
Quasi-Linear Distance Query Reconstruction for
Graphs of Bounded Treelength
Paul Bastide #

LaBRI – Université de Bordeaux, France
TU Delft, The Netherlands

Carla Groenland #

TU Delft, The Netherlands

Abstract
In distance query reconstruction, we wish to reconstruct the edge set of a hidden graph by asking
as few distance queries as possible to an oracle. Given two vertices u and v, the oracle returns the
shortest path distance between u and v in the graph.

The length of a tree decomposition is the maximum distance between two vertices contained in
the same bag. The treelength of a graph is defined as the minimum length of a tree decomposition
of this graph. We present an algorithm to reconstruct an n-vertex connected graph G parameterized
by maximum degree ∆ and treelength k in Ok,∆(n log2 n) queries (in expectation). This is the first
algorithm to achieve quasi-linear complexity for this class of graphs. The proof goes through a new
lemma that could give independent insight on graphs of bounded treelength.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Distance Reconstruction, Randomized Algorithm, Treelength

Digital Object Identifier 10.4230/LIPIcs.IPEC.2024.20

1 Introduction

There has been extensive study on identifying the structure of decentralized networks
[2, 11, 15, 12, 1]. These networks are composed of vertices (representing servers or computers)
and edges (representing direct interconnections). To trace the path through these networks
from one actor to another, tools like traceroute (also known as tracert) were developed.
If the entire route cannot be inferred (e.g. due to privacy concerns), a ping-pong protocol
can be employed in which one node sends a dummy message to the second node, which then
immediately responds with a dummy message back to the first node. This process aims to
infer the distance between the nodes by measuring the time elapsed between the sending of
the first message and the receipt of the second.

A mathematical model for this called the distance query model was introduced [2]. In
this model, only the vertex set V of a hidden graph G = (V, E) is known, and the goal
is to reconstruct the edge set E through distance queries to an oracle. For any pair of
vertices (u, v) ∈ V 2, the oracle provides the shortest path distance between u and v in G.
The algorithm can be adaptive and base its next query on the responses to previous queries.

For a graph class G of connected graphs, an algorithm is said to reconstruct the graphs
in the class if, for every graph G ∈ G, the distance profile obtained is unique to G within G.
We then say the graph has been reconstructed. The query complexity refers to the maximum
number of queries the algorithm executes on an input graph from G. For a randomised
algorithm, the query complexity is determined by the expected number of queries, accounting
for the algorithm’s randomness. Such a randomised algorithm could also be seen as a
probability distribution over decision trees.

© Paul Bastide and Carla Groenland;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Parameterized and Exact Computation (IPEC 2024).
Editors: Édouard Bonnet and Paweł Rzążewski; Article No. 20; pp. 20:1–20:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:paul.bastide@ens-rennes.fr
https://orcid.org/0000-0002-5606-1430
mailto:c.e.groenland@tudelft.nl
https://orcid.org/0000-0002-9878-8750
https://doi.org/10.4230/LIPIcs.IPEC.2024.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


20:2 Quasi-Linear Distance Query Reconstruction for Graphs of Bounded Treelength

Note that querying the oracle for the distance between every pair of vertices in G would
reconstruct the edge set as E = {{u, v} | d(u, v) = 1}. This approach leads to a trivial upper
bound of |V |2 on the query complexity. Unfortunately, Ω(|V |2) queries may be required to,
for example, distinguish between a clique Kn and Kn minus an edge {u, v}. If the maximum
degree is unbounded, this issue persists even in sparse graphs like trees: it can take Ω(n2)
queries to distinguish n-vertex trees (see also [13]). Therefore, as was also done in earlier
work, we will restrict ourselves to connected n-vertex graphs with maximum degree ∆.

1.1 Previous work
Kannan, Mathieu and Zhou [9, 11] were the first to give a non-trivial upper bound for all
graphs of bounded maximum degree, designing a randomised algorithm using Õ∆(n3/2)
queries in expectation for n-vertex graphs of maximum degree ∆. Here Õ(f(n)) stands for
O(f(n) polylog(n)) and the ∆ subscript denotes that ∆ is considered a parameter and only
influences the multiplicative constant in front of f(n), (e.g here we mean g(∆)n3/2 polylog n

for some function g : N 7→ R.). This is still the best known upper bound in the general
case, while the best lower bound is Ω(∆n log∆ n) [1]. Researchers spent effort investigating
Õ∆(n) algorithms for restricted classes of graphs. Kannan, Mathieu and Zhou [9, 11] proved
that there exists an O∆(n log3 n) randomised algorithm for chordal graphs (graphs without
induced cycle of length at least 4). Since then, their algorithm for chordal graphs has been
improved by Rong, Li, Yang, and Wang [15] to O∆(n log2 n), who also extended the class to
4-chordal graphs (graphs without induced cycle of length at least 5). Recent works introduced
new techniques to design deterministic reconstruction algorithms [1]. They developed a
quasi-linear algorithm for bounded maximum degree k-chordal graphs (without induced
cycle of length at least k + 1 and maximum degree ∆) using O∆,k(n log n) queries. Their
results can be interpreted as a quasi-linear algorithm parameterized by maximum degree and
chordality. In this paper, we are the first to use a parameterized approach to extend on the
techniques of Kannan, Mathieu and Zhou [9, 11], obtaining an algorithm with quasi-linear
query complexity parametrized by even more general parameters.

