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—— Abstract

A matching cut of a graph is a partition of its vertex set in two such that no vertex has more
than one neighbor across the cut. The Matching Cut problem asks if a graph has a matching cut.
This problem, and its generalization d-cut, has drawn considerable attention of the algorithms
and complexity community in the last decade, becoming a canonical example for parameterized
enumeration algorithms and kernelization. In this paper, we introduce and study a generalization of
Matching Cut, which we have named Matching Multicut: can we partition the vertex set of a graph
in at least ¢ parts such that no vertex has more than one neighbor outside its part? We investigate
this question in several settings. We start by showing that, contrary to Matching Cut, it is NP-hard
on cubic graphs but that, when £ is a parameter, it admits a quasi-linear kernel. We also show an
o %) time exact exponential algorithm for general graphs and a 2908959 time algorithm for
graphs of treewidth at most t. We then turn our attention to parameterized enumeration aspects of
matching multicuts. First, we generalize the quadratic kernel of Golovach et. al for Enum Matching
Cut parameterized by vertex cover, then use it to design a quadratic kernel for Enum Matching
(Multi)cut parameterized by vertex-deletion distance to co-cluster. Our final contributions are on
the vertex-deletion distance to cluster parameterization, where we show an FPT-delay algorithm for
Enum Matching Multicut but that no polynomial kernel exists unless NP C coNP /poly; we highlight
that we have no such lower bound for Enum Matching Cut and consider it our main open question.
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1 Introduction

A matching M in a graph G is a subset of the edges of GG such that no vertex is the endpoint
of more than one edge in M. Matchings are one of the most fundamental concepts in graph
theory, with whole books dedicated to them [33,34]. A cut of a graph G is a partition of its
vertex set into two non-empty sets and we say that the set of edges between them is an edge
cut. A matching cut is a edge cut that is also a matching. Not all graphs admit a matching
cut, and graphs admitting such kind of cuts were first considered by Graham [28], who called
them decomposable graphs, to solve a problem in number theory. Other applications include
fault-tolerant networks [20], multiplexing networks [1] and graph drawing [41]. The problem
of recognizing graphs that do admit a matching cut, called MATCHING CUT, was studied
by Chvatal [13], who proved that the problem is NP-complete even restricted to graphs of
maximum degree four, while polynomial-time solvable in graphs of maximum degree three.
The problem was reintroduced under the current terminology in [41] and, since then, it has
been attracting much attention of the algorithms community. It has also been shown to
remain NP-complete for several graph classes such as bipartite graphs of bounded degree [42],
planar graphs of bounded degree or bounded girth [8] and Pj-free graphs (for large enough
t) [21]. On the positive side, tractable cases include H-free graphs, i.e. graphs without an
induced subgraph isomorphic to H, for some H, including Pg, the path on 6 vertices [36].
For a more comprehensive overview and recent developments, we refer to [12, 38].

MATCHING CUT has also been studied from the parameterized perspective, with the
minimum number of edges crossing the cut k being used as the natural parameter for this
problem. The first parameterized algorithm for k was given by Marx et al. in [39]; they
tackled the STABLE CUTSET problem using the treewidth reduction machinery and Courcelle’s
theorem, which yielded a very large dependency on k. We remark that MATCHING CUT on G
is equivalent to finding a separator that is an independent set in the line graph of G. Using
the compact tree decomposition framework of Cygan et al. [16], Aravind and Saxena [4]
developed a 20F10gk) A1) time algorithm for MATCHING CUT. Komusiewicz et al. [31]
presented a quadratic kernel for the vertex-deletion distance to cluster parameterization,
as well as single exponential time FPT algorithms for this parameterization and for vertex-
deletion distance to co-cluster; on the other hand, they gave a kernelization lower bound for
the combined parameterization of treewidth plus the number of edges in the cut. Aravind et
al. [3] presented FPT algorithms for neighborhood diversity, twin-cover and treewidth for
MATCHING CUT; the latter had its running time improved by Gomes and Sau in [26].

One area in which matching cuts have drawn particular attention is in parameterized
enumeration. Under this framework, our goal is to list all feasible solutions to a problem,
e.g. all matching cuts of an input graph. Parameterized algorithms that do so are classified
in two families: TotalFPT — where all solutions can be listed in FPT time — and DelayFPT —
where the delay between outputting two solutions, i.e. the time between these outputs, is
at most FPT. Based on the foundational work of Creignou et al. [14], Golovach et al. [25]
defined the kernelization analogues of TotalFPT and DelayFPT. Also in [25], the authors
developed several enumeration and kernelization algorithms for ENUM MATCHING CUT
under the vertex cover, neighborhood diversity, modular width, and clique partition number
parameterizations. They also studied the enumeration of minimal and maximal matching
cuts in the form of the ENUM MINIMAL MC and ENUM MAXIMAL MC problems under
some of the aforementioned parameterizations.

