
PACE Solver Description: Martin_J_Geiger
Martin Josef Geiger #

University of the Federal Armed Forces Hamburg, Germany

Abstract
This extended abstract outlines our contribution to the Parameterized Algorithms and Computational
Experiments Challenge (PACE), which invited to work on the one-sided crossing minimization
problem. Our ideas are primarily based on the principles of Iterated Local Search and Variable
Neighborhood Search. For obvious reasons, the initial alternative stems from the barycenter heuristic.
This first sequence (permutation) of nodes is then quickly altered/ improved by a set of operators,
keeping the elite configuration while allowing for worsening moves and hence, escaping local optima.

2012 ACM Subject Classification Mathematics of computing → Optimization with randomized
search heuristics

Keywords and phrases PACE 2024, one-sided crossing minimization, Variable Neighborhood Search,
Iterated Local Search

Digital Object Identifier 10.4230/LIPIcs.IPEC.2024.32

Supplementary Material Software: https://doi.org/10.5281/zenodo.11465516

Acknowledgements We would like to thank the organizers of PACE 2024, namely Philipp Kinder-
mann, Fabian Klute, and Soeren Terziadis, for working really hard for this interesting competition.
Besides, our thanks go to the sponsors NETWORKS (https://www.thenetworkcenter.nl/) and
the wonderful platform https://optil.io.

1 Problem description and some reflections

1.1 The problem
In the one-sided crossing minimization problem, a graph G = (V, E) is given, which consists
of a vertex set V and an edge set E. G is bipartite as there is a partition of V into two
disjoint subsets V1, V2 (hence, V = V1 ∪ V2, V1 ∩ V2 = ∅, and E ⊆ V1 × V2). We now assume
that the nodes of V1 are arranged in a linear order and placed in one layer, while the ones of
V2 appear in another layer parallel to the first one. Therefore, edges between V1 and V2 may
cross, depending on the sequence of nodes in V1, V2. In it’s one-sided variation, the crossing
minimization problem lies in arranging (ordering) the nodes in V2 – while assuming a fixed
linear order <1 of V1 – such that the total number of edge crossings is minimal.

Several applications for this problem can be found in the literature, with graph drawing
as a prominent example [3].

1.2 A lower bound and a corollary
It follows that the solution to the problem can be characterized as finding a (cost-minimal)
linear order <2 for V2. In any such order, two nodes a, b ∈ V2 can appear either ordered
a < b or b < a, and the crossings count cab or (XOR) cba are part of the optimal value. A
trivial lower bound is obtained by considering all distinct pairs a, b ∈ V2, and computing the
sum over all min{cab, cba}-values.

Concept 1. Based on this lower bound computation, we can construct a digraph on V2,
introducing arcs (a, b) iff cab < cba, and arcs (b, a) iff cba < cab. In some ideal cases,
this digraph is acyclical, and an optimal ordering <2 is quickly computed based on this

© Martin Josef Geiger;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Parameterized and Exact Computation (IPEC 2024).
Editors: Édouard Bonnet and Paweł Rzążewski; Article No. 32; pp. 32:1–32:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.j.geiger@hsu-hh.de
https://orcid.org/0000-0003-1797-957X
https://doi.org/10.4230/LIPIcs.IPEC.2024.32
https://doi.org/10.5281/zenodo.11465516
https://www.thenetworkcenter.nl/
https://optil.io
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Martin_J_Geiger

preliminary input. Unfortunately, acyclicity is not always present. It follows that, in
those cases, any linear order <2 breaks at least one (often: some, several) cycles, and the
problem can be reformulated as finding a minimal-cost cycle-breaking of the constructed
digraph. Part of the process now becomes identifying the elementary circuits of the
digraph, e. g. by means of [4], and breaking them in an optimal manner. In our experience,
if G becomes “large”, this process becomes computationally difficult.

Concept 2. Alternative approaches directly construct and manipulate the linear order <2 by
considering a permutation of the nodes in V2, and hence implicitly break existing cycles
by forcing transitivity over all binary relations of a, b ∈ V2. In such a permutation, the
order of nodes in V2 is considered from “left” to “right”, identical to the order of the
node-IDs in the permutation.
As the transition from the digraph into the permutation is a mapping from a higher into
a lower dimensional space (i. e., a lossy compression), such approaches are more direct
but fail to enumerate the cycles in a structured manner.

2 Submitted algorithm

Our approach is primarily based on the principles of Variable Neighborhood Search [2] and
Iterated Local Search [5]. In the spirit of the classification above, we follow Concept 2, and
consider permutations of nodes of V2.

The basic idea of Iterated Local Search is as follows. First, and starting from an initial
solution, we run into a local optimum (and in our case, we apply Variable Neighborhood
Search, i. e., a set of different neighborhoods, to find a best-possible one). Second, a
“perturbation”-/ “shaking”-move is applied, trying to escape the local optimum. Finally,
search continues from here, and the process is repeated until a termination criterion is reached
(which is in most cases – and here – a maximum running time).

Obviously, keeping an elite solution makes sense and is incorporated in our concept, also.

2.1 Preprocessing and reductions
Reducing the size of the instance is beneficial. First, we exclude isolated nodes in V2, i. e.,
nodes that have no edges. Then, and excluding the very large instances, all cab-values are
pre-computed. On this basis, the reduction rules RR1 and RR2, as given in [1], are applied.
Applying those reduction rules is beneficial for most data sets, as we find partial orders on
the set V2, and therefore can tell whether some nodes must precede others in the optimal
solution.

