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Abstract
The orthogonality dimension of a graph over R is the smallest integer d for which one can assign to
every vertex a nonzero vector in Rd such that every two adjacent vertices receive orthogonal vectors.
For an integer d, the d-Ortho-DimR problem asks to decide whether the orthogonality dimension
of a given graph over R is at most d. We prove that for every integer d ≥ 3, the d-Ortho-DimR

problem parameterized by the vertex cover number k admits a kernel with O(kd−1) vertices and
bit-size O(kd−1 · log k). We complement this result by a nearly matching lower bound, showing
that for any ε > 0, the problem admits no kernel of bit-size O(kd−1−ε) unless NP ⊆ coNP/poly.
We further study the kernelizability of orthogonality dimension problems in additional settings,
including over general fields and under various structural parameterizations.
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1 Introduction

For a field F and an integer d, a d-dimensional orthogonal representation of a graph G = (V, E)
over F is an assignment of a vector uv ∈ Fd with ⟨uv, uv⟩ ≠ 0 to each vertex v ∈ V , such that
for every two adjacent vertices v and v′ in G, it holds that ⟨uv, uv′⟩ = 0. We consider here
the standard inner product, defined for any two vectors x, y ∈ Fd by ⟨x, y⟩ =

∑d
i=1 xi · yi

with operations performed over the field F. The orthogonality dimension of a graph G over
F, denoted by ξF(G), is the smallest integer d for which G admits a d-dimensional orthogonal
representation over F (see Definition 10 and Remark 11).

The notion of orthogonal representations over the real field R was introduced in 1979
by Lovász [26], who used them to define the celebrated ϑ-function that was motivated by
questions in information theory on the Shannon capacity of graphs. Over the years, orthogonal
representations and the orthogonality dimension have found a variety of applications in
several areas of research. In graph theory, orthogonal representations over the reals were
used by Lovász, Saks, and Schrijver [28] to characterize connectivity properties of graphs
(see also [27, Chapter 10]). In computational complexity, the orthogonality dimension over
finite fields was related to lower bounds in circuit complexity by Codenotti, Pudlák, and
Resta [13] (see also [19, 18]). Over the complex field, it was employed by de Wolf [15] to
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8:2 Kernelization for Orthogonality Dimension

determine the quantum one-round communication complexity of promise equality problems
(see also [9, 6, 7]). Additional notable applications from the area of information theory are
related to index coding [3, 1], distributed storage [2], and hat-guessing games [30].

The question of the complexity of determining the orthogonality dimension of a given
graph over a specified field was proposed in 1989 by Lovász et al. [28]. For a field F and
an integer d, consider the decision problem that given a graph G asks to decide whether
ξF(G) ≤ d. It is easy to see that the problem can be solved efficiently for d ∈ {1, 2}, because
a graph G satisfies ξF(G) ≤ 1 if and only if it is edgeless, and it satisfies ξF(G) ≤ 2 if and
only if it is bipartite. For every d ≥ 3, however, it was shown by Peeters [29] in 1996 that
the problem is NP-hard for every field F. More recently, it was shown in [12] that for every
sufficiently large integer d, it is NP-hard to distinguish graphs G that satisfy ξF(G) ≤ d from
those satisfying ξF(G) ≥ 2(1−o(1))·d/2, provided that F is either a finite field or R.

Motivated by the diverse applications of orthogonality dimension, the present paper
delves into the computational complexity of this graph quantity from the perspective of
parameterized complexity. We study the decision problems associated with orthogonality
dimension with respect to various structural parameterizations, with a particular attention
dedicated to the vertex cover number parameterization. We exhibit fixed-parameter tractabil-
ity results for such problems, along with upper and lower bounds on their kernelizability. Our
approach draws its inspiration from prior work on the parameterized complexity of coloring
problems, most notably by Jansen and Kratsch [23] (see also [22, Chapter 7]) and by Jansen
and Pieterse [24]. In what follows, we provide an overview on relevant research on coloring
problems and then turn to a description of our contribution. We use here standard notions
from the area of parameterized complexity, whose definitions can be found in Section 2.4
(see also, e.g., [14, 17]).

