
Dynamic Parameterized Feedback Problems in
Tournaments
Anna Zych-Pawlewicz #

Institute of Informatics, University of Warsaw, Poland

Marek Żochowski #

Institute of Informatics, University of Warsaw, Poland

Abstract
In this paper we present the first dynamic algorithms for the problem of K-Feedback Arc Set
in Tournaments (K-Fast) and the problem of K-Feedback Vertex Set in Tournaments
(K-Fvst). Our algorithms maintain a dynamic tournament on n vertices altered by redirecting the
arcs, and answer if the tournament admits a feedback arc set (or respectively feedback vertex set) of
size at most K, for some chosen parameter K. For dynamic K-Fast we offer two algorithms. In
the promise model, where we are guaranteed, that the size of the solution does not exceed g(K)
for some computable function g, we give an O(

√
g(K)) update and O(3KK

√
K) query algorithm.

In the general setting without any promise, we offer an O(log2 n) update and O(3KK log2 n) query
time algorithm for dynamic K-Fast. For dynamic K-Fvst we offer an algorithm working in the
promise model, which admits O(g5(K)) update and O(3KK3g(K)) query time.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Data structures design and analysis

Keywords and phrases dynamic algorithms, parameterized algorithms, feedback arc set, feedback
vertex set, tournaments

Digital Object Identifier 10.4230/LIPIcs.IPEC.2024.22

Related Version Full Version: https://arxiv.org/abs/2404.12907 [28]

Funding National Science Centre, Poland, Grant 2017/26/D/ST6/00264

1 Introduction and Related Work

In this paper we study feedback set problems in dynamic tournaments. A tournament is a
directed graph where every pair of vertices is connected by exactly one arc. The feedback
arc (resp. vertex) set of a given directed graph is a set of arcs (resp. vertices) whose removal
makes the graph acyclic. The problems we focus on here are the Feedback Arc Set in
Tournaments and the Feedback Vertex Set in Tournaments. In the classical static
setting, these problems are very well known and are defined as follows:

K-Feedback Arc Set in Tournaments (K-Fast): Given a tournament T = (V, E)
and a positive integer K, does there exist a subset FE ⊆ E of at most K arcs whose
removal makes T acyclic.
K-Feedback Vertex Set in Tournaments (K-Fvst): Given a tournament T = (V, E)
and a positive integer K, does there exist a subset FV ⊆ V of at most K vertices whose
removal makes T acyclic.

Both the above problems are flag problems in the area of parameterized complexity and
textbook examples for the branching technique. Feedback arc sets in tournaments have
applications in voting systems and rank aggregation, and are well studied from the combin-
atorial [9, 11, 25] and algorithmic [27, 16, 6, 3, 10, 12] points of view. Unfortunately, the
K-Fast problem is NP-hard [2]. The fastest parameterized algorithm achieves 2O(

√
K)nO(1)

running time [12], where n is the size of the input tournament. In this paper, however, we
© Anna Zych-Pawlewicz and Marek Żochowski;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Parameterized and Exact Computation (IPEC 2024).
Editors: Édouard Bonnet and Paweł Rzążewski; Article No. 22; pp. 22:1–22:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anka@mimuw.edu.pl
https://orcid.org/0000-0002-5361-8969
mailto:marrkzochowski2@gmail.com
https://doi.org/10.4230/LIPIcs.IPEC.2024.22
https://arxiv.org/abs/2404.12907
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Dynamic Parameterized Feedback Problems in Tournaments

explore a textbook branching algorithm for this problem running in 3KnO(1) time [24]. The
K-Fvst problem also has many interesting applications, for instance in social choice theory
where it is essential to the definition of a certain type of election winners [4]. It is also
NP-hard [26] and has been studied from various angles [19, 20, 13, 22]. The fastest currently
known parameterized algorithm for this problem runs in O(1.6181K + nO(1)) time [19].

Recently, there is a growing interest in studying parameterized problems in a dynamic
setting. In this context, we typically consider an instance I of a problem of interest with an
associated parameter K. The instance is dynamic, i.e., it is updated over time by problem
specific updates, while for simplicity we assume that the problem parameter K does not
change through the entire process. The goal is to provide a data structure, that allows
for efficient updates to I, and upon a query efficiently provides the answer to the problem
in question. The update/query running time may depend in any computable way on the
parameter K, but it should be sublinear in terms of the size of I. The typical update/query
running times in this setting are f(K), f(K)(log n)O(1), or sometimes even f(K)no(1), where
f is some computable function and n is the size of I. Since we allow f to be exponential,
this setting applies to NP-hard problems as long as they are fixed-parameter tractable in the
static setting.

Parameterized dynamic data structures were first systematically investigated by Iwata
and Oka [15], followed by Alman et al. [1]. These works provided data structures with
update times f(K) or f(K) · (log n)O(1) for several classic problems such as Vertex Cover,
Cluster Vertex Deletion, Hitting Set, Feedback Vertex Set, or Longest Path.
Other recent advances include data structures for maintaining various graph decompositions
together with runs of dynamic programming procedures [5, 7, 8, 17, 21] and treatment of
parameterized string problems from the dynamic perspective [23].

Alman et al. in their work [1] study the problem of K-Feedback Vertex Set in
dynamic undirected graphs, where the graph is altered by edge additions and removals
and the goal is to test if the graph has a feedback vertex set of size at most K. For this
problem, Alman et al. propose a dynamic algorithm with 2O(K log K) logO(1) n amortized
update time and O(K) query time. It is worth mentioning, that while the K-Feedback
Vertex Set problem is NP-hard on undirected graphs, the K-Feedback Arc Set problem
is polynomial in this class of graphs and can be efficiently maintained dynamically using
dynamic connectivity algorithms [14]. So an interesting question is whether these two
problems admit efficient dynamic algorithms in the class of directed graphs. In this regard
Alman et al. [1] show lower bounds for the K-Feedback Vertex Set problem, which
extend also to the K-Feedback Arc Set problem. To be more precise, they show that
in this case the dynamic algorithm requires Ω(f(K)mδ) update/query time for some fixed
δ > 0, assuming RO hypothesis(see [1]). Thus, a natural question is whether we can have
more efficient dynamic algorithms at least in tournaments. In this paper we give positive
answers to this question.

