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Abstract
In this paper, we study the Eulerian Strong Component Arc Deletion problem, where the input is a
directed multigraph and the goal is to delete the minimum number of arcs to ensure every strongly
connected component of the resulting digraph is Eulerian.

This problem is a natural extension of the Directed Feedback Arc Set problem and is also known
to be motivated by certain scenarios arising in the study of housing markets. The complexity
of the problem, when parameterized by solution size (i.e., size of the deletion set), has remained
unresolved and has been highlighted in several papers. In this work, we answer this question by ruling
out (subject to the usual complexity assumptions) a fixed-parameter tractable (FPT) algorithm
for this parameter and conduct a broad analysis of the problem with respect to other natural
parameterizations. We prove both positive and negative results. Among these, we demonstrate that
the problem is also hard (W[1]-hard or even para-NP-hard) when parameterized by either treewidth
or maximum degree alone. Complementing our lower bounds, we establish that the problem is
in XP when parameterized by treewidth and FPT when parameterized either by both treewidth
and maximum degree or by both treewidth and solution size. We show that these algorithms have
near-optimal asymptotic dependence on the treewidth assuming the Exponential Time Hypothesis.
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1 Introduction

In the Eulerian Strong Component Arc Deletion (ESCAD) problem, where the input is a
directed graph (digraph)1 and a number k and the goal is to delete at most k arcs to ensure
every strongly connected component of the resulting digraph is Eulerian. This problem was

1 In this paper, the arc set of a digraph is a multiset, i.e., we allow multiarcs. Moreover, we treat multiarcs
between the same ordered pairs of vertices as distinct arcs in the input representation of all digraphs.
Consequently, the number of arcs in the input is upper bounded by the length of the input. We exclude
loops as they play no non-trivial role in instances of this problem.
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4:2 On the Parameterized Complexity of Eulerian Strong Component Arc Deletion

first introduced by Cechlárová and Schlotter [3] to model problems arising in the study of
housing markets and they left the existence of an FPT algorithm for ESCAD as an open
question.

The ESCAD problem extends the well-studied Directed Feedback Arc Set (DFAS)
problem. In DFAS, the goal is to delete the minimum number of arcs to make the digraph
acyclic. The natural extension of DFAS to ESCAD introduces additional complexity
as we aim not to prevent cycles, but aim to balance in-degrees and out-degrees within
each strongly connected component. As a result, the balance requirement complicates the
problem significantly and the ensuing algorithmic challenges have been noted in multiple
papers [3, 6, 11].

Crowston et al. [4] made partial progress on the problem by showing that ESCAD is
fixed-parameter tractable (FPT) on tournaments and also gave a polynomial kernelization.
However, the broader question of fixed-parameter tractability of ESCAD on general digraphs
has remained unresolved.

Our contributions. Our first main result rules out the existence of an FPT algorithm for
ESCAD under the solution-size parameterization, subject to standard complexity-theoretic
assumptions.

▶ Theorem 1. ESCAD is W[1]-hard parameterized by the solution size.

The above negative result explains, in some sense, the algorithmic challenges encountered
in previous attempts at showing tractability and shifts the focus toward alternative paramet-
erizations. However, even here, we show that a strong parameterization such as the vertex
cover number is unlikely to lead to a tractable outcome.

▶ Theorem 2. ESCAD is W[1]-hard parameterized by the vertex cover number of the graph.

In fact, assuming the Exponential Time Hypothesis (ETH), we are able to obtain a
stronger lower bound.

▶ Theorem 3. There is no algorithm solving ESCAD in f(k) · no(k/ log k) time for some
function f , where k is the vertex cover number of the graph and n is the input length, unless
the Exponential Time Hypothesis fails.

To add to the hardness results above, we also analyze the parameterized complexity of
the problem parameterized by the maximum degree of the input digraph and show that even
for constant values of the parameter, the problem remains NP-hard.

▶ Theorem 4. ESCAD is NP-hard in digraphs where each vertex has (in, out) degrees in
{(1, 6), (6, 1)}.

We complement these negative results by showing that ESCAD is FPT parameterized
by the treewidth of the deoriented digraph (i.e., the underlying undirected multigraph)
and solution size as well as by the treewidth and maximum degree of the input digraph.
Furthermore, we give an XP algorithm parameterized by treewidth alone. All three results
are obtained by a careful analysis of the same algorithm stated below.

▶ Theorem 5. An ESCAD instance I = (G, k) can be solved in time 2O(tw2) ·(2α+1)2tw ·nO(1)

where tw is the treewidth of deoriented G, ∆ is the maximum degree of G, and α = min(k, ∆).
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In the above statement, notice that α is upper bounded by the number of edges in the
digraph and so, implies an XP algorithm parameterized by the treewidth with running time
2O(tw2) · nO(tw). Notice the running time of our algorithm asymptotically almost matches
our ETH based lower bound (recall that the vertex cover number of a graph is at least the
treewidth) in Theorem 3.

Recall that in general, multiarcs are permitted in an instance of ESCAD. This fact is
crucially used in the proof of Theorem 2 and raises the question of adapting this reduction to
simple digraphs (digraphs without multiarcs or loops) in order to obtain a similar hardness
result parameterized by vertex cover number. However, we show that this is not possible by
giving an FPT algorithm for the problem on simple digraphs parameterized by the vertex
integrity of the input graph. Recall that a digraph has vertex integrity k if there exists a
set of vertices of size q ≤ k which when removed, results in a digraph where each weakly
connected component has size at most k − q. Vertex integrity is a parameter lower bounding
vertex cover number and has gained popularity in recent years as a way to obtain FPT
algorithms for problems that are known to be W[1]-hard parameterized by treedepth – one
example being ESCAD on simple graphs as we show in this paper (see Theorem 7 below).

▶ Theorem 6. ESCAD on simple digraphs is FPT parameterized by the vertex integrity of
the graph.

As a consequence of this result, we infer an FPT algorithm for ESCAD on simple digraphs
parameterized by the vertex cover number, highlighting the difference in the behaviour of
the ESCAD problem on directed graphs that permit multiarcs versus simple digraphs. On
the other hand, we show that even on simple digraphs this positive result does not extend
much further to well-studied width measures such as treewidth (or even the larger parameter
treedepth), by obtaining the following consequence of Theorems 2 and 3.

▶ Theorem 7. ESCAD even on simple digraphs is W[1]-hard parameterized by k and
assuming ETH, there is no algorithm solving it in f(k)n(k/logk) time for some function f ,
where k is the size of the smallest vertex set that must be deleted from the input digraph to
obtain a disjoint union of directed stars and n is the input length.

Related Work. The vertex-deletion variant of ESCAD is known to be W[1]-hard, as shown
by Göke et al. [11], who identify ESCAD as an open problem and note that gaining more
insights into its complexity was a key motivation for their study. Cygan et al. [6] gave the
first FPT algorithm for edge (arc) deletion to Eulerian graphs (respectively, digraphs). Here,
the aim is to make the whole graph Eulerian whereas the focus in ESCAD is on each strongly
connected component. Cygan et al. also explicitly highlight ESCAD as an open problem
and a motivation for their work. Goyal et al. [12] later improved the algorithm of Cygan et
al. by giving algorithms achieving a single-exponential dependence on k.

