
Twin-Width Meets Feedback Edges
and Vertex Integrity
Jakub Balabán #

Faculty of Informatics, Masaryk University, Brno, Czech Republic

Robert Ganian #

Algorithms and Complexity Group, TU Wien, Vienna, Austria

Mathis Rocton #

Algorithms and Complexity Group, TU Wien, Vienna, Austria

Abstract
The approximate computation of twin-width has attracted significant attention already since the
moment the parameter was introduced. A recently proposed approach (STACS 2024) towards
obtaining a better understanding of this question is to consider the approximability of twin-width
via fixed-parameter algorithms whose running time depends not on twin-width itself, but rather on
parameters which impose stronger restrictions on the input graph. The first step that article made
in this direction is to establish the fixed-parameter approximability of twin-width (with an additive
error of 1) when the runtime parameter is the feedback edge number.

Here, we make several new steps in this research direction and obtain:
An asymptotically tight bound between twin-width and the feedback edge number;
A significantly improved fixed-parameter approximation algorithm for twin-width under the same
runtime parameter (i.e., the feedback edge number) which circumvents many of the technicalities
of the original result and simultaneously avoids its formerly non-elementary runtime dependency;
An entirely new fixed-parameter approximation algorithm for twin-width when the runtime
parameter is the vertex integrity of the graph.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases twin-width, fixed-parameter algorithms, feedback edge number, vertex
integrity

Digital Object Identifier 10.4230/LIPIcs.IPEC.2024.3

Related Version Previous Version: https://arxiv.org/abs/2407.15514

Funding Robert Ganian: Robert Ganian acknowledges support by the FWF and WWTF Science
Funds (FWF project 10.55776/Y1329 and WWTF project ICT22-029).
Mathis Rocton: Mathis Rocton acknowledges support by the European Union’s Horizon 2020 research
and innovation COFUND programme (LogiCS@TUWien, grant agreement No 101034440), and the
FWF Science Fund (FWF project Y1329).

1 Introduction

Twin-width is a comparatively recent graph-theoretic measure which is the culmination
of as well as a catalyst for several recent breakthroughs in the area of algorithmic model
theory [10, 11, 12, 13, 14]. Indeed, it has the potential to provide a unified explanation
of why model-checking first order logic is fixed-parameter tractable on a number of graph
classes which were, up to then, considered to be separate islands of tractability for the
model-checking problem. This includes graphs of bounded rank-width, proper minor-closed
graphs, map graphs [15], bounded-width posets [3] as well as a number of other specialized
graph classes [4, 22].

© Jakub Balabán, Robert Ganian, and Mathis Rocton;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Parameterized and Exact Computation (IPEC 2024).
Editors: Édouard Bonnet and Paweł Rzążewski; Article No. 3; pp. 3:1–3:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:485053@mail.muni.cz
https://orcid.org/0000-0002-2475-8938
mailto:rganian@gmail.com
https://orcid.org/0000-0002-7762-8045
mailto:mrocton@ac.tuwien.ac.at
https://orcid.org/0000-0002-7158-9022
https://doi.org/10.4230/LIPIcs.IPEC.2024.3
https://arxiv.org/abs/2407.15514
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

While twin-width is related to graph parameters such as rank-width and path-width [14]
as well as to measures which occur in matrix theory such as excluding linear minors [13],
what distinguishes twin-width from these other measures is that we lack efficient algorithms
for computing the twin-width of a graph. In particular, it is known that already deciding
whether a graph has twin-width at most 4 is NP-hard [6]. This is highly problematic for the
following reason: virtually every known algorithm that uses twin-width requires access to a
so-called contraction sequence, which serves the same role as the decompositions typically
used for classical parameters such as treewidth [36] and rank-width [35]. Intuitively speaking,
a contraction sequence of width t – which serves as a witness for G having twin-width at
most t – of a graph G is a sequence C of contractions of (not necessarily pairwise adjacent)
vertex pairs which satisfies the following property: at each step of C, every vertex v only has
at most t neighbors with an ancestor that is not adjacent to some ancestor of v1.

The aforementioned NP-hardness of identifying graphs of twin-width 4 [6] effectively rules
out fixed-parameter as well as XP algorithms for computing optimal contraction sequences
when parameterized by the twin-width itself. One possible approach to circumvent this
obstacle would be to devise a fixed-parameter algorithm which still uses the twin-width t

as the parameter and computes at least an approximately-optimal contraction sequences,
i.e., a contraction sequence of width f(t) for some computable function f . On a complexity-
theoretic level, such a result may be seen as “almost” as good as computing twin-width
exactly, as it would still yield a fixed-parameter algorithm for first-order model checking.

Unfortunately, the task of finding such an algorithm has proven to be highly elusive, and
it is far from clear that one even exists – in fact, whether twin-width can be approximated
in fixed-parameter time (for any function f of the twin-width) can be seen as arguably the
most prominent open question in contemporary research of twin-width. Recently [2], we
attacked this question by first relaxing the running time requirement and ask whether we
can obtain an f(t)-approximation for twin-width at least via a fixed-parameter algorithm
where the runtime parameter is different (and, in particular, larger) than the twin-width t

itself. As a first step in this direction, we developed a non-trivial fixed-parameter algorithm
that computes a contraction sequence of width at most t + 1 and is parameterized by the
feedback edge number of the input graph, i.e., the edge deletion distance to acyclicity [2]. In
the same paper, we also showed that the twin-width of a graph with feedback edge number
k is upper-bounded by k + 1.

Contributions. In this article, we significantly expand on our previous results [2] and present
the next steps in the overarching program of understanding the boundaries of tractability
for computing approximately-optimal contraction sequences. We summarize the three main
contributions of this article below.

In Section 3, we revisit the relationship between twin-width and the feedback edge number.
Here, we improve our previous linear bound [2] to square-root, and also show that this new
bound is asymptotically tight. More precisely, we show that every graph class with feedback
edge number k has twin-width O(

√
k) (Theorem 8), and also construct a graph class with

feedback edge number k whose twin-width is lower-bounded by Θ(
√

k) (Proposition 9).
In Section 4, we revisit the main result of the preceding paper [2]: a polynomial-time

reduction procedure which transforms every input graph G with feedback edge number k

and twin-width t into a (tri-)graph G′ whose twin-width lies between t and t + 1 and whose
size is upper-bounded by a non-elementary function of k. While this suffices to obtain the

1 Formal definitions are provided in Section 2.

desired fixed-parameter approximation algorithm (as one may brute-force over all contraction
sequences of G′), the dependence on the parameter k is astronomical and the proof relies on
a sequence of highly technical arguments about how a hypothetical contraction sequence may
be retrofitted in order to avoid certain degenerate steps. As the second main contribution of
this article, we provide a new proof for the fixed-parameter approximability of twin-width
parameterized by the feedback edge number which not only avoids many of the technical
difficulties faced in the previous approach, but crucially also improves the size bound for the
reduced instance G′ from a non-elementary to a quadratic function of k.

Finally, in Section 5 we push the frontiers of approximability for twin-width by obtaining
an algorithm which computes a contraction sequence for G of width at most twice the graph’s
twin-width and runs in time f(p) · |G|, where p is the vertex integrity of G. Vertex integrity
is a parameter which intuitively measures how easily a graph may be separated into small
parts, and is defined as the smallest integer p such that there exists a separator X with
the following property: each connected component C of G − X satisfies |V (C) ∪ X| ≤ p.
Vertex integrity may be seen as the natural intermediate step between the vertex cover
number (which is the size of the smallest vertex cover in G, and which is known to allow for a
trivial fixed-parameter algorithm for computing twin-width) and decompositional parameters
such as treedepth and treewidth (for which the existence of a fixed-parameter approximation
algorithm for twin-width remains a prominent open question [2]). Our result relies on a
data reduction procedure which incorporates entirely different arguments than those used for
the feedback edge number, and the correctness proof essentially shows that every optimal
contraction sequence can be transformed into a near-optimal one where all “similar parts” of
G are treated in a “similar way”.

Related Work. Beyond the setting of computing twin-width and the associated contraction
sequences, there are numerous other works which have targeted fixed-parameter algorithms
for computing a structural graph parameter X when parameterized by graph parameters
that differ from X. The general aim in this research direction is typically to further
one’s understanding of the fundamental problem of computing the targeted parameter X.
Examples of fixed-parameter algorithms obtained in this setting include those for treewidth
parameterized by the feedback vertex number [9], treedepth parameterized by the vertex
cover number [33], MIM-width parameterized by the feedback edge number and other
parameters [21], and the directed feedback vertex number parameterized by the (undirected)
feedback vertex number [7]. The feedback edge number and vertex integrity have also been
used to obtain parameterized algorithms for a number of other challenging problems [37, 5,
27, 34, 25, 29, 23, 30], whereas the latter parameter has also been studied in the literature
under different asymptotically-equivalent names such as the fracture number [20, 24] and
starwidth [38]. We refer interested readers to the very recent manuscript of Hanaka, Lampis,
Vasilakis and Yoshiwatari [31] for a more detailed overview of vertex integrity and its
relationship to other fundamental graph measures.

2 Preliminaries

For integers i and j, we let [i, j] := {n ∈ N | i ≤ n ≤ j} and [i] := [1, i]. We assume familiarity
with basic concepts in graph theory [17] and parameterized algorithmics [18, 16]. When H

is an induced subgraph of G, we denote it by H ⊆ G. Given vertex sets X and U , we will
use G[X] to denote the graph induced on X and G − U to denote the graph G[V (G) \ U];
similarly, for an edge set F , G − F denotes G after removing the edges in F .

A dangling path in G is a path of vertices which all have degree 2 in G, and a dangling
tree in G is an induced subtree in G which can be separated from the rest of G by removing
a single edge. The length of a path is the number of edges it contains. The distance between
two vertices u and v is the length of the shortest path between them.