Our precise setting is the following. With regard to dynamic K-Fast, the goal is to
design a data structure supporting the following operations:

Initialize(T, n) - initialize the data structure with a given tournament T on n vertices
Reverse(u, v) - reverse an arc in T between two vertices u and v of T

FindFAST() - answer if there is a feedback arc set of size at most K in T .

With regard to dynamic K-Fvst, the goal is to design a data structure supporting the
analogous operations:

Initialize(T, n) - initialize the data structure with a given tournament T on n vertices
Reverse(u, v) - reverse an arc in T between two vertices u and v of T

FindFVST() - answer if there is a feedback vertex set of size at most K in T .

A. Zych-Pawlewicz and M. Żochowski 22:3

Table 1 The known results for dynamic K-Feedback Arc Set. and dynamic K-Feedback
Vertex Set for different classes of graphs.

Undirected Graphs Directed Graphs Tournaments

K-Feedback
Arc
Set

logO(1) n update
logO(1) n query [14]

no f(K)mo(1)

algorithm
assuming

RO hypotesis [1]

full model:
O(log2 n) update

O(3KK log2 n) query
promise model:

O(
√

g(K)) update
O(3KK

√
K) query

K-Feedback
Vertex

Set

2O(K log K) logO(1) n

amortized update
O(K) query [1]

no f(K)mo(1)

algorithm
assuming

RO hypothesis [1]

promise model:
O(g5(K)) update

O(3KK3g(K)) query

The above setting is referred to as the full model. A popular restriction of this setting,
introduced in generality by Alman et. al. [1], is called the promise model. The promise model
applied to our setting provides the data structure with a guarantee, that the feedback arc set
(or respectively feedback vertex set) remains of size bounded by g(K) for some computable
function g for the entire process. Some algorithms provided by Alman et al. [1] work only in
this restricted setting.

Our results

For the dynamic K-Fast problem we offer two data structures. In the promise model we
propose an O(

√
g(K)) update and O(3KK

√
K) query data structure which does not need to

know g(K). In the full model, we offer an O(log2 n) update and O(3KK log2 n) query data
structure. For the dynamic K-Fvst problem we offer a data structure which works in the
promise model, with O(g5(K)) update and O(3KK3g(K)) query time. This data structure
does need to know g(K). Our results for dynamic feedback set problems, compared to the
related results of Alman et al. [1] are shown in Table 1. All our running times are worst case
(i.e., not amortized).

As a side result, we propose two dynamic data structures that can efficiently find
triangles (i.e., directed cycles of length three) in dynamic tournaments. The efficiency of
these data structures depends on parameter ADT(T), which is the maximum number of
arc-disjoint triangles in T . The first data structure admits O(

√
ADT(T)) update time and

O(ADT(T)
√

ADT(T)) query time. The second data structure admits O(log2 n) update time
and O(ADT(T) log2 n) query time. The data structures do not need to know ADT(T). We
believe that the triangle detection data structures may be of independent interest.

In the next sections we provide an illustrative overview of our techniques and ideas used
to obtain our results, with the main focus on the dynamic K-Fast problem in the promise
model. The rigorous proofs, as well as details for the dynamic K-Fast problem in the full
model and dynamic K-Fvst problem in the promise model are moved to the full version [28]
due to space limitations.

2 Triangle Detection Data Structures

For both the dynamic K-Fast and the dynamic K-Fvst problem, in order to answer the query
efficiently, our plan is to run the standard (static) branching algorithms (see Algorithm 1
and Algorithm 2 respectively) upon every query. The branching algorithm for K-Fast relies

IPEC 2024

22:4 Dynamic Parameterized Feedback Problems in Tournaments

on the folklore knowledge that the minimum feedback arc set in a tournament is equivalent
to the minimum set of arcs whose reversal makes the tournament acyclic. It is also a folklore
fact that a tournament has a cycle if and only if it has a cycle of length three (that we refer
to as a triangle). These folklore facts together with proofs can be found in [24]. For both
K-Fast and K-Fvst the branching algorithm executes at most 3K recursive calls. In each
recursive call the algorithm finds a triangle in the tournament and tries to reverse each of its
edges (for the K-Fast problem) or remove each of its vertices (for the K-Fvst problem).
Thus, to implement the K-Fast query efficiently in the dynamic setting, we need a data
structure that can quickly find a triangle in a dynamic tournament altered by arc reversals.
For the dynamic K-Fvst problem, the data structure also needs to allow removing a limited
number of vertices.

Hence, the basis for our algorithms are the triangle detection data structures, that might
be of independent interest. The data structures we provide are stated independently of the
feedback set problems. They rely on a different parameter, which is the maximum number
of arc-disjoint triangles in the tournament. Nevertheless, our later results rely on a close
connection between the maximum number of arc-disjoint triangles and the minimum feedback
arc set of a tournament. Throughout the paper, for a given tournament T , we denote by
FAST(T) the size of the minimum feedback arc set in T , by ADT(T) the maximum number
of arc-disjoint triangles in T , and by FVST(T) the size of the minimum feedback vertex set
in T . The following fact holds.

▶ Fact 1. ADT(T) ≤ FAST(T) ≤ 6(ADT(T) + 1).

Proof. It is easy to see that ADT(T) ≤ FAST(T), as in each of the ADT(T) arc-disjoint
triangles one arc must be taken to the feedback arc set of T . The proof of the second
inequality can be found in [18] (Theorem 4). ◀

The triangle detection data structures maintain the dynamic tournament altered by
reversing arcs, and allow queries for a triangle in the maintained tournament. The first data
structure is given by Theorem 2 below. It is later used for dynamic K-Fast in the promise
model.

▶ Theorem 2 (Theorem 15 in Appendix A in [28]). For any integer n ∈ N there exists a data
structure DTP[n], that maintains a dynamically changing tournament T on n vertices1by
supporting the following operations:
1. Initialize(T, n) – initializes the data structure with a given tournament T on n vertices,

in time O(n2)
2. Reverse(v, u) – reverses an arc between vertices v and u in T , in O(

√
ADT(T)) time

3. FindTriangle() – returns a triangle from T or reports that there are no triangles, in
time O(ADT(T)

√
ADT(T))

We note here that the above data structure does not need to know the value of ADT(T).
The same holds for the second data structure presented next. The second triangle detection
data structure gets rid of the dependence on the parameter in the update operation. This
later allows us to use it for dynamic K-Fast in the full model at the cost of introducing
factors poly-logarithmic in the size of the tournament.