1.2 Treelength
A graph G has treelength at most ℓ if it admits a tree decomposition such that dG(u, v) ⩽ ℓ

whenever u, v ∈ V (G) share of a bag (see Section 2 for formal definition). We emphasize that
the bags are allowed to induce disconnected subgraphs, and that the “bounded diameter”
constraint is measured within the entire graph. Graphs of treelength 1 are exactly chordal
graphs and it was proved in [10] that k-chordal graphs have treelength at most k. For k > 1,
the class of graphs of treelength at most k covers a larger class of graphs than the class of
k-chordal graphs.

Graphs of bounded treelength avoid long geodesic cycles (i.e. cycles C for which dC(x, y) =
dG(x, y) for all x, y ∈ C) and in fact bounded treelength is equivalent to avoiding long “loaded
geodesic cycles” or being “boundedly quasi-isometric to a tree” (see [4] for formal statements).
When a graph has bounded treewidth (defined in Section 2), then the length of the longest
geodesic cycle is bounded if and only if the connected treewidth is bounded [5]. In a tree
decomposition of connected treewidth at most k, bags induce connected subgraphs of size at
most k + 1, which in particular means that graph distance between vertices sharing a bag
is at most k. So for graphs of bounded treewidth, excluding long geodesic cycles is in fact
equivalent to bounding the treelength of the graph.



P. Bastide and C. Groenland 20:3

Treelength has been extensively studied from an algorithmic standpoint, particularly
for problems related to shortest path distances. For example, there exist efficient routing
schemes for graphs with bounded treelength [7, 10] and an FPT algorithm for computing
the metric dimension of a graph parameterised by its treelength [3]. Although deciding the
treelength of a given graph is NP-complete, it can still be approximated efficiently [7, 6].

1.3 Our contribution
Building on methods used by Kannan, Mathieu, and Zhou [11, 9] to reconstruct chordal
graphs, we prove the following result.

▶ Theorem 1. There is a randomised algorithm that reconstructs an n-vertex graph of
maximum degree at most ∆ and treelength at most k using O∆,k(n log2 n) distance queries
in expectation.

We now first describe the technique used by Kannan, Mathieu and Zhou [11, 9] for chordal
graphs and then discuss our extension. In their approach, they design a clever subroutine
to compute a small balanced separator S of the graph G using Õ∆(n) queries. With the
knowledge of this separator, it is possible to compute the partition in connected component of
G\S. By using this subroutine recursively, they are able to decompose the graph into smaller
and smaller components until a brute-force search already yields a Õ∆(n) queries algorithm.
They exploit the strong structure of chordal graphs in two ways in this algorithm. First, to
compute a small separator S. They start by only finding a single vertex that lies on many
shortest paths. They then use a specific tree decomposition of chordal graphs, where all bags
are cliques, to argue that the neighbourhood of this vertex is a good separator. Second, they
show that for any connected component C of G \ S the distance between vertices in C are
the same in G[C ∪ S]1 and in G. This property allows to apply their subroutine recursively,
as we can now simulate a distance oracle in G[C ∩ S] by just using the one we have on G.

Theorem 1 shows that we can push the boundaries of such an approach, and proves that
a weaker condition on the tree decomposition is already sufficient. We weaken the “bags are
cliques” condition, satisfied by chordal graphs, to the weaker condition “bags have bounded
diameter”. The bags are not required to be connected: the diameter is measured in terms of
the distance between the vertices in the entire graph.

We provide a brief explanation of our method and highlight the new challenges compared
to the approaches in [11] and [9]. We also start by finding a vertex v that lies on many
shortest paths (with high probability), although we give a new approach for doing so. In
fact, our overall algorithm is more efficient than that of [11, 9] by a (log n)-factor, and this is
the place where we gain this improvement. We then show that for such a vertex v, the set
S = N⩽3k/2[v] of vertices at distance at most 3k/2 is a good separator, for k the treelength
of the input graph. We compute the components of G \ S to check that indeed we found a
good separator and then recursively reconstruct the components until we reach a sufficiently
small vertex set on which a brute-force approach can be applied. It is key to our recursive
approach, and requires non-trivial proofs, that we can add a small boundary set and still
preserve all the relevant distances for a component. This problem is easily avoided in [11, 9]
where separators are cliques, but is more delicate to handle in our case. For this, we amongst
others obtain a structural property of graphs with bounded treelength. This property is
stated in the following lemma, which may be of independent interest.

1 Given a graph G and a set of vertices S ⊆ V (G), we use the notation G[S] to denote the graphs induces
by G on the vertex set S.

IPEC 2024



20:4 Quasi-Linear Distance Query Reconstruction for Graphs of Bounded Treelength

▶ Lemma 2. Let G be a graph of treelength at most k ⩾ 1 and A⊆ V (G). If G[A] is connected
then every shortest path in G between two vertices a, b ∈ A is contained in N⩽3k/2[A].