2 Preliminaries

For a digraph G, we denote its vertices by V (G), arcs by E(G), the subgraph induced by
S ⊆ V (G) as G[S], a subgraph with subset of vertices removed as G − S = G[V (G) \ S],
and a subgraph with subset of edges F ⊆ E(G) removed as G − F = (V (G), E(G) \ F ). For
a vertex v and digraph G, let deg−

G(v) denote its in-degree, deg+
G(v) be its out-degree, and

deg+
G(v) − deg−

G(v) is called its imbalance. If the imbalance of v is 0 then v is said to be
balanced (in G). A digraph is called balanced if all its vertices are balanced. The maximum
degree of a digraph G is the maximum value of deg+

G(v) + deg−
G(v) taken over every vertex v

in the graph.

IPEC 2024



4:4 On the Parameterized Complexity of Eulerian Strong Component Arc Deletion

A vertex v is reachable from u if there exists a directed path from u to v in G. A strongly
connected component of G is a maximal set of vertices where all vertices are mutually reachable.
Let strong subgraph denoted strong(G) be the subgraph of G obtained by removing all arcs
that have endpoints in different strongly connected components. The ESCAD problem can
now be formulated as “Is there a set S ⊆ V (G) of size |S| ≤ k such that strong(G − S) is
balanced?” We call an arc e ∈ E(G) active in G if e ∈ E(strong(G)) and inactive in G

otherwise.
A graph G has vertex cover k if there exists a set of vertices S ⊆ V (G) with bounded size

|S| ≤ k such that G − S is an independent set. A star is an undirected graph isomorphic to
K1 or K1,t for some t ≥ 0 and a directed star is just a digraph whose underlying undirected
graph is a star.

A tree decomposition of an undirected graph G is a pair (T, {Xt}t∈V (T )) where T is a
tree and Xt ⊆ V (G) such that (i) for all edges uv ∈ E(G) there exists a node t ∈ V (T ) such
that {u, v} ⊆ Xt and (ii) for all v ∈ V (G) the subgraph induced by {t ∈ V (T ) : v ∈ Xt} is a
non-empty tree. The width of a tree decomposition is maxt∈V (T ) |Xt| − 1. The treewidth of
G is the minimum width of a tree decomposition of G.

Let (T, {Xt}t∈V (T )) be a tree decomposition of G. We refer to every node of T with
degree one as a leaf node except one which is chosen as the root, r. A tree decomposition
(T, {Xt}t∈V (T )) is a nice tree decomposition with introduce edge nodes if all of the following
conditions are satisfied:
1. Xr = ∅ and Xℓ = ∅ for all leaf nodes ℓ.
2. Every non-leaf node of T is one of the following types:

Introduce vertex node: a node t with exactly one child t′ such that Xt = Xt′ ∪ v

for some vertex v /∈ Xt′ .
Introduce edge node: a node t, labeled with an edge uv where u, v ∈ Xt and with
exactly one child t′ such that Xt = Xt′ .
Forget node: a node t with exactly one child t′ such that Xt = Xt′ \ {v} for some
vertex v ∈ Xt′ .
Join node: a node t with exactly two children t1, t2 such that Xt = Xt1 = Xt2 .

3. Every edge appears on exactly one introduce edge node.

Proofs for results marked ⋆ can be found in the full version [2].

3 Our Results for ESCAD

In the following four subsections we describe three hardness results and tractability results
on bounded treewidth graphs for ESCAD. In Section 3.4 we show that the problem is
XP by treewidth and FPT in two cases – when parameterized by the combined parameter
treewidth plus maximum degree, and when parameterized by treewidth plus solution size.
The hardness results show that dropping any of these parameters leads to a case that is
unlikely to be FPT. More precisely, we show that parameterized by solution size it is W[1]-hard
(in Section 3.1) as is the case when parameterized by vertex cover number (Section 3.2), and
it is para-NP-hard when when parameterized by the maximum degree (Section 3.3).

3.1 W[1]-hardness of ESCAD Parameterized by Solution Size
In this section, we show that ESCAD is W[1]-hard when parameterized by solution size. Our
reduction is from Multicolored Clique. The input to Multicolored Clique consists
of a simple undirected graph G, an integer ℓ, an containing exactly one vertex from each
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set Vi, i ∈ [ℓ]. Multicolored Clique is known to be W[1]-hard when parameterized by
the size of the solution ℓ [5]. Each set Vi for i ∈ [ℓ] is called a color class and for a vertex
v in G, we say v has color i if v ∈ Vi. We assume without loss of generality that in the
Multicolored Clique instance we reduce from, each color class Vi forms an independent
set (edges in the same color class can be removed) and moreover, for each vertex v ∈ Vi

and each j ∈ [ℓ] \ {i} there exists a w ∈ Vj that is adjacent to v (any vertex that cannot
participate in a multicolored clique can be removed).

We start with descriptions of two auxiliary gadgets: the imbalance gadget and the path
gadget.

Imbalance Gadget. Let u, v be a pair of vertices, and b, c be two positive integers. We
construct a gadget Iu,v connecting the vertex u to v by a path with vertices u, w1, . . . , wb, v

where wi’s are b new vertices (we call them intermediate vertices in this gadget); let u = w0
and v = wb+1. For every i ∈ {0, . . . , b} the path contains b+1+c forward arcs (wi, wi+1) and
b + 1 backward arcs (wi+1, wi), see Figure 1a for an illustration. Observe that with respect to
the gadget Iu,v, the vertices u and v have imbalances c and −c, respectively, whereas other
vertices in the gadget have imbalance zero. We refer to this gadget Iu,v as a (b, c)-imbalance
gadget.

c

b+ 2

u w1 w2 w3 w4 w5 v

(a) c-imbalance gadget.

c

b+ 2

u w1 w2 w3 w4 w5 v

(b) c-path gadget.

Figure 1 Black ellipses are vertices, thick edges represent (b + 1) copies of the edges; (b + 2) is
the number of vertices in the gadgets.

Path Gadget. Let u, v be a pair of vertices, and b, c be two positive integers. We construct
a gadget Pu,v connecting the vertex u to v by a path with vertices u, w1, . . . , wb, v where wi’s
are b new intermediate vertices; let u = w0 and v = wb+1. For every i ∈ {0, . . . , b} the path
contains c forward arcs (wi, wi+1). See Figure 1b for an illustration. Notice that, unlike the
imbalance gadget, we do not add backward arcs. Observe that with respect to the gadget
Pu,v, the vertices u and v has imbalances c and −c, respectively, whereas the other vertices
in the gadget have imbalance zero. We refer to this gadget Pu,v as a (b, c)-path gadget.

We use the following properties of the gadgets Iuv and Puv to reason about the correctness
of our construction.

▶ Lemma 8 (⋆). Let (G, b) be a yes-instance of ESCAD and S be a solution. Assume that
for a pair of vertices u, v in G, there is a (b, c)-imbalance gadget Iuv present in G (i.e., Iuv

is an induced subgraph of G). If S is an inclusionwise minimal solution then S contains no
arc of Iuv.

▶ Lemma 9 (⋆). Let (G, b) be a yes-instance of ESCAD and S be an inclusionwise minimal
solution for this instance. Assume that for a pair of vertices u, v in G, there is a (b, c)-path
gadget Puv present in G (i.e., Puv is an induced subgraph of G) and there are more than b arc-
disjoint paths from v to u. If S contains an arc from Puv, then there exists i ∈ {0, . . . , b + 1}
such that S contains every (wi, wi+1) arc in Puv.