Graph coloring is a cornerstone concept in graph theory that has been extensively studied
from a computational point of view. For an integer q, a q-coloring of a graph G is an
assignment of a color to each vertex of G from a set of q colors. The coloring is said to be
proper if it assigns distinct colors to every two adjacent vertices in the graph. A graph G is
called q-colorable if it admits a proper q-coloring, and the smallest integer q for which G is
q-colorable is called the chromatic number of G and is denoted by χ(G). For an integer q,
let q-Coloring denote the decision problem that given a graph G asks to decide whether
χ(G) ≤ q. The Coloring problem is defined similarly, with the only, yet crucial, difference
that the number of colors q is not fixed but forms part of the input. It is well known that the
q-Coloring problem can be solved in polynomial time for q ∈ {1, 2} and is NP-complete
for every q ≥ 3. This implies that the Coloring problem, parameterized by the number of
colors q, is not fixed-parameter tractable unless P = NP.

The study of the parameterized complexity of coloring problems was initiated in 2003 by
Cai [8], who proposed the following terminology. For a family of graphs G and for an integer
k, let G + kv denote the family of all graphs that can be obtained from a graph of G by
adding at most k vertices (with arbitrary neighborhoods). Equivalently, a graph G = (V, E)
lies in G + kv if there exists a set X ⊆ V of size |X| ≤ k, referred to as a modulator, such
that the graph G \ X obtained from G by removing the vertices of X lies in G. For example,
letting Empty denote the family of all edgeless graphs, the family Empty + kv consists of
all the graphs that admit a vertex cover of size at most k. For an integer q, the q-Coloring
problem on G + kv graphs is the parameterized problem defined as follows.

Input: A graph G = (V, E) and a set X ⊆ V such that G \ X ∈ G.
Question: Is χ(G) ≤ q?
Parameter: The size k = |X| of the modulator X.

As before, the Coloring problem on G + kv graphs is defined similarly, except that the
number of colors q is not fixed but forms part of the input.
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A common parameterization of graph problems that received a considerable amount of
attention in the literature is that of the vertex cover number, corresponding to the family
G = Empty (see, e.g., [16]). It is well known that the Coloring problem on Empty + kv
graphs is fixed-parameter tractable. Nevertheless, Bodlaender, Jansen, and Kratsch [5]
proved that the problem does not admit a kernel of polynomial size under the assumption
NP ⊈ coNP/poly, whose refutation is known to imply the collapse of the polynomial-time
hierarchy [32]. Yet, for any fixed integer q ≥ 3, Jansen and Kratsch [23] showed that the
q-Coloring problem on Empty + kv graphs admits a kernel with O(kq) vertices which can
be encoded in O(kq) bits (see also [16]). This result was improved by Jansen and Pieterse [24]
as an application of an algebraic sparsification technique they introduced in [25]. It was
shown in [24] that for every q ≥ 3, the q-Coloring problem on Empty+kv graphs admits a
kernel with O(kq−1) vertices and bit-size O(kq−1 · log k) (see [24] for various generalizations).
On the contrary, it was shown in [23, 24] that for every q ≥ 3 and any ε > 0, the problem
does not admit a kernel that can be encoded in O(kq−1−ε) bits unless NP ⊆ coNP/poly,
thereby settling its kernelization complexity up to a multiplicative ko(1) term.

The paper [23] further studied the kernelization complexity of the q-Coloring problem
on G + kv graphs for general families G. In particular, they considered graph families G
that are hereditary (i.e., closed under removal of vertices) and that are, roughly speaking,
local with respect to the q-List Coloring problem, in the sense that a NO instance of
q-List Coloring that involves a graph from G must have a NO sub-instance whose size
depends solely on q. For such families G, it was shown in [23] that the q-Coloring problem
on G + kv graphs admits a kernel of polynomial size, and this result was complemented
with a lower bound on the kernel size relying on the assumption NP ⊈ coNP/poly. These
results apply, for example, for the families ∪Split and ∪Cochordal of the graphs whose
connected components are split graphs and cochordal graphs respectively. On the other
hand, strengthening a result of Bodlaender et al. [4], the authors of [23] proved that the
3-Coloring problem on Path + kv graphs does not admit a kernel of polynomial size unless
NP ⊆ coNP/poly, where Path stands for the family of path graphs.

1.1 Our Contribution
This paper initiates a systematic study of the parameterized complexity of the orthogonality
dimension of graphs. It is noteworthy that the orthogonality dimension of graphs is related
to their chromatic number. Indeed, for every field F and for every graph G, it holds that
ξF(G) ≤ χ(G), because a proper q-coloring of G may be viewed as a q-dimensional orthogonal
representation of G over F that uses only vectors from the standard basis of Fq (see Claim 12).
Yet, it turns out that the two graph quantities can differ substantially, as there exist graphs
where the orthogonality dimension is exponentially smaller than the chromatic number
(see, e.g., [20, Proposition 2.2]). Our investigation of the parameterized complexity of
orthogonality dimension problems aligns with the approach of [23, 24] for studying coloring
problems within the parameterized complexity framework. While coloring problems are
primarily combinatorial in nature, the attempt to prove analogous results for orthogonality
dimension raises intriguing questions reflecting the algebraic aspects of this graph quantity.

