
PACE Solver Description: OCMu64,
a Solver for One-Sided Crossing Minimization
Ragnar Groot Koerkamp #Ñ

ETH Zurich, Switzerland

Mees de Vries #

Unaffiliated, The Netherlands

Abstract
Given a bipartite graph (A, B), the one-sided crossing minimization (OCM) problem is to find an
ordering of the vertices of B that minimizes the number of edge crossings when drawn in the plane.

We introduce the novel strongly fixed, practically fixed, and practically glued reductions that
maximally generalize some existing reductions. We apply these in our exact solver OCMu64, that
directly uses branch-and-bound on the ordering of the vertices of B and does not depend on ILP or
SAT solvers.

2012 ACM Subject Classification Theory of computation → Mathematical optimization; Theory of
computation → Computational geometry

Keywords and phrases Graph drawing, crossing number, branch and bound

Digital Object Identifier 10.4230/LIPIcs.IPEC.2024.35

Supplementary Material Software (Source Code): https://github.com/mjdv/ocmu64 [6]
Software (Source Code): https://doi.org/10.5281/zenodo.11671980 [7]

1 Introduction

The 2024 edition of PACE, an annual optimization challenge, considers the one-sided crossing
minimization problem, defined as follows. Given is a bipartite graph (A, B) that is drawn in
the plane at points (i, 0) and (j, 1) for components A and B respectively. The ordering of A

is fixed, and the goal is the find an ordering of B that minimizes the number of crossings
when edges are drawn as straight lines. We introduce some new reductions and give an
overview of our algorithm. Proofs are brief or omitted due to lack of space.

2 Definitions

We use < to compare vertices in A in their fixed ordering. We generalize to weighted graphs
for the proof of Lemma 3: a node u ∈ B is taken to be a function u : A → R≥0, where weight 0
represents an absent edge. Write N(u) = supp(u) ⊆ A for the set of neighbors of u. We write
Wu =

∑
a∈A u(a) for the total weight of u, and set ū = u/Wu. We think of ū as a probability

distribution, and also consider the cumulative distribution function Fū(b) =
∑

a≤b ū(a). We
write c(u, v) =

∑
(a,b)∈A2 u(a)v(b)[a > b]; in the unweighted case, this is the crossing number,

the number of crossings between edges incident to u and v when u is drawn before v. For
X, Y ⊆ B we set c(X, Y) =

∑
x∈X

∑
y∈Y c(x, y) for the cost of ordering all vertices of X

before all vertices of Y . More generally, c(X, Y, Z) = c(X, Y) + c(X, Z) + c(Y, Z). We also
consider the reduced cost r(X, Y) = c(X, Y) − c(Y, X), which is negative when X is better
before Y and positive when X is better after Y .

We write u ≺ v when u must come before v in all minimal solutions, and say that (u, v)
is a fixed pair.

© Ragnar Groot Koerkamp and Mees de Vries;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Parameterized and Exact Computation (IPEC 2024).
Editors: Édouard Bonnet and Paweł Rzążewski; Article No. 35; pp. 35:1–35:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ragnar.grootkoerkamp@gmail.com
https://curiouscoding.nl
https://orcid.org/0000-0002-2091-1237
mailto:meesdevries@protonmail.com
https://orcid.org/0009-0001-4422-153X
https://doi.org/10.4230/LIPIcs.IPEC.2024.35
https://github.com/mjdv/ocmu64
https://doi.org/10.5281/zenodo.11671980
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 OCMu64: A Solver for One-Sided Crossing Minimization

(a) An instance of Observation 1. (b) Examples of blocking sets (Lemma 7), preventing u ≺ v.

(c) Examples of strongly fixed pairs (Definition 2).

Figure 1 Various examples of u, v ∈ B, whose neighbors neighbours in A (on the dashed line)
have fixed positions.

3 Methods

3.1 Reductions
Fixed pairs. To reduce the search space of all possible orderings of B, it is crucial to
automatically find as many fixed pairs in B as possible. Ideally, one would be able to
determine whether u ≺ v by inspecting only u, v. For example, the following result, shown
in Figure 1a is well known [2, Lemma 1], [1, RR1].

▶ Observation 1. Let u, v ∈ B. When max N(u) ≤ min N(v) and ū ̸= v̄, then u ≺ v.

We give a much stronger version of Observation 1, with some examples in Figure 1c.
In fact, Lemma 3 is the strongest generalization possible when only considering u and v

themselves, without further inspection of A or the other elements of B (see Remark 6). This
also generalizes RR3 of [1].

▶ Definition 2 (Strongly fixed pair). We call u, v ∈ B a strongly fixed pair if for every b ∈ A

we have Fū(b) ≥ Fv̄(b), and at least one of these inequalities is strict. Note that this implies
r(u, v) < 0.

