
Unsplittable Flow on a Short Path
Ilan Doron-Arad #

Computer Science Department, Technion, Haifa, Israel

Fabrizio Grandoni #

IDSIA, USI-SUPSI, Lugano, Switzerland

Ariel Kulik #

Computer Science Department, Technion, Haifa, Israel

Abstract
In the Unsplittable Flow on a Path problem (UFP), we are given a path graph with edge capacities
and a collection of tasks. Each task is characterized by a demand, a profit, and a subpath. Our goal
is to select a maximum profit subset of tasks such that the total demand of the selected tasks that
use each edge e is at most the capacity of e. BagUFP is the generalization of UFP where tasks are
partitioned into bags, and we are allowed to select at most one task per bag. UFP admits a PTAS
[Grandoni,Mömke,Wiese’22] but not an EPTAS [Wiese’17]. BagUFP is APX-hard [Spieksma’99] and
the current best approximation is O(log n/ log log n) [Grandoni,Ingala,Uniyal’15], where n is the
number of tasks.

In this paper, we study the mentioned two problems when parameterized by the number m of
edges in the graph, with the goal of designing faster parameterized approximation algorithms. We
present a parameterized EPTAS for BagUFP, and a substantially faster parameterized EPTAS for
UFP (which is an FPTAS for m = O(1)). We also show that a parameterized FPTAS for UFP (hence
for BagUFP) does not exist, therefore our results are qualitatively tight.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Knapsack, Approximation Schemes, Parameterized Approximations

Digital Object Identifier 10.4230/LIPIcs.IPEC.2024.5

Related Version Full Version: https://arxiv.org/abs/2407.10138 [23]

Funding Fabrizio Grandoni: Partially supported by the SNSF Grant 200021_2000731/1.
Ariel Kulik: This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 852780-ERC (SUBMODULAR).

1 Introduction

In the classical Usplittable Flow on a Path problem (UFP) we are given an m-edge path
graph G = (V, E) with (non-negative integer) edge capacities u : E → N, and a collection of
n tasks T . Each task i is characterized by a demand d(i) ∈ N, a weight (or profit) w(i) ∈ N,
and a subpath P (i)1. A feasible solution consists of a subset of (selected) tasks S ⊆ T such
that, for each edge e,

∑
i∈S:e∈P (i) d(i) ≤ u(e). In other words, the total demand of the

selected tasks using each edge e cannot exceed the capacity of e. Our goal is to compute a
feasible solution OPT of maximum total profit opt = w(OPT) :=

∑
i∈OPT w(i).

UPF has several direct and undirect applications [7, 8, 11, 12, 16, 17, 18, 21, 41, 43]. For
example, one might interpret G as a time interval subdivided into time slots (the edges). At
each time slot we are given some amount of a considered resource, say, energy. The tasks

1 Throughtout this paper, for a subpath P , we sometimes use P also to denote the corresponding set of
edges E(P): the meaning will be clear from the context.

© Ilan Doron-Arad, Fabrizio Grandoni, and Ariel Kulik;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Parameterized and Exact Computation (IPEC 2024).
Editors: Édouard Bonnet and Paweł Rzążewski; Article No. 5; pp. 5:1–5:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:idoron-arad@cs.technion.ac.il
mailto:fabrizio.grandoni@gmail.com
mailto:ariel.kulik@gmail.com
https://orcid.org/0000-0002-0533-3926
https://doi.org/10.4230/LIPIcs.IPEC.2024.5
https://arxiv.org/abs/2407.10138
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Unsplittable Flow on a Short Path

represent jobs that we might execute, therefore gaining a profit. However each executed job
will consume some amount of the shared resource during its execution, thus we might not be
able to execute all the jobs (hence we need to perform a selection).

UFP is strongly NP-hard [11, 18] and it is well-studied in terms of approximation
algorithms. After a long sequence of improvements [2, 3, 5, 6, 9, 11, 14, 15, 34, 37, 38, 36], a
PTAS for UFP was eventually achieved by Grandoni, Mömke and Wiese [35]. We recall that a
PTAS (for a maximization problem) is an algorithm parameterized by ε > 0, which provides
a (1− ε) approximation in time |I|Oε(1), where |I| is the input size. EPTASs and FPTASs
are defined similarly, however with running times of the form f(1/ε) · |I|O(1) and (|I|/ε)O(1),
resp., where f(·) is a computable function. Wiese [49] proved that UFP, parameterized by
the number of selected tasks, is W [1]-hard: this excludes the existence of an EPTAS for UFP
by standard reductions (unless FPT=W[1] [42]).

In the above scenario there is no flexibility on the time when a job is executed. The BagUFP
problem is a generalization of UFP which was introduced to allow for such flexibility. Here we
are given the same input as UFP, plus a partition of the tasks into ℓ bags B = {B1, . . . , Bℓ},
∪̇ℓ

j=1Bj = T . A feasible solution S has to satisfy the capacity constraints as in UFP, plus
the extra constraint that at most one task per bag can be selected, namely |S ∩Bj | ≤ 1 for
j = 1, . . . , ℓ. This easily captures jobs that can be executed at different times (and even
more general settings). For example, if a job can be executed within a given time window
(also known as the time-windows UFP problem), it is sufficient to create a bag that contains
multiple copies of the same task which differ only in the subpath P (i) (with one subpath per
potential valid scheduling time). BagUFP is APX-hard [47], which rules out the existence
of a PTAS for it. The current best approximation ratio for BagUFP is O(log n/ log log n)
[33], slightly improving on the O(log n) approximation in [13]. A constant approximation for
BagUFP is known for the cardinality version of the problem [33], i.e. when all the profits
are 1. Bag constraints are frequently added to other classic optimization problems, such as
makespan minimization [22, 32], knapsack [46, 44, 40], and bin packing [24, 25, 31].

1.1 Our Results and Techniques
The mentioned PTAS for UFP [35] has a very poor dependence on ε in the running time, which
makes it most likely impractical. Though an improvement of the running time is certainly
possible, as mentioned before an EPTAS for UFP does not exist (unless FPT = W[1]). The
situation for BagUFP is even worse: here even a PTAS does not exist (unless P = NP), and
currently finding a constant approximation algorithm (which might exist) is a challenging
open problem.

Motivated by the above situation, it makes sense to consider parameterized approximation
algorithms for UFP and BagUFP. The general goal here is to identify some integer parameter
p that captures some relevant aspect of the input (or some property of the output), and try
to design approximation algorithms whose running time is better than the state of the art
when p is sufficiently small. In particular a parameterized PTAS (p-PTAS) is defined similarly
to a PTAS, however with running time of the form f(p)|I|Oε(1) for some commutable function
f(·). Parameterized EPTAS (p-EPTAS) and parameterized FPTAS (p-FPTAS) are defined
similarly, w.r.t. EPTAS and FPTAS resp. More explicitly, a p-EPTAS has a running time of
the form f (p + 1/ε) |I|O(1), while a p-FPTAS has a running time of the form f(p)(|I|/ε)O(1).
For a meaningful choice of p, it makes sense to search for a p-EPTAS (or better) for UFP,
and for a p-PTAS (or better) for BagUFP.

Probably the most standard parameter is the number k of tasks in the desired solution.
This is also the objective function for the cardinality version of the problems (with profits
equal to 1). Wiese [49] proved that UFP is W [1]-hard under this parametrization, which

I. Doron-Arad, F. Grandoni, and A. Kulik 5:3

rules out a p-EPTAS. He also presented a p-PTAS for the cardinality version of UFP with
parameter k (later improved by the PTAS in [35], which also works for arbitrary profits).
To the best of our knowledge, the same parametrization of BagUFP was not studied in the
literature.

In this paper we focus on the parameter m, namely the number of edges in G - the
length of the path. This makes sense in the realistic scenarios where n≫ m i.e., there are
significantly more jobs than time slots. For example, such UFP instances occur in personnel
scheduling [48, 4, 10, 1] where, e.g., workers are assigned to shifts within a working day
(m ≈ 8 working hours), or for an interval of days in the week (m = 7 days). We achieve the
following main results:

1.1.1 Algorithms and Hardness for BagUFP
A simple reduction from Partition shows that (assuming P ̸= NP) there is no FPTAS for
BagUFP even for m = 2 (for m = 1 an FPTAS exists since the problem is equivalent to
Multiple Choice Knapsack). As an obvious corollary, there is no p-FPTAS with parameter m

for the same problem (see Section 4).

▶ Theorem 1. Unless P = NP, there is no FPTAS for BagUFP even in the case m = 2.

▶ Corollary 2. Unless P = NP, there is no p-FPTAS for BagUFP parametrized by the path
length m.

Hence, qualitatively speaking, the best one can hope for is a p-EPTAS. This is precisely
what we achieve (see Section 2).

▶ Theorem 3. There is a p-EPTAS for BagUFP parametrized by the path length m. Its
running time is 2(m/ε1/ε)O(1)

· |I|O(1).

Our approach substantially differs from previous algorithmic approaches for UFP (see,
e.g., [35] and references therein) which relied on concepts such as classification of items by
demands and probabilistic arguments. We observe that the bag constraints induce a matroid
(more specifically, a partition matroid with capacity 1 for each set). Therefore we consider
the standard LP relaxation for a partition matroid (which has integral basic solutions), and
augment it with the m linear constraints corresponding to the capacity constraints. As
proved in [39], a basic optimal solution x∗ to this LP (which can be computed in polynomial
time for arbitrary m) has at most 2m fractional values (with value strictly between 0 and 1).
The variables with value 1 in x∗ induce a feasible BagUFP solution with profit at least the
optimal LP profit minus (almost) the profit of 2m tasks: this is problematic if the latter tasks
have a profit comparable to opt = w(OPT), where OPT is some reference optimal solution.