An edge set F in an n-vertex graph G is called a feedback edge set if G − F is acyclic,
and the feedback edge number of G is the size of a minimum feedback edge set in G. We
remark that a minimum feedback edge set can be computed in time O(n) as an immediate
corollary of the classical (DFS- and BFS-based) algorithms for computing a spanning tree in
an unweighted graph G.

A graph has vertex integrity p if p is the smallest integer with the following property: G

contains a vertex set S such that S ̸= V (G) and for each connected component H of G − S,
|V (H) ∪ S| ≤ p. One may observe that the vertex integrity is upper-bounded by the size of a
minimum vertex cover in the graph (i.e., the vertex cover number) plus one, and both vertex
integrity and the feedback edge number are lower-bounded by treewidth minus one [36]. The
vertex integrity of an n-vertex graph can be computed in time O(pp+1 · n) [19].

Twin-Width. A trigraph G is a graph whose edge set is partitioned into a set of black and
red edges. The set of red edges is denoted R(G), and the set of black edges E(G). The
black (resp. red) degree of u ∈ V (G) is the number of black (resp. red) edges incident to u in
G. We extend graph-theoretic terminology to trigraphs by ignoring the colors of edges; for
example, the degree of u in G is the sum of its black and red degrees (in the literature, this
is sometimes called the total degree). We say a (sub)graph is black (resp. red) if all of its
edges are black (resp. red); for example, P is a red path in G if it is a path containing only
red edges. Without a color adjective, the path (or a different kind of subgraph) may contain
edges of both colors.

Given a trigraph G, a contraction of two distinct vertices u, v ∈ V (G) is the operation
which produces a new trigraph by (1) removing u, v and adding a new vertex w, (2) adding a
black edge wx for each x ∈ V (G) such that xu, xv ∈ E(G), and (3) adding a red edge wy for
each y ∈ V (G) such that yu ∈ R(G), or yv ∈ R(G), or y contains only a single black edge to
either v or u. A sequence C = (G = G1, . . . , Gn) is a partial contraction sequence of G if it is
a sequence of trigraphs such that for all i ∈ [n − 1], Gi+1 is obtained from Gi by contracting
two vertices. A contraction sequence is a partial contraction sequence which ends with a
single-vertex graph. The width of a (partial) contraction sequence C, denoted w(C), is the
maximum red degree over all vertices in all trigraphs in C. The twin-width of G, denoted
tww(G), is the minimum width of any contraction sequence of G, and a contraction sequence
of width tww(G) is called optimal. An example of a contraction sequence is provided in
Figure 1.

A

C

E

B

D

F

A

C

B

D

EF

AB

C D

EF

AB

CD

EF

AB

CDEF

ABCDEF

Figure 1 A contraction sequence of width 2 for the leftmost graph, consisting of 6 trigraphs.

Let us now fix a contraction sequence C = (G = G1, . . . , Gn). For each i ∈ [n], we
associate each vertex u ∈ V (Gi) with a set β(u, i) ⊆ V (G), called the bag of u, which
contains all vertices contracted into u. Formally, we define the bags as follows:

for each u ∈ V (G), β(u, 1) := {u};
for i ∈ [n − 1], if w is the new vertex in Gi+1 obtained by contracting u and v, then
β(w, i + 1) := β(u, i) ∪ β(v, i); otherwise, β(w, i + 1) := β(w, i).

Note that if a vertex u appears in multiple trigraphs in C, then its bag is the same in
all of them, and so we may denote the bag of u simply by β(u). Let us fix i, j ∈ [n], i ≤ j.
If u ∈ V (Gi), v ∈ V (Gj), and β(u) ⊆ β(v), then we say that u is an ancestor of v in Gi

and v is the descendant of u in Gj (clearly, this descendant is unique). If H is an induced
subtrigraph of Gi, then u ∈ V (Gj) is a descendant of H if it is a descendant of at least one
vertex of H. A contraction of u, v ∈ V (Gj) into uv ∈ V (Gj+1) involves w ∈ V (Gi) if w is an
ancestor of uv.

The following definition provides terminology that allows us to partition a contraction
sequence into “steps” based on contractions between a subset of vertices in the original graph.

▶ Definition 1. Let C be a contraction sequence of a trigraph G, and let H be an induced
subtrigraph of G with |V (H)| = m. For i ∈ [m − 1], let C⟨i⟩H be the trigraph in C obtained
by the i-th contraction between two descendants of H, and let C⟨0⟩H = G. For i ∈ [m − 1],
let ui and wi be the two vertices that are contracted into the new vertex of C⟨i⟩H .

A contraction sequence C[H] = (H = H1, . . . , Hm) is the restriction of C to H if for each
i ∈ [m − 1], Hi+1 is obtained from Hi by contracting the two vertices u, w ∈ V (Hi) such that
β(u) = β(ui) ∩ V (H) and β(w) = β(wi) ∩ V (H).

It will also be useful to have an operation that forms the “reverse” of a restriction; we
define this below.

▶ Definition 2. Let G and H be graphs such that H ⊆ G and let C0 be a partial contraction
sequence of H. We say that a partial contraction sequence C of G is the extension of C0
to G if C[H] = C0 and no contraction in C involves a vertex of G − H. When Gi is the
i-th trigraph in C0, we denote by Gi ↑ G the i-th trigraph in C (this makes sense since the
lengths of C0 and C are the same).

Finally, we introduce a notion that will be useful when dealing with reduction rules in
the context of computing contraction sequences.

▶ Definition 3. Let G, G′ be trigraphs. We say that the twin-width of G′ is effectively at
most the twin-width of G, denoted tww(G′) ≤e tww(G), if (1) tww(G′) ≤ tww(G) and (2)
given a contraction sequence C of G, a contraction sequence C ′ of G′ of width at most w(C)
can be constructed in polynomial time. If tww(G′) ≤e tww(G) and tww(G) ≤e tww(G′), then
we say that the two graphs have effectively the same twin-width, tww(G′) =e tww(G).

Preliminary Observations and Remarks. We begin by stating a simple brute-force algorithm
for computing twin-width.

▶ Observation 4. An optimal contraction sequence of an n-vertex graph can be computed in
time 2O(n·log n).

Proof. Each contraction sequence is defined by n − 1 choices of a pair of vertices, and so
the number of contraction sequences is O((n2)n) = O(22n·log n) ≤ 2O(n·log n). Moreover,
computing the width of a contraction sequence can clearly be done in polynomial time. ◀

The following observation provides a useful insight into the optimal contraction sequences
of trees.

▶ Observation 5 ([15, Section 3]). For any rooted tree T with root r, there is a contraction
sequence C of T of width at most 2 such that the only contraction involving r is the very last
contraction in C.

3 The Square-Root Bound

In this section, we prove that a graph with feedback edge number k has twin-width at most
O(

√
k). On a high level, the idea we will employ here builds on the preprocessing techniques

originally introduced in the context of computing twin-width on tree-like graphs [2]: first we
will contract the dangling trees, then the dangling paths, and for the final step we will use
the following theorem of Ahn, Hendrey, Kim and Oum:

▶ Theorem 6 ([1]). If G is a graph with m edges, than the twin-width of G is at most√
3m + o(

√
m).

An issue we need to resolve before applying the aforementioned high-level approach is
that Theorem 6 only applies to graphs without red edges, whereas the trigraph G we will
obtain after dealing with the dangling trees and paths may contain these. The following
lemma shows, using the properties of the red edges in G, that making all edges of G black
can only decrease the twin-width by a constant.

▶ Lemma 7. Let G be a trigraph with maximum red degree 2 such that each red edge in G is
incident to a vertex of degree at most 2. If G′ is the graph obtained from G by making all
edges black, then tww(G) ≤ tww(G′) + 4.

Proof. Let C ′ be an optimal contraction sequence of G′, and let C be the contraction
sequence of G obtained by following C ′. We will prove that w(C) ≤ w(C ′) + 4.

Let Gi be any trigraph in C and let G′
i be the trigraph in C ′ such that V (Gi) = V (G′

i).
Suppose for a contradiction that there are distinct vertices u, v1, v2, v3, v4, v5 ∈ V (Gi) such
that for each j ∈ [5], uvj is a red edge in Gi but not in G′

i. Recall that β(w) denotes the set
of vertices contracted to w (the bag of w), and observe that for each j ∈ [5], there must be
vertices uj , v0

j ∈ V (G) such that uj ∈ β(u) and v0
j ∈ β(vj), and ujv0

j is an edge that is black
in G′ but red in G. Since uvj /∈ R(G′

i), there must be either all edges or no edges between
β(u) and β(vj) in G′. However, ujv0

j ∈ E(G′), which means that for all j, ℓ ∈ [5], ujv0
ℓ is a

black edge in G′ (and so it is an edge also in G).
Since all vertices of G have red degree at most 2 and ujv0

j ∈ R(G) for each j ∈ [5],
there must be a, b, c ∈ [5] such that |{ua, ub, uc}| = 3. Now observe that each vertex
in {ua, ub, uc, v0

a, v0
b , v0

c } has degree at least 3 in G (since ujv0
ℓ is an edge in G for all

j, ℓ ∈ {a, b, c}). However, each red edge in G has an endpoint of degree at most 2, which is a
contradiction.

We have proven that the red degree of each vertex u ∈ V (Gi) = V (G′
i) may be higher in

Gi than in G′
i by at most 4, which proves that w(C) ≤ w(C ′) + 4. ◀

We are now ready to prove the square-root upper bound on twin-width.

▶ Theorem 8. There exists a function f(k) ∈ O(
√

k) such that every graph G with feedback
edge number k has twin-width at most f(k).

