
PACE Solver Description: Exact Solution of the
One-Sided Crossing Minimization Problem by the
MPPEG Team
Michael Jünger #

University of Cologne, Germany

Paul J. Jünger #

University of Bonn, Germany

Petra Mutzel #

University of Bonn, Germany

Gerhard Reinelt #

Heidelberg University, Germany

Abstract
This is a short description of our solver oscm submitted by our team MPPEG to the PACE 2024
challenge both for the exact track and the parameterized track, available at https://github.com/
pauljngr/PACE2024 [9] and https://doi.org/10.5281/zenodo.11546972 [8].

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization; Theory
of computation → Mathematical optimization; Theory of computation → Parameterized complexity
and exact algorithms; Human-centered computing → Graph drawings

Keywords and phrases Combinatorial Optimization, Linear Ordering, Crossing Minimization, Branch
and Cut, Algorithm Engineering

Digital Object Identifier 10.4230/LIPIcs.IPEC.2024.27

Supplementary Material
Software (Source Code): https://github.com/pauljngr/PACE2024 [9]
Software (Source Code): https://doi.org/10.5281/zenodo.11546972 [8]

Acknowledgements The authors gratefully acknowledge the granted access to the Marvin cluster
hosted by the University of Bonn.

1 Method

We apply the approach to the one-sided crossing minimization problem presented in [10]. This
article is surveyed by Patrick Healy and Nikola S. Nikolov in Chapter 13.5 of the Handbook
of Graph Drawing and Visualization [7] that is recommended on the PACE 2024 web page [13].
The method consists of a transformation of a one-sided crossing minimization instance to an
instance of the linear ordering problem that is solved by branch&cut as introduced in [4]
and [5]. We also use problem decomposition and reduction techniques as well as a heuristic
for finding a good initial solution. With the required brevity, we give a rough sketch of the
major details.

The instances of the PACE 2024 challenge problem consist of a bipartite graph G =
(T ∪̇B, E) and a fixed linear ordering πT = ⟨t1, t2, . . . , tm⟩ of T (“the top nodes”). In
the exact track and the parameterized track, the task is to find a linear ordering πB of
B = {b1, b2, . . . , bn} (“the bottom nodes”) such that the number of edge crossings in a
straight-line drawing of G with T and B on two parallel lines, following their linear orderings,
is provably minimum. The NP-hardness of this task has been shown in [2].

© Michael Jünger, Paul J. Jünger, Petra Mutzel, and Gerhard Reinelt;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Parameterized and Exact Computation (IPEC 2024).
Editors: Édouard Bonnet and Paweł Rzążewski; Article No. 27; pp. 27:1–27:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:juenger-sfb@informatik.uni-koeln.de
https://orcid.org/0000-0002-6480-2614
mailto:s94pjuen@uni-bonn.de
https://orcid.org/0009-0008-4165-4453
mailto:petra.mutzel@cs.uni-bonn.de
https://orcid.org/0000-0001-7621-971X
mailto:ip121@uni-heidelberg.de
https://orcid.org/0000-0002-7193-501X
https://github.com/pauljngr/PACE2024
https://github.com/pauljngr/PACE2024
https://doi.org/10.5281/zenodo.11546972
https://doi.org/10.4230/LIPIcs.IPEC.2024.27
https://github.com/pauljngr/PACE2024
https://doi.org/10.5281/zenodo.11546972
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 PACE Solver Description by the MPPEG Team

For a linear ordering πB of B let

xij =
{

1 if bi appears before bj in πB ,
0 otherwise.

For i, j ∈ {1, 2, . . . , n} let cii = 0, and for i ̸= j let cij denote the number of crossings between
the edges incident to bi with the edges incident to bj if bi appears before bj in πB . Then the
number of crossings induced by πB is

cr(πB) =
n∑

i=1

n∑
j=1

cijxij .

Since for any pair bi ̸= bj in B we have xji = 1 − xij , we can reduce the number of variables
to

(
n
2
)

and obtain

cr(πB) =
n−1∑
i=1

n∑
j=i+1

cijxij + cji(1 − xij) =
n−1∑
i=1

n∑
j=i+1

(cij − cji)xij +
n−1∑
i=1

n∑
j=i+1

cji.

For aij = cij −cji we solve the linear ordering problem as the following binary linear program,
based on the complete digraph D with node set B.

(LO) minimize
n−1∑
i=1

n∑
j=i+1

aijxij

subject to
∑

(bi,bj)∈C:
i<j

xij +
∑

(bi,bj)∈C:
i>j

(1 − xji) ≤ |C| − 1 for all dicycles C in D

0 ≤ xij ≤ 1 for 1 ≤ i < j ≤ n

xij integral for 1 ≤ i < j ≤ n.