1.4 Roadmap
In Section 2, we set up our notation and give the relevant definitions. In Section 3, we
give our algorithm to reconstruct bounded treelength graph with a proof of correctness and
complexity. In Section 4 we conclude with some open problems.

2 Preliminaries

In this paper, all graphs are simple, undirected and connected except when stated otherwise.
All logarithms in this paper are base 2, unless mentioned otherwise. For a ⩽ b two integers,
let [a, b] denote the set of all integers x satisfying a ⩽ x ⩽ b. We short-cut [a] = [1, a].

For a graph G and two vertices a, b ∈ V (G), we denote by dG(a, b) the length of a shortest
path between a and b. For G = (V, E), A ⊆ V and i ∈ N, we denote by N⩽i

G [A] = {v ∈ V |
∃a ∈A, dG(v, a) ⩽ i}. We may omit the superscript when i = 1. We write NG(A) = NG[A]\A
and use the shortcuts NG[u], NG(u) for NG[{u}], NG({u}) when u is a single vertex. We may
omit the subscript when the graph is clear from the context.

2.1 Distance queries
We denote by QueryG(u, v) the call to an oracle that answers dG(u, v), the distance between
u and v in a graph G. For A, B two sets of vertices, we denote by QueryG(A, B) the |A| · |B|
calls to an oracle, answering the list of distances dG(a, b) for all a ∈ A and all b ∈ B. We
may abuse notation and write QueryG(u, A) for QueryG({u}, A) and may omit G when
the graph is clear from the context.

For a graph class G of connected graphs, we say an algorithm reconstructs the graphs
in the class if for every graph G ∈ G the distance profile obtained from the queries is not
compatible with any other graph from G. The query complexity is the maximum number of
queries that the algorithm takes on an input graph from G, where the queries are adaptive.
For a randomised algorithm, the query complexity is given by the expected number of queries
(with respect to the randomness in the algorithm).

2.2 Tree decomposition
A tree decomposition of a graph G is a tuple (T, (Bt)t∈V (T )) where T is a tree and Bt is a
subset of V (G) for every t ∈ V (T ), for which the following conditions hold.

For every v ∈ V (G), the set {t ∈ V (T ) | v ∈ Bt} is non-empty and induces a subtree of T .
For every uv ∈ E(G), there exists a t ∈ V (T ) such that {u, v} ⊆ Bt.

This notion was introduced by [14].

2.3 Treelength
The treelength of a graph G (denoted tl(G)) is the minimal integer k for which there exists a
tree decomposition (T, (Bt)t∈V (T )) of G such that d(u, v) ⩽ k for every pair of vertices u, v

that share a bag (i.e. u, v ∈ Bt for some t ∈ V (T )). We refer the reader to [7] for a detailed
overview of the class of bounded treelength graphs.



P. Bastide and C. Groenland 20:5

2.4 Balanced separators
For β ∈ (0, 1), a β-balanced separator of a graph G = (V, E) for a vertex set A ⊆ V is a set
S of vertices such that the connected components of G[A \ S] are of size at most β|A|.

One nice property of tree decompositions is that they yield 1
2 -balanced separators.

▶ Lemma 3 ([14]). Let G be a graph, A ⊆ V (G) and (T, (Bt)t∈V (T )) a tree decomposition
of G. Then there exists t ∈ V (T ) such that Bt is a 1

2 -balanced separator of A in G.

3 Randomised algorithm for bounded treelength

We give the complete proof of Theorem 1 in this section.

▶ Theorem 1. There is a randomised algorithm that reconstructs an n-vertex graph of
maximum degree at most ∆ and treelength at most k using O∆,k(n log2 n) distance queries
in expectation.

Given a tree decomposition (T, (Bt)t∈V (T )) of a graph G and a set X of vertices of G, we
denote by TX the subtree of T induced by the set of vertices t ∈ V (T ) such that Bt contains
at least one vertex of X. Given v ∈ V (G), we may abuse notation and use Tv as the subtree
T{v}. We first prove the following useful property of graphs of bounded treelength.

▶ Lemma 2. Let G be a graph of treelength at most k ⩾ 1 and A⊆ V (G). If G[A] is connected
then every shortest path in G between two vertices a, b ∈ A is contained in N⩽3k/2[A].

Proof. Consider a tree decomposition (T, (Bt)t∈V (T )) of G such that any two vertices u, v in
the same bag satisfy d(u, v) ⩽ k. If two vertices a, b ∈ A share a bag, then d(a, b) ⩽ k and
the claim holds for this pair.

Otherwise, Ta and Tb are disjoint subtrees of T and we can consider the unique path
P in T between Ta and Tb, with internal nodes taken from V (T ) \ V (Ta) ∪ V (Tb). We also
consider a shortest path Q := {q1, q2, . . . , , qm} between a and b in G with q1 = a, qm = b

and qiqi+1 ∈ E(G) for all i < m. Since A is supposed connected, TA is well-defined and is
a subtree of T . Moreover TA contains both Ta and Tb. Because TA is a tree, it must then
contains P as the unique path between Ta and Tb. Suppose now, towards a contradiction,
that there is some vertex z ∈ Q such that z /∈N⩽3k/2[A]. Note that Tz can not have common
vertices with P because we assumed d(z, A) > k using the previous remark and the fact that
vertices that share a bag are at distance at most k. We can then consider the vertex t ∈ P

such that {t} separates P \ {t} from Tz in T . The shortest path Q must go through Bt twice:
once to go from a to z and once to go from z to b.