Proof. Let F be a smallest feedback edge set of G and assume k = |F | > 0 (the case k = 0
follows from Observation 5). We will prove the statement by constructing a contraction
sequence for G of width at most f(k) ∈ O(

√
k). We begin by contracting each maximal

dangling tree to a single vertex using Observation 5. After a maximal dangling tree has been

Q

Figure 2 A trigraph after processing the dangling trees and shortening the paths in P. Spikes
are colored in green. The edges between vertices of Q are not depicted. Notice that one of the paths
is black: this means it had no spikes and it has not been shortened. Also notice that one spike is
attached by a black edge: it was a maximal dangling tree with only one vertex in G.

contracted, we call the last remaining vertex a spike, and we say that a vertex adjacent to a
spike has a spike. Whenever a vertex has two spikes, we contract the spikes together (the
obtained vertex is still called a spike). Observe that throughout this process, no vertex has
red degree higher than 2: this is ensured by Observation 5 and the fact that a red neighbor
of a vertex not in a dangling tree must be a spike.

Let Gα be the obtained trigraph and let T be the tree obtained from Gα by removing all
spikes and edges in F . Let us choose any vertex of T to be the root. Let Q0 := {u ∈ V (T) | u

is incident to an edge of F in Gα}, Q1 := {u ∈ V (T) | u has degree higher than 2 in T}, and
Q := Q0 ∪ Q1. It is easy to see that |Q0| ≤ 2k and that all leaves of T belong to Q0 (a leaf
not in Q0 would belong to a dangling tree in Gα). Since a tree with n leaves has at most
n vertices of degree higher than 2, we obtain that |Q1| ≤ 2k and |Q| ≤ 4k. Observe that
T − Q is a graph consisting of disjoint dangling paths. Let P be the set of these paths, and
let g : P → Q be the function such that g(P) is the vertex of Q adjacent to the endpoint of
P that is farther from the root of T . Since g is injective, we obtain that |P| ≤ 4k.

For each path P = (u1, . . . , un) in P, we perform the following contractions (starting
with Gα).

If n > 2, then for each i ∈ [2, n − 1] such that ui has a spike v, contract ui and v (do this
in increasing order). If u1 (resp. un) has a spike v, contract v and u2 (resp. un−1).
If n > 3, shorten P to a path with exactly three vertices by repeatedly contracting
neighboring vertices of P − {u1, un}.

Observe that throughout this process, no vertex has red degree higher than 2: a vertex
in Q has red degree at most 1 (its red neighbor must be a spike) and a vertex in a path P

either has a spike and at most one red neighbor in P or at most two red neighbors in P . See
Figure 2 for an illustration.

Now we will count the number of edges in the obtained trigraph Gβ . First, observe that
there are at most 5k edges in Gβ [Q]: k edges belonging to F and at most 4k other edges
since Gβ [Q] − F is a forest. In addition, each vertex of Q may have a spike in Gβ , which
constitutes up to 4k other edges. Second, let P ∈ P. If the length of P in G is at least 2,
then P corresponds to at most four edges in Gβ : at most two edges of the path itself and
two edges connecting P to the rest of the graph (i.e., to vertices of Q). However, if P is
shorter in G, then its vertices may have spikes in Gβ and it may correspond to up to 5 edges:
one edge of the path, two edges connecting it to Q, and two edges going to the spikes. Hence,
P adds at most 20k edges, and thus there are at most 29k edges in Gβ .

Let Gγ be the graph obtained from Gβ by changing the color of all edges to black.
By Theorem 6, Gγ has twin-width at most

√
87k + o(

√
k). Notice that Gβ satisfies the

preconditions of Lemma 7, which means that tww(Gβ) ≤ tww(Gγ)+4. Hence, the twin-width
of Gβ is also at most

√
87k + o(

√
k), and the same also holds for the original graph G (since

the partial contraction sequence from G to Gβ has width at most 2). ◀

We conclude the section by showing that Theorem 8 is asymptotically tight.

▶ Proposition 9. There exists a function f(k) ∈ Ω(
√

k) and an infinite class G of graphs
such that for each G ∈ G with feedback edge number k, tww(G) ≥ f(k).

Proof. Let n be a prime power such that n ≡ 1 (mod 4). It is known that there exists an
n-vertex ((n − 1)/2)-regular graph G (a so-called Paley graph) that has twin-width exactly
(n − 1)/2 [1, Section 3]. Since |E(G)| = (n2 − n)/4 and the spanning forest of G has at most
n−1 edges, we know that the feedback edge number k of G is at least (n2 −5n+4)/4 ∈ Ω(n2).

Let G be the class of all such n-vertex Paley graphs. For each n-vertex graph G in
G, we have k ∈ Ω(n2) and tww(G) ∈ Θ(n). Let f be the function which maps each k to
the minimum of {tww(G) | G ∈ G is a graph with feedback edge number k}. Thus, for each
G ∈ G, tww(G) ≥ f(k), and the aforementioned relationships between the number n of
vertices of that graph, tww(G) and k guarantee that f(k) ∈ Ω(

√
k), as desired. ◀

4 A Better Algorithm Parameterized by the Feedback Edge Number

We begin by recalling that the case of twin-width 2 is known to already admit an exact nearly
single-exponential fixed-parameter algorithm parameterized by the feedback edge number
(see Theorem 10 below), and thus here we focus our efforts on graphs with higher twin-width.

▶ Theorem 10 ([2]). If G is a graph with feedback edge number k and tww(G) ≤ 2, then an
optimal contraction sequence of G can be computed in time 2O(k·log k) + nO(1).

Our algorithm uses the same initial preprocessing steps as our previous result [2]. These
are formalized through the following definition and theorem; note that in the approach we use
here, we can use a slightly more general (and less technical) definition of tidy (H, P)-graphs
than the preceding paper.

▶ Definition 11. A connected trigraph G with tww(G) ≥ 2 is a tidy (H, P)-graph if P is a
non-empty set of dangling red paths in G, and there are two disjoint induced subtrigraphs
of G, namely H and ⊔P (the disjoint union of all paths in P), such that each vertex of G

belongs to one of them. Moreover, if u ∈ V (H) has a neighbor v ∈ V (⊔P) in G, then u has
black degree 0 in G, and v is the only neighbor of u in ⊔P.

The following theorem summarizes the results obtained in [2] that we will use in this
section.

▶ Theorem 12 ([2], Theorem 17 + Corollary 20). There is a polynomial-time procedure
which takes as input a graph G with feedback edge number k and either outputs an optimal
contraction sequence of G of width at most 2, or a tidy (H, P)-graph G′ with effectively the
same twin-width as G such that |V (H)| ≤ 112k and |P| ≤ 4k.

From here on, we pursue an entirely different approach than the one used to obtain the
previous (non-elementary) kernel [2]. In Subsection 4.1, we show how a tidy (H, P)-graph can
be contracted when the paths in P are long enough and a contraction sequence of H is given.
This is then used in Subsection 4.2, where we describe a better algorithm for approximating
twin-width parameterized by the feedback edge number (see Theorem 18).

4.1 Contracting an (H, P)-Graph Using a Contraction Sequence for H

For this subsection, let us fix a tidy (H, P)-graph G and let m := |P|. Assume that each
P ∈ P satisfies |V (P)| ≥ 8m and let F be the subtrigraph of ⊔P induced by the vertices at
distance at most 2m from H in G.

Informally speaking, our goal now is to construct a “good” contraction sequence for such
a trigraph G, see Corollary 16. To achieve that, we need to describe some well-structured
trigraphs obtained by a sequence of contractions from G, which we will call G-tidy trigraphs,
see the following Definition 13. An important property of a G-tidy trigraph is that all
contractions happened either between two vertices of H or two vertices of F at the same
distance from H (see items 1 and 3).

▶ Definition 13. Let G′ be a trigraph obtained by a sequence of contractions from G and let
H ′ (resp. F ′) be the subtrigraph of G′ induced by the vertices u such that β(u) is a subset of
V (H) (resp. V (F)). We say that G′ is a G-tidy trigraph if:
1. For u ∈ V (G′), we have u ∈ V (H ′) ∪ V (F ′) or |β(u)| = 1.
2. Each u ∈ V (H ′) has at most one neighbor outside of H ′ in G′.
3. For each u ∈ V (F ′), all vertices in β(u) have the same distance d from H in G. We say

that d is the level of u.
4. F ′ is a forest such that all its vertices have degree at most 3 in G′. If T is a connected

component of F ′, then:
a. T has exactly one vertex r at level 1 (let us declare it the root of T).
b. The vertices of T with degree 3 in Gi form a subtree T ′ of T .
c. The vertices of T ′ have level at most |β(r)| − 1, and either T ′ = ∅ or r ∈ V (T ′).

See Figure 3 for an illustration.

H ′

Figure 3 An illustration of Definition 13 when m = 3. The depicted G-tidy trigraph G′ consists
of H ′: vertices colored in grey, F ′: vertices colored in blue (degree-3 vertices in darker shade), and
the remaining vertices are colored in green. The edges inside of H ′ are not depicted (there can be
both red and black edges). Note that instead of each pair of green vertices, there should be at least
12 of them (because each path in P should contain at least 8m = 24 vertices).

Now we show how G can be reduced to a G-tidy trigraph with H ′ being a single-vertex
graph; this will be the first part of the proof of Corollary 16. Note that the assumption that
CH is given will be later handled in the proof of Lemma 17.

▶ Lemma 14. Given a contraction sequence CH of H, one can compute a partial contraction
sequence of width max(w(CH) + 1, 4) from G to a G-tidy trigraph G′ with |V (H ′)| = 1, in
polynomial time.

Proof. For each i ∈ [|V (H)|], we will construct a partial contraction sequence Ci from G to
a G-tidy trigraph Gi such that w(Ci) ≤ max(w(CH) + 1, 4) and the restriction of Ci to H

will be the prefix of CH of length i. We will denote the subtrigraphs of Gi corresponding to
H ′ and F ′ (see Definition 13) by Hi and Fi, respectively. We define C1 = (G), i.e., C1 is
the trivial partial contraction sequence with no contractions. It can be easily verified that
G1 := G is a G-tidy trigraph. In particular, the forest F1 := F consists of 2m disjoint paths.

