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Abstract
Parameterized Inapproximability Hypothesis (PIH) is a central question in the field of parameterized
complexity. PIH asserts that given as input a 2-CSP on k variables and alphabet size n, it is
W[1]-hard parameterized by k to distinguish if the input is perfectly satisfiable or if every assignment
to the input violates 1% of the constraints.

An important implication of PIH is that it yields the tight parameterized inapproximability of
the k-maxcoverage problem. In the k-maxcoverage problem, we are given as input a set system, a
threshold τ > 0, and a parameter k and the goal is to determine if there exist k sets in the input
whose union is at least τ fraction of the entire universe. PIH is known to imply that it is W[1]-hard
parameterized by k to distinguish if there are k input sets whose union is at least τ fraction of the
universe or if the union of every k input sets is not much larger than τ · (1 − 1

e
) fraction of the

universe.
In this work we present a gap preserving FPT reduction (in the reverse direction) from the

k-maxcoverage problem to the aforementioned 2-CSP problem, thus showing that the assertion that
approximating the k-maxcoverage problem to some constant factor is W[1]-hard implies PIH. In
addition, we present a gap preserving FPT reduction from the k-median problem (in general metrics)
to the k-maxcoverage problem, further highlighting the power of gap preserving FPT reductions over
classical gap preserving polynomial time reductions.
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1 Introduction

Approximation Algorithms and Fixed Parameter Tractability are two popular ways to cope
with NP-hardness of computational problems. In recent years, there is a steady rise in
results contributing to the theory of parameterized inapproximability (see e.g. [22]). These
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6:2 On Parameterized Inapproximability of k-Median, k-Max-Coverage, and 2-CSP

include parameterized inapproximability results for the k-Set Intersection problem [38, 6],
k-Set Cover problem [10, 31, 39, 33, 42], k-Clique problem [40, 30, 9], Steiner Orientation
problem [47], fundamental problems in coding theory and lattice theory [4, 3], and more.

A major open question in the theory of parameterized inapproximability is the resolution
of the parameterized inapproximability hypothesis (PIH) [43]. PIH asserts that there exists
some ε > 0, such that it is W[1]-hard to distinguish if a 2-CSP instance on k variables (k is the
parameter) and alphabet size n is completely satisfiable or if every assignment to its variables
satisfies at most 1 − ε fraction of the constraints. The analogue of (the resolution of) PIH in
the NP-world is the celebrated PCP theorem [2, 1, 17], and thus positively resolving PIH is
also appropriately dubbed as proving the “PCP theorem for Parameterized Complexity” [43].

PIH is known to imply the hardness of approximation (to some positive constant factor)
of many fundamental problems in parameterized complexity (for which we do not know
how to prove unconditional constant factor W[1]-hardness), such as k-maxcoverage [14] (and
consequently clustering problems such as minimizing the k-median and k-means objectives;
see [14]), Directed Odd Cycle Transversal [43], Strongly Connected Steiner Subgraph [11],
Planar Steiner Orientation [12], Grid Tiling and Determinant Maximization [46], Independent
Set in H-free graphs [19], etc.

It is known that assuming the Gap Exponential Time Hypothesis (Gap-ETH) [45, 18] one
can show that the gap problem on 2-CSP referred to in PIH is not in FPT (see e.g. [5]), and
moreover that many parameterized inapproximability results discussed in this manuscript
follow from Gap-ETH (e.g. [8, 44]). Moreover, in a recent breakthrough, Guruswami et al. [25],
building on ideas in [41], proved that assuming the Exponential Time Hypothesis [27, 28], the
aforementioned gap problem on 2-CSP is not in FPT. Subsequently, they even obtained near
optimal conditional time lower bounds for the parameterized 2-CSP problem [24]. However,
this paper is solely focused on parameterized inapproximability, and thus we will not further
elaborate on the related works in fine-grained inapproximability.

A popular approach to make progress on central questions such as resolving PIH, is to
prove unconditional hardness results for problems whose hardness is known only assuming PIH.
Such an approach (of proving the implications unconditionally) has been historically very
fruitful in complexity theory, for example, in the last decade it is in the attempt of proving
improved unconditional NP-hardness of approximation result for the vertex cover problem [35]
(whose optimal inapproximability is only known under Unique Games Conjecture [34]), that
the 2-to-2 games theorem was proven [36]. Moreover, this approach is indeed an active
line of research in the theory of parameterized inapproximabily, leading to the hardness of
approximation results for k-set cover problem [10, 31, 39], k-clique problem [40, 30, 9], and
more.

The maximization version of the k-set cover problem, i.e., the k-maxcoverage problem is a
fundamental optimization problem at the heart of many computation problems in computer
science. For example, it is at the heart of many clustering problems [23]. Formally, in the
k-maxcoverage problem we are given as input a pair (U ,S) and a parameter k, where S is a
collection of sets over the universe U , and the goal is to find k sets in S whose union is of
maximum cardinality. The k-maxcoverage problem is a canonical W[2]-complete problem, and
currently the W[1]-hardness of approximating the k-maxcoverage problem to some constant
factor only holds assuming PIH [14]. Thus, we ask:

Is it possible to prove constant inapproximability of the k-maxcoverage problem
circumventing the resolution of PIH?

This question is particularly appealing since W[1]-hardness of approximating k-set cover
(minimization variant of k-maxcoverage) was established circumventing PIH [10, 31, 39], and
more recently, similar progress was achieved for the k-clique problem as well [40, 30, 9].
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Our first result is rather surprising (at least in first glance), that the answer to the above
question is in the negative.

▶ Theorem 1 (Informal statement; See Theorem 5 for a formal statement). For every δ ∈ (0, 1/2]
(where δ is allowed to depend on k), if approximating the k-maxcoverage problem to (1 − δ)
factor is W[1]-hard then approximating 2-CSP to

(
1 − δ2

4

)
factor is also W[1]-hard (under

randomized Turing reductions).

Recall that in [14], the authors proved that for every ε > 0, assuming PIH, approximating
the k-maxcoverage problem to a factor better than 1 − 1

e + ε is W[1]-hard (see Lemma 19
in [14]). Moreover, this inapproximability factor is tight [26]. Together with Theorem 1,
we have that there is a gap preserving reduction in both directions1 between 2-CSP (on k

variables and alphabet size n) and the k-maxcoverage problem on poly(n) sets over universe
of size poly(n).

