
Linear-Time MaxCut in Multigraphs Parameterized
Above the Poljak-Turzík Bound
Jonas Lill #

Department of Computer Science, ETH Zürich, Switzerland

Kalina Petrova1 #

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Simon Weber #

Department of Computer Science, ETH Zürich, Switzerland

Abstract
MaxCut is a classical NP-complete problem and a crucial building block in many combinatorial
algorithms. The famous Edwards-Erdős bound states that any connected graph on n vertices with
m edges contains a cut of size at least m

2 + n−1
4 . Crowston, Jones and Mnich [Algorithmica, 2015]

showed that the MaxCut problem on simple connected graphs admits an FPT algorithm, where
the parameter k is the difference between the desired cut size c and the lower bound given by the
Edwards-Erdős bound. This was later improved by Etscheid and Mnich [Algorithmica, 2017] to run
in parameterized linear time, i.e., f(k) · O(m). We improve upon this result in two ways: Firstly,
we extend the algorithm to work also for multigraphs (alternatively, graphs with positive integer
weights). Secondly, we change the parameter; instead of the difference to the Edwards-Erdős bound,
we use the difference to the Poljak-Turzík bound. The Poljak-Turzík bound states that any weighted
graph G has a cut of size at least w(G)

2 + wMSF (G)
4 , where w(G) denotes the total weight of G, and

wMSF (G) denotes the weight of its minimum spanning forest. In connected simple graphs the two
bounds are equivalent, but for multigraphs the Poljak-Turzík bound can be larger and thus yield a
smaller parameter k. Our algorithm also runs in parameterized linear time, i.e., f(k) · O(m + n).

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Mathematics of
computing → Combinatorial optimization; Theory of computation → Fixed parameter tractability

Keywords and phrases Fixed-parameter tractability, maximum cut, Edwards-Erdős bound, Poljak-
Turzík bound, multigraphs, integer-weighted graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2024.2

Funding Kalina Petrova: Swiss National Science Foundation, grant no. CRSII5 173721. This project
has received funding from the European Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement No 101034413.
Simon Weber : Swiss National Science Foundation under project no. 204320.

1 Introduction

The MaxCut(G, c) problem is the problem of deciding whether a given graph G contains a
cut of size at least c. It has been known for a very long time that this problem is NP-complete,
in fact it was one of Karp’s 21 NP-complete problems [9]. The MaxCut problem has been
intensely studied from various angles such as random graph theory and combinatorics, but
also approximation and parameterized complexity. It has numerous applications in areas
such as physics and circuit design; for more background on the MaxCut problem we refer
to the excellent survey [14].

1 Parts of this research was conducted while Kalina Petrova was at the Department of Computer Science,
ETH Zürich, Switzerland.

© Jonas Lill, Kalina Petrova, and Simon Weber;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Parameterized and Exact Computation (IPEC 2024).
Editors: Édouard Bonnet and Paweł Rzążewski; Article No. 2; pp. 2:1–2:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jolill@student.ethz.ch
mailto:Kalina.Petrova@ist.ac.at
https://orcid.org/0009-0006-1753-6962
mailto:simon.weber@inf.ethz.ch
https://orcid.org/0000-0003-1901-3621
https://doi.org/10.4230/LIPIcs.IPEC.2024.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Linear-Time MaxCut in Multigraphs Parameterized Above the Poljak-Turzík Bound

There are many lower bounds on the maximum cut size µ(G) of a given graph G. If
G is a graph with m edges, a trivial lower bound is µ(G) ≥ m

2 . This can be shown easily
using the probabilistic method, as first done by Erdős [4]. Clearly, MaxCut(G, c) is thus
easily solvable if c ≤ m

2 . But what if c is larger? At which point does the MaxCut problem
become difficult? It turns out that already c = m

2 + ϵm for any fixed ϵ > 0 makes the problem
NP-hard [7]. However, as long as the difference c− m

2 is just a constant, MaxCut(G, c) is still
polynomial-time solvable: Mahajan and Raman showed in 1999 [11] that MaxCut(G, m

2 +k)
is fixed-parameter tractable (FPT), i.e., it can be solved in time f(k) · nO(1). This started
off the study of parameterized algorithms above guaranteed lower bounds.

By the time this FPT algorithm was found, m
2 was no longer the best-known lower bound

for µ(G). Already more than 20 years earlier, Edwards showed the following lower bound
that was previously conjectured by Erdős, and is thus now known as the Edwards-Erdős
bound.

▶ Theorem 1 (Edwards-Erdős bound [2, 3]). For any connected simple graph G with n vertices
and m edges, µ(G) ≥ m

2 + n−1
4 .

Unlike the previous bound of m
2 , this bound is tight for an infinite class of graphs, for

example the odd cliques. It remained open for quite a while whether MaxCut(G, m
2 + n−1

4 +k)
would also be fixed-parameter tractable, i.e., whether the parameter k could be reduced by
n−1

4 compared to the previous result by Mahajan et al. This question was answered in the
positive by Crowston, Jones and Mnich, who proved the following theorem.

▶ Theorem 2 (Crowston, Jones, Mnich [1, Thm. 1]). There is an algorithm that computes,
for any connected graph G with n vertices and m edges and any integer k, in time 2O(k) · n4

a cut of G of size at least m
2 + n−1

4 + k, or decides that no such cut exists.

This algorithm has later been improved to run in linear time (in terms of m) by Etscheid
and Mnich [5]. However, this improvement only holds for deciding the existence of such a
cut, and not for computing a cut if one exists.

We would like to highlight another classic lower bound on the size of the maximum cut of
a graph, nicknamed the “spanning tree” bound: Any connected graph on n vertices has a cut
of size at least n−1, since it contains a spanning tree of this size and trees are bipartite. Note
that this bound is incomparable to the Edwards-Erdős bound. In 2018, Madathil, Saurabh,
and Zehavi [10] showed that MaxCut(G, n − 1 + k) is also fixed-parameter tractable.

In 1986, Poljak and Turzík improved upon the Edwards-Erdős bound by replacing the
term n − 1 with the size of the minimum spanning tree (or forest in disconnected graphs),
thus obtaining the following lower bound for maximum cuts in weighted graphs.

▶ Theorem 3 (Poljak-Turzík bound [13]). For any graph G = (V, E) with weight function
w : E → R>0, we have µ(G) ≥ w(G)

2 + wMSF (G)
4 , where w(G) =

∑
e∈E w(e) and wMSF (G)

denotes the weight of a minimum-weight spanning forest of G.

It is easy to see that Theorem 3 implies the bound in Theorem 1 both for (unweighted)
simple graphs and multigraphs. In unweighted simple graphs it is actually equivalent to
Theorem 1, while on multigraphs and positive integer-weighted graphs it can be strictly
larger.

J. Lill, K. Petrova, and S. Weber 2:3

The authors of Theorem 2 thus posed as their major open question whether their algorithm
could be extended to solve MaxCut(G, m

2 + n−1
4 + k) on multigraphs as well. We answer

this question in the positive, and improve the result further by replacing the Edwards-Erdős
bound with the Poljak-Turzík bound.

1.1 Results
We provide a parameterized linear time algorithm for deciding MaxCut in multigraphs and
positive integer-weighted (simple) graphs above the Poljak-Turzík bound. A multigraph can
be easily turned into a positive integer-weighted graph and vice versa; in the rest of this
paper we phrase all of our results and proofs in terms of positive integer-weighted graphs for
better legibility.

▶ Theorem 4. There is an algorithm that decides for any graph G = (V, E) with weight
function w : E → N and any integer k, in time 2O(k) · O(|E| + |V |), whether a cut of G of
size at least w(G)

2 + wMSF (G)
4 + k exists.

Using the same techniques we can also get a parameterized quadratic-time algorithm to
compute such a cut, if one exists.

▶ Theorem 5. There is an algorithm that computes for any graph G = (V, E) with weight
function w : E → N and any integer k, in time 2O(k) · O(|E| · |V |), a cut of G of size at least
w(G)

2 + wMSF (G)
4 + k, if one exists.