Similar problems to MATCHING CUT, as well as minimization and maximization ques-
tions [37], have also been considered. Their hardness follow directly from the problem
definition. Another related problem, PERFECT MATCHING CUT, asks for the existence of a
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perfect matching that is also a matching cut. Although its hardness does not follow directly
from MATCHING CUT the problem is also NP-complete [30]. The recent survey by Le et
al. [32] revisit and compare results on these variations. Some problems, however, can be
seen as direct generalizations of MATCHING CUT. In the d-CUT problem, the goal is to
partition the vertex set into two sets such that each vertex has at most d neighbors in the
opposite set of the partition. Introduced in [26], d-CUT has been shown to be NP-complete
for (2d + 2)-regular graphs and it has been shown to admit FPT algorithms under several
parameters such as the maximum number of edges crossing the cut [4], treewidth, vertex-
deletion distance to cluster, and vertex-deletion distance to co-cluster. When d = 1 the
problem is exactly MATCHING CuUT. However, many cases that are tractable for d = 1 have
been shown to become hard for d-CuT [35]. The other related problem arises in the context
of graph convexity. To our purposes, a convexity is a family C of subsets of a finite ground
set X such that X,0 € C and C is closed for intersection. Many graph convexities have been
considered in the literature [2,11,17,29], most of them motivated by families of paths. In
this context, a subset S of vertices is convex if all paths of a given type between vertices of S
contain only vertices of S. The most well-studied paths in the literature are shortest paths,
induced paths and Pj5, the paths on three vertices. One of the problems studied in the graph
convexity setting is the partition of the vertex set of a graph into convex sets. Note that, in
the Ps-convexity, this is equivalent to partition vertices in such a way that two vertices in a
set S have no common neighbor outside S. Hence, partitioning into two Ps-convex sets is
equivalent to MATCHING CUT. The more general case has also been considered in [10,27].

Our contributions. In this work we introduce the MATCHING MULTICUT problem, a novel
generalization of MATCHING CUT. A matching multicut on ¢ parts of a graph G is a partition
of its vertex set in {41, ..., A} such that each vertex in A; has at most one neighbor outside
of A;. Note that this is quite different from a partition into P3;-convex sets; in the latter, a
vertex v € A; may have one neighbor in each other A;, while in the former, v may have one
neighbor in Uj #i A;. Formally, we study the following problem:

MATCHING MULTICUT
Instance: A graph G and an integer /.
Question: Does G admit a matching multicut on at least £ parts?

We explore the complexity landscape of MATCHING MULTICUT under several settings
that were previously considered for MATCHING CUT. Since the case ¢ = 2 is exactly
MAaTcHING CUT, the problem is trivially NP-hard. It is also trivially paraNP-hard for the
natural parameter . We study its complexity for cubic graphs, exact exponential algorithms,
structural parameterizations as well parameterized enumeration questions.

Contrary to the classic result of Chvatal showing the polynomial-time solvability of
MatcHING CUT [13] for cubic graphs, we show that MATCHING MULTICUT is NP-hard even
restricted to those graphs. On the other hand, the problem becomes fixed parameter tractable
when parameterized by ¢. Indeed, we show that the problem admits a quasi-linear kernel
under this parameterization for subcubic graphs. We also show that the problem is FPT
parameterized by treewidth. From the definition of the problem, there is a trivial £*n®®) time
algorithm for MATCHING MULTICUT by just enumerating all possible (ordered) partitions of
V(G). We improve this by showing that the problem can be solved in a?no(l) time, with
a¢ < V0 for a graph on n vertices. Finally, we turn our attention to the enumeration of
matching multicuts in the form of the ENUM MATCHING MULTICUT problem.
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ENUM MATCHING MULTICUT
Instance: A graph G and an integer /.
Enumerate: All matching multicuts of G on at least ¢ parts

Our first results in this direction are a polynomial-delay enumeration (PDE) kernel under
vertex cover and a PDE kernel under vertex-deletion distance to co-cluster. Afterwards, we
present a DelayFPT algorithm for enumerating matching multicuts of a graph parameterized
by the vertex-deletion distance to cluster. For our final result, we show that, although ENUM
MATCHING MULTICUT is in DelayFPT for the vertex-deletion distance to cluster parameter,
MATCHING MULTICUT does not admit a polynomial kernel under the joint parameterization
of distance to cluster, maximum cluster size and the number of parts of the cut, unless
NP C coNP/poly. To prove this result, we show that SET PACKING has no polynomial kernel
parameterized by the size of the ground set, which could be of independent interest. To the
best of our knowledge, although expected, this result has not been explicitly stated before.

