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Abstract
This article is a report by the challenge organizers on the 9th Parameterized Algorithms and
Computational Experiments Challenge (PACE 2024). As was common in previous iterations of
the competition, this year’s iteration implemented an exact and heuristic track for a parameterized
problem that has gained attention in the theory community. This year’s challenge is about the One-
Sided Crossing Minimization Problem (OSCM). In the exact track, the competition participants
were asked to develop an exact algorithm that can solve as many instances as possible from a
benchmark set of 100 instances – with a time limit of 30 minutes per instance. In the heuristic track,
the task must be accomplished within 5 minutes, however, the result in this track is not required
to be optimal. New this year is the parameterized track, which has the same rules as the exact
track, but instances are guaranteed to have small cutwidth. As in previous iterations, the organizers
handed out awards to the best solutions in all tracks and to the best student submissions.
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1 Introduction: History and Timeline of PACE

The Parameterized Algorithms and Computational Experiments Challenge (PACE) was
conceived in Fall 2015 to deepen the relationship between parameterized algorithms and
practice. The declared mission of the PACE challenge is to

bridge the divide between the theory of algorithm design and analysis, and the practice
of algorithm engineering,
inspire new theoretical developments,
investigate in how far theoretical algorithms from parameterized complexity and related
fields are competitive in practice,
produce universally accessible libraries of implementations and repositories of benchmark
instances,
encourage the dissemination of these findings in scientific papers.

© Philipp Kindermann, Fabian Klute, and Soeren Terziadis;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Parameterized and Exact Computation (IPEC 2024).
Editors: Édouard Bonnet and Paweł Rzążewski; Article No. 26; pp. 26:1–26:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kindermann@uni-trier.de
https://orcid.org/0000-0001-5764-7719
mailto:fmklute@gmail.com
https://orcid.org/0000-0002-7791-3604
mailto:s.d.terziadis@tue.nl
https://orcid.org/0000-0001-5161-3841
https://doi.org/10.4230/LIPIcs.IPEC.2024.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


26:2 PACE 2024: One-Sided Crossing Minimization

Previous iterations of the PACE challenge addressed a variety of graph optimization problems.
Specifically, the previous iterations considered

PACE 2016 Treewidth and Undirected-Feedback-Vertex-Set [6];
PACE 2017 Treewidth and Minimum Fill-In [7];
PACE 2018 Steiner Tree [5];
PACE 2019 Vertex-Cover and Hypertreewidth [13];
PACE 2020 Treedepth [28];
PACE 2021 Cluster-Editing [25];
PACE 2022 Directed-Feedback-Vertex-Set [18];
PACE 2023 Twinwidth [3] .

Several of the previous iterations also contained more specialized tracks. Starting with
the first iteration of PACE, many participants from all over the world were interested in the
challenge and quickly established PACE as a highly competitive challenge. The competition
attracted a record number of 112 participants this year, resulting in 75 submissions; see
Figure 1.
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Figure 1 Overview of the number of participants and distinct submissions of the PACE challenge
over the years. Teams submitting multiple times and to multiple tracks are counted multiple times.

Papers inspired by concrete implementations created in the context of the PACE challenge
were published in prestigious conferences such as ACDA, ALENEX, ESA (Track B), SEA,
and WADS. The instances provided by PACE have also often been used to showcase further
algorithmic improvements by being used as an established benchmark, ranging also to other
competitions such as the famous SAT competition [2].

This report contains the relevant information on the ninth PACE challenge. The problem
chosen was One-Sided Crossing Minimization, an important classical graph drawing
problem with applications in hierarchical graph drawing, e.g., in the Sugiyama framework [37].
The challenge featured three tracks: an exact track, a heuristic track and a parameterized
track. In the exact track, the task was to find an optimal solution of a given instance within
30 minutes and a memory limit of 8 GB. The instances in the exact track were guaranteed to
have a low number of crossings relative to the instance size. In the heuristic track the number
of crossings could be very large and the task was to compute a valid (but not necessarily
optimal) solution with as few crossings as possible within a time limit of 5 minutes and
a memory limit of 8 GB. The parameterized track used the same rules as the exact track
(compute an optimal solution within 30 minutes using 8GB). However here the number of
crossings was not guaranteed to be small and instead the cutwidth of the given instances
was low. Additionally a witness for this low cutwidth was provided for every instance.
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The timeline of the challenge started with the announcement in September 2023. Details
about the input and output format were provided in November 2023 together with a tiny
test set to allow the participants to start with the challenge. In addition, a small visualizer
was provided, which can be used to view instances and solutions. Alongside we provided
(via pip and source download) a verifier, which could be used to verify a given solution using
a set of crossing counting algorithms. The concrete ranking methods for both tracks were
published in December 2023. At the same time we provided a JUnit-like auto-tester, which
runs a solver against a given set of instances and compares the output to provided (optimal)
solutions. In early February 2024 the public instances and details about the benchmark set
were published. Additionally a Github repository was made available with the intention
that participants could add their own created test instances to make them available to all
participating teams. The public leaderboard on the optil.io platform was opened in April
2024 and frozen on May 20th 2024. This allowed the participants to test their solvers on
the public instances and provided a provisional ranking. The final version of the submission
for the solver code was due on the ninth of June 2024 and the descriptions of the solvers
had to be submitted until June 23. Afterwards, the submissions were evaluated on the
private instances, which were similar in structure to the public instances but unknown to the
participants. The results of this evaluation were announced in July 2024 (a correction of
the ranking was issued on the ninth of August 2024), and the award ceremony took place
during the International Symposium on Parameterized and Exact Computation (IPEC) 2024
at Royal Holloway University of London in Egham. The complete timeline can be found in
Figure 2.
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Figure 2 Timeline of the PACE challenge in 2024 (the diagram ranges from September 2023 to
September 2024). The next iteration of the PACE challenge for 2025 was announced during the
award ceremony.