We would like to point out that Theorem 4 is a strict improvement on the linear-time
algorithm from [5] in two ways: Firstly we increase the types of graphs the algorithm is
applicable to, and secondly we also strictly decrease the parameter for some instances. The
following observation shows that this decrease of parameter can be significant.

▶ Observation 6. There exist sequences of positive-integer-weighted graphs (Gi)i∈N and inte-
gers (ci)i∈N such that Theorem 4 yields a polynomial-time algorithm to solve MaxCut(Gi, ci),
but when replacing wMSF (G) by n − 1, it does not.

Proof. Let Gi be a tree on i + 1 vertices where each edge has weight 2. Then, the Poljak-
Turzík bound yields µ(Gi) ≥ 2i

2 + 2i
4 = 6

4 i, while the Edwards-Erdős bound only yields
µ(Gi) ≥ 2i

2 + i+1−1
4 = 5

4 i. Thus, if we set ci = 6
4 i + k for some constant k, then Theorem 4

yields a 2O(k) ·poly(i) = poly(i) algorithm for MaxCut(Gi, ci), while with the Edwards-Erdős
bound it would yield a 2O(k+ 1

4 i) · poly(i) algorithm, which is not polynomial. ◀

1.2 Algorithm Overview
Our algorithm works in a very similar fashion to the one in [1]. We use a series of reduction
rules that can reduce the input graph down to a graph with no edges. While performing
this reduction, we either prove that G has a cut of the desired size, or we collect a set S

of O(k) vertices such that G − S is a uniform-clique-forest, i.e., a graph in which every
biconnected component is a clique in which every edge has the same weight. Given such a set
S, we can then compute the maximum cut of G exactly: We iteratively test all possibilities
of partitioning the vertices in S between the two sides of the cut, and then compute the
maximum cut of G assuming that the vertices of S are indeed partitioned like this. To do this,
we use a similar approach as in [1]: We compute the maximum cut of G − S with weighted
vertices. In this setting, each vertex v in G − S specifies a weight w0(v) and w1(v) for both
possible sides of the cut v may land in. The value of a cut is given by the total weight of the

IPEC 2024

2:4 Linear-Time MaxCut in Multigraphs Parameterized Above the Poljak-Turzík Bound

cut edges plus the sum of the correct weight for each vertex. To use this problem to compute
the maximum cut of G, we set the weights of each vertex v in G − S according to the total
weight of the edges between v and S that are cut in the assumed partition of S. Maximizing
over all possible partitions for S gives the maximum cut of G.

While we use very similar techniques as in [1, 5], our main technical contribution lies in
the reduction rules. Our reduction rules have to be more specific, i.e., each reduction rule
has a stronger precondition. This is due to the fact that when performing any reduction, the
change in the weight of a minimum spanning forest (as needed for the Poljak-Turzík bound)
is much more difficult to track than the number of vertices in the graph (as needed for the
Edwards-Erdős bound). Since our rules are more specific, we also need twice as many rules
as in [1] (and one more rule than [5]) to ensure that always at least one rule is applicable to
a given graph.

2 Preliminaries

In the rest of this paper we consider every graph to be a simple graph G = (V, E), where V is
the set of vertices, and E ⊆

(
V
2
)

is the set of edges. A graph is weighted if it is equipped with
a positive integer edge-weight function w : E → N. For any two disjoint subsets A, B ⊆ V

we denote by E(A, B) the set of edges between A and B, by w(A, B) the total weight of
the edges in E(A, B), and by min(A, B) the minimum weight of any edge in E(A, B). For a
subset A ⊆ V , we denote by N(A) the set of vertices in V \ A that have a neighbor in A.

A cut is a subset C ⊆ V , and the weight of a cut C is the total weight of the edges
connecting a vertex in C to a vertex in V \ C, i.e., w(C) = w(C, V \ C).

For any set A ⊆ V we write G[A] for the graph on A induced by G, and G − A for the
graph on V \ A induced by G.

We say that a graph is uniform if all of the edges have the same weight. More specifically,
we call a graph c-uniform if all edges have weight c.

A graph (V, E) is called biconnected, if |V | ≥ 1, and for every vertex v ∈ V , G − {v} is
connected. A biconnected component of a graph is a maximal biconnected subgraph, also
referred to as a block. It is well-known that the biconnected components of every graph
partition its edges. A vertex that participates in more than one biconnected component is a
cut vertex (usually defined as a vertex whose removal disconnects a connected component).
A graph can thus be decomposed into biconnected components and cut vertices.

▶ Definition 7 (Block-Cut Forest). The block-cut forest F of a graph G has vertex set
V (F) = C ∪ B, where C is the set of cut vertices of G and B is the set of biconnected
components of G, and {B, c} is an edge in F if B ∈ B, c ∈ C, and c ∈ V (B).

It is not hard to see that the block-cut forest F of a graph G is indeed a forest, since a
cycle in it would imply a cycle in G going through multiple biconnected components, thus
contradicting their maximality. Moreover, each connected component of F corresponds to a
connected component of G, and all leaves of F are biconnected components in G. We refer
to the biconnected components of G that correspond to leaves of F as leaf-blocks of G.

▶ Definition 8 (Uniform-Clique-Forest). A weighted graph is a uniform-clique-forest if each
of its blocks B is a uniform clique.

J. Lill, K. Petrova, and S. Weber 2:5

▶ Definition 9. The problem MaxCut-With-Vertex-Weights is given as follows.
Input: A weighted graph (V, E) with edge-weight function w, as well as two vertex-weight

functions w0 : V → N, w1 : V → N.
Output: A cut C maximizing w(C) +

∑
v∈C w1(v) +

∑
v ̸∈C w0(v).

We show in Section 4 that MaxCut-With-Vertex-Weights is solvable in linear time
if the input graph is a uniform-clique-forest.

3 Reducing to a Uniform-Clique-Forest

In the first part of our algorithm, we wish to either already conclude that the input graph
has a cut of the desired size, or to find some set S of vertices such that G − S is a uniform-
clique-forest.

▶ Lemma 10. For any graph G = (V, E) on n vertices with m edges and weight function
w : E → N and any integer k, in time O(n + k · m) one can either decide that G has a cut
of size at least w(G)

2 + wMSF (G)
4 + k

4 , or find a set S ⊆ V such that |S| ≤ 3k and G − S is a
uniform-clique-forest.

Note that we write k
4 instead of just k. The reason for this is that with our reduction rules

we make “progress” reducing the difference to the Poljak-Turzík bound in increments of 1
4 .

To prove Lemma 10 we use eight reduction rules, closely inspired by the reduction rules
used in [1, 5]. Each reduction rule removes some vertices from the given graph, possibly
marks some of the removed vertices to be put into S, and possibly reduces the parameter k

by 1. To prove Lemma 10, the reduction rules will be shown to fulfill the following properties.
Firstly, each reduction rule ensures a one-directional implication: if the reduced graph G′

contains a cut of size w(G′)
2 + wMSF (G′)

4 + k′

4 (where k′ is the possibly reduced k), then the
original graph G must also contain a cut of size w(G)

2 + wMSF (G)
4 + k

4 . By the Poljak-Turzík
bound, if k ever reaches 0, it is clear that the original graph G must have contained a cut of
the desired size.

Secondly, we need that to every graph with at least one edge, at least one of the rules
applies. To get our desired runtime, we also need that an applicable rule can be found and
applied efficiently.

Thirdly, every rule should only mark at most three vertices to be added to S. If a rule
does not reduce k, it may not mark any vertices. This ensures that at most 3k vertices are
added to S.

Lastly, we require that after exhaustively applying the rules and reaching a graph with
no more edges, the graph G − S is a uniform-clique-forest.