1.1 Preliminaries

We denote {1,2,...,n} by [n]. We say that a monotonically non-decreasing function f is
quasi-linear if f(n) € O(nlog®n) for some constant ¢. We use standard graph-theoretic
notation, and we consider simple undirected graphs without loops or multiple edges; see [6]
for any undefined terminology. When the graph is clear from the context, the degree (that is,
the number of neighbors) of a vertex v is denoted by deg(v), and the number of neighbors
of a vertex v in a set A C V(@) and its neighborhood in it are denoted by deg,(v) and
Na(v); we also define N(S) = [J,cg N(v) \ S. The minimum degree and the maximum
degree of a graph G are denoted by 6(G) and A(G), respectively. We say that G is cubic if
deg(v) = 3 for all v € V(G) and that G is subcubic if deg(v) < 3. A matching M of G is a
subset of edges of G such that no vertex of G is incident to more than one edge in M; for
simplicity, we define V(M) = J,,,c a1, v} and refer to it as the set of M-saturated vertices.
The subgraph of G induced by X is defined as G[X] = (X, {uwv € E(G) | u,v € X}). The
vertex-deletion distance to G is the size of a minimum cardinality set U C V(G) such that
G\ U = G[V(G) \ U] belongs to class G; in this case, U is called the G-modulator. A graph
G is a cluster graph if each connected component is a clique; G is a co-cluster graph if its
complement is a cluster graph. A vertex cover of G is a set of vertices incident to every edge
of G. A tree decomposition (7', {X;}sev (1)) of a connected graph G is such that T is a tree,
X: CV(Q) for all t and: (i) for every uv € E(G) there is some t € T where u,v € X; and
(ii) the nodes of T that contain v € V(G) form a subtree of T, for every v. The sets X; are
called the bags of the decomposition, the width of the decomposition is max;cy () Xy — 1.
The treewidth of G is the size of a tree decomposition of G of minimum width. For more on
treewidth and, in particular, nice tree decompositions, we refer the reader to [15].

We refer the reader to [15,18] for basic background on parameterized complexity, and we
recall here only some basic definitions. A parameterized problem is a tuple (L, k) where L C ¥*
is a language and  : ¥* — N is a parameterization. For an instance I = (z,k) € ¥* x N, k
is called the parameter. A parameterized problem is fized-parameter tractable FPT if there
exists an algorithm A, a computable function f, and a constant ¢ such that given an instance
I = (x,k), A (called an FPT algorithm) correctly decides whether I € L in time bounded
by f(k)-|I|°. A fundamental concept in parameterized complexity is that of kernelization;
see [23] for a recent book on the topic. A kernelization algorithm, or just kernel, for a
parameterized problem II takes an instance (x, k) of the problem and, in time polynomial
in |z| 4+ k, outputs an instance (2’,k’) such that |z’|, k" < g(k) for some function g, and
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(z,k) € II if and only if (2/,k") € II. The function g is called the size of the kernel. A
kernel is called polynomial (resp. quadratic, linear) if the function g(k) is a polynomial (resp.
quadratic, linear) function in k.

In terms of parameterized enumeration, we refer the reader to [14,25] for a more compre-
hensive overview than what we give below. A parameterized enumeration problem is a triple
(L,Sol, k) where L C ©* is a language, Sol : ¥+ — 27 is the set of all viable solutions and
Kk : X% — N is a parameterization. An instance to a parameterized enumeration problem is a
pair (z, k) where k = k() and the goal is to produce Sol(x). We say that an algorithm A
that takes (z, k) as input is a TotalFPT algorithm if it outputs Sol(z) in FPT time. Naturally,
several problems won’t have Sol(z) of FPT size. In this case, the best we can hope for is
that the delay to outputting a new solution is FPT. If not only this is the case but also: (i)
the time to the first solution, and (ii) the time from the final solution to the halting of the
algorithm are also in FPT, then we say that the algorithm is a DelayFPT algorithm. Very
recently, Golovach et al. [25] gave kernelization analogues to TotalFPT and DelayFPT, which
they called fully-polynomial enumeration kernel (FPE) and polynomial-delay enumeration
kernel (PDE), respectively. Formally, an FPE kernel is a pair of algorithms A, A’ called the
compressor! and lifting algorithms, respectively, where:

Given (z, k), A outputs (2/, k") with |2'|, k' < g(k) in time poly(|z| + k) for some comput-

able g.

For each s € Sol(z'), A’ computes a set S in time poly(|z| + |z’| + k + k') such that

{Ss | s € Sol(z")} is a partition of Sol(z).

For PDE kernels, we replace the polynomial (total) time condition of A’ with polynomial
delay on |x| + |2'| + kE+ K.

