
PACE Solver Description: Crossy – An Exact
Solver for One-Sided Crossing Minimization
Tobias Röhr #

Hasso Plattner Institute, University of Potsdam, Germany

Kirill Simonov #

Hasso Plattner Institute, University of Potsdam, Germany

Abstract
We describe Crossy, an exact solver for One-sided Crossing Minimization (OSCM) that ranked 5th
in the Parameterized Algorithms and Computational Experiments (PACE) Challenge 2024 (Exact
and Parameterized Track). Crossy applies a series of reductions and subsequently transforms the
input into an instance of Weighted Directed Feedback Arc Set (WDFAS), which is then formulated
in incremental MaxSAT. We use the recently introduced concept of User Propagators for CDCL
SAT solvers in order to dynamically add cycle constraints.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases One-sided Crossing Minimization, Exact Algorithms, Graph Drawing, Incre-
mental MaxSAT

Digital Object Identifier 10.4230/LIPIcs.IPEC.2024.30

Supplementary Material Software (Source Code): https://github.com/roehrt/crossy
archived at swh:1:dir:aa5e0abc800f7a51008548897226b54b38032404

Software (Source Code): https://doi.org/10.5281/zenodo.12082773

1 Preliminaries

Given a bipartite graph G = (A, B, E) and a linear ordering on the vertices of A, the
One-sided Crossing Minimization problem asks for a linear ordering ≺ on the vertices of B

that minimizes the number of crossings of a straight-line drawing when placing the vertices
in A and B on two parallel lines in the respective order. To enable some of our reduction
rules, it is convenient to relax the problem and allow the input to be a multigraph.

For u, v ∈ B, define c(u, v) to be the number of crossings between the edges incident to
u and v when u ≺ v. Moreover, we call u ≺ v the natural order of u and v if and only if
c(u, v) < c(v, u). Since in any solution either u ≺ v or v ≺ u, we get a simple lower bound
on the number of crossings:

∑
u,v∈B min(c(u, v), c(v, u)).

The penalty graph of an OSCM-instance is a directed graph on the vertices of B. In
order to penalize pairs of vertices that do not appear in their natural order, we add an arc
u → v carrying weight c(u, v) − c(v, u) for any pair u, v ∈ B with c(u, v) > c(v, u). Note that
the weight of a Minimum Weight Feedback Arc Set in the penalty graph equals the minimum
number of crossings in the corresponding OSCM-instance above its lower bound [8].

We say that we commit u ≺ v if we only look for solutions where u appears before v. To
model this knowledge in the penalty graph, we insert an arc u → v with infinite weight in
this case.

© Tobias Röhr and Kirill Simonov;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Parameterized and Exact Computation (IPEC 2024).
Editors: Édouard Bonnet and Paweł Rzążewski; Article No. 30; pp. 30:1–30:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tobias.roehr@student.hpi.de
mailto:kirill.simonov@hpi.de
https://orcid.org/0000-0001-9436-7310
https://doi.org/10.4230/LIPIcs.IPEC.2024.30
https://github.com/roehrt/crossy
https://archive.softwareheritage.org/swh:1:dir:aa5e0abc800f7a51008548897226b54b38032404;origin=https://github.com/roehrt/crossy;visit=swh:1:snp:66efcf20273cb23990936b8a442ce71b21656d53;anchor=swh:1:rev:3ff26302c338a62287d41a15c610e359721410b1
https://doi.org/10.5281/zenodo.12082773
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Crossy – An Exact Solver for One-Sided Crossing Minimization

X1 X3 X5 X7 X9

u v

X0 X2 X4 X6 X8 X10

S

Figure 1 A configuration with u ≺ v. S is the set of vertices between u and v. The sets Xi

partition the neighborhood of S. The figure is adapted from [3].

2 Reduction rules

After merging twins in B and removing isolated vertices, we apply two sets of reduction rules:
one specific to OSCM and the other consisting of general-purpose rules for the Weighted
Directed Feedback Arc Set problem.

2.1 Rules for OSCM
We utilize two well-known rules for OSCM that we call Planar Ordering and Transitivity, and
introduce a new rule, Dominance.

Planar Ordering If there is a pair of vertices u, v ∈ B such that c(u, v) = 0, commit u ≺ v.
Transitivity If u ≺ v and v ≺ w, commit u ≺ w.
The Planar Ordering reduction rule is due to Dujmovic and Whitesides [4]; see their work for
the proof of correctness. The Transitivity rule is straightforward.