Suppose that we have constructed Ci for some i < |V (H)|. Let u, v ∈ V (Hi) be the two
vertices contracted in Hi+1 (which is the successor of Hi in CH). If u or v does not have a
neighbor outside of Hi in Gi, then we define Gi+1 to be the trigraph obtained from Gi by
contracting u and v. Clearly, Gi+1 is a G-tidy trigraph and Ci+1 (the sequence obtained by
prolonging Ci with Gi+1) has the required properties. Now suppose that both u and v have
a neighbor outside of Hi in Gi. In this case, we cannot simply contract them because the
new vertex would have two neighbors outside of Hi+1, violating condition 2 of Definition 13.

Let Tu and Tv be the two connected components of Fi with roots adjacent to u and v,
respectively. Informally, we need to merge Tu and Tv before we can contract u and v. Let
T ∈ {Tu, Tv} be a tree with root r. If T contains no degree-3 vertices, we do nothing (we
always mean degree in Gi). Otherwise, let w ∈ V (T) be the deepest degree-3 vertex such
that all its ancestors in T have degree 3. By item 3 of Definition 13, |β(r)| ≤ 2m because F

contains exactly 2m vertices at level 1 (2 for each path in P). Hence, by item 4c, the level of
w is less than 2m, and so w has two children x and y in T , both of degree 2. We contract x

and y (note that the obtained vertex xy has red degree 3, and the red degree of w drops to
2). We repeat this process as long as such vertex w exists (crucially, xy cannot be chosen as
the next w because its parent has degree 2). Afterwards, we contract the roots ru, rv of Tu

and Tv, and finally, we contract u and v into uv.
Let Ci+1 be the partial contraction sequence of G obtained by prolonging Ci with the

contractions described in the previous paragraph. Let us show that w(Ci+1) ≤ max(w(CH) +
1, 4). By the assumption about Ci, it suffices to discuss red degrees in each trigraph G′

between Gi and Gi+1 (which is the last trigraph in Ci+1). Clearly, any descendant of H

in G′ has red degree at most w(CH) + 1 (it is crucial that u and v are contracted after ru

and rv). Any other vertex of G′ has red degree at most 3, except for the vertex obtained by
contracting ru and rv, whose red degree is 4 (but it drops to 3 when u and v are contracted).

Finally, we need to show that Gi+1 is G-tidy. It is easy to see that Gi+1 satisfies the
first three items of Definition 13. To prove that Gi+1 satisfies item 4, observe that Fi+1 is
indeed a forest: it contains the same trees as Fi, except that Tu and Tv have been merged
into a new tree T with root r. More precisely, T is isomorphic to the tree obtained from the
disjoint union of Tu and Tv by first adding a new vertex r and edges rru, rrv, and second
removing all leaves. Since r has degree 3 in Gi+1, the highest level of a degree-3 vertex in T

is one higher than in the union of Tu and Tv in Gi. Since |β(r)| = |β(ru)| + |β(rv)| and both
of these summands are at least 1, we get that Gi+1 satisfies item 4c, which concludes the
proof. ◀

To prove Corollary 16, we now show that the G-tidy trigraph given by Lemma 14 can be
contracted to a single vertex (without creating vertices with high red degree). Note that the
following proof is inspired by the proof of Theorem 7 in [6].

▶ Lemma 15. If G′ is a G-tidy trigraph G′ with |V (H ′)| = 1, then a contraction sequence
of G′ of width at most 4 can be computed in polynomial time.

Proof. First, observe that by Definition 11, all edges in G′ are red. By item 2 of Definition 13,
the only vertex u of H ′ has a single neighbor r. By Definition 11, G is connected; hence,
also G′ is connected. This implies that F ′ is a tree. Let T be the subtree of F ′ induced by
the vertices with degree 3 in G′. Let us begin by contracting u and r, obtaining a trigraph
G∗ := G′ − u.

Observe that the depth of T is at most 2m − 1 because r contains 2m vertices in its bag
(by property 4c). Consider a path P ∈ P and observe that the descendants of at most 4m

vertices of P belong to T in G∗ (2m from each side). Hence, G∗ − T consists of disjoint
dangling red paths, each with at least 4m vertices (since each P ∈ P satisfies |V (P)| ≥ 8m).
Let P ′ be the set of these red paths in G∗.

Let P ∈ P ′ and let u and u′ be the endpoints of P . Let v, v′ ∈ V (T) be the neighbors of
u and u′ in T , respectively, and let Q be the path connecting v and v′ in T . Since the depth
of T is at most 2m − 1, we know that Q contains at most 4m − 1 vertices. Let us shorten P

so that it has the same length as Q (by repeatedly contracting consecutive vertices). Let
(u1 = u, . . . , up = u′) and (v1 = v, . . . , vp = v′) be the sequences of vertices of P and Q in the
natural orders. Now for each i ∈ [p] in increasing order, contract ui and vi, and observe that
the obtained trigraph is isomorphic to G∗ − P . Repeat this for all paths P ∈ P ′, obtaining
a trigraph isomorphic to T , which has twin-width at most 3 and can be contracted as per
Observation 5. Finally, observe that during a contraction of a path in P ∈ P ′, there is never
a vertex with red degree higher than 4. Indeed, after contracting ui and vi for i ∈ [p − 1],
the obtained vertex has at most four red neighbors: at most three in T plus ui+1. ◀

4.2 Wrapping up the Proof
In the previous subsection, we proved Lemmas 14 and 15, which together imply the following
corollary.

▶ Corollary 16. Let G be a tidy (H, P)-graph such that each P ∈ P satisfies |V (P)| ≥ 8 · |P|.
Given a contraction sequence CH of H, one can compute a contraction sequence of G of
width max(w(CH) + 1, 4), in polynomial time.

Now we are able to show that if we shorten all long paths in a tidy (H, P)-graph, then
the twin-width increases by at most 1 (formally, shortening a path means contracting its
consecutive vertices).

▶ Lemma 17. Let G be a tidy (H0, P0)-graph such that tww(G) ≥ 3, let m = |P0| and let
G′ be the trigraph obtained from G by shortening each path P ∈ P0 with more than 8 · m

vertices to length exactly 8 · m − 1. Then tww(G′) ≤ tww(G) + 1.

Proof. We begin by handling short paths in P0: let Pshort = {P ∈ P0 : |V (P)| < 8m}, let H

be the union of H0 and ⊔Pshort (including the edges between them), and let P = P0 \ Pshort.
Clearly, G is also a tidy (H, P)-graph. Also observe that G′ is a tidy (H, P ′)-graph (where
P ′ is the set of paths obtained from P by shortening each path in it).

We want to construct a contraction sequence C ′ of G′ of width at most tww(G) + 1
from an optimal contraction sequence C of G. Let CH be the restriction of C to H; clearly,
w(CH) ≤ tww(G). Since tww(G) ≥ 3, it suffices to apply Corollary 16 on G′ using CH ,
which yields the desired contraction sequence C ′. ◀

Finally, we are able to prove the main result of this section.

▶ Theorem 18. Given a graph G with feedback edge number k, a trigraph G′ of size
O(k2) such that tww(G) ≤ tww(G′) ≤ tww(G) + 1 can be computed in polynomial time.
Moreover, a contraction sequence for G of width at most tww(G) + 1 can be computed in
time 2O(k2·log k) + nO(1).

Proof. First, we use Theorem 10 to check whether tww(G) ≤ 2 (if yes, G′ can be any
constant-size graph with the same twin-width as G). From now on, assume tww(G) ≥ 3.
Now let us use Theorem 12 to obtain a tidy (H, P)-graph G1 with effectively the same
twin-width as G such that |V (H)| ≤ 112k and |P| ≤ 4k. Let G′ be the trigraph obtained
when Lemma 17 is applied on G1. By Lemma 17, tww(G′) ≤ tww(G1) + 1. Conversely,
tww(G′) ≥ tww(G1) because there is a partial contraction sequence C1 from G1 to G′ of
width at most tww(G′); it suffices to shorten paths of P that are shorter in G′ than in G1 by
contracting consecutive vertices. Hence, we indeed have tww(G) ≤ tww(G′) ≤ tww(G) + 1.

Next, let us examine the size of G′. By Lemma 17, each of the 4k paths in P has at most
8 · 4k vertices in G′. Hence, we obtain |V (G′)| ≤ 128k2 + 112k ∈ O(k2) as required.

Finally, let us show how a contraction sequence for G of width at most tww(G) + 1 can
be computed. If tww(G) ≤ 2, then this contraction sequence is provided by Theorem 10.
Otherwise, observe that an optimal contraction sequence C ′ of G′ can be computed in time
2O(k2·log k) by Observation 4. Next we concatenate C ′ and C1 (which is defined above and can
be computed trivially) to obtain a contraction sequence of G1 of width at most tww(G1) + 1.
We conclude using the effectiveness part of tww(G) =e tww(G1) (see Definition 3). ◀

5 A Fixed-Parameter Algorithm Parameterized by Vertex Integrity

In this section, we design an FPT 2-approximation algorithm for computing twin-width when
parameterized by the vertex integrity, see Theorem 23.

5.1 Initial Setup and Overview
For the following, it will be useful to recall the definition of vertex integrity presented in
Section 2. Let us fix a graph G and a choice of S ⊆ V (G) witnessing that the vertex integrity
of an input graph G is p, and let C be the set of connected components of G − S. We assume
without loss of generality that G is connected, as the twin-width of a graph is the maximum
twin-width of its connected components. We now define a notion of “component-types” which
intuitively captures the equivalence between components which exhibit the same outside
connections and internal structure.