IPEC 2024



4:6 On the Parameterized Complexity of Eulerian Strong Component Arc Deletion

Brief idea of the reduction. The main idea of the following reduction is to “choose” vertices
and edges of the clique using cuts. First, we enforce an imbalance using (b, c)-imbalance
gadgets where b is the budget and let it propagate using path gadgets in a way that chooses
a vertex for each color. For each chosen vertex, the solution is then forced to select (ℓ − 1)
out-going arcs that are incident to it. Choosing the same edge from two sides results in a
specific vertex to be cut from the strongly connected component of the remaining graph,
decreasing the degree by the correct amount. Our solution creates a set of

(
ℓ
2
)

vertices that
have out-degree two – these vertices represent edges of the multicolored clique.

▶ Theorem 1. ESCAD is W[1]-hard parameterized by the solution size.

Proof. Consider an instance I =
(
G, ℓ, (V1, . . . , Vℓ)

)
of Multicolored Clique with n

vertices. Recall our assumption that each color class induces an independent set, and every
vertex has at least one neighbor in every color class distinct from its own. In polynomial
time, we construct an ESCAD instance I ′ = (G′, k) in the following way (see Figure 2 for
an overview).

We set k = 2ℓ(ℓ − 1).
Construction of V (G′) is as follows:

1. We add a vertex s.
2. For each color j ∈ [ℓ], we have a pair of vertices sj and dj .
3. For each vertex u in V (G), we have a vertex xu.
4. For each edge uv in E(G), we have a vertex zuv.
The construction of E(G′) is as follows. We introduce four sets of arcs E1, E2, E3, and
E4 that together comprise the set E(G′). For each color j ∈ [ℓ], let rj := |Vj | · (ℓ − 1),
cj := |{uv : uv ∈ E(G), u ∈ Vj}| − rj . Notice that cj ≥ 0 since every vertex in G has
degree at least ℓ − 1.

1. For each j ∈ [ℓ], we add a (k, rj − ℓ + 1)-imbalance gadget Is,dj
and a (k, cj)-imbalance

gadget Is,sj
to E1.

2. For each j ∈ [ℓ], for each vertex u ∈ Vj we add a (k, |NG(u)| − ℓ + 1)-imbalance gadget
Isj ,xu

and a (k, ℓ − 1)-path gadget Pdj ,xu
to E2.

3. For every edge uv ∈ E(G), we add a pair of arcs (xu, zuv) and (xv, zuv) to E3.
4. For every edge uv ∈ E(G), we add two copies of the arc (zuv, s) to E4.

It is easy to see that the construction can be performed in time polynomial in |V (G)|.
Now, we prove the correctness of our reduction. First, we argue about the imbalances of
vertices in G′. As each vertex of G′ lies on a cycle that goes through s, it follows that G′ is
strongly connected.

▷ Claim 10 (⋆). The only vertices with non-zero imbalance in G′ are those in the set
{s}∪{dj : j ∈ [ℓ]}. Furthermore, the imbalance of the vertex s is −ℓ(ℓ−1) and the imbalance
of dj for each j ∈ [ℓ] is (ℓ − 1).

This shows that there are only ℓ+1 vertices with non-zero imbalance in G′. The imbalance
of the dj ’s will make us “choose” vertices and edges that represent a clique in G as we will
see later.

We now show correctness of our reduction. In the forward direction, assume that (G, ℓ)
is a yes-instance and let K be a multicolored clique of size ℓ in G. Let vj denote the vertex
with color j in K. We now construct a solution S of (G′, k). For each edge vivj we add the
arcs (xvj , zvjvi) and (xvi , zvjvi) to S. There are 2 ·

(
ℓ
2
)

many such arcs. Now for each j ∈ [ℓ]
we add all the incoming arcs of xvj

along the path gadget Pdjxvj
to S. As for each j ∈ [ℓ],
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xu xv

u
v

s

G

G′

zuv

s

E1

E2

E3

E4

zuv

E1

E2

E3

E4

s1 d1 s2 d2 s3 d3

Figure 2 Overview of the reduction from G to G′; four sets of edges are depicted from top to
bottom. E1 contains imbalance gadgets, E2 is a mixture of imbalance and path gadgets, E3 has
directed edges, and E4 has all directed double edges to s. Marked purple edges corresponds to a
solution in G and its respective solution in G′. The thee colored backgrounds in G′ signify part of
the construction tied to the three color classes. All edges of the picture of G′ are oriented from top
to bottom. The picture of G′ wraps up as the vertex s drawn on the bottom is the same as the one
drawn on the top.

the number of such arcs is (ℓ − 1) we have |S| = 2 ·
(

ℓ
2
)

+ ℓ(ℓ − 1) = 2ℓ(ℓ − 1) = k. Now, we
show that each strongly connected component in G′ − S is Eulerian. For an example of S,
refer to Figure 2 (purple arcs).

We consider the strongly connected components of G′ − S and we will show that each of
them is Eulerian. We first define:

Z = {zuw : u, w ∈ K} ∪
( ⋃

j∈[ℓ]

(V (Pdj ,xvj
) \ {dj , xvj

})
)

▷ Claim 11 (⋆). One strongly connected component of G′ − S consists of all the vertices
except Z (we call it the large component) and all other strongly connected components of
G′ − S are singleton – one for each vertex in Z.

Since singleton strongly connected components are always balanced, we only need to
show that the large component is Eulerian i.e., it is balanced inside the strongly connected
component itself.

▷ Claim 12 (⋆). The large component is Eulerian

The claim can be proved through a case analysis going through the various types of vertices
that appear in this strongly connected component, i.e., the vertex s, the vertices in {sj : j ∈
[ℓ]} ∪ {zuv : u /∈ K or v /∈ K} ∪ {xu : u /∈ K}, the vertex dj for j ∈ [ℓ], and xu where u ∈ K.

This completes the argument in the forward direction.
In the converse direction, assume that (G′, k) is a yes-instance and let S be a solution. Let

us first establish some structure on S, from which it will be possible to recover a multicolored
clique for G.

Let C denote the strongly connected component of G′ − S that contains s. Due to
Lemma 8, we may assume that S does not contain any arcs of any of the imbalance gadgets.
This implies that C contains sj and dj for every j ∈ [ℓ] as well as xu for every u ∈ V (G).
Moreover, due to Lemma 9, we know that if S contains arcs of a path gadget Pdj ,xu

, then
they form a cut in it. As all inclusion-wise minimal cuts of the path gadgets are of the same
cardinality and adding any minimal cut of a path gadget to S makes all arcs of the path
gadget inactive in G′ − S, assume that if a cut of a path gadget Pdj ,xu is in S, then the cut
consists of the incoming-arcs of xu in the gadget.

IPEC 2024



4:8 On the Parameterized Complexity of Eulerian Strong Component Arc Deletion

Recall from Claim 10, that the only imbalanced vertices in G′ are {s} ∪ {dj : j ∈ [ℓ]}. Let
us make some observations based on the fact that these vertices are eventually balanced in
strong(G′ − S).

For each j ∈ [ℓ], since none of the incoming arcs of dj are in S (they lie in an imbalance
gadget), in order to make dj balanced it must be the case that S contains a cut of exactly
one of the path gadgets starting at dj , call it Pdj ,xvj

. Recall that xvj
was originally balanced

in G′. Further, recall that we have argued that xvj is in C along with sj and dj . Since the
imbalance gadget starting at sj and ending at xvj

cannot intersect S and we have deleted
all of the ℓ − 1 incoming arcs to x from the path gadget Pdj ,xvj

, the imbalance of −ℓ + 1
thus created at xvj

needs to be resolved by making exactly (ℓ − 1) of its outgoing arcs in E3
inactive in G′ − S. Since we have already spent a budget of ℓ(ℓ − 1) from the path gadgets,
the budget that remains to be used for resolving these imbalances at {xvj : j ∈ [ℓ]} is ℓ(ℓ − 1).