We will now state our reduction rules, and then prove these four properties in Lemmas 11
and 12, Observation 13, and Lemma 14, respectively. For simplicity, each reduction rule is
stated in such a way that it assumes the input graph to be connected. If the input graph is
disconnected, instead consider G to be one of its connected components. Each rule preserves
connectedness of the connected component it is applied to, which we also show in Lemma 11.
Note further that if the connected component the rule is being applied to is also biconnected,
then if the precondition requires some vertex to be a cut vertex, any vertex can play that
role, although technically there are no cut vertices. We state this once here for simplicity,
instead of saying each time that either v is a cut vertex or G is biconnected. We visualize
the eight rules in Figure 1.

IPEC 2024

2:6 Linear-Time MaxCut in Multigraphs Parameterized Above the Poljak-Turzík Bound

Rule 1: Let {x, y}, {y, z} ∈ E be such that w(x, y) > w(y, z) and G − {x, y} is connected.
Remove: {x, y}
Mark: {x, y}
Reduce k: Yes

Rule 2: Let X ⊆ V , v ∈ V \ X be such that X ∪ {v} is a leaf-block of G with cut vertex
v, and G[X ∪ {v}] is a uniform clique.

Remove: X

Mark: ∅
Reduce k: No

Rule 3: Let X ⊆ V , v ∈ V \ X be such that X ∪ {v} is a clique and a leaf-block of G with
cut vertex v; G[X] is uniform, and G[X ∪ {v}] is not uniform.

Remove: X

Mark: {v}
Reduce k: Yes

Rule 4: Let X ⊆ V , v ∈ V \ X be such that X ∪ {v} is a leaf-block of G with cut vertex
v; v has at least two neighbors in X; G[X] is a uniform clique; G[X ∪ {v}] is not
a clique.

Remove: X

Mark: {v}
Reduce k: Yes

Rule 5: Let X ⊆ V , v ∈ V \ X be such that X ∪ {v} is a leaf-block of G with cut vertex
v; G[X] is a clique; v has exactly two neighbors x, y in X; all edges in G[X] have
weight c, except {x, y}, which has weight w(x, y) > c; w(v, x), w(v, y) ≥ c.

Remove: X

Mark: {v, x, y}
Reduce k: Yes

Rule 6: Let a, b, c ∈ V be such that {a, b}, {b, c} ∈ E; {a, c} /∈ E; G−{a, b, c} is connected;
w(a, b) = w(b, c); and 2w(a, b) > min({a, b, c}, V \ {a, b, c}).

Remove: {a, b, c}
Mark: {a, b, c}
Reduce k: Yes

Rule 7: Let v, a, b, c ∈ V be such that {a, b, c, v} is a leaf-block of G with cut vertex v;
{a, b}, {b, c}, {a, v}, {c, v} ∈ E; {a, c} /∈ E; w(a, b) = w(b, c); w(a, v), w(c, v) ≥
2w(a, b); and if {b, v} ∈ E then w(b, v) ≥ 2w(a, b).

Remove: {a, b, c}
Mark: {a, b, c}
Reduce k: Yes

Rule 8: Let x, y ∈ V be such that {x, y} /∈ E; G − {x, y} has exactly two connected
components X and Y ; G[X ∪ {x}] and G[X ∪ {y}] are both c-uniform cliques; and
x and y have exactly one neighbor v in Y .

Remove: X ∪ {x, y}
Mark: {x, y}
Reduce k: Yes

J. Lill, K. Petrova, and S. Weber 2:7

x y

z

c

<c

Rule 1 Rule 2 Rule 3

Rule 4 Rule 5 Rule 6

Rule 7 Rule 8

v

∀c

X

∀c

v

X

∀c

̸ ∀c

v

X
∀c

v

X

∀c

?

x y>c

≥c≥c

b
ca

w w

∃<2w

v

b

ca

w w

≥2w ≥2w

v

x y

X

∀c

∀c∀c

Figure 1 The eight reduction rules. An edge is drawn normally if it must exist for the rule to
apply. Some edges are drawn dashed to emphasize that they must not exist for the rule to apply.
Some additional edges are drawn dotted to emphasize that they may exist but do not have to. Red
shading indicates the vertices removed by the rule, while vertices marked by the rule are drawn
using a green square.

We first state the formalizations of our four properties, then prove Lemma 10, and only
then prove each of our properties.

▶ Lemma 11. Let G = (V, E) be a graph with weights w, and let k be any positive integer.
Let G′ be the result of one application of one of the rules 1–8 to G, and k′ the resulting
parameter. Then, if G′ has a cut of size at least w(G′)

2 + wMSF (G′)
4 + k′

4 , then G must contain a
cut of size at least w(G)

2 + wMSF (G)
4 + k

4 . Furthermore, if G is connected, then G′ is connected.

▶ Lemma 12. Let G = (V, E) be a weighted graph with at least one edge. Given the block-cut
forest of G we can either apply Rule 2 in time O(|E′|) where E′ is the set of edges removed
by applying Rule 2, or we can find and apply another rule in time O(|E|). In the same time
we can also adapt the block-cut forest.

IPEC 2024

2:8 Linear-Time MaxCut in Multigraphs Parameterized Above the Poljak-Turzík Bound

▶ Observation 13. Each rule marks at most three vertices. Rule 2, the only rule that does
not reduce k, does not mark any vertices.

▶ Lemma 14. Let S be the set of vertices marked when exhaustively (i.e., until G has no
edges) applying Rules 1–8 to a graph G. Then G − S is a uniform-clique-forest.

Let us now prove Lemma 10 using these properties.

Proof of Lemma 10. We begin by computing the block-cut forest of G in O(n + m) time [8].
Then, we apply rules until we either reach k = 0 or until we reach a graph with no edges.
Whenever we apply a rule, we locally adapt the block-cut forest. In total we apply rules
other than Rule 2 at most k times. By Lemma 12 this takes at most O(k · m) time. Since
applying Rule 2 takes time O(|E′|) where E′ is the set of edges removed, all applications of
Rule 2 together use time O(m). The reduction step can thus be performed in O(k · m).

If we have reached k = 0, by the Poljak-Turzík bound and by Lemma 11 we can decide
that our input graph contains a cut of the desired size. Otherwise, by Observation 13, S

contains at most 3k vertices. By Lemma 14, G − S then forms a uniform-clique-forest, and
we have proven our desired statement. ◀

We will now proceed to prove Lemmas 11, 12, and 14. The main technical challenges
are the proofs of Lemmas 11 and 12. These proofs are more technically involved than the
corresponding proofs from [5]. For Lemma 11 this is due to the fact that the weight of
a minimum spanning forest is much more difficult to track through a reduction than the
number of vertices. For Lemma 12 the proof is more involved since our rules are more specific,
and thus more case distinction is needed. We present the proof of Lemma 11 in Section A,
since despite its technicality, it is not very insightful.

To prove Lemma 12 we use the following lemma, the proof of which follows from the
proof of [5, Lemma 3] rather directly.

▶ Lemma 15. Let G = (V, E) be a connected graph with at least one edge, and let B ⊆ V be a
biconnected component that is a leaf in the block-cut forest of G. Now, we write B as X ∪{v},
where v is the cut vertex disconnecting B = X ∪ {v} from V \ B (if B is an isolated vertex
in the block-cut forest, i.e., it forms a connected component of G that is also biconnected,
then let v be an arbitrary vertex in B). Then at least one of the following properties holds.
A) G[X ∪ {v}] is a clique.
B) G[X] is a clique but G[X ∪ {v}] is not a clique.
C) v has exactly two neighbors in X, x and y. Furthermore, {x, y} /∈ E, and G[X \ {x}]

and G[X \ {y}] are cliques.
D) X ∪ {v} contains vertices a, b, c such that {a, b}, {b, c} ∈ E, {a, c} /∈ E, and G − {a, b, c}

is connected.
Furthermore, such a property (including the vertices x, y and a, b, c for cases C and D,
respectively) can be found in linear time in the number of edges in G[X].