To the best of our knowledge, we are not aware of a direct gap preserving reduction to
the 2-CSP problem from the maxcoverage problem in the NP world, i.e., in other words we
do not know how to directly prove the PCP theorem for NP, assuming that approximating
maxcoverage to some constant factor is NP-hard. Furthermore, an interesting consequence of
Theorem 1 is a gap amplification result for the k-maxcoverage problem in the parameterized
complexity world: starting from the W[1]-hardness of approximating the k-maxcoverage
problem to (1 − ε) factor (for some constant ε > 0), we can first apply Theorem 1 and then
Lemma 19 of [14], to obtain that approximating the k-maxcoverage problem to (1 − 1

e + ε′)
factor, for any ε′ > 0 is W[1]-hard.

At a high level, the proof of Theorem 1 has three steps. Starting from an instance of the
k-maxcoverage problem containing n sets, in the first step we subsample a universe of size
Ok(logn) while retaining the gap in the completeness and soundness cases (Lemma 6). In
the second step, we reduce from this new k-maxcoverage instance on the smaller universe to
a variant of the 2-CSP instance called “Valued CSP” (see Section 2 for the definition) by first
equipartitioning the universe into Ok(1) many subuniverses and then constructing a Valued
CSP instance where for a subset of variables, each variable in that subset is associated with
a subuniverse and an assignment to that variable determines how each of the k solution sets
cover this subuniverse. The rest of the variables (k many of them) encode the k solution sets
(see Lemma 7). Finally, in the last step, we provide a gap preserving reduction from Valued
CSP to the standard 2-CSP (Lemma 8).

Theorem 1 has further implications on our understanding of the complexity of approxi-
mating the k-maxcoverage problem. While exactly solving the problem is W[2]-hard, it was
known to experts that approximating the k-maxcoverage problem to 1 − 1

F (k) factor, for
any computable function F , is in W[1]. A corollary of Theorem 1 is a formal proof of this
W[1]-membership (by setting δ = 1/F (k) in Theorem 1). Moreover, by modifying the range
of parameters in the reduction of [31] for the k-set cover instance, it is possible to argue that
approximating the k-maxcoverage problem to any 1 − 1/ρ(k) factor is W[1]-hard for every
unbounded computable function ρ (for example think of ρ(k) = log∗(k)). Thus, we obtain
the following.

▶ Theorem 2. Let ρ : N → N be any unbounded computable function. Then approximating
the k-maxcoverage problem to 1 − 1

ρ(k) factor is W[1]-complete.

1 Albeit the reduction from the k-maxcoverage problem to the 2-CSP problem is a randomized Turing
reduction.

IPEC 2024
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We can extend our line of inquiry and wonder if one can prove the parameterized
inapproximability of clustering objectives such as k-median and k-means without proving
anything about the inapproximability of the k-maxcoverage problem. We will restrict our
attention here to the k-median problem, but our results extend to the k-means problem as
well (see Remark 12).

In the k-median problem (in general metric), we are given as input a tuple ((V, d), C,F , τ)
and a parameter k, where V is a finite set, and d is a distance function for all pairs of points
in V respecting the triangle inequality (or more precisely (V, d) is a metric space), C,F ⊆ V

and the goal is to determine if there exists F ⊆ F such that |F | = k and cost(C,F ) is
minimized, where cost(C,F ) is the sum of distances from every client in C to its closest
facility in F (see Section 2 for a formal definition). The k-median problem is W[2]-complete
by a simple reduction from the k-maxcoverage problem, and currently the W[1]-hardness of
approximating k-median to some constant factor only holds assuming PIH [14]. Thus, we
ask:

Is it possible to prove constant inapproximability of k-median
circumventing the resolution of PIH?

Our result again is rather surprising that the answer to the above question is also in the
negative.

▶ Theorem 3. For any constants α, δ > 0, if approximating the k-median problem to
(1 +α+ δ) factor is W[1]-hard then approximating the multicolored k-maxcoverage problem to(

1 − α
2
)

factor is also W[1]-hard (under randomized Turing reductions). A similar reduction
also holds from the k-means problem to the multicolored k-maxcoverage problem.

In Remark 10 we discuss how to modify the proof of Theorem 1 to obtain the statement
of Theorem 1 to hold even for the multicolored k-maxcoverage problem instead of the (un-
multicolored) k-maxcoverage problem. Then we can put together the reduction in Theorem 3
with the modified Theorem 1 to obtain an FPT gap preserving reduction from the k-median
problem to 2-CSP problem.

The proof of Theorem 3 follows from observing that the
(
1 + 2

e + ε
)
-approximation

algorithm (for any ε > 0) of [14] can be fine-tuned and rephrased as a reduction from
k-median problem to the multicolored k-maxcoverage problem.

Both Theorems 1 and 3 illustrate the power of FPT gap preserving reductions over
classical gap preserving polynomial time reductions. In particular, if we had a polynomial
time analogue of Theorem 3, i.e., if the runtime of the algorithm A and Γ in the Theorem 3
statement are both polynomial functions then this would lead to a major breakthrough in
the field of approximation algorithms. In particular, it would show optimal approximation
thresholds for the celebrated k-median and k-means problems in the NP world, improving
on the state-of-the-art result of [15] and [29] respectively, showing that the hardness of
approximation factors obtained in [23] are optimal!

In Figure 1, we highlight gap-preserving FPT reductions between k-clique, 2-CSP, k-
maxcoverage, and k-median and k-means problems. A glaring open problem in Figure 1 is
whether constant inapproximability of the k-clique problem implies PIH. This is a challenging
open problem, even listed in [22].

2 Preliminaries

In this section, we formally define the problems of interest to this paper. Throughout, we
use the notation Ok(·) and Ωk(·) to denote that the hidden constant can be any computable
function of k.
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k-Clique

k-Max-Coverage2-CSP
k-Median

&
k-Means

Theorem 1

[20]

Open[21]

Theorem 3

[23]

Gap Preserving Reductions
Figure 1 In the above figure, we provide bidirectional FPT gap preserving reductions between

k-clique, 2-CSP, k-maxcoverage, and k-median and k-means problems, whenever possible, with
appropriate references. The reduction from k-median and k-means problems is to the multicolored
version of the k-maxcoverage problem (see Remark 13 for a discussion) and that is why the arrow is
dashed.

k-maxcoverage problem

We denote by (U ,S) a set system where U denotes the universe and S is a collection of
subsets of U . In the k-maxcoverage problem, we are given as input a set system (U ,S) and
a parameter k, and the goal is to identify k sets in S whose union is of maximum size.
We denote by OPT(U ,S) the optimum fraction of the k-maxcoverage instance (U ,S), i.e.

max
Si1 ,...,Sik

∈S

|Si1 ∪···∪Sik
|

|U| .