▶ Theorem 3 (Theorem 16 in Appendix A in [28]). For any integer n ∈ N there exists a data
structure DT[n], that maintains a dynamically changing tournament T on n vertices1 by
supporting the following operations:

A. Zych-Pawlewicz and M. Żochowski 22:5

1. Initialize(T, n) – initializes the data structure with a given tournament T on n vertices,
in time O(n2)

2. Reverse(v, u) – reverses an arc between vertices v and u in T , in time O(log2 n)
3. FindTriangle() – returns a triangle from T or reports that there are no triangles, in

time O(ADT(T) log2 n)

Both data structures are described in detail in Appendix A in [28]. In this overview, we
mainly focus on describing the first data structure DTP[n] of Theorem 2, which also sheds
some light on the data structure DT[n] of Theorem 3, as both data structures are based on
similar main ideas.

In particular, both data structures maintain the same basic information related to the
dynamic tournament T . First and foremost, both data structures maintain n sets called
indegree buckets, which partition the vertices of T according to their indegrees in T . The
indegree bucket DbT [d] stores vertices of indegree d. The indegree buckets alone let us easily
determine if the tournament is acyclic due to the following fact (which can be found for
instance in [10]).

▶ Fact 4 (Fact 19 in Appendix A.1 in [28]). A tournament is acyclic if and only if all its
indegree buckets have size one.

By maxDb(T) we denote the maximum size of an indegree bucket for the maintained tourna-
ment T . It is easy to see, that maxDb(T) ≤ 2FAST(T) + 1 ∈ O(ADT(T)), because one arc
reversal can remove at most two vertices from the indegree bucket of maximum size, and we
have to remove all but one to make the tournament acyclic. With a bit more care one can
show the following bound.

▶ Fact 5 (Lemma 25 in Appendix A.1 in [28]). maxDb(T) ≤ 8
√

ADT(T) + 1 + 8.

Both data structures also maintain a set Empty of indices of indegree buckets that are empty,
i.e., Empty = {d ∈ {0, . . . , n− 1} : DbT [d] = ∅}. Since each arc reversal can place up to two
vertices in the empty buckets, and since by Fact 4 there are no empty buckets after reversing
the arcs of a minimum feedback arc set, the following bound holds.

▶ Fact 6 (Lemma 27 in Appendix A.1 in [28]). |Empty| ≤ 2FAST(T) ∈ O(ADT(T))

Both the indegree buckets and the set Empty are straightforward to maintain in a constant
time per arc reversal, since every arc reversal affects the indegrees of exactly two vertices (see
Lemma 35 in [28] for the details). The data structures also rely on some other information
that is straightforward to maintain, such as adjacency matrix of the tournament and similar
basic structures. These are not crucial enough to be mentioned in this short description, but
they are detailed in Appendix A in [28] instead.

The promise data structure DTP[n] additionally maintains a set Back of back arcs. An
arc uv is called a back arc if dT (u) ≥ dT (v), where dT (x) stands for the indegree of x in T .
The back arcs are another natural obstacle to T being acyclic, as every back arc belongs to
some triangle in T (see Lemma 21 in Appendix A in [28]). Reversing the arcs of a minimum
feedback arc set of T gets rid of all cycles and thus also gets rid of all back arcs in T .

The set Back changes its size by at most O(
√

ADT(T)) upon arc reversal for the following
reason. Consider reversing arc uv. Any arc that after the reversal becomes a back arc or stops
being a back arc has one endpoint in either u or v. The candidates for the other endpoint of

1 All our data structures assume that the vertices of T are indexed with numbers from 0 to n − 1.

IPEC 2024

22:6 Dynamic Parameterized Feedback Problems in Tournaments

such arc have indegrees differing by at most one from dT (u) or dT (v) (see Lemma 31 in [28]
for more details). This gives (by Fact 5) O(

√
ADT(T)) candidate arcs for altering the set

Back. This observation has two important consequences. Firstly, maintaining the set of back
arcs Back takes O(

√
ADT(T)) time per update. Secondly, we get the bound for the size of

the set of back arcs Back.

▶ Fact 7 (Lemma 33 in Appendix A.1 in [28]). |Back| ∈ O(ADT(T)
√

ADT(T))

Fact 7 follows for the following reason. Reversing FAST(T) arcs gets rid of all back
arcs, and one arc reversal gets rid of at most O(

√
ADT(T)) back arcs. Thus, |Back| ∈

O(FAST(T)
√

ADT(T)). By Fact 1 the bound of Fact 7 follows.

0 1

Prefix P

vmin

w

u

Tournament T −pref

Figure 1 Tournament T , its prefix P and tournament T −pref. Arcs between all pairs of vertices
are present in T , however some arcs are not drawn for the sake of readability.

We now move on to describing how our data structures detect triangles. To support
this operation, we first define the prefix P of a tournament T as the set of vertices in the
maximum prefix of indegree buckets of size one (see Figure 1 for illustration and Definition
22 in [28] for a more formal definition). The subtournament T [P] of T induced by its prefix
P is acyclic by Fact 4. Since we cannot find triangles inside the prefix P , we are more
interested in tournament T −pref = T [V (T) \ P] which stands for tournament T induced by
all its vertices excluding prefix. Both the prefix P of a tournament T and the remaining
tournament T −pref are illustrated in Figure 1.

The data structures DTP[n] and DT[n] follow the same general approach. In order to find
a triangle, they first search for a vertex vmin of minimum indegree in T −pref (see Figure 1).
One can find the vertex vmin in O(|Empty|) = O(ADT(T)) time by iterating through the set
Empty. Clearly, the indegree buckets whose indices range from 0 to |P | − 1 are not empty, by
the definition of prefix P . Since we want to skip vertices of P , we are interested in the first
index larger than |P | − 1 which is not in Empty. This is the index of the bucket containing
vmin. We have the following bound on dT −pref(vmin), which is the minimum indegree in
T −pref.