If z is the optimum value of (LO), z +
∑n−1

i=1
∑n

j=i+1 cji is the minimum number of crossings.
Notice that the classical linear ordering formulation [4, 5] uses constraints for cycles of length
three only. However, in our approach we also need longer cycles, since we remove some
of the arcs as we shall describe in Section 2. The constraints of (LO) guarantee that the
solutions correspond precisely to all permutations πB of B. Furthermore, it can be shown
that for complete digraphs the “3-cycle constraints” are necessary in any minimal description
of the feasible solutions by linear inequalities, if the integrality conditions are dropped. The
NP-hardness of the problem makes it unlikely that such a complete linear description can be
found. Further classes of inequalities with a number of members exponential in n that must
be present in a complete linear description of the feasible set, are known, and some of them
can be exploited algorithmically. Indeed, small Möbius-ladder constraints, the one shown in
Figure 3 of [4], as well as the same in which all arcs are reversed, have been found useful in
this crossing minimization context.

2 Algorithm and Implementation

When the integrality conditions in (LO) are dropped, we obtain a linear programming
relaxation of (LO) which has been proven very useful in practical applications. The structure
of our branch&cut algorithm oscm (“one-sided crossing minimization”) is similar to the
one proposed in [4]. The algorithm starts with the trivial constraints 0 ≤ xij ≤ 1 that are

M. Jünger, P. J. Jünger, P. Mutzel, and G. Reinelt 27:3

handled implicitly by the linear programming solver, iteratively adds violated cycle and
Möbius-ladder constraints, and deletes nonbinding constraints after a linear program has
been solved, until the relaxation is solved. This requires a separation algorithm that, given
the solution of some relaxation, is able to determine a violated inequality called cutting plane.
If the optimum solution of the relaxation is integral, the algorithm stops, otherwise it is
applied recursively to two subproblems in one of which a fractional xij is set to 1 and in
the other set to 0. Thus, in the end, an optimum solution is found as the solution of some
relaxation, along with a proof of optimality.

oscm makes use of the following observations, some of which stem from the literature
in fixed-parameter algorithms for one-sided crossing minimization. Lemma 1 allows us to
decompose the given instance. Within the components, we can fix and eliminate variables
from (LO) by Lemma 2, and we can exclude variables xij with aij = 0 from (LO) by
Lemma 3.

▶ Lemma 1 (Decomposition). For each node v ∈ B, we define the open interval Iv =]lv, rv[,
where lv is the position of the leftmost and rv the position of the rightmost neighbor of v in
πT . The union of the intervals Iv induces a partition B1, B2, . . . , Bk of B such that every
IBi

=
⋃

v∈Bi
Iv, i = 1, . . . , k, is an interval, and for any pair Bi, Bj the intervals IBi

and
IBj

are disjoint. In every optimum πB all the nodes of Bi appear before those of Bj if IBi
is

to the left of IBj
.

Indeed, 51 of the 100 exact-public instances have between 2 and 154 components.

▶ Lemma 2 (Variable fixing [1]). If for any pair of nodes bi, bj ∈ B, we have cij = 0 and
cji > 0, then every optimal solution of (LO) satisfies xij = 1, if i < j, and xji = 0, if i > j.

▶ Lemma 3 (Arbitrary ordering). Let π
(p)
B be a partial ordering induced by the variables xij

with aij ̸= 0, then there exist values xij ∈ {0, 1} for aij = 0 defining a total ordering πB of B

with no effect to the objective function value. This assignment can be found by topologically
sorting B with respect to π

(p)
B .

This setup has the advantage that (sometimes considerably) smaller linear programs need
to be solved, but, on the other hand, separation becomes more involved. In order to obtain
an optimal partial ordering π

(p)
B of B using the variables left in (LO), we need to include

cycle constraints for larger cycles as already mentioned in Section 1.
For computational efficiency, oscm has a hierarchy of separation procedures. The first for

3-dicycles is based on depth first search. The second for dicycles of length at least 4 with
integral weights is also based on depth first search. Violated dicycles are shortened via breadth
first search, restricted to the cycle nodes, starting from back arcs of the preceding depth
first search. The third applies shortest path techniques for separation of cycles containing
fractional arcs as described for the related acyclic subdigraph problem in section 5 of [6].
First, the above separation procedures are applied on the graph containing only the arcs
present in (LO). If all of the above do not find any violated inequalities, oscm extends the
search to the fixed arcs. After separation, the linear program is resolved using the dual
simplex method providing the same or a better lower bound on the minimum number of
crossings. If the progress compared to the previous bound is small for a sequence of such
lower bounds, oscm applies a heuristic for finding violated Möbius ladder inequalities, and if
this does not lead to a significant improvement, the branch&cut phase is started.