2 The Challenge Problem: One-Sided Crossing Minimization

This year’s challenge was about the problem One-Sided Crossing Minimization (OSCM).
This problem involves arranging the nodes of a bipartite graph on two layers (typically
horizontal), with one of the layers fixed, aiming to minimize the number of edge crossings.
More formally:

IPEC 2024
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One-Sided Crossing Minimization (OSCM)
Input: A bipartite graph G = ((A∪̇B), E), and a linear order of A.
Output: A linear order of B.
Measure: The number of edge crossings in a straight-line drawing of G with A and B

on two parallel lines, following their linear order.

OSCM is one of the basic building blocks used for drawing hierarchical graphs [37].
While easy to state it turns out that the problem is difficult to solve efficiently. As many
graph drawing problems OSCM is well known to be NP-hard [14], even for star forests of
degree 4 [32] and for trees [9]. Obtaining exact solutions in practice is commonly done using
SAT or ILP formulations of the problem [23].

Turning to other exact algorithms, the problem can be solved in FPT time using the
number of crossings as the parameter. Dujmovic and Whitesides [11] gave the first algorithm
in 2004. Subsequent research [12, 26] pushed the running time down to O(k2

√
2k + n), where

the exponent
√

2k is asymptotically optimal assuming the exponential time hypothesis.
Aside from exact solutions, OSCM does admit a constant-factor approximation [15]. More

importantly for practical considerations though, OSCM admits good heuristics. Two of the
best-known ones are the barycenter and the median heuristic. As the names suggest, in the
former each vertex is placed in the barycenter of its neighbors and in the latter in the median
position of its neighbors. These very simple heuristics even come with some theoretical
guarantees. For example, the barycenter heuristic yields a O(

√
n) approximation [31].

For an extended overview, see Chapter 13.5 of the Handbook of Graph Drawing [22].
In the parameterized track, all instances have small cutwidth. Given a graph G = (V, E)

and a linear ordering π on V , the cutwidth of (G, π) is the maximum number of edges that
cross any partitioning of V into earlier and later subsets of π, that is, max1≤i<|V | |{(u, v) ∈
E | π(u) ≤ i < π(v). The cutwidth of G is the minimum cutwidth over all possible linear
orderings of V .

The cutwidth of a graph can be computed in FPT time using the cutwidth as the
parameter. In particular, there is an 2O(k2)n-time algorithm to compute the cutwidth k

if a graph [17]. There is a connection between cutwidth and the general crossing number
of graphs: Any graph G = (V, E) with cutwidth k requires at least k2

1176 −
∑

v∈V

(
deg(v)

4

)2

crossings in any drawing [8].
Since OSCM is NP-hard even for star forests of degree 4 [32], which have cutwidth 2, it is

paraNP-hard if parameterized by the cutwidth. However, in the input to OSCM, the order
of A is fixed, and the instances of the NP-hardness proof come with orders of A that do not
admit a constant cutwidth, that is, there is no linear order on the vertices of the constructed
graphs where the order of A is the same as in the input and the cutwidth is constant. Hence,
we are interested in studying OSCM for graphs where the cutwidth remains small even if the
order of A has to remain the same as in the input.

3 The Setup of PACE 2024

As already mentioned before, this year’s challenge featured three tracks. The exact and
parameterized track both required the computation of an optimal solution and gave different
guarantees about the structure of the input instances. In the heuristic track, no guarantees
were made about the structure of the instances and participants were tasked with computing
the best (but not necessarily optimal) layout they can find within a more limited time frame.
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3.1 The Exact Track
The task of this track was to compute an optimal solution of OSCM for 200 graphs, 100
of which were public and 100 of which were not known by the participants and were only
presented to the solver during the evaluation in a compartmentalized judge system. For
each of the graphs, the solver had a time limit of 30 minutes and a memory limit of 8 GB
to output a solution. All instances were guaranteed to have a “not too large” number of
crossings in an optimal solution (detailed information about this can be found in Section 3.5).

The organizers of the competition encouraged submissions that implement provably
optimal algorithms, however, this was not a formal requirement. The exact rule stated on
the website was

Submissions should be based on provably optimal algorithms, however, this is not a formal
requirement. Submissions that output an incorrect solution or a solution that is known to be
non-optimal will be disqualified. Besides dedicated algorithms, we also encourage submissions
based on other paradigms such as SAT, MaxSAT, or ILPs.

The requirement of outputting optimal solutions extends to instances that were not
included in the set of the 200 evaluation instances. In the exact track 7 solvers were
disqualified, 5 on the basis of outputting wrong answers for one or more of the 200 evaluation
instances and 2 due to subsequently found counterexample instances.

Submissions of this track were ranked by the number of solved instances. In case of a tie,
the winner was determined by the total time spent on the solved instances. In particular,
there was no need to abort a “hopeless” run early.

3.2 The Heuristic Track
In this track, the solvers were tasked with computing a good solution quickly. The solvers
were run on each instance for 5 minutes and received the Unix signal sigterm afterwards.
When receiving this signal, the solver had to output a valid layout in the defined solution
format immediately to the standard output and terminate. If the program did not halt in a
reasonable time after receiving the signal, it was stopped via sigkill and the instance was
counted as time limited exceeded. The memory limit for this track was 8 GB as well. For
this track, solutions did not have to be optimal.

Submissions were ranked by the sum over all instances of

# crossings in solver layout
smallest # crossings known to the PC .

Note that the “smallest number of crossings in any layout known to the PC” may not be
optimal, i. e., may be larger than the number of crossings in an optimal solution.

3.3 The Parameterized Track
This track had the same rules as the Exact Track. However, the instances here could require
a large number of crossings, but they had small cutwidth: there is an ordering of the vertices
of the graph such that every cut obtained by partitioning the vertices into earlier and later
subsets of the ordering is crossed by at most “a small number” of edges. Such an ordering
was provided in the input. Note that in this ordering the vertices of A and B were generally
interleaved, but the order of the vertices of A (the fixed side) was the same as in the problem
instance.

IPEC 2024
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3.4 Internal Solver
One of the most challenging aspects of creating the benchmark set was to strike a balance
between sufficiently difficult instances and the need to solve them to optimality in order to
judge the exact and parameterized track. The organizers used an ILP solver to answer this
question. This solver was implemented based on the formulation of Jünger and Mutzel [23].