We can avoid the above issue as follows. Let H be the (heavy) tasks with profit at least
ε
m opt. We can guess the heavy tasks H ∩ OPT in OPT (which are at most m/ε many),
reduce the problem (i.e., remove all the tasks in the bags containing tasks from H ∩OPT,
remove tasks in H, and reduce the available capacity of every edge by the total demand
of OPT ∩H for the specific edge), and apply the mentioned LP-rounding technique to the
remaining (light) tasks. Now the drop of the fractional variables reduces the profit by at
most 2ε · opt, leading to a 1 + O(ε) approximation. Unfortunately, this algorithm would take
time |H|Ω(m/ε), which is still not compatible with a p-EPTAS.

In order to circumvent the latter issue, we exploit the notion of representative sets, which
was introduced in [26, 27, 28] to deal with a class of maximization problems with a single
budget constraint. In contrast, we construct a representative set in the more general regime

IPEC 2024

5:4 Unsplittable Flow on a Short Path

of multiple budget constraints imposed by the unsplittable flow setting. In more detail, in
p-EPTAS time, we are able to compute a (representative) subset of tasks R of size depending
only on m and 1/ε, such that there exists a nearly optimal solution S such that S ∩H ⊆ R.
Therefore, one can restrict to R the above guessing of heavy tasks, which takes |R|O(m/ε)

time: this is now compatible with a p-EPTAS. We remark that our techniques, combined with
the representative set techniques of [26, 27, 28], can give a p-EPTAS for the more general
problem of UFP with a general matroid constraint. We leave such efforts to the journal
version of the paper. On the other hand, UFP with a general matroid is somewhat harder
since an FPTAS is ruled out even for an instance with path of length 1 (a single budget
constraint) [30], and an FPTAS exists only for laminar matroids [29].

1.1.2 Algorithms and Hardness for UFP
We start by showing that there is no p-FPTAS for UFP parameterized by m. This, together
with Theorem 3, gives a tight bound for UFP in the short path point-of-view. Notice that
this is not implied by Theorem 1 since UFP is a special case of BagUFP.

▶ Theorem 4. Unless FPT=W[1], there is no p-FPTAS for UFP parametrized by the path
length m.

Unlike previous hardness results [11, 18, 47, 49, 19] for UFP and its variant, which rely
on a path of polynomial length in the input size, our lower bound requires having UFP
instances with a short path. Namely, the number of tasks is significantly larger than the
length of the path. Our starting point is to obtain a hardness result for a multiple choice
variant of k-subset sum in which the numbers are partitioned into sets A1, . . . , Ak, each
set with n numbers, and the goal is to select one number from each set such their sum is
exactly a given target value. We use color-coding to show that multiple-choice k-subset
sum does not have an FPT-algorithm unless W[1]=FPT (which may be useful for other
hardness results). Then, we reduce multiple-choice k-subset sum to UFP by constructing a
UFP instance with m = O(k) edges and with polynomial weights. Roughly, we interpret the
edges of the path in correspondence to the k sets A1, . . . , Ak. The constructed instance has
a pair of tasks zi

j , qi
j , with complementary subpaths, for every number j = 1, . . . , n in the

i-th set Ai. Along with a carefully defined demand and weight functions, This UFP instance
satisfies that exactly k pairs can be chosen for a sufficiently high weight if and only if the
original subset sum instance has a solution. We remark that this construction utilizes the
short path in a non-trivial manner. Due to space constraints, the proof is given in the full
version of the paper [23].

Theorem 3 already provides a p-EPTAS for UFP. We are however able to derive a p-EPTAS
with a substantially better running time (see Section 3).

▶ Theorem 5. There is an p-EPTAS for UFP parameterized by the path length m, with
running time O

(
n3

ε +
(1

ε

)O(m2)
m3 log n

)
.

In particular, for m ≤ C ·
√

log 1
ε

n, for a sufficiently small constant C > 0, our running time
is the running time of an FPTAS. We recall that achieving an FPTAS (or even an EPTAS)
for UFP in general is not possible and the previous state of the art for UFP with a constant
number of edges is the PTAS for the general problem [35].

The basic idea of the algorithm is a follows. Consider all the tasks Tφ whose path is φ. Let
optφ be the profit of some optimal solution OPT restricted to Tφ, i.e. optφ = w(OPT ∩ Tφ).
Given the value of optφ, it is sufficient to find a minimum-demand subset of tasks Sφ ⊆ Tφ

I. Doron-Arad, F. Grandoni, and A. Kulik 5:5

with profit at least optφ: the union of the sets Sφ would be feasible and optimal. To achieve
the target running time we use this basic idea along with rounding of the weights and a
coarse guessing of the the values optφ. By a standard rounding argument, we can assume
that the weights are in [n

ε] while loosing a factor 1− ε in the approximation. This allows
us to pre-compute the minimal demand subset of Tφ which attains a threshold rounded
weight, for every possible threshold, using a standard dynamic program. The pre-computed
subsets are used to reconstruct a solution Sφ from the value of optφ. Finally, we guess the
values of optφ up to an additive error of ≈ ε

m2 · w(OPT). This coarse guess of the values of
optφ allows us to enumerate over all possible guesses within the running time, while only
introducing an additional 1− ε factor in the approximation.

1.2 Preliminaries

For every n ∈ N we use [n] = {1, . . . , n}. We use (G, u, T, P, d, w,B) to denote a BagUFP
instance and by (G, u, T, P, d, w) to denote a UFP instance. Given and instance I of UFP or
BagUFP, we let OPT(I) denote some reference optimal solution, and opt(I) = w(OPT(I))
be its profit. We use |I| to denote the encoding size of I. When I is clear from the context,
we simply use OPT and opt, resp. Given a subset of tasks S ⊆ T , we use the standard
notation d(S) :=

∑
i∈S d(i) and w(S) :=

∑
i∈S w(i).

2 A p-EPTAS for BagUFP

In this section we prove Theorem 3. For the remaining of this section, fix a instance I of
BagUFP and an error parameter 0 < ε < 1

2 . Let the set of heavy tasks in I be

H =
{

e ∈ E | w(e) >
ε · opt

m

}
.

The remaining tasks T \ H are light. Our first goal is to find the set of heavy tasks in a
nearly-optimal solution. Notice that a naive enumeration takes nΩ(m

ε) time, which is far
from the running time of a p-EPTAS. To avoid this issue, we compute a (small enough)
representative set, which is defined as follows.

▶ Definition 6. For some R ⊆ T , we say that R is an ε-representative set of I if there is a
solution Sof I such that the following holds.
1. S ∩H ⊆ R.
2. w (S) ≥ (1− 3ε) · opt.

Define q(ε, m) =
⌈
4m · ε−⌈ε−1⌉

⌉
(the meaning of q(ε, m) becomes clear in Section 2.2).

▶ Lemma 7. There is an algorithm RepSet that, given a BagUFP instance instance I =
(G, u, T, P, d, w,B), 0 < ε < 1

2 , and ˜opt ∈ [w(T)], in time m3 · ε−2 · |I|O(1) returns R ⊆ T

with |R| ≤ 3 ·m3 · ε−2 · q(ε, m). Furthermore, if opt
2 < ˜opt ≤ opt, R is an ε-representative set

of I.

In Section 2.1 we use the representative set from Lemma 7 to design a p-EPTAS for
BagUFP. Then, in Section 2.2 we prove Lemma 7.

IPEC 2024

5:6 Unsplittable Flow on a Short Path

Algorithm 1 p-EPTAS(I, ε).

input : BagUFP instance I and an error parameter 0 < ε < 1
2 .

output : A (1− 7ε)-approximate solution A for I.
1 A← ∅.
2 for ˜opt ∈

{
1, 2, . . . , 2⌊log2(w(T))⌋} do

3 Construct R
˜opt ← RepSet(I, ε, ˜opt).

4 for F ⊆ R
˜opt s.t. |F | ≤ m/ε and F is a feasible solution for I do

5 Compute a basic optimal solution λ
˜opt,F for LP ˜opt

F .
6 Define L

˜opt
F :=

{
i ∈ T

˜opt
F

∣∣ λ
˜opt,F

i = 1
}

and A
˜opt

F = L
˜opt

F ∪ F .

7 if w
(

A
˜opt

F

)
> w(A) then

8 A← A
˜opt

F .
9 end

10 end
11 end
12 Return A.

2.1 A Representative Set Based p-EPTAS

Given the representative set algorithm described in Lemma 7, we obtain a p-EPTAS as follows
(the pseudocode is given in Algorithm 1). We consider the powers of two ˜opt in the domain
[w(T)] (i.e., all values ˜opt = 1, 2, 4, . . . , 2⌊log w(T)⌋). We apply the algorithm from Lemma 7
with this parameter ˜opt to obtain a set R ˜opt. Notice that, for opt

2 < ˜opt ≤ opt, R
˜opt is a

representative set. Now we enumerate over all the feasible solutions F ⊆ R ˜opt of cardinality
at most m/ε. For each such F , we compute a feasible solution A

˜opt
F (including F), and return

the best such solution.
It remains to describe how A

˜opt
F is computed. First of all, we define a reduced BagUFP

instance I
˜opt

F = (G, uF , T
˜opt

F , P, d, w,BF) as follows. BF is the subset of input bags not
containing any task in F . The set of tasks T

˜opt
F is given by the tasks of weight at most

2ε
m

˜opt which are contained in the bags BF . The capacity function uF is given by uF (e) :=
u(e) −

∑
i∈F :e∈P (i) d(i) (i.e., the residual capacity after accommodating the tasks in F).