On the other hand, recall that s is imbalanced in G′ and to make s balanced, we need to
make ℓ(ℓ − 1) incoming arcs of s (from E4) inactive in G′ − S. This is because all outgoing
arcs of s lie in imbalance gadgets and cannot be in S.

And finally, recall that for each uv ∈ E(G), the vertex zuv is balanced in G′ (by Claim 10).
Since the strongly connected component C in G′ − S contains the vertices s, xu, xv (i.e., all
neighbors of zu,v), for the vertex zuv to remain balanced in strong(G′ − S), we have the
following exhaustive cases regarding the arcs between s, xu, xv, zu,v: (1) none of the four arcs
incident to zuv is in S; (2) one incoming and one outgoing arc are in S; (3) both incoming
arcs or both outgoing arcs are in S. In Case (2), two arcs are added to S, which makes two
arcs inactive while in Case (3) two arcs are added to S which makes four arcs inactive. As
previously noted, we still need ℓ(ℓ−1) arcs in E3 and ℓ(ℓ−1) arcs in E4 to become inactive in
G′ − S. The required number of inactive arcs in E3 ∪ E4 is twice the remaining budget, so for
every zuv, xu, xv, the arcs between s, xu, xv, zu,v must be in Case (1) or Case (3). Moreover,
whenever Case (3) occurs, we may assume without loss of generality that the arcs in S are
the two arcs (xu, zuv) and (xv, zuv). Thus, there are exactly

(
ℓ
2
)

vertices zuv such that the
arcs between s, xu, xv, zu,v are in Case (3).

We now extract the solution clique K for (G, ℓ) by taking, for each j ∈ [ℓ], the vertex
vj ∈ V (G) such that a cut of Pdj ,xvj

is contained in S. We have shown that there are exactly(
ℓ
2
)

vertices zuv such that the arcs between s, xu, xv, zu,v are in Case (3) and for each j ∈ [ℓ]
and the vertex xvj

, exactly ℓ − 1 of its outgoing arcs are made inactive by S. This can only
happen if for every j, j′ ∈ [ℓ], there is a vertex zvjvj′ , implying that vjvj′ is an edge in G. ◀

3.2 W[1]-hardness of ESCAD Parameterized by Vertex Cover Number

In this section, we show that ESCAD is W[1]-hard when parameterized by the vertex cover
number. Jansen, Kratsch, Marx, and Schlotter [13] showed that Unary Bin Packing is
W[1]-hard when parameterized by the number of bins h.

Unary Bin Packing
Input: A set of positive integer item sizes x1, . . . , xn encoded in unary, a pair of
integers h and b.
Question: Is there a partition of [n] into h sets J1, . . . , Jh such that

∑
ℓ∈Jj

xℓ ≤ b

for every j ∈ [h]?
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In order to carefully handle vertex balances in our reduction, it is helpful to work with
a variant of the above problem, called Exact Unary Bin Packing, where the inequality∑

ℓ∈Jj
xℓ ≤ b is replaced with the equality

∑
ℓ∈Jj

xℓ = b. That is, in this variant, all bins get
filled up to their capacity.

▶ Theorem 2. ESCAD is W[1]-hard parameterized by the vertex cover number of the graph.

Proof. Let I ′ =
(
(x1, . . . , xm), h, b

)
be an instance of Unary Bin Packing. If b ≥

∑m
i=1 xi,

then I ′ is trivially a yes-instance and we can return a trivial yes-instance of ESCAD with
vertex cover number at most h. In the same way, if b · h <

∑
i∈[m] xi, then I ′ is trivially a

no-instance and we return a trivial no-instance of ESCAD with vertex cover number at most
h. Now, suppose neither of the above cases occur.

Note that the length of the unary encoding of b is upper bounded by the total length
of the unary encoding of all items x1, . . . , xm. Similarly, if h ≥ m then the instance boils
down to checking whether xi ≤ b for every i ∈ [m] (and producing a trivial ESCAD instance
accordingly) so we can assume that h < m, hence, the length of the unary encoding of h is
upper bounded by the total length of the unary encoding of all items. We now construct an
instance I of Exact Unary Bin Packing from I ′ by adding h · b −

∑
i∈[m] xi one-sized

items (this is non-negative because of the preprocessing steps). If I ′ is a yes-instance, then
one can fill-in the remaining capacity in every bin with the unit-size items, to get a solution
for I. Conversely, if I is a yes-instance, then removing the newly added unit-size items yields
a solution for I ′. Let n denote the number of items in I. Note that since

∑
i∈[n] xi = b · h,

this implies that |I| = O(|I ′|2), the instance of Exact Unary Bin Packing remains
polynomially bounded.

We next reduce the Exact Unary Bin Packing instance I to an instance I∗ = (G, k)
of ESCAD in polynomial time. Let us fix the budget k = b · h(h − 1). We now build a
graph G that models the bins by k copies of interconnected gadgets (that form the vertex
cover) and models each item as a vertex of the independent set. In our reduction, we use the
following terms. For a pair of vertices p, q, a c-arc (p, q) denotes c parallel copies of the arc
(p, q) and a thick arc (p, q) denotes a 3k-arc (p, q). The construction of G is as follows.

The vertex set of G is the set {uj : j ∈ [h]} ∪ {vj : j ∈ [h]} ∪ {wi : i ∈ [n]}.
For each j ∈ [h], we add a b-arc (uj , vj), a thick arc (uj , vj) and a thick arc (vj , uj). We
call the subgraph induced by uj , vj and these arcs, the b-imbalance gadget Bj .
Next, we add thick arcs (uj , uj′) for every j < j′ where j, j′ ∈ [h].
Finally, for each i ∈ [n] and j ∈ [h], we add xi-arcs (wi, uj) and (vj , wi).

This concludes the construction, see Figure 3. Before we argue the correctness, let us
make some observations.

Note that the vertices participating in the imbalance gadgets form a vertex cover of the
resulting graph and their number is upper bounded by 2h. Hence, if we prove the correctness
of the reduction, we have the required parameterized reduction from Unary Bin Packing
parameterized by the number of bins to ESCAD parameterized by the vertex cover number
of the graph.

We say that a set of arcs in G cuts a (p, q) arc if it contains all parallel copies of (p, q).
Note that no set of at most k arcs cuts a thick (p, q) arc. In particular, no solution to the
ESCAD instance (G, k) cuts any thick arc (p, q) that appears in the graph.
Exact Unary Bin Packing is a yes-instance ⇒ ESCAD is a yes-instance. Assume that we
have a partition J1, . . . , Jh that is a solution to I. We now define a solution S for I∗. For
every xi ∈ Jj we cut (i.e., add to S) all parallel copies of the arc (wi, uj′) for every j′ < j and

IPEC 2024



4:10 On the Parameterized Complexity of Eulerian Strong Component Arc Deletion

v3v2v1 v4 v5 v6

w1 w2 w3 · · · · · · wnxi

u3u2u1 u4 u5 u6

b

wi

Figure 3 A part of the resulting ESCAD instance after reduction from Exact Unary Bin
Packing with six bins; connections between the independent vertices and imbalance gadgets are
shown only for one vertex wi. Thick arcs are shown with empty arrowhead, bold arcs incident to wi

are xi-arcs. Crossed off arcs are in a solution and dashed boxes show strongly connected components
of the solution. This example represents xi ∈ J4.

we cut all parallel copies of the arc (vj′′ , wi) for every j′′ > j. This results in cutting a total
of xi · (h − 1) arcs incident to each wi and as

∑n
i=1 xi = b · h we cut exactly b · h(h − 1) = k

arcs in total.

