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Abstract
An st-shortest path, or st-path for short, in a graph G is a shortest (induced) path from s to t in G.
Two st-paths are said to be adjacent if they differ on exactly one vertex. A reconfiguration sequence
between two st-paths P and Q is a sequence of adjacent st-paths starting from P and ending at Q.
Deciding whether there exists a reconfiguration sequence between two given st-paths is known to
be PSPACE-complete, even on restricted classes of graphs such as graphs of bounded bandwidth
(hence pathwidth). On the positive side, and rather surprisingly, the problem is polynomial-time
solvable on planar graphs. In this paper, we study the parameterized complexity of the Shortest
Path Reconfiguration (SPR) problem. We show that SPR is W[1]-hard parameterized by k + ℓ,
even when restricted to graphs of bounded (constant) degeneracy; here k denotes the number of
edges on an st-path, and ℓ denotes the length of a reconfiguration sequence from P to Q. We
complement our hardness result by establishing the fixed-parameter tractability of SPR parameterized
by ℓ and restricted to nowhere-dense classes of graphs. Additionally, we establish fixed-parameter
tractability of SPR when parameterized by the treedepth, by the cluster-deletion number, or by the
modular-width of the input graph.
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1 Introduction

Many algorithmic questions can be posed as follows: given the description of a system
state and the description of a state we would “prefer” the system to be in, is it possible to
transform the system from its current state into a more desired one without “breaking” the
system in the process? And if yes, how many steps are needed? Such problems naturally
arise in the fields of mathematical puzzles, operational research, computational geometry [15],
bioinformatics, and quantum computing [10]. These questions received a substantial amount
of attention under the so-called combinatorial reconfiguration framework in the last decade.
We refer the reader to the surveys by van den Heuvel [18], Nishimura [16] and Bousquet et
al. [6] for more background on combinatorial reconfiguration.
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23:2 Parameterized Shortest Path Reconfiguration

Shortest path reconfiguration. In this work, we focus on the reconfiguration of st-shortest
paths (or st-paths for short) in undirected, unweighted, simple graphs. It is well-known
that one can easily find an st-path in a graph in polynomial time. In order to define the
reconfiguration variant of the problem, we first require a notion of adjacency between st-paths.

As is common in the combinatorial reconfiguration framework, we focus on two models;
the token-jumping model (TJ) and the token-sliding model (TS). We say that two st-paths
are TJ-adjacent if they differ on exactly one vertex, i.e., all the vertices are the same except
at a unique position p. We say that two st-paths P and Q are TS-adjacent if they are
TJ-adjacent and the pth vertex of P and the pth vertex of Q are adjacent. A reconfiguration
sequence from P to Q (if it exists) is a sequence of adjacent shortest paths starting at P and
ending at Q. In the Shortest Path Reconfiguration (SPR) problem, we are given a
graph G, two vertices s and t, two st-paths P and Q of length k each, and the goal is to
decide whether a reconfiguration sequence from P to Q exists. In the Shortest Shortest
Path Reconfiguration (SSPR) problem, we are additionally given an integer ℓ which is
an upper bound on the length of the desired reconfiguration sequence. Reconfiguration of
shortest paths has many applications, e.g., in network design and operational research (we
refer the interested reader to [9] for a detailed discussion around these applications).

Many reconfiguration problems, SPR and SSPR included, naturally lie in the class PSPACE.
Since there are no simple polynomial-time checkable certificates (as reconfiguration sequences
are possibly of exponential length), they are generally not in NP. A decade ago, Bonsma [3]
proved that SPR (under token jumping) is PSPACE-complete. In fact, the problem remains
PSPACE-complete even when restricted to bipartite graphs [3], line graphs [9], and graphs of
bounded bandwidth/pathwidth/treewidth [19]. Several groups studied the complexity of the
problem in other restricted graph classes such as grid graphs [1], claw-free graphs, chordal
graphs [3], and circle graphs [9]. The most notable result has been obtained by Bonsma
who showed that Shortest Path Reconfiguration can be decided in polynomial time
for planar graphs [4]. This result is rather surprising in the reconfiguration setting since
most reconfiguration problems are known to be PSPACE-complete on planar graphs, see
e.g. [13, 14, 5].

Our results. Our focus is on the parameterized complexity of shortest path reconfiguration
problems; which, to the best of our knowledge, has not been studied so far. Other reconfigur-
ation problems have been widely studied from a parameterized perspective in the last decade,
see, e.g., [6] for a survey. A problem is fixed-parameter tractable, FPT for short, on a class C
of graphs with respect to a parameter κ, if there is an algorithm deciding whether a given
input instance with graph G ∈ C admits a solution in time f(κ) · |V (G)|c, for a computable
function f and constant c.

A kernelization algorithm is a polynomial-time algorithm that reduces an input instance
to an equivalent instance of size bounded in the parameter only (independent of the input
size), known as a kernel; we will say that two instances are equivalent if they are both
yes-instances or both no-instances. Every fixed-parameter tractable problem admits a kernel,
however, possibly of exponential or worse size. For efficient algorithms, it is therefore most
desirable to obtain polynomial, or even linear, kernels. The W-hierarchy is a collection
of parameterized complexity classes FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[t], for t ∈ N. The
conjecture FPT ⊊ W[1] can be seen as the analogue of the conjecture that P ⊊ NP. Before
stating our results precisely, let us formally define the problems we are interested in (we
intentionally omit the type of move, i.e., slide or jump, from the definitions, as it will be
clear from context in what follows):
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Shortest Path Reconfiguration (SPR)
Input: A graph G, two vertices s, t, two st-shortest paths P, Q.
Question: Is there a reconfiguration sequence from P to Q?