We denote by GapMaxkCov(τ, τ ′) the decision problem where given as input an in-
stance (U ,S) of the k-maxcoverage problem, the goal is to distinguish the completeness
case where OPT(U ,S) ≥ τ and the soundness case where OPT(U ,S) < τ ′. We also define
GapMaxkCovSmallUni(τ, τ ′) be the same problem but only restricted to the instances where
|U| ≤ Ok(log |S|).

In this paper, we also refer to the multicolored k-maxcoverage problem whose input is
(U ,S := S1∪̇S2∪̇ · · · ∪̇Sk), and the goal is to identify (S1, S2, . . . , Sk) ∈ S1 × S2 × · · · × Sk
such that |S1 ∪ S2 ∪ · · · ∪ Sk| is maximized. Moreover, we extend the above notations of
OPT, GapMaxkCov, and GapMaxkCovSmallUni to the multicolored k-maxcoverage problem.

2-CSP

For convenience, we use weighted version of 2-CSP where the edges are weighted. Note that
there is a simple (FPT) reduction from this version to the unweighted version [16].

A 2-CSP instance Π = (V,E, (Σv)v∈V , (we)e∈E , (Ce)e∈E) consists of the following:
The set of vertices (i.e. variables) V .
The set E of edges between V .
For each v ∈ V , the alphabet set Σv of v.
For each e = (u, v) ∈ E, a weight we and the constraint Ce ⊆ Σu × Σv.

An assignment is a tuple ψ = (ψv)v∈V where ψv ∈ Σv. The (weighted and normalized)
value of an assignment ψ, denoted by valΠ(ψ), is defined as:

1∑
e∈E

we
·

∑
e=(u,v)∈E

we · 1[(ψu, ψv) ∈ Cu,v],

IPEC 2024
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where for any proposition Λ, 1(Λ) is 1 if Λ is true and 0 otherwise. The value of the instance
is defined as val(Π) := max

ψ
valΠ(ψ) where the maximum is over all assignments ψ of Π. The

alphabet size of the instance is defined as max
v∈V

|Σv|. If a 2-CSP instance is provided without
(we)e∈E then the weights are all assumed to be 1.

The Gap2CSP(c, s) problem is to decide whether a 2-CSP instance Π has value at least c
or less than s. Note that the parameter of this problem is the number of variables in Π.

(Finite) Valued 2-CSP

It will also be more convenient for us to employ a more general version known as (Finite)
Valued CSP2. In short, this is a version where different assignments for each edge can results
in different values. This is defined more precisely below.

A Valued 2-CSP instance Π = (V,E, (Σv)v∈V , (fe)e∈E) consists of
V,E, (Σv)v∈V are defined similarly to 2-CSP instances.
For each e = (u, v) ∈ E, the value function fe : Σu × Σv → [0, 1].

The notion of an assignment is defined similar to 2-CSP instance but the value of an assignment
is now defined as:

valΠ(ψ) := E
(u,v)∼E

[f(u,v)(ψu, ψv)].

The value of an instance is defined similar to before. We emphasize that the main difference
between valued 2-CSP and standard 2-CSP is that the function fe can take continuous value.

The Gap2VCSP(c, s) problem is to decide whether a Valued 2CSP instance Π has value
at least c or less than s. Again, the parameter here is the number of variables.

k-median

An instance of the k-median problem is defined by a tuple ((V, d), C,F , k), where (V, d) is a
metric space over a set of points V with d(i, j) denoting the distance between two points
i, j in V . Further, C and F are subsets of V and are referred to as “clients” and “facility
locations” respectively, and k is a positive parameter. The goal is to find a subset F of k
facilities in F to minimize

cost(C,F ) :=
∑
j∈C

d(j, F ),

where d(j, F ) := min
f∈F

d(j, f). The cost of the k-means objective is cost2(C,F ) :=∑
j∈C d(j, F )2.

k-MaxCover problem

We recall the MaxCover problem introduced in [8]. A k-MaxCover instance Γ consists of a
bipartite graph G = (V ∪̇W,E) such that V is partitioned into V = V1∪̇ · · · ∪̇Vk and W is
partitioned into W = W1∪̇ · · · ∪̇Wℓ. We sometimes refer to Vi’s and Wj ’s as left super-nodes
and right super-nodes of Γ, respectively.

A solution to k-MaxCover is called a labeling, which is a subset of vertices v1 ∈ V1, . . . , vk ∈
Vk. We say that a labeling v1, . . . , vk covers a right super-node Wi, if there exists a vertex
wi ∈ Wi which is a joint neighbor of all v1, . . . , vk, i.e., (vj , wi) ∈ E for every j ∈ [k]. We
denote by MaxCover(Γ) the maximal fraction of right super-nodes that can be simultaneously
covered, i.e.,

2 See e.g. [37] and references therein.
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MaxCover(Γ) = 1
ℓ

(
max

labeling v1,...,vk

∣∣{i ∈ [ℓ] | Wi is covered by v1, . . . , vk
}∣∣) .

Given an instance Γ(G, c, s) of the k-MaxCover problem as input, our goal is to distinguish
between the two cases:
Completeness MaxCover(Γ) ≥ c.
Soundness MaxCover(Γ) ≤ s.

Concentration Inequalities

We will also use the multiplicative Chernoff inequality, which is summarized below.

▶ Theorem 4 (Chernoff Inequality). Let X1, . . . , Xm denote i.i.d. Bernoulli random variables
where E[Xj ] = q. Then, for any ζ ∈ (0, 1) we have

Pr[X1 + · · · +Xm ≥ (1 + ζ)qm],Pr[X1 + · · · +Xm ≤ (1 − ζ)qm] ≤ exp
(
−ζ2qm/3

)
.

3 Reducing k-MaxCoverage to 2-CSP

In this section, we prove the following formal version of Theorem 1.