Specifically, let A and B be the two partite sets of the given bipartite graph. For every
pair of vertices vi, vj ∈ B we create a binary variable ti,j , which should be true if and only if
vi appears before vj in the final order of B. Since this order is linear it is of course transitive.
This can be enforced by adding for every i < j < k the inequalities 0 ≤ ti,j + tj,k − ti,k ≤ 1,
i.e., transitivity constraints. The number of crossings between the edges incident to vi and
the edges incident to vj is only dependent on the relative order of vi and vj and can easily
be precomputed. Let ci,j (cj,i) be this number if vi appears before (after) vj in the final
order of B. Then we simply minimize

∑
i<j (ci,jti,j + cj,i(1 − ti,j)).

Since the number of transitivity constraints can grow quite large, the internal solver of the
organizers added them on demand using callbacks whenever a solver found a new solution.
The solver was initialized without any transitivity constraints. If a new solution is found,
the binary variables are used to define a directed graph on all vertices of B, i.e., an edge is
added from vi to vj if ti,j is true otherwise the edge in the opposite direction is added. If
this graph contains any cycles, we obtain all chordless cycles (which are necessarily triangles)
and add the transitivity constraint for the three involved vertices.

3.5 Benchmark Set
The fourth aim of the PACE challenge was to produce universally accessible libraries of
implementations and repositories of benchmark instances. While the first part of this aim was
exactly what we expected from the participants, it was the duty of the program committee
to produce the benchmark instances. The properties of the benchmark instances we strived
were that
1. the benchmark instances should be heterogeneous,
2. they vary in size and difficulty and
3. it remains a challenging benchmark after the challenge.

The reason for the first criterion was that we wanted to evaluate the overall performance
of the approaches developed by the participants (and not the performance on, say, a specific
graph class). The goal of the second criterion was to make the challenge interesting and fun.
We wanted a benchmark set in which every participant can solve at least a few instances,
which should especially encourage student teams to participate as well. The medium instances
were the ones that were meant to distinguish the quality of the various solvers, and the hard
instances ensured that the tracks which require optimal solutions could be judged based on
the number of solved instances. Moreover, we wanted to create a test set which contained
instances hard enough to remain interesting after the challenge, instead of one that is simply
“solved” after the competition. We expected that these hard instances are barely solvable
by solvers developed in the time span of the competition and, thus, leave room for further
research.

We created generators for several graph classes, including uniform random (planar)
graphs, cycles, paths, complete bipartite graphs, stars, matchings, trees, lobsters, (double-
)caterpillars, grids, quadrangulations, (partial) k-trees, wheels, disk intersection graphs,
interval bigraphs, (circular) ladders, hypercubes, co-graphs, intersection graphs, bipartite
permutation graphs, and graphs with small vertex cover / cutwidth / neighborhood diversity.
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(a) Distribution of #vertices in the exact bench-
mark set.

(b) Distribution of edge density in the exact bench-
mark set.

(c) Distribution of crossing density in the exact
benchmark set.

(d) Distribution of #vertices in the parameterized
benchmark set.
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(e) Number of instances by cutwidth in the para-
meterized benchmark set.

(f) Distribution of crossing density in the paramet-
erized benchmark set.

(g) Distribution of #vertices in the heuristic bench-
mark set (log scale).

(h) Distribution of edge density in the heuristic
benchmark set.

Figure 3 Details about the benchmark sets in the three tracks.
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We also included (variations of) known examples from the literature that common heuristics
perform badly on. To further increase variety, we also added options to randomly permute
one or both bipartitions and to glue instances together. Many generators are based on
Networkx [21]. The code can be found online1.

To find a good balance in the difficulty of the benchmark, we created about 15,000
instances of various sizes from each of these graph classes and tried to solve them with our
solver. For the exact and parameterized track, we only selected instances for which we knew
the optimum solution.

For the exact track, we decided to use between 5 and 15 instances from each graph class.
We used 60 instances that our solver could solve within 10 minutes, 50 instances that it
could solve in under 20 minutes, 40 instances that it could solve in under 30 minutes, and
50 instances that required more time. While general instances can require Ω(m2) ∈ Ω(n4)
crossings, we selected instances where the crossing density (i.e., the number of crossings
required divided by the number of vertices) does not get too large; see Figure 3c. The graphs
had between 560 and 20,000 vertices (with one exception that has 32,691 vertices) and edge
density between 0.2 and 2.5; see Figures 3a and 3b.

For the heuristic track, we used similar instances, but made them much larger; see
Figures 3g and 3h. The graphs had up to 262,124 vertices and 1,114,112 edges.

For the parameterized track, we also used only instances for which we knew the optimum
solution. We generated instances with bounded cutwidth by two random sampling approaches.
All but two instances had cutwidth at most 50; see Figure 3e. The graphs had between 1552
and 13,674 vertices and required between 0.08n and 123.78n crossings.

3.6 Available Tools

Mini Test Set

As a first set of instances and to get development for the participants off the ground, we
provided a set of mini test instances2. We also provided the solutions to these test instances3.
An impression of these instances can be seen in Figure 4.

Verifier

We provided a Python-based tool to verify a solution and test a given solver against a set of
tests. This verifier was provided as a python package on the website4 and was continuously
updated throughout the challenge. To verify a produced solution two main algorithms were
available. The first one was a simple, inefficient, but surely correct implementation that just
tested for every pair of edges whether they cross. The second method and usually the default
option, was an algorithm based on so-called segment trees. For comfort the verifier could not
only be run on a single solution to verify it, but instead could be provided with a folder of
test instances and a solver. Each instance was then solved using the provided solver and the
resulting solution checked. By default the test instances used in this verifier mode were the
tiny test set described above.