Proof (sketch). One can check whether G[X] is a clique for some X ⊆ V in time linear in
the number of edges in G[X]. To do this, we simply check whether each edge is present in
some fixed order. It is thus easy to check for cases A), B), and C) in linear time.

In the proof of [5, Lemma 3] it is shown that if none of the cases A), B), and C) apply,
then vertices a, b, c certifying case D) can be found in linear time. ◀

Proof of Lemma 12. Without loss of generality we can assume that G is connected; other-
wise, we consider G to be an arbitrary connected component of our input graph that contains
at least one edge. We first apply Lemma 15 on a leaf-block X ∪ {v} to find one of the four
properties.

J. Lill, K. Petrova, and S. Weber 2:9

Property A) If property A) holds, we can check whether G[X ∪ {v}] is uniform in time
O(|E′|) where E′ is the set of edges in G[X ∪ {v}]. In this process we can track also whether
G[X] is uniform. If G[X ∪ {v}] is uniform we apply Rule 2. Else, if only G[X] is uniform,
we apply Rule 3. If not even G[X] is uniform, we can find two edges {x, y}, {y, z} in G[X]
such that w(x, y) > w(y, z). Since X ∪ {v} is a clique, G − {x, y} must be connected. We
can therefore apply Rule 1.

Property B) We can handle property B) in a similar way. If G[X] is uniform, we can apply
Rule 4. Else, we apply case distinction on the number of vertices in X adjacent to v. We
first consider the case if vertex v is adjacent to exactly two vertices in X. Since X is not
uniform, there exist vertices x, y ∈ X and a vertex u ∈ X ∪ {v} such that w(x, y) > w(x, u).
If the only such choice of x, y is such that x and y are exactly the two vertices in X adjacent
to v, then we can apply Rule 5. Else we can see that G − {x, y} must be connected and
apply Rule 1. Let us now consider the other case, that vertex v is adjacent to at least three
vertices in X. There must again exist vertices u, x, y ∈ X so that w(x, y) > w(x, u). Since v

is adjacent to at least three vertices and G[X] is a clique, G − {x, y} is connected and we
can apply Rule 1.

Property C) To handle Property C) we first check whether G[X] is uniform. If it is not,
we can apply Rule 1, since for any edge {a, b} in G[X], G − {a, b} is connected. Knowing
that G[X] is uniform, and that v has exactly two neighbors, we can apply Rule 8.

Property D) Note that since G − {a, b, c} is connected, and since by its biconnectedness
B ̸= {a, b, c}, if G−B is non-empty, then v /∈ {a, b, c}. Next, again since G[B] is biconnected,
we must have that E({a}, B \ {a, b, c}) ̸= ∅ and E({c}, B \ {a, b, c}) ̸= ∅. From this we
get that G − {a, b} and G − {b, c} must be connected. Thus, we can compare w(a, b)
and w(b, c), and apply Rule 1 if w(a, b) ̸= w(b, c). We can also compute the value m =
min({a, b, c}, B \ {a, b, c}). If 2w(a, b) > m we can apply Rule 6.

Next, we compute the block-cut forests for the four graphs Gabc := G[B] − {a, b, c} and
Gu := G[B] − {u} for all u ∈ {a, b, c}. This can be performed in the required time, and yields
the set of cut vertices for all these graphs. We now test for every u ∈ {a, b, c} and for every
vertex z ∈ B \ {a, b, c} with {z, u} ∈ E whether z is a cut vertex in Gu. If for any such pair
z, u we have that z is not a cut vertex in Gu, this means that G − {u, z} is connected, and
we can thus apply Rule 1 to that edge (recall that since we could not apply Rule 6 earlier,
every edge in E({a, b, c}, B \ {a, b, c}) has weight at least twice as large as w(a, b) = w(b, c)).

If every such z adjacent to some u ∈ {a, b, c} is a cut vertex in Gu, we check whether any
of these vertices is not a cut vertex in Gabc. If one is not, we claim that we can apply Rule 7.
We prove this by distinguishing two cases, depending on u:

u ∈ {a, c}: Suppose without loss of generality that u = a. Since z is a cut vertex of Ga,
it follows that Ga − z has t ≥ 2 connected components C1, . . . , Ct. Suppose without loss
of generality that b, c ∈ C1. If C1 \ {b, c} ̸= ∅, then C1 \ {b, c} and C2 are two different
connected components of Gabc −z, contradicting our assumption that z is not a cut vertex
of Gabc. Thus C1 = {b, c}, implying that b and c have no neighbours in B \ {a, b, c, z}.
Therefore {c, z} ∈ E as E({c}, B \ {a, b, c}) ̸= ∅, so c can also play the role of u. By
symmetry, a has no neighbours in B \{a, b, c, z} and {a, z} ∈ E. It follows that {a, b, c, z}
is a leaf-block of G and so Rule 7 applies.
u = b: Let S := B \ {a, b, c, z}. Recall that we established that E({a}, S ∪ {z}) and
E({c}, S ∪ {z}) are both non-empty. We will show that either {a, z} ∈ E or {c, z} ∈ E

(or both hold). Suppose that is not the case. Then E({a}, S) and E({c}, S) are both

IPEC 2024

2:10 Linear-Time MaxCut in Multigraphs Parameterized Above the Poljak-Turzík Bound

non-empty. Since z is not a cut vertex in Gabc, the graph G[S] must be connected. That
implies G[S ∪ {a, c}] = G[B] − {b, z} is also connected, which contradicts our assumption
that z is a cut vertex of Gb.
We have shown that at least one of {a, z} and {c, z} is in E, say {a, z}. Thus, without
loss of generality, the case u ∈ {a, c} applies, since z must be a cut vertex of Ga by our
assumption that this holds for all adjacent pairs u, z with u ∈ {a, b, c} and z ∈ B \{a, b, c}.
We have thus reduced the case u = b to u ∈ {a, c}, which we already handled.

One can now show that if this point is reached without having found an applicable rule, then
Rule 7 must be applicable to the graph. Let us collect all the properties we know to be true
(under the assumption that we have not found an applicable rule until now).
1. E({a}, B \ {a, b, c}) ̸= ∅ and E({c}, B \ {a, b, c}) ̸= ∅.
2. w(a, b) = w(b, c)
3. 2w(a, b) ≤ min(B − {a, b, c}, {a, b, c})
4. For every pair of vertices z ∈ B \ {a, b, c} and u ∈ {a, b, c} with {z, u} ∈ E, z is a cut

vertex of both Gu and Gabc.

Observe that since B is biconnected containing at most one cut vertex of G, it follows
that there can be at most one cut vertex of G with a neighbor in {a, b, c}. We will now use
the following claim that we will prove later.

▷ Claim 16. Let G be a connected graph with X ⊂ G where X and G − X are connected,
and for every vertex v ∈ V (G − X), if v has a neighbor in X, then v is a cut vertex of G − X.
If |N(X)| ≥ 2, then there are two distinct vertices v1, v2 ∈ N(X) that are both cut vertices
of G.

We apply Claim 16 on the set X := {a, b, c}. By property 4 above, and by the fact that
N({a, b, c}) contains at most one cut vertex of G, we get that |N({a, b, c})| = 1. The vertex
in N({a, b, c}) must be the cut vertex v. By property 1 we know that {a, v}, {c, v} ∈ E.
By properties 2 and 3 all the weight restrictions of Rule 7 are satisfied, which can thus be
applied. ◀

Proof of Claim 16. Let H be the block-cut forest of G − X and suppose V (H) = C ∪ B, where
C are the cut vertices of G − X and B are the biconnected components of G − X. Since
|N(X)| ≥ 2, we get that |C| ≥ 2. Note that all leaves of H are in B. Consider the tree T

that we obtain by removing all leaves of H, and note that T has at least two vertices since
C ⊆ V (T). Thus, T has at least two leaves, say ℓ1, ℓ2, each of which must be in C, since its
neighbors in H \ T are in B. Let B′ ∈ B be a leaf of H that is a neighbor of ℓi for some
i ∈ {1, 2}. Since every vertex in N(X) is in C, it follows that E(X, B′ \ {ℓi}) = ∅, so ℓi is a
cut vertex in G. ◁

For this section, it only remains to prove Lemma 14.