Let i < ℓ < j be given such that qi, qj ∈ Bt and qℓ = z. Since Q is a shortest path in G,
d(qi, z) + d(z, qj) = d(qi, qj). Moreover, d(qi, qj) ⩽ k because qi and qj share a bag. By the
pigeonhole principle, we deduce that either d(pi, z) ⩽ k/2 or d(pj , z) ⩽ k/2. Suppose that
d(pi, z) ⩽ k/2. Remember that t ∈ P thus Bt contains an element of A as G[A] is connected.
It follows that d(pi, A) ⩽ k thus d(z, A) ⩽ d(z, pi) + d(pi, A) ⩽ 3k/2, which is a contradiction.
The other case follows by a similar argument. ◀

We now sketch the proof of Theorem 1. The skeleton of the proof is inspired by [9]: we find
a balanced separator S, compute the partition of G \ S into connected components, and
reconstruct each component recursively. In order to find this separator, we use a notion of
betweenness that roughly models the number of shortest paths a vertex is on.

IPEC 2024



20:6 Quasi-Linear Distance Query Reconstruction for Graphs of Bounded Treelength

We prove four claims. The first one ensures that in graphs of bounded treelength, the
betweenness is always at least a constant. Then, the next three claims are building on each
other to form an algorithm that computes the partition of G \ S into connected components
of roughly the same size.

Claim 5 is a randomised procedure for finding a vertex z with high betweenness (using
few queries and with constant success probability).
Claim 6 shows S = N⩽3k/2[z] is a good balanced separator if z has high betweenness.
Claim 7 computes the partition of G \ S into connected components. Note that, once you
computed the partition, you can check if the preceding algorithms have been successful.
If not, we can call again Claim 6 until we are successful, yielding a correct output with a
small number of queries in expectation.

Proof of Theorem 1. Let G be a connected n-vertex graph of maximum degree at most ∆
and let (T, (Bt)t∈V (T )) be a tree decomposition of G such that d(u, v) ⩽ k for all u, v ∈ V (G)
that share a bag in T .

We initialize A = V (G), nA = |A| and Ri = ∅ for i ∈ [1, 3k]. For any j ∈ R+ we abbreviate
R⩽j = ∪i⩽jRi. Lastly, let r = |R⩽3k|. We will maintain throughout the following properties:
1. G[A] is a connected induced subgraph of G.
2. Ri consists of the vertices in G that are at distance exactly i from A.
3. Both A and Ri for all i are known by the algorithm.
In particular, we know which vertices are in sets such as R⩽3k/2 = N⩽3k/2[A] and by Lemma
2 we also obtain the following crucial property.
4. For a, b ∈ A, any shortest path between a and b only uses vertices from A ∪R⩽3k/2.
The main idea of the algorithm is to find a balanced separator S and compute the partition of
G[A \ S] into connected components, then call the algorithm recursively on each components.
As soon as nA has become sufficiently small, we will reconstruct G[A] by “brute-force queries”.

In order to find the separator S, we use the following notion. For G a graph, a subset
A ⊆ V (G) and a vertex v ∈ V (G), the betweenness pG

v (A) is the fraction of pairs of vertices
{a, b} ⊆ A such that v is on some shortest path in G between a and b. We first prove that
there is always some vertex v ∈ A ∪R⩽k (a set known to our algorithm) for which pv(A) is
large.

▷ Claim 4. We have p := max
v∈A∪R⩽k

pG
v (A) ⩾ 1

2(∆k+1) .

Proof. Our original tree decomposition also restricts to a tree decomposition for G[A], so
Lemma 3 shows that there exists a bag B of T such that B is a 1

2 -balanced separator of G[A].
Note that G[A] is connected, so there exists some a ∈ A∩B. As T is a witness of G being of
bounded treelength, the distance between any two vertices of B is at most k. In particular,
B ⊆ N⩽k[a] ⊆ A ∪R⩽k, and |B| ⩽ ∆k + 1 since G has maximum degree ∆. Moreover, since
B is a 1

2 -balanced separator of G[A], for at least half of the pairs {u, v} ⊆ A, the shortest
path between u and v goes through B. Using the pigeonhole principle, there exists a v ∈ B

such that pG
v (A) ⩾ 1

2(∆k+1) . ◁

The next three claims are building on each other to find a balanced separator S. In the
first one, we argue that we can find, using few queries, a vertex with high betweenness.

▷ Claim 5. There is a randomised algorithm that finds z ∈ N⩽3k/2[A] with pG
z (A) ⩾ p/2

with probability at least 2/3 using O(p−1(nA + r) log(nA + r)) distance queries in G.