▷ Claim 13 (⋆). strong(G − S) is balanced.

ESCAD is a yes-instance ⇒ Exact Unary Bin Packing is a yes-instance. We aim to show
that in any solution for the ESCAD instance, the arcs that are cut incident to wi for any
i ∈ [n] have the same structure as described in the other direction, i.e., for all wi there exists
j such that the solution cuts (wi, uj′) for all j′ < j and it cuts (vj′′ , wi) for all j′′ > j. This
is equivalently phrased in the following claim.

▷ Claim 14 (⋆). There are no two indices a, b ∈ [h] with a < b such that both (wi, ua) and
(vb, wi) are uncut.

We next argue that if S is a solution, then for all wi, there exists j such that the solution
is disjoint from any (wi, uj) arc and any (vj , wi) arc. Since the budget is k = b · h(h − 1)
we have that: If we cut more than xi(h − 1) arcs incident to wi for some i ∈ [n], then there
exists i′ ∈ [n] \ {i} such that we cut fewer than xi′(h − 1) arcs incident to wi′ . But this
would violate Claim 14. Hence, for any solution S, we can retrieve the assignment of items
to bins in the Exact Unary Bin Packing instance I, by identifying for every i ∈ [n], the
unique value of j ∈ [h] such that S is disjoint from any (wi, uj) arc and any (vj , wi) arc and
then assigning item xi to bin Jj . ◀

Besides establishing that Unary Bin Packing does not have an FPT algorithm unless
W[1] = FPT, Jansen et al. [13] showed that under the stronger assumption2 of the Exponential
Time Hypothesis (ETH) the well-known nO(h)-time algorithm is asymptotically almost optimal
The formal statement follows.

▶ Proposition 15 ([13]). There is no algorithm solving the Unary Bin Packing problem
in f(h) · no(h/ log h) time for some function f , where h is the number of bins in the input and
n is the input length, unless ETH fails.

2 It is known that if ETH is true, then W[1] ̸= FPT [7].
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Since our reduction from Unary Bin Packing to ESCAD transforms the parameter
linearly and the instance size polynomially, we also have a similar ETH based lower bound
parameterized by the vertex cover number for ESCAD.

▶ Theorem 3. There is no algorithm solving ESCAD in f(k) · no(k/ log k) time for some
function f , where k is the vertex cover number of the graph and n is the input length, unless
the Exponential Time Hypothesis fails.

Proof. Follows from the reduction in the proof of Theorem 2 along with Proposition 15. ◀

3.3 NP-hardness of ESCAD on Graphs of Constant Maximum Degree

We show that ESCAD is para-NP-hard when parameterized by the maximum degree.

▶ Theorem 4. ESCAD is NP-hard in digraphs where each vertex has (in, out) degrees in
{(1, 6), (6, 1)}.

Proof. We give a polynomial-time reduction from Vertex Cover on cubic (3-regular)
graphs, which is known to be NP-hard [16], to ESCAD. This reduction is a modification of
the proof in [16] which shows that Directed Feedback Arc Set is NP-hard. The input
to Vertex Cover consists of a graph G and an integer k; the task is to decide whether G

has a vertex cover of size at most k. Let (G, k) be an instance of Vertex Cover with n

vertices where G is a cubic graph. We construct an ESCAD instance I ′ = (G′, k) in the
following way. The vertex set V (G′) = V (G) × {0, 1} and the arc set A(G′) is defined by the
union of the sets {((u, 0), (u, 1)) : u ∈ V (G)} and {((u, 1), (v, 0))2 : uv ∈ E(G)}. We call the
arcs of the form ((u, 0), (u, 1)) internal arcs and arcs of the form ((u, 1), (v, 0)) cross arcs.
Towards the correctness of the reduction, we prove the following claim.

▷ Claim 16 (⋆). (G, k) is a yes-instance of Vertex Cover if and only if (G′, k) is a
yes-instance of ESCAD.

This shows that ESCAD is NP-hard. Moreover, Since G is a cubic graph, every vertex in
D′ has (in, out) degree equal to (1, 6) or (6, 1). This completes the proof of Theorem 4. ◀

3.4 Algorithms for ESCAD on Graphs of Bounded Treewidth

Due to Theorem 2, the existence of an FPT algorithm for ESCAD parameterized by various
width measures such as treewidth is unlikely. In fact, due to Theorem 3, assuming ETH, even
obtaining an algorithm with running time f(k)no(k/ log k) is not possible, where k is the vertex
cover number. On the other hand, this raises a natural algorithmic question – could one
obtain an algorithm whose running time matches this lower bound? In this section, we give
such an algorithm that is simultaneously, an XP algorithm parameterized by treewidth, an
FPT algorithm parameterized by the treewidth and solution size, and also an FPT algorithm
parameterized by the treewidth and maximum degree of the input digraph. Moreover, the
running time of the algorithm nearly matches the lower bound we have.

Let us note that in the specific case of parameterizing by treewidth and maximum degree,
if all we wanted was an FPT algorithm, then we could use Courcelle’s theorem at the cost of
a suboptimal running time. However, our algorithm in one shot gives us three consequences
and as stated earlier, achieves nearly optimal dependence on the treewidth assuming ETH.
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Overview of our algorithm. We present a dynamic programming algorithm over tree
decompositions. When one attempts to take the standard approach, the main challenge
that arises is that by disconnecting strongly connected components, removing an arc can
affect vertices far away and hence possibly vertices that have already been forgotten at the
current stage of the algorithm. Our solution is to guess the partition of each bag into strongly
connected components in the final solution and then keep track of the imbalances of the
vertices of the bag under this assumption of components. This allows us to safely forget a
vertex as long as its “active” imbalance is zero (any remaining imbalance will be addressed
by not strongly connecting the contributing vertices in the future). The remaining difficulty
lies in keeping track of how these assumed connections interact with the bag: whether they
use vertices already forgotten or those yet to be introduced.

▶ Theorem 5. An ESCAD instance I = (G, k) can be solved in time 2O(tw2) ·(2α+1)2tw ·nO(1)

where tw is the treewidth of deoriented G, ∆ is the maximum degree of G, and α = min(k, ∆).

Since the maximum degree is upper bounded by the instance length (recall footnote in
Section 1), this gives an XP algorithm parameterized by treewidth alone. However, when in
addition to treewidth we parameterize either by the size of the solution or by the maximum
degree this gives an FPT algorithm.

▶ Corollary 17. ESCAD is FPT parameterized by tw + k, FPT parameterized by tw + ∆,
and XP parameterized by tw alone.