Shortest Shortest Path Reconfiguration (SSPR)
Input: A graph G, two vertices s, t, two st-shortest paths P, Q, an integer ℓ.
Question: Is there a reconfiguration sequence from P to Q of length at most ℓ?

In parameterized complexity, one is usually interested in two types of parameters: para-
meters related to the size of the solution or parameters related to the structure of the input
graph. For shortest path reconfiguration, there are two parameters related to the size of
the solution which are the length ℓ of a reconfiguration sequence, and the length k of the
shortest st-paths (number of edges on the shortest st-paths) in G. Our first results will focus
on these parameters. We will then discuss some parameters related to the graph structure
such as treedepth and modular width. Our first result is a hardness result. We prove that
the following holds (in both the token jumping and the token sliding models):

▶ Theorem 1. SPR is W[1]-hard parameterized by k, and SSPR is W[1]-hard parameterized
by k + ℓ, in both the token jumping and the token sliding models.

The idea of the proof of Theorem 1 is a reduction from the Multicolored Clique
problem. Let (Vi)i≤k be the vertices of an instance of the Multicolored Clique problem.
Intuitively (the real proof being more technical), we will construct a graph where the length
of the st-paths will be in O(k2), each integer representing a vertex of the set Vi. The goal
would be to transform a path P into a path Q, forcing us to select a vertex in each set. For
every pair i, j, there exists an integer r such that the rth vertex corresponds to a vertex in
Vi and the (r + 1)th vertex corresponds to a vertex in Vj . The key argument of the proof
consists in finding a mechanism to ensure that the vertex selected in each copy of Vi is the
same, which permits us to conclude that the subset of selected vertices is a multicolored
clique of the desired size. One can then naturally wonder if this hardness result can be
pushed further. The answer is yes, and in fact, we prove (in the full version of the paper)
that the problems are hard even restricted to a very simple class of graphs:

▶ Theorem 2. SPR is W[1]-hard parameterized by k, and SSPR is W[1]-hard parameterized
by k + ℓ, even when the inputs are restricted to graphs of constant degeneracy and in both the
token jumping and the token sliding models.

In order to prove that statement we adapt the proof of Theorem 1 to appropriately reduce
the degeneracy of the graph. We then complement these negative results with the following
positive ones.

▶ Theorem 3. SSPR is FPT parameterized by ℓ on nowhere-dense classes of graphs (in both
the token jumping and the token sliding models).

The idea of the proof of Theorem 3 consists in proving that if k is too large compared to
ℓ then there are many positions along the shortest paths that are already occupied by tokens
that never have to move. Using this fact, we then contract parts of the paths in order to
get st-paths of length O(f(ℓ)), for some computable function f . Now, since k is bounded by
some function of ℓ, one can prove that the existence of a reconfiguration sequence of length
ℓ can be verified via model checking a first-order formula ϕ whose size depends only on ℓ.
Combining this observation with the black-box result of [11] that ensures that the model
checking problem can be decided in time O(f(|ϕ|) · |V (G)|) on nowhere-dense graphs, we get
the desired result. We proceed (in the full version of the paper) by considering some of the
most commonly studied structural graph parameters. In particular, we prove the following:

IPEC 2024



23:4 Parameterized Shortest Path Reconfiguration

▶ Theorem 4. SPR and SSPR (in both the token jumping and the token sliding model) are
FPT when parameterized by either the treedepth, the cluster deletion number, or the modular
width of the input graph.

To motivate the study of these parameters, we refer the reader to Figure 1. Recall that
SPR is PSPACE-complete even when restricted to graphs of bounded bandwidth, pathwidth,
treewidth, and cliquewidth [19]. This implies para-PSPACE-hardness on the aforementioned
classes. Hence, our Theorem 4 almost completes the picture for structural parameterizations
of the problems, leaving open the case of feedback vertex set number.

cluster deletion

twin cover

vertex cover

neighbourhood
diversity

modular width

clique width

feedback
vertex set

treewidth

pathwidth

treedepth

bandwidth

Figure 1 The graph parameters studied in this paper. A connection between two parameters
indicates the existence of a function in the one above that lower-bounds the one below.

Further discussions and open problems. As we show in the full version of the paper, it
turns out that when solving the SPR problem parameterized by the feedback vertex set
number of the graph, one can assume that k, the length of st-paths, is bounded linearly in
the parameter. Hence, the following remains an interesting open question:

▶ Problem 1. Is SPR fixed-parameter tractable when parameterized by feedback vertex set
number?

When the feedback vertex set number is bounded, the graph can be seen as a disjoint
union of trees plus a bounded number of additional vertices. One can easily remark that if
vertices of the feedback vertex set are far apart in the st-paths then the structure is very rigid
and very few tokens can move in the graph. However, when vertices of the feedback vertex
set are close to one another (along the st-paths), there might exist some arbitrarily long
paths between two layers in the layered partition of the graph. Here, the layered partition
refers to the partitioning of the vertex set based on distance either from s or from t. Tokens
along these (layer) paths that do not belong to the feedback vertex set are not restricted and
can traverse their corresponding layer path in both directions an unbounded number of times.
In particular, it implies that, if there exists a reconfiguration sequence, that sequence might
be arbitrarily long. So in order to design a reconfiguration sequence (from a kernelization
perspective at least, which is known to be equivalent to fixed-parameter tractability), we
have to find a way to reduce these long structures into structures of bounded length. We
were not able to solve this very special case of the problem.