We first introduce the decision problems associated with orthogonality dimension.

▶ Definition 1. For a field F, the Ortho-DimF problem is defined as follows.
Input: A graph G = (V, E) and an integer d.
Question: Is ξF(G) ≤ d?

For a field F and a family of graphs G, the (parameterized) Ortho-DimF problem on G + kv
graphs is defined as follows.

IPEC 2024



8:4 Kernelization for Orthogonality Dimension

Input: A graph G = (V, E), a set X ⊆ V such that G \ X ∈ G, and an integer d.
Question: Is ξF(G) ≤ d?
Parameter: The size k = |X| of the modulator X.

For a field F, an integer d, and a family of graphs G, the (parameterized) d-Ortho-DimF
problem on G + kv graphs is defined as follows.

Input: A graph G = (V, E) and a set X ⊆ V such that G \ X ∈ G.
Question: Is ξF(G) ≤ d?
Parameter: The size k = |X| of the modulator X.

Let us stress that the integer d forms part of the input in the Ortho-DimF problem, whereas
it is a fixed constant in the d-Ortho-DimF problem. Note that the hardness result of [29]
implies that for every field F, the Ortho-DimF problem parameterized by the solution value
d is not fixed-parameter tractable unless P = NP.

The main parameterization we consider is the vertex cover number of the input graph,
which corresponds to the family G = Empty. We start with the following fixed-parameter
tractability result.

▶ Theorem 2. Let F be either a finite field or R. The Ortho-DimF problem on Empty+kv
graphs is fixed-parameter tractable.

In fact, we prove an extension of Theorem 2, showing that if the Ortho-DimF problem over
a field F is decidable, then the corresponding Ortho-DimF problem on Empty + kv graphs
is fixed-parameter tractable (see Theorem 14). While it is easy to see that the Ortho-DimF
problem is decidable for any finite field F, the real case relies on a result of Tarski [31] on
the decidability of the existential theory of the reals (see Proposition 17).

We next consider the kernelizability of the d-Ortho-DimF problem parameterized by
the vertex cover number for a fixed integer d. For finite fields F, one may deduce from a
result of [24] that the problem admits a kernel of polynomial size, where the degree of the
polynomial grows exponentially with d. We prove the following generalized and stronger
result.

▶ Theorem 3. For every field F and for every integer d ≥ 3, the d-Ortho-DimF problem
on Empty + kv graphs admits a kernel with O(kd) vertices and bit-size O(kd).

Theorem 3 prompts us to determine the smallest possible kernel size for the d-Ortho-
DimF problem on Empty + kv graphs. The following result furnishes a lower bound,
conditioned on the complexity-theoretic assumption NP ⊈ coNP/poly.

▶ Theorem 4. For every field F, every integer d ≥ 3, and any real ε > 0, the d-Ortho-DimF
problem on Empty + kv graphs does not admit a kernel with bit-size O(kd−1−ε) unless
NP ⊆ coNP/poly.

The proof of Theorem 4 combines the lower bound on kernels for coloring problems proved
in [23, 24] with a novel linear-parameter transformation from those problems to those
associated with orthogonality dimension. More specifically, we show that for every field F
and for every integer d ≥ 3, it is possible to efficiently transform a graph G into a graph
G′ so that χ(G) ≤ d if and only if ξF(G′) ≤ d while essentially preserving the vertex cover
number (see Theorem 25). This is in contrast to a reduction of [29], which is appropriate
only for d = 3 and significantly increases the vertex cover number. The transformation relies
on a gadget graph that enforces the vectors assigned to two specified vertices to be either
orthogonal or equal up to scalar multiplication (see Lemma 21).
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We remark that Theorem 4 implies that, unless NP ⊆ coNP/poly, the degree of the
polynomial lower bound on the size of a kernel for the d-Ortho-DimF problem on Empty+kv
graphs can be arbitrarily large when d grows. This yields that the Ortho-DimF problem on
Empty + kv graphs, in which d constitutes part of the input, is unlikely to admit a kernel of
polynomial size.