1 https://pacechallenge.org/2024/instance_generator.py
2 https://pacechallenge.org/2024/tiny_test_set.zip
3 https://pacechallenge.org/2024/tiny_test_set-sol.zip
4 https://pacechallenge.org/2024/verifier/

https://pacechallenge.org/2024/instance_generator.py
https://pacechallenge.org/2024/tiny_test_set.zip
https://pacechallenge.org/2024/tiny_test_set-sol.zip
https://pacechallenge.org/2024/verifier/
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(a) Tree (n = 16).

A

B

(b) Input order.

A

B

(c) Optimal solution.

(d) Path (n = 9).

A

B

(e) Input order.

A

B

(f) Optimal solution.

Figure 4 Two example instances from the mini test set given with a force directed layout to
illustrate the structure as well as the input order and the optimal 2-layered layout. The partite
set, whose order is fixed (A) is drawn in black, the vertices of the permutable set (B) are drawn in
unique colors.

Visualizer

We also provided a visualizer tool to the participants.5 This tool displayed a given graph
and solution in a graphical interface. For small and medium size instances this allowed the
participants to get a graphical idea of their solutions and was hopefully helpful in finding
potential improvements of their algorithms. The images in Figure 4 were created using this
visualizer.

4 Participants and Results

There were 25, 32 and 17 distinct submissions to the exact, heuristic and parameterized
track, respectively. Hence, in total there were 40 distinct teams with a total number of 112
participants representing four continents and 21 countries, which made this the largest PACE
challenge yet. The results are listed below.

4.1 Ranking of the Exact Track
The ranking for the exact track is listed subsequently; We list the number of solved instances
from the 100 private instances plus the 100 public instances as well as the total computation
time used for the solved instances. Submissions marked with an “�” icon are student
submissions after the following rules

A student is someone who is not and has not been enrolled in a PhD program before the
submission deadline. A submission is eligible for a Student Submission Award if either
all its authors are students, or besides student co-author(s) there is one non-student co-
author that confirms, at the moment of submission, that a clear majority of conceptual and
implementation work was done by the student co-author(s).

5 https://pacechallenge.org/2024/visualizer/

IPEC 2024
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The first five valid student submissions were eligible for a Student Submission Award;
there were three such submissions, which received this award.

Rank 1 mppeg solved 199 instances in 5682.93 seconds. Link §

Authors Michael Jünger, Paul Jünger, Petra Mutzel and Gerhard Reinelt
Affiliation University of Cologne, University of Bonn and Heidelberg University

Rank 2 uzl solved 195 instances in 7692.89 seconds. Link §

Authors Max Bannach, Florian Chudigiewitsch, Kim-Manuel Klein and Marcel
Wienöbst

Affiliation European Space Agency and Institute for Theoretical Computer Science,
University of Lübeck

Rank 3 CRGone solved 192 instances in 15520.39 seconds. Link §

Authors Alexander Dobler
Affiliation Technische Universität Wien

Rank 4 Guilucand solved 187 instances in 9358.96 seconds. Link §

Authors Andrea Cracco
Affiliation Universitá degli Studi di Verona

Rank 5 crossy (�) solved 180 instances in 19099.31 seconds. Link §

Authors Tobias Röhr and Kirill Simonov
Affiliation Hasso Plattner Institute, University of Potsdam

Rank 6 weberknecht solved 164 instances in 21408.17 seconds. Link §

Authors Johannes Rauch
Affiliation Institute of Optimization and Operations Research, Ulm University

Rank 7 LUNCH solved 157 instances in 10425.52 seconds. Link §

Authors Kenneth Langedal, Matthias Bentert, Thorgal Blanco and Pål Grønås Drange
Affiliation University of Bergen

Rank 8 Arcee (�) solved 152 instances in 11189.13 seconds. Link §

Authors Kimon Boehmer, Lukas Lee George, Fanny Hauser and Jesse Palarus
Affiliation Université Paris-Saclay, Technical University Berlin

Rank 9 lcs solved 136 instances in 1186.94 seconds. Link §

Authors Mohamed Mahmoud Abdelwahab, Faisal N. Abu-Khzam and Lucas Isenmann
Affiliation Lebanese American University

Rank 10 sherby solved 135 instances in 1683.19 seconds. Link §

Authors Manuel Lafond, Alitzel López Sánchez and Bertrand Marchand
Affiliation Department of Computer Science, University of Sherbrooke

Rank 11 U_OCM solved 121 instances in 7907.2 seconds. Link «

Authors Mert Biyikli, Kathrin Hanauer, Sophia Heck, Lukas Krumpeck, Lara Ost,
Tobias Prisching, Ole Schlüter, Matej Vedak and Maximilian Vötsch

Affiliation Faculty of Computer Science, University of Vienna and Faculty of Physics,
University of Vienna

Rank 12 roundabout solved 109 instances in 564.63 seconds. Link #

Authors Emmanuel Arrighi and Petra Wolf
Affiliation EnsL, Univ Lyon, UCBL, CNRS, Inria in Lyon and LaBRI, CNRS, Université

de Bordeaux
Rank 13 HWoydt solved 75 instances in 12.75 seconds. Link §

Authors Henning Martin Woydt
Affiliation Heidelberg University

https://github.com/pauljngr/PACE2024
https://github.com/mwien/pingpong
https://github.com/Doblalex/CRGone
https://github.com/Guilucand/pace2024-challenge
https://github.com/roehrt/crossy
https://github.com/johannesrauch/PACE-2024
https://github.com/KennethLangedal/PACE2024-UiB/tree/main
https://github.com/lucidLuckylee/pace_2024
https://github.com/lucas-test/pace24-ocm/tree/final
https://github.com/bmarchand/sherby-pace-2024
https://gitlab.com/vietaa/pace/u_ocm
https://bitbucket.org/arrighi/roundabout/src/main/
https://github.com/HenningWoydt/PACE2024Exact
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Rank 14 GOAT solved 74 instances in 725.36 seconds. Link «

Authors Patrik Drbal, Michal Dvořák, Dušan Knop, Jozef Koleda, Jan Pokorný and
Ondřej Suchý