Observe that, for any feasible solution L for I
˜opt

F , L ∪ F is a feasible solution for the input
problem. Indeed, the capacity constraints are satisfied and at most one task per bag can be
selected.

Given the above instance I
˜opt

F , we considering the following LP relaxation LP
˜opt

F :

max
∑

i∈T
˜opt

F

xi · w(i) (LP
˜opt

F)

s.t.
∑

i∈T
˜opt

F
:e∈P (i)

xi · d(i) ≤ uF (e) ∀e ∈ E

∑
i∈T

˜opt
F

∩B

xi ≤ 1 ∀B ∈ BF

xi ≥ 0 ∀i ∈ T
˜opt

F

I. Doron-Arad, F. Grandoni, and A. Kulik 5:7

We compute a basic optimal solution λ
˜opt,F for the above LP. Let L

˜opt
F ⊆ T

˜opt
F be the tasks

such that λ
˜opt,F

i = 1. We set A
˜opt

F = L
˜opt

F ∪ F . This concludes the description of the
algorithm.

Obviously the above algorithm computes a feasible solution.

▶ Lemma 8. Algorithm 1 returns a feasible solution.

Proof. Consider a given pair (˜opt, F). Obviously L
˜opt

F is a feasible solution for the BagUFP
instance I

˜opt
F . Indeed, the demand of the tasks in L

˜opt
F whose path contains a given edge e is

upper bounded by
∑

i∈T
˜opt

F
:e∈P (i) λ

˜opt,F
i ·d(i) ≤ uF (e). Furthermore, for a given bag B ∈ BF ,

at most one variable λ
˜opt,F

i with i ∈ B can be equal to 1, hence |L ˜opt
F ∩ B| ≤ 1. Thus, as

argued before, A
˜opt

F = L
˜opt

F ∪ F is a feasible solution for the input BagUFP instance I. Since
the returned solution A is one of the feasible solutions A

˜opt
F (or the empty set, which is a

feasible solution), A is a feasible solution. ◀

It is also not hard to upper bound the running time.

▶ Lemma 9. Algorithm 1 runs in time
(

3·m3

ε2 · q(ε, m)
)m/ε

|I|O(1).

Proof. Lines 3 and 5-8 can be performed in |I|O(1) time. Thus the overall running time
is upper bounded by |I|O(1) multiplied by the number of possible pairs (˜opt, F). There
are O(log w(T)) = |I|O(1) possible choices for ˜opt. For a fixed choice of ˜opt, one has
|R ˜opt| ≤ 3m3

ε2 q(ε, m). Since F is a subset of R
˜opt of cardinality at most m/ε, the number

of possible choices for F (for the considered ˜opt) is at most 2
(

3m3

ε2 q(ε, m)
)m/ε

. The claim
follows. ◀

It remains to bound the approximation factor of the algorithm. To this aim, we critically
exploit the fact that each basic solution λ

˜opt,F is almost integral: more precisely, it has at
most 2m non-integral entries. To prove that, we use a result in [39] about the sparseness of
matroid polytopes with m additional linear constraints.

▶ Lemma 10. Each solution λ
˜opt,F computed by Algorithm 1 has at most 2m non-integral

entries.

Proof. The proof relies on matroid theory; for more details on the subject, we refer the reader
to, e.g., [45]. Consider LP

˜opt
F for any pair (˜opt, F) considered by the algorithm. Let L̃P

˜opt
F be

the LP obtained from LP
˜opt

F by dropping the m capacity constraints
∑

i∈T
˜opt

F
:e∈P (i) xi ·d(i) ≤

uF (e). L̃P
˜opt

F turns out to be the standard LP for a partition matroid (in particular, in an
independent set at most one task per bag can be selected, where the bags induce a partition
of the tasks). In [39] it is shown that every basic solution (including an optimal one) for an
LP obtained by adding m linear constraints to the standard LP for any matroid (including
partition ones) has at most 2m non-integral entries. Hence λ

˜opt,F satisfies this property. ◀

▶ Lemma 11. The solution A returned by Algorithm 1 satisfies w(A) ≥ (1− 7ε)opt.

Proof. It is sufficient to show that some solution C
˜opt

F has large enough profit. Consider the
value of ˜opt such that opt

2 < ˜opt ≤ opt. Notice that the algorithm considers exactly one such
value since 1 ≤ opt ≤ w(T). We next show how to choose a convenient F ⊆ R

˜opt.

IPEC 2024

5:8 Unsplittable Flow on a Short Path

Observe that for the considered choice of ˜opt, R
˜opt is an ε-representative set. Let S be

the solution for I guaranteed by Lemma 7 and Definition 6. Recall that w(S) ≥ (1− 3ε)opt
and S ∩H ⊆ R

˜opt. Since each i ∈ S ∩H has w(i) ≥ ε
m opt by definition and since obviously

w(S ∩H) ≤ w(S) ≤ opt, it must be the case that |S ∩H| ≤ m
ε . This implies that there is

an iteration of the algorithm (for the considered ˜opt) that has F = S ∩H: we will focus on
that iteration.

We claim that w(A ˜opt
S∩H) = w(S ∩ H) + w(L ˜opt

F) ≥ (1 − 7ε)opt. Notice that each task
i ∈ S \ H has weight w(i) < ε

m opt < 2ε
m

˜opt. Furthermore, by construction i ∈ S \ H is
contained in a bag in BS∩H . Hence i ∈ T

˜opt
S∩H , which implies S \H ⊆ T

˜opt
S∩H . The feasibility of

S implies that
∑

i∈S\H:e∈P (i) d(i) ≤ uF (e) for every edge e, and |(S \H) ∩B| ≤ 1 for every
B ∈ BS∩H . Therefore the integral solution s which has si = 1 for i ∈ S \H and si = 0 for the
remaining entries is a feasible solution for LP

˜opt
S∩H . Define lp

˜opt
S∩H :=

∑
i∈T

˜opt
S∩H

w(i) · λ ˜opt,S∩H
i

as the optimal LP value for LP
˜opt

S∩H . The feasibility of s implies

w(S \H) =
∑

i∈T
˜opt

S∩H

w(i) · si ≤ lp
˜opt

S∩H .

On the other hand,

w(L ˜opt
S∩H) ≥ lp

˜opt
S∩H − 2m · 2ε

m
˜opt ≥ lp

˜opt
S∩H − 4ε · opt.

In the first inequality above we used the fact that λ
˜opt,S∩H has at most 2m non-integral

values (by Lemma 10), and that each i ∈ T
˜opt

S∩H has w(i) ≤ 2ε
m

˜opt by construction. In the
second inequality above we used the assumption that ˜opt ≤ opt. Putting everything together:

w(A ˜opt
S∩H) = w(L ˜opt

S∩H) + w(S ∩H) ≥ lp
˜opt

S∩H − 4ε · opt + w(S ∩H)
≥ w(S \H)− 4ε · opt + w(S ∩H) = w(S)− 4ε · opt ≥ (1− 7ε)opt. ◀

The proof of Theorem 3 follows directly from Lemma 8, Lemma 9, and Lemma 11.

2.2 Representative Set Construction
In this section, we construct a small ε-representative set for the BagUFP instance I; this
gives the proof of Lemma 7. Let ˜opt ∈ [w(T)] be a guess of the optimum value opt. Recall
that in Section 2.1 we are able to find ˜opt ∈

(opt
2 , opt

]
using exponential search over the

domain [w(T)].
We define a partition of the heavy tasks (and some tasks that are almost heavy) into

classes, such that tasks of the same class have roughly the same weight and have the same
subpath. Specifically, let Φ = {P (i) | i ∈ T} be the set of unique paths in the instance and
define η =

⌈
log1−ε

(
ε

2·m
)⌉

as a parameter describing the number of classes. For all φ ∈ Φ
and r ∈ [η] define the class of φ and r as

H̃ (φ, r) =
{

i ∈ T

∣∣∣∣ w(i)
2 · ˜opt

∈
(

(1− ε)r
, (1− ε)r−1

]
and P (i) = φ

}
. (1)

In simple words, a task i belongs to class H̃ (φ, r) have weight roughly (1− ε)r · 2 · ˜opt and
the subpath of i is φ. Define

H̃ =
⋃

φ∈Φ,r∈[η]

H̃(φ, r)

I. Doron-Arad, F. Grandoni, and A. Kulik 5:9

as the union of classes. The parameter η is carefully chosen so that the weight of every
task i ∈ H̃ satisfies w(i) ≥ ε· ˜opt

m , implying that i is roughly heavy. Since ˜opt ∈
[opt

2 , opt
]
,

it follows that H ⊆ H̃ and that H̃ does not contain tasks with significantly smaller weight
than ε·opt

m - that is the minimum weight allowed for heavy tasks.

▶ Observation 12. H ⊆ H̃.

Let D = {H̃(ϕ, r) | ϕ ∈ Φ, r ∈ [η]} be the set of classes. We use a simple upper bound on
the number of classes.

▶ Lemma 13. |D| ≤ 3 ·m3 · ε−2.