2  (Sub)Cubic graphs

A result of Chvétal [13] from the 1980s shows that MATCHING CUT is polynomial-time
solvable for subcubic graphs. Later, Moshi [40] showed that every connected subcubic graph
on at least eight vertices has a matching cut. When dealing with MATCHING MULTICUT, the
situation is not as simple. We first show that, if the number of components ¢ is part of the
input, then MATCHING MULTICUT is NP-hard. However, we are able to prove a Moshi-like
result, and show that, if £ is a parameter, then the problem admits a quasi-linear kernel.

2.1 NP-hardness

First, let us show a lemma and some helpful definitions for our construction.

» Definition 1. A graph G is indivisible if and only if G has no matching cut. A set of
vertices X C V(G) is said to be indivisible if the subgraph of G induced by X is indivisible.

We remark that the above definition is a conservative notion of togetherness; i.e. we
do not require that X is together in every matching cut of G, we require it to be together
regardless of the remainder of the graph that contains it.

» Definition 2. Let X C V(G) induce a connected subgraph of G with exactly one u € X
such that N(u)\ X # 0. If IN(u)\ X| =1 we say G[X] is a pendant subgraph of G and that
X induces a pendant subgraph of G.

! This was named the kernelization algorithm in [25], but we reserve this term to the pair A, A’ itself.
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» Lemma 3. Let [ = {Hy,...,Hy} be a set of mazimal indivisible pendant subgraphs of G.
Let vy,...,v; be pairwise distinct vertices so that N(H;) = {v;}. If (G,£) is a yes-instance
for some £ > k, then there exists a matching multicut P = {Py,..., Py} with P, = V(H;) for
1< <Ek.

Construction. To construct our instance (H,¢) of MATCHING MULTICUT, we will reduce
from an instance (G,k) of INDEPENDENT SET on cubic graphs, which is a well known
NP-complete problem [24]. First, for each u € V(G), create a K5 in H, label it as B,,, and
let B =,cv(g) Bu- Suppose that E(G) has been arbitrarily ordered as {e1,...,en}. For
each edge in order, we add the gadget in Figure 1. The vertices in B,, and B, are connected
in such a way no vertex has more than three neighbors.

/ v /i

Figure 1 Edge gadget for edge e; = ww. Thick edges are assumed to be in any solution to
MATCHING MULTICUT.

To connect our edge edges, we add an edge between n; and p;; for every i € [m — 1]
and between n,, and p;. With this the subgraph of H induced by the n;’s and p;’is a cycle
on 2m vertices. Finally, we set £ = 2m + k + 1. Intuitively, the pendant vertices force that
the entire cycle and the vertices between the triangles are contained in a single part of the
multicut; as such, picking a triangle invalidates picking any other triangle at distance two.

» Lemma 4. (H,2|E(G)|+k+1) is a YES-instance of MATCHING MULTICUT if and only if
G has an independent set of size at least k. Moreover, MATCHING MULTICUT is NP-complete
in subcubic graphs.

We can show in a very similar manner that MATCHING MULTICUT is NP-hard for cubic
graphs. To do this, we replace the pendant vertices of H with the indivisible graph in
Figure 2. The remainder of the argument follows as in the proof of the previous theorem.

\0
AN

Figure 2 Indivisible pendant subgraph.

» Corollary 5. MATCHING MULTICUT is NP-complete in cubic graphs.

2.2 Quasi-linear kernel

We now present a quasi-linear kernel for the MATCHING MULTICUT problem in the case
where the number of partitions ¢ is a parameter. In order to construct the kernel, we extend
Moshi’s result [40] and show the following theorem.
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» Theorem 6. Let G be a connected graph with A(G) < 3. If |[V(G)| = Q(Llog®{), then G
has a matching multicut that partitions the graph into ¢ parts.

The key for proving Theorem 6 is to find a sufficiently large collection of vertex-disjoint
cycles and construct a partition using some of them. In order to find these cycles, we first
need to deal with vertices of degree at most 2.

» Lemma 7. Let G be a connected subcubic graph, and let V1 denote the vertices of G with
degree 1. If |Vi| > 3¢, then G has a matching multicut that partitions the graph into £ parts.

Proof. Construct a matching M by greedily choosing edges that contain a vertex from V.
Because A(G) < 3, |M| > $|Vi| > £. Moreover, G — M contains at least |M| components
with an isolated vertex. <

» Lemma 8. Let G be a connected subcubic graph with |V (G)| = Q(£), and let Va denote
the vertices of G with degree 2. If |Vo| > £|V(G)|, then G has a matching multicut that
partitions the graph into £ parts.