▶ Fact 8 (Fact 28 in Appendix A.1 in [28]). dT −pref(vmin) ≤ |Empty|.

Fact 8 follows, because in T −pref all indegree buckets DbT −pref [d] for d < dT −pref(vmin) are
empty. The number of empty indegree buckets of T −pref is the same as the number of empty
indegree buckets of T , because dT −pref(w) = dT (w)− |P | for any vertex w of T −pref.

A. Zych-Pawlewicz and M. Żochowski 22:7

Once vmin is located, the data structures find an in-neighbor u of vmin in T −pref. Next, the
data structures find a set W of dT −pref(vmin) in-neighbors of u in T −pref. Since dT −pref(vmin) ≤
dT −pref(u), vertex u has at least dT −pref(vmin) in-neighbors in T −pref. We are bound to find a
triangle uvminw for some w ∈W , because if all the arcs between W and vmin were directed
towards vmin, that would imply that the indegree of vmin in T −pref is more than dT −pref(vmin).
This is illustrated in Figure 1.

Thus, in order to find a triangle, we need an in-neighbour listing method to list l in-
neighbours in T −pref of a given vertex x ∈ T −pref. The method responsible for finding
in-neighbours is different for the two data structures. In the promise data structure DTP[n],
this method (provided in detail in Lemma 40 in [28]) heavily relies on the fact that we can
iterate over the set of back arcs Back. The process of finding in-neighbours by DTP[n] data
structure is illustrated in Figure 2.

x
. . .

Prefix P back arc back arc

Figure 2 In-neighbour listing method in the promise model.

In order to find the in-neighbours of a given vertex x, the DTP[n] data structure iterates
over the indegree buckets of T starting after the prefix. For each d > |P | such that d ≤ dT (x),
we proceed as follows. If DbT [d] is empty, we charge it to |Empty| and move forward. Otherwise
we iterate through vertices w ∈ DbT [d]. If w is an in-neighbour of x, then we add it to the set
of found in-neighbours W , whose size is bounded by parameter l. If w is an out-neighbour
of v, then xw is a back arc and we charge such situation to |Back|. If by the time we reach
d = dT (v) the size of W is not sufficient, we iterate through the set Back to find the remaining
in-neighbours of x. The whole process takes O(|Back|+ |Empty|+ l) time (see Lemma 40
in [28] for more details). By Fact 6, Fact 7 and Fact 8 we get the desired running time of the
triangle query in the promise model.

The DT[n] data structure takes a different approach to find in-neighbours of a given
vertex, as it does not have access to the set Back. Instead, it uses balanced search trees, what
implies poly logarithmic factors in the update and query times. Due to space limitations, we
defer the description of the DT[n] data structure to Appendix A.4 in [28].

3 Dynamic K-Feedback Arc Set in Tournaments

In this section we use the triangle detection data structures for dynamic K-Fast problem.
We only focus on the main ideas, while the details are presented in Appendix B in [28]. Let
us consider a standard branching algorithm which verifies whether FAST(T) ≤ K (shown in
Algorithm 1, see [24] for correctness). Algorithm 1 can be implemented using both triangle
detection data structures provided in Section 2.

We first show how to obtain the dynamic K-Fast data structure in the promise model,
where FAST(T) ≤ g(K) at all times. Then, by Fact 1, also ADT(T) ≤ g(K). The procedure
FindFAST(K) in Algorithm 1 calls itself recursively at most 3K times, each call employs

IPEC 2024

22:8 Dynamic Parameterized Feedback Problems in Tournaments

Algorithm 1 Pseudocode for FindFAST(K).

Algorithm : FindFAST(K)
Output : Verify if FAST(T) ≤ K

1 if T is acyclic then
2 return TRUE ;
3 if K = 0 then
4 return FALSE ;
5 uvw ← FindTriangle();
6 for xy ∈ {uv, vw, wu} do
7 Reverse(x, y) ;
8 if FindFAST(K− 1) then
9 Reverse(y, x);

10 return TRUE ;
11 Reverse(y, x);
12 return FALSE ;

a constant number of updates and queries to a triangle detection data structure. Thus,
directly by Theorem 2, employing the data structure DTP[n] results in a dynamic K-Fast
data structure with O(3Kg(K)

√
g(K)) query time and O(

√
g(K)) update time.

The query time can be improved to O(3KK
√

K) by using procedure FindTriangle(K)
instead of FindTriangle(). The FindTriangle(K) procedure works analogously to the
procedure FindTriangle(), but has an option not to return a triangle once it detects
that ADT(T) > K. In such case by Fact 1 also FAST(T) > K, and the recursive call
can safely return that the solution does not exist. This is very helpful, as the procedure
FindTriangle(K) can stop working once any of the bounds on |Empty|, |Back| or maxDb(T)
(given by Fact 5, Fact 6 and Fact 7) that we have in terms of ADT(T) does not hold in terms
of K. For instance, if maxDb(T) > 8

√
K + 1+8, then by Fact 5 the method FindTriangle(K)

is allowed to terminate returning that ADT(T) > K. In this way we obtain a better result
stated below.

▶ Theorem 9 (Theorem 49 in Appendix B in [28]). The dynamic K-Fast problem admits a
data structure with initialization time O(n2), worst-case update time O(

√
g(K)) and worst-

case query time O(3KK
√

K) under the promise that there is a computable function g, such
that the maintained tournament T always has a feedback arc set of size at most g(K).

Moving on from the promise model to the full model, we can employ the data structure
DT[n] of Theorem 3 to implement the FindFAST(K) method given in Algorithm 1. There, we
cannot use FindTriangle() method anymore, as its running time depends on ADT(T), which
is not bounded as in the promise model. Instead, we again use FindTriangle(K) method,
which again reports ADT(T) > K if the necessary bounds do not hold in terms of K. Thanks
to that, FindTriangle(K) runs in O(K log2 n) time. If the procedure FindTriangle(K)
fails to find a triangle, we can safely report that no solution exists, as this means that
FAST(T) ≥ ADT(T) > K. This way, we arrive at the following result.

