
PACE Solver Description: CRGone
Alexander Dobler #

TU Wien, Austria

Abstract
We describe CRGone, our solver for the exact and parameterized track of the Pace Challenge 2024.
It solves the problem of one-sided crossing minimization, is based on an integer linear programming
(ILP) formulation with additional reduction rules, and is implemented in C++ using the ILP solver
SCIP with Soplex.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and ex-
act algorithms; Human-centered computing → Graph drawings; Mathematics of computing →
Permutations and combinations

Keywords and phrases Pace Challenge 2024, One-Layer Crossing Minimization, Exact Algorithm

Digital Object Identifier 10.4230/LIPIcs.IPEC.2024.29

Supplementary Material
Software (Source Code): https://zenodo.org/doi/10.5281/zenodo.11634869

Funding Alexander Dobler : Supported by the Vienna Science and Technology Fund (WWTF) under
grant 10.47379/ICT19035.

1 Introduction

One-sided crossing minimization (OSCM) is a problem from layered graph drawing and was
first introduced by Sugiyama et al. [11]. The input is a bipartite graph G = (Vt∪̇Vb, E),
E ⊆ Vt × Vb, with a fixed order πt of Vt. The question is to find an ordering πb of Vb, that
minimizes the number of edge crossings when G is drawn straight-line such that Vt and
Vb are drawn on two respective horizontal lines ℓt and ℓb ordered according to πt and πb,
respectively. It is a purely combinatorial problem as two edges (a, b), (c, d) ∈ Vt × Vb cross if
and only if

a ≺πt
c and d ≺πb

b, or
c ≺πt a and b ≺πb

d

where x ≺π y means that x comes before y in the order π. The problem is NP-hard [4],
heuristics [11, 4], and fixed-parameter algorithms with the natural parameter [3, 2, 8] are
available. It has also been extensively studied with regard to integer linear programming [7].

In Section 2 we give some definitions and in Section 3 we describe our solver.

2 Definitions and Problem Insights

We assume that the input graph is a multigraph as some of our modifications introduce
multiedges. For a set X, let

(
X
i

)
be all the subsets of X of size i. For a vertex u, let N(u) be its

adjacent vertices, and let E(u) be its incident edges. Given u ∈ Vb, we define s(u) as the open
interval (a, b) where a is the minimum index of a neighbour of u in πt, and b is the maximum
index. For u, v ∈ Vb (u ̸= v), let c(u, v) be the number of crossings between edge pairs in the
set E(u)×E(v) when u is placed before v in πb. We have that

∑
{u,v}∈(Vb

2) min(c(u, v), c(v, u))
is a lower bound for the number of crossings and

∑
{u,v}∈(Vb

2) max(c(u, v), c(v, u)) is an upper
bound. We define cr(u, v) = c(u, v) − min(c(u, v), c(v, u)).

© Alexander Dobler;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Parameterized and Exact Computation (IPEC 2024).
Editors: Édouard Bonnet and Paweł Rzążewski; Article No. 29; pp. 29:1–29:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:adobler@ac.tuwien.ac.at
https://orcid.org/0000-0002-0712-9726
https://doi.org/10.4230/LIPIcs.IPEC.2024.29
https://zenodo.org/doi/10.5281/zenodo.11634869
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 PACE Solver Description: CRGone

For an instance G of OSCM let Gd be the directed multi-graph with Vb as vertex set
such that for {u, v} ∈

(
Vb

2
)
, there are c(u, v) arcs from v to u and there are c(v, u) arcs from

u to v. It is known that OSCM is equivalent to finding a minimum feedback arc set in Gd; a
topological order of Gd after removal of the minimum feedback arc set of size k corresponds
to an order of πb with k crossings.

3 Solver description

We describe now our solver. It starts applying several reduction rules and decomposition rules
which split the instance into multiple smaller instances. Then an integer linear programming
formulation is applied that was optimized for sparse graphs.

3.1 Reduction rules
Here, we describe reduction and decomposition rules and how they were implemented and
applied. The first rule is applied during preprocessing and is due to twins in Vb, which can
be contracted.

▶ Reduction Rule 1. Let X ⊆ Vb maximal such that |X| > 1 and ∀u, v ∈ X : N(u) = N(v).
Contract X into a single vertex that has multiedges of multiplicity |X|.