Proof of Lemma 14. Let G1, G2, . . . , Gq be the sequence of graphs obtained while exhaus-
tively applying rules 1–8 to G1 (G2 is the graph obtained after applying one rule to G1, G3
is the graph obtained after applying one rule to G2, and so on). We prove that for any graph
Gi in the sequence, Gi − S is a uniform-clique-forest. We run this proof by induction over
the sequence of graphs in reverse order (in the order Gq, Gq−1,. . . ,G2,G1).
Base Case: By Lemma 12, we know that Gq is a graph without edges, therefore Gq = Gq − S

is trivially a uniform-clique-forest.
Induction Hypothesis: Assume Gi − S is a uniform-clique-forest.

J. Lill, K. Petrova, and S. Weber 2:11

Step Case: We prove that Gi−1 − S is a uniform-clique-forest. We know that one rule among
rules 1–8 was applied to Gi−1 to obtain Gi. We do a case distinction over which rule was
applied:

Rule 1, 6, or 7 was applied to Gi−1. Every vertex these rules remove is also marked,
therefore Gi−1 − S = Gi − S.
Rule 2 was applied to Gi−1. We can create Gi−1 − S from Gi − S by connecting a clique
X to a vertex v ∈ V (Gi) such that X ∪ {v} is a uniform clique. If v is in S, this is instead
adding a disjoint uniform clique. Observe that this just adds a uniform leaf-clique in
either case.
Rule 3, 4, 5, or 8 was applied to Gi−1. We can create Gi−1 − S from Gi − S by adding a
disjoint uniform clique.

We conclude that in all cases Gi−1 −S consists of one or zero uniform cliques added to Gi −S

as a leaf, and thus by the induction hypothesis Gi−1 − S is a uniform-clique-forest. ◀

4 Solving MaxCut-With-Vertex-Weights on Uniform-Clique-Forests

▶ Lemma 17. MaxCut-With-Vertex-Weights on a uniform-clique-forest G with n

vertices and m edges can be solved in O(n + m) time.

Proof. This proof loosely follows the proof of [5, Lemma 4]. We first compute the cut-block
forest of G. We know that every graph contains at least one leaf-block. Let X ∪ {v} be
a leaf-block of G where v ∈ V (G) is the cut vertex of X (if a connected component of G

consists of a single biconnected component B, then X = B − {v} where v is an arbitrary
vertex in B). Let n′ = |X| and m′ be the number of edges in G[X ∪ {v}]. Since G is a
uniform-clique-forest, we know that G[X ∪ {v}] is c-uniform for some c. We now consider
the maximum weighted cut in G[X ∪ {v}] for both possible cases v ̸∈ C and v ∈ C.

We first consider v ̸∈ C. Let δ(x) = w1(x) − w0(x) for every vertex x ∈ X. We can sort
the vertices in X in the order x1, x2, .., xn′ with decreasing δ-value, i.e., δ(x1) ≥ . . . ≥ δ(xn′).
For any p ∈ {0, . . . , n′}, we let Ap be the set {x1, . . . , xp}. Clearly Ap is the best cut among
all cuts C ′ with |C ′ ∩ X| = p. Now we can find the maximum weighted cut in X ∪ {v} by
comparing the n′ + 1 cuts A0, .., An′ . Letting λ be the value of this cut, we update w0(v) = λ.

We can perform the same process for v ∈ C. We instead consider Ap = {v, x1, . . . , xp},
and update w1(v) to the optimum value found. After having updated both weights for v, we
can now delete all vertices in X.

We can apply this method to G exhaustively until we are left with a graph with no edges.
The desired value of the maximum weighted cut on the entire graph G is the sum of the
greater values of w0(v) or w1(v) for all remaining vertices v.

We now calculate the runtime of this method applied to one leaf-block X. Sorting the
vertices takes O(n′ log(n′)) time. Since X is a clique, we have n′ log(n′) ≤ n′(n′+1)

2 = m′ for
all n′ ≥ 4. We can calculate the value of the assignment A0 in O(m′) time. Observe that
the difference between cuts Ai and Ai+1 for any i ∈ {0, .., n − 1} is in only one vertex. By
only considering these local modifications we can calculate the values of the cuts A0, .., An′

in O(m′) time. Since in every iteration we perform this process on a different block, in
total we can bound our runtime with O(n + m), since for blocks with n′ < 4 the runtime
of O(n′ log(n′)) = O(1) can be charged to some vertex in the block, while for blocks with
n′ ≥ 4 the runtime of O(n′ log(n′)) can be expressed as O(m′). ◀

IPEC 2024

2:12 Linear-Time MaxCut in Multigraphs Parameterized Above the Poljak-Turzík Bound

5 Conclusion

With Lemmas 10 and 17, our main result now follows easily:

Proof of Theorem 4. Given any instance MaxCut(G, w(G)
2 + wMSF (G)

4 + k′

4) with k′ := 4k,
by Lemma 10 we can in time O(n + k · m) either decide that the instance is a “yes”-instance,
or find a set S ⊆ V with |S| ≤ 3k′ = 12k such that G − S is a uniform-clique-forest. For each
subset S′ ⊆ S we can then in time O(n + m) build a MaxCut-With-Vertex-Weights
instance on the graph G − S, such that the vertex weights w0(v) and w1(v) of a vertex
v ∈ G − S denote the sum of the weights of edges to vertices in S′ and S \ S′ respectively.
By Lemma 17, each of these instances can be solved in O(n + m) time. The maximum cut
found in any instance given by a set S′ corresponds to the maximum cut C of G obtainable
under the condition that C ∩ S = S′. Taking into account the edges between S and S′ and
taking the maximum over all instances thus computes the maximum cut size of G.

To compute the overall runtime, note that since |S| ≤ 12k, we solve at most 212k MaxCut-
With-Vertex-Weights instances. Thus, the overall runtime is O(n+k·m+2O(k)·(n+m)) =
O(2O(k) · (n + m)). ◀

If we want to find a cut instead of deciding the existence of a cut, we can use very similar
techniques.

Proof of Theorem 5. The proof of Lemma 11 is constructive: given a cut C ′ on the reduced
graph G′ of the assumed size, a cut C on the original graph G of the required size can be
found in linear time in the number of removed edges and vertices. Thus, instead of applying
reduction rules only until k ≤ 0 or until the graph has no edges, we always apply rules
until the graph contains no edges. This requires at most O(n · m) time. Note that when
we have removed all edges from the graph, the required size of a cut (k larger than the
Poljak-Turzík bound) is simply 0

2 + 0
4 + k = k. Thus, if k ≤ 0 is reached, the required cut size

is non-positive, thus we can start with any arbitrary cut C ′ of the remaining independent
set. We can then apply the cut extensions from the proof of Lemma 11 for all applied rules
in reverse. This yields a cut of G of the desired size. If otherwise we have k > 0 when we
reached a graph with no edges, we know that |S| ≤ 12k, and we can again solve 2|S| instances
of MaxCut-With-Vertex-Weights on G − S. ◀

Open Problems
Our result leaves a few interesting open problems.

Other λ-extendible properties. In [13], Poljak and Turzík actually not only show the lower
bound for MaxCut (Theorem 3) but in fact they prove a very similar bound for the existence
of large subgraphs fulfilling any so-called λ-extendible property.2 Mnich, Philip, Saurabh,
and Suchý [12] generalize the approach of [1] for MaxCut to work for a large subset of these
λ-extendible properties. Note that while the title of [12] includes “above the Poljak-Turzík
bound”, the authors restrict their attention to unweighted simple graphs, and thus their
result applied to MaxCut only implies the result of [1], but not our result. We find it a very
interesting direction to see if our result can be extended to also cover some more λ-extendible
properties in multigraphs or positive integer-weighted graphs.