P. Bastide and C. Groenland 20:7

Proof. To simplify notation, we omit G and A from pG
v (A) and only write pv. We first

sample uniformly and independently (with replacement) pairs of vertices {ui, vi} ⊆ A for
i ∈ [C log(nA + r)] where C ⩽ 1

2p + 1 is defined later. Then, we ask Query(ui, N⩽3k/2[A])
and Query(vi, N⩽3k/2[A]).

We write

Pi = {x ∈ N⩽3k/2[A] | d(ui, x) + d(x, vi) = d(ui, vi)}

for the set of vertices that are on a shortest path between ui and vi. Note that Lemma 2
implies that Pi contains all vertices of V (G) on a shortest path from ui to vi. From the queries
done above we can compute Pi for all i ∈ [C log(nA + r)]. For each vertex v ∈ N⩽3k/2[A], we
denote by p̃v an estimate of pv defined by p̃v = |{i ∈ [C log(nA +r)] : v ∈ Pi}|/(C log(nA + r)).
The algorithm outputs z such that z = arg maxv∈N⩽3k/2[A] p̃v.

The query complexity of this algorithm is 2C log(nA + r)|N⩽3k/2[A]| = Ok,∆(nA log(nA +
r))

We now justify the correctness of this algorithm and give C. Let y =
arg maxw∈N⩽3k/2[A] pw. We need to show that pz ⩽ py

2 has probability at most 1
3 . Let u be a

vertex chosen uniformly at random among the set of vertices w ∈ N⩽3k/2[A] with pw ⩽ py/2.
A simple union bound implies that it is sufficient to show that P[p̃y ⩽ p̃u] < 1/(3nA + 3r).
Indeed, this implies that the probability that a vertex w with pw ⩽ py/2 is a better candidate
for z than y, is at most 1/3. Note that the elements of {p̃w | w ∈ N⩽3k/2[A]} (and thereby
z) are random variables depending on the pairs of vertices sampled at the start, and that
the elements of {pw | w ∈ N⩽3k/2[A]} are fixed.

We denote by Ai the event {u ∈ Pi} and by Bi the event {y ∈ Pi}. The events (Ai)i are
independent, since each pair {ui, vi} has been sampled uniformly at random and independently.
By definition, P[Ai] = pu ⩽ py/2 and P[Bi] = py. Thus, the random variable Xi defined by
Xi = 1Ai

−1Bi
has expectation E[Xi] ⩽−py/2. Therefore, applying Hoeffding’s inequality [8],

we obtain

P

C log(nA+r)∑
i=1

Xi ⩾ 0

 ⩽ 2 exp(−2(C log(nA + r)py/2)2

4 log(nA + r) ).

By choosing 1
2p + 1 ⩾ C ⩾ 1

2py
= 1

2p such that C log(nA + r) is an integer, we conclude that

P[p̃y ⩽ p̃u] = P

C log(nA+r)∑
i=1

Xi ⩾ 0

 ⩽ 2 exp(−2 log(nA + r)) ⩽ 1/(3nA + 3r)

for nA ⩾ 6. This completes the proof. ◁

Let z be a vertex with high betweenness as in the claim above. We now argue that N3k/2[z]
is an α-balanced separator for some constant α depending only on ∆ and k.

▷ Claim 6. Let α =
√

1− 1
4(∆k+1) . If z ∈ N⩽3k/2[A] satisfies pG

z (A) ⩾ p/2, then S :=
N⩽3k/2[z] is an α-balanced separator for A.

Proof. Suppose towards contradiction that S is not an α-balanced separator. Thus there is a
connected component C of G[V (G)\S] with |C∩A|> αnA. By definition of S, d(z, C) > 3k/2
which implies by Lemma 2 that for any pair of vertices in C, no shortest path between these
two vertices goes through z. In particular, this holds for pairs of vertices in C ∩A. Therefore,

pG
z (A) ⩽ (n2

A − |C ∩A|2)
n2

A

< 1− α2 = 1− (1− 1
4(∆k + 1)) = 1

4(∆k + 1) ⩽ p/2

using Claim 4 for the last step, contradicting our assumption that pG
z (A) ⩾ p/2. ◁

IPEC 2024



20:8 Quasi-Linear Distance Query Reconstruction for Graphs of Bounded Treelength

We apply Claim 5 to find z ∈N⩽3k/2, where pG
z (A) ⩾ p/2 with probability at least 2/3 (using

also Claim 4). We compute S = N⩽3k/2[z] using Ok,∆(nA + r) distance queries; this can
be done since S ⊆ A ∪R⩽3k so the algorithm only needs to consider nA + r vertices when
searching for neighbours.

The set S is an α-balanced separator with probability at least 2/3 by Claim 6. In
particular, the algorithm does not know yet at this point if it is indeed a good separator or
not. It will be able to determine this after computing the partition of G[A\S] into connected
components.

The following claim uses mostly the same algorithm as [9, Alg. 6], and the proof is
analogous. As we are using this algorithm in a slightly different setting, we still give a
complete proof of the lemma.