▶ Theorem 5. For every τ > 0 and δ ∈ (0, 1/2] (where both τ and δ are allowed to depend
on k), there is a randomized algorithm A which takes as input a k-maxcoverage instance
(U ,S) and with probability 1 − o(1), outputs Γ(k) many 2-CSP instances {Πi}i∈[Γ(k)], for
some computable function Γ : N → N, such that the following holds.
Running Time: A runs in time T (k) · poly(|U| + |S|), for some computable function T : N →

N.
Size: For every i ∈ [Γ(k)], we have that Πi is defined on Λ(k) variables over an alphabet of

size poly(|U| + |S|) for some computable function Λ : N → N.
Completeness: Suppose there exist k sets in S such that their union is of size τ · |U|. Then,

there exists i ∈ [Γ(k)] and an assignment to the variables of Πi that satisfies all its
constraints.

Soundness: Suppose that for every k sets in S, their union is of size at most (1 − δ) · τ · |U|.
Then, for every i ∈ [Γ(k)] we have that every assignment to the variables of Πi satisfies
at most

(
1 − δ2

4

)
fraction of the constraints of Πi.

The proof of the theorem follows in three steps. We start by providing a randomized
reduction which shows that we may assume w.l.o.g. that |U| ≤ Ok(logn). The rough idea is
to use random hashing and subsampling to reduce the domain, as formalized below.

▶ Lemma 6. For every τ > 0 and δ ∈ (0, 1/2] (where both τ, δ may or may not depend on k),
there is a randomized FPT reduction (that holds w.p. 1 − o(1)) from GapMaxkCov(τ, (1 − δ)τ)
to GapMaxkCovSmallUni(τ ′, (1 − ε)τ ′) for ε = δ2/2 and τ ′ = δ(1 − δ) · (1 + δ2).

In the second step, we show how to reduce the small-universe k-maxcoverage instance to
a Valued CSP instance. The overall idea is to create a set of variables x1, . . . , xk where xi
represents the i-th set selected in the solution. To check that they cover a large number of
constraints, we partition the universe into M groups U1, . . . ,UM each of size O(logn/ log k)
where the small-universe k-maxcoverage instance guarantees that M = Ok(1). For each
partition j ∈ [M ], we create a variable yj . The variable encodes how x1, . . . , xk covers the

IPEC 2024
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j-th partition Uj . Namely, each σ ∈ Σyj encodes whether each element (in Uj) is covered
and, if so, by which set. Notice that there can be as many as (k + 1)|Uj | possibilities here,
but this is not an issue since |Uj | = O(logn/ log k). The constraints are then simply the
consistency checks between xi, yj where the values represents the number of elements the
i-th set covers in Uj . Formally, we prove the following.

▶ Lemma 7. For every τ, ε > 0 (where both τ, ε may or may not depend on k), there is a
deterministic FPT reduction from GapMaxkCovSmallUni(τ, (1 − ε)τ) to Gap2VCSP(c, c(1 − ε))
where c = Ok(τ).

The final part is the following lemma which shows that, in the FPT world, Gap2VCSP
reduces to Gap2CSP. At a high level, this reduction is done by guessing the values of each
edge (in the optimal solution) and turning that into a “hard” constraint as in a 2-CSP.

▶ Lemma 8. For any c > s > 0 such that c/s ≥ 1 + Ωk(1), there is a deterministic FPT
(Turing) reduction from Gap2VCSP(c, s) to Gap2CSP(1, 1 − ε) for ε = c/s−1

c/s+1 .

Finally, we put together the above three lemmas to prove Theorem 5.

Proof of Theorem 5. The algorithm A takes as input an instance of GapMaxkCov(τ, (1−δ)τ),
applies the reduction in Lemma 6 to obtain an instance of GapMaxkCovSmallUni(τ ′, (1− δ2

2 )τ ′)
for τ ′ = δ(1 − δ) · (1 + δ2), and then applies the reduction in Lemma 7 to obtain an instance
of Gap2VCSP(c, c(1 − δ2

2 )) where c = Ok(δ), and finally applies the reduction in Lemma 8 to
obtain an instance of Gap2CSP(1, 1 − ε) for ε = δ2

4−δ2 >
δ2

4 . ◀

3.1 Step I: Universe Reduction for k-MaxCoverage
In this subsection, we prove Lemma 6.

Proof of Lemma 6. Given (U ,S = {S1, . . . , Sn}), an instance of the GapMaxkCov(τ, (1−δ)τ)
problem, we create an instance (U ′,S ′ = {S′

1, . . . , S
′
n}) of the GapMaxkCovSmallUni(τ ′, (1 −

ε)τ ′) problem as follows. Let m := ⌈12k · δ−9 logn⌉ and p := δ
τ ·|U| . Let U ′ = [m]. For

each u ∈ U and j ∈ [m], let Yu,j denote an i.i.d. Bernoulli random variable that is 1 with
probability p. Then, for each i ∈ [n] and j ∈ [m], let j belong to S′

i if and only if there exist
some u ∈ Si such that Yu,j = 1.

Fix any Si1 , . . . , Sik ∈ S. For every j ∈ [m], let Xj denote the indicator whether
j ∈ S′

i1
∪ · · · ∪ S′

ik
. Note that X1, . . . , Xm are i.i.d. and,

Pr[Xj = 1] = 1 − (1 − p)|Si1 ∪···∪Sik
|.

Note also that X1 + · · · +Xm is exactly equal to |S′
i1

∪ · · · ∪ S′
ik

|.

Completeness. Suppose that OPT(U ,S) ≥ τ . Let Si1 , . . . , Sik be an optimal solution in
(U ,S). Then, we have for each j ∈ [m] that:

Pr[Xj = 1] ≥ 1 − (1 − p)τ ·|U| ≥ 1 − 1
(1 + p)τ ·|U| ≥ 1 − 1

1 + pτ |U|
= δ

1 + δ
= 1

1 − δ4 · τ ′,

where the second inequality follows from Bernoulli’s inequality and the last inequality
follows from our choice of parameters. Applying Theorem 4 with ζ = δ4 implies that
Pr[X1 + · · · +Xm ≥ τ ′] ≥ 1 − exp(−δ9m/6) = 1 − o(1) as desired.
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Soundness. Suppose that OPT(U ,S) < (1 − δ)τ . Consider any Si1 , . . . , Sik ∈ S. We have
for each j ∈ [m] that:

Pr[Xj = 1] ≤ 1 − (1 − p)(1−δ)τ ·|U| ≤ (1 − δ)pτ |U| = δ(1 − δ) = 1
1 + δ2 · τ ′,

where the second inequality follows from Bernoulli’s inequality. Again, applying Theorem 4
with ζ = δ4 implies that Pr[X1 + · · · +Xm ≥ 1+δ4

1+δ2 τ
′] ≤ exp(−δ9(1 − δ)m/3) ≤ exp(−δ9m/6)

(where we used that δ ≤ 1/2). Taking the union bound over all i1, . . . , ik then implies that
this holds for all i1, . . . , ik with probability at least 1 − nk

exp(δ9m/6) ≥ 1 − 1
nk = 1 − o(1). ◀

▶ Remark 9. We note that we can mimic the above proof to extend Lemma 6 to the
multicolored k-maxcoverage problem as well. In particular, this gives a randomized FPT
reduction (that holds w.p. 1−o(1)) from multicolored GapMaxkCov(τ, (1−δ)τ) to multicolored
GapMaxkCovSmallUni(τ ′, (1 − ε)τ ′) for ε = δ2/2 and τ ′ = δ(1 − δ) · (1 + δ2) as well.