As far as we know, it also remains an open question whether SPR is in P or is NP-
complete on graphs of constant feedback vertex set number. Note that an XP algorithm
follows immediately from the fact that (after appropriately discarding parts of the input)
the number of st-paths is roughly |V (G)|f , where f denotes the feedback vertex set number.
Regardless, in case of a positive answer to Problem 1, the next natural question is the
following:
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▶ Problem 2. Is SPR fixed-parameter tractable when parameterized by k on graphs of bounded
pathwidth? What about treewidth? How about parameterization by k plus the treewidth?

It is an easy exercise to remark that SPR is PSPACE-complete on graphs of bounded
bandwidth, pathwidth, and treewidth using a simple reduction from H-Word Reconfigur-
ation [19]. When the treewidth is 1, there exists a unique minimum st-path and the problem
is simple. Trees and forests are graphs which are 1-degenerate and every 1-degenerate graph
is a forest, however, the complexity of SPR and SSPR remains open for 2-degenerate graphs.

▶ Problem 3. What is the complexity of SPR and SSPR on 2-degenerate graphs?

Related work. Reconfiguration of paths and other subgraphs has been considered before [7,
12, 8]. For some of these past works, i.e., [7, 12], the paths have fixed length and a “move”
consists of removing a vertex at one end and adding a vertex at the other end, as in certain
“snake-like” games. In contrast, for our work, the two endpoints of the paths are fixed and
the paths are required to be unweighted shortest paths between those endpoints.

Demaine et al. proved in [7] that the problem of reconfiguring (arbitrary) paths via
snake-like moves is PSPACE-complete in general, and polynomial-time solvable for some
restricted graph classes. When not restricted to shortest paths, the problem is quite different,
since the extremities of the paths are not fixed and the goal is not necessarily to reconfigure
shortest paths. In fact, it is proved in [7] that fixed-length path reconfiguration (under the
snake-like moves described above) is fixed-parameter tractable parameterized by the path
length or by the circuit rank, XP parameterized by the feedback vertex set number, and
PSPACE-complete even for graphs of bounded bandwidth [19]. Gupta et al. [12] also show
fixed-parameter tractability parameterized by path length for a different type of snake-like
moves, i.e., paths are considered directed paths and are required to move forwards only.

Reconfiguration problems on graphs of bounded feedback vertex set number and on graphs
of bounded treewidth have already received a considerable amount of attention, and they
are usually not easy to place in FPT (unlike their optimization counterparts, where a simple
branching strategy or dynamic programming algorithm is usually enough to get an FPT
algorithm). For instance, Independent Set Reconfiguration (in the token sliding model)
on graphs of bounded feedback vertex set number is FPT; this fact follows easily from the
multi-component reduction in [2]. However, the question is still open for the reconfiguration
of dominating sets, for instance. The case of bounded treewidth graphs is open for both
Independent Set Reconfiguration and Dominating Set Reconfiguration (in the
sliding model) [6].

2 Hardness results

We start with the case of SPR parameterized by k on general graphs. The same reduction
will imply the hardness of SSPR parameterized by k + ℓ. We describe in the full version of
the paper how to modify the construction to obtain a graph of constant degeneracy1.

Our reduction is from the Regular Multicolored Clique (RMC) problem, which is
known to be NP-complete and W[1]-hard when parameterized by solution size κ [17]. The
problem is defined as follows. We are given a κ-partite graph G = (V, E) such that V is
partitioned into κ independent sets V = V1 ∪· V2 ∪· · · · ∪· Vκ and each partition has size exactly
n, i.e., |V | = κn. We denote the vertices of Vi by vi

1, vi
2, . . . , vi

n. Moreover, every vertex

1 Proofs of statements marked with a star are omitted due to space constraints.
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23:6 Parameterized Shortest Path Reconfiguration

vi
j ∈ Vi has exactly r neighbors in every set Vi′ , i ≠ i′. In other words, every vertex in G has

degree exactly r(κ − 1). Given an instance (G, κ) of RMC, the goal is to decide if G contains
a clique of size κ, which we call a multicolored clique since it must contain exactly one vertex
from each Vi, i ∈ [κ]. We reduce (G, κ) to an instance (G′, s, t, P, Q) of SPR, where P and Q

are st-paths in G′ of length k = O(κ2).

Properly colored st-paths. Before discussing G′, we start by describing a key gadget of
our construction which is a graph called H. The graph H consists of α = 6κ2 sets of vertices
H1, H2, . . . , Hα such that |Hi| = n for each i ∈ [α]. We group every three consecutive sets
into β = 2κ2 groups R1 = {H1, H2, H3}, R2 = {H4, H5, H6}, R3 = {H7, H8, H9}, . . ., and
Rβ = {Hα−2, Hα−1, Hα}. We call Hi the ith layer of H and Ri the ith group of H; it will
become clear later that a shortest path will select a vertex from each Hi. We also define
a mapping µ : [β] → [κ] such that each Ri is mapped to some Vj , for i ∈ [β] and j ∈ [κ].
In other words, each Ri = {Ha, Hb, Hc} will correspond to taking three copies of some Vj .
We sometimes abuse notation and write µ(Ri) = Vj to denote the image of a set. We also
overload notation and write µ(Hp) = Vj whenever Hp ∈ Ri and µ(Ri) = Vj .