We find such sets X using a trie. The values c(u, v) for the reduced instance are only
computed afterward. The next is due to the formulation as feedback arc set problem.

▶ Decomposition Rule 2 ([9]). Let T = (G1, G2, . . . , Gp) be a topological order of the strongly
connected components of Gd. Then split the instance into G1, G2, . . . , Gp, whose individual
solutions are then concatenated according to the topological order.

We also implemented decomposition rules based on biconnected components of Gd [10], which
almost never applied to the input instances, so it was not included in the final submission.

The next reduction rule fixes the relative order of pairs of vertices in Vb.

▶ Reduction Rule 3 ([3]). If there exist u, v ∈ Vb with c(u, v) = 0, fix u ≺π2 v.

The last reduction rule is more complicated and is related to modular decompositions of
two-structures [6].

▶ Decomposition Rule 4. Let X ⊊ Vb, |X| > 1, such that

∀u, v ∈ X∀w ∈ Vb \ X : cr(u, w) = cr(v, w) ∧ cr(w, u) = cr(w, v).

Then compute an optimal order π1 of X for G[Vt ∪ X]. Let Gc be the graph obtained from
G by contracting X into a single vertex x. Compute an optimal order π2 of (Vb \ X) ∪ {x}
in the reduced instance Gc. By replacing in π2 the contracted vertex x by π1, we obtain an
optimal solution.

The sets X above not containing a randomly chosen y ∈ Vb are computed using a partition
refinement algorithm as described in [6]. The above decomposition rules are applied recursively
with decreasing priority, i.e., Decomposition Rule 2 has the highest priority, Reduction Rule 3
is only applied afterward to the decomposed parts, Decomposition Rule 4 has the lowest
priority. We also implemented the reduction rules, which fix relative orders of vertex-pairs
based on 2/1-structures from [2] with the same priority as Reduction Rule 3.

A. Dobler 29:3

3.2 Integer linear program

If no decomposition and reduction rules are applicable, we employ an integer linear program.
The formulation is as in [7]. Assume a total order < on Vb. For each pair u, v ∈ Vb, u < v

we have a binary ordering variable xu,v which is 1 if and only if u ≺πb
v. The formulation is

as follows.

min
∑

u,v∈Vb,u<v

(c(v, u) + xu,v(c(u, v) − c(v, u))) (ILP)

0 ≤ xu,v + xv,w − xu,w ≤ 1 u, v, w ∈ Vb, u < v < w (TRANS)
xu,v ∈ {0, 1} u, v ∈ Vb, u < v (BIN)

Adaptations. Due to Reduction Rule 3 and the reduction rules from [2] we know the relative
order of specific pairs of vertices from Vb. This means that for some ordering variables xu,v

we already know that they are 1 or 0. We remove those variables from the model and replace
them by the corresponding constant in the above model. Resulting constraints which are
satisfied regardless of variable assignment are removed.

Next, the (TRANS)-constraints are separated using a branch and cut approach. This
involves first categorizing the (TRANS) constraints based on the values of s(u), s(v), s(w)
for the vertices u, v, w in each constraint.

If s(u) ∩ s(v) ∩ s(w) ̸= ∅, then it is a type-1 constraint.

If a constraint is type-1 and additionally, there are two pairs x, y and p, q among the
triple u, v, w such that c(x, y) ̸= c(y, x) and c(p, q) ̸= c(q, p), then it is weak-type-1.

If a constraint is not type-1, it is a type-2 constraint.
The idea is that type-1 constraints can be enumerated quickly without storing them by
using a sweep-line over the sorted interval borders of s(u) for all u ∈ Vb. We enumerate
type-2 constraints by saving for each vertex u ∈ Vb the set S(u) of vertices v ∈ Vb with
s(u) ∩ s(v) ̸= ∅. Then the type-2 constraints (which stay after applying reduction rules) can
be found by enumerating pairs in S(u) for each u ∈ Vb. The solver is initialized without
any (TRANS)-constraints. First, only violated weak-type-1 constraints are separated. Once,
there is a separation round where no violated weak-type-1 constraint can be separated, type-1
constraints are separated from now on. Lastly, type-2 constraints are only separated in a
separation round if there are no type-1 constraints that can be separated.