▶ Lemma 3. When u, v is a strongly fixed pair, then for any w : A → R≥0 we have

r(w, v̄) ≤ r(w, ū).

Proof. Consider the least element a0 ∈ A such that ū(a0) ̸= v̄(a0). We must have ū(a0) >

v̄(a0). Now consider the transformation of ū which “moves” δ := ū(a0) − v̄(a0) of weight
from a0 to its successor a1 ∈ A, and call this transformed function ū′. Then

r(w, ū′) = r(w, ū) − δw(a0) − δw(a1) ≤ r(w, ū).

Since v̄ is obtained from ū by a sequence of such transformations, the inequality follows. ◀

▶ Lemma 4. If (u, v) is strongly fixed, then u ≺ v.

Proof. Suppose towards a contradiction that v < x0 < · · · < xk < u is part of an optimal
solution. Write X =

∑
i xi for the combined function. Then by assumption r(X, u) ≤ 0, and

therefore r(X, v) = Wvr(X, v̄) ≤ Wvr(X, ū) = Wv/Wu · r(X, u) ≤ 0. But then c(X, u, v) <

c(X, v, u) ≤ c(v, X, u), which contradicts (v, X, u) being optimal. ◀

R. Groot Koerkamp and M. de Vries 35:3

▶ Remark 5. Consider u ̸= v from the original, unweighted problem, taking only values 0, 1.
Let n = |N(u)|, m = |N(v)|, and consider both as ordered lists. Then u, v are strongly fixed
if and only if for all 0 ≤ i < n, N(u)i ≤ N(v)⌊i·m/n⌋ and at least one of the inequalities is
strict, which is how we check in practice whether u, v is strongly fixed.
▶ Remark 6. Suppose that u, v with ū ≠ v̄ are not strongly fixed, and let b ∈ A be such
that Fū(b) < Fv̄(b). We would like to construct a node X ∈ B such that c(v, X, u) <

min(c(X, u, v), c(u, v, X)), so that v ≺ u. Suppose that there are nodes l, m, r ∈ A, with m

sitting between b and its successor in A, and l < (supp(u) ∪ supp(v)) < r (see Figure 1b).
Then let X be connected to l, m, r. By choosing the weights of X appropriately, we can let
both r(X, v) = Wvr(X, v̄) and r(u, X) = Wur(ū, X) grow arbitrarily large. Since we can
scale up the weights of X, it suffices to make r(X, v̄) and r(ū, X) simultaneously positive.

Now r(X, v̄) = (2Fv̄(b) − 1)X(m) + (X(r) − X(l)), and r(ū, X) = (1 − 2Fū(b))X(m) −
(X(r) − X(l)). By choosing the weights X(r), X(l) appropriately, we can make these two
values equal, so it suffices if their average is positive, and indeed

(r(X, v̄) + r(ū, X))/2 = X(m)(Fv̄(b) − Fū(b)) > 0.

This implies c(v, X, u) < min(c(X, u, v), c(u, v, X)), and thus demonstrates that if one wants
to show that u ≺ v, when u, v are not strongly fixed, one must consider features of the graph
other than u, v and their neighbours. In other words, Lemma 3 is optimal. Note that this
remark also applies in the unweighted case, by taking l, m, r to be sets of nodes rather than
single nodes with weighted edges.

Although such a node X may exist in theory, it does not have to exist in the actual set
B, motivating the following definition that generalizes RRLO2 of [1].

▶ Lemma 7. Suppose r(u, v) < 0. A blocking set X ⊆ B − {u, v} is a set such that
c(v, X, u) ≤ min(c(v, u, X), (X, v, u)). If there is no blocking set for (u, v), we call it a
practically fixed pair, and u ≺ v.

In practice, such a blocking set X can be found, if one exists, using a knapsack-like
algorithm: for each x ∈ B − {u, v}, add a point Px = (r(v, x), r(x, u)), and search for a
subset summing to ≤ (r(u, v), r(u, v)). Figure 1b shows some examples.

Note that we do not require (v, X, u) to be a true local minimum, since we do not consider
interactions between vertices in X, as that would make ruling out the existence of such sets
much harder.
▶ Remark 8 (Weak variants). It is also possible to consider weak variants of the above lemmas
that only imply that u < v in some optimal solution. This requires careful handling of cycles
like u ⪯ v ⪯ w ⪯ u.

Gluing. We now turn our attention to gluing, i.e., proving that two vertices u and v always
go right next to each other, and we can treat them as a single vertex. First, let us see that
we cannot get a “strong gluing” result analogous to Lemma 4.
▶ Remark 9. When N(u) = N(v) in the unweighted case, or more generally ū = v̄, we can
glue u and v. Otherwise when r(u, v) ≤ 0, there is an X : A → R≥0 such that (u, X, v) is
strictly better than (u, v, X) and (X, u, v).