Furthermore, we construct µ in such a way that, for every pair (j, j′), j ̸= j′ and j, j′ ∈ [κ],
there exists at least one integer i < β such that µ(i) = j, µ(i + 1) = j′. In other words, for
every two sets Vj and Vj′ , there must exist two consecutive groups Ri and Ri+1 such that Ri

is mapped to Vj and Ri+1 is mapped to Vj′ . One can easily check that it is indeed possible
to construct such a function µ when β = 2κ2. We define µ as follows:

For each i ∈ [β], Ri is mapped to Vµ(i), where µ(i) =

{
1 + ⌊(i − 1)/2κ⌋ i is odd;
1 + ((i − 2) mod 2κ)/2 i is even.

▶ Observation 5. For each (j, j′) ∈ [κ] × [κ] such that j ̸= j′, there exists an i ∈ [β − 1] such
that µ(i) = j and µ(i + 1) = j′.

We also define a mapping πi : Ri → Vµ(i) (and πi : Hi → Vµ(i)) that maps every vertex of
Ri (Hi) to its corresponding vertex in Vµ(i). We drop the subscript i when clear from context.
We note that each vertex of Vµ(i) appears three times in Ri (once in each layer) and all three
vertices map to the same vertex of Vµ(i). Let us now describe the edge set of H. For every
i ∈ [β], we add a matching between vertices of Hj and Hj+1 and a matching between vertices
of Hj+1 and Hj+2 whenever there exists a group Ri such that Ri = {Hj , Hj+1, Hj+2}. For
every two consecutive groups Ri = {Hj , Hj+1, Hj+2} and Ri+1 = {Hj+3, Hj+4, Hj+5}, we
add in H the edges of G between Hj+2 and Hj+3. That is, we add between consecutive sets
corresponding to different sets of G the edges corresponding to the edges between those two
sets in G. More formally, let a ∈ Hj+2, b ∈ Hj+3, π(a) ∈ Vµ(i), and π(b) ∈ Vµ(i+i). Then,
there is an edge between vertices a and b in H if and only if there is an edge between vertices
π(a) and π(b) in G.

Assume that we create a new graph H ′ consisting of H plus two additional vertices s

and t, where s is connected to all the vertices of H1 and t is connected to all the vertices of
Hα. Note that any st-path in H ′ must contain exactly one vertex from every layer. We say
that an st-path P is properly colored whenever for any a ∈ Hi and b ∈ Hj (on the path) such
that µ(i) = µ(j), we have π(a) = π(b). In other words, whenever two layers of H (containing
vertices of P ) map to the same set of V we must select the same vertices in both. We note
that any st-path P in H ′ can intersect with a group Ri in one of n ways, i.e., the vertices of
P in Ri all map to the same vertex of Vµ(i).

▶ Observation 6 (⋆). H ′ contains a properly colored st-path P (consisting of 6κ2 +2 vertices)
if and only if G contains a multicolored clique of size κ.
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Outline of the reduction. Assume that we add to the graph H ′ two new (internally)
vertex-disjoint st-paths P and Q each containing exactly α + 2 vertices (s and t and one
vertex per layer of H). We add all the edges between the i-th vertex of P and the vertices
in layers i, i − 1, and i + 1 of H (with the assumption that H0 = {s} and Hα+1 = {t}).
Similarly, we add all the edges between the i-th vertex of Q and the vertices in layers i, i − 1,
and i + 1 of H. We denote the resulting graph by H ′ + P + Q.

Consider the instance (H ′ + P + Q, s, t, P, Q) of SPR. If there exists a multicolored clique
in G then there exists a properly colored st-path in H ′ by Observation 6. By the definition
of the edge set, on can easily see that we can transform P into Q by first moving the vertices
of P onto a properly colored st-path in H ′ and then moving all the vertices to Q one by one.
Unfortunately, the converse is not necessarily true since we might not be consistent in the
selection of vertices in H ′, i.e., we might select vertices a ∈ Hi and b ∈ Hj in the path such
that µ(i) = µ(j) and π(a) ̸= π(b) (Hi and Hj belong to different groups).

By considerably complicating the gadgetry, we will prove that we can handle this issue.
To do so, we create a new gadget that will force us to select the same vertex for a fixed value
of the image of µ. We replicate our gadget to enforce the consistency of all the images of µ.
In addition to enforcing consistent selection of vertices, our construction further guarantees
that choices cannot be undone.

Another issue in the simplistic construction of H ′ described above is that we implicitly
assume that we move from P to a path fully contained in H before going to Q. But nothing
prevents an st-path from containing some vertices of P , then some vertices from H, then
some vertices from Q, then more vertices from H, and so on. To avoid this phenomenon, we
shall add what we call buffer space. We formalize all these ideas next.

Buffers and collapses. Most of the time, we will consider matchings and edges between sets
of size n. Given two sets of size n (with an implicit ordering), we define the natural matching
as the matching that matches the vertices in increasing index order (in the natural way). We
will sometimes consider edges between a set A of size n and a set B of size larger than n

with a canonical mapping function to {1, . . . , n}. By abuse of notation, we still denote by
the natural matching the set of edges (that is not a matching anymore) that links the i-th
vertex of A and all the vertices that map to i in B.