Theorems 3 and 4 leave a multiplicative gap of roughly k between the upper and lower
bounds on the kernel size achievable for the d-Ortho-DimF problem parameterized by the
vertex cover number. For the real field R, we narrow this gap to a multiplicative term of
ko(1), as stated below.

▶ Theorem 5. For every integer d ≥ 3, the d-Ortho-DimR problem on Empty + kv graphs
admits a kernel with O(kd−1) vertices and bit-size O(kd−1 · log k).

The proof of Theorem 5 borrows the sparsification technique of [25] (see also [24]). A key
technical ingredient in applying this method lies in a construction of a low-degree polynomial,
which assesses the feasibility of assigning a vector to a vertex based on the vectors of its
neighbors (see Lemma 20). Our construction hinges on the fact that the zero vector is the
only self-orthogonal vector over the reals. It would be interesting to decide whether or not a
similar upper bound on the kernel size could be obtained for finite fields, where this property
does not hold.

We finally turn to the study of kernels for the d-Ortho-DimF problem on G + kv
graphs for general hereditary graph families G. Our first result in this context offers a
sufficient condition on G for the existence of a polynomial size kernel for d-Ortho-DimF
on G + kv graphs. This condition is related to a variant of the d-Ortho-DimF problem,
termed d-Subspace ChoosabilityF, which was previously studied in various forms (see,
e.g., [21, 11]) and may be viewed as a counterpart of the q-List Coloring problem for
orthogonal representations. In this problem, the input consists of a graph G and an assignment
of a subspace of Fd to each vertex, and the goal is to decide whether G admits an orthogonal
representation over F that assigns to every vertex a vector from its subspace. We show
that if the d-Subspace ChoosabilityF problem on graphs from a family G is local, in the
sense that every NO instance has a NO sub-instance on at most g(d) vertices, then the
d-Ortho-DimF problem on G + kv graphs admits a kernel with O(kd·g(d)) vertices. We
demonstrate the applicability of this result for the graph families ∪Split and ∪Cochordal.
On the contrary, for the Path family, we show that it is unlikely that the d-Ortho-DimF
problem on Path + kv graphs admits a polynomial size kernel even for d = 3.

1.2 Outline

The remainder of the paper is structured as follows. In Section 2, we collect several definitions
and facts that will be used throughout the paper. In Section 3, we study the fixed-parameter
tractability of the Ortho-DimF problem parameterized by the vertex cover number and
prove Theorem 2. In Section 4, we present polynomial size kernels for the d-Ortho-DimF
problem parameterized by the vertex cover number and prove Theorems 3 and 5. In Section 5,
we complement the results of Section 4 by providing limits on the kernelizability of the
d-Ortho-DimF problem parameterized by the vertex cover number and prove Theorem 4.
For our study on the kernelizability of the d-Ortho-DimF problem on G + kv graphs for
general hereditary graph families G, we refer the reader to the full version of the paper.

IPEC 2024



8:6 Kernelization for Orthogonality Dimension

2 Preliminaries

2.1 Notations
For an integer n, let [n] = {1, 2, . . . , n}. All graphs considered in this paper are simple. For
a graph G = (V, E) and a set X ⊆ V , we let G[X] denote the subgraph of G induced by X.
The set X is called a vertex cover of G if every edge of G is incident with a vertex of X. We
let G \ X denote the graph obtained from G by removing the vertices of X (and the edges
that touch them). For a vertex v ∈ V , we let NG(v) denote the set of neighbors of v in G.

2.2 Linear Algebra
For a field F and an integer d, two vectors x, y ∈ Fd are said to be orthogonal if ⟨x, y⟩ = 0,
where ⟨x, y⟩ =

∑d
i=1 xiyi with operations over F. If ⟨x, x⟩ = 0 then x is self-orthogonal,

and otherwise it is non-self-orthogonal. The orthogonal complement of a subspace W ⊆ Fd

is the subspace W ⊥ of all vectors in Fd that are orthogonal to all vectors of W , that is,
W ⊥ = {x ∈ Fd | ∀y ∈ W, ⟨x, y⟩ = 0}. Note that the orthogonal complement satisfies
dim(W ) + dim(W ⊥) = d and W = (W ⊥)⊥. The following simple lemma, proved in the full
version of the paper, characterizes the subspaces whose orthogonal complement includes a
non-self-orthogonal vector. Recall that the characteristic of a field is the smallest positive
number of copies of the field’s identity element that sum to zero, or 0 if no such number
exists.