Whenever a linear program has been solved, it is checked by topological sorting if the
solution is the characteristic vector of a linear ordering. If not, a relaxed topological sorting
procedure is applied in the pursuit of finding a better incumbent solution that provides an
upper bound for the minimum number of crossings. oscm stops when the (integral) upper
bound and the (possibly fractional) lower bound differ by less than 1, proving optimality.

IPEC 2024

27:4 PACE Solver Description by the MPPEG Team

For small instances, oscm applies a variant of the heuristic “Kernighan-Lin 2” of [12] for
finding a decent initial solution before the optimization starts.

3 Performance

Our program oscm, published in [9] and [8], consists of roughly 3500 lines of C/C++ code.
It makes use of the coin-or [11] Cbc library, version 2.10.7 [3].

We submitted oscm both to the exact track and the parameterized track of PACE 2024.
In the official ranking, oscm received the first place in the exact track with 199 of the 200
instances instances solved in about 5682 seconds, and the third place in the paramaterized
track with all 200 instances solved in about 25 seconds.

References
1 Vida Dujmović and Sue Whitesides. An efficient fixed parameter tractable algorithm for 1-sided

crossing minimization. Algorithmica, 40(1):15–31, 2004. doi:10.1007/S00453-004-1093-2.
2 Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite graphs.

Algorithmica, 11(4):379–403, 1994. doi:10.1007/BF01187020.
3 John Forrest et al. coin-or/Cbc: Release 2.10.7, 2022. URL: https://zenodo.org/records/

5904374.
4 Martin Grötschel, Michael Jünger, and Gerhard Reinelt. A cutting plane algorithm for the linear

ordering problem. Operations Research, 32(6):1195–1220, 1984. doi:10.1287/opre.32.6.1195.
5 Martin Grötschel, Michael Jünger, and Gerhard Reinelt. Facets of the linear ordering polytope.

Mathematical Programming, 33(1):43–60, 1985. doi:10.1007/BF01582010.
6 Martin Grötschel, Michael Jünger, and Gerhard Reinelt. On the acyclic subgraph polytope.

Mathematical Programming, 33(1):28–42, 1985. doi:10.1007/BF01582009.
7 Patrick Healy and Nikola S. Nikolov. Hierarchical drawing algorithms. In Roberto Tamassia,

editor, Handbook of Graph Drawing and Visualization, Discrete Mathematics and Its Applica-
tions, pages 409–453. CRC Press, 2013. URL: https://api.semanticscholar.org/CorpusID:
7736149.

8 Michael Jünger, Paul J. Jünger, Petra Mutzel, and Gerhard Reinelt. PACE 2024 – MPPEG,
June 2024. Software, version 1.2. (visited on 2024-11-28). doi:10.5281/zenodo.11546972.

9 Michael Jünger, Paul J. Jünger, Petra Mutzel, and Gerhard Reinelt. PACE2024, June 2024.
Software, version 1.0. (visited on 2024-11-28). URL: https://github.com/pauljngr/PACE2024,
doi:10.4230/artifacts.22523.

10 Michael Jünger and Petra Mutzel. 2-layer straightline crossing minimization: Performance
of exact and heuristic algorithms. Journal of Graph Algorithms and Applications, 1(1):1–25,
1997. doi:10.7155/jgaa.00001.

11 R. Lougee-Heimer. The common optimization interface for operations research: Promoting
open-source software in the operations research community. IBM Journal of Research and
Development, 47(1):57–66, 2003. doi:10.1147/rd.471.0057.

12 Rafael Martí and Gerhard Reinelt. Exact and Heuristic Methods in Combinatorial Optimization
– A Study on the Linear Ordering and the Maximum Diversity Problem. Applied Mathematical
Sciences. Springer Berlin, Heidelberg, 2022. doi:10.1007/978-3-662-64877-3.

13 PACE 2024 Web Page. URL: https://pacechallenge.org/2024.

https://doi.org/10.1007/S00453-004-1093-2
https://doi.org/10.1007/BF01187020
https://zenodo.org/records/5904374
https://zenodo.org/records/5904374
https://doi.org/10.1287/opre.32.6.1195
https://doi.org/10.1007/BF01582010
https://doi.org/10.1007/BF01582009
https://api.semanticscholar.org/CorpusID:7736149
https://api.semanticscholar.org/CorpusID:7736149
https://doi.org/10.5281/zenodo.11546972
https://github.com/pauljngr/PACE2024
https://doi.org/10.4230/artifacts.22523
https://doi.org/10.7155/jgaa.00001
https://doi.org/10.1147/rd.471.0057
https://doi.org/10.1007/978-3-662-64877-3
https://pacechallenge.org/2024

	1 Method
	2 Algorithm and Implementation
	3 Performance

