded in unary.
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