Affiliation Czech Technical University in Prague

Rank 15 trex-ufmg-ilp solved 41 instances in 3918.34 seconds. Link §

Authors Luis Henrique Gomes Higino, Kaio Henrique Masse Vieira, Alan Prado, Guil-
herme de Castro Mendes Gomes, Laila Melo Vaz Lopes, Gabriel Ubiratan Barreto
Pereira de Oliveira, Gabriel Lucas Costa Martins, Heitor Gonçalves Leite, Matheus
Torres Prates, Gabriel Vieira and Vinicius Fernandes dos Santos

Affiliation Departamento de Ciência da Computação, Universidade Federal de Minas
Gerais

Rank 16 studentgroupfuberlin (�) solved 28 instances in 12844.18 seconds. Link «

Authors Garvin Konopka, Colin Alexander Voigt and Joshua Alexander Hanheiser
Affiliation Freie Universität Berlin

The details of the remaining 9 teams, which were either disqualified or did not solve any
instance correctly, can be found on the PACE website. Submission mjdv solved 157 instances
in 5000.98 seconds, but was disqualified due to suboptimal output on one instance due to a
bug in their code.

4.2 Methods used by the Winners of the Exact Track

The Exact Track winner mppeg [24] reformulate the problem of the challenge into a
linear ordering problem, which they solve using a branch & cut approach [19, 20]. Their
method formulates the problem as an integer linear program, which uses binary variables
to indicate the order of any ordered pair of vertices. Transitivity constraints enforce that
there are no cycles in the ordering implied by a valid solution to the program. In the original
formulation, preventing cycles of length three is sufficient, however the approach of mppeg
utilizes multiple methods to speed up their approach, by reducing the size of the ILP. As a
result additional cycles have to be prevented via constraint. The speed-up methods include
among others the decomposition of instances into connected components and fixing any
relative order between vertices. For instances where it is feasible, they additionally compute
an initial solution using the “Kernigham-Lin 2” heuristic [35].

The runner-up uzl [4] observed that the ILP formulation is equivalent to the Weighted
Feedback Arc Set problem, which can also be expressed as a Hitting Set problem, where
all cycles are sets. This team’s approach is based on existing formulations for Weighted
Feedback Arc Set [1, 19]. Initially only some cycle constraints are added. After finding a
solution to a relaxation of their model, a heuristic is used to identify new cycle constraints
until all cycles are removed.

The third-place CRGone [10] again uses an ILP formulation after employing some
reduction rules to decrease the instance size. This is, e.g., done by contracting vertices with
the same neighborhood or (similar to the winning team) fixing ordering variables, if one of
the two relative orders creates no crossings. The model is initialized without any transitivity
constraints between binary variables, which are separated in a predefined order, preferring
constraints for vertices whose neighbors do not interleave.
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4.3 Ranking of the Heuristic Track
The ranking for the heuristic track is listed subsequently; We list the score for the 100 private
instances plus the 100 public instances, computed as described above, as well as the total
computation time. The larger the score, the better. Submissions marked with an “�” icon
are student submissions (using the same rules as above) of which the top five obtained a
Student Submission Award.

Rank 1 CIMAT_Team got a score of 199.99996 in 59236.67 seconds. Link §

Authors Carlos Segura, Lázaro Lugo, Gara Miranda and Edison David Serrano Cárdenas
Affiliation Area de Computación, Centro de Investigación en Matemáticas (CIMAT) in

Mexico, Departamento de Ingeniería Informática y de Sistemas, Universidad de La
Laguna and Area de Matemáticas Aplicadas, Centro de Investigación en Matemáticas
(CIMAT) in Mexico

Rank 2 LUNCH got a score of 199.99994 in 80545.43 seconds. Link §

Authors Kenneth Langedal, Matthias Bentert, Thorgal Blanco and Pål Grønås Drange
Affiliation University of Bergen

Rank 3 Martin_J_Geiger got a score of 199.99983 in 41662.87 seconds. Link §

Authors Martin Josef Geiger
Affiliation University of the Federal Armed Forces Hamburg

Rank 4 Arcee � got a score of 199.9998 in 38339.44 seconds. Link §

Authors Kimon Boehmer, Lukas Lee George, Fanny Hauser and Jesse Palarus
Affiliation Université Paris-Saclay, Technical University Berlin

Rank 5 guilhermefonseca got a score of 199.99978 in 26336.25 seconds. Link §

Authors Guilherme D. da Fonseca
Affiliation LIS, Aix-Marseille Université

Rank 6 Bob got a score of 199.99978 in 27380.75 seconds. Link §

Authors Sergey Pupyrev
Affiliation Menlo Park

Rank 7 uzl got a score of 199.9996 in 80644.98 seconds. Link §

Authors Max Bannach, Florian Chudigiewitsch, Kim-Manuel Klein and Marcel
Wienöbst

Affiliation European Space Agency and Institute for Theoretical Computer Science,
University of Lübeck

Rank 8 slimmer got a score of 199.99865 in 54761.13 seconds. Link §

Authors Steffen Limmer and Nils Einecke
Affiliation Honda Research Institute Europe GmbH

Rank 9 UAIC_OCM � got a score of 199.99735 in 56047.38 seconds. Link §

Authors Andrei Arhire, Eugen Croitoru, Matei Chiriac and Alex Dumitrescu
Affiliation Alexandru Ioan Cuza University of Ias, i

Rank 10 axs � got a score of 199.99037 in 59409.74 seconds. Link §

Authors Chenghao Zhu, Yi Zhou and Bo Peng
Affiliation University of Electronic Science and Technology of China and Southwestern

University of Finance and Economics Chengdu
Rank 11 weberknecht got a score of 199.97621 in 6187.64 seconds. Link §

Authors Johannes Rauch
Affiliation Institute of Optimization and Operations Research, Ulm University

https://github.com/carlossegurag/PaceChallenge24
https://github.com/KennethLangedal/PACE2024-UiB/tree/main
https://github.com/MartinJGeiger/pace-2024
https://github.com/lucidLuckylee/pace_2024
https://github.com/gfonsecabr/shadoks-PACE2024
https://github.com/spupyrev/pace2024-bob
https://github.com/mwien/sisyphus
https://github.com/AndreiiArhire/PACE2024
https://github.com/axs7385/pace2024
https://github.com/johannesrauch/PACE-2024
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Rank 12 tlopez � got a score of 199.93344 in 80556.06 seconds. Link §