3.2 Step II: Small-Universe k-MaxCoverage ⇒ Valued CSP
In this subsection, we prove Lemma 7.

Proof of Lemma 7. Given an instance (U ,S = {S1, . . . , Sn}) of
GapMaxkCovSmallUni(τ, (1 − ε)τ), we construct an instance Π = (V,E, (Σv)v∈V , (fe)e∈E) of
Gap2VCSP(c, c(1 − ε)) as follows:

Let M :=
⌈

|U|
log |S| · log k

⌉
= Ok(1) and let U1∪̇ · · · ∪̇UM be a partition of U into nearly

equal parts, each of size |Ui| = O(|U|/M) = O(logn/ log k).
Let V = {x1, . . . , xk, y1, . . . , yM} and E contains (xi, yj) for all i ∈ [k] and j ∈ [M ].
For each i ∈ [k], let Σxi

= [n].
For each j ∈ [M ], let Σyj

contains all functions from Uj to {0, . . . , k}.
For each i ∈ [k], j ∈ [M ], let f(xi,yj) be defined as follows:

f(xi,yj)(σu, σv) =
{

|σ−1
v (i)|
|U| if σ−1

v (i) ⊆ Sσu
,

0 otherwise.

Finally, let c = τ
k·M .

Note that the new parameter is k + M = Ok(1). Furthermore, the running time of
the reduction is polynomial since |Σyj

| = (k + 1)|Uj | = kO(logn/ log k) = nO(1). Thus, the
reduction is an FPT reduction as desired (where the parameter is the number of variables of
the Gap2VCSP instance).

We next prove the completeness and soundness of the reduction. In fact, we will argue
that val(Π) = OPT(U,S)

k·M , from which the completeness and soundness immediately follow. To
see that val(Π) ≥ OPT(U,S)

k·M , let Sℓ1 , . . . , Sℓk
denote an optimal solution. We let ψxi

= ℓi for
all i ∈ [k]. As for ψyj , we let ψyj (u) be 0 if u /∈ Sℓ1 ∪ · · · ∪ Sℓk

; otherwise, we let ψyj (u) = i

such that Sℓi
(if there are multiple such i’s, just pick one arbitrarily). It is obvious by the

construction that ψ−1
yj

(i) ⊆ Sψxi
for all i ∈ [k] and j ∈ [M ]. Thus, we have

val(Π) ≥ valΠ(ψ) = 1
k ·M

∑
j∈[M ]

∑
i∈[k]

|ψ−1
yj

(i)|
|U|

= 1
k ·M

∑
j∈[M ]

|Uj ∩ (Sℓ1 ∪ · · · ∪ Sℓk
)|

|U|

= 1
k ·M

|Sℓ1 ∪ · · · ∪ Sℓk
|

|U|
= OPT(U ,S)

k ·M
.
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On the other hand, to show that val(Π) ≤ OPT(U,S)
k·M , let ψ be any assignment of Π. We have

valΠ(ψ) ≤ 1
k ·M

∑
j∈[M ]

∑
i∈[k]

|ψ−1
yj

(i) ∩ Sψxi
|

|U|

≤ 1
k ·M

∑
j∈[M ]

|Uj ∩ (Sψx1
∪ · · · ∪ Sψxk

)|
|U|

≤ 1
k ·M

|Sψx1
∪ · · · ∪ Sψxk

|
|U|

≤ OPT(U ,S)
k ·M

. ◀

▶ Remark 10. We can extend Lemma 7 to apply for the multicolored k-maxcoverage
problem as well in the following way. In particular, we can start from the multicolored
GapMaxkCov(τ, (1 − δ)τ) problem and as described in Remark 9, we can reduce it to the mul-
ticolored GapMaxkCovSmallUni(τ ′, (1 − ε)τ ′) problem for ε = δ2/2 and τ ′ = δ(1 − δ) · (1 + δ2).
Then, we note that we can mimic the proof of Lemma 7 with one minor modification that
for all i ∈ [k], the alphabet set of variable xi are the indices of the ith collection of the input
sets instead of the entire set [n].

3.3 Step III: Valued CSP ⇒ 2-CSP
In this subsection, we prove Lemma 8.

Proof of Lemma 8. Let Π = (V,E, (Σv)v∈V , (fe)e∈E) be a Valued 2-CSP instance, and let
ℓ = |E| and γ = ℓ · s. We may assume that supp(fe) ⊆ [0, γ) for all e ∈ E. Indeed, if any
σu ∈ Σu, σv ∈ Σv for (u, v) ∈ E satisfies f(u,v)(σu, σv) ≥ ℓ · s, then assigning σu to u and σv
to v alone already yields value at least s. We describe the reduction under this assumption.

Let B = ⌈2ℓ/ε⌉. For each θ ∈ [B]|E|, check if 1
|E|
∑
e∈E θe ≥ B/γ · s

1−ε . If not, then skip
this θ and continue to the next one. Otherwise, if this is satisfied, we create an instance
Πθ = (V,E, (Σv)v∈V , (wθe)e∈E , (Cθe )e∈E) as follows:

V,E, (Σv)v∈V remains the same as in Π.
For each e = (u, v) ∈ E, let wθe = θe and Ce = {(σu, σv) | fe(σu, σv) ≥ γ · θe/B}.

Note that the number of different θ’s is B|E| = O(ℓ/ε)ℓ ≤ 2O(ℓ log ℓ) and thus the above is
an FPT reduction. We next prove the completeness and soundness of the reduction.