▶ Definition 19. We say that two graphs H0, H1 ∈ C are twin-blocks, denoted H0 ∼ H1, if
there exist a canonical isomorphism α from H0 to H1 such that for each vertex u ∈ V (H0)
and each v ∈ S, uv ∈ E(G) if and only if α(u)v ∈ E(G). Clearly, ∼ is an equivalence
relation.

In a nutshell, our algorithm first computes an optimal contraction sequence C ′ for a
subgraph G′ of G that is obtained by keeping only a bounded number of twin-blocks from
each equivalence class, and then uses C ′ to obtain a contraction sequence for G of width at
most 2 · tww(G′) ≤ 2 · tww(G). In the following definition, we introduce terminology related
to subgraphs of G.

▶ Definition 20. Let G′ be an induced subgraph of G.
We say that G′ is C-respecting if S ⊆ V (G′) and for each H ∈ C, either H ⊆ G′ or
V (H) ∩ V (G′) = ∅.
We say that an equivalence class [H0] of ∼ is large in G′ if |H| ≥ f(p), where H = {H ∈
[H0] | H ⊆ G′} and f(p) = 27p3 .
We say that G′ is the reduced graph of G if it is obtained from G by removing all but
f(p) twin-blocks from each large class of ∼.

Let us now bound the size of the reduced graph G′.

▶ Observation 21. If G′ is the reduced graph of G, then |V (G′)| ≤ p+p2 ·f(p) ·22p2 ∈ 2O(p3).

Proof. First, let us compute the size of C/∼. Each H ∈ C has at most p vertices, which
means that the number of non-isomorphic graphs in C can be upper-bounded by p · 2p2 .
Since |S| ≤ p, there are at most p2 possible edges between S and each H ∈ C. Hence,
|C/∼| ≤ p · 22p2 . Because |V (H)| ≤ p for each H ∈ C and by definition of G′, the union of
each class of ∼ contains at most p · f(p) vertices. Finally, we again use that |S| ≤ p. ◀

The core of our algorithm is the following lemma, which we will prove in Subsection 5.2:

▶ Lemma 22. If G′ is the reduced graph of G, then given a contraction sequence C ′ for G′

of width t, we can compute a contraction sequence for G of width at most 2t in polynomial
time.

Let us now show how we can use this lemma to design the desired algorithm:

▶ Theorem 23. If G is a graph with vertex integrity p, then a contraction sequence for G

of width at most 2 · tww(G) can be computed in time g(p) · nO(1), where g is an elementary
function.

Proof. The first step of the algorithm is to compute an optimal vertex-integrity decomposition
of G. As noted already in Section 2, this can be done in time O(pp+1 · n) [19]. Using this
decomposition, we can compute the reduced graph G′ of G in polynomial time. Next,
we can compute an optimal contraction sequence C ′ of G′, using Observation 4. Since
the size of G′ is bounded (see Observation 21), we deduce that computing C ′ takes time
g(p) ∈ exp(exp(O(p3))), where exp(x) = 2x.

Finally, we apply Lemma 22 to compute in polynomial time a contraction sequence C for
G of width at most 2 · w(C ′) = 2 · tww(G′). Since G′ is an induced subgraph of G, we know
tww(G′) ≤ tww(G), which implies the desired bound w(C) ≤ 2 · tww(G). ◀

5.2 Extending a contraction sequence from G′ to G

This subsection is dedicated to proving Lemma 22. Recall that we have fixed a graph G and
a set S ⊆ V (G), and that C is the set of connected components of G − S. Let us begin with
several technical definitions.

▶ Definition 24. Let G′ be a C-respecting graph, let H0 and H1 be distinct twin-blocks (with
canonical isomorphism α) such that H0, H1 ⊆ G′, and let G∗ be any trigraph obtained from
G′ by a sequence of contractions. We say that H0 and H1 are merged in G∗ if, for each
u ∈ V (H0), there is a vertex v ∈ V (G∗) such that u, α(u) ∈ β(v).

It might be confusing that in the following definition, we consider a C-respecting graph
and a graph H ∈ C that is not its induced subgraph. The reason for this is that later we will
show that, under some conditions, H can be “added” without increasing the twin-width too
much. In fact, all such graphs H will be progressively added until all of them are present
(and the obtained graph is the whole G). To formalize the process of adding H, we will use
Definition 2 to create an extension of a contraction sequence to a sequence with H “appended”
to all trigraphs.

▶ Definition 25. Let G′ be a C-respecting graph, let H ∈ C be such that H ⊈ G′, let
C ′ = (G′

1, G′
2, . . .) be a contraction sequence of G′.

We say that a trigraph G′
i in C ′ is the C ′-critical trigraph for H if i is the least index

such that some vertex of H has a red neighbor in G′
i ↑ G.

If G′
i is the C ′-critical trigraph for H, then we say that a trigraph G′

j is C ′-safe for H if
j < i and there are two graphs H ′, H ′′ ∈ [H]∼ that are merged in G′

j.

We will show that for each H and C ′ (as in Definition 25), there is a C ′-safe trigraph
for H. The first step towards this is to show that if H has many twin-blocks in G′, then
there are two twin-blocks of H merged in the C ′-critical trigraph G∗ for H. Intuitively, if
the twin-blocks of H were not “sufficiently-merged” in G∗, then some vertex of S would have
high red degree because the existence of a red edge between S and H (see the definition of
C ′-critical) implies red edges between S and all twin-blocks of H.

▶ Lemma 26. If G′ is a C-respecting graph, C ′ is a contraction sequence of G′, H ∈ C is a
graph such that H ⊈ G′, the class H := [H]∼ is large in G′, and G∗ is the C ′-critical trigraph
for H, then there are two graphs H ′, H ′′ ∈ [H]∼ that are merged in G′

i.

Proof. Let I = [f(p)] and let H1, . . . , Hf(p) ∈ H be distinct graphs such that Hi ⊆ G′ for
each i ∈ I (using the fact that H is large in G′). For i ∈ I and u ∈ V (H), let ui := α(u),
where α : V (H) → V (Hi) is a canonical isomorphism. Let u, v ∈ V (G∗ ↑ G) be two vertices
such that u ∈ V (H) and uv is a red edge in G∗ ↑ G. By Definition 25, such vertices u and v

exist, and by definition of vertex integrity, v is a descendant of S. Let d := 2p+1 + 1. We
shall prove by induction that the following claim holds.

▷ Claim 27. For each a ∈ [0, p − 1], there is a set Ia ⊆ I of size at least f(p)/dpa+1 such
that for each i, j ∈ Ia and each vertex w ∈ V (H) at distance at most a from u in H, there is
a vertex x ∈ V (G∗) such that wi, wj ∈ β(x).

Observe that this statement implies that Hi and Hj for any i, j ∈ Ip−1 are merged in G∗

because the diameter of H is at most p − 1.

Proof of Claim 27. Let us start by proving Claim 27 for a = 0. Let U = {ui | i ∈ I}
and observe that for each i ∈ I, the descendant u′

i of ui is a red neighbor of v in G∗, by
Definition 19 (unless u′

i = v). However, the red degree of v in G∗ is at most tww(G′) ≤ 2p+1

(because the treewidth of G′ is at most the vertex integrity of G′, and the twin-width is
bounded by treewidth, see [32]). Hence, the vertices of U are present in the bags of at most
d vertices in G∗ (note that some vertices of U may be in the bag of v), which means that
there is a vertex w ∈ V (G∗) with at least f(p)/d vertices of U in its bag. Now it suffices to
set I0 := {i ∈ I | ui ∈ β(w)}. This concludes the proof of the base case of the induction.

For the induction step, suppose that Claim 27 holds for some a ∈ [0, p − 2], i.e., there
is a set Ia ⊆ I with the described properties. Let Da, Da+1 ⊆ V (H) be the sets of vertices
at distance exactly a or a + 1 from u in H, respectively. Let w ∈ Da+1 and x ∈ Da be two
neighbors in H. Let x′ be the descendant of xi in G∗ for some i ∈ Ia (or, equivalently, for
each i ∈ Ia, by the induction hypothesis), let W = {wi | i ∈ Ia}, and let w′

i be the descendant
of wi in G∗ (for any i ∈ Ia). Observe that x′w′

i is a red edge of G+, unless x′ = w′
i. Using

the same argument as in the base case, x′ has red degree at most d − 1 in G∗, which means
that the vertices of W are present in the bags of at most d vertices in G∗.

Since |Da+1| ≤ p, Ia can be partitioned into at most dp parts such that if i, j ∈ Ia are in
the same part, then for each vertex w ∈ Da+1, wi and wj are in the bag of the same vertex
in G∗. Hence, one of these parts has size at least |Ia|/dp, and we choose it to be Ia+1. A
simple computation shows that Ia+1 satisfies Claim 27. ◁

Finally, we only need to verify that |Ip−1| ≥ f(p)/dp(p−1)+1 ≥ 2. Recall that f(p) = 27p3

and d = 2p+1 + 1 ≤ 23p since p ≥ 1. Since p(p − 1) + 1 ≤ 2p2, we get |Ip−1| ≥ 27p3
/26p3 ≥ 2,

which concludes the proof. ◀

Now we need to take a closer look at S.

▶ Definition 28. Let H ∈ C and u, v ∈ S. We say that u and v are H-equivalent, denoted
u ∼H v, if and only if for each w ∈ V (H), uw ∈ E(G) ⇔ vw ∈ E(G). Let SH ⊆ S be the
set of vertices with at least one neighbor in H (in G). If G′

i is a trigraph in a contraction
sequence of a C-respecting graph, then we denote by SH

i the set of descendants of SH in G′
i.

A crucial observation is that before the C ′-critical trigraph for H, only very restricted
contractions may involve vertices of SH (so that a red edge to H does not appear).