▷ Claim 7. There is a deterministic algorithm that given a set S ⊆A, computes the partition
of A \S into connected components of G[A \S] using at most nA ·∆(r + |S|) distance queries.

Proof. By assumption, R1 is the set of vertices at distance exactly 1 from A in G. Since
A is connected, it is a connected component of G[V (G) \ R1]. Therefore, the connected
components of G[A \ S] are exactly the connected components of G[V (G) \ (R1 ∪ S)]
containing an element of A. We denote by B the open neighbourhood of S ∪R1 in A, that
is, B = (N [S ∪R1] ∩A) \ (S ∪R1). We use the following algorithm.

We ask Query(A, S ∪ R1) in order to deduce N [S ∪ R1] ∩ A, and then we ask
Query(A, N [S ∪R1] ∩A).
We compute Db = {v ∈ A ∩ S | d(v, b) ⩽ d(v, S ∪ R1)} for b ∈ B, the set of vertices in
A ∩ S which have a shortest path to b that does not visit a vertex of S ∪R1.
Let D = {Ds | s ∈ B}. While there are two distinct elements D1, D2 ∈ D such that
D1 ∩D2 ̸= ∅, merge them in D, that is, update D ← (D \ {D1, D2}) ∪ {D1 ∪D2}. We
output D.

Note that any vertex a ∈ A \ S, is not in S ∪ R1, so will be in Ds for at least one s ∈ B

(possibly s = a) before we do the last step of the algorithm. The last step ensures that the
output is indeed a partition of A.

We first argue that D, as outputted by the algorithm above, is an over-approximation
of the connected component partition of G[A \ S] (that is, for any connected component
C of G[A \ S], there exists D ∈ D such that C ⊆ D). It suffices to prove that for any edge
ab ∈ E(G[A \S]) there exists D ∈ D such that {a, b} ⊆D. Suppose without loss of generality
that d(a, S ∪R1) ⩽ d(b, S ∪R1). Moreover let s ∈ B such that d(a, s) = d(a, S ∪R1)− 1 and
thus a ∈ Ds. Now d(b, s) ⩽ d(a, s) + 1 ⩽ d(b, S ∪R1) thus b ∈ Ds.

We now argue that D is an under-approximation too, by showing that G[D \ S] is
connected for all D ∈ D. We first show this for the initial sets Ds with s ∈ N [S ∪R1] ∩A.
Let s ∈ B. For any v ∈ Ds, by definition, d(v, s) ⩽ d(v, S ∪ R1), thus there is a shortest
path P between v and s not using vertices of S ∪R1. Moreover s ∈ A and A is separated
from V (G) \A by R1, therefore P is contained in A \ S. This shows that v is in the same
connected component of G[A \ S] as s. To see that G[D] remains connected for all D ∈ D
throughout the algorithm, note that when the algorithm merges two sets D1, D2 ∈ D, they
need to share a vertices, thus if both G[D1] and G[D2] are connected then G[D1 ∪D2] is
also connected.

Remember that |S| ⩽ ∆3k/2 + 1 = Ok,∆(1) and that the bounded degree condition implies
|N [S∪R1]|⩽ ∆ · |S∪R1|. This allow us to conclude that the query complexity is bounded by

|A| · |N [S ∪R1]| ⩽ nA ·∆|S ∪R1| ⩽ nA ·∆(r + |S|). ◀



P. Bastide and C. Groenland 20:9

We apply the algorithm from Claim 7 with the separator S computed by Claim 6. Knowing
the partition, the algorithm can check if S is indeed α-balanced. If not, the algorithm
repeats Claim 7 and computes a new potential separator. An single iteration succeeds with
probability at least 2/3 and each iteration is independent from the others, so the expected
number of repetitions is 3/2.

We ask Query(S ∪ R⩽3k, A). For each connected component Ã of G[A \ S], we will
reconstruct G[Ã] and then we will describe how to reconstruct G[A]. If |Ã| ⩽ log(n), then
we ask Query(Ã, Ã) to reconstruct G[Ã]. Otherwise, we will place a recursive call on Ã,
after guaranteeing that our desired properties mentioned at the start are again satisfied. By
definition, G[Ã] is connected. So we know property 1 holds when A is replaced by Ã.

To ensure properties 2 and 3 are also satisfied for the recursive call, we reconstruct R̃i,
the set of vertices at distance exactly i from Ã. As S ∪R1 separates Ã from other component
of G[A \ S], for any other connected component D of G[A \ S] and for any v ∈ D, we have:

d(Ã, v) = min
s∈S∪R1

d(Ã, s) + d(s, v).

Therefore we can compute d(Ã, v) from the query results of Query(S ∪ R⩽3k, A) for all
v ∈A∪R⩽3k. This is enough to deduce R̃i for any i ⩽ 3k because Ã⊆A and thus R̃i ⊆A∪Ri.

After we have (recursively) reconstructed G[Ã] for each connected component Ã of
G[A \ S], we reconstruct G[A] by using that we already know all the distance between all
pairs (a, s) with a ∈ A and s ∈ S. In particular, as we already asked Query(S ∪R⩽3k, A)
earlier in the algorithm, we know G[S ∩A] and also how to “glue” the components to this
(namely, by adding edges between vertices at distance 1).