We denote by In (Jn) the independent set on n vertices2. We drop the superscript n

when clear from context. We let Iq (J q) denote the graph obtained by taking q copies of In

(Jn) where consecutive copies of In (Jn) are linked with the natural matching. Note that Iq

(J q) consists of exactly n paths on q vertices. We use Ii (resp. Ji) to denote the ith copy of
In (resp. Jn) in Iq (resp. J q).

Let R = R1, R2, . . . , Rγ be a graph where edges are between consecutive sets and there is
a canonical mapping from R1 and Rγ to {1, . . . , n} (in our proof, R will be H or a graph
close to H). We write Γ(p, H, q) = Ip ⊕ H ⊕ J q (or Γ when p, q, H are clear from context)
to denote the graph obtained by taking a copy of Ip, a copy of J q, a copy of H, and then
adding the natural matching between the vertices of Iq and H1 as well as a matching between
the vertices of Hα and J1. If we denote by Ii the sets of Ip and Ji the sets of J q, for
i ∈ [p + α + q], we call Li the i-th layer of Γ(p, H, q), where Li = Ii when i ≤ p, Li = Hi−q

when p < i ≤ p + α, and Li = Ji−(q+α) when i > q + α.

2 These two notations that denote the same graph will permit to simplify the description of the construc-
tions in the rest of the paper.
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23:8 Parameterized Shortest Path Reconfiguration

Given the graph H (recall that H consists of α = 6κ2 sets of vertices H1, . . . , Hα) and
a vertex hi

j ∈ Hi, we let H(hi
j) denote the graph obtained from H by deleting all but one

vertex from each set Hi′ , where µ(i′) = µ(i); we delete all vertices except for hi′

j ∈ Hi′

(deleting vertices implies the deletion of edges incident on those vertices). That is, we restrict
all the layers of H corresponding to Vµ(i) to a single vertex (the same vertex); we have
π(hi

j) = π(hi′

j ) for all i, i′ with µ(i) = µ(i′). We say that H(hi
j) is a collapse of H on hi

j , or,
equivalently, collapsing H on hi

j results in H(hi
j).

Now, for every i ≤ κ, j ≤ n, we define Γi,j(p, q) as Γ(p, H(hi
j), q). Finally, we let Γi(p, q)

denote the union of the n graphs Γi,j(p, q). We write Γi,j = Γi,j(p, q) whenever p and q are
clear from context. Note that all the Γi,j being disjoint, if we have a path fully included in
one of the Γi,j(p, q) at some point, then all the selected vertices in sets mapping to i by µ are
the same. That is, Γi(p, q) will allow us to verify that for any Hj , H ′

j in the selection gadget
such that µ(j) = µ(j′) = i we always pick vertices a ∈ Hj , b ∈ Hj′ such that π(a) = π(b).

Construction. We are now ready to describe the construction of the instance (G′, s, t, P, Q)
of SPR. We consider the token jumping model (changes required for sliding can be found in
the full version of the paper). We start from an empty graph G′ and add two new vertices s

and t. We let q = 2κ2 and δ = 2q + α = 10κ2. We add two internally vertex-disjoint st-paths
P and Q consisting of δ internal vertices each.

The next step consists of adding Γ⋆ = Γ(q, H, q) to G′ and connecting s to every vertex
in I1 and t to every vertex in Jq. Moreover, we let the ith internal vertex of P , i ≥ 2, be
adjacent to every vertex in layer i − 1 of Γ⋆. We call Γ⋆ the selection gadget. The rest of the
gadgets will be verification and boundary gadgets that allow us to guarantee that properties
similar to those in Observation 6 will hold.

We then create a graph Γ1(q − 1, q + 1) denoted by Γ1 which will be the verification
gadget for i = 1. We deal with the graphs of Γ1 first (and slightly differently than the rest)
as they require special attention given that they exist at the “boundary” of our construction.
Notice that, in G′, all the graphs in Γ1 are “shifted one position to the left with respect
to Γ⋆” (in the sense that the number of independent sets at the left has reduced by one),
see Figure 2 for an illustration. In particular, the graph H of each Γ1,j , j ∈ [n], starts (or
appears) one layer before the graph H in Γ⋆. We now describe the edges between Γ⋆ and any
Γ1,j (in Γ1). Let L denote some layer of Γ1,j (ignoring the last layer) and let L′ be the layer
after L in Γ⋆. If L and L′ correspond to independent sets (not sets of H) they are connected
by the natural matching. Otherwise, we have two cases:

If layer L of Γ1,j corresponds to a set Hp with µ(p) = 1 then we deleted all vertices of L

except for hp
j (collapse). We connect hp

j to its image in L′, which must exists since layer
L′ of Γ⋆ corresponds to a set Hp′ with µ(p) = µ(p′) = 1.
Otherwise, we have the same number of vertices in L and L′ and we add a matching
between the pairs of vertices having the same image in G.