▶ Observation 29. If G′ is a C-respecting graph, C ′ = (G′
1, G′

2, . . .) is a contraction sequence
of G′, H ∈ C is a graph such that H ⊈ G′, G′

i is the C ′-critical trigraph for H, and j < i,
then for each u ∈ SH

j , the bag β(u) is a subset of an equivalence class of ∼H .

Proof. Suppose for contradiction that there is u ∈ SH
j such that β(u) is not a subset of

an equivalence class of ∼H . If β(u) ⊈ S, then clearly all neighbors of u in H (in G′
j ↑ G)

would be red, a contradiction with j < i and the choice of i. Hence, assume β(u) ⊆ S. If
there are v0, v1 ∈ β(u) such that v0 ≁H v1, then there is a vertex w ∈ H that has exactly
one neighbor in {v0, v1} in G, by Definition 28. Thus, uw is a red edge in G′

j ↑ G, again a
contradiction ◀

Using Observation 29, we can prove the existence of a C ′-safe trigraph.

▶ Lemma 30. If G′, C ′, H and G′
i are as in Observation 29 and the equivalence class [H]∼

is large in G′, then G′
i−1 is a C ′-safe trigraph for H.

Proof. By Definition 25, it suffices to show that there are two graphs H ′, H ′′ ∈ [H]∼ that
are merged in G′

i−1. By Lemma 26, we know that such merged graphs H ′ and H ′′ exist
for G′

i. Let u, v ∈ V (G′
i−1) be the two vertices that are contracted in G′

i, and suppose for
contradiction that H ′ and H ′′ are not merged already in G′

i−1. This implies that u and
v are both descendants of H ′ ∪ H ′′. However, by Observation 29, u, v /∈ SH

i−1. This is a
contradiction with Definition 25 because the contraction creating G′

i must involve a vertex
of SH so that a red edge incident to H can appear in G′

i ↑ G. ◀

Now we are ready to show how a contraction sequence C ′ of G′ can be modified when a
graph H ∈ C is added to G′. Unfortunately, we cannot do that without increasing the width.
Since our goal is to eventually add many graphs H ∈ C, we need to keep the increase under
control, for which we use the following definition.

▶ Definition 31. A contraction sequence C = (G1, . . . , Gn) has progressive width (a →i b)
if the width of (G1, . . . , Gi−1) is at most a and the width of (Gi, . . . , Gn) is at most b.

▶ Lemma 32. Let G′ be a C-respecting graph, let C ′ = (G′
1, G′

2, . . .) be a contraction sequence
of G′, let H ∈ C, H ⊈ G′ be such that H := [H]∼ is large in G′, let G+ = G[V (G′) ∪ V (H)],
and let G′

i−1 be a C ′-safe trigraph for H. If C ′ has progressive width (t →i 2t), then we
can construct in polynomial time a contraction sequence C+ for G+ of progressive width
(t →i 2t). Moreover, if j < i, then G′

j ↑ G+ is the j-th trigraph in C+.

C ′

C+

G′
iG′

i−1G′ K1

G+ G+
i−1 G′

i K1C+
j C+

k

Figure 4 A schematic depiction of the construction of C+ from C′ in the proof of Lemma 32.
Informally, we insert a new contraction segment after G′

i−1 (the green and the yellow block), which
handles H. The blue prefixes of the two contraction sequences are “morally” the same but in C+,
H is still present, and so G′

ℓ is not isomorphic to G+
ℓ for ℓ ∈ [i − 1] but it is an induced subtrigraph

thereof. On the other hand, the red suffixes are exactly the same since H has been contracted
with H ′.

Proof. By Definition 25, there are H ′, H ′′ ∈ H (such that H ′, H ′′ ⊆ G′) that are merged
in G′

i−1. Let ι : H → H ′ be a canonical isomorphism, let C ′
<i be the prefix of C ′ of length

i − 1, and let CH be the partial contraction sequence of H isomorphic to C ′
<i[H ′] with

an isomorphism induced by ι2. Let us now construct C+ = (G+
1 = G+, G+

2 , . . .); see also
Figure 4 for an illustration:
1. C+

i := (G+
1 , . . . , G+

i−1) is the extension of C ′
<i to G+, i.e., the same contractions are

performed, ignoring H. Note that this construction shows that G′
j ↑ G+ for each j < i,

as required.
2. C+

j := (G+
i−1, . . . , G+

j) is the extension of CH to G+
i−1, i.e., CH is applied to H, ignoring

the rest of G+
i−1.

3. Let Hj and H ′
j be the subtrigraphs of G+

j induced by the descendants of H and H ′,
respectively. By Definition of CH , there is a bijection αj from V (Hj) to V (H ′

j) that
respects3 ι. Let C+

k := (G+
j , . . . , G+

k) be the contraction sequence that contracts u and
αj(u) for every u ∈ V (Hj) in arbitrary order.

4. We will prove that G+
k

∼= G′
i−1, and we will define the rest of C+ to be the suffix of C ′

starting with G′
i.

Let us argue that C+ can be computed in polynomial time. First, we need to find the two
merged graphs H ′, H ′′ ∈ H: this can be done by brute force because the size of H is at most
O(n) and checking whether given H ′ and H ′′ are merged can be done efficiently (the details
depend on the computational model and the representation of contraction sequences). Then,
we compute CH by going through C ′

<i and looking only at contractions involving vertices of
H ′. Using CH , it is easy to compute C+

j . All other parts of C+ can clearly be computed in
polynomial time.

Now we need to show that C+ has progressive width (t →i 2t). By the assumption about
the progressive width of C ′, C+

i has width at most t (using also the fact that G′
i−1 is a

C ′-safe trigraph for H; no red edge in C+
i is incident to H). Hence, we only need to prove

that the suffix of C+ starting with G+
i has width at most 2t. Let SH

j be the set containing
the descendants SH in G+

j (or, equivalently, in G′
i−1, G+

i−1 or G+
k).

2 Formally, an isomorphism from (G = G1, . . . , Gn) to (H = H1, . . . , Hn) induced by an isomorphism
α : G → H is a sequence of isomorphisms αi : Gi → Hi such that for each i ∈ [n] and u ∈ V (Gi),
β(u) = α−1(β(αi(u))).

3 By respecting ι, we mean that if u ∈ β(v) for u ∈ V (H), v ∈ V (Hj), then ι(u) ∈ β(αj(v)).

▷ Claim 33. C+
j has width at most 2t. Moreover, descendants of H have red degree at most

t in trigraphs of C+
j .

Proof of the Claim. Let ℓ ∈ [i, j], let Hℓ be the subtrigraph of G+
ℓ induced by the descendants

of H, and let m ∈ [i − 1] be an index such that the subtrigraph H ′
m of G+

m induced by the
descendants of H ′ satisfies |V (Hℓ)| = |V (H ′

m)|. We need to show that the red degree of each
u ∈ V (G+

ℓ) is at most 2t (and at most t when u ∈ V (Hℓ)). By construction of C+
j , there

is a bijection α : V (Hℓ) → V (H ′
m) such that if u ∈ β(v) for u ∈ V (H), v ∈ V (Hℓ), then

ι(u) ∈ β(α(v)).
Let u ∈ V (Hℓ). We will construct a (partial) injection γ : V (G+

ℓ) → V (G+
m) such that if

uv ∈ R(G+
ℓ), then α(u)γ(v) ∈ R(G+

m). Since α(u) has red degree at most t in G+
m, this will

prove that u has red degree at most t in G+
ℓ . Let v ∈ V (G+

ℓ) be a red neighbor of u in G+
ℓ .

There are two cases to be considered:
1. If v ∈ V (Hℓ), then α(u)α(v) ∈ R(H ′

m), using the fact that β(u), β(v) ⊆ V (H), and we
set γ(v) := α(v).

2. If v /∈ V (Hℓ), then v ∈ SH
j by construction of C+

j . Let v0 ∈ β(v). By Observation 29,
β(v) is a subset of an equivalence class of ∼H . Hence, there are u0, u1 ∈ β(u) such that
u0v0 ∈ E(G) but u1v0 /∈ E(G), and we let γ(v) ∈ V (G+

m) be the unique vertex such that
v0 ∈ β(γ(v)) ⊆ β(v).

Now we only need to show that a vertex v ∈ SH
j has red degree at most 2t in G+

ℓ (no
other vertex is affected by contractions among descendants of H). Let K ⊆ V (Hℓ) be the
set of red neighbors of v in Hℓ (in G+

ℓ). By Observation 29, some (actually, each) ancestor
v0 ∈ V (G+

m) of v has among its red neighbors all vertices of α(K) in G+
m. Since the red

degree of v0 is at most t in G+
m and α is a bijection, we obtain that |K| ≤ t. Hence, v has at

most t red neighbors in Hℓ (in G+
ℓ). All other red neighbors of v in G+

ℓ are its red neighbors
also in G+

i−1 (which has maximum red degree at most t), and so v has indeed red degree at
most 2t in G+

ℓ . ◁

▷ Claim 34. C+
k has width at most 2t.