Completeness. Suppose that there is an assignment ψ of Π such that valΠ(ψ) ≥ c. Let θψ
be defined by θψe := ⌊B · fe(ψu, ψv)/γ⌋ for all e = (u, v) ∈ E. Notice that

1
|E|

∑
e∈E

θψe = 1
|E|

∑
e=(u,v)∈E

⌊B · fe(ψu, ψv)/γ⌋

≥ 1
|E|

∑
e=(u,v)∈E

(B · fe(ψu, ψv)/γ − 1)

= B/γ · valΠ(ψ) − 1
≥ B/γ · c− 1

≥ B/γ · s

1 − ε
,

where the last inequality follows from our choice of B and ε.
Thus, the instance Πψ is considered in the construction. It is also obvious by the

construction that Πψ is indeed satisfiable.
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Soundness. Suppose (contrapositively) that for some θ with 1
|E|
∑
e∈E θe ≥ B/γ · s such

that Πθ is not a NO instance of Gap2CSP(1, 1 − ε). That is, there exists an assignment ψ
such that valΠθ (ψ) ≥ 1 − ε. From this, we have

valΠ(ψ) = 1
|E|

∑
e=(u,v)∈E

fe(ψu, ψv)

≥ 1
|E|

∑
e=(u,v)∈E

(γ · θe/B) · 1[(ψu, ψv) ∈ Ce]

= 1
|E|

γ/B · valΠθ (ψ) ·

(∑
e∈E

θe

)

≥ 1
|E|

γ/B · (1 − ε) ·
(
B/γ · s

1 − ε

)
≥ s,

where the first inequality is based on how Cθe is defined and the second inequality follows
from valΠθ (ψ) ≥ 1 − ε and the assumption on θ.

Thus, in this case, we have val(Π) ≥ s as desired. ◀

4 Reducing k-median to Multicolored k-MaxCoverage

In this section, we prove the following formal version of Theorem 3.

▶ Theorem 11. For every constant α, δ > 0, there is an algorithm A which takes as input
a k-median instance ((V, d), C,F , τ) and outputs Γ(k) many multicolored k-maxcoverage
instances {(U i,Si := Si1∪̇Si2∪̇ · · · ∪̇Sik)}i∈[Γ(k)], for some computable function Γ : N → N,
such that the following holds.
Running Time: A runs in time T (k) · poly(|V |), for some computable function T : N → N.

Size: For every i ∈ [Γ(k)], we have that |U i|, |Si| = poly(|V | · ∆), where ∆ :=
max

v,v′∈V
d(v,v′)

min
v,v′∈V

d(v,v′)>0

d(v,v′) .

Completeness: Suppose that there exist F ⊆ F such that |F | = k and cost(C,F ) ≤ τ then
there exists i ∈ [Γ(k)] and (S1, S2, . . . , Sk) ∈ Si1×Si2×· · ·×Sik such that S1 ∪S2 ∪· · ·∪Sk =
U i.

Soundness: Suppose that for every F ⊆ F such that |F | = k we have cost(C,F ) ≥ (1+α+δ)·τ
then for every i ∈ [Γ(k)] and every (S1, S2, . . . , Sk) ∈ Si1 × Si2 × · · · × Sik we have
|S1 ∪ S2 ∪ · · · ∪ Sk| ≤ (1 − α

2 ) · |U i|.

A similar reduction also holds from the k-means problem to the multicolored k-maxcoverage
problem.

Thus, from the above theorem we can show that a (1 − 1/e − ε)-FPT approximation
for the multicolored k-maxcoverage problem implies a (1 + 2/e + 3ε)-FPT approximation
for the k-median problem (by setting α = 2ε + (2/e) and δ = ε in Theorem 11). This
reduction was almost established in Cohen-Addad et al. [13] who gave an (1 + 2/e + ε)-
approximation for k-median in time (k log k/ε)O(k)poly(n), using a (1 − 1/e)-approximation
algorithm for Monotone Submodular Maximization with a (Partition) Matroid Constraint:
given a monotone submodular function f : U → R≥0 and a partition matroid (U, I), compute
a set S ∈ I that maximizes f(S). Here we observe that the multicolored k-maxcoverage
problem can replace the general submodular maximization.
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Algorithm of [13]

First, we summarize the key steps from [13] without proofs. First, they compute a coreset
of size O(k logn/ε2); it is a (weighted) subset of clients C′ ⊆ C such that for any solution
F ⊆ F with |F | = k, the k-median costs for C′ and C are within a (1 + ε) factor of each
other. Therefore, for the rest of the discussion, let C be the coreset itself and assume
|C| = O(k logn/ε2).

Let F ∗ = {f∗
1 , . . . , f

∗
k} be the centers in the optimal solution, and C∗

i be the set of clients
served by f∗

i in the optimal solution. For each i ∈ [k], let ℓi ∈ C∗
i be the client closest to f∗

i

(ties broken arbitrarily) and call it the leader of C∗
i .

By exhaustive enumerations, in (k logn/ε)O(k) time (which is upper bounded by
(k log k/ε)O(k)poly(n) time), one can guess ℓ1, . . . , ℓk as well as R1, . . . , Rk such that
d(ℓi, f∗

i ) ≤ [Ri/(1 + ε), Ri].
Let Fi := {f ∈ F : d(f, ℓi) ≤ Ri}. (One can assume Fi’s are disjoint by duplicating

facilities.)
At this point, opening an arbitrary fi ∈ Fi for each i ∈ [k] ensures a (3+ε)-approximation,

as each client c ∈ C∗
i can be connected to fi where

d(c, fi) ≤ d(c, f∗
i ) + d(f∗

i , ℓi) + d(ℓi, fi) ≤ (3 + ε) · d(c, f∗
i ),

since d(f∗
i , ℓi) ≤ d(c, f∗

i ) follows from the definition of the leader and d(ℓi, fi) ≤ (1+ε)d(ℓi, f∗
i )

by the definition of Ri and Fi.
To further improve the approximation ratio to (1 + 2/e+ ε), [13] defined the function

improv : P(F) → R≥0 as follows (here P denotes the power set). First, for each i ∈ [k], add
a fictitious facility f ′

i , whose distance to ℓi is Ri and the distances to the other points are
determined by shortest paths through ℓi; i.e., for any x, we define d(f ′

i , x) := Ri + d(ℓi, x).
Let F ′ := {f ′

1, . . . , f
′
k}. The above paragraph’s reasoning again also shows that:

cost(C,F ′) ≤ (3 + ε) · OPT. (1)

For S ⊆ F , improv(S) := cost(C,F ′)−cost(C, S∪F ′). Since any f ∈ Fi is at a distance at
most Ri from ℓi, as long as |S∩Fi| ≥ 1 for every i ∈ [k], we have cost(C, S∪F ′) = cost(C, S).