▶ Theorem 10 (Theorem 50 in Appendix B in [28]). The dynamic K-Fast problem admits a
data structure with initialization time O(n2), worst-case update time O(log2 n) and worst-case
query time O(3KK log2 n).

A. Zych-Pawlewicz and M. Żochowski 22:9

4 Dynamic K-Feedback Vertex Set in Tournaments in the
promise model

In Appendix C in [28] we present the data structure for the dynamic K-Fvst problem in
the promise model. The main idea is the same as for the dynamic K-Fast problem in the
promise model. We want to be able to quickly find a triangle in tournament T and perform
a standard static branching algorithm for K-Fvst, presented in Algorithm 2.

Algorithm 2 Pseudocode for FindFVST(K).

Algorithm : FindFVST(K)
Output : Verify if FVST(T) ≤ K

1 if T is acyclic then
2 return TRUE ;
3 if K = 0 then
4 return FALSE ;
5 uvw ← FindTriangle();
6 for x ∈ {u, v, w} do
7 Remove(x) ;
8 if FindFVST(K− 1) then
9 Restore(x);

10 return TRUE ;
11 Restore(x);
12 return FALSE ;

The branching algorithm (Algorithm 2) finds a triangle in the tournament, and then
branches recursively with each of the triangle vertices removed. The correctness is again due
to the fact that a tournament is acyclic if and only if it has no triangles. To implement this
algorithm, we not only need a method to find a triangle in the maintained tournament, but we
also need to support vertex removals and restorations. These are significantly more complex
than edge reversals, as they change the indegree of up to (n− 1) vertices. This loss of locality
poses a number of problems, including maintaining indegree buckets, maintaining the set of
empty indegree buckets, or even keeping track of the acyclicity of the tournament. Observe
also, that our parameter is now FVST(T), which behaves in a different way than FAST(T).
For instance, our triangle detection data structures rely on the fact, that the number of back
arcs in a tournament T is bounded in terms of FAST(T). This, unfortunately, stops to be
the case: the number of back arcs can be actually unbounded in terms of FVST(T). In the
following sections, we describe how our data structure deals with all these issues.

4.1 Vertex Removals and Restorations
We first deal with the problem of removing and restoring vertices. In Appendix C.2 in [28]
we introduce a new data structure called DREM[n, k], which essentially extends the data
structure DTP[n] by the possibility of removing and restoring up to k vertices. This data
structure is covered in detail by Lemma 59 in Appendix C.2 in [28], below we only present
the main ideas.

The data structure DREM[n, k] maintains all the information about the tournament T

that was maintained by DTP[n], with the exception of the set Back of back arcs, whose
maintenance now becomes prohibitively expensive. In addition to that, DREM[n, k] maintains

IPEC 2024

22:10 Dynamic Parameterized Feedback Problems in Tournaments

10

10

11

11

12

11

13

11

14

13

RDeg[v]

dT −F (v)

−1

−1
tokens

Figure 3 Implicit representation of tournament T −F .

the set of removed vertices F and an implicit representation of T −F . Here, T −F stands for
the tournament T with the set F of vertices removed, i.e, T −F = T [V (T) \F]. As mentioned
before, we need to be able to quickly decrease/increase indegrees of many vertices, because
removal/restoration of a vertex can pessimistically affect all other vertices. In order to do
so, the DREM[n, k] data structure stores a set of token positions. One token corresponds to
one removed vertex. Each time a vertex is removed, some token is placed at some position
d. The vertices are again partitioned into buckets. A token at position d decreases by one
the indegrees of vertices in all buckets whose indices are at least d. An illustration of the
intended role of tokens can be found in Figure 3.

Ideally, to maintain T −F , we would like to partition the vertices into buckets according to
indegrees in T −F . Due to the presence of tokens this is not feasible. Instead, we introduce a
reduced indegree RDeg[v] of a vertex v, which relates indegree dT −F (v) of a vertex v in T −F

with token positions. To be more precise, let us denote by CTok(d) the number of tokens at
positions smaller or equal than d. The reduced indegree of a vertex v satisfies

▶ Invariant 1. RDeg[v]− CTok(RDeg[v]) = dT −F (v).

This is an invariant of the data structure which guarantees, that the tokens reflect their
intended role. Rather than according to indegrees in T −F , the vertices of T −F are then
partitioned according to their reduced indegrees, and we refer to this partition as reduced
indegree buckets. The reduced indegrees and the partition into reduced indegree buckets
are maintained by DREM[n, k] in order to implicitly maintain tournament T −F . This is
illustrated in Figure 3. Similarly as before, also the set of empty reduced indegree buckets is
maintained.

Apart from T , F , tokens, and the implicit representation of tournament T −F , the
DREM[n, k] data structure stores all k-long back arcs in T . For an arc uv we define its
length with respect to tournament T as lT (uv) = |dT (u) − dT (v)|. An arc is k-long if its
length is at least k, otherwise the arc is k-short. In the DREM[n, k] data structure, every
vertex stores a set LONG(k, v) of k-long back arcs (with regard to T) adjacent to it.

The vertex removal procedure is illustrated in Figure 4. It is based on a method NewRd(u),
which given any vertex u, recomputes its reduced degree to restore Invariant 1. Given the
set of removed vertices F , a list of token positions, and indegrees in T , one can compute
dT −F (u) and the value RDeg[u] satisfying Invariant 1 in O(|F |) = O(k) time. Due to space
constraints, the details are given in the proof of Lemma 59 in Appendix C.2 in [28].

A. Zych-Pawlewicz and M. Żochowski 22:11

l

x

r

−1 New token

k-long back arc k-long back arc

RDeg

.

Figure 4 Vertex removal/restoration procedure.

