
PACE Solver Description: UzL Exact Solver for
One-Sided Crossing Minimization
Max Bannach #

European Space Agency, Noordwijk, The Netherlands

Florian Chudigiewitsch #

Institute for Theoretical Computer Science, University of Lübeck, Germany

Kim-Manuel Klein #

Institute for Theoretical Computer Science, University of Lübeck, Germany

Marcel Wienöbst1 #

Institute for Theoretical Computer Science, University of Lübeck, Germany

Abstract
This document contains a short description of our solver pingpong for the one-sided crossing
minimization problem that we submitted to the exact and parameterized track of the PACE
challenge 2024. The solver is based on the well-known reduction to the weighted directed feedback
arc set problem. This problem is tackled by an implicit hitting set formulation using an integer
linear programming solver. Adding hitting set constraints is done iteratively by computing heuristic
solutions to the current formulation and finding cycles that are not yet “hit.” The procedure
terminates if the exact hitting set solution covers all cycles. Thus, optimality of our solver is
guaranteed.

2012 ACM Subject Classification Theory of computation → Integer programming; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases integer programming, exact algorithms, feedback arc set, crossing minimiza-
tion

Digital Object Identifier 10.4230/LIPIcs.IPEC.2024.28

Supplementary Material Software (Exact Track): https://github.com/mwien/pingpong
Software (Parameterized Track): https://github.com/mwien/pingpong-light

1 Introduction

One-sided crossing minimization is a fundamental problem in graph drawing. For a given
bipartite graph G = (V1 ∪ V2, E) and a linear ordering τ of V1, the goal is to find a linear
ordering π of V2 that minimizes the number of crossings, i.e., tuples ({u1, u2}, {v1, v2}) ∈ E2

such that τ−1(u1) < τ−1(v1) and π−1(u2) > π−1(v2), with τ−1(x) and π−1(x) being the
position of vertex x in the respective ordering. Vice versa π(i) and τ(i) denote the vertex at
position i in π and τ , respectively.

The objective can be formulated concisely using the notion of crossing numbers: If cuv is
the number of crossings of edges incident to u or v given that u is ordered to the left of v,
the goal is to find a linear ordering π that minimizes

|V2|∑
i=1

|V2|∑
j=i+1

cπ(i)π(j).

1 Corresponding author

© Max Bannach, Florian Chudigiewitsch, Kim-Manuel Klein, and Marcel Wienöbst;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Parameterized and Exact Computation (IPEC 2024).
Editors: Édouard Bonnet and Paweł Rzążewski; Article No. 28; pp. 28:1–28:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:max.bannach@esa.int
https://orcid.org/0000-0002-6475-5512
mailto:florian.chudigiewitsch@uni-luebeck.de
https://orcid.org/0000-0003-3237-1650
mailto:kimmanuel.klein@uni-luebeck.de
https://orcid.org/0000-0002-0188-9492
mailto:m.wienoebst@uni-luebeck.de
https://orcid.org/0000-0003-0378-697X
https://doi.org/10.4230/LIPIcs.IPEC.2024.28
https://github.com/mwien/pingpong
https://github.com/mwien/pingpong-light
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 UzL Exact Solver for One-Sided Crossing Minimization

In any linear ordering, either u comes before v or the other way around and, hence, it
suffices to consider the difference cuv − cvu. A sensible objective function is thus:

min
π

|V2|∑
i=1

|V2|∑
j=i+1

max(cπ(i)π(j) − cπ(j)π(i), 0)

This formulation is well-known to be identical to the weighted directed feedback arc set
problem with arc u → v having weight cvu − cuv if this weight is positive. To solve this
instance, it is obvious that each strongly connected component can be considered separately.
These insight already renders a considerable amount of instance trivially solvable.

2 Implicit Hitting Set Formulation of Feedback Arc Set

The feedback arc set problem (fas) can be expressed as an instance of the hitting set problem:
Add a set per cycle containing all its edges. Clearly, such a formulation in its explicit form is
infeasible with the number of cycles growing exponentially in the size of the fas instance.

A better approach is to start with a small set of cycles and iteratively add more constraints.
This approach is known as the implicit hitting set algorithm [3] and, in the context of integer
programming, also referred to as lazy constraint generation or row generation. In its simplest
form (which can be refined in many ways), such an iterative procedure could look like the
following for fas:
1. Initialize the set of cycle constraints C in some way.
2. Repeatedly,

a. find the optimal solution of the hitting set instance C and
b. check if this solution is an fas. If this is the case, then terminate and output the

solution. If not, then add cycles to C that are not “hit” by the current solution.

The procedure terminates only when the optimal hitting set solution contains an edge
per cycle in the fas instance, guaranteeing correctness. Importantly, the algorithm often
terminates before all cycles of G were added, thus making it more practical than the naive
explicit formulation mentioned above.

An implementation of this general method for solving fas has recently been described
in [1] and was discussed earlier in the form of a branch-and-cut algorithm in [5]. In both
cases, integer programming is used to find the optimal solution to the hitting set instance.
Denoting the number of vertices in the FAS instance by n, the number of edges by m and
having a variable xi per edge with weight wi as given in the FAS instance, one obtains

min
x

m∑
i=1

wixi

s.t.
∑

xi∈Cj

xi ≥ 1, for each j = 1, 2, . . . , |C|

xi ∈ {0, 1} for all i ∈ {1, . . . , n},

where the hitting set constraints are added lazily until there are no more violations.
We note that the same constraints could also be expressed with a MaxSAT formulation.

However, early benchmarks showed that MaxSAT solvers perform significantly worse for
the instances in this challenge obtained through the reduction from the one-sided crossing
minimization. Hence, we abandoned this approach and focused on the ILP formulation.