2 For MaxCut this property would be bipartiteness.

J. Lill, K. Petrova, and S. Weber 2:13

Kernelization. Many previous works on MaxCut parameterized above guaranteed lower
bounds have also provided kernelization results [1, 5, 10]. In particular, together with their
linear-time algorithm parameterized by the distance k to the Poljak-Turzík bound, Etscheid
and Mnich [5] also provide a linear-sized (in k) kernel. We are not aware of any kernelization
results for MaxCut on multigraphs or positive integer-weighted graphs. It would thus be
very interesting to explore whether these results can also be extended to our setting.

FPT above better lower bounds. Recently, Gutin and Yeo [6] proved new lower bounds
for µ(G) for positive real-weighted graphs. In particular, they prove µ(G) ≥ w(G)

2 + w(M)
2

where M is a maximum matching of G, and µ(G) ≥ w(G)
2 + w(D)

4 for any DFS-tree D (which
implies the Poljak-Turzík bound). Both of these bounds are consequences of a more general
bound involving disjoint bipartite induced subgraphs, but the value of this bound is NP-hard
to compute [6]. The weight of the largest DFS-tree is also NP-hard to compute [6]. These
two bounds are thus not very suitable for an FPT algorithm, but the bound involving the
maximum matching may be, since the maximum matching in a weighted graph can be
computed in polynomial time using Edmonds’ blossom algorithm.

General weights. After going from simple graphs to multigraphs and thus positive integer-
weighted graphs, it would be interesting to further generalize to positive real-weighted graphs.
Here, it is not directly clear what the parameter k exactly should be. Generalizing our
algorithm may require completely new approaches since we cannot discretize the decrease
of k.

References
1 Robert Crowston, Mark Jones, and Matthias Mnich. Max-cut parameterized above the

Edwards-Erdős bound. Algorithmica, 72(3):734–757, 2015. doi:10.1007/s00453-014-9870-z.
2 Christopher S. Edwards. Some extremal properties of bipartite subgraphs. Canadian Journal

of Mathematics, 25(3):475–485, 1973. doi:10.4153/CJM-1973-048-x.
3 Christopher S. Edwards. An improved lower bound for the number of edges in a largest

bipartite subgraph. In Proc. 2nd Czechoslovak Symposium on Graph Theory, Prague, pages
167–181, 1975.

4 Paul Erdős. On some extremal problems in graph theory. Israel Journal of Mathematics,
3(2):113–116, 1965. doi:10.1007/BF02760037.

5 Michael Etscheid and Matthias Mnich. Linear kernels and linear-time algorithms for finding
large cuts. Algorithmica, 80(9):2574–2615, 2018. doi:10.1007/s00453-017-0388-z.

6 Gregory Gutin and Anders Yeo. Lower bounds for maximum weighted cut. SIAM Journal on
Discrete Mathematics, 37(2):1142–1161, 2023. doi:10.1137/21M1411913.

7 David J. Haglin and Shankar M. Venkatesan. Approximation and intractability results for the
maximum cut problem and its variants. IEEE Transactions on Computers, 40(1):110–113,
1991. doi:10.1109/12.67327.

8 John Hopcroft and Robert Tarjan. Algorithm 447: efficient algorithms for graph manipulation.
Commun. ACM, 16(6):372–378, 1973. doi:10.1145/362248.362272.

9 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller,
James W. Thatcher, and Jean D. Bohlinger, editors, Complexity of Computer Computations,
pages 85–103, Boston, MA, 1972. Springer US. doi:10.1007/978-1-4684-2001-2_9.

10 Jayakrishnan Madathil, Saket Saurabh, and Meirav Zehavi. Fixed-parameter tractable
algorithm and polynomial kernel for max-cut above spanning tree. Theory of Computing
Systems, 64(1):62–100, 2020. doi:10.1007/s00224-018-09909-5.

11 Meena Mahajan and Venkatesh Raman. Parameterizing above guaranteed values: Maxsat
and maxcut. Journal of Algorithms, 31(2):335–354, 1999. doi:10.1006/jagm.1998.0996.

IPEC 2024

https://doi.org/10.1007/s00453-014-9870-z
https://doi.org/10.4153/CJM-1973-048-x
https://doi.org/10.1007/BF02760037
https://doi.org/10.1007/s00453-017-0388-z
https://doi.org/10.1137/21M1411913
https://doi.org/10.1109/12.67327
https://doi.org/10.1145/362248.362272
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/s00224-018-09909-5
https://doi.org/10.1006/jagm.1998.0996

2:14 Linear-Time MaxCut in Multigraphs Parameterized Above the Poljak-Turzík Bound

12 Matthias Mnich, Geevarghese Philip, Saket Saurabh, and Ondřej Suchý. Beyond max-cut:
λ-extendible properties parameterized above the Poljak–Turzík bound. Journal of Computer
and System Sciences, 80(7):1384–1403, 2014. doi:10.1016/j.jcss.2014.04.011.

13 Svatopluk Poljak and Daniel Turzík. A polynomial time heuristic for certain subgraph
optimization problems with guaranteed worst case bound. Discrete Mathematics, 58(1):99–104,
1986. doi:10.1016/0012-365X(86)90192-5.

14 Svatopluk Poljak and Zsolt Tuza. Maximum cuts and large bipartite subgraphs. DIMACS
Series, 20:181–244, 1995. doi:10.1090/dimacs/020/04.

A Proof of Lemma 11

We will often use the following claim that slightly strengthens the Poljak-Turzík bound in
certain cases:

▷ Claim 18. Let G = (V, E) be a weighted graph with weights w : E → N such that there
exist edges {u, v}, {v, x} with w(u, v) > w(v, x) and G − {u, v} is connected. Then G has a
cut of size at least w(G)

2 + wMSF (G)
4 + 1

4 .

Proof. Let G′ = G − {u, v}. By the Poljak-Turzík bound we know we have a cut C ′ of G′ of
size at least w(G′)

2 + wMSF (G′)
4 . We can extend this to a cut C in G by adding exactly one

of u and v. We choose the one such that at least half of the weight in E({u, v}, V ′) goes
over the cut. We have that MSF (G′) ∪ {u, v} ∪ {v, x} is a spanning forest of G, therefore
wMSF (G′) + w(u, v) + w(v, x) ≥ wMSF (G). The cut C has weight at least

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + w({u, v}, V ′)
2 + w(u, v)

= w(G)
2 + wMSF (G′)

4 + w(u, v)
2

≥ w(G)
2 + wMSF (G′)

4 + w(u, v)
4 + w(v, x) + 1

4

≥ w(G)
2 + wMSF (G)

4 + 1
4 . ◁

Let us now prove Lemma 11.

Proof of Lemma 11. We first see that each rule preserves connectedness simply by their
preconditions. Each rule either explicitly requires that the resulting graph is connected
(Rules 1, 6, and 8), or removes a whole leaf-block of G, except for the cut vertex (Rules 2–5
and 7).

We now prove the required cut size implication for each rule independently. We need to
prove that if there exists a cut C ′ in G′ that produces a cut of size w(G′)

2 + wMSF (G′)
4 + k′

4 ,
then this can be extended to a cut C of G of size w(G)

2 + wMSF (G)
4 + k

4 . We thus assume that
such a cut C ′ exists, and then extend it in such a way that C ∩ V ′ = C ′. We perform a case
distinction on the rule that we applied to G to obtain G′. Recall that for all rules except
Rule 2, k′ = k − 1.