Before we formally define Dominance, consider the following argument showing that the
natural order u ≺ v is optimal, in a certain case. Assume by contradiction that u ≺ v is not
optimal, and consider an optimal ordering where v appears before u instead. Let S be the
set of vertices between v and u in this ordering, i.e., S = {w ∈ B | v ≺ w ≺ u}.

In order for u ≺ v not to be optimal, the number of crossings caused by v ≺ S ≺ u must
be strictly less than the number of crossings caused by all configurations with u ≺ v, namely:
u ≺ S ≺ v, u ≺ v ≺ S, and S ≺ u ≺ v. If we can derive a contradiction for each possible set
S, we have proven that u ≺ v is optimal and are able to commit u ≺ v.

Inspired by the tabular analysis technique of Dujmovic, Fernau and Kaufmann [3], let
us categorize the neighbors of S into disjoint sets based on their relative position to the
neighbors of u and v, so that the neighbors in the same set are effectively indistinguishable
with respect to the condition above (see Figure 1).

By introducing variables describing the cardinality of those sets, we can express the
number of crossings for each configuration as a linear combination of these variables. Let
L(x, y, z) denote this linear combination for some configuration x ≺ y ≺ z. Now we can
derive a system of linear inequalities that must hold for u ≺ v not to be optimal:

L(v, S, u) < L(S, u, v)
L(v, S, u) < L(u, S, v)
L(v, S, u) < L(u, v, S).

Additionally, each variable can also be bounded by the number of edges outgoing from
each partition. Finally, we can use an LP solver to check the feasibility of this system of
inequalities, leading us to the following rule:

Dominance If there is a pair of vertices u, v ∈ B such that the LP derived from the above
analysis is infeasible, commit u ≺ v.

Thus, the Planar Ordering rule is a special case of the Dominance rule.

T. Röhr and K. Simonov 30:3

Although Dominance runs in polynomial time, it is computationally expensive as it
requires solving a linear program for each vertex pair. To mitigate this, we use a weaker rule
that removes upper bound constraints and checks only pairwise inequality feasibility.

This can be done in linear time, resulting in O(|B| · |E|) for all OSCM-reductions.

2.2 Rules for WDFAS
Crossy proceeds to apply very general rules for the Weighted Directed Feedback Arc Set
problem on the penalty graph.

Strongly Connected Components Find a solution for each strongly connected component,
then combine the orderings following a topological ordering of the condensation graph.

Minimum Cut For each arc u → v, commit u ≺ v, if the weighted minimum cut separating
v from u does not exceed the weight of u → v.

Although the Minimum Cut rule can commit some pairs, our experiments show that the
additional computational cost is not justified. We therefore disable it in our implementation,
resulting in the overall running time of O(|B| · |E|) for all preprocessing steps.

3 Incremental MaxSAT formulation

Building on the work of the winning team of the PACE Challenge 2022 [6], we formulate the
Weighted Directed Feedback Arc Set problem as incremental MaxSAT problem, aiming to
hit all cycles in the penalty graph.

3.1 Encoding
For each arc u → v in the penalty graph, we introduce a variable xu→v representing the arc’s
inclusion in the solution. Each variable is assigned the negated weight of its corresponding
arc. If an arc has infinite weight, the variable is set to false. To encode a cycle constraint,
we add a disjunction of the variables corresponding to the arcs in that cycle.

Crossy starts by adding short cycles of length at most 4 to the MaxSAT instance explicitly.
All longer cycles are added dynamically later by the user propagator.

3.2 User Propagator
We modify UWrMaxSAT [7] to allow us to connect a user propagator to its underlying SAT
solver, CaDiCal [1]. The recently introduced IPASIR-UP interface [5] enables us to connect
user-defined propagators to CaDiCal without modifying the solver itself.

Our user propagator employs the concept of Cycle Propagation as introduced by Kiesel
and Schidler [6]. Assigning a negative literal xu→v indicates that the arc u → v is not
included in the solution and, therefore, remains in the graph. Following the SAT solver’s
decision, our user propagator detects if the current assignment would close a cycle. If a cycle
is detected, we add the corresponding cycle constraint to our MaxSAT instance, effectively
pruning the current branch.

We tackle incremental cycle detection with rollbacks by eagerly maintaining the depth of
each vertex. Upon each arc insertion, we recursively update the depths of affected vertices
and check for any newly formed cycles.