M. Bannach, F. Chudigiewitsch, K.-M. Klein, and M. Wienöbst 28:3

3 Description of Our Approach

We follow the general method described above closely. In this section, we provide more
details regarding our concrete implementation.

We solely used cycles of length three as the initial set of cycles C for most of the challenge
and this approach is still used for larger instances (where a subset of all 3-cycles is randomly
selected). Shortly before the submission deadline, we switched to a more involved generation
procedure for the other instances, in which we first run our heuristic solver [2] to find a good
initial feedback arc set and generate cycles based on it (see more details below on how new
cycles are generated). The improvements here are, however, minor even in cases when the
heuristic can already identify the optimal solution.2

Generally, cycles are added based on utilizing a (not necessarily optimal) solution of the
current hitting set formulation. For this, we consider the subgraph obtained by removing all
edges in this solution set. In the resulting subgraph, an fas is found by a heuristic, which
builds the topological order greedily from left to right,3 and for each edge u → v in this fas,
new cycles are generated by finding short paths from v to u using a breadth-first search. Our
implementation of the approach from the previous section can be described as follows:
1. Initialize the set of cycle constraints C.
2. Find a hitting set based on a degree-based heuristic and add cycles constraints as described

above. If a non-empty set of cycles is added, repeat this step.
3. Find a hitting set based on a rounded lp solution and add cycle constraints as described

above. If a non-empty set of cycles is added, repeat this step.
4. If the objective value of the rounded lp solution and the fractional lp solution differ by

less than one, the found hitting set is optimal. In this case, output the fas and terminate.
5. Try to add violated cycle constraints based on the fractional lp solution. If a non-empty

set of cycles is added, go to step 2.
6. Find a hitting set by solving the ilp optimally. If this set is not an fas, add further

constraints as described above and go to step 2. Else output the fas and terminate.

So, instead of directly starting an exact solver on the given hitting set instance, we
first use heuristics for the purpose of adding new cycle constraints. Due to this interplay
between the heuristics for hitting set and the ones for fas that are combined to generate
cycle constraints, we name our solver pingpong.

As hitting set heuristics we use, on the one hand, a simple degree-based heuristic (which
has the advantage of being extremely fast) and, on the other hand, a relaxed version of the
lp without the integrality constraint enforced (i.e., having 0 ≤ xi ≤ 1). For cycle generation,
we round the solution and further improve it iteratively by a simulated annealing scheme.
Further constraints are added this way as long as the heuristic solution does not cover all
cycles, i.e., is not a valid fas. Our goal is to start the ilp solver only a few times – or not at
all if the rounded lp solution matches the objective value of the fractional lp solution.

Once this subgraph is acyclic, we try to add further cycles based on the fractional lp
solution. We do this only once as this procedure, which is based on Dijkstra’s algorithm [4]
to find violated lp constraints, has significantly larger computational cost compared to the

2 Interestingly, our heuristic solver finds optimal solutions quickly even for some of the instances our
exact solver fails to solve within the 30 minute time limit. This shows that proving the lower bound is
the main problem for these inputs.

3 The next vertex to place in the ordering is chosen such that the sum of violated edge weights is
minimized.

IPEC 2024

28:4 UzL Exact Solver for One-Sided Crossing Minimization

BFS cycle generation procedure. If it adds no further cycles, the integer program is started
and solved optimally. In the same way as before, the solution of the integer program is used
to add further cycles, unless it already hits every cycle – in this case we found the optimum
and terminate.

We used the HiGHS ILP solver [6] without any further tuning. As this solver does not
yet offer lazy constraint generation, we restarted the solver for any new hitting set instance.
In the future, it would be interesting to analyze how much gains could be made when
implementing a lazy constraint callback.

Our algorithm manages to solve 195 of the 200 total instances in the exact track. Due to
randomness in the cycle generation procedure the run-time can fluctuate for some instances.
For the parameterized track, we submitted a simplified version of our solver, which gives
slightly better performance on smaller and easier instances. For example, it does not use
the degree heuristic for hitting set and the initial cycles are simply all cycles of length 3.
The solver does not make use of the given cutwidth ordering – still, it solves all instances in
about a minute total.

References
1 Ali Baharev, Hermann Schichl, Arnold Neumaier, and Tobias Achterberg. An exact method

for the minimum feedback arc set problem. Journal of Experimental Algorithmics (JEA),
26:1–28, 2021.

2 Max Bannach, Florian Chudigiewitsch, Kim-Manuel Klein, Till Tantau, and Marcel Wienöbst.
UzL heuristic solver for one-sided crossing minimization. Technical report, University of
Lübeck, 2024.

3 Karthekeyan Chandrasekaran, Richard M. Karp, Erick Moreno- Centeno, and Santosh S. Vem-
pala. Algorithms for implicit hitting set problems. In Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA,
January 23-25, 2011, pages 614–629, 2011. doi:10.1137/1.9781611973082.48.

4 Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik,
1(1):269–271, 1959. doi:10.1007/BF01386390.

5 Martin Grötschel, Michael Jünger, and Gerhard Reinelt. A cutting plane algorithm for the linear
ordering problem. Operations research, 32(6):1195–1220, 1984. doi:10.1287/OPRE.32.6.1195.

6 Qi Huangfu and JA Julian Hall. Parallelizing the dual revised simplex method. Mathematical
Programming Computation, 10(1):119–142, 2018. doi:10.1007/S12532-017-0130-5.

https://doi.org/10.1137/1.9781611973082.48
https://doi.org/10.1007/BF01386390
https://doi.org/10.1287/OPRE.32.6.1195
https://doi.org/10.1007/S12532-017-0130-5

	1 Introduction
	2 Implicit Hitting Set Formulation of Feedback Arc Set
	3 Description of Our Approach