We now add a boundary gadget that will separate all the verification gadgets and allow
us to simplify some of the arguments. Picturing the graph being constructed from top to
bottom with P and Q encircling all of the graph, we assume that Γi,j is drawn before Γi,j+1.
Similarly, we only insert Γi+1,j after inserting all graphs of Γi (see again Figure 2 for an
illustration). After Γ1,n is inserted, we insert another graph (connecting s and t) that we
denote by Γ1,⋆ = Γ(q − 2, H, q + 2) which is called the boundary gadget of Γ1. Note that
Γ1,⋆ is again shifted one position to the left compared to all the graphs in Γ1. We add edges
between layers of Γ1,⋆ and layers of Γ1,j , for each j ∈ [n]. Like before, we let L denote some
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layer of Γ1,⋆ (ignoring the last layer) and let L′ be the layer after L in Γ1,j . If L and L′

correspond to independent sets (not sets of an H) then we connect them via a matching in
the natural way. Otherwise, we have again two cases:

|L| = n, |L′| = 1, and we connect by an edge the unique vertex of L′ to its image in L; or
|L| = |L′| = n (by construction) and we connect the two layers by a matching.

We can now complete the construction as follows. For i ∈ [κ − 1], after Γi,⋆ is inserted
we proceed just like before by assuming that Γi,⋆ now takes the role of the selection gadget
Γ⋆. Formally, for i ∈ [κ − 1] and j ∈ [n] (processing in increasing order), we create a graph
Γi+1,j , where Γi+1,j = Γ(q − (2i+1), H(hi+1

j ), q +(2i+1)). We connect s to all the first-layer
vertices and t to all the last-layer vertices in the obvious way. Let Γi+1 denote the collection
of the n graphs of the form Γi+1,j . We add edges between Γi,⋆ and graphs in Γi+1 just like
before. Similarly, we then add a new graph Γi+1,⋆ and proceed as described until we reach
Γκ,⋆. We connect all the vertices of a layer of Γκ,⋆ to the vertex of Q on the preceding layer
(see Figure 2). This completes the construction of the SPR instance (G′, s, t, P, Q)3. Note
that |V (P )| = |V (Q)| = 10κ2 + 2.

Safeness of the reduction. Before we dive into the technical details of the proof, let us
give some high-level intuition. Simply put, the purpose of every set of graphs Γi, i ∈ [κ], is
to verify that all the sets/layers of Γ⋆ mapping to the same Vi use the same vertex of Vi.
The trickier part of the proof is in showing that tokens are “well-behaved”.

Figure 2 An example of our reduction in the case of token jumping.

Let us start by proving the easier direction. We assume, without loss of generality, that
all of our gadgets H start with a copy of V1 and end with a copy of Vκ. Moreover no two
consecutive groups of any H map to the same Vi.

3 We note that most of the buffer space “to the right” of the construction is not needed but was added to
favor a symmetric construction.
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▶ Lemma 7. If (G, κ) is a yes-instance of (Regular) Multicolored Clique then there
exists a reconfiguration sequence from P to Q whose length is 20(κ3 + κ2).

Proof. Let {v1
j1

, v2
j2

, . . . , vi
ji

, . . . , vκ
jκ

} denote the vertices of a multicolored clique in G. Let
us exhibit a reconfiguration sequence from P to Q. To do so, let us first give a reconfiguration
sequence from P to a path that contains vertices in Γ⋆ as follows: We move one by one
the tokens of P to Γ⋆ by increasing distance to s (in ascending order). For every layer
i ≤ q, we jump (in order) the token at layer i ≥ 1 in P to vertex vj1 in the ith layer of
Γ⋆ = Γ(q, H, q) as long as i ≤ q + 1 (as H1 maps to V1 by assumption). In other words, we
map all the vertices at the beginning of the path to the copy of vertex v1

j1
. Then, for any

layer q + 1 < i ≤ q + 1 + α, we jump the token at layer i of P to vertex h
µ(i)
jµ(i)

of Γ⋆. For
every i > q + 1 + α, we jump the ith vertex of P to vertex vjκ

(since we assume that H ends
with a set that maps to Vκ). The fact that we maintain an st-path after every token jump
follows from Observation 6 combined with the fact that vertices of P are connected to all
vertices of the preceding layer of Γ⋆.

Once we have reached a properly colored st-path P1 fully contained in Γ⋆ (in exactly 10κ2

steps), we can use a similar strategy to reach a properly colored st-path P2 fully contained
in Γ1,j1 . More formally, we move by increasing order all the tokens of P1 in such a way the
i-th vertex of P2 is a the copy of the (i + 1)-th vertex of P1. Note that it is well-defined
since, for every i such that µ(i) = 1, the vertex hj1 belongs to P2. Observe that during that
transformation the vertices “shift one layer to the left”. We then use a similar transformation
to transform P2 into a path P3 fully contained in Γ1,⋆. We use 20κ2 steps from P1 to P3.

We repeat this procedure for every 2 ≤ i ≤ κ to transform the path in Γi−1,⋆ into a
path in Γi,⋆ in 20κ2 jumps. Then we need an extra 10κ2 steps to go from Γκ,⋆ to Q (using
the converse of the transformation from P to Γ⋆). Hence, the length of the reconfiguration
sequence is exactly 20(κ3 + κ2). ◀

In order to prove the other direction, we first establish some useful properties of our
construction. We let Γ⋆ = Γ0,0 and Γi,⋆ = Γi,n+1. We say Γi,j comes before or above Γi′,j′

whenever i < i′ or i = i′ and j < j′ (we also assume that P appears first and Q appears last,
i.e., P = Γ−1,−1 and Q = Γn+1,n+1). We say that two consecutive internal vertices vp and
vp+1 of an st-path P are siblings if they belong to the same graph Γi,j (that is they belong
to the same row in the representation of Figure 2). Otherwise, we say vp is above (or below)
vp+1 if the graph of vp is above (below) that of vp+1 (that is vp is in the row above or below
vp+1 in the representation of Figure 2).