▶ Lemma 6. Let F be a field, let d be an integer, and let W be a subspace of Fd.
1. If the characteristic of F is 2, then there exists a non-self-orthogonal vector in W ⊥ if and

only if the all-one vector does not lie in W .
2. If the characteristic of F is not 2, then there exists a non-self-orthogonal vector in W ⊥ if

and only if W ⊥ ⊈ W .

Borrowing the terminology of [25], we say that a field F is efficient if field operations and
Gaussian elimination can be performed in polynomial time in the size of a reasonable input
encoding. All finite fields, as well as the real field R when restricted to rational numbers (to
ensure finite representation), are efficient.

▶ Lemma 7. For every efficient field F, there exists a polynomial-time algorithm that given
a collection of vectors in Fd, decides whether there exists a non-self-orthogonal vector in Fd

that is orthogonal to all of them.

Proof. For input vectors u1, . . . , uℓ ∈ Fd, let W = span(u1, . . . , uℓ). Observe that there
exists a non-self-orthogonal vector in Fd that is orthogonal to u1, . . . , uℓ if and only if there
exists a non-self-orthogonal vector in the orthogonal complement W ⊥. By Lemma 6, for a
field F of characteristic 2, this is equivalent to the all-one vector not lying in W , and for
every other field F, this is equivalent to W ⊥ ⊈ W (that is, at least one vector of a basis
of W ⊥ does not lie in W ). Since F is an efficient field, these conditions can be checked in
polynomial time. This completes the proof. ◀

For a field F and an integer d, if W is a subspace of Fd of dimension smaller than d,
then its orthogonal complement W ⊥ has dimension at least 1, hence there exists a nonzero
vector orthogonal to W . However, if we require this vector not only to be nonzero but also
non-self-orthogonal, its existence is no longer guaranteed. This consideration motivates the
following definition.
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▶ Definition 8. For a field F and an integer d, let m(F, d) denote the largest integer m such
that for every subspace W of Fd with dim(W ) < m, there exists a non-self-orthogonal vector
in W ⊥.

▶ Remark 9. For every field F and for every integer d ≥ 1, it holds that 1 ≤ m(F, d) ≤ d.
Indeed, the lower bound holds because there exists a non-self-orthogonal vector orthogonal to
the zero subspace of Fd, and the upper bound holds because no nonzero vector is orthogonal
to the entire vector space Fd. For a field F of characteristic 2, it holds that m(F, d) = 1,
because no non-self-orthogonal vector is orthogonal to the 1-dimensional subspace spanned
by the all-one vector. For every other field F, it holds that m(F, d) ≥ ⌈d/2⌉. To see this,
consider a subspace W ⊆ Fd of dimension dim(W ) < ⌈d/2⌉, and observe that it satisfies
dim(W ⊥) = d − dim(W ) > d − ⌈d/2⌉ = ⌊d/2⌋, and thus dim(W ⊥) > dim(W ). This implies
that W ⊥ ⊈ W , hence by Item 2 of Lemma 6, there exists a non-self-orthogonal vector in
W ⊥, as required. We also observe that if the vector space Fd has no nonzero self-orthogonal
vectors, then m(F, d) = d, because for every subspace W ⊆ Fd of dimension smaller than
d there exists a nonzero vector in W ⊥. In particular, for every integer d, it holds that
m(R, d) = d.

2.3 Orthogonality Dimension
The orthogonality dimension of a graph over a given field is defined as follows.

▶ Definition 10. For a field F and an integer d, a d-dimensional orthogonal representation
of a graph G = (V, E) over F is an assignment of a vector uv ∈ Fd with ⟨uv, uv⟩ ̸= 0 to
each vertex v ∈ V , such that for every two adjacent vertices v and v′ in G, it holds that
⟨uv, uv′⟩ = 0. The orthogonality dimension of a graph G over a field F, denoted by ξF(G), is
the smallest integer d for which G admits a d-dimensional orthogonal representation over F.

▶ Remark 11. Let us emphasize that the definition of an orthogonal representation does not
require vectors assigned to non-adjacent vertices to be non-orthogonal. Orthogonal repres-
entations that satisfy this additional property are called faithful (see, e.g., [27, Chapter 10]).
Note that orthogonal representations of graphs are sometimes defined in the literature as
orthogonal representations of the complement, requiring vectors associated with non-adjacent
vertices to be orthogonal (with no constraint imposed on vectors of adjacent vertices). We
decided to use here the other definition, but one may view the notation ξF(G) as standing
for ξF(G).