In order to remove (or restore) a vertex v, we need to fix the reduced degrees of all affected
vertices in order to satisfy Invariant 1. To accomplish that, we first iterate over vertices
u having their reduced indegrees inside a small interval [l, r] around the reduced indegree
of v, and we fix all these vertices using NewRd(u). The size of the interval is bounded by
r − l ∈ O(k), so this takes time proportional to k2 multiplied by maximum size of a reduced
indegree bucket. Observe that RDeg[v], dT −F (v) and dT (v) differ from each other by at most
O(k). Thus, the interval [l, r] can be chosen in a way that all arcs between v and vertices
with reduced degrees outside of [l, r] are k-long arcs with regard to T (for an illustration
see Figure 4). Thus, for all vertices w such that RDeg[w] < l, whose indegree changes as
a result of v’s removal (or restoration), it holds that vw is a k-long back arc with regard
to T . By iterating through LONG(k, v) we can detect such vertices and fix their reduced
indegrees. On the other hand, for all vertices w such that RDeg[w] > r, their indegree does
decrease by one after v’s removal (or increase after v’s restoration), unless wv is a k-long
back arc with regard to T . Thus, placing a token at position r + 1 fixes the invariant for all
vertices with RDeg[w] > r, with the exception of the endpoints of k-long back arcs whose
other endpoint is v. We can detect these vertices by iterating through LONG(k, v) and fix
their reduced indegrees. To sum up, the runtime of removal/restoration of a vertex v depends
on |LONG(k, v)| and on k2 multiplied by the maximum size of a reduced indegree bucket. In
Subsection 4.3 we show how to bound these parameters in terms of FVST(T) to guarantee
efficient running times in the promise model.

4.2 Detecting Triangles
Next, using the DREM[n, k] data structure, we need to implement triangle detection in T −F .
To achieve that, we follow ideas from Section 2. Recall, that in order to find a triangle in a
tournament T , we needed a method to find vmin - a vertex of minimum indegree in T −pref

and we needed a method for listing in-neighbours. We showed that this can be done in time
proportional to |Empty| and |Back|. In fact, we did not need to iterate through all back arcs,
but just the ones incident to a vertex whose in-neighbours we seek. We now want to run
these procedures on T −F instead of T . We can access T −F via the reduced indegree buckets
stored by DREM[n, k] data structure. In Appendix C.4 in [28] we carefully show, that the
reduced degree buckets are functionally very close to the indegree buckets of T −F , and we

IPEC 2024

22:12 Dynamic Parameterized Feedback Problems in Tournaments

can essentially use them instead to find vmin and list in-neighbours with regard to T −F . Still,
we need reasonable bounds in terms of FVST(T) on |Empty−F | and |Back−F

v |, which are the
number of empty indegree buckets in T −F and the number of back arcs incident to a vertex
v in T −F . We show how to bound these in the next subsections.

4.3 Bounds
We first observe that the maximum size of an indegree bucket in a tournament T satisfies

▶ Fact 11 (Lemma 55 in Appendix C.4 in [28]). maxDb(T) ≤ 2FVST(T) + 1.

To see why this holds, consider an indegree bucket DbT [d] of maximum size. Let S =
DbT [d] \ FV , where FV is the feedback vertex set of minimum size. After removal of
FV , each vertex in S lands in a separate indegree bucket. This implies that one of the
vertices in S decreases its indegree by at least |S| − 1 after removing FV . Each vertex
removal decreases indegree of any other vertex by at most one. Thus, |S| − 1 ≤ |FV | and
|DbT [d]| ≤ |S|+ |FV | ≤ 2|FV |+ 1.

Let now maxRDb(T, F) denote the maximum size of a reduced indegree bucket. We can
relate maxRDb(T, F) to maxDb(T) as follows.

▶ Fact 12 (Observation 61 in Appendix C.4 in [28]). maxRDb(T, F) ≤ maxDb(T)(|F |+ 1)

The reason why Fact 12 holds is as follows. As Figure 3 suggests, any reduced degree bucket is
entirely contained in some indegree bucket with regard to T −F . The vertices of one indegree
bucket in T −F are contained in at most |F | + 1 indegree buckets in T , as any vertex can
decrease its indegree by at most |F | after removing F .

Let LONG(k, X) for X ⊆ V (T) denote a set of k-long back arcs (with regard to T) between
the vertices in X. Slightly more elaborate arguments of similar nature as above allow us to
bound |Empty−F | as follows.

▶ Fact 13 (Lemma 67 and Corollary 68 in Appendix C.4 in [28]).

|Empty−F | ≤ FVST(T −F) · (2(k + |F |) + |LONG(k, V (T −F))|+ 2FVST(T −F) + 5) + 4|F |

Given the above bound, our goal is now to bound |LONG(k, V (T −F))|. As Section 4.1 and
Section 4.2 suggest, we also need to bound |Back−F

v | and |LONG(k, v)| for all v ∈ V (T −F).
Due to Fact 12 and a close relation between reduced degree buckets and indegree buckets

of T −F , there is a bounded number of (k + |F |)-short arcs in Back−F
v . Since removing

a vertex can decrease the indegree of any other vertex by at most one, the arcs that are
(k + |F |)-long in T −F are k-long in T . Thus, bounding |Back−F

v | for v ∈ T −F boils down to
bounding |LONG(k, v)| for v ∈ V (T −F).

To sum up, it suffices that we bound |LONG(k, V (T −F))| and |LONG(k, v)| for all v ∈
V (T −F). We deal with this in the subsequent section.

4.4 Kernelization Technique
In order to bound |LONG(k, V (T −F))| and |LONG(k, v)| for v ∈ V (T −F), we actually reduce
the number of k-long back arcs by removing some vertices from T . To achieve this, we define
a k-long graph GLONG of the tournament T , which is an undirected graph, where vertices are
connected via an edge in GLONG if they are connected via a k-long back arc in the tournament
T . We also define the k-heavy set Heavyk(T) of the tournament T as the set of vertices
of degree higher than k in GLONG. If FV ⊆ V (T) is a feedback vertex set in T of size at

A. Zych-Pawlewicz and M. Żochowski 22:13

most k, then FV is necessarily a vertex cover in GLONG: there is no other way to get rid of a
k-long back arc from T than to remove its endpoint (see Lemma 64 in [28] for a more formal
argument). Due to standard vertex cover kernelization arguments, Heavyk(T) ⊆ FV for any
feedback vertex set FV of T with |FV | ≤ k. Moreover, when we remove Heavyk(T) from
GLONG, at most k|FV | edges remain in GLONG. This simple but crucial observations are covered
by Lemma 64 in [28]. So the idea is to keep the set Heavyk(T) removed from the tournament,
in order to keep the number of k-long back arcs connecting the remaining vertices small.
Observe also, that if Heavyk(T) ⊆ F , where F is the set of removed vertices, any vertex
that is left in T −F has at most k adjacent k-long back arcs, what gives the desired bound
on |LONG(k, v)| for v ∈ V (T −F). We want to emphasize, that the property of an arc being
k-long is considered here with regard to tournament T and it does not depend on F , so we
can maintain GLONG in the form of adjacency lists efficiently.