[13] proved that improv(·) is monotone and submodular, so one can use [7]’s algorithm
which obtains an (1−1/e)-approximation algorithm for Monotone Subdmoular Maximization
with a Matroid Constraint to find S such that |S ∩ Fi| = 1 for every i ∈ [k] and improv(S) ≥
(1 − 1/e) · improv(F ∗), which implies that for an approximate solution S∗ we have:

cost(C, S∗) = cost(C,F ′) − improv(S∗)
≤ cost(C,F ′) − (1 − 1/e) · improv(F ∗)
≤ cost(C,F ′) − (1 − 1/e) · (cost(C,F ′) − OPT)
= (1 − 1/e) · OPT + (1/e) · cost(C,F ′)
≤ (1 + 2/e+ ε) · OPT. (2)

improv(·) as a Coverage Function

Since the matroid constraint exactly corresponds to the multicolor part of the multicolored k-
maxcoverage problem, it suffices to show that improv(·) can be realized as a coverage function;
it will imply that a (1 − 1/e− ε)-approximation algorithm for multicolored k-maxcoverage
problem will imply (1 + 2/e+O(ε))-approximation for k-median in FPT time.
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Actually, the structure of improv(·) as the cost difference between two k-median solutions
makes it easy to do so. Let us do it for a weighted coverage function where each element
e has weight w(e) and the goal is to maximize the total weight of covered elements. (It
can be unweighted via standard duplication tricks.) For each c ∈ C, let dc := d(c, F ′) and
let Fc := {f ∈ F : d(f, c) < dc}. Let Fc = {f1, . . . , ft} ordered in the decreasing order
of d(fi, c). We create t elements Ec := {ec,1, . . . , ec,t} where w(ec,1) = dc − d(f1, c) and
w(ec,j) = d(fj−1, c)−d(fj , c) for j ∈ {2, . . . , t}. We will have a set Sf for each f ∈ F , and for
each c ∈ C, if f = fi in Fc’s ordering, Sf ∩ Ec = {ec,1, . . . , ec,i}. (If f /∈ Fc, Sf ∩ Ec} = ∅.)

Then for any F ⊆ F and for any client c ∈ C, our construction ensures that (∪f∈FSf )∩Ec
is equal to Sfc ∩ Ec where fc is the closest facility to c in F , and the total weight of
(∪f∈FSf ) ∩Ec is exactly equal to d(F ′, c) − d(fc, c), which is exactly the improvement of the
cost of c in F ∪ F ′ compared to F ′. Since improv(·) is the sum of all clients, this function is
a coverage function.

Proof of Theorem 11. The algorithm A on input ((V, d), C,F , τ) using the notion of coresets
and exhaustive enumerations (and using randomness), in FPT time constructs an instance for
each guess of the values of ℓ1, . . . , ℓk and R1, . . . , Rk. The choice of ε in the use of coresets
will be specified later. Thus, for a fixed instance (with ℓ1, . . . , ℓk and R1, . . . , Rk fixed),
construct Fc for all c ∈ C, and then the (weighted) set-system {Sf}f∈F over the universe
∪
c∈C

EC . Then, following the exact same calculations as in (2), we have that for a solution

S∗ ⊆ F such that improv(S) ≥
(
1 − α

2
)

· improv(F ∗), (for some α ≥ 0), we have:

cost(C, S∗) = cost(C,F ′) − improv(S∗)

≤ cost(C,F ′) −
(

1 − α

2

)
· improv(F ∗)

≤ cost(C,F ′) −
(

1 − α

2

)
· (cost(C,F ′) − OPT)

=
(

1 − α

2

)
· OPT + α

2 · cost(C,F ′)

≤
(

1 − α

2

)
· OPT + α

2 · (3 + ε) · OPT =
(

1 + α+ αε

2

)
· OPT,

where the last inequality follows from (1). The theorem statement completeness and soundness
claims then follows by choosing ε = 2δ

α . Moreover, the reduction is clearly in FPT time, and
the weights of the elements we constructed are bounded by ∆, which is the blowup that
happens in the size of the set system to reduce to the unweighted multicolored k-maxcoverage
problem.
▶ Remark 12. The theorem statement also holds for the k-means objective as (1) is revised to
cost2(C,F ′) ≤ (9 + ε) · OPT and we can thus conclude that for a solution S∗ ⊆ F such that
improv(S) ≥

(
1 − α

8
)

· improv(F ∗), we have cost2(C, S∗) ≤
(
1 − α

8
)

·OPT+ α
8 · (9+ε) ·OPT =(

1 + α+ αε
8
)

· OPT. ◀

▶ Remark 13. Starting from the multicolored k-maxcoverage problem, we can apply Theorem 5
to obtain a gap preserving reduction to 2-CSP, and then simply apply Lemma 19 in [14] to
obtain a gap preserving reduction to (uncolored) k-maxcoverage problem. However, at the
moment we do not know how to directly reduce the multicolored k-maxcoverage problem to
the uncolored version (while retaining the gap), but this convoluted procedure suggests that
a direct reduction might be plausible.

At this point one may wonder if it is possible to provide a gap preserving FPT reduction
from the multicolored k-maxcoverage problem to the (unmulticolored) k-maxcoverage problem.
Such a reduction would help us avoid Remark 10 and directly compose the results of
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Theorems 11 and 5 in a blackbox manner. While reductions from the multicolored variant
of a problem to its unmulticolored counterpart can be quite straightforward, such as for
the k-clique and k-set cover problem, it can also be quite notorious such as for the k-set
intersection problem [32, 6]. Such reductions are aptly dubbed as “reversing color coding”.
To the best of our knowledge, reversing color coding for the k-maxcoverage problem can
be quite hard (if we want to preserve some positive constant gap). That said, Remark 13
does provide a convoluted argument as to while a direct reversing color coding is currently
out of reach, it can still be plausibly achieved. We note here that if we are promised that
the multicolored k-maxcoverage problem instance has all the input sets of roughly the same
size then there is a simple reduction to the (uncolored) k-maxcoverage problem by simply
introducing k new subuniverses, one for each color class.