Authors Toan Lopez and Florian Sikora
Affiliation Student of Université Paris Dauphine

Rank 13 KongQi � got a score of 199.66556 in 38664.61 seconds. Link §

Authors Qi Kong, Zhouxing Su and Zhipeng Lü
Affiliation Huazhong University of Science and Technology

Rank 14 heiCross � got a score of 199.46119 in 80480.59 seconds. Link §

Authors Adil Chhabra, Marlon Dittes, Alvaro Garmendia, Ernestine Großmann, Tomer
Haham, Shai Peretz, Henrik Reinstädtler, Antonie Wagner and Henning Woydt

Affiliation University of Heidelberg
Rank 15 LOPP � got a score of 198.93312 in 80720.08 seconds. Link §

Authors Arijeet Pramanik, Rishabh Dev, Vimal Narassimmane and Srinibas Swain
Affiliation Department of Computer Science and Engineering, IIIT Guwahati

Rank 16 GAON � got a score of 198.88211 in 80720.77 seconds. Link §

Authors Rishabh Dev, Arijeet Pramanik, Vimal Narassimmane and Srinibas Swain
Affiliation Department of Computer Science and Engineering, IIIT Guwahati

Rank 17 ericweidner � got a score of 198.79449 in 4961.61 seconds. Link §

Authors Carolin Rehs and Eric Weidner
Affiliation Technical University of Dortmund

Rank 18 KUL-TW got a score of 198.56896 in 19684.34 seconds. Link §

Authors Tony Wauters and Fabien Nießen
Affiliation NUMA, Department of Computer Science, KU Leuven

Rank 19 DRIP � got a score of 198.30131 in 80720.22 seconds. Link §

Authors Unknown – no solver description submitted
Affiliation Unknown – no solver description submitted

Rank 20 lmsrusso got a score of 198.19412 in 77464.5 seconds. Link §

Authors Luís M. S. Russo
Affiliation INESC-ID and Department of Computer Science and Engineering, Instituto

Superior Técnico, Universidade de Lisboa
Rank 21 GOAT got a score of 196.02268 in 235.44 seconds. Link «

Authors Patrik Drbal, Michal Dvořák, Dušan Knop, Jozef Koleda, Jan Pokorný and
Ondřej Suchý

Affiliation Czech Technical University in Prague
Rank 22 NV_OCM got a score of 194.69549 in 5519.86 seconds. Link §

Authors André Nusser and Juliette Vlieghe
Affiliation CNRS, Inria Center at Université Côte d’Azur and Technical University of

Denmark
Rank 23 HCPS42 got a score of 192.17673 in 2172.91 seconds. Link §

Authors Temirkhan Zimanov
Affiliation Higher School of Economics

Rank 24 asdf got a score of 188.77488 in 27596.93 seconds. Link §

Authors Unknown – no solver description submitted
Affiliation Unknown – no solver description submitted

Rank 25 simonhol got a score of 181.14588 in 4036.8 seconds. Link «

Authors Simon Hol
Affiliation Utrecht University
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Rank 26 U_OCM got a score of 181.05501 in 80636.53 seconds. Link «

Authors Mert Biyikli, Kathrin Hanauer, Sophia Heck, Lukas Krumpeck, Lara Ost,
Tobias Prisching, Ole Schlüter, Matej Vedak and Maximilian Vötsch

Affiliation Faculty of Computer Science, University of Vienna and Faculty of Physics,
University of Vienna

Rank 27 iiitg got a score of 180.18229 in 480.38 seconds. Link §

Authors Sahaj Gupta, Swati Nanda Gupta, Sampriti Patel and Srinibas Swain
Affiliation Department of Computer Science and Engineering, IIIT Guwahati

Rank 28 Guilucand got a score of 172.30134 in 16750.69 seconds. Link §

Authors Andrea Cracco
Affiliation Universitá degli Studi di Verona

Rank 29 DumbAndDumber got a score of 165.28777 in 1904.8 seconds. Link §

Authors Kristoffer Sandvang and Mateusz Filipowski
Affiliation Student at the University of Copenhagen

Rank 30 roundabout got a score of 163.44052 in 32077.4 seconds. Link #

Authors Emmanuel Arrighi and Petra Wolf
Affiliation EnsL, Université Lyon, UCBL, CNRS, Inria in Lyon and LaBRI, CNRS,

Université de Bordeaux
Rank 31 oscmpp got a score of 112.20293 in 54079.36 seconds. Link §

Authors Sahaj Gupta, Swati Nanda Gupta, Sampriti Patel and Srinibas Swain
Affiliation Department of Computer Science and Engineering, IIIT Guwahati

Rank 32 WINTER got a score of 109.28239 in 57113.3 seconds. Link §

Authors Sahaj Gupta, Swati Nanda Gupta, Sampriti Patel and Srinibas Swain
Affiliation Department of Computer Science and Engineering, IIIT Guwahati

4.4 Methods used by the Winners of the Heuristic Track
The Parameterized Track winner CIMAT_Team [36] used a first generation memetic
algorithm with explicit diversity management. They initially generated a population of
random solutions. They used iterated local search to improve these solutions. Their approach
applied cycle-based crossover and applied a Best-Non-Penalized survivor selection strategy,
which adjusts over time to favor exploration early and exploitation later, thereby promoting
diversity. For larger instances, their method shifted to a more direct application of iterated
local search. They used a greedy initialization strategy based on scoring vertices to manage
complexity and memory efficiently.

Similar to team uzl in the exact track, the runner-up LUNCH [29] reduced OSCM to
the Weighted Feedback Arc Set problem. They observed that edges between strongly
connected components can be deleted as they are not part of any cycles, and that strongly
connected components can be solved independently. They proved that several edges can
be ignored and thus managed to create sparser instances that are sufficient to quickly find
strongly connected components. They used a dynamic program [30] to solve components of
at most 20 vertices optimally. For larger components, they first used greedy improvements,
then an adjusted cutting technique by Park and Akers [34].