Proof of the Claim. Let ℓ ∈ [j, k], let Hℓ, H ′
ℓ be subtrigraphs of G+

ℓ induced by the descendants
of H and H ′, respectively, let H+

ℓ := Hℓ ∪ H ′
ℓ, and let αj : V (Hj) → V (H ′

j) be the bijection
defined in the construction of C+

k . We need to show that the maximum red degree in G+
ℓ is

at most 2t.
First, let v ∈ V (G+

ℓ − H+
ℓ). By construction of C+

k , we know that v ∈ V (G+
j). Suppose

that v has higher red degree in G+
ℓ than in G+

j . This can happen only if a black edge
uv ∈ E(G+

j) becomes red because of a contraction involving u. However, the only contractions
happening in C+

k are between u and αj(u) for some u ∈ V (Hj), and uv ∈ E(G+
j) if and only

if αj(u)v ∈ E(G+
j), by definition of αj . Hence, the red degree of v in G+

ℓ is at most its red
degree in G+

j , and that is at most 2t by Claim 33.
Second, we need to show that each u ∈ V (H+

ℓ) has red degree at most 2t in G+
ℓ . Observe

that H ′
ℓ contains no black edges because each vertex u ∈ V (H ′

ℓ) is a descendant of both
H ′ and H ′′. Hence, a vertex u ∈ V (H ′

ℓ) \ V (Hℓ) has red degree at most t in G+
ℓ because it

cannot have higher red degree in G+
ℓ than in G+

j . Conversely, let u ∈ V (Hℓ) and let d be
the degree of the ancestor u0 ∈ V (Hj) of u in Hj . Observe that u has degree at most 2d in
H+

ℓ : for each neighbor v0 ∈ V (Hj) of u0 in Hj , u can have two neighbors in H+
ℓ , namely v0

and αj(v0); this happens when u0 has been contracted with αj(u0) into u but no neighbor
v0 ∈ V (Hj) of u0 has been contracted with αj(v0). Moreover, u0 and αj(u0) have exactly
the same red neighbors in SH

j (by definition of αj). Hence, the red degree of u in G+
ℓ has

increased by at most d ≤ t, compared to the red degree of u0 in G+
j , and so u has at most

t + d ≤ 2t red neighbors, which concludes the proof. ◁

Since H ′
j contains no black edges (each of its vertices is a descendant of both H ′ and

H ′′), the contraction of Hj and H ′
j creates no new red edge (using also the fact that Hj and

H ′
j are attached to SH

j in the same way). Hence, we obtain that G+
k

∼= G+
j − Hj

∼= G′
i−1,

and we can indeed define the rest of C+ to be the suffix of C ′ starting with G′
i. This suffix

has width at most 2t, since C ′ has progressive width (t →i 2t). ◀

Now we are finally ready to prove Lemma 22. This is the only remaining part of this
section because we have already shown how Lemma 22 implies Theorem 23, see Subsection 5.1.

Proof of Lemma 22. The idea of the proof is to iteratively apply Lemma 32 to all the graphs
in C not present in the reduced graph G′. However, this requires some care, as applying the
lemma in the wrong order might fail to ensure the precondition on the progressive-width. In
order to prove this lemma, we will consider the following key claim:

▷ Claim 35. Given G∗, C∗, and L∗ satisfying the following properties, we can construct in
polynomial time a contraction sequence C of width at most 2t for G.
1. G∗ is a C-respecting graph;
2. L∗ is a list of pairs (graph H, integer δ), such that the integer value is non-increasing;
3. Each pair (H, δ) in L∗ satisfies all of the following: (i.) H ∈ C, and H appears only once

in L∗, (ii.) H ⊈ G∗, (iii.) [H]∼ is large in G∗, (iv.) G∗
δ is C∗-safe for H;

4. C∗ is a contraction sequence for G∗ of width at most 2t, and if (H0, δ0) is the first pair
in L∗, then C∗ has progressive width (t →δ0+1 2t);

5. V (G∗) ∪
⋃

(H,δ)∈L∗ V (H) = V (G).

Proof of Claim 35. We proceed by induction on the length of L∗. The base case is trivial: if
L∗ is the empty list, the conditions 1. and 5. ensure that G∗ = G, and 4. ensures that C∗

has width 2t.
Now let us suppose that the claim is true for any list of length i, for some i ≥ 0. Consider

G∗, C∗, L∗ satisfying the hypothesis such that L∗ contains i + 1 elements, the first of which
being (H0, δ0). We can apply Lemma 32 to G∗, C∗ and H0 since the points 1., 3. and 4.
are exactly the preconditions of the lemma, and we obtain in polynomial time a contraction
sequence C+ of progressive width (t →δ0+1 2t) for G+ = G[V (G∗) ∪ V (H0)].

Now let us consider L+ the suffix of L∗ of length i – i.e., we only remove (H0, δ0) – and
prove that G+, C+, and L+ satisfy the requirements to apply the induction hypothesis.

The first obvious point is that the length of L+ is i. Since G∗ is C-respecting and H ∈ C,
we obtain that G+ is C-respecting, i.e., it satisfies 1. We can easily verify 5.:

V (G+)∪
⋃

(H,δ)∈L+

V (H) = V (G∗)∪V (H0)
⋃

(H,δ)∈L+

V (H) = V (G∗)∪
⋃

(H,δ)∈L∗

V (H) = V (G).

As a suffix of L∗, L+ satisfies 2., and the first three requirements in 3. are also trivially
satisfied. To prove the 3.iv., it is necessary to observe two things. First, observe that for each
pair (H, δ) ∈ L+, it holds that G+

δ = G∗
δ ↑ G+ since δ ≤ δ0, by Lemma 32 (the “moreover”

part). Second, observe that there is no red edge in G+
δ that is not already present in G∗

δ :
indeed, any such red edge would be incident to H0 by construction of G+

δ , and its existence
would contradict the definition of δ0, i.e., the C∗-safeness for H0 of G∗

δ0
. Hence we conclude

that for every (H, δ) ∈ L+, it holds that G+
δ is C+-safe for H.

The last item to check, requirement 4., is easily handled: we know that C+ has progressive
width (t →δ0+1 2t) by Lemma 32, and for all (H, δ) ∈ L+, it holds that δ ≤ δ0 by 2., i.e., by
the monotony of L∗ in the second component.

Using the induction hypothesis, we can now create in polynomial time a contraction
sequence C of width at most 2t for G. The total running time is polynomial, hence the claim
is proven. ◁

To finish the proof of Lemma 22, we only need to construct the initial list L′ for G′. For
each graph H ∈ C such that H ⊈ G′, let δ(H) be the index of the last C ′-safe trigraph for
H, whose existence is ensured by Lemma 30. Let L′ be the list of pairs (H, δ(H)), ordered
by non-increasing values of δ(H), and recall that C ′ is given. It is easy to see that the
requirements on G′, C ′ and L′ are satisfied – either by definition or by construction – to
apply Claim 35: we obtain in polynomial time a contraction sequence C of width at most 2t

for G, and since the creation of L′ can be achieved in polynomial time, we have proven the
lemma. ◀

6 Concluding Remarks

While we believe that the results presented here provide an important contribution to the
state of the art in the area of computing twin-width, many prominent questions still remain
unanswered. Apart from the “grand prize” – resolving the parameterized approximability
of twin-width when the runtime parameter is twin-width itself – future research may focus
on finding fixed-parameter algorithms that compute optimal or near-optimal contraction
sequences under less restrictive runtime parameters than those considered in this article.

More specifically, the problem remains entirely open when parameterized by treewidth and
treedepth, and resolving this may require new insights into the structural properties of optimal
contraction sequences and lead to tighter bounds on the twin-width of well-structured graphs.
For treedepth in particular, we suspect that combining the ideas presented in Section 5 with
the iterative pruning approach typically used for treedepth-based algorithms [26, 28, 8] may
be an enticing direction to pursue; however, we note that such a combination does not seem
straightforward.

References
1 Jungho Ahn, Kevin Hendrey, Donggyu Kim, and Sang-il Oum. Bounds for the twin-width

of graphs. SIAM Journal on Discrete Mathematics, 36(3):2352–2366, 2022. doi:10.1137/
21M1452834.

2 Jakub Balabán, Robert Ganian, and Mathis Rocton. Computing twin-width parameterized
by the feedback edge number. In Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna
Kupferman, and Daniel Lokshtanov, editors, 41st International Symposium on Theoretical
Aspects of Computer Science, STACS 2024, March 12-14, 2024, Clermont-Ferrand, France,
volume 289 of LIPIcs, pages 7:1–7:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2024. doi:10.4230/LIPICS.STACS.2024.7.

3 Jakub Balabán and Petr Hlinený. Twin-width is linear in the poset width. In Petr A.
Golovach and Meirav Zehavi, editors, 16th International Symposium on Parameterized and
Exact Computation, IPEC 2021, September 8-10, 2021, Lisbon, Portugal, volume 214 of
LIPIcs, pages 6:1–6:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.IPEC.2021.6.

4 Jakub Balabán, Petr Hlinený, and Jan Jedelský. Twin-width and transductions of proper
k-mixed-thin graphs. In Michael A. Bekos and Michael Kaufmann, editors, Graph-Theoretic
Concepts in Computer Science - 48th International Workshop, WG 2022, Tübingen, Germany,
June 22-24, 2022, Revised Selected Papers, volume 13453 of Lecture Notes in Computer Science,
pages 43–55. Springer, 2022. doi:10.1007/978-3-031-15914-5_4.

https://doi.org/10.1137/21M1452834
https://doi.org/10.1137/21M1452834
https://doi.org/10.4230/LIPICS.STACS.2024.7
https://doi.org/10.4230/LIPIcs.IPEC.2021.6
https://doi.org/10.4230/LIPIcs.IPEC.2021.6
https://doi.org/10.1007/978-3-031-15914-5_4

5 Michael J. Bannister, Sergio Cabello, and David Eppstein. Parameterized complexity of
1-planarity. J. Graph Algorithms Appl., 22(1):23–49, 2018. doi:10.7155/jgaa.00457.

6 Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding twin-width at most 4 is np-
complete. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th
International Colloquium on Automata, Languages, and Programming, ICALP 2022, July
4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 18:1–18:20. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.18.

7 Benjamin Bergougnoux, Eduard Eiben, Robert Ganian, Sebastian Ordyniak, and M. S.
Ramanujan. Towards a polynomial kernel for directed feedback vertex set. Algorithmica,
83(5):1201–1221, 2021. doi:10.1007/s00453-020-00777-5.