By Claim 6, each recursive call reduces the size of the set A under consideration by a
multiplicative factor of α. Therefore, the recursion depth is bounded by O∆,k(log n) and the
algorithm will terminate.

We argued above that the algorithm correctly reconstructs the graph. It remains to
analyse the query complexity.

We analyse the query complexity via the recursion tree, where we generate a child for a
vertex when it places a recursive call. We can associate to each vertex v of the recursion
tree TR, a subset Av ⊆ V (G) for which the algorithm is trying to reconstruct G[Av]. The
subsets associated to the children of a node v are disjoint, since each corresponds to a
connected component of Av \ Sv for some subset Sv ⊆ V (G) that is an α-balanced separator.
In particular, the subsets associated to the leafs are disjoint.

In a leaf node v, the algorithm performs |Av|2 queries to reconstruct G[Av], where
|Av| ⩽ log(n). If we enumerate the sizes Av for the leafs v of the recursion tree as a1, . . . , aℓ,
then

∑ℓ
i=1 a2

i ⩽ ℓ log(n)2 ⩽ n log(n)2, where we use that we have at most n leafs since the
corresponding subsets are disjoint.

Since there are at most n leafs, and the recursion depth is Ok,∆(log n), there are
Ok,∆(n log n) internal nodes. Let v be an internal node and let nA and r denote the
sizes of the corresponding subsets A = Av and R⩽3k. The algorithm makes the following
queries:

Finding z takes Ok,∆(nA log(nA + r)) queries in Claim 5.
Ok,∆(nAr) queries to compute S from z and to find the connected components of A \ S

in Claim 7. This step and the previous step are repeated a constant number of times (in
expectation).
Ok,∆(nAr) queries to set up the recursive calls to the children of v.

Since each recursive call increases the size of R⩽3k by at most an additive constant smaller
than (∆+1)9k/2 (recall that R̃⩽3k ⊆R⩽3k∪N⩽9k/2[z]), and the recursion depth is Ok,∆(log n),
it follows from an inductive argument that r = Ok,∆(log n). So the number of queries listed
above is Ok,∆(nA log n).

IPEC 2024



20:10 Quasi-Linear Distance Query Reconstruction for Graphs of Bounded Treelength

To compute the total query complexity of internal nodes, we use the fact that for two
nodes v and v′ at the same recursion depth we have that Av ∩Av′ = ∅. Therefore, by adding
contribution layer by layer in the recursion tree we get a query complexity of Ok,∆(n log n)
for any fixed layer, and the total number of queries performed sum up to:

n log2 n + Ok,∆(log n)Ok,∆(n log n) = Ok,∆(n log2 n). ◀

We did not try to optimise the dependence in k and ∆ hidden in the Ok,∆ notation
throughout the proof of Theorem 1. Expanding all Ok,∆ notations in the proof implies that
our algorithm uses ∆O(k)n log2 n queries. It would be interesting to reduce this dependence
to a polynomial in ∆ and k.

4 Conclusion

In this paper, we shed further light on what graph structures allow efficient distance query
reconstruction. We expect that the true deterministic and randomised query complexity of
graphs of bounded bounded treelength and bounded maximum degree is Θ(n log n), matching
the lower bound which already holds for trees from [1].

It seems natural that having small balanced separators helps with obtaining a quasi-linear
query complexity. We show this is indeed the case when some additional structure on the
separator is given (namely, vertices being “close”). A possible next step would be to see if
this additional structure can be removed.

▶ Problem 1. Does there exist a randomised algorithm that reconstructs an n-vertex graph
of maximum degree ∆ and treewidth k using Õ∆,k(n) queries in expectation?

Some parts of the algorithm still work, such as checking whether a given set S is a balanced
separator (via Claim 7). When trying to recursively reconstruct one of the components, it
is important to “keep enough information about the distances”. In our algorithm, we can
include the shortest paths between the vertices in the separator; this is the main purpose
of the “boundary sets” Ri and why we carefully chose the domain for z in Claim 5. The
possibility to do this is almost the definition of bounded treelength. Therefore, we believe
that a new approach would be needed to produce a good candidate for a balanced separator
in the general case.

Finally, we remark that it may very well be that techniques building on separators are
needed as part of a potential quasi-linear algorithm for reconstructing graph classes that do
not directly guarantee the existence of such separators. Indeed, there are approaches that
actually do not work well even on trees, yet are good at handling certain graphs without
small balanced separators, and perhaps a combination of both types of methods will be
needed to handle the class of all bounded degree graphs. For example, the approach taken
by [12] is to ask all queries to a randomly selected set of vertices. On some graph classes
(such as random regular graphs, which do not have small balanced separators), this already
forces most of the non-edges with high probability and so the remaining pairs can be queried
directly. But in order to beat the best-known upper bound for general graphs of bounded
degree (of Õ∆(n3/2) from [11]), such an approach cannot be applied directly, even for trees.
Indeed, for a complete binary tree on n vertices, the distances to any set S with at most

1
100
√

n vertices, no matter how cleverly chosen, leave many pairs of distances undetermined.
In fact, there are approximately

√
n vertices at height ⌊ 1

2 log n⌋ in this tree, and S will miss
the “trees below” most of those

√
n vertices entirely. This means that there are still Ω(n3/2)

pairs u, v that form a non-edge, yet have the same distance to all vertices in S. This means
that even for the class of all bounded degree graphs, there may need to be a part of the
algorithm which exploits the structure of “nice” separators, when they exist.