▶ Lemma 8 (⋆). Let P be a shortest path from s to t in G′. Let vp denote the pth internal
vertex of P . Then:

For every p, vp is a vertex of the pth layer of G′.
For every two consecutive internal vertices of P , vp and vp+1, either vp and vp+1 are
siblings or vp is below vp+1.
For every p, if vp belongs to Γi,j then no vertex vp′ with p′ ≥ p is below vp.
For every p, if vp belongs to Γi,j then vp−1 is either in Γi,j or Γi,n+1 and vp+1 is either
in Γi,j or Γi−1,n+1.

Our next result states that the sequence described in Lemma 7 is best possible.

▶ Lemma 9 (⋆). Any reconfiguration sequence from P to Q requires at least 20(κ3 + κ2)
token moves. Moreover, if there exists a reconfiguration sequence from P to Q then there
exists one of length exactly 20(κ3 + κ2).
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Given Lemma 8 and Lemma 9, it is easy to see that a shortest reconfiguration from
P to Q in G′ must be monotone, i.e., tokens always move towards Q and every path in
the reconfiguration sequence consists of a sequence of vertices (ordered from s to t) whose
distance from Q monotonically increases.

▶ Lemma 10 (⋆). Assume that there exists a reconfiguration sequence σ from P to Q in G′.
For i ∈ [κ], let µ−1(i) = {Hj1 , Hj2 , . . .} denote the H-layers (layers that belong to H) in Γ⋆

that map to Vi. Then:
For every two consecutive sets Hj and Hj+1 in Γ⋆ there exists at least one st-path P ′ in
the sequence σ such that P ′ contains one vertex in both Hj and Hj+1.
If σ is a shortest sequence then the intersection of

⋃
P ′∈σ V (P ′) with

⋃
Hj∈µ−1(i) V (Hj)

includes only vertices that map to the same vertex of Vi. In other words, for any two
vertices w and w′ in W =

⋃
P ′∈σ V (P ′) ∩

⋃
Hj∈µ−1(i) V (Hj), we have π(w) = π(w′).

We now have all the ingredients to finish the proof.

▶ Lemma 11. If (G′, s, t, P, Q) is a yes-instance of Shortest Path Reconfiguration
then (G, κ) is a yes-instance of (Regular) Multicolored Clique.

Proof. Let (G′, s, t, P, Q) be a yes-instance and let σ be a shortest reconfiguration sequence
from P to Q. For i ∈ [κ] and P ′ ∈ σ, let Wi =

⋃
P ′∈σ V (P ′) ∩

⋃
Hj∈µ−1(i) V (Hj). Moreover,

let π(Wi) = {π(w) | w ∈ Wi}. By Lemma 10, we have |π(Wi)| = 1 and we denote the vertex
by vi

ji
. Consider the κ vertices {v1

j1
, . . . , vi

ji
, . . . , vκ

jκ
}. The fact that those vertices must

form a multicolored clique in G again follows from Lemma 10; as every pair must appear
consecutively in two H-layers of Γ⋆ and some path of σ must intersect with both. ◀

▶ Corollary 12 (⋆). SPR is W[1]-hard parameterized by k and SSPR is W[1]-hard paramet-
erized by k + ℓ under both the token jumping and the token sliding model.

3 FPT algorithms

First, we observe that both SPR and SSPR are easily shown to be fixed-parameter tractable
when parameterized by k + ∆(G), where ∆(G) denotes the maximum degree of G; by only
retaining vertices that belong to some shortest st-path one can easily bound the size of
the graph since the i-th layer, consisting of all the vertices at distance exactly i from s,
will contain at most ∆(G)i vertices. In the remainder of this section, we investigate the
complexity of the problem further (and for different parameters) in order to identify the
boundary between tractability and intractability. As a warm-up, let us first prove that the
following holds:

▶ Lemma 13. SSPR is FPT parameterized by k + ℓ on nowhere-dense classes of graphs for
both the sliding and the jumping models.

Proof. The proof easily follows from the fact that FO-model checking is FPT on nowhere
dense classes of graphs [11]. Such an argument has already been used in various proofs for
reconfiguration problems, see e.g., [6].

For every i ≤ k and j ≤ ℓ, let us create a variable xi,j that represents the i-th vertex of
the path at the j-th step of the reconfiguration sequence. Let us prove that we can formulate
the existence of a reconfiguration sequence of length ℓ between P and Q as a FO-formula
on the set of variables xi,j . First we set xi,1 = pi where pi is the i-th vertex of the path P .
Similarly xi,ℓ = qi where qi is the i-th vertex of the path Q. We now need to ensure that at
every step j ≤ ℓ, the set of variables xi,1, . . . , xi,ℓ is a path of G, that is, for every i ≤ k − 1
and every j ≤ ℓ, xi,jxi+1,j is an edge.

IPEC 2024
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We further want to ensure that if one vertex is modified between the j-th path and the
(j + 1)-th path then all the other vertices are the same. That is, for every i, i′ ≤ k and
j ≤ ℓ − 1, we have (xi,j ̸= xi,j+1 ⇒ (xi′,j = xi′,j+1). If we want a reconfiguration sequence
with the token sliding rule, we have to add the following constraint: for every i ≤ k, j ≤ ℓ − 1,
xi,j = xi,j+1 or xi,jxi,j+1 is an edge. Finally, we add the constraints x1,j = s and xk,j = t

for every j ≤ ℓ.
Let us denote by ϕ the resulting formula. Let us prove that there exists a reconfiguration

sequence from P to Q of length at most ℓ if and only if ϕ is satisfiable. If there exists a
reconfiguration sequence P1 = P, . . . , Pr = Q with r ≤ ℓ then we simply have to set xi,j to
be the i-th vertex of Pj and xi,j′ = qi for every j′ ≥ r in order to satisfy all the constraints.