Rule 1: We extend C ′ by putting x and y on different sides of the cut. Among the two
possibilities, we choose the one such that at least half the weight in E({x, y}, V ′) goes over
the cut. We get a cut of size at least

https://doi.org/10.1016/j.jcss.2014.04.011
https://doi.org/10.1016/0012-365X(86)90192-5
https://doi.org/10.1090/dimacs/020/04

J. Lill, K. Petrova, and S. Weber 2:15

w(C ′) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + w(x, y) + w(E({x, y}, V ′))
2

= w(G)
2 + wMSF (G′)

4 + k′

4 + w(x, y)
2

≥ w(G)
2 + wMSF (G′)

4 + k′

4 + w(x, y)
4 + w(y, z) + 1

4

We now see that wMSF (G) ≤ wMSF (G′) + w(x, y) + w(y, z), and we thus get

w(C ′) ≥ w(G)
2 + wMSF (G)

4 + k

4 .

Rule 2: We can assume without loss of generality that v ∈ C ′. Let n′ := |X ∪ {v}|. Observe
that the sum of the total weight in G[X ∪ {v}] is c(n′(n′−1)

2) for the integer c such that all
edges in G[X ∪ {v}] have weight c. If n′ is odd, |X| is even, and we can add exactly half the
vertices to C. This way we have a cut C ′′ in G[X ∪ {v}] of size at least

w(C ′′) ≥ c
(n′ + 1

2

)(n′ − 1
2

)
= c
(n′(n′ − 1)

4

)
+ c
(n′ − 1

4

)
= w(G[X ∪ {v}])

2 + wMSF (G[X ∪ {v}])
4 .

If n′ is even, we add n′

2 of the vertices of X to C, and leave n′

2 − 1 vertices out of C. In this
case, we have a cut C ′′ in G[X ∪ {v}] of size at least

w(C ′′) ≥ c
(n′

2

)(n′

2

)
= c
(n′(n′ − 1)

4

)
+ c
(n′

4

)
≥ w(G[X ∪ {v}])

2 + wMSF (G[X ∪ {v}])
4 .

In either case, we can see that we can combine C ′ and C ′′ to a cut C in G of size at least

w(C) ≥ w(G[X ∪ {v}])
2 + wMSF (G[X ∪ {v}])

4 + w(G′)
2 + wMSF (G′)

4 + k′

4

= w(G)
2 + wMSF (G)

4 + k

4 ,

where in the last equality we used that k′ = k for this rule.

Rule 3: Since G[X ∪ {v}] is not uniform, we can apply Claim 18 to G[X ∪ {v}] to obtain
a cut C ′′ in G[X ∪ {v}] of size at least w(G[X∪{v}])

2 + wMSF (G[X∪{v}])
4 + 1

4 . We now assume
without loss of generality that v ∈ C ′′ ⇔ v ∈ C ′, i.e., both C ′ and C ′′ put v on the same
side of the cut. In this case we can combine C ′ and C ′′ to a cut C of size at least

w(C) ≥ w(G[X ∪ {v}])
2 + wMSF (G[X ∪ {v}])

4 + 1
4 + w(G′)

2 + wMSF (G′)
4 + k′

4

= w(G)
2 + wMSF (G)

4 + k

4 .

IPEC 2024

2:16 Linear-Time MaxCut in Multigraphs Parameterized Above the Poljak-Turzík Bound

Rule 4: We know that v must be adjacent to more than 1 and less than |X| vertices of X.
We first do a case distinction on whether G[X ∪ {v}] is uniform or not.

If G[X ∪ {v}] is not uniform, we use the same argument as for the previous rule. Let
y ∈ X be a vertex not adjacent to v. Observe that for any x ∈ X such that {v, x} ∈ E,
G[X ∪ {v} − {v, x}] and G[X ∪ {v} − {x, y}] are both connected. Since G[X ∪ {v}] is
not uniform but G[X] is, we can find such an x such that either w(x, y) > w(x, v) or
w(x, y) < w(x, v). Therefore, we can use Claim 18 on G[X ∪ {v}]. This gives us a cut C ′′ in
G[X ∪ {v}] of size at least w(G[X∪{v}])

2 + wMSF (G[X∪{v}])
4 + 1

4 . Combining this cut with C ′,
we get a cut C in G of size at least

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + w(G[X ∪ {v}])
2 + wMSF (G[X ∪ {v}])

4 + 1
4

≥ w(G)
2 + wMSF (G)

4 + k

4 .

Otherwise G[X ∪ {v}] is c-uniform. Let m′ = w(G[X ∪ {v}]) and n′ = |X|. We can order
the vertices in X as x1, x2, . . . , xn′ such that v is adjacent to exactly x1, . . . , xr, but not
xr+1, . . . , xn′ . Assume without loss of generality that v ∈ C ′. We add v and all xi for i > ⌈ n′

2 ⌉
to a cut C ′′ of G[X ∪{v}]. This cut has size s := c(⌈ n′

2 ⌉·⌊ n′

2 ⌋+min{r, ⌈ n′

2 ⌉}). Note that m′ =
c(n′(n′−1)

2 + r), thus we can rephrase s = m′

2 + c(n′

4 − n′2

4 + (⌈ n′

2 ⌉)(⌊ n′

2 ⌋) + min{ r
2 , ⌈ n′

2 ⌉ − r
2 }).

If n′ is even, (⌈ n′

2 ⌉)(⌊ n′

2 ⌋) = n′2

4 , and then s ≥ m′

2 + c n′

4 + c
2 ≥ m′

2 + c n′

4 + 1
4 .

If n′ is odd, (⌈ n′

2 ⌉)(⌊ n′

2 ⌋) = (n′+1)(n′−1)
4 = n′2

4 − 1
4 , and then s ≥ m′

2 +c n′

4 + c
2 − c

4 ≥ m′

2 +c n′

4 + 1
4 ,

as well.
In either case we can combine C ′′ on G[X ∪ {v}] and C ′ on G′ to get a cut C of G of size at
least

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + m′

2 + c
n′

4 + 1
4

≥ w(G)
2 + wMSF (G)

4 + k

4 ,

where we used that an MSF of G′ can be turned into a spanning forest of G by adding n′

edges of weight c.

Rule 5: Let X ′ = X − {x, y}. If w(x, v) > c or w(y, v) > c, since G[X ∪ {v} − {v, x}] and
G[X ∪ {v} − {v, y}] are connected, we know by Claim 18 that G[X ∪ {v}] has a cut C ′′ of
size at least w(G[X∪{v}])

2 + wMSF (G[X∪{v}])
4 + 1

4 . Since G′ and G[X ∪ {v}] overlap in only one
vertex v we can w.l.o.g. assume that v ∈ C ′′ ⇔ v ∈ C ′, and we can combine C ′′ and C ′ to a
cut C of G of size at least

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + w(G[X ∪ {v}])
2 + wMSF (G[X ∪ {v}])

4 + 1
4

≥ w(G)
2 + wMSF (G)

4 + k

4 .

Thus, from now on we may assume w(x, v) = w(y, v) = c, i.e., the only edge in G[X ∪{v}]
that does not have weight c is the edge {x, y} of weight > c. For the remaining cases, we
perform a case distinction over the size of X ′. Without loss of generality we assume that
v ̸∈ C ′.

Case 1: |X ′| = 1. Let u be the only vertex in X ′. Observe wMSF (G′)+w(x, v)+w(y, v)+
w(u, x) ≥ wMSF (G).

J. Lill, K. Petrova, and S. Weber 2:17

Assume w(x, y) > 2c. We create C by adding x to C ′. Then C has size at least

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + w(x, y) + w(x, v) + w(x, u)

≥ w(G)
2 + wMSF (G′)

4 + k′

4 + w(x, y) + w(x, v) + w(x, u) − w(y, v) − w(y, u)
2

= w(G)
2 + wMSF (G′)

4 + k′

4 + w(x, y)
2

>
w(G)

2 + wMSF (G′)
4 + k′

4 + 2c

2

≥ w(G)
2 + wMSF (G′)

4 + k′

4 + 3c

4 + 1
4

≥ w(G)
2 + wMSF (G)

4 + k

4 .