The third-place Martin_J_Geiger [16] used iterated local search and variable neigh-
borhood search to find good solutions. They first applied the reduction rules by Dujmović et
al. [12] and then used the barycenter heuristic to find an initial solution. They iteratively
improved the solution with small improving moves until they reached a local optimum; to

https://gitlab.com/vietaa/pace/u_ocm
https://github.com/sampritip/TEAM-iiitg-heuristics/tree/v1.0.0
https://github.com/Guilucand/pace2024-challenge
https://github.com/KristofferSandvang/PACE2024
https://bitbucket.org/arrighi/roundabout/src/main/
https://github.com/sampritip/TEAM-IIITG-v3/tree/v1.0.0
https://github.com/sampritip/TEAM-IIITG-v2/tree/v1.0.0
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this end, they either moved a single node or a block of up to 5 subsequent nodes to different
positions. To escape local optima, they reversed a subset of up to 20% of the permutation
and continued their search from there.

4.5 Ranking of the Parameterized Track
The ranking for the parameterized track is listed subsequently; We list the number of solved
instances from the 100 private instances plus the 100 public instances as well as the total
computation time. Three teams were disqualified because instances were found for which
their solver did return a suboptimal solution. Submissions marked with an “�” icon are
student submissions after the same rules as above. There were two such submissions, which
received the Student Submission Award.

Rank 1 LUNCH solved 200 instances in 5.15 seconds. Link §

Authors Kenneth Langedal, Matthias Bentert, Thorgal Blanco and Pål Grønås Drange
Affiliation University of Bergen

Rank 1 mjdv solved 200 instances in 10.37 seconds. Link §

Authors Ragnar Groot Koerkamp and Mees de Vries
Affiliation ETH Zurich and Unaffiliated in The Netherlands

Rank 3 mppeg solved 200 instances in 25.22 seconds. Link §

Authors Michael Jünger, Paul Jünger, Petra Mutzel and Gerhard Reinelt
Affiliation University of Cologne, University of Bonn and Heidelberg University

Rank 4 Arcee (�) solved 200 instances in 28.54 seconds. Link §

Authors Kimon Boehmer, Lukas Lee George, Fanny Hauser and Jesse Palarus
Affiliation Université Paris-Saclay, Technical University Berlin

Rank 5 crossy (�) solved 200 instances in 34.98 seconds. Link §

Authors Tobias Röhr and Kirill Simonov
Affiliation Hasso Plattner Institute, University of Potsdam

Rank 6 uzl solved 200 instances in 60.49 seconds. Link §

Authors Max Bannach, Florian Chudigiewitsch, Kim-Manuel Klein and Marcel
Wienöbst

Affiliation European Space Agency and Institute for Theoretical Computer Science,
University of Lübeck

Rank 7 roundabout solved 200 instances in 121.23 seconds. Link #

Authors Emmanuel Arrighi and Petra Wolf
Affiliation EnsL, Université Lyon, UCBL, CNRS, Inria in Lyon and LaBRI, CNRS,

Université de Bordeaux
Rank 8 CRGone solved 200 instances in 125.07 seconds. Link §

Authors Alexander Dobler
Affiliation Technische Universität Wien

Rank 9 Guilucand solved 200 instances in 162.07 seconds. Link §

Authors Andrea Cracco
Affiliation Universitá degli Studi di Verona

Rank 10 weberknecht solved 200 instances in 287.41 seconds. Link §

Authors Johannes Rauch
Affiliation Institute of Optimization and Operations Research, Ulm University

Rank 11 sherby solved 199 instances in 20.84 seconds. Link §

Authors Manuel Lafond, Alitzel López Sánchez and Bertrand Marchand
Affiliation Department of Computer Science, University of Sherbrooke
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Rank 12 trex-ufmg solved 198 instances in 14848 seconds. Link §

Authors Luis Henrique Gomes Higino, Kaio Henrique Masse Vieira, Alan Prado, Guil-
herme de Castro Mendes Gomes, Laila Melo Vaz Lopes, Gabriel Ubiratan Barreto
Pereira de Oliveira, Gabriel Lucas Costa Martins, Heitor Gonçalves Leite, Matheus
Torres Prates, Gabriel Vieira and Vinicius Fernandes dos Santos

Affiliation Departamento de Ciência da Computação, Universidade Federal de Minas
Gerais

Rank 13 narekb95 solved 163 instances in 13082.35 seconds. Link §

Authors Narek Bojikian
Affiliation Humboldt University of Berlin

4.6 Methods used by the Winners of the Parameterized Track
The Parameterized Track winner LUNCH [29] started with the same approach as in
their second place submission to the heuristic track. After running the heuristic for each large
component to get an upper bound, they solved a MaxSAT instance to optimally eliminate
all cycles of length at most 4. If this led to an acyclic instances or to a solution that had the
same cost as the upper bound, the algorithm terminated. Otherwise, they removed these
edges, found new cycles with a DFS traversal, and repeated the previous steps.

The runner-up mjdv [27] did not rely on ILP or SAT formulations and instead used a
branch-and-bound algorithm. They generalized reduction rules from Dujmović et al. [12] to
find pairs of vertices in B where one must lie to the left of the other in any optimal solution,
or pairs that are placed directly next to each other in some optimal solution. They also
generalized a reduction rule to find a vertex that lies at the leftmost position in some optimal
solution. As a lower bound, they calculated for each pair of vertices in B the minimum
number of crossings required between their incident edges in any drawing [11, 15]. They
then fixed vertices in the solution from left to right, keeping track of the number of crossings
involved with the fixed vertices. It uses the reduction rules explained above to fix pairs of
vertices and find the next vertex to add to the prefix, which is then inserted at the optimal
position. Caching previously found lower bounds speeds up the process.