5 Inapproximability of k-MaxCoverage

In this section, we prove (the W[1]-hardness part of) Theorem 2. In [31], the authors had
implicitly proved the following: for some computable function F , it is W[1]-hard given (U ,S)
to find k sets in S that cover 1 − 1/F (k) fraction of U whenever there exists k sets in S that
cover U . We show below how that can be extended to obtain the more generalized result
given in Theorem 2.

Our proof builds on the following W[1]-hardness of gap k-MaxCover proved in [31].

▶ Theorem 14 ([31]). There exists a computable function A : N → N such that it is W[1]-hard
to decide an instance Γ =

(
G = (V ∪̇W,E), 1, 1

2
)

of k-MaxCover even in the following setting:
V := V1∪̇ · · · ∪̇Vk, where ∀j ∈ [k], |Vj | = n.
W := W1∪̇ · · · ∪̇Wℓ, where ℓ = (logn)O(1) and ∀i ∈ [k], |Wi| = A(k).

Proof Sketch. All the references here are using the labels in [31]. First we apply Propo-
sition 5.1 to Theorem 7.1 with z = 1

log2( 1
1−δ ) to obtain a (0, O(log2 m), O(t), 1/2)-efficient

protocol for k-player MultEqm,k,t in the SMP model. The proof of the theorem then follows
by plugging in the parameters of the protocol to Corollary 5.5. ◀

Starting from the above theorem, we mimics ideas from Feige’s proof of the NP-hardness
of approximating the Max Coverage problem [20]. Let T := T (k) be an integer such that
ρ(Tk) ≥ 2 · kA(k) (such an integer T exists because ρ is unbounded). Given an instance
Γ(G = (V ∪̇W,E), 1, 1/2) of k-MaxCover, we construct the universe U := {(t, i, f) : t ∈
[T ], i ∈ [ℓ], f : Wi → [k]}, and a collection of sets S := {S(t,j,v)}t∈[T ],j∈[k],v∈Vj

, where for all
t ∈ [T ] we have (t, i, f) ∈ S(t,j,v) ⇐⇒ ∃w ∈ Wi such that f(w) = j and (v, w) ∈ E. Note
that |U| = T · (logn)O(1) · kA(k) and that |S| = T · k · n.

Suppose there exists v1 ∈ V1, . . . , vk ∈ Vk such that for all i ∈ [ℓ] we have that Wi is
covered by v1, . . . , vk. Let wi ∈ Wi be a common neighbor of v1, . . . , vk. Then, we claim that
the collection {S(t,1,v1), S(t,2,v2), . . . , S(t,k,vk)}t∈[T ] covers U . This is because for every t ∈ [T ]
and every (t, i, f) ∈ U we have that S(t,f(wi),vf(wi)) covers it.

On the other hand, suppose that for every v1 ∈ V1, . . . , vk ∈ Vk we have that only 1/2
fraction of the Wis are covered by v1, . . . , vk. Fix some Tk sets S̃ in S. For every t ∈ [T ],
let Ut := {(t, i, f) : i ∈ [ℓ], f : Wi → [k]} and S̃t := S̃ ∩ {S(t,j,v) : j ∈ [k], v ∈ Vj}. We
can partition S̃ to S̃−, S̃=, and S̃+, where for every t ∈ [T ] we include all the sets in S̃t
to S̃− if |S̃t| < k, to S̃+ if |S̃t| > k, and to S̃= if |S̃t| = k. Let R+ ⊆ [T ] (resp. R− ⊆ [T ])
be defined as follows: t ∈ R+ ⇐⇒ |S̃t| > k (resp. t ∈ R− ⇐⇒ |S̃t| < k). Since
|S̃| = Tk, we have that there exists Q ⊆ [T ] × [k] such that |Q| = |S̃+| − (|R+| · k) and
(t, j) ∈ Q ⇐⇒ S̃t ∩ {S(t,j,v) : v ∈ Vj} = ∅ and |S̃t| < k.
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Now, we observe that once we fix t ∈ [T ] and j ∈ [k] and if S̃t ∩ {S(t,j,v) : v ∈ Vj} = ∅
then S̃ does not cover any element in the subuniverse {(t, i, fj) : i ∈ [ℓ]}, where fj is the
constant function which maps everything to j. Therefore, we can conclude that there are
|Q| · ℓ many elements in ∪

t∈R−
Ut such that are not covered by S̃.

Also, suppose we picked S(t,1,v1), S(t,2,v2), . . . , S(t,k,vk) for some t ∈ [T ], v1 ∈ V1, . . . , vk ∈
Vk then for every i ∈ [ℓ] such that v1, . . . , vk does not cover Wi, we have that for every
w ∈ Wi there is some j ∈ [k] such that (vj , w) /∈ E. Therefore, there is some f : Wi → [k]
such that S(t,1,v1), S(t,2,v2), . . . , S(t,k,vk) does not cover (t, i, f). Thus, these k sets do not
cover at least ℓ/2 universe elements.

We can now put everything together to complete the soundness analysis. First note that
for every t ∈ [T ], no element of the subuniverse Ut can be covered by a set in S̃ \ S̃t. For
every t ∈ [T ], if |S̃t| = k then from the above analysis we have that at least ℓ/2 elements of
Ut are not covered by S̃.

Therefore, the total number of universe elements not covered by S̃ is at least
(
|S̃=| · ℓ/2k

)
+

|Q| · ℓ = ℓ ·
(
|S̃=|/2k + |S̃+| − (|R+| · k)

)
. Since |S̃=| = (T −R+ −R−) · k, this implies that

S̃ does not cover at least ℓ ·
(
T/2 + |S̃+| − (|R+| · k) − R++R−

2

)
elements in U . Next, we

note that by the way we partitioned S̃, we have |S̃+| − (|R+| · k) = (|R−| · k) − |S̃−|, and
we also have |S̃+| ≥ |R+| · (k + 1) and |S̃−| ≤ |R−| · (k − 1). From this we can surmise that
|S̃+| − (|R+| · k) ≥ max(|R+|, |R−|) ≥ R++R−

2 . Thus, we have that S̃ does not cover at least
ℓT/2 universe elements.

Thus, we can conclude that S̃ can not cover at least Tℓ/2 universe elements. This
is k−A(k)/2 fraction of U that is not covered by S̃. The proof follows by noting that
k−A(k)/2 ≥ 1/ρ(Tk) = 1/ρ(|S̃|).
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