As many arcs have infinite weight and thus always remain in the graph, we first compute
the transitive reduction of this subgraph to reduce the workload for our cycle detection.

IPEC 2024

30:4 Crossy – An Exact Solver for One-Sided Crossing Minimization

4 Discussion

While its performance secured Crossy the 5th place in PACE 2024, there are some challenges
that arise due to its MaxSAT-based cycle-hitting formulation.

The penalty graph of an OSCM instance is known to be very dense, and our cycle-hitting
formulation can result in a large, potentially exponential, number of constraints, even with
the use of a user propagator. An alternative approach, employed by the top 3 teams, uses
transitivity constraints for each triplet of vertices in B, which appears to perform better.

Moreover, OSCM allows for the application of various effective primal heuristics that can
enhance ILP-based approaches but are not applicable to MaxSAT-based solvers like Crossy.

Finally, the performance of UWrMaxSAT in MaxSAT competitions benefits from running
SCIP [2] beforehand. This dependency poses a significant drawback for Crossy, as SCIP
cannot take advantage of the user propagator.

References
1 Armin Biere, Tobias Faller, Katalin Fazekas, Mathias Fleury, Nils Froleyks, and Florian Pollitt.

Cadical 2.0. In Arie Gurfinkel and Vijay Ganesh, editors, Computer Aided Verification – 36th
International Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024, Proceedings,
Part I, volume 14681 of Lecture Notes in Computer Science, pages 133–152. Springer, 2024.
doi:10.1007/978-3-031-65627-9_7.

2 Suresh Bolusani, Mathieu Besançon, Ksenia Bestuzheva, Antonia Chmiela, João Dionísio, Tim
Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mohammed Ghannam, Ambros Gleixner,
et al. The scip optimization suite 9.0. arXiv preprint, 2024. arXiv:2402.17702.

3 Vida Dujmovic, Henning Fernau, and Michael Kaufmann. Fixed parameter algorithms
for one-sided crossing minimization revisited. J. Discrete Algorithms, 6(2):313–323, 2008.
doi:10.1016/J.JDA.2006.12.008.

4 Vida Dujmovic and Sue Whitesides. An efficient fixed parameter tractable algorithm for 1-sided
crossing minimization. Algorithmica, 40(1):15–31, 2004. doi:10.1007/S00453-004-1093-2.

5 Katalin Fazekas, Aina Niemetz, Mathias Preiner, Markus Kirchweger, Stefan Szeider, and
Armin Biere. IPASIR-UP: user propagators for CDCL. In Meena Mahajan and Friedrich
Slivovsky, editors, 26th International Conference on Theory and Applications of Satisfiability
Testing, SAT 2023, July 4-8, 2023, Alghero, Italy, volume 271 of LIPIcs, pages 8:1–8:13.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.SAT.2023.8.

6 Rafael Kiesel and André Schidler. PACE solver description: DAGer – Cutting out cycles
with maxsat. In Holger Dell and Jesper Nederlof, editors, 17th International Symposium on
Parameterized and Exact Computation, IPEC 2022, September 7-9, 2022, Potsdam, Germany,
volume 249 of LIPIcs, pages 32:1–32:4. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPICS.IPEC.2022.32.

7 Marek Piotrów. UWrMaxSat: Efficient solver for maxsat and pseudo-boolean problems.
In 32nd IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2020,
Baltimore, MD, USA, November 9-11, 2020, pages 132–136. IEEE, 2020. doi:10.1109/
ICTAI50040.2020.00031.

8 Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding
of hierarchical system structures. IEEE Trans. Syst. Man Cybern., 11(2):109–125, 1981.
doi:10.1109/TSMC.1981.4308636.

https://doi.org/10.1007/978-3-031-65627-9_7
https://arxiv.org/abs/2402.17702
https://doi.org/10.1016/J.JDA.2006.12.008
https://doi.org/10.1007/S00453-004-1093-2
https://doi.org/10.4230/LIPICS.SAT.2023.8
https://doi.org/10.4230/LIPICS.IPEC.2022.32
https://doi.org/10.1109/ICTAI50040.2020.00031
https://doi.org/10.1109/ICTAI50040.2020.00031
https://doi.org/10.1109/TSMC.1981.4308636

	1 Preliminaries
	2 Reduction rules
	2.1 Rules for OSCM
	2.2 Rules for WDFAS

	3 Incremental MaxSAT formulation
	3.1 Encoding
	3.2 User Propagator

	4 Discussion