Proof. Observe that

log1−ε

(ε

2 ·m

)
≤

ln
(2·m

ε

)
− ln (1− ε) ≤

2 ·m · ε−1

ε
= 2 ·m · ε−2. (2)

The second inequality follows from x < − ln(1− x),∀x > −1, x ̸= 0, and ln(y) < y,∀y > 0.
Moreover, the number of subpaths φ ∈ Φ is bounded by |Φ| =

(
m
2
)
≤ m2. Therefore, the

number of classes is bounded by

|D| ≤ m2 ·
(

log1−ε

(ε

2 ·m

)
+ 1
)
≤ 2 ·m ·ε−2 ·m2 +m2 = 2 ·m3 ·ε−2 +m2 ≤ 3 ·m3 ·ε−2 (3)

The first inequality follows from (2). ◀

Algorithm 2 RepSet(I, ε, ˜opt).

input : BagUFPinstance I, an error parameter 0 < ε < 1
2 , and ˜opt ∈ [w(T)].

output : An ε-representative set R for I (if ˜opt ∈
[opt

2 , opt
]
).

1 Initialize R← ∅.
2 forall φ ∈ Φ and r ∈ [η] do
3 Let B(φ, r) = {B ∈ B | B ∩ H̃(φ, r) ̸= ∅}.
4 For every B ∈ B(φ, r) define iB(φ, r) = arg mini∈B∩H̃(φ,r) d(i).
5 Sort B(φ, r) in non-decreasing order B1(φ, r), . . . , Bℓ(φ, r)

by d (iB(φ, r)) ∀B ∈ B(φ, r).
6 Define a = min {q(ε, m), |B(φ, r)|}.
7 Update R← R ∪ {iB1(φ, r), . . . , iBa(φ, r)}.
8 end
9 Return R.

Our representative set construction is fairly simple. For each class H̃ (φ, r), consider the
set of active bags B(φ, r) for H̃(φ, r) that contain at least one task in H̃ (φ, r). For every
active bag B ∈ B(φ, r) define the representative of B in the class H̃(φ, r) as the the task
from the bag B in the class H̃ (φ, r) of minimum demand (if there is more than one such
task we choose one arbitrarily). We sort the active bags of the class in a non-decreasing
order according to the demand of the representatives of the bags. Finally, we take the first a

representatives (at most one from each bag) according to this order, where a is the minimum
between the parameter q(ε, m) and the number of active bags for the class. The pseudocode
of the algorithm is given in Algorithm 2.

We give an outline of the proof of Lemma 7. Consider some optimal solution OPT for
the instance. We partition the tasks in OPT into three sets: L, Jk∗ , and Q such that (i) the
maximum weight of a task in Q is at most ε-times the minimum weight of a task in L; (ii) L

IPEC 2024

5:10 Unsplittable Flow on a Short Path

is small: |L| ≤ q(ε,m)
2 ; (iii) The weight of Jk∗ is small: w(Jk∗) ≤ ε · opt. To prove that R is a

representative set, we need to replace H ∩OPT with tasks from R. As a first step, we define
a mapping h from H̃ ∩OPT to R, where each task i ∈ H̃ ∩OPT is replaced by a task from
the same class of a smaller or equal demand. For tasks i ∈ H̃ ∩OPT such that R contains a
representative from the bag of i in the class of i, we simply define h(i) as this representative;
for other tasks, we define the mapping via a bipartite matching on the remaining tasks and
representatives.

We define a solution S satisfying the conditions of Definition 6 in two steps. First, we
define initial solutions S1, S2. The solution S1 contains the mapping h(i) of every i ∈ H̃∩OPT
and the tasks in L \ H̃; the solution S2 contains all tasks in Q from bags that do not contain
tasks from S1. Finally, we define S = S1 ∪ S2. By the properties of L, Jk∗ , and Q we are
able to show that S is roughly an optimal solution. Specifically, by (iii) discarding Jk∗ from
the solution S does not have a significant effect on the total weight of S. Additionally,by
property (i) there is a large gap between the weights in S1 and S2; thus, combined with
property (ii) we lose only a small factor due to tasks discarded from Q, and it follows that
the weight of S is (1−O(ε)) · opt.

Proof of Lemma 7
We start with the running time analysis of the algorithm.

▷ Claim 14. The running time of Algorithm 2 is bounded by m3 · ε−2 · |I|O(1) on input I, ε,
and ˜opt. Moreover, |R| ≤ 3 ·m3 · ε−2 · q(ε, m).

Proof. Each iteration of the for loop of the algorithm can be trivially computed in time
|I|O(1). In addition, the number of iterations of the for loop is bounded by 3 ·m3 · ε−2 using
Lemma 13. Therefore, the running time of the algorithm is bounded by m3 · ε−2 · |I|O(1). For
the second property of the lemma, recall that the number of classes is bounded by 3 ·m3 · ε−2

using Lemma 13. By Algorithm 2 of the algorithm, the number of tasks taken to R from
each class is at most q(ε, m). Therefore, |R| ≤ 3 ·m3 · ε−2 · q(ε, m). ◁

If ˜opt /∈
[opt

2 , opt
]
, the proof immediately follows from Claim 14. Thus, for the following

assume that ˜opt ∈
[opt

2 , opt
]
. Let OPT ⊆ T be an optimal solution for I. Let w∗ = ε· ˜opt

m be
a lower bound on the minimum weight of a task in H̃. We partition a subset of the tasks in
OPT \ H̃ with the highest weights into N =

⌈
ε−1⌉ disjoint sets. For all k ∈ [N] define the

k-th set as

Jk =
{

i ∈ OPT \ H̃
∣∣ w(i) ∈

(
εk · w∗, εk−1 · w∗]} . (4)

Let k∗ = arg mink∈[N] w(Jk). By (4) the sets J1, . . . , JN are N ≥ ε−1 disjoint sets (some of
them may be empty); thus, w(Jk∗) ≤ ε · opt. Define

L =
(
OPT ∩ H̃

)
∪

⋃
k∈[k∗−1]

Jk

as the subset of all tasks in OPT of weight greater than εk∗−1 · w∗, and define Q =
OPT\ (L∪Jk∗) as the remaining tasks in OPT excluding Jk∗ . We use the following auxiliary
claim.

▷ Claim 15. |L| ≤ q(ε,m)
2 .

I. Doron-Arad, F. Grandoni, and A. Kulik 5:11

i2i1 i3

B1 B2 B3

G = (X, Y, Ē)

X

Y

Figure 1 An illustration of the graph G and the maximum matching M (in red). Every edge
(i, B) in the graph indicates that bag B belongs to fit(i); that is, the representative from B in the
class of i belongs to R and the demand of this representative is at most the demand of i. Note that
even though i1 and i2 are both connected to bag B2, i1 and i2 may belong to different classes.

Proof. If L = ∅ the claim trivially follows. Otherwise,

|L| ≤
∑
i∈L

w(i)
εk∗−1 · w∗ = w(L)

εk∗−1 · w∗ ≤
opt

εk∗−1 · w∗ (5)

The first inequality holds since w(i) ≥ εk∗−1 · w∗ for all i ∈ L. The second inequality follows
from the fact that L ⊆ OPT; thus, L is a solution for I. Thus, by (5) and the definition
of w∗

|L| ≤ opt
εk∗−1 · 2 ˜opt · ε

2·m
≤ opt

εk∗−1 · opt · ε
2·m

= 2 ·m
εk∗ ≤

2 ·m
εN

≤ q(ε, m)
2 .

The second inequality holds since we assume that ˜opt ≥ opt
2 . ◁

Let R be the set returned by the algorithm. In the following, we show the existence of a
solution S such that S ∩H ⊆ R and w(S) ≥ (1− 3 · ε) · opt; this gives the statement of the
lemma by Definition 6. To construct S, we first define a mapping h from H̃ ∩ OPT to R.
For a subpath φ ∈ Φ and r ∈ [η], recall the set of active bags B(φ, r) and the representatives
iB(φ, r) for all B ∈ B(φ, r) (see Algorithm 2).

For the simplicity of the notation, for φ ∈ Φ, r ∈ [η], and i ∈ H̃(φ, r) let H̃i = H̃(φ, r)
be the class to which i belongs and let ri = r; moreover, for B ∈ B such that i ∈ B define
Bi = B as the bag containing i. We first consider tasks i in OPT ∩ H̃ whose bag does not
have a representative in R from the class of i, i.e., R∩ H̃i∩Bi = ∅. Define this set of tasks as

X =
{

i ∈ OPT ∩ H̃

∣∣∣∣ R ∩ H̃(φ, r) ∩Bi = ∅
}

. (6)

The above set X contains all tasks i ∈ OPT ∩ H̃ whose corresponding bag does not have a
representative in R from the class of i. We define a bipartite graph, in which X is one side
of the graph. The other side of the graph is

Y = B \
{

B ∈ B
∣∣ ∃i ∈ L s.t. B = Bi

}
. (7)

In words, Y describes all available bags, the collection of all bags that do not contain a task
in L. Define the bipartite graph G = (X, Y, Ē) such that the set of edges is defined as follows.
For some i ∈ X let

fit(i) =
{

B ∈ Y

∣∣∣∣ B ∩R ∩ H̃i ̸= ∅ and d (iB(P (i), ri)) ≤ d(i)
}

. (8)

IPEC 2024

5:12 Unsplittable Flow on a Short Path

The set fit(i) describes all bags that can potentially matched to i; these bags have a
representative from the class H̃i = H̃(P (i), ri) that contain i and the representative of the
bag have a smaller or equal demand w.r.t. i. Now, a task i can be matched to a bag B only
if B ∈ fit(i), i.e., define

Ē =
{

(i, B) ∈ X × Y

∣∣∣∣ B ∈ fit(i)
}

. (9)

Let M be a maximum matching in G. We give an illustration of the above construction in
Figure 1. We show that M matches all vertices in X.

▷ Claim 16. For every i ∈ X there is B ∈ Y such that (i, B) ∈M .