Recall that in digraphs, multiarcs are permitted. So, we use a variant of the nice tree
decomposition notion. This is defined for a digraph G by taking a nice tree decomposition
with introduce edge nodes (see Section 2) of the deoriented, simple version of G then
expanding each introduce edge node to introduce all parallel copies of arcs one by one.
Note that although the new introduce arc nodes introduce arcs, the orientation does not
affect the decomposition. Let us denote such a tree decomposition of G as (T , {Xt}t∈V (T )).
Korhonen and Lokshtanov [17] gave a 2tw2 · nO(1)-time algorithm that computes an optimal
tree decomposition. Moreover, any tree decomposition can be converted to a nice tree
decomposition of the same width with introduce edge nodes in polynomial time [5], and the
introduce edge nodes can clearly be expanded to introduce arc nodes in polynomial time.
Since the running time of our algorithm dominates the time taken for this step, we may
assume that we are given such a tree decomposition. Let Gt be the subgraph of the input
graph that contains the vertices and arcs introduced in the subtree rooted at t. We refer to
Gt as the past and to all other arcs and vertices as the future.

To tackle ESCAD we need to know whether an arc between vertices in a bag is active in
the graph minus a hypothetical solution or not. Towards this, we express the reachability of
the graph that lies outside (both past and future) of the current bag as follows.

▶ Definition 18. For a set X, let (R, ℓ) be a reachability arrangement on X where R is a
simple digraph with V (R) = X, and ℓ is a labeling ℓ : E(R) → {direct, past, future}.

Let us use ℓ(u, v) to denote ℓ((u, v)). As reachability arrangement implies which vertices
of the bag lie in the same strongly connected components we can determine whether an arc
is active by checking that its endpoints lie in the same strongly connected component. We
aim to track the balance of the vertices in the bag with respect to all past active arcs.

▶ Definition 19. Given G and R the active imbalance bR
G(v) of a vertex v in G with respect

to R is the imbalance of v in the graph H, i.e. deg+
H(v) − deg−

H(v), where H is the graph
induced on G by the vertices of the strongly connected component of R containing v.
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Although the active imbalance is bounded by ∆, it can be large even when the solution
is bounded so we want to instead track how much the active imbalance varies between two
graphs.

▶ Definition 20. Given G1, G2, and R the offset imbalance of a vertex v between G1 and
G2 with respect to R, offR

G1,G2
(v) = bR

G1
(v) − bR

G2
(v).

We will consider the offset imbalance between Gt and Gt −S where S is part of a solution.
The following lemma allows us to bound this quantity by the size of the solution.

▶ Lemma 21 (⋆). For each set of arcs S ⊆ E(G), node t ∈ V (T ), simple digraph R on Xt

and vertex v ∈ Xt, the offset imbalance of v between Gt − S and Gt with respect to R is
between −|S| and |S|.

For a solution S we use a suitable reachability arrangement (R, ℓ), balance labeling B,
and part of the solution in the bag W to express a partial solution, that is: S ∩ Gt along with
how vertices of the bag are partitioned into strongly connected components in G − S. These
give a description of partial solutions that is small enough to guess but detailed enough to
admit a dynamic programming approach.

▶ Definition 22. Given a node of the tree decomposition t, a reachability arrangement (R, ℓ)
on Xt, a labeling b : V (R) → [−α, α], and a subset of arcs W ⊆ E(Gt[Xt]) we call a set of
arcs S ⊆ E(Gt) compatible with R, ℓ, b, W if all of the following parts hold.
1. S agrees with W on Gt[Xt], that is S ∩ E(Gt[Xt]) = W .
2. For each arc e ∈ ℓ−1(direct), e is an arc in Gt[Xt] − S.
3. For each arc (u, w) ∈ ℓ−1(past) there is a path from u to w in Gt − S that contains no

vertices from Xt \ {u, w} (also called path through the past).
4. For each arc (u, w) ∈ ℓ−1(future) there is no path through the past from u to w (see

part 3) and there is a path from u to w in G−S that contains no vertices from Xt \{u, w}
(also called path through the future).

5. For each vertex u ∈ Xt, the offset imbalance of u between Gt − S and Gt with respect to
R is b(u), i.e., offR

Gt,Gt−S(u) = b(u).
6. For each vertex u ∈ V (Gt) \ Xt, the active imbalance of u in Gt − S with respect to

(Gt − S) ∪ R is zero, i.e., b
(Gt−S)∪R
Gt−S (u) = 0.

▶ Observation 23 (⋆). Suppose that S is a solution. For all nodes t there exists R, ℓ, b, W

such that S1 = S ∩ E(Gt) is compatible with R, ℓ, b, W .

▶ Lemma 24 (⋆). Suppose that S is a solution and both S1 = S ∩ E(Gt) and S2 ⊆ E(Gt)
are compatible with R, ℓ, b, W . Then S′ = (S \ S1) ∪ S2 is also a solution.

The above lemma implies that for fixed t, R, ℓ, b, W all solutions S have the same car-
dinality of S ∩ Gt. For fixed t, R, ℓ, b, W to compute existence of some solution S such that
S1 = S ∩ Gt is compatible with R, ℓ, b, W , it suffices to compute the minimum cardinality of
a subset S2 ⊆ E(Gt) compatible with R, ℓ, b, W because one can always produce the solution
S′ = (S − S1) ∪ S2.

Proof of Theorem 5. We will denote by A[t, R, ℓ, b, W ] the minimum size of an arc subset
of Gt that is compatible with R, ℓ, b, and W . In our decomposition (T , {Xt}t∈V (T )) the root
node r has Xr = ∅ and Gr = G so A[r, ∅, ∅, ∅, ∅] is equal to the minimum size of a solution.
In order to compute A[r, ∅, ∅, ∅, ∅] we employ the standard bottom up dynamic programming
over treewidth decomposition approach.
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For leaf nodes Xt = ∅, hence, the graphs and labelings are also empty and the empty arc
set is vacuously compatible with them A[t, ∅, ∅, ∅, ∅] = 0.

For every non-leaf node t and graph R on Xt we first calculate the strongly connected
components of R. Then we can calculate the active imbalance bR

Gt
(v) of each vertex v ∈ Xt

in Gt with respect to R. Then for each ℓ, b, and W we calculate A[t, R, ℓ, b, W ] based on the
type of the node t. We give only an informal description here, the full formulae and proofs
can be found in the full version.

Introduce vertex node: When t is an introduce vertex node and its child is t′ with Xt =
Xt′ ∪ {v} we know that v will be isolated in Gt so we can discount any reachability
arrangements where there are direct or past arcs incident to v. Additionally, the active
imbalance on v must be zero. Any new future connections should be reflected in the old
reachability arrangement, that is, if the new arrangement contains a future arc from u to
v and from v to w there should be a future arc between u and w in the old arrangement.
No arcs were introduced or forgotten so the set W remains the same.

Introduce arc node: Assume t introduces arc (u, v) and its child is t′. In any case, if u and
v are in different strongly connected components then the new arc is inactive so it does
not influence active degrees. We recognize two distinct cases based on whether this new
arc belongs to S. On one hand, say the new arc (u, v) /∈ S, then it may realize a future
path from u to v. Also, if u and v are in the same strongly connected component, then
the added (u, v) arc changes the active imbalance of u and v by one in Gt but also in
Gt − S so the offset imbalance remains the same. On the other hand, if (u, v) ∈ S, then
the active degree of its endpoints changes in Gt but it does not change in Gt − S, hence,
the offset imbalance changes by one. Note that the introduced arc (u, v) may be one
among multiple parallel copies of a multiarc – the only minor difference if we did not
allow multiarcs would be to not allow the label on (u, v) in t′ to be direct.