Assume that G is a subcubic graph that does not satisfy the degree conditions of Lemmas
7 and 8. That is, G does not have many degree-1 vertices nor a large proportion of degree-2
vertices. Our strategy to find a matching multicut for G involves using disjoint cycles. The
intuition here is that if a cycle C' is entirely contained within a part of a partition of G, each
vertex v € C' will have at most one edge crossing the partition. Therefore, cycles are a good
starting point for partitioning the matching multicut. However, first we need to find disjoint
cycles. For this purpose, we utilize a theorem due to Simonovits [43], which is a precise
version of the well-known Erdés—Pésa theorem [19] in the context of subcubic graphs.

» Theorem 9 (Simonovits '67). Let G be a connected graph with 6(G) > 2. Let V>3 be the
set of vertices of G with degree at least 3. Then, G has at least |V>3|/(4log|V>3|) vertex
disjoint cycles.

It is worth mentioning that there exists an algorithmic approximation of Theorem 9 due
to Brandstddt and Voss [9]. Therefore, all the theorems presented in this subsection are
constructive and can be used to find a matching multicut of a subcubic graph.

Before moving to the main theorem of this subsection, we make some observations about
the neighborhood of subcubic graphs. Let N(v) be the set of vertices of G adjacent to
v, and let N[v] = N(v) U {v}. More generally, let N(S) be the set of vertices of G — S
that are adjacent to some vertex in S, and let N[S] = N(S)U S. We call N(S) the open
neighborhood and N[S] the closed neighborhood. We denote by N2[S] := N[N[S]] the closed
square neighborhood. Notice that for subcubic graphs, [N2[S]| < 10|S].

Proof of Theorem 6. Let G be a graph satisfying the conditions of Theorem 6. Let V1 (G),
V2(G), and V3(G) be the subsets of vertices of G with degrees 1, 2, and 3, respectively. If
G satisfies the conditions of Lemmas 7 or 8, we are done. Now we can safely assume that
[Vi(G)] < 3¢ and [Va(G)| < 35|V (G)].

Let G’ be the graph obtained from G after recursively removing degree 1 vertices. Notice
that each time a degree 1 vertex is removed, a vertex moves from V5 to V; or from V3 to V5. In

both cases, the difference |V3| — |V} | remains invariant; therefore, |V3(G')| > |V5(G)|— |V1(G)].

Notice that any matching multicut of G’ is also a matching multicut of G. Assume again
that G’ does not satisfy Lemma 8; in particular, this implies that |V5(G)| > |V (G)|/10.

25:7
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Now, G’ satisfies the conditions of Theorem 9. Let {C,...,Cx} be a collection of
kE=|V5(G")|/(41og |V3(G")|) = Q(Llog ¥) vertex-disjoint sets such that G[C;] is a cycle. By
giving a lower bound for the value of k, we also give a lower bound for |V (G)|. Later in the
proof, we will need k such that k2 > c¢f|V(G’)|, but notice that there always exists a constant
¢ > ¢ such that if |[V(G)| > ¢/flog? ¢, the lower bound on k? is satisfied.

For each set of vertices Cj, if there is v € V(G’) \ C; with [N(v) N C;| > 2, add v to C;,
that is, C; := C; U {v}. Notice that with this process, every vertex inside C; has at least two
neighbors inside C;, therefore, E(C;, V(G') \ C;) forms a matching cut.

We construct the matching multicut greedily. Let M := () be the initial matching multicut
and let S := () be a collection of marked vertices. Assume that the sets C; are ordered by
size with |Cy] < --- < |C|. Let C; be a set in the first half of this ordering with no vertex
marked, i.e., C; NS = 0. Add the edges with exactly one endpoint in C; to M and mark
NZ2[Cy], that is, M :== M U E(C;,V(G')\ C;) and S := S U N2?[C;]. If no such C; exists in
the first half of the ordering, stop the process. We claim that in the end, M is indeed a
matching multicut.

» Lemma 10. If M is a set of edges constructed as above, then M is a matching multicut
that divides G’ into at least £ parts.

It is easy to see that M is indeed a matching. Assuming otherwise, then there is a vertex
v with two edges from M containing v. By previous observations, v must not belong to any
set C; whose border was added to M, thus v € V(G")\ (C1U---UCk). If IN(v)NC;| > 2, v
would already have been added to Cj, so this cannot be the case. Hence, there are distinct
sets C; and C; chosen in the algorithm with |N(v) N Cs|,|N(v) N Cj| > 1. Assume that C;
was chosen before C;. As v is adjacent to a vertex of C; and a vertex of C;, there is a vertex
of C; in N2[C;], which means that this vertex should have been marked, implying that this
situation also cannot happen. We conclude that there is no vertex v with two edges from M
containing v.