▶ Lemma 10 (Practical gluing). Let u and v satisfy r(u, v) ≤ 0. A non-empty subset
X ⊆ B − {u, v} is blocking when c(u, X, v) ≤ min(c(u, v, X), c(X, u, v)). If there is no
blocking set, then we can glue u, v.

IPEC 2024

35:4 OCMu64: A Solver for One-Sided Crossing Minimization

Again such sets X can be found or proven to not exist using a knapsack algorithm: add
points Px = (r(u, x), r(x, v)) and search for a non-empty set summing to ≤ (0, 0).

Let us also mention this gluing-like reduction: gluing to the front, implied by [1, RRL01].

▶ Lemma 11 (Greedy). When r(u, x) ≤ 0 for all x ∈ B, there is a solution that starts with u.

▶ Remark 12 (Tail variants). Our branch-and-bound method fixes vertices of the solution
from left to right. Thus, at each step Lemmas 7 and 10 can be applied to just the tail.

3.2 Branch-and-bound
Our solver OCMu64 is based on a standard branch-and-bound on the ordering of the solution.
We start with fixed prefix P = () and tail T = B, and in each step we try (a subset of) all
vertices in T as the next vertex appended to P . In a preprocessing step we compute the
trivial lower bound S0 =

∑
u,v min(c(u, v), c(v, u)) [5, Lemma 4][2, Fact 3] on the score. We

keep track of the score SP of the prefix and SP T = c(P, T) of prefix-tail intersections, and
abort when this score goes above the best solution found so far. The excess of a tail is its
optimal score minus the trivial lower bound. We do a number of optimizations.

Graph simplification We drop degree-0 vertices, merge identical vertices, and split the graph
into independent components [2, Corollary 2] when possible. We find an initial solution
using the median heuristic [3, 5] and a local search that tries to move slices and optimally
insert them [8, 4], and re-label all nodes accordingly to make memory accesses more
efficient.

Fixed pairs We find all strongly fixed pairs and store them. For the exact track we also find
practically fixed pairs. Instances for the parameterized track are simple enough that the
overhead was not worth it. Also for each tail we search for new “tail-local” practically
fixed pairs. In each state, we only try vertices u ∈ T not fixed by another v ∈ T .

Gluing We use the greedy strategy of Lemma 11. Our implementation of Lemma 10 contained
a bug, so we did not use this. (Also benefits seemed limited.)

Tail cache In each step, we search for the longest suffix of T that was seen before, and reuse
(the lower bound on) its excess. We also cache the tail-local practically fixed pairs.

Optimal insert Instead of simply appending u to P , we insert it in the optimal position.
Note that the implementation is tricky because it interacts in complicated ways with the
caching of results for each tail.

References
1 Vida Dujmovic, Henning Fernau, and Michael Kaufmann. Fixed parameter algorithms for

one-sided crossing minimization revisited. Journal of Discrete Algorithms, 6(2):313–323, June
2008. doi:10.1016/j.jda.2006.12.008.

2 Vida Dujmovic and Sue Whitesides. An efficient fixed parameter tractable algorithm
for 1-sided crossing minimization. Algorithmica, 40(1):15–31, April 2004. doi:10.1007/
s00453-004-1093-2.

3 P. Eades and N.C. Wormald. The Median Heuristic for Drawing 2-layered Networks. Technical
report. University of Queensland, Department of Computer Science, 1986.

4 Peter Eades and David Kelly. Heuristics for reducing crossings in 2-layered networks. Ars
Combinatoria, 21(A):89–98, 1986.

5 Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(4):379–403, April 1994. doi:10.1007/bf01187020.

6 Ragnar Groot Koerkamp and Mees de Vries. OCMu64. Software (visited on 2024-11-28).
URL: https://github.com/mjdv/ocmu64, doi:10.4230/artifacts.22525.

https://doi.org/10.1016/j.jda.2006.12.008
https://doi.org/10.1007/s00453-004-1093-2
https://doi.org/10.1007/s00453-004-1093-2
https://doi.org/10.1007/bf01187020
https://github.com/mjdv/ocmu64
https://doi.org/10.4230/artifacts.22525

R. Groot Koerkamp and M. de Vries 35:5

7 Ragnar Groot Koerkamp and Mees de Vries. OCMu64. Software (visited on 2024-11-28).
doi:10.5281/zenodo.11671980.

8 Erkki Mäkinen. Experiments on drawing 2-level hierarchical graphs. International Journal of
Computer Mathematics, 36(3-4):175–181, January 1990. doi:10.1080/00207169008803921.

IPEC 2024

https://doi.org/10.5281/zenodo.11671980
https://doi.org/10.1080/00207169008803921

	1 Introduction
	2 Definitions
	3 Methods
	3.1 Reductions
	3.2 Branch-and-bound