If possible, V2 is further broken down into linearly ordered, disjoint subsets, such that
the nodes of each subset must precede the ones of the following subset in the permutation,
etc. Each subset can then be treated as an independent sub-problem, and the search process
is consequently accelerated. The main idea is to iterate through the nodes of the ordered set
V1, starting with the first (leftmost) node and checking the incident edges for overlaps with
edges of succeeding nodes (on the right of the currently considered one). This partitioning
can be computed in O(|V1| + |E|), and is therefore feasible in cases in which pre-computing
the crossings-matrix is computationally too expensive.

2.2 Initial permutation of V2

The starting solution stems from the barycenter-heuristic [6]. In this approach, the average
positions of adjacent nodes of each node in V2 are computed, and the nodes are subsequently
sorted in non-decreasing order of those values.

M. J. Geiger 32:3

Starting with this heuristics is important, as the challenge organizers have published some
instances for which this approach yields the optimal solution. In those cases, our program
terminates early. In the Heuristics-Track of the competition, this applies to 12 of the 100
instances.

2.3 Intensification: Improvement moves
We exhaustively search for improving moves until a local optimum is reached. The following
neighborhoods are employed.

First and foremost, the single node move tries to remove a node from it’s current position
and re-insert in some other place in the permutation. Re-insertion positions are considered
to the “left” and to the “right”, starting with close reinsertions and working the way up
to ones further away.
Besides, block moves try to move entire blocks of subsequent nodes. The size of the blocks
range from 2 to 5 nodes. Our experiments indicate that block moves contribute to the
performance of the algorithm only a little – but still they do.

Improving moves are always accepted, and moves that do not change the quality of the
current solution are considered with a certain probability in order to diversify the search.

2.4 Speed-ups
Several truncation-techniques are implemented in order to speed-up the search. Obviously,
moves that contradict the order given by the reduction rules RR1 and RR2 are omitted. Also,
when moving a node (or a block), movements are stopped once their cumulative change in
the objective function value exceeds a certain threshold: In those cases, we do not hope for
an improvement to show up when trying to move the node even further.

For the larger instances, i. e. the ones in which computing the crossings matrix is considered
to be computationally too expensive, we truncate the movements further by introducing a
maximum range (change of positions) for shifting nodes in the permutation. This is important
as the algorithm otherwise spends too much time re-inserting a give node before moving on
to the next node.

2.5 Diversification: Perturbation move
Once a local optimum is reached, a subset of the permutation is reversed and search continues
from here. We allow for a maximum of 20% of the permutation to be reversed. Based on our
experiments, this value presents a good compromise between diversifying and intensifying
the search.

2.6 Parameter tuning
Finding good values to the guiding parameters is not to be neglected. In fact, more than
24,000 runs have been conducted to find an appropriate setting, i. e., a single, identical setting
for all test instances.

In this process, it has been verified that reversing up to 20% of the nodes the permutation
in the diversification move is a good choice. Bigger percentages work, too, but diversify the
search more and hence require relatively more computing time in order to find excellent
results.

IPEC 2024

32:4 Martin_J_Geiger

Also, nodes and blocks of nodes in V2 are shifted at most ±3900 positions to either
“left” or “right”. Again, other values work also, but this number appears to be around the
sweet-spot for the available instances.

3 Overall ranking and some insights

Despite being a relatively comprehensive approach, our concept ranked third in this very
competitive challenge (the Heuristics-Track of PACE 2024). We attribute this to the rather
well-done implementation, along with some clever speed-up techniques as outlined above.

Even more successful approaches (Memetic Algorithms) make use of an archive of local
optima. Such concepts have not been used by us here, but given the direct comparison to
the top-ranked team, such a algorithmic design element would have been beneficial, indeed.

4 Source-code

The source-code of our contribution has been published under the Creative Commons
Attribution 4.0 International Public License and made available under https://doi.org/
10.5281/zenodo.11465516.

References
1 Vida Dujmović, Henning Fernau, and Michael Kaufmann. Fixed parameter algorithms for

one-sided crossing minimization revisited. Journal of Discrete Algorithms, 6:313–323, 2008.
2 Pierre Hansen and Nenad Mladenović. Variable neighborhood search: Principles and ap-

plications. European Journal of Operational Research, 130:449–467, 2001. doi:10.1016/
S0377-2217(00)00100-4.

3 Patrick Healy and Nikola S. Nikolov. Hierarchical drawing algorithm. In Roberto Tamassia,
editor, Handbook of Graph Drawing and Visualization, Discrete Mathematics and its Applica-
tions, chapter 13, pages 409–453. CRC Press – Taylor Francis Group, Boca Raton, FL, USA,
June 2013.

4 Donald B. Johnson. Finding all elementary circuits in a directed graph. SIAM Journal on
Computing, 4(1):77–84, 1975.

5 Helena R. Lourenço, Olivier Martin, and Thomas Stützle. Iterated local search. In Fred Glover
and Gary A. Kochenberger, editors, Handbook of Metaheuristics, volume 57 of International
Series in Operations Research & Management Science, chapter 11, pages 321–353. Kluwer
Academic Publishers, Boston, Dordrecht, London, 2003. doi:10.1007/0-306-48056-5_11.

6 Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding
of hierarchical system structures. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-11(2):109–125, February 1981. doi:10.1109/TSMC.1981.4308636.

https://doi.org/10.5281/zenodo.11465516
https://doi.org/10.5281/zenodo.11465516
https://doi.org/10.1016/S0377-2217(00)00100-4
https://doi.org/10.1016/S0377-2217(00)00100-4
https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1109/TSMC.1981.4308636

	1 Problem description and some reflections
	1.1 The problem
	1.2 A lower bound and a corollary

	2 Submitted algorithm
	2.1 Preprocessing and reductions
	2.2 Initial permutation of V_2
	2.3 Intensification: Improvement moves
	2.4 Speed-ups
	2.5 Diversification: Perturbation move
	2.6 Parameter tuning

	3 Overall ranking and some insights
	4 Source-code