To implement the above idea, in Appendix C.3 we introduce a wrapper data structure
around the DREM[n, k] called DREMP[n, k]. It allows only one kind of updates, arc reversals,
and keeps the invariant that the k-heavy set of the maintained tournament is removed. This
not only allows us to efficiently implement the methods for finding triangles, but also ensures
fast running times of DREM[n, k] operations in the promise model. The wrapper is defined
in Lemma 66 in [28].

4.5 The Final Data Structure
In order to implement Algorithm 2, we use the DREMP[n, k] data structure for k = g(K),
where K is the problem parameter. The DREMP[n, k] data structure keeps Heavyk(T)
removed from the tournament, i.e., Heavyk(T) ⊆ F at all times, where F is the set of
currently removed vertices. This provides us with the bounds on |LONG(k, v)| for v ∈ T −F

and |LONG(k, V (T −F))|, which we need to efficiently find triangles. When we branch on
the vertices of the found triangle, we use the methods of the DREM[n, k] data structure
(internally maintained by DREMP[n, k]), in order to temporarily remove these vertices from
the tournament. This approach leads to the following theorem.

▶ Theorem 14 (Theorem 51 in Appendix C in [28]). The dynamic K-Fvst problem admits a
data structure with initialization time O(n2), worst-case update time O(g(K)5) and worst-case
query time O(3KK3g(K)) under the promise that there is a computable function g, such that
tournament T always has a feedback vertex set of size at most g(K).

References
1 Josh Alman, Matthias Mnich, and Virginia Vassilevska Williams. Dynamic parameterized

problems and algorithms. ACM Trans. Algorithms, 16(4), July 2020. doi:10.1145/3395037.
2 Noga Alon. Ranking tournaments. SIAM Journal on Discrete Mathematics, 20(1):137–142,

2006. doi:10.1137/050623905.
3 Noga Alon, Daniel Lokshtanov, and Saket Saurabh. Fast FAST. In Susanne Albers, Alberto

Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas, editors,
Automata, Languages and Programming, 36th International Colloquium, ICALP 2009, Rhodes,
Greece, July 5-12, 2009, Proceedings, Part I, volume 5555 of Lecture Notes in Computer
Science, pages 49–58. Springer, 2009. doi:10.1007/978-3-642-02927-1_6.

4 Jeffrey Banks. Sophisticated voting outcomes and agenda control. Working Papers 524,
California Institute of Technology, Division of the Humanities and Social Sciences, 1984. URL:
https://EconPapers.repec.org/RePEc:clt:sswopa:524.

IPEC 2024

https://doi.org/10.1145/3395037
https://doi.org/10.1137/050623905
https://doi.org/10.1007/978-3-642-02927-1_6
https://EconPapers.repec.org/RePEc:clt:sswopa:524

22:14 Dynamic Parameterized Feedback Problems in Tournaments

5 Jiehua Chen, Wojciech Czerwiński, Yann Disser, Andreas Emil Feldmann, Danny Hermelin,
Wojciech Nadara, Marcin Pilipczuk, Michał Pilipczuk, Manuel Sorge, Bartłomiej Wróblewski,
and Anna Zych-Pawlewicz. Efficient fully dynamic elimination forests with applications to
detecting long paths and cycles. In Proceedings of the Thirty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’21, pages 796–809, USA, 2021. Society for Industrial
and Applied Mathematics. doi:10.1137/1.9781611976465.50.

6 Don Coppersmith, Lisa K. Fleischer, and Atri Rurda. Ordering by weighted number of wins
gives a good ranking for weighted tournaments. ACM Trans. Algorithms, 6(3), July 2010.
doi:10.1145/1798596.1798608.

7 Zdenek Dvořák, Martin Kupec, and Vojtech Tůma. A dynamic data structure for MSO
properties in graphs with bounded tree-depth. In 22th Annual European Symposium on
Algorithms, ESA 2014, volume 8737 of Lecture Notes in Computer Science, pages 334–345.
Springer, 2014. doi:10.1007/978-3-662-44777-2_28.

8 Zdenek Dvořák and Vojtech Tůma. A dynamic data structure for counting subgraphs in
sparse graphs. In 13th International Symposium on Algorithms and Data Structures, WADS
2013, volume 8037 of Lecture Notes in Computer Science, pages 304–315. Springer, 2013.
doi:10.1007/978-3-642-40104-6_27.

9 Pál Erdös and John W. Moon. On sets of consistent arcs in a tournament. Canadian
Mathematical Bulletin, 8:269–271, 1965. URL: https://api.semanticscholar.org/CorpusID:
19010097.

10 Uriel Feige. Faster fast(feedback arc set in tournaments), 2009. arXiv:0911.5094.
11 W Fernandez de la Vega. On the maximum cardinality of a consistent set of arcs in a

random tournament. Journal of Combinatorial Theory, Series B, 35(3):328–332, 1983. doi:
10.1016/0095-8956(83)90060-6.

12 Fedor V. Fomin and Michał Pilipczuk. On width measures and topological problems on
semi-complete digraphs. Journal of Combinatorial Theory, Series B, 138:78–165, 2019. doi:
10.1016/j.jctb.2019.01.006.

13 Serge Gaspers and Matthias Mnich. Feedback vertex sets in tournaments. In Mark de Berg
and Ulrich Meyer, editors, Algorithms – ESA 2010, pages 267–277, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg. doi:10.1007/978-3-642-15775-2_23.

14 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
J. ACM, 48(4):723–760, July 2001. doi:10.1145/502090.502095.