Now, we just need to check that during the process at least ¢ sets C; were chosen so that
the edges E(C;, V(G') \ C;) were added to M. If this does not occur, we have that the size
of the marked vertices |S| is bounded:

V(G| _k
2

< (0 — 210N < _ < _
S| < (¢ 1)2%?72{\1\7 [Cill} £ 10(£ = 1)|Cy 2| < 10(£—1) B2 S

In the first inequality, we are assuming the worst case where we have always added the largest
squared neighbourhood. The second inequality follows from our previous bound on the size
of this squared closed neighbourhood. The third inequality holds because the average size of
the k/2 largest sets C; is 2|V (G)|/k, and the set Cj, /o has a size below this average. The last
inequality follows from our lower bound on k. This concludes the proof by showing that M
indeed divides G’ into at least £ components, so it is a matching multicut. |

Notice that in the proof, we choose |V (G)| in order to establish a lower bound on k2. We
do not explicitly specify the choice of the constant ¢’ such that [V/(G)| > ¢/¢log® £. However,
through a simple computation, it can be shown that ¢/ = 106 is sufficient. We have not
attempted to minimize the constants, but we believe that the value of ¢’ can be reduced.

It follows from Theorem 6 that if we want to ask for a matching multicut that divides an
n-vertex subcubic graph into £ = O(n/log? n) parts, the answer is trivially yes. On the other
hand, Theorem 4 provides a construction of a subcubic graph and shows that it is NP-hard
to determine if this graph has a matching multicut that divides it into ©(n) parts. We leave
it as an open question if it is possible to improve the asymptotic bound given by Theorem 6.



G. C. M. Gomes, E. Juliano, G. Martins, and V. F. dos Santos

3 Exact Exponential Algorithm

We now turn our attention to developing an exact exponential algorithm through a similar
approach used in [31]. For more on this type of algorithm and its associated terminology, we
refer the reader to [22]. Our algorithm consists of four stopping rules, seven reduction and
nine branching rules. At every step of the algorithm we have the sets {A1,..., Ay, F'} such
that ¢ = {A1,..., A¢} (unless any stopping rule is applicable) is a matching ¢-multicut of
the vertices of V(G) \ F. We set the size of the instance as the size of the set F', that is, how
many f{ree vertices are not assigned to any part yet. For simplicity, we assume that 6(G) > 2.
The arguments we use work with slight modifications to graphs of minimum degree one, but
they would unnecessarily complicate the description of the algorithm.

Intuitively, stopping rules are applicable whenever a bad decision has been made by the
branching algorithm and we must prune that branch. Reduction rules, on the other hand,
are useful for cleaning up an instance after a branching step has been performed. Finally,

our branching rules attempt to reduce the size of F' as much as possible for each possibility.

We follow the configurations given by Figure 3, and always branch on vertex v;. The main
culprit behind our complexity is rule B8, which gives us a branching vector of the form

{1} x {3}*~! and branching factor ¥/¢ < a, < v/ which, for £ >> 2, will be our worst factor.

vy A v ® U3 vy A; vy e A vy v _® A
o—o—o< o—o—o< o—o<
(B1) Se vy (B2) Ne vy (B3)™e A;
vy A vo vy A; o vy A vo vy Aj v
—eo—o_ —eo—o —eo—o_y, o—o—o
\o—o Uy \o—o A; \o/
o—o—o/(B4) o—o—o/(B5) o—o—o@(}o—o—o
o A v o A v oAU U A
vy A; vy
RN A v Ay Ai v ovs
o—e Uy o—eo—o o—eo—o
o—o—o/(B4’) o/ (B7) \o o/ (B8) \o
Ué Ai V3 (%] V3 V2 Aj

Figure 3 Branching configurations for MATCHING MULTICUT.

» Theorem 11. MATCHING MULTICUT can be solved in oz?no(l) time for a graph on n
vertices, where ap < V(.

4 FPT Algorithm by Treewidth

Let (T, {X¢}tev(r)) be a nice tree decomposition of a graph G with n vertices, with T’
corresponding to the tree of the nice tree decomposition and X; being the bag corresponding
to vertex t. Suppose T is rooted at a vertex root, that X, = 0. Let V; be the union of all
the bags present in the subtree rooted at ¢. Finally, define G; = G[V¢].

Our goal is to have c[t, P,Ext] = ¢ if and only if ¢ is the maximum integer such that
(G4, ¥) is a YES instance of MATCHING MULTICUT that respects P and Ext, which we now
formally define. First, P is a function P : X; — X; with P(v) corresponding to the vertex
in X; with the smallest label that is present in the same set as v in the partition. In other
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words, P is responsible for representing which partition of V; we have assigned each vertex
of X; to. Note that P(v) < v. Finally, Ext : X; — {0,1} is a function that signals whether
each vertex in X; has a neighbor in a different set in the partition. We denote by P|s the
restriction of P to X; \ {v}. Note that we can easily update each value in P|z to account for
the missing vertex: we pick the minimum element in P~1(v) \ {v} and set it as the new root
of the component previously identified by v.