Proof. Assume towards a contradiction that there is i ∈ X such that for all B ∈ Y it holds
that (i, B) /∈M . Let φ ∈ Φ and r ∈ [η] such that H̃i = H̃(φ, r). Since i ∈ X, by (6) it holds
that R ∩ H̃(φ, r) ∩Bi = ∅. Intuitively, this means that the algorithm preferred other bags
over Bi in the selection of representatives for class H̃(φ, r). Therefore, by Algorithm 2 of the
algorithm, there are q(ε, m) distinct bags B1 = B1(φ, r), . . . , Bq(ε,m) = Bq(ε,m)(φ, r) such
that for all j ∈ [q(ε, m)] it holds that iBj

(φ, r) ∈ R and d
(
iBj

(φ, r)
)
≤ d(i). Thus, for all

j ∈ [q(ε, m)] it holds that (i, Bj) ∈ Ē by (8) and (9). In addition,

|M | ≤ |X| ≤ |L| ≤ q(ε, m)
2 < q(ε, m). (10)

The first inequality holds since M is a matching in G and X is one side of a bipartition of G.
The second inequality holds since X ⊆ L by (6) and the definition of L. The third inequality
follows from Claim 15. The last inequality holds since q(ε, m) ≥ 2 assuming 0 < ε < 1

2 and
m ≥ 1. By (10) there is j ∈ [q(ε, m)] such that for all t ∈ X it holds that (t, Bj) /∈ M . In
particular, (i, Bj) /∈M and recall that (i, Bj) ∈ Ē. Therefore, M ∪ (i, Bj) is a matching in
G in contradiction that M is a maximum matching in G. ◁

For every i ∈ X define Mi = B such that (i, B) ∈M , i.e., Mi is the bag matched to i in
M . By Claim 16 it holds that each task in X is matched and every bag is matched at most
once. We define the mapping h from H̃ ∩OPT to R. Define h : H̃ ∩OPT→ R such that for
all i ∈ H̃ ∩OPT:

h(i) =
{

iBi (P (i), ri) , if Bi ∩R ∩ H̃i ̸= ∅
iMi

(P (i), ri) , else
(11)

In words, a task i ∈ H̃ ∩OPT is mapped to a task h(i) such that if the bag of i contains a
representative in R in the class of i - then h(i) is this representative; otherwise, h(i) is the
representative of the bag Mi matched to i by the matching M . Clearly, h is well defined by
Claim 16. We list immediate properties of h.

▶ Observation 17. The function h satisfies the following.
For every i ∈ H̃ ∩OPT it holds that d(h(i)) ≤ d(i) and H̃h(i) = H̃i.
For every i, j ∈ H̃ ∩OPT, i ̸= j, it holds that Bh(i) ̸= Bh(j).
For every i ∈ H̃ ∩OPT and t ∈ L \ H̃ it holds that Bh(i) ̸= Bt.

The first property follows from the definition of the graph G and the definition of the bag
representatives in Algorithm 2. The second and third properties hold since OPT takes at
most one task from each bag and using the definition of G. We can finally define the solution
S that satisfies the conditions of Definition 6. Define

S1 =
{

h(i) | i ∈ H̃ ∩OPT
}
∪
(
L \ H̃

)
(12)

I. Doron-Arad, F. Grandoni, and A. Kulik 5:13

and

S2 =
{

i ∈ Q | Bi ̸= Bt ∀t ∈ S1
}

. (13)

Define S = S1 ∪S2. We show that S satisfies the conditions of Definition 6. As an immediate
property of the construction we have the following.

▶ Observation 18. h is a one-to-one function from H̃ ∩OPT to S ∩ H̃.

We use the above to prove the feasibility of S.

▷ Claim 19. S is a solution for I.

Proof. We show that S satisfies the bag constraints. Let B ∈ B. Since OPT is a solution for
I, there is at most one i ∈ B ∩OPT. We consider four cases depending on the task i.

1. If i ∈ H̃ and R ∩ H̃i ∩Bi ̸= ∅. Then, h(i) ∈ B by (11) and for all t ∈ S1 \ {h(i)} it holds
that t /∈ B by Observation 17. Furthermore, for all t ∈ S2 it holds that t /∈ B by (13).
Thus, |B ∩ S| ≤ 1.

2. If i ∈ H̃ and R ∩ H̃i ∩Bi = ∅. Then, as H̃ ⊆ L it holds that i ∈ L; thus, B /∈ Y by (7).
Therefore, by (12) we conclude that |B ∩ S1| = 0; thus,

|B ∩ S| = |B ∩ S2| ≤ |B ∩Q| ≤ |B ∩OPT| ≤ 1.

The equality holds since |B ∩ S1| = 0. The first inequality follows from (13). The last
inequality holds since OPT is a solution.

3. If i ∈ L \ H̃. Then, by (12) and (13) it holds that |B ∩ S| = |B ∩ i| = 1.
4. If i ∈ Q. Then, there are two sub cases. If i ∈ S2, by (13) for all t ∈ S1 it holds that

B ̸= Bt; thus, as |Q∩B| ≤ |OPT∩B| ≤ 1 it follows that |S ∩B| ≤ 1. Otherwise, i /∈ S2;
then, by (13) it holds that

|B ∩ S| = |B ∩ S1| ≤ 1.

The inequality follows from Observation 17.
By the above we conclude that S satisfies all bag constraints. It remains to prove that S

satisfies the capacity constraints of all edges. For e ∈ E

∑
i∈S s.t. e∈P (i)

d(i) =
∑

i∈S∩H̃ s.t. e∈P (i)

d(i) +
∑

i∈S\H̃ s.t. e∈P (i)

d(i)

=
∑

i∈OPT∩H̃ s.t. e∈P (i)

d(h(i)) +
∑

i∈S\H̃ s.t. e∈P (i)

d(i)

≤
∑

i∈OPT∩H̃ s.t. e∈P (i)

d(h(i)) +
∑

i∈OPT\H̃ s.t. e∈P (i)

d(i)

≤
∑

i∈OPT∩H̃ s.t. e∈P (i)

d(i) +
∑

i∈OPT\H̃ s.t. e∈P (i)

d(i)

=
∑

i∈OPT s.t. e∈P (i)

d(i)

≤ u(e).

The second equality holds since h is a one-to-one mapping from OPT ∩ H̃ to S ∩ H̃ by
Observation 18. The first inequality holds since S \ H̃ ⊆ OPT \ H̃ by (12) and (13). The
second inequality holds since d(h(i)) ≤ d(i) for all i ∈ OPT∩ H̃ by Observation 17. The last
inequality holds since OPT is a solution for I. ◁

IPEC 2024

5:14 Unsplittable Flow on a Short Path

Observe that there is a substantial gap in weight between tasks in L and tasks in Q. We
use this gap in the following auxiliary claim.

▷ Claim 20. w (Q \ S) ≤ ε · opt.

Proof. Observe that

|Q \ S| = |Q \ S2| =
∣∣{i ∈ Q | ∃t ∈ S1 s.t. Bi = Bt

}∣∣ ≤ |S1| = |L|. (14)

The inequality holds since Qsatisfies the bag constraints (i.e., |Q ∩ B| ≤ 1 for all B ∈ B);
thus, for each t ∈ S1 there can be at most one i ∈ Q such that Bi = Bt (and only in this
case i is discarded from S2). The last equality holds since h is a one-to-one mapping from
OPT ∩ H̃ to S ∩ H̃ by Observation 18 and since L \ H̃ belongs both to S1 and L. Hence,

w(Q \ S) ≤ |Q \ S| · εk∗
· w∗ ≤ |L| · εk∗

· w∗ ≤ ε · w(L) ≤ ε · w(OPT) = ε · opt.

The first inequality holds since w(i) ≤ εk∗ ·w∗ for all i ∈ Q. The second inequality follows
from (14). The third inequality holds since w(i) > εk∗−1 ·w∗ for all i ∈ L. the last inequality
holds since L ⊆ OPT. ◁

The following claim shows that S satisfies the total weight required by Definition 6.

▷ Claim 21. w (S) ≥ (1− 3ε) · opt.

Proof. We first give a lower bound to the weight of S1.

w(S1) = w
(
(L \ H̃) ∪

{
h(i) | i ∈ H̃ ∩OPT

})
= w

(
L \ H̃

)
+

∑
i∈H̃∩OPT

w(h(i))

≥ w
(
L \ H̃

)
+

∑
i∈H̃∩OPT

(1− ε) · w(i)

≥ (1− ε) · w(L).

(15)

The inequality holds since for all i ∈ OPT ∩ H̃ it holds that H̃i = W h(i) by Observation 17;
thus, by (1) it follows that w(h(i)) ≥ (1− ε) ·w(i). For the last inequality, recall that H̃ ⊆ L.
Moreover,

w(S2) = w(Q)− w(Q \ S) ≥ w(Q)− ε · opt ≥ (1− ε) · w(Q)− ε · opt. (16)

The first equality holds since S2 ⊆ Q. The first inequality follows from Claim 20. By (15)
and (16) we have

w(S) = w(S1) + w(S2)
≥ (1− ε) · w(L ∪Q)− ε · opt
= (1− ε) · w(OPT \ Jk∗)− ε · opt
≥ (1− ε) · (1− ε) · opt− ε · opt
≥ (1− 3ε) · opt.

The second inequality holds since w(Jk∗) ≤ ε · opt. ◁

Observe that H ⊆ H̃ by Observation 12. Moreover, S ∩ H̃ = S1 ∩ H̃ ⊆ R by (12) and
(13). Thus, S ∩H ⊆ R. By Claim 19 and Claim 21, it follows that R is a representative set.