8 Sujoy Bhore, Robert Ganian, Fabrizio Montecchiani, and Martin Nöllenburg. Parameterized
algorithms for queue layouts. J. Graph Algorithms Appl., 26(3):335–352, 2022. doi:10.7155/
JGAA.00597.

9 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Preprocessing for treewidth: A
combinatorial analysis through kernelization. SIAM J. Discret. Math., 27(4):2108–2142, 2013.
doi:10.1137/120903518.

10 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width II: small classes. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021,
pages 1977–1996. SIAM, 2021. doi:10.1137/1.9781611976465.118.

11 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width III: max independent set, min dominating set, and coloring. In Nikhil Bansal,
Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual
Conference), volume 198 of LIPIcs, pages 35:1–35:20. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.35.

12 Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé,
and Szymon Torunczyk. Twin-width IV: ordered graphs and matrices. In Stefano Leonardi
and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory
of Computing, Rome, Italy, June 20 - 24, 2022, pages 924–937. ACM, 2022. doi:10.1145/
3519935.3520037.

13 Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, and Stéphan Thomassé. Twin-
width V: linear minors, modular counting, and matrix multiplication. In Petra Berenbrink,
Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté, editors, 40th International
Symposium on Theoretical Aspects of Computer Science, STACS 2023, March 7-9, 2023,
Hamburg, Germany, volume 254 of LIPIcs, pages 15:1–15:16. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.STACS.2023.15.

14 Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé. Twin-width
VI: the lens of contraction sequences. In Joseph (Seffi) Naor and Niv Buchbinder, editors,
Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual
Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 1036–1056. SIAM, 2022.
doi:10.1137/1.9781611977073.45.

15 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. J. ACM, 69(1):3:1–3:46, 2022. doi:10.1145/3486655.

16 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

17 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

18 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

https://doi.org/10.7155/jgaa.00457
https://doi.org/10.4230/LIPIcs.ICALP.2022.18
https://doi.org/10.1007/s00453-020-00777-5
https://doi.org/10.7155/JGAA.00597
https://doi.org/10.7155/JGAA.00597
https://doi.org/10.1137/120903518
https://doi.org/10.1137/1.9781611976465.118
https://doi.org/10.4230/LIPIcs.ICALP.2021.35
https://doi.org/10.1145/3519935.3520037
https://doi.org/10.1145/3519935.3520037
https://doi.org/10.4230/LIPIcs.STACS.2023.15
https://doi.org/10.1137/1.9781611977073.45
https://doi.org/10.1145/3486655
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1

19 Pål Grønås Drange, Markus S. Dregi, and Pim van ’t Hof. On the computational complexity
of vertex integrity and component order connectivity. Algorithmica, 76(4):1181–1202, 2016.
doi:10.1007/S00453-016-0127-X.

20 Pavel Dvorák, Eduard Eiben, Robert Ganian, Dusan Knop, and Sebastian Ordyniak. The
complexity landscape of decompositional parameters for ILP: programs with few global variables
and constraints. Artif. Intell., 300:103561, 2021. doi:10.1016/J.ARTINT.2021.103561.

21 Eduard Eiben, Robert Ganian, Thekla Hamm, Lars Jaffke, and O-joung Kwon. A unifying
framework for characterizing and computing width measures. In Mark Braverman, editor, 13th
Innovations in Theoretical Computer Science Conference, ITCS 2022, January 31 - February
3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 63:1–63:23. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ITCS.2022.63.

22 David Eppstein. The widths of strict outerconfluent graphs. CoRR, abs/2308.03967, 2023.
arXiv:2308.03967.

23 Johannes Klaus Fichte, Robert Ganian, Markus Hecher, Friedrich Slivovsky, and Sebastian
Ordyniak. Structure-aware lower bounds and broadening the horizon of tractability for QBF.
In LICS, pages 1–14, 2023. doi:10.1109/LICS56636.2023.10175675.

24 Robert Ganian, Fabian Klute, and Sebastian Ordyniak. On structural parameterizations
of the bounded-degree vertex deletion problem. Algorithmica, 83(1):297–336, 2021. doi:
10.1007/S00453-020-00758-8.

25 Robert Ganian and Viktoriia Korchemna. The complexity of bayesian network learning: Revis-
iting the superstructure. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy
Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pages 430–442, 2021. URL: https://proceedings.neurips.cc/
paper/2021/hash/040a99f23e8960763e680041c601acab-Abstract.html.

26 Robert Ganian and Sebastian Ordyniak. The complexity landscape of decompositional
parameters for ILP. Artif. Intell., 257:61–71, 2018. doi:10.1016/J.ARTINT.2017.12.006.

27 Robert Ganian and Sebastian Ordyniak. The power of cut-based parameters for computing
edge-disjoint paths. Algorithmica, 83(2):726–752, 2021. doi:10.1007/s00453-020-00772-w.

28 Robert Ganian, Tomás Peitl, Friedrich Slivovsky, and Stefan Szeider. Fixed-parameter
tractability of dependency QBF with structural parameters. In Diego Calvanese, Esra Erdem,
and Michael Thielscher, editors, Proceedings of the 17th International Conference on Principles
of Knowledge Representation and Reasoning, KR 2020, Rhodes, Greece, September 12-18, 2020,
pages 392–402, 2020. doi:10.24963/KR.2020/40.

29 Tatsuya Gima, Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, and Yota Otachi. Ex-
ploring the gap between treedepth and vertex cover through vertex integrity. Theor. Comput.
Sci., 918:60–76, 2022. doi:10.1016/J.TCS.2022.03.021.

30 Tatsuya Gima and Yota Otachi. Extended MSO model checking via small vertex integrity.
Algorithmica, 86(1):147–170, 2024. doi:10.1007/S00453-023-01161-9.

31 Tesshu Hanaka, Michael Lampis, Manolis Vasilakis, and Kanae Yoshiwatari. Parameterized
vertex integrity revisited. CoRR, abs/2402.09971, 2024. doi:10.48550/arXiv.2402.09971.

32 Hugo Jacob and Marcin Pilipczuk. Bounding twin-width for bounded-treewidth graphs,
planar graphs, and bipartite graphs. In Michael A. Bekos and Michael Kaufmann, editors,
Graph-Theoretic Concepts in Computer Science - 48th International Workshop, WG 2022,
Tübingen, Germany, June 22-24, 2022, Revised Selected Papers, volume 13453 of Lecture Notes
in Computer Science, pages 287–299. Springer, 2022. doi:10.1007/978-3-031-15914-5_21.

33 Yasuaki Kobayashi and Hisao Tamaki. Treedepth parameterized by vertex cover number. In
Jiong Guo and Danny Hermelin, editors, 11th International Symposium on Parameterized
and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, volume 63 of
LIPIcs, pages 18:1–18:11. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.IPEC.2016.18.

https://doi.org/10.1007/S00453-016-0127-X
https://doi.org/10.1016/J.ARTINT.2021.103561
https://doi.org/10.4230/LIPIcs.ITCS.2022.63
https://arxiv.org/abs/2308.03967
https://doi.org/10.1109/LICS56636.2023.10175675
https://doi.org/10.1007/S00453-020-00758-8
https://doi.org/10.1007/S00453-020-00758-8
https://proceedings.neurips.cc/paper/2021/hash/040a99f23e8960763e680041c601acab-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/040a99f23e8960763e680041c601acab-Abstract.html
https://doi.org/10.1016/J.ARTINT.2017.12.006
https://doi.org/10.1007/s00453-020-00772-w
https://doi.org/10.24963/KR.2020/40
https://doi.org/10.1016/J.TCS.2022.03.021
https://doi.org/10.1007/S00453-023-01161-9
https://doi.org/10.48550/arXiv.2402.09971
https://doi.org/10.1007/978-3-031-15914-5_21
https://doi.org/10.4230/LIPIcs.IPEC.2016.18
https://doi.org/10.4230/LIPIcs.IPEC.2016.18

34 Michael Lampis and Valia Mitsou. Fine-grained meta-theorems for vertex integrity. In Hee-
Kap Ahn and Kunihiko Sadakane, editors, 32nd International Symposium on Algorithms and
Computation, ISAAC 2021, December 6-8, 2021, Fukuoka, Japan, volume 212 of LIPIcs, pages
34:1–34:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.
ISAAC.2021.34.

35 Sang-il Oum. Rank-width and vertex-minors. J. Comb. Theory, Ser. B, 95(1):79–100, 2005.
doi:10.1016/j.jctb.2005.03.003.

36 Neil Robertson and Paul D. Seymour. Graph minors. i. excluding a forest. J. Comb. Theory
B, 35(1):39–61, 1983. doi:10.1016/0095-8956(83)90079-5.

37 Johannes Uhlmann and Mathias Weller. Two-layer planarization parameterized by feedback
edge set. Theor. Comput. Sci., 494:99–111, 2013. doi:10.1016/j.tcs.2013.01.029.

38 Martijn van Ee. Some notes on bounded starwidth graphs. Inf. Process. Lett., 125:9–14, 2017.
doi:10.1016/J.IPL.2017.04.011.

https://doi.org/10.4230/LIPICS.ISAAC.2021.34
https://doi.org/10.4230/LIPICS.ISAAC.2021.34
https://doi.org/10.1016/j.jctb.2005.03.003
https://doi.org/10.1016/0095-8956(83)90079-5
https://doi.org/10.1016/j.tcs.2013.01.029
https://doi.org/10.1016/J.IPL.2017.04.011

	1 Introduction
	2 Preliminaries
	3 The Square-Root Bound
	4 A Better Algorithm Parameterized by the Feedback Edge Number
	4.1 Contracting an (H,#1 P)-Graph Using a Contraction Sequence for H
	4.2 Wrapping up the Proof

	5 A Fixed-Parameter Algorithm Parameterized by Vertex Integrity
	5.1 Initial Setup and Overview
	5.2 Extending a contraction sequence from G' to G

	6 Concluding Remarks