Forget node: If t is a forget node with child t′ such that Xt = Xt′ \ {v} then we need to
ensure that the forgotten vertex has zero active imbalance in Gt −S and that there are no
future arcs incident to it in the old arrangement. Zero active imbalance is equivalent to
an offset imbalance of −bR

Gt
(v), which we have precalculated. Also, the only change to the

remaining reachability arrangement should be new past arcs where there was previously
a path through v.

Join node: When merging two nodes t1 and t2 to a parent join node t the reachability
arrangements should be nearly the same. The notable exception is that past arcs in
the parent arrangement can be either past in both child arrangements or we can have
past arc in one arrangement while there is a future arc on the other arrangement. In a
similar way, we need to consider for each u ∈ Xt how the imbalance b(u) in Gt is made
up of parts in Gt1 and Gt2 . The new compatible solutions are unions of the solutions
compatible with pairs of such arrangements. Their overlap is exactly W so the size of
the union is simply the sum of their sizes minus |W |.

For a fixed node t there are 4tw2 reachability arrangements on Xt, (2α + 1)tw possible b’s,
and 2tw2 possible W ’s. Both introduce vertex and introduce arc node compute their entry
from a fixed entry of their child node in nO(1) time. Forget node is computed in 2tw ·4tw ·nO(1)

while join node is computed in 3tw2 · (2α + 1)tw · nO(1) time.
It is known that the total number of nodes in the nice tree decomposition with introduce

arc nodes is nO(1) and it can be observed that this still holds for the extension on multiarcs.
Hence, the overall run time is(

4tw2
· (2α + 1)tw · 2tw2)

·
(
2tw · 4tw + 3tw2

· (2α + 1)tw)
· nO(1) = 24tw2

· (2α + 1)2tw · nO(1). ◀
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4 Our Results for ESCAD on Simple Digraphs

In this section, we study ESCAD on simple digraphs, which we formally define as follows.

Simple Eulerian Strong Component Arc Deletion (SESCAD)
Input: A simple digraph G, an integer k

Question: Is there a subset R ⊆ E(G) of size |R| ≤ k such that in G − R each
strongly connected component is Eulerian?

Let us begin by stating a simple observation that enables us to make various inferences
regarding the complexity of SESCAD based on the results we have proved for ESCAD.

▶ Observation 25. Consider an ESCAD instance I = (G, k). If we subdivide every arc
(u, v) into (u, w), (w, v) (using a new vertex w) then we get an equivalent SESCAD instance
I ′ = (G′, k) with |V (G′)| = |V (G)| + |E(G)| and |E(G′)| = 2|E(G)|. Moreover, each arc of
the solution to I is mapped to one respective arc of the subdivision and vice versa.

4.1 Hardness Results for SESCAD

We first discuss the implications of Theorem 1, Theorem 2 and Theorem 4 for SESCAD
along with Observation 25.

▶ Corollary 26. SESCAD is W[1]-hard when parameterized by the solution size.

Proof. Follows from Theorem 1 and Observation 25. ◀

▶ Observation 27. If we subdivide all arcs in a digraph G that has a vertex cover X, we get
a simple digraph G′ such that G′ − X is the disjoint union of directed stars.

▶ Corollary 28. SESCAD is W[1]-hard parameterized by minimum modulator size to disjoint
union of directed stars.

Using the stronger assumption of ETH, we have the following result.

▶ Theorem 29. There is no algorithm solving SESCAD in f(k) · no(k/ log k) time for some
function f , where k is the size of the smallest vertex set that must be deleted from the
input graph to obtain a disjoint union of directed stars and n is the input length, unless the
Exponential Time Hypothesis fails.

Proof. The reduction in the proof of Theorem 2 along with Proposition 15, Observation 25
and Observation 27 implies the statement. ◀

Note that the above result rules out an FPT algorithm for SESCAD parameterized by
various width measures such as treewidth and even treedepth.

▶ Theorem 30. SESCAD is NP-hard in simple digraphs where each vertex has (in, out)
degrees in {(1, 1), (1, 6), (6, 1)}.

Proof. Follows from Theorem 4 and Observation 25. ◀
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4.2 FPT Algorithms for SESCAD
Firstly, the FPT algorithms discussed in the previous section naturally extend to SESCAD.
However, for SESCAD, the lower bound parameterized by modulator to a disjoint union of
directed stars leaves open the question of parameterizing by larger parameters. For instance,
the vertex cover number.

To address this gap, we provide an FPT algorithm for SESCAD parameterized by vertex
integrity, a parameter introduced by Barefoot et al. [1].

▶ Definition 31 (Vertex Integrity). An undirected graph G = (V, E) has vertex integrity k if
there exists a set of vertices M ⊆ V , called a k-separator, of size at most k such that when
removed each connected component has size at most k − |M |. A directed graph has vertex
integrity k if and only if the underlying undirected graph has vertex integrity k. The notion
of a k-separator in digraphs carries over naturally from the undirected setting.

FPT algorithms parameterized by vertex integrity have gained popularity in recent years
due to the fact that several problems known to be W[1]-hard parameterized even by treedepth
can be shown to be FPT when parameterized by the vertex integrity [10]. Since Corollary 28
rules out FPT algorithms for SESCAD parameterized by treedepth, it is natural to explore
SESCAD parameterized by vertex integrity and our positive result thus adds SESCAD to
the extensive list of problems displaying this behavior.

Moreover, this FPT algorithm parameterized by vertex integrity implies that SESCAD
is also FPT when parameterized by the vertex cover number and shows that our reduction
for ESCAD parameterized by the vertex cover number requires multiarcs for fundamental
reasons and cannot be just adapted to simple digraphs with more work.

We will use as a subroutine the well-known FPT algorithm for ILP-Feasibility. The
ILP-Feasibility problem is defined as follows. The input is a matrix A ∈ Zm×p and a
vector b ∈ Zm×1 and the objective is to find a vector x̄ ∈ Zp×1 satisfying the m inequalities
given by A, that is, A · x̄ ≤ b, or decide that such a vector does not exist.

▶ Proposition 32 ([14, 15, 9]). ILP-Feasibility can be solved using O(k2.5k+o(k) · L)
arithmetic operations and space polynomial in L, where L is the number of bits in the input
and k is the number of variables.

▶ Theorem 6. ESCAD on simple digraphs is FPT parameterized by the vertex integrity of
the graph.

Proof. Consider an instance (G, p) of SESCAD, where G has vertex integrity at most k.
Suppose that this is a yes-instance with a solution S and let M be a k-separator of G.
Without loss of generality, assume that V (G) = [n] and M = [|M |]. In our algorithm, we
only require the fact that since M is a k-separator in a digraph G, every weakly connected
component of G − M has size at most k (recall, the definition of vertex integrity bounds
the component sizes even more). Further, we remark that our algorithm does not require
a k-separator to be given as input since there is an FPT algorithm parameterized by k to
compute it [8].

We next guess those arcs of S that have both endpoints in M , remove them and adjust p

accordingly. The number of possible guesses is 2O(k2). Henceforth, we assume that every arc
in the hypothetical solution S has at least one endpoint disjoint from M .

We next guess the reachability relations between the vertices of M in G − S. The correct
guess is called the reachability signature of M in G − S, denoted by σ, which is a set of
ordered pairs where, for every m1, m2 ∈ M , (m1, m2) ∈ σ if and only if m2 is reachable from
m1 in G − S. The number of possibilities for σ is clearly bounded by 2O(k2).
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For every simple digraph comprised of at most |M |+k vertices and every possible injective
mapping λ of M to the vertices of this digraph, we define the type of this digraph as the
label-preserving isomorphism class with the labeling λ. Denote the set of all types by Types.
For each type τ ∈ Types, we denote by Gτ a fixed graph of this type that we can compute in
time depending only on k. Due to the labeling injectively mapping M to the vertices of Gτ ,
we may assume that M ⊆ V (Gτ ).