The proof follows from Claim 19, Claim 21, and Claim 14. ◀

I. Doron-Arad, F. Grandoni, and A. Kulik 5:15

3 A Faster p-EPTAS for UFP

In this section we prove Theorem 5. Let (G, u, T, P, d, w) be a UFP instance. For simplicity,
we next assume that 1/ε is integer and that n≫ 1/ε. Recall that Φ = {P (i) | i ∈ T} is the
set of unique paths in the instance, and for every φ ∈ Φ we use Tφ = {i ∈ T |P (i) = φ} to
denote the set of tasks with path φ. Observe that |Φ| ≤ 1

2 ·m · (m + 1).
See Algorithm 3 for a pseudocode description of our approach.

Algorithm 3 p-EPTAS for UFP.

input : UFP instance I = (G, u, T, P, d, w) and a parameter 0 < ε < 0.1
output : A feasible solution APX for the instance I

Notations : Here wmax = maxi∈T w(i) and pφ :=
∑

i∈Tφ
p(i) for all φ ∈ Φ.

1 Define p(i) ←
⌊

n·w(i)
ε·wmax

⌋
for every i ∈ T .

2 For all φ ∈ Φ compute DPφ for the Knapsack instance (Tφ, d, p, mine∈φ u(e)).
3 APX← ∅.
4 for all the powers ˜opt of (1 + ε) in

[
1, n2

ε

]
do

5 for all non-negative integers (Xφ)φ∈Φ such that
∑

φ∈Φ Xφ ≤ |Φ| · 1+ε
ε do

6 Set ˜optφ = Xφ · ε
|Φ| · ˜opt for all φ ∈ Φ.

7 APX′ ←
⋃

φ∈Φ DPφ

(
min

{
pφ,
⌈ ˜optφ

⌉})
.

8 if APX′ is a feasible solution for I and p(APX′) ≥ p(APX) then
APX← APX′.

9 end
10 end
11 Return APX.

We start to perform a standard rounding of the weights (similar to several other packing
problems) so that they are positive integers in a polynomially bounded range. Let wmax =
maxi∈T wi be the maximum weight of any task. Observe that, since w.l.o.g. each task
alone induces a feasible solution, one has opt ≥ wmax. We replace each weight w(i) with
p(i) :=

⌊
n·w(i)
ε·wmax

⌋
. A standard calculation shows that an optimum solution OPT′ computed

w.r.t. the modified weights p is a (1− ε)-approximate solution w.r.t. the original problem.
Now the (rounded) weights are in the range

[
n
ε

]
. With the obvious notation, for S ⊆ T , we

will denote p(S) :=
∑

i∈S p(i).
Now we proceed by describing the two main phases of our p-EPTAS. In the first phase

we consider each path φ ∈ Φ, and define a Knapsack instance Kφ = (Tφ, d, p, mine∈φ u(e)).
Here Tφ is the set of items that can be placed in the knapsack, d(i) and p(i) are the size
and profit of item i ∈ Tφ, resp., and mine∈φ u(e) is the size of the knapsack. We solve this
instance Kφ using the standard algorithm for Knapsack based on dynamic programming. In
more detail, this algorithm defines a dynamic programming table DPφ indexed by the possible
values p′ ∈ [pφ] of the profit, where pφ :=

∑
i∈Tφ

p(i). At the end of the algorithm, for each
such p′, DPφ(p′) contains a subset of items (in Tφ) of minimum total size (or, equivalently,
demand) whose profit is at least p′2. Notice that Tφ satisfies p(Tφ) = pφ ≥ p′, hence all the

2 In a more standard version of the algorithm DPφ(p′) would contain a minimum size solution of profit
exactly p′, or a special character if such solution does not exist. However, it is easy to adapt the
algorithm to rather obtain the desired values.

IPEC 2024

5:16 Unsplittable Flow on a Short Path

table entries DPφ(p′) are well defined. We also remark that certain table entries may contain
a solution of total demand larger than mine∈φ u(e), hence such entries will never be used to
construct a feasible UFP solution. Computing the dynamic tables for all φ ∈ Φ takes time

∑
φ∈Φ

O(|Tφ| · pφ) ≤
∑
φ∈Φ

O(|Tφ|) ·
∑
φ∈Φ

O(pφ) = O(|T |) ·O(p(T)) ≤ O

(
n3

ε

)
.

We store these dynamic tables for later use.
At this point the second phase of the algorithm starts. Let opt′ = p(OPT′), where OPT′

is an optimal solution for the UFP instance with the rounded weights p (i.e., (G, u, T, P, d, p)).
Observe that opt′ ∈

[
n2

ε

]
. Let ˜opt be a power of (1 + ε) such that opt′

1+ε < ˜opt ≤ opt′.

We can find this value by trying all the O
(

log1+ε
n2

ε

)
= O

(1
ε · log n

)
possibilities. Define

OPT′
φ := OPT′ ∩ Tφ and opt′

φ = p(OPT′
φ). For each φ ∈ Φ we guess the largest multiple

˜optφ = Xφ · ε
|Φ| · ˜opt of ε

|Φ| · ˜opt which is upper bounded by opt′
φ. Again by guessing we

mean trying all the possible combinations. Obviously a valid guess must satisfy

ε

|Φ| ·
˜opt ·

∑
φ∈Φ

Xφ =
∑
φ∈Φ

˜optφ ≤
∑
φ∈Φ

opt′
φ = opt′ ≤ (1 + ε) ˜opt,

hence
∑

φ∈Φ Xφ ≤ Y := ⌊ 1+ε
ε |Φ|⌋. Thus it is sufficient to generate all the ordered sequences

of |Φ| non-negative integers whose sum is at most Y . As we will argue, the number of such
sequences is sufficiently small.

Given a guess { ˜optφ}φ∈Φ, we compute a tentative solution APX′ :=
∪φ∈ΦDPφ(min{pφ, ⌈ ˜optφ⌉}) using the pre-computed dynamic tables. Notice that, for
a valid guess of ˜optφ, by integrality we also have ⌈ ˜optφ⌉ ≤ opt′

φ. Upper bounding with
pφ ≥ opt′

φ guarantees that the algorithm only uses well-defined table entries. Among the
solutions APX′ which are feasible, we return one APX of maximum profit p(APX). This
concludes the description of the algorithm.

We can further improve the running time as follows. Let us compute and store the values
d(DPφ(p′)) and p(DPφ(p′)) (this does not affect the asymptotic running time). In the for
loops we only update the current value of apx := p(APX) instead of updating APX explicitly
each time. Furthermore for each tentative solution APX′ we only compute p(APX′) and∑

i∈APX′:e∈P (i) d(i) for each e ∈ E. This can be done in O(|Φ|m) time and it is sufficient
to check whether APX′ is a feasible solution and whether p(APX′) > apx. We maintain
the combination of the parameters X∗

φ and ˜opt∗ that lead to the current value of apx. At
the end of the process from the optimal parameters X∗

φ and ˜opt∗ we derive a corresponding
solution APX of profit apx in O(n + |Φ|) = O(n2) extra time.

▶ Lemma 22. Algorithm 3 produces a feasible UFP solution.

Proof. Obviously since APX = ∅ is a feasible solution, and whenever we update APX, we
do that with the value APX′ of a feasible solution. ◀

▶ Lemma 23. Algorithm 3 produces a (1− 2ε)-approximate solution.

Proof. Let us show that p(APX) ≥ (1 − ε)p(OPT′). Notice that opt′ = p(OPT′) ∈ [n2

ε],
hence there is a value ˜opt considered by the algorithm such that 1

1+ε opt′ < ˜opt ≤ opt′. Let
us focus on execution of the external for loop with that value of ˜opt.

I. Doron-Arad, F. Grandoni, and A. Kulik 5:17

Recall that opt′
φ = p(OPT′

φ) = p(OPT′ ∩ Tφ). As already argued before, there are
corresponding values (Xφ)φ∈Φ considered by the algorithm such that ˜optφ = Xφ · ε

|Φ| · ˜opt
satisfies:

opt′
φ −

ε

|Φ|
˜opt ≤ ˜optφ ≤ opt′

φ.

Let us focus on the execution of the inner for loop with these values of Xφ (hence ˜optφ).
The profit of the corresponding solution APX′ is at least∑

φ∈Φ

˜optφ ≥
∑
φ∈Φ

opt′
φ − ε ˜opt = opt′ − ε ˜opt ≥ (1− ε)opt′.

Observe that OPT′
φ = OPT′ ∩ Tφ is a valid solution for the Knapsack instance Kφ

with profit opt′
φ, where pφ ≥ opt′

φ ≥
⌈ ˜optφ

⌉
, hence also a valid candidate solution for

DPφ

(
min{pφ,

⌈ ˜optφ

⌉}
). As a consequence d(DPφ(min{pφ, ⌈ ˜optφ⌉}) ≤ d(OPT′

φ). We con-
clude that APX′ is a feasible solution. In more detail, for each e ∈ E,∑
i∈APX′:e∈P (i)

d(i) =
∑

φ∈Φ:e∈φ

d(DPφ(
⌈ ˜optφ

⌉
)) ≤

∑
φ∈Φ:e∈φ

d(OPT′
φ) =

∑
i∈OPT′:e∈P (i)

d(i) ≤ u(e).

It follows that p(APX) ≥ p(APX′) ≥ (1− ε)opt′. Using standard arguments, we conclude
that

w(APX) ≥ ε · wmax
n

· p(APX)

≥ (1− ε) · ε · wmax
n

p(OPT′)

≥ (1− ε) · ε · wmax
n

· p(OPT)

≥ (1− ε) ·
(

ε · wmax
n

(
n

ε · wmax
· w(OPT)− n

))
= (1− ε) · (opt− ε · wmax) ≥ (1− ε) · (1− ε)opt. ◀

It remains to upper bound the running time. Let iters be the number of iterations of the
inner loop in Algorithm 3, i.e. the number of possible valid combinations for (Xφ)φ∈Φ. The
bound on the running time follows easily from the following technical lemma.