Conversely, assume that there exists an assignment of the variables that satisfies all the
constraints. Let us denote by Pj the set of ordered vertices xi,j for 1 ≤ i ≤ k. Note that, by
hypothesis, Pj is an st-path for every j. Moreover, by definition Pj and Pj+1 differ on at
most one vertex and P1 = P and Pℓ = Q. By removing consecutive paths that are the same
we obtain a reconfiguration sequence from P to Q, which completes the proof. ◀

Let us now generalize the previous result and prove that the following holds:

▶ Theorem 14. SSPR is FPT parameterized by ℓ on nowhere dense classes of graphs for
both the sliding and the jumping models.

Proof. The idea of the proof consists of proving that there exists an equivalent instance
where the distance between s and t is bounded by a function of ℓ. The conclusion then
directly follows from Lemma 13. To do so, we will prove that we can bound (by a function
of ℓ) the set of indices i on which there is a relevant modification on the i-th vertex of the
path at some step of the reconfiguration sequence. We will then prove that we can “forget”
the vertices which are not in these positions by reducing the length of the shortest paths.

Let (G, s, t, P, Q, ℓ) be an instance of SSPR. Let us denote by S the set of positions on
which P and Q differ. Note that if |S| > ℓ then we can immediately return false since more
than ℓ steps are needed to transform P into Q. So we can assume that |S| ≤ ℓ in the rest of
the proof.

▷ Claim 15. If there is a reconfiguration sequence from P to Q of length at most ℓ then
there is a reconfiguration sequence from P to Q that only modifies vertices whose indices are
at distance at most ℓ from an index of S.

Proof. Let R be a reconfiguration sequence from P to Q of length at most ℓ. At each step,
there is exactly one position where a vertex is modified. Let us denote by R that set of
positions where a vertex is modified. We have |R| ≤ ℓ. A component R′ of R is a maximal
subset of R containing consecutive integers. Every component R′ has a minimum and a
maximum value (that might be equal). We say that a component is important if it contains
a vertex of S and useless otherwise.

We claim that if there is a useless component R′, removing from R all the modifications
at position c for every c ∈ R′ leaves a reconfiguration sequence from P to Q. Indeed,
let us denote by R′ the resulting reconfiguration sequence. First note that since R′ is a
useless component, the final shortest path is still Q (we cancel modifications on positions
where P and Q were identical). Assume now, for a contradiction, that at some step of the
reconfiguration sequence in R′, the set of vertices Pi is not a shortest st-path. Let us denote
by u, v the consecutive vertices of Pi that are not adjacent. Since the path is only modified
at positions of indices of R′, either the index of u or v is in R′. Moreover, both of them
are not in R′ since by definition of R′ all the vertices of indices in R′ remain the same all
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along the reconfiguration sequence and the initial set of vertices is indeed a path. So we
can assume by symmetry that the position of u is the index just before the minimum value
of R′ and v is the minimum value of R′. Since the vertex v belongs to all the sets in the
reconfiguration sequence R′, it means that u has been modified. But then u should be added
in the component R′ of v, a contradiction.

Thus, if there is a reconfiguration sequence from P to Q of length ℓ, there is one with
no useless component. But the width of a component is at most ℓ since only ℓ vertices are
modified in a reconfiguration sequence. So if there is a reconfiguration sequence, there is one
that only moves tokens on vertices whose indices are at distance at most ℓ from an index of
S, as claimed. ◁

Let X(i, s) be the set of vertices at distance exactly i from s in G. Let IS be the set of
indices at distance at most ℓ from an index of S. Note that IS has size at most 2ℓ · |S|. An
empty interval for IS is an interval maximal by inclusion in {0, . . . , d(s, t)} \ IS . Note that
IS has at most |S| empty intervals. We create the graph G′ from G as follows:

G′ contains s, t and, for every i ∈ IS , G′ contains all the vertices of X(i, s).
For all the integers i /∈ IS but at distance one from an integer of IS , G′ contains the
vertex at position i in P (and Q).
There is an edge between x and y if xy is an edge of G, or if x, y are the unique two
vertices of G whose positions are in the same empty interval for IS

4.
Let us denote by P ′ and Q′ in G′ the set P ∩ V (G′) and Q ∩ V (G′). One can easily remark
that P ′ and Q′ are shortest st-paths in G′.

▷ Claim 16. There is a reconfiguration sequence from P to Q in G if and only if there is a
reconfiguration sequence from P ′ to Q′ in G′.

Proof. The proof follows from the fact that we can assume that a transformation from P

to Q of length at most ℓ in G only modifies vertices whose indices are at distance at most
ℓ from an index of S. All those vertices are in G′ and all the vertices of G′ that contain
non-movable tokens are unique at their corresponding distance from s (hence cannot move
in G′). ◁

One can remark that the distance between s and t in G′ is at most 4ℓ2. So by Lemma 13,
we can decide in FPT-time in ℓ if there is a reconfiguration sequence from P ′ to Q′ in G′,
which completes the proof. ◀
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