The number of types is clearly bounded by a function of k and for each weakly connected
component (from now onwards, simply called a component) C of G − M and graph GC =
G[C ∪ M ] with the vertices of M mapped to themselves by the identity labeling on M ,
denoted λM , we compute the type of the graph GC . From now on, we drop the explicit
reference to λM as it will be implied whenever we are handling the graph GC . For every
type τ , we also compute the number nτ of components C such that GC is of type τ . Since
the type of each GC can be computed in f(k)-time for some function f , this step takes FPT
time.

Following that, for every component C, and every arc set SC in GC , we check whether
the type of GC − SC (with labeling λM ) is compatible with σ. To be precise, for a set SC of
arcs in the digraph GC , we verify that every vertex of C is balanced in its strongly connected
component in the graph G′

C = GC − SC + σ. If the answer to this check is yes, then this is a
compatible type. Notice that by adding the ordered pairs in σ as arcs to GC − SC , we ensure
that the arcs of the graph we take into account in this check on balances of the vertices in C

(i.e., active arcs) are exactly all those arcs that are already in strong(GC − SC) plus those
arcs of GC − SC that would be inside a strongly connected component if the relations in σ

were realized. Since each component C has size bounded by k, the number of possibilities for
SC is bounded by a function of k for each component (here, we crucially use the fact that we
have a simple digraph), and hence, in FPT time, we can compute a table Γ stating, for every
C and SC subset of arcs in GC , whether the type of GC − SC is compatible with σ.

Notice that for each component, deleting the arcs of the hypothetical solution S from
each component C transitions GC from one type to another type that is compatible with σ.
To be precise, for each C and set SC = S ∩ A(GC), we can think of SC as taking GC from
the type of GC (call it τ1) to the type of GC − SC (call it τ2), at cost |SC |. Moreover, the
type τ2 is compatible with σ. Thus, the table Γ encodes the cost of transitioning each graph
GC to a type compatible with σ. This can be expressed by a value cost(τ1, τ2) for every pair
of types. If τ2 is not compatible with σ, then set this value to be prohibitively high, say the
number of arcs in G plus one. Otherwise, cost(τ1, τ2) is given by the table Γ.

In our next step, we guess a set of O(k2) types such that for every pair of vertices
m1, m2 ∈ M , if σ requires that m1 can reach m2, then there is a sequence of vertices of M

starting at m1 and ending in m2 such that for every consecutive ordered pair (x, y) in this
sequence, either (x, y) is an arc in G[M ] (and since it is not already deleted, it is disjoint
from S) or there is an x-y path with all internal vertices through a subgraph that belongs to
one of these O(k2) types. Call this set of types T ∗. The bound on the size of T ∗ comes from
the fact that there are O(k2) pairs in σ.

Finally, whether or not the vertices of M are balanced in strong(G − S) is determined
entirely by the number of graphs of each type in G − S subject to the types in T ∗ occurring.
So, for every type, we determine the imbalance imposed by the type on each vertex of M

(taking σ into account). To be precise, for every type τ and vertex u ∈ M , the imbalance on
u due to τ is denoted by I(τ, u) and is obtained by subtracting the number of active incoming
arcs on u from the number of active outgoing arcs on u, where an arc (p, q) ∈ A(Gτ ) where
u ∈ p, q is active, if and only if it lies in the same strongly connected component as u in the
graph Gτ + σ.
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All of the above requirements can be formulated as an ILP-Feasibility instance with
f(k) variables that effectively minimizes the total costs of all the required type transitions.
More precisely, for every pair of types τ1 and τ2, we have a variable xτ1,τ2 that is intended
to express the number of graphs GC of type τ1 that transition to type τ2. We only need
to consider variables xτ1,τ2 where τ1 is the type of some GC and τ2 is compatible with σ.
So, we restrict our variable set to this. Moreover, for every τ that is compatible with σ, we
have a variable yτ that is intended to express the number of components C such that GC

transitions to type τ .
Then, we have constraints that express the following:

1. The cost of all the type transitions is at most p.∑
τ1,τ2∈Types

cost(τ1, τ2) · xτ1,τ2 ≤ p

2. For each type τ in T ∗, there is at least one transition to τ . This will ensure that the
reachability relations required by σ are achieved.∑

τ1∈Types
xτ1,τ ≥ 1

3. For every component C, GC transitions to some type compatible with σ. So, for every
type τ , we have:∑

τ2∈Types
xτ,τ2 = nτ

Recall that nτ denotes the number of components C such that GC is of type τ and we
have computed it already.

4. The number of components C such that GC transitions to type τ , is given by summing
up the values of xτ1,τ over all possible values of τ1.∑

τ1∈Types
xτ1,τ = yτ

5. The total imbalance imposed on each vertex of M by the existing arcs incident to it, plus
the imbalance imposed on it by the types to which we transition, adds up to 0.
For each u ∈ M , let ρu denote the imbalance on u imposed by those arcs of G[M ] that
are incident to u and active in the graph G[M ] + σ. The imbalance imposed on u by a
particular type τ is I(τ, u) and this needs to be multiplied by the number of “occurrences”
of this type after removing the solution, i.e., the value of yτ .
Hence, we have the following constraint for every u ∈ M .

ρu +
∑

τ∈Types
I(τ, u)yτ = 0

6. Finally, we need the variables to all get non-negative values. So, for every τ1, τ2 ∈ Types,
we add xτ1,τ2 ≥ 0 and for every τ ∈ Types, yτ ≥ 0.

It is straightforward to convert the above constraints into the form of an instance of ILP-
Feasibility. Since the number of variables is a function of k, Proposition 32 can be used to
decide feasibility in FPT time. From a solution to the ILP-Feasibility instance, it is also
straightforward to recover a solution to our instance by using the table Γ. ◀
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5 Conclusions

We have resolved the open problem of Cechlárová and Schlotter [3] on the parameterized
complexity of the Eulerian Strong Component Arc Deletion problem by showing that it is
W[1]-hard and accompanied it with further hardness results parameterized by the vertex
cover number and max-degree of the graph. On the positive side, we showed that though
the problem is inherently difficult in general, certain combined parameterizations (such as
treewidth plus either max-degree or solution size) offer a way to obtain FPT algorithms.

Our work points to several natural future directions of research on this problem.
1. Design of (FPT) approximation algorithms for ESCAD?
2. ESCAD parameterized by the solution size is FPT on tournaments [4]. For which other

graph classes is the problem FPT by the same parameter?
3. Our FPT algorithm for SESCAD parameterized by vertex integrity is only aimed at

being a characterization result and we have not attempted to optimize the parameter
dependence. So, a natural follow up question is to obtain an algorithm that is as close to
optimal as possible.

4. Are there parameterizations upper bounding the solution size, for which ESCAD is FPT?
For instance, the size of the minimum directed feedback arc set of the input digraph.
Notice that in the reduction of Theorem 1, we obtain instances with unboundedly large
minimum directed feedback arc sets due to the imbalance gadgets starting at the vertex
sj for some color class j and ending at the vertices in {xu | u ∈ color class j}.
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