▶ Lemma 24. iters ≤
(1+2ε

ε · e
)|Φ|.

▶ Lemma 25. Algorithm 3 runs in time O
(

n3

ε +
(1

ε

)O(m2) ·m3 · log n
)

.

Proof. We already argued that the dynamic tables can be computed in total time O(n3

ε).
We also observed that the outer for loop is executed O

(1
ε log n

)
times. As already discussed,

lines 6-8 take O (|Φ| ·m) time. Thus the second phase of the algorithm can be implemented
in time O(n2 + |Φ| ·m · iters · 1

ε · log n) time. By Lemma 24, the overall running time of the
algorithm is

O

(
n3

ε
+
(

1 + 2ε

ε
· e
)|Φ|

·m · |Φ| · 1
ε

log n

)
.

The claim follows since |Φ| ≤ 1
2 ·m · (m + 1). ◀

IPEC 2024

5:18 Unsplittable Flow on a Short Path

It remains to prove Lemma 24. To that aim, we need a standard bound on the binomial
coefficients. Let H(x) = −x · ln(x)− (1− x) · ln(1− x) be the entropy function and assume
H(0) = H(1) = 0.

▶ Lemma 26 (Example 11.1.3 in [20]). For every n ∈ N and integer 0 ≤ k ≤ n it holds that(
n
k

)
≤ exp

(
n · H

(
k
n

))
.

Proof of Lemma 24. Recall that iters is equal to the possible sequences of |Φ| non-negative
integers whose sume is at most Y =

⌊ 1+ε
ε · |Φ|

⌋
. These sequences can be represented via a

binary string as follows. Let φ1, . . . φ|Φ| be an arbitrary ordering of Φ, and Xi = Xφi
. The

bit string consists of X1 many 1s, followed by one 0, followed by X2 many 1s and so on,
ending with the X|Φ| many 1s, an additional 0 and a final padding of 1s till the target length
of Y is reached. In particular all valid sequences correspond to binary strings with Y + |Φ|
digits and exactly |Φ| zeros. It is therefore sufficient to upper bound the number of the latter
bit strings, namely

(
Y +|Φ

|Φ|
)
. By Lemma 26 we have,

iters =
(
|Φ|+

⌊
|Φ| · 1+ε

ε

⌋
|Φ|

)
≤ exp

((
|Φ|+

⌊
|Φ| · 1 + ε

ε

⌋)
· H

(
|Φ|

|Φ|+
⌊
|Φ| · 1+ε

ε

⌋))

≤ exp
((
|Φ| · 1 + 2ε

ε

)
· H
(

|Φ|
|Φ| · 1+2ε

ε

))
=
(

exp
(

1 + 2ε

ε
· H
(

ε

1 + 2ε

)))|Φ|

,

(17)

where the last inequality holds since x · H
(

a
x

)
is increasing in x for any a ≥ 1 and |Φ| +⌊

|Φ| · 1+ε
ε

⌋
≤ |Φ| · 1+2ε

ε . It also holds that

1 + 2ε

ε
· H
(

ε

1 + 2ε

)
= 1 + 2ε

ε
·
(

− ε

1 + 2ε
· ln
(

ε

1 + 2ε

)
−
(

1 − ε

1 + 2ε

)
· ln
(

1 − ε

1 + 2ε

))
≤ − ln

(
ε

1 + 2ε

)
− 1 + 2ε

ε
·
(

1 − ε

1 + 2ε

)
·
(

− ε

1 + 2ε

(
1 + ε

1 + 2ε

))
= ln

(1 + 2ε

ε

)
+
(

1 − ε

1 + 2ε

)(
1 + ε

1 + 2ε

)
≤ ln

(1 + 2ε

ε

)
+ 1

(18)

where the first inequality follows from ln(1− x) ≥ −x(1 + x) for x ∈ (0.0.1), and the second
inequality holds as (1 + x)(1− x) ≤ 1 for every x ∈ R. By (17) and (18) we have,

iters ≤
(

exp
(1 + 2ε

ε
· H
(

ε

1 + 2ε

)))|Φ|
≤
(

exp
(

ln
(1 + 2ε

ε

)
+ 1
))|Φ|

=
(1 + 2ε

ε
· e
)|Φ|

◀

We now have the tools required to complete the proof of Theorem 5.

Proof of Theorem 5. It follows directly from Lemmas 22, 23 and 25 by choosing the para-
meter ε/2 so as to have a (1− ε) approximation. ◀

I. Doron-Arad, F. Grandoni, and A. Kulik 5:19

4 A Lower bound for BagUFP

In this section we prove Theorem 1 using a simple reduction from the partition problem.

Proof of Theorem 1
Recall that in the NP -complete Partition problem we are given a collection of n non-negative
integers A = {a1, . . . , an} in [0, 1] whose sum is 2M . Our goal is to determine whether there
exists a subset of numbers whose sum is precisely M .

We show that an FPTAS for BagUFP in the considered case implies a polynomial time
algorithm to solve Partition, hence the claim. We build (in polynomial time) an instance of
BagUFP with 2 edges e1 and e2, both of capacity M . Furthermore, for each aj , we create
two tasks t1

j and t2
j , with demand aj and subpath e1 and e2, resp. All the tasks have profit

1. The bags are given by the pairs {t1
j , t2

j}, j = 1, . . . , n. Obviously, the input Partition
instance is a YES instance iff the optimal solution to the corresponding BagUFP instance has
value n, i.e. exactly one task per bag is selected (notice that a solution cannot have larger
profit). Indeed, given a solution A′ ⊆ A for the Partition instance, a valid solution to the
corresponding BagUFP instance is obtained by selecting all the tasks t1

j with j ∈ A′ and all
the tasks t2

j with j /∈ A′. Notice that the total demand of the tasks using e1 and e2 must
be exactly M . Vice versa, given a BagUFP solution S of profit n, the selected tasks S1 ⊆ S

of type t1
j must have total demand exactly M , hence inducing a valid Partition solution

A′ := {j ∈ {1, . . . , n} : t1
j ∈ S1}.

We run the mentioned FPTAS on the obtained BagUFP instance with parameter ε = 1
2n

(hence taking polynomial time). If the optimal solution is n, the FPTAS will return a solution
of profit at least n

1+ε ≥ n− 1
2+1/n > n− 1, hence a solution of profit n since the profit is an

integer. Otherwise, the FPTAS will return a solution of profit at most n− 1. This is sufficient
to discriminate between YES and NO instances of Partition. ◀

References
1 Hesham K Alfares. Survey, categorization, and comparison of recent tour scheduling literature.

Annals of Operations Research, 127:145–175, 2004. doi:10.1023/B:ANOR.0000019088.98647.
E2.

2 Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Andreas Wiese. Constant
integrality gap LP formulations of unsplittable flow on a path. In IPCO, pages 25–36, 2013.
doi:10.1007/978-3-642-36694-9_3.

3 Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Andreas Wiese. A mazing
2+ε approximation for unsplittable flow on a path. In SODA, pages 26–41, 2014.

4 Kenneth R Baker. Workforce allocation in cyclical scheduling problems: A survey. Journal of
the Operational Research Society, 27(1):155–167, 1976.

5 N. Bansal, A. Chakrabarti, A. Epstein, and B. Schieber. A quasi-PTAS for unsplittable flow
on line graphs. In STOC, pages 721–729. ACM, 2006. doi:10.1145/1132516.1132617.

6 N. Bansal, Z. Friggstad, R. Khandekar, and R. Salavatipour. A logarithmic approximation for
unsplittable flow on line graphs. In SODA, pages 702–709, 2009.

7 A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber. A unified approach
to approximating resource allocation and scheduling. In Proceedings of the 32nd Annual
ACM Symposium on Theory of Computing (STOC ’00), pages 735–744. ACM, 2000. doi:
10.1145/335305.335410.

8 R. Bar-Yehuda, M. Beder, Y. Cohen, and D. Rawitz. Resource allocation in bounded degree
trees. In ESA, pages 64–75, 2006.

IPEC 2024

https://doi.org/10.1023/B:ANOR.0000019088.98647.E2
https://doi.org/10.1023/B:ANOR.0000019088.98647.E2
https://doi.org/10.1007/978-3-642-36694-9_3
https://doi.org/10.1145/1132516.1132617
https://doi.org/10.1145/335305.335410
https://doi.org/10.1145/335305.335410

5:20 Unsplittable Flow on a Short Path

9 Jatin Batra, Naveen Garg, Amit Kumar, Tobias Mömke, and Andreas Wiese. New
approximation schemes for unsplittable flow on a path. In SODA, pages 47–58, 2015.
doi:10.1137/1.9781611973730.5.

10 Stephen E Bechtold, Michael J Brusco, and Michael J Showalter. A comparative evaluation of
labor tour scheduling methods. Decision Sciences, 22(4):683–699, 1991.

11 Paul Bonsma, Jens Schulz, and Andreas Wiese. A constant-factor approximation algorithm
for unsplittable flow on paths. SIAM Journal on Computing, 43:767–799, 2014. doi:10.1137/
120868360.

12 Gruia Călinescu, Amit Chakrabarti, Howard J. Karloff, and Yuval Rabani. An improved
approximation algorithm for resource allocation. ACM Transactions on Algorithms, 7:48:1–48:7,
2011. doi:10.1145/2000807.2000816.