P. Bastide and C. Groenland 20:11

References
1 Paul Bastide and Carla Groenland. Optimal distance query reconstruction for graphs without

long induced cycles. arXiv preprint, 2023. doi:10.48550/arXiv.2306.05979.
2 Zuzana Beerliova, Felix Eberhard, Thomas Erlebach, Alexander Hall, Michael Hoffmann, Mat

Mihal’ak, and L Shankar Ram. Network discovery and verification. IEEE Journal on selected
areas in communications, 24(12):2168–2181, 2006. doi:10.1109/JSAC.2006.884015.

3 Rémy Belmonte, Fedor V Fomin, Petr A Golovach, and MS Ramanujan. Metric dimension of
bounded tree-length graphs. SIAM Journal on Discrete Mathematics, 31(2):1217–1243, 2017.
doi:10.1137/16M1057383.

4 Eli Berger and Paul Seymour. Bounded-diameter tree-decompositions. arXiv:2306.13282,
2023.

5 Reinhard Diestel and Malte Müller. Connected tree-width. Combinatorica, 38(2):381–398,
2018. doi:10.1007/S00493-016-3516-5.

6 Thomas Dissaux, Guillaume Ducoffe, Nicolas Nisse, and Simon Nivelle. Treelength of series-
parallel graphs. Procedia Computer Science, 195:30–38, 2021. doi:10.1016/J.PROCS.2021.
11.008.

7 Yon Dourisboure and Cyril Gavoille. Tree-decompositions with bags of small diameter. Discrete
Mathematics, 307(16):2008–2029, 2007. doi:10.1016/J.DISC.2005.12.060.

8 Wassily Hoeffding. Probability inequalities for sums of bounded random variables. In The
collected works of Wassily Hoeffding, pages 409–426. Springer, 1994.

9 Sampath Kannan, Claire Mathieu, and Hang Zhou. Near-linear query complexity for graph
inference. In International Colloquium on Automata, Languages, and Programming (ICALP),
pages 773–784, 2015. doi:10.1007/978-3-662-47672-7_63.

10 Adrian Kosowski, Bi Li, Nicolas Nisse, and Karol Suchan. k-chordal graphs: From cops
and robber to compact routing via treewidth. Algorithmica, 72(3):758–777, 2015. doi:
10.1007/S00453-014-9871-Y.

11 Claire Mathieu and Hang Zhou. Graph reconstruction via distance oracles. In International
Colloquium on Automata, Languages, and Programming (ICALP), pages 733–744, 2013.
doi:10.1007/978-3-642-39206-1_62.

12 Claire Mathieu and Hang Zhou. A simple algorithm for graph reconstruction. Random
Structures & Algorithms, pages 1–21, 2023. doi:10.1002/rsa.21143.

13 Lev Reyzin and Nikhil Srivastava. Learning and verifying graphs using queries with a focus
on edge counting. In Algorithmic Learning Theory: 18th International Conference, ALT
2007, Sendai, Japan, October 1-4, 2007. Proceedings 18, pages 285–297. Springer, 2007.
doi:10.1007/978-3-540-75225-7_24.

14 Neil Robertson and Paul Seymour. Graph minors. II. Algorithmic aspects of tree-width.
Journal of algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

15 Guozhen Rong, Wenjun Li, Yongjie Yang, and Jianxin Wang. Reconstruction and verification
of chordal graphs with a distance oracle. Theoretical Computer Science, 859:48–56, 2021.
doi:10.1016/J.TCS.2021.01.006.

IPEC 2024

https://doi.org/10.48550/arXiv.2306.05979
https://doi.org/10.1109/JSAC.2006.884015
https://doi.org/10.1137/16M1057383
https://doi.org/10.1007/S00493-016-3516-5
https://doi.org/10.1016/J.PROCS.2021.11.008
https://doi.org/10.1016/J.PROCS.2021.11.008
https://doi.org/10.1016/J.DISC.2005.12.060
https://doi.org/10.1007/978-3-662-47672-7_63
https://doi.org/10.1007/S00453-014-9871-Y
https://doi.org/10.1007/S00453-014-9871-Y
https://doi.org/10.1007/978-3-642-39206-1_62
https://doi.org/10.1002/rsa.21143
https://doi.org/10.1007/978-3-540-75225-7_24
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/J.TCS.2021.01.006

	1 Introduction
	1.1 Previous work
	1.2 Treelength
	1.3 Our contribution
	1.4 Roadmap

	2 Preliminaries
	2.1 Distance queries
	2.2 Tree decomposition
	2.3 Treelength
	2.4 Balanced separators

	3 Randomised algorithm for bounded treelength
	4 Conclusion