The third-place mppeg [24] used the same solver as in the exact track.

5 PACE Organization

The program committee of PACE 2024 consisted of Philipp Kindermann (Universität Trier,
chair), Fabian Klute (UPC Barcelona) and Soeren Terziadis (Eindhoven University of
Technology). During the competition, the members of the steering committee were:

(since 2023) Max Bannach (European Space Agency)
(since 2023) Sebastian Berndt (Universität zu Lübeck)
(since 2016) Holger Dell (Goethe University Frankfurt and IT University of Copenhagen)
(since 2016) Bart M. P. Jansen (chair) (Eindhoven University of Technology)
(since 2020) Lukasz Kowalik (University of Warsaw)
(since 2021) André Nichterlein (Technical University of Berlin)
(since 2022) Christian Schulz (Universität Heidelberg)
(since 2020) Manuel Sorge (Technische Universität Wien)

The Program Committee of PACE 2025 will be chaired by Sebastian Siebertz und Mario
Grobler (both University of Bremen).

https://github.com/heittpr/pace2024
https://github.com/narekb95/ocr-ctw
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6 Conclusion, Reflection and Future Editions of PACE

We thank all the participants for their impressive work, vital contributions, and patience
in case of technical issues. The organizers especially thank the participants who presented
their work at IPEC 2024 in the poster session or during the award ceremony. We are pleased
about the large number of diverse participants and hope the PACE challenge will continue
to build bridges between theory and practice. We welcome anyone interested to add their
name to the mailing list on the PACE website to receive updates and join the discussion.

The Good – What went well

OSCM was a good choice as the problem for the competition: the problem is simple to
understand, requires no background knowledge, and the solutions are easy to verify. We
used a Zulip server for direct communication with and between the participants. This
server was very active, it made it much easier for us to communicate updates with the
participants, and gave them the opportunity to discuss issues and help each other. We had a
very large number of participants, much more than in the previous years. While many of
the approaches were similar in nature, each team found different tricks to reduce instance
sizes or to overcome obstacles. The poster exhibition during IPEC where the winning teams
shared the knowledge they obtained about the problem during the contest was well attended
and sparked several hours worth of discussion. Overall, there was a very friendly and helpful
atmosphere between contestants. The exact and heuristic tracks were very successful with
many different submissions. The participants were also very quick in finding any technical
mistakes that the program committee had made in the provided tools and instances.

The Bad – What could we have done better

Since we guaranteed the exact instances to have not too large crossing numbers, we could
only use instances for the benchmark sets where we knew the optimum solution. But since
our internal solver turned out to be very slow compared to the submissions we received, this
limited the difficulty for the instances we could provide. For example, our solver needed in
total 567 hours to solve the 200 instances of the whole parameterized benchmark set, while
the best submission could solve all of them in merely 5 seconds. In the future, we suggest
that there should also be graphs where the optimum solution is unknown, even if that means
that one cannot give guarantees on the solution. It might make sense to follow the example
of the SAT competition, where each participating team also has to submit a small number of
interesting benchmark instances that are then added to the evaluation set.

Because of our slow solver, we severely overestimated the difficulty of the parameterized
benchmark set. Hence, the parameterized track was more akin to an algorithm engineering
competition where the participants were fighting to scrape off milliseconds from their running
times instead of figuring out how to solve larger instances. To the best of our knowledge, no
submission in this track even used the property that the graphs have small cutwidth. Overall,
the parameterized track did not work out well this time and should be strongly revised before
running it again; there should at least be much larger graphs, larger parameters and/or less
allowed computation time.

The public repository that we set up for the community to share interesting instances
with each other was unused – there have been no pushs except by the program committee.
After the final evaluation and publishing the private benchmark sets, one participant found
that 5 of the instances had multi-edges. All input graphs were supposed to be simple; this
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was due to a bug in our graph generators. We had to fix these instances, rerun all solvers on
the fixed versions and change the ranking after publishing the results, which was unfortunate
for teams that dropped in the rankings.

The Ugly – What did we struggle with

We struggled a bit with the tight timeline, as we underestimated the huge computation times
required to find solutions for the benchmark sets. We had access to a 92-core server that
was running non-stop for 4 months. It was very tough for us to predict how hard instances
are and to find interesting instances that fit all constraints to make them interesting: for
example, they should have not too few edges, not require too many crossings, and common
heuristics should not immediately find optimum solutions. Many of these could only be
checked after finding their optimum solution. Thus, we had to create a huge number of
potential instances, many of which turned out to be unusable.

The servers by Optil.io were overloaded by the many submissions. During the last few
days, participants had to wait for many hours until they received a result from their submitted
solvers. This also had the effect that the running times varied a lot; submitting the same
solver twice could lead to completely different timing results. Unfortunately, we could not
find an alternative, as the required server load is too large for non-commercial options. Hence,
we had to evaluate all solvers on our own server after the submission deadline. This also took
a long time: to ensure that each run receives the exact same resources, we could only solve
20 instances in parallel, each of which could take a bit more than 30 minutes, so we needed
up to 5 hours computation for each each of the 75 submissions. While some solvers were easy
to compile and run, others required more time: 15 solvers did not immediately compile or
run without major issues and required help from the teams. To reduce the workload for the
program committee in the future, on option would be to let the participants submit docker
images that should remove these issues.

Finally, one large point of discussion were the rules for the exact track, in particular
that it was not a formal requirement that submissions have to be based on provably optimal
algorithms. The reason for this non-requirement was to encourage new techniques even
without finding a theoretical proof for them. However, this lead to two submissions that were
based on heuristic solvers that just happened to solve also all instance of the exact benchmark
set optimally. The submissions were disqualified due to subsequently found counterexample
instances. For the future, these rules should be revised; either there should be more strict
requirements or the community should get the option to review submitted solvers and find
counterexamples before the rankings are published.

PACE 2025

We look forward to the next edition, which will focus on Dominating Set and Hitting
Set and will be chaired by Sebastian Siebertz and Mario Grobler. Detailed information will
be posted on the website of the competition at pacechallenge.org.
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