15 Yoichi Iwata and Keigo Oka. Fast dynamic graph algorithms for parameterized problems.
In 14th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2014, volume
8503 of Lecture Notes in Computer Science, pages 241–252. Springer, 2014. doi:10.1007/
978-3-319-08404-6_21.

16 Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors. In Proceedings of the
Thirty-Ninth Annual ACM Symposium on Theory of Computing, STOC ’07, pages 95–103, New
York, NY, USA, 2007. Association for Computing Machinery. doi:10.1145/1250790.1250806.

17 Tuukka Korhonen, Konrad Majewski, Wojciech Nadara, Michał Pilipczuk, and Marek
Sokołowski. Dynamic treewidth, 2023. arXiv:2304.01744.

18 R. Krithika, Abhishek Sahu, Saket Saurabh, and Meirav Zehavi. The parameterized complexity
of packing arc-disjoint cycles in tournaments, 2018. arXiv:1802.07090.

19 Mithilesh Kumar and Daniel Lokshtanov. Faster Exact and Parameterized Algorithm for
Feedback Vertex Set in Tournaments. In Nicolas Ollinger and Heribert Vollmer, editors, 33rd
Symposium on Theoretical Aspects of Computer Science (STACS 2016), volume 47 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 49:1–49:13, Dagstuhl, Germany, 2016.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.STACS.2016.49.

20 Daniel Lokshtanov, Pranabendu Misra, Joydeep Mukherjee, Fahad Panolan, Geevarghese
Philip, and Saket Saurabh. 2-approximating feedback vertex set in tournaments. ACM Trans.
Algorithms, 17(2), April 2021. doi:10.1145/3446969.

https://doi.org/10.1137/1.9781611976465.50
https://doi.org/10.1145/1798596.1798608
https://doi.org/10.1007/978-3-662-44777-2_28
https://doi.org/10.1007/978-3-642-40104-6_27
https://api.semanticscholar.org/CorpusID:19010097
https://api.semanticscholar.org/CorpusID:19010097
https://arxiv.org/abs/0911.5094
https://doi.org/10.1016/0095-8956(83)90060-6
https://doi.org/10.1016/0095-8956(83)90060-6
https://doi.org/10.1016/j.jctb.2019.01.006
https://doi.org/10.1016/j.jctb.2019.01.006
https://doi.org/10.1007/978-3-642-15775-2_23
https://doi.org/10.1145/502090.502095
https://doi.org/10.1007/978-3-319-08404-6_21
https://doi.org/10.1007/978-3-319-08404-6_21
https://doi.org/10.1145/1250790.1250806
https://arxiv.org/abs/2304.01744
https://arxiv.org/abs/1802.07090
https://doi.org/10.4230/LIPIcs.STACS.2016.49
https://doi.org/10.1145/3446969

A. Zych-Pawlewicz and M. Żochowski 22:15

21 Konrad Majewski, Michał Pilipczuk, and Marek Sokołowski. Maintaining CMSO2 Properties
on Dynamic Structures with Bounded Feedback Vertex Number. In Petra Berenbrink, Patricia
Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté, editors, 40th International Symposium
on Theoretical Aspects of Computer Science (STACS 2023), volume 254 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 46:1–46:13, Dagstuhl, Germany, 2023. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.STACS.2023.46.

22 Matthias Mnich, Virginia Vassilevska Williams, and László A. Végh. A 7/3-Approximation for
Feedback Vertex Sets in Tournaments. In Piotr Sankowski and Christos Zaroliagis, editors, 24th
Annual European Symposium on Algorithms (ESA 2016), volume 57 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 67:1–67:14, Dagstuhl, Germany, 2016. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ESA.2016.67.

23 Jędrzej Olkowski, Michał Pilipczuk, Mateusz Rychlicki, Karol Węgrzycki, and Anna Zych-
Pawlewicz. Dynamic Data Structures for Parameterized String Problems. In Petra Berenbrink,
Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté, editors, 40th International
Symposium on Theoretical Aspects of Computer Science (STACS 2023), volume 254 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 50:1–50:22, Dagstuhl, Germany, 2023.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.STACS.2023.50.

24 Venkatesh Raman and Saket Saurabh. Parameterized algorithms for feedback set problems and
their duals in tournaments. Theoretical Computer Science, 351(3):446–458, 2006. Parameterized
and Exact Computation. doi:10.1016/j.tcs.2005.10.010.

25 K.B. Reid and E.T. Parker. Disproof of a conjecture of erdös and moser on tournaments.
Journal of Combinatorial Theory, 9(3):225–238, 1970. doi:10.1016/S0021-9800(70)80061-8.

26 E. Speckenmeyer. On feedback problems in digraphs. In Proceedings of the Fifteenth Interna-
tional Workshop on Graph-Theoretic Concepts in Computer Science, WG ’89, pages 218–231,
Berlin, Heidelberg, 1990. Springer-Verlag.

27 Anke van Zuylen, Rajneesh Hegde, Kamal Jain, and David P. Williamson. Deterministic
pivoting algorithms for constrained ranking and clustering problems. In Proceedings of the
Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, pages 405–414,
USA, 2007. Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/
citation.cfm?id=1283383.1283426.

28 Anna Zych-Pawlewicz and Marek Żochowski. Dynamic parameterized feedback problems in
tournaments, 2024. doi:10.48550/arXiv.2404.12907.

IPEC 2024

https://doi.org/10.4230/LIPIcs.STACS.2023.46
https://doi.org/10.4230/LIPIcs.ESA.2016.67
https://doi.org/10.4230/LIPIcs.STACS.2023.50
https://doi.org/10.1016/j.tcs.2005.10.010
https://doi.org/10.1016/S0021-9800(70)80061-8
http://dl.acm.org/citation.cfm?id=1283383.1283426
http://dl.acm.org/citation.cfm?id=1283383.1283426
https://doi.org/10.48550/arXiv.2404.12907

	1 Introduction and Related Work
	2 Triangle Detection Data Structures
	3 Dynamic K-Feedback Arc Set in Tournaments
	4 Dynamic K-Feedback Vertex Set in Tournaments in the promise model
	4.1 Vertex Removals and Restorations
	4.2 Detecting Triangles
	4.3 Bounds
	4.4 Kernelization Technique
	4.5 The Final Data Structure