» Theorem 12. [f given a nice tree decomposition of width k of the n-vertex graph G, there
exists an algorithm that solves MATCHING MULTICUT in 2¥1°8Fn, time.

5 Matching Multicut Enumeration

5.1 Vertex Cover

In this section, we consider the parameterization of the matching multicut problem by the
vertex cover number 7(G) of the input graph. This parameterization of ENUM MATCHING
CuT was previously studied in [25]. We show that the enumeration kernel constructed by the
authors of [25] is also an enumeration kernel for ENUM MATCHING MULTICUT. We assume
that the vertex cover X of size k < 27(G) is given together with the input graph.

We describe the kernel constructed in [25]. Assume for simplicity that G contains no
isolated vertices. Let I = V(G) \ X. Recall that I is an independent set. Denote by Iy
and I>o the subsets of vertices of I with degree 1 and at least 2, respectively. We use the
following marking procedure to label some vertices of I.

(i) For every « € X, mark an arbitrary vertex of N(z) NIy (if it exists).
(ii) For every two distinct vertices z,y € X, select an arbitrary set of min{3, |N(z) N (y)N
I>5|} vertices in I>2 adjacent to both z and y, and mark them for the pair {z, y}.

Denote by Z the set of marked vertices of I. Define H = G[X U Z]. Notice that
V(H)| <2|X|+ 3(‘)2“) = O(k?). This completes the description of the basic compression
algorithm that returns H. The key property of H is that it keeps all matching cuts of
G' = G — I, including all matching multicuts of G’. Formally, we define H' = H — ;. At
this point, we can observe that the matching multicuts of H and G’ are in a one-to-one
correspondence. With a few more technical details, we can prove Theorem 13.

» Theorem 13. ENUM MATCHING MULTICUT admits a polynomial-delay enumeration kernel
with (’)(kz) vertices when parameterized by the verter cover number k of the input graph.

By Theorem 13, we have that matching multicuts can be listed with delay pOR?) o)
We believe that this running time can be improved and the dependence on the vertex cover
number can be made single exponential.

5.2 Distance to Co-cluster

A 3-approximation for this parameter can easily computed in polynomial time: for every
induced Ps, add all three of its vertices to the modulator. As such we assume that, along with
(G,?), we are given a set S of size k < 3dcc(G) so that G\ S is a co-cluster graph. We break
down our analysis in three cases: if G\ S has at least three parts, two large parts, or neither
of the previous two. For the first two, we essentially have that G \ S is indivisible, while for
the last one we may simply invoke the algorithm for the vertex cover parameterization.

» Theorem 14. ENUM MATCHING MULTICUT admits a polynomial-delay enumeration kernel
with O(kQ) vertices when parameterized by the distance to co-cluster k of the input graph.
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5.3 Distance to Cluster

In this section, we present a DelayFPT enumeration algorithm for ENUM MATCHING MULTI-
CUT, parameterized by the vertex-deletion distance to cluster. We base our result on the
quadratic kernel for MATCHING CUT given in [31]. The authors apply several reduction
rules until they reach a kernel of size de(G)©(M). We use a subset of these rules as a starting
point for our enumeration algorithm, then expand them a more careful analysis and needed
technicalities for an enumeration algorithm. Formally, we prove the following theorem.

» Theorem 15. There is an algorithm for ENUM MATCHING MULTICUT on n-vertex graphs
with distance to cluster dc(G) <t of delay 20(t*logt) 4 pO(),

Our strategy to enumerate all possible matching multicuts can be divided into 5 steps:

1. We apply reduction rules, similar to the kernel given in [31], spending poly(|G]) time.

2. We enumerate all possible matching multicuts of a smaller instance of size O(¢3). This
step takes a total time of 20(t*1ogt),

3. Given a matching multicut generated in step 2, we create an instance of ENUM SET
PACKING, where the ground set has size ¢ and the number of sets is potentially 2¢. All
solutions are enumerated in total time 20“2)7 and then each solution is extended to form
a matching multicut.

4. Given a matching multicut from step 3, we increase the number of partitions by considering
clusters of size 2 with only one edge to U. Now, we guarantee that we have at least ¢
partitions. As the number of matching multicuts with at least ¢ parts can be unbounded
by ¢, we worry about the delay of the enumeration and no longer with its total time.

5. We enumerate equivalent solutions for the original instance.

6 Kernelization lower bound for distance to cluster

Since we do have a DelayFPT algorithm for the vertex-deletion distance to cluster paramet-
erization, it is natural to ask whether we can build a PDE kernel of polynomial size. In
this section, we show this in the negative by presenting an exponential lower bound for
MATCHING MULTICUT under this parameterization.