Lastly, we implemented a heuristic that exploits fractional solutions. To this end, we start
with a feasible solution π̂b conforming to the reduction rules. Then we compute values p(u)
for all u ∈ Vb: for each ordering variable xu,v let yu,v be the rounded value in the fractional
solution. We add 1 to p(v) if yu,v = 1, otherwise, we add 1 to p(u). Lastly, for all u ∈ Vb we
add to p(u) the number of v ∈ Vb that are fixed before u according to the reduction rules.
The heuristic computes an ordering starting with π̂b and swapping two adjacent vertices u, v

in π̂b (u before v) where p(u) > p(v) and u does not have to be before v according to the
reduction rules. This is implemented in a bubble-sort-like algorithm. The worst-case runtime
is equal to the number of ordering variable in the reduced model.

The above is implemented in C++17 using SCIP version 9 [1] with Soplex version 7 [5].
Parameters are chosen such that the solver remains in the root of the branch and bound tree
as long as possible.

IPEC 2024

29:4 PACE Solver Description: CRGone

References
1 Suresh Bolusani, Mathieu Besançon, Ksenia Bestuzheva, Antonia Chmiela, João Dionísio, Tim

Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mohammed Ghannam, Ambros Gleixner,
et al. The SCIP optimization suite 9.0, 2024. arXiv:2402.17702.

2 Vida Dujmovic, Henning Fernau, and Michael Kaufmann. Fixed parameter algorithms
for one-sided crossing minimization revisited. J. Discrete Algorithms, 6(2):313–323, 2008.
doi:10.1016/J.JDA.2006.12.008.

3 Vida Dujmovic and Sue Whitesides. An efficient fixed parameter tractable algorithm for 1-sided
crossing minimization. Algorithmica, 40(1):15–31, 2004. doi:10.1007/S00453-004-1093-2.

4 Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(4):379–403, 1994. doi:10.1007/BF01187020.

5 Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime
Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, et al. The
SCIP optimization suite 7.0, 2020. URL: https://opus4.kobv.de/opus4-zib/files/7802/
scipopt-70.pdf.

6 Michel Habib and Christophe Paul. A survey of the algorithmic aspects of modular decompos-
ition. Comput. Sci. Rev., 4(1):41–59, 2010. doi:10.1016/J.COSREV.2010.01.001.

7 Michael Jünger and Petra Mutzel. Exact and heuristic algorithms for 2-layer straightline
crossing minimization. In Franz-Josef Brandenburg, editor, Proc. Symposium on Graph
Drawing and Network Visualizations (GD’95), volume 1027 of LNCS, pages 337–348. Springer,
1995. doi:10.1007/BFB0021817.

8 Yasuaki Kobayashi and Hisao Tamaki. A fast and simple subexponential fixed parameter
algorithm for one-sided crossing minimization. Algorithmica, 72(3):778–790, 2015. doi:
10.1007/S00453-014-9872-X.

9 Sungju Park and Sheldon B Akers. An efficient method for finding a minimal feedback arc set
in directed graphs. In Proc. International Symposium on Circuits and Systems (ISCAS’92),
volume 4, pages 1863–1866. IEEE, 1992.

10 Hermann Stamm. On feedback problems in planar digraphs. In Rolf H. Möhring, editor, Proc.
Graph-Theoretic Concepts in Computer Science (WG’90), volume 484 of LNCS, pages 79–89.
Springer, 1990. doi:10.1007/3-540-53832-1_33.

11 Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding
of hierarchical system structures. IEEE Trans. Syst. Man Cybern., 11(2):109–125, 1981.
doi:10.1109/TSMC.1981.4308636.

https://arxiv.org/abs/2402.17702
https://doi.org/10.1016/J.JDA.2006.12.008
https://doi.org/10.1007/S00453-004-1093-2
https://doi.org/10.1007/BF01187020
https://opus4.kobv.de/opus4-zib/files/7802/scipopt-70.pdf
https://opus4.kobv.de/opus4-zib/files/7802/scipopt-70.pdf
https://doi.org/10.1016/J.COSREV.2010.01.001
https://doi.org/10.1007/BFB0021817
https://doi.org/10.1007/S00453-014-9872-X
https://doi.org/10.1007/S00453-014-9872-X
https://doi.org/10.1007/3-540-53832-1_33
https://doi.org/10.1109/TSMC.1981.4308636

	1 Introduction
	2 Definitions and Problem Insights
	3 Solver description
	3.1 Reduction rules
	3.2 Integer linear program