13 Venkatesan T. Chakaravarthy, Anamitra R. Choudhury, Shalmoli Gupta, Sambuddha Roy,
and Yogish Sabharwal. Improved algorithms for resource allocation under varying capacity. In
ESA, pages 222–234, 2014. doi:10.1007/978-3-662-44777-2_19.

14 A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar. Approximation algorithms for the
unsplittable flow problem. Algorithmica, 47:53–78, 2007. doi:10.1007/S00453-006-1210-5.

15 C. Chekuri, A. Ene, and N. Korula. Unsplittable flow in paths and trees and column-restricted
packing integer programs. In APPROX-RANDOM, pages 42–55, 2009.

16 C. Chekuri, M. Mydlarz, and F. Shepherd. Multicommodity demand flow in a tree and packing
integer programs. ACM Transactions on Algorithms, 3, 2007.

17 B. Chen, R. Hassin, and M. Tzur. Allocation of bandwidth and storage. IIE Transactions,
34:501–507, 2002.

18 M. Chrobak, G. Woeginger, K. Makino, and H. Xu. Caching is hard, even in the fault model.
In ESA, pages 195–206, 2010.

19 Marek Chrobak, Gerhard J Woeginger, Kazuhisa Makino, and Haifeng Xu. Caching is
hard—even in the fault model. Algorithmica, 63(4):781–794, 2012.

20 TM Cover and Joy A Thomas. Elements of information theory, 2006.
21 A. Darmann, U. Pferschy, and J. Schauer. Resource allocation with time intervals. Theoretical

Computer Science, 411:4217–4234, 2010. doi:10.1016/J.TCS.2010.08.028.
22 Syamantak Das and Andreas Wiese. On minimizing the makespan with bag constraints. In

13th Workshop on Models and Algorithms for Planning and Scheduling Problems, page 186,
2017.

23 Ilan Doron-Arad, Fabrizio Grandoni, and Ariel Kulik. Unsplittable flow on a short path. arXiv
preprint, 2024. doi:10.48550/arXiv.2407.10138.

24 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An aptas for bin packing with clique-
graph conflicts. In Algorithms and Data Structures: 17th International Symposium, WADS
2021, Virtual Event, August 9–11, 2021, Proceedings 17, pages 286–299. Springer, 2021.
doi:10.1007/978-3-030-83508-8_21.

25 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An afptas for bin packing with partition
matroid via a new method for lp rounding. In Approximation, Randomization, and Combinat-
orial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Schloss-Dagstuhl
– Leibniz Zentrum für Informatik, 2023.

26 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. Budgeted matroid maximization: a
parameterized viewpoint. IPEC, 2023.

27 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An EPTAS for budgeted matching and
budgeted matroid intersection via representative sets. In 50th International Colloquium on
Automata, Languages, and Programming (ICALP 2023). Schloss-Dagstuhl-Leibniz Zentrum
für Informatik, 2023.

28 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An EPTAS for budgeted matroid
independent set. In Symposium on Simplicity in Algorithms (SOSA), pages 69–83, 2023.
doi:10.1137/1.9781611977585.CH7.

https://doi.org/10.1137/1.9781611973730.5
https://doi.org/10.1137/120868360
https://doi.org/10.1137/120868360
https://doi.org/10.1145/2000807.2000816
https://doi.org/10.1007/978-3-662-44777-2_19
https://doi.org/10.1007/S00453-006-1210-5
https://doi.org/10.1016/J.TCS.2010.08.028
https://doi.org/10.48550/arXiv.2407.10138
https://doi.org/10.1007/978-3-030-83508-8_21
https://doi.org/10.1137/1.9781611977585.CH7

I. Doron-Arad, F. Grandoni, and A. Kulik 5:21

29 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An fptas for budgeted laminar matroid
independent set. Operations Research Letters, 51(6):632–637, 2023. doi:10.1016/J.ORL.2023.
10.005.

30 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. Lower bounds for matroid optimization
problems with a linear constraint. ICALP proc., 2024.

31 Ilan Doron-Arad and Hadas Shachnai. Approximating bin packing with conflict graphs via
maximization techniques. In Daniël Paulusma and Bernard Ries, editors, WG 2023, Fribourg,
Switzerland, June 28-30, 2023, Revised Selected Papers, 2023.

32 Kilian Grage, Klaus Jansen, and Kim-Manuel Klein. An eptas for machine scheduling with
bag-constraints. In The 31st ACM Symposium on Parallelism in Algorithms and Architectures,
pages 135–144, 2019. doi:10.1145/3323165.3323192.

33 Fabrizio Grandoni, Salvatore Ingala, and Sumedha Uniyal. Improved approximation algorithms
for unsplittable flow on a path with time windows. In WAOA, pages 13–24, 2015. doi:
10.1007/978-3-319-28684-6_2.

34 Fabrizio Grandoni, Tobias Mömke, and Andreas Wiese. Faster (1+ϵ)-approximation for
unsplittable flow on a path via resource augmentation and back. In Petra Mutzel, Rasmus
Pagh, and Grzegorz Herman, editors, 29th Annual European Symposium on Algorithms, ESA
2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs,
pages 49:1–49:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/
LIPIcs.ESA.2021.49.

35 Fabrizio Grandoni, Tobias Mömke, and Andreas Wiese. A PTAS for unsplittable flow on a
path. In STOC, pages 289–302. ACM, 2022. doi:10.1145/3519935.3519959.

36 Fabrizio Grandoni, Tobias Mömke, and Andreas Wiese. Unsplittable flow on a path: The
game! In SODA, pages 906–926. SIAM, 2022. doi:10.1137/1.9781611977073.39.

37 Fabrizio Grandoni, Tobias Mömke, Andreas Wiese, and Hang Zhou. To augment or not to
augment: Solving unsplittable flow on a path by creating slack. In SODA, pages 2411–2422,
2017. doi:10.1137/1.9781611974782.159.

38 Fabrizio Grandoni, Tobias Mömke, Andreas Wiese, and Hang Zhou. A (5/3 + ϵ)-approximation
for unsplittable flow on a path: placing small tasks into boxes. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA,
USA, June 25-29, 2018, pages 607–619, 2018. doi:10.1145/3188745.3188894.

39 Fabrizio Grandoni and Rico Zenklusen. Approximation schemes for multi-budgeted inde-
pendence systems. In European Symposium on Algorithms, pages 536–548. Springer, 2010.
doi:10.1007/978-3-642-15775-2_46.

40 Hans Kellerer, Ulrich Pferschy, David Pisinger, Hans Kellerer, Ulrich Pferschy, and David
Pisinger. The multiple-choice knapsack problem. Knapsack problems, pages 317–347, 2004.

41 S. Leonardi, A. Marchetti-Spaccamela, and A. Vitaletti. Approximation algorithms for
bandwidth and storage allocation problems under real time constraints. In FSTTCS, pages
409–420, 2000.

42 Dániel Marx. Parameterized complexity and approximation algorithms. Comput. J., 51(1):60–
78, 2008. doi:10.1093/COMJNL/BXM048.

43 C. A. Phillips, R. N. Uma, and J. Wein. Off-line admission control for general scheduling
problems. In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’00), pages 879–888. ACM, 2000.

44 David Pisinger. A minimal algorithm for the multiple-choice knapsack problem. European
Journal of Operational Research, 83(2):394–410, 1995.

45 Alexander Schrijver et al. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer, 2003.

46 Prabhakant Sinha and Andris A Zoltners. The multiple-choice knapsack problem. Operations
Research, 27(3):503–515, 1979. doi:10.1287/OPRE.27.3.503.

47 Frits C. R. Spieksma. On the approximability of an interval scheduling problem. Journal of
Scheduling, 2:215–227, 1999.

IPEC 2024

https://doi.org/10.1016/J.ORL.2023.10.005
https://doi.org/10.1016/J.ORL.2023.10.005
https://doi.org/10.1145/3323165.3323192
https://doi.org/10.1007/978-3-319-28684-6_2
https://doi.org/10.1007/978-3-319-28684-6_2
https://doi.org/10.4230/LIPIcs.ESA.2021.49
https://doi.org/10.4230/LIPIcs.ESA.2021.49
https://doi.org/10.1145/3519935.3519959
https://doi.org/10.1137/1.9781611977073.39
https://doi.org/10.1137/1.9781611974782.159
https://doi.org/10.1145/3188745.3188894
https://doi.org/10.1007/978-3-642-15775-2_46
https://doi.org/10.1093/COMJNL/BXM048
https://doi.org/10.1287/OPRE.27.3.503

5:22 Unsplittable Flow on a Short Path

48 Jorne Van den Bergh, Jeroen Beliën, Philippe De Bruecker, Erik Demeulemeester, and Liesje
De Boeck. Personnel scheduling: A literature review. European journal of operational research,
226(3):367–385, 2013. doi:10.1016/J.EJOR.2012.11.029.

49 Andreas Wiese. A (1+ϵ)-approximation for unsplittable flow on a path in fixed-parameter
running time. In 44th International Colloquium on Automata, Languages, and Programming,
ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 67:1–67:13, 2017.

https://doi.org/10.1016/J.EJOR.2012.11.029

	1 Introduction
	1.1 Our Results and Techniques
	1.1.1 Algorithms and Hardness for BagUFP
	1.1.2 Algorithms and Hardness for UFP

	1.2 Preliminaries

	2 A p-EPTAS for BagUFP
	2.1 A Representative Set Based p-EPTAS
	2.2 Representative Set Construction

	3 A Faster p-EPTAS for UFP
	4 A Lower bound for BagUFP