To obtain our result, we first show a kernelization lower bound for SET PACKING. In this
problem, we are given a ground set X, a family 7 C 2%, and an integer k, and are asked
to find F' C F of size at least k such that for any A, B € F' it holds that AN B = 0. In
particular, we prove Theorem 16.

» Theorem 16. SET PACKING has no polynomial kernel when parameterized by | X| unless
NP C coNP/poly.

Our proof is based on an OR-cross-composition [5] from SET PACKING onto itself under
the desired parameterization. To this end, we denote our input collection of SET PACKING
instances by {(Y1,&1,71),..., (Ys, &, )} Moreover, we can assume that Y; = {y1,...,yn}
and r; = r for all ¢ € [t] and, w.l.o.g, that ¢ = 27 for some 7 > 0; the latter can be easily
achieved by copying any one instance 27 — t times and adding it to the input collection,
which at most doubles this set if 7 is the minimum integer such that 27 > ¢.

Construction. We construct our (X, F, k) SET PACKING instance as follows. Our set X is
partitioned into the set of input elements Y, index elements S = {sg, $1,...,5,}, and a set
of bits {b; j,b; ; | i € [7],j € [r]}. We define bits;(a) to be the set where b; ; € bits;(a) if and
only if the i-th bit in the binary representation of a is 1, otherwise we have that b; ; € bits;(a).
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The family F is partitioned in selector sets, identified as T = {T1,...,T;}, and packing
sets P. Each T, is defined as T, = {so} U U, bits;(@), where @ is the (positive) bitwise
complement of a, i.e. a+a =27 —1. As to our packing sets, for each input instance (Y, &,,7),
each C; € &,, and each j € [r], we add to P the set Cy; j = C; Ubits;(a) U {s;}. Finally, we
set k = r+ 1. Intuitively, packing T, € T corresponds to solving instance (Y, &,,r) and, since
every T, has sg, only one of them can be picked. The way that our bits sets were distributed,
picking T, automatically excludes all elements in P corresponding to sets present in another
instance (Y, &, r). Finally, index elements S are used to ensure that at least one instance set
is packed. The next observation follows immediately from the construction of our instance.

» Observation 17. Instance (X, F,k) is such that |X| < |Y|+ (r + 1)(1 + logt) and
|IC| <1+rlogt for all C € F.

The proof of our main result, Theorem 18, follows from a simple polynomial parameter
transformation from SET PACKING parameterized by the size of the ground set.

» Theorem 18. When parameterized by the vertex-deletion distance to cluster, size of the
maximum clique, and the number of parts of the cut, MATCHING MULTICUT does not admit
a polynomial kernel unless NP C coNP /poly.

7 Final Remarks

In this paper, we introduced and studied the MATCHING MULTICUT problem, a generalization
of the well known MATCHING CUT problem, where we want to partition a graph G into at
least ¢ parts so that no vertex has more than one neighbor outside of its own part. Specifically,
we proved that the problem is NP-hard on subcubic graphs, but admits a quasi-linear kernel
when parameterized by £ on this graph class. We also showed an £ZnAV) exact exponential
algorithm based on branching for general graphs. In terms of parameterized complexity,
aside from our aforementioned kernel, we give a 210881 time algorithm for graphs of
treewidth at most ¢. Then, we move on to enumeration aspects, presenting polynomial-delay
enumeration kernels for the vertex cover and distance to co-cluster parameterizations, the
latter of which was an open problem for ENUM MATCHING CUT. Finally, we give a DelayFPT
algorithm for the distance to cluster parameterization, and show that no polynomial-sized
PDE kernel exists unless NP C coNP/poly. This last result is obtained by showing that SET
PACKING has no polynomial kernel parameterized by the cardinality of the ground set.

For future work, we are interested in further exploring all aspects of this problem, such
as graph classes and other structural parameterizations. As with MATCHING CUT, it seems
interesting to study optimization and perfect variations of this problem, which may yield
significant differences in complexity to MATCHING MULTICUT. While MAXIMUM MATCHING
MuLTicuT is NP-hard as PERFECT MATCHING CUT is NP-hard on 3-connected cubic planar
bipartite graphs [7], the proof does not help in terms of W([1]-hardness. We believe that it in
fact is W[1]-hard parameterized by ¢ + number of edges in the cut even on cubic graphs.

Our other questions of interest are mostly in the enumeration realm. In particular,
we have no idea if it is possible to enumerate matching cuts on (sub)cubic graphs, and
we consider it one of the main open problems in the matching cut literature. Finally, we
are interested in understanding how to rule out the existence of TotalFPT and DelayFPT
algorithms for a given problem and, ultimately, how to differentiate between problems that
admit FPE and PDE kernels of polynomial size and those that do not.
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