Assume w(x, y) ≤ 2c. We create C by adding x and y to C ′. Then C has size at least

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + w(y, v) + w(y, u) + w(x, v) + w(x, u)

≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + 3c + w(x, y)
2

≥ w(G)
2 + wMSF (G′)

4 + k′

4 + c

≥ w(G)
2 + wMSF (G)

4 + k′

4 + c

4

≥ w(G)
2 + wMSF (G)

4 + k

4 .

Case 2: |X ′| =: n′ > 1. Observe w(G) = w(G′) + c(n′(n′−1)
2 + 2n′ + 2) + w(x, y) and

wMSF (G′) + c(n′ + 2) ≥ wMSF (G).

Assume w(x, y) ≥ 2c. We start with a cut on G[X ′] of size at least w(G[X′])
2 +

wMSF (G[X′])
4 = w(G[X′])

2 + c(n′−1
4) as guaranteed by the Poljak-Turzík bound. Then

we extend this to a cut on G[X ′ ∪ {x, y}] by adding exactly one of x and y, choosing
of the two possibilities the one that cuts at least half the weight in E(X ′, {x, y}). We
combine this cut with the cut C ′.

The resulting cut C has size at least

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + w(G[X ′])
2 + c

(n′ − 1
4

)
+ |E(X ′, {x, y})|

2 + w(x, y) + c

≥ w(G)
2 + wMSF (G′)

4 + k′

4 + c
(n′ − 1

4

)
+ w(x, y)

2

≥ w(G)
2 + wMSF (G′)

4 + k′

4 + c
(n′ + 3

4

)
≥ w(G)

2 + wMSF (G)
4 + k′

4 + c

4

≥ w(G)
2 + wMSF (G)

4 + k

4 .

Assume w(x, y) < 2c. We add both x and y to the cut C ′.

IPEC 2024

2:18 Linear-Time MaxCut in Multigraphs Parameterized Above the Poljak-Turzík Bound

If n′ is odd we add n′−1
2 vertices of X ′ to C ′. The resulting cut C has size at least

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + c

((n′ + 3
2

)(n′ + 1
2

)
+ 2
)

≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + c
(n′2 + 4n′ + 3

4 + 1
)

+ w(x, y) + 1
2

= w(G)
2 + wMSF (G′)

4 + k′

4 + c
(n′ − 1

4 + 1
)

+ 1
2

= w(G)
2 + wMSF (G′)

4 + k′

4 + c
(n′ + 3

4

)
+ 1

2

≥ w(G)
2 + wMSF (G)

4 + k′

4 + 1
2

≥ w(G)
2 + wMSF (G)

4 + k

4 .

If n′ is even we add n′

2 − 1 vertices of X ′ to C ′. The resulting cut C has size at least

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + c

((n′ + 2
2

)(n′ + 2
2

)
+ 2
)

,

which is strictly larger than in the n′ odd case.

Rule 6: Let min = min(V \ {a, b, c}, {a, b, c}), and let emin be an edge of weight min
in E(V \ {a, b, c}, {a, b, c}). Observe that MSF (G′) together with emin, {a, b}, and {b, c}
forms a spanning forest of G. Therefore wMSF (G′) + min +w(a, b) + w(b, c) = wMSF (G′) +
min +2w(a, b) ≥ wMSF (G).

We consider two subsets of {a, b, c}: A1 = {a, c}, and A2 = {b}. Considering these as
cuts of G, both cuts cut the edges {a, b} and {b, c}, and at least one of these cuts gets at
least half of the total weight in E(V (G′), {a, b, c}). Enhancing C ′ by that set, we therefore
get a cut C of G of size at least

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + w(V (G′), {a, b, c})
2 + w(a, b) + w(b, c)

≥ w(G)
2 + wMSF (G′)

4 + k′

4 + w(a, b)
2 + w(b, c)

2

≥ w(G)
2 + wMSF (G′)

4 + k′

4 + w(a, b)
2 + min +1

4

≥ w(G)
2 + wMSF (G)

4 + k′

4 + 1
4

≥ w(G)
2 + wMSF (G)

4 + k

4 .

Rule 7: If b is adjacent to v we can augment C ′ by adding a, b, c to C if and only if v ̸∈ C ′.
Observe MSF (G′) ∪ {a, v} ∪ {b, v} ∪ {c, v} is a spanning forest of G. Also by the conditions
of Rule 7 we have w(a,v)

4 + w(b,v)
4 ≥ w(a,b)

2 + w(a,b)
2 = w(a,b)

2 + w(b,c)
2 . We can thus analyze

the cut C to have size at least

J. Lill, K. Petrova, and S. Weber 2:19

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + w(a, v) + w(b, v) + w(c, v)

≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + 3w(a, v)
4 + 3w(b, v)

4 + w(a, b)
2 + w(b, c)

2 + w(c, v)

≥ w(G)
2 + wMSF (G′)

4 + k′

4 + w(a, v)
4 + w(b, v)

4 + w(c, v)
2

≥ w(G)
2 + wMSF (G)

4 + k′

4 + w(c, v)
4

≥ w(G)
2 + wMSF (G)

4 + k

4 .

If b is not adjacent to v, add a, c to C if and only if v ̸∈ C ′, and we add b to C

if and only if v ∈ C ′. Thus the edges {a, b}, {b, c}, {a, v}, {c, v} are all cut. Note that
MSF (G′) ∪ {c, v} ∪ {a, b} ∪ {b, c} is a spanning forest of G. The cut C has size at least

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + w(a, v) + w(a, b) + w(b, c) + w(c, v)

≥ w(G)
2 + wMSF (G)

4 + k′

4 + w(a, v)
2 + w(c, v)

4 + w(a, b)
4 + w(b, c)

4

≥ w(G)
2 + wMSF (G)

4 + k

4 .

Rule 8: Let v be the only neighbor of {x, y} in Y and let n = |X|. We first extend C ′ to
C ′′ by adding x, y to C ′′ if and only if v ̸∈ C ′. We then extend C ′′ to C as follows.

Without loss of generality, assume x, y ̸∈ C ′′. We perform a case distinction on the parity
of n. Note that w(G[X ∪ {x, y}]) = c(n(n−1)

2 + 2n).
If n is odd, we add n+1

2 of the vertices in X to C. In G[X ∪ {x, y}] this cuts in total a
weight of

c

((
n + 1

2

)(
n − 1

2

)
+2n + 1

2

)
= c
(

n(n − 1)
4 + n − 1

4 +n+1
)

= w(G[X ∪ {x, y}])
2 +c

(
n

4 + 3
4

)
.

If n is even, we add n
2 +1 vertices in X to C. In G[X ∪{x, y}] this cuts in total a weight of

c

((n

2 + 1
)(n

2 − 1
)

+ 2
(n

2 + 1
))

= c
(n2

4 + n + 1
)

= c
(n2

4 + 3
4n + n

4 + 1
)

= w(G[X ∪ {x, y}])
2 + c

(n

4 + 1
)

.

In either case we thus have that C cuts at least half of the weight in G[X ∪ {x, y}] plus
c(n

4 + 3
4).

Observe that wMSF (G) ≤ wMSF (G′)+ cn+w(x, v)+w(y, v). In total we can thus bound
the size of the cut C as

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + w(G[X ∪ {x, y}])
2 + c(n

4 + 3
4) + w(x, v) + w(y, v)

= w(G)
2 + wMSF (G′)

4 + k′

4 + c(n

4 + 3
4) + w(x, v)

2 + w(y, v)
2

≥ w(G)
2 + wMSF (G)

4 + k

4 .

We conclude that for every rule, from a cut C ′ of G′ of the guaranteed size we can build
a cut C of G of the required size, and thus the lemma follows. ◀

IPEC 2024

	1 Introduction
	1.1 Results
	1.2 Algorithm Overview

	2 Preliminaries
	3 Reducing to a Uniform-Clique-Forest
	4 Solving MaxCut-With-Vertex-Weights on Uniform-Clique-Forests
	5 Conclusion
	A Proof of Lemma Soundness