▷ Claim 12. For every field F and for every graph G, it holds that ξF(G) ≤ χ(G).

Proof. For a graph G = (V, E), let q = χ(G), and consider a proper coloring c : V → [q] of
G. Assign to each vertex v ∈ V the vector ec(v) in Fq, where ei stands for the vector of Fq

with 1 on the ith entry and 0 everywhere else. The vectors assigned here to the vertices of
G are obviously non-self-orthogonal vectors of Fq. Further, for every two adjacent vertices
v and v′ in G, it holds that c(v) ̸= c(v′), hence ⟨ec(v), ec(v′)⟩ = 0. This implies that there
exists a q-dimensional orthogonal representation of G over F, and thus ξF(G) ≤ q. ◁

2.4 Parameterized Complexity
We present here a few fundamental definitions from the area of parameterized complexity.
For a thorough introduction to the field, the reader is referred to, e.g., [14, 17].

IPEC 2024
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A parameterized problem is a set Q ⊆ Σ∗ × N for some finite alphabet Σ. A fixed-
parameter algorithm for Q is an algorithm that given an instance (x, k) ∈ Σ∗ × N decides
whether (x, k) ∈ Q in time f(k) · |x|c for some computable function f and some constant c.
If Q admits a fixed-parameter algorithm, then we say that Q is fixed-parameter tractable.

A compression (also known as generalized kernel and bikernel) for a parameterized
problem Q ⊆ Σ∗ × N into a parameterized problem Q′ ⊆ Σ∗ × N is an algorithm that given
an instance (x, k) ∈ Σ∗ ×N returns in time polynomial in |x|+k an instance (x′, k′) ∈ Σ∗ ×N,
such that (x, k) ∈ Q if and only if (x′, k′) ∈ Q′, and in addition, |x′| + k′ ≤ h(k) for some
computable function h. The function h is referred to as the size of the compression. If h is
polynomial, then the compression is called a polynomial compression. If |Σ| = 2, the function
h is called the bit-size of the compression. When we say that a parameterized problem Q

admits a compression of size h, we mean that there exists a compression of size h for Q into
some parameterized problem. A compression for a parameterized problem Q into itself is
called a kernelization for Q (or simply a kernel). It is well known that a decidable problem
admits a kernel if and only if it is fixed-parameter tractable.

A transformation from a parameterized problem Q ⊆ Σ∗ ×N into a parameterized problem
Q′ ⊆ Σ∗ ×N is an algorithm that given an instance (x, k) ∈ Σ∗ ×N returns in time polynomial
in |x|+k an instance (x′, k′) ∈ Σ∗ ×N, such that (x, k) ∈ Q if and only if (x′, k′) ∈ Q′, and in
addition, k′ ≤ h(k) for some computable function h. If h is polynomial, the transformation is
called polynomial-parameter, and if h is linear, the transformation is called linear-parameter.

3 Fixed-Parameter Tractability of Ortho-DimF

In this section, we prove that the Ortho-DimF problem parameterized by the vertex cover
number is fixed-parameter tractable for various fields F (recall Definition 1).

3.1 Finite Fields
We begin with the simple case, where the field F is finite. The proof resembles the one of the
fixed-parameter tractability of the Coloring problem parameterized by the vertex cover
number.

▶ Theorem 13. For every finite field F, Ortho-DimF on Empty + kv graphs is fixed-
parameter tractable.

Proof. Fix a finite field F. The input of Ortho-DimF on Empty + kv graphs consists of a
graph G = (V, E), a vertex cover X ⊆ V of G of size |X| = k, and an integer d. Consider
the algorithm that given such an input acts as follows. If d > k then the algorithm accepts.
Otherwise, the algorithm enumerates all possible assignments of non-self-orthogonal vectors
from Fd to the vertices of X. For every such assignment, the algorithm checks for every
vertex v ∈ V \ X if there exists a non-self-orthogonal vector in Fd that is orthogonal to
the vectors assigned to the neighbors of v (note that they all lie in X). If there exists an
assignment to the vertices of X such that the answer is positive for all the vertices of V \ X,
then the algorithm accepts, and otherwise it rejects.

For correctness, observe first that the input graph G is (k + 1)-colorable, as follows by
assigning k distinct colors to the vertices of the vertex cover X and another color to the vertices
of the independent set V \ X. It thus follows, using Claim 12, that ξF(G) ≤ χ(G) ≤ k + 1.
Therefore, if d > k, then it holds that ξF(G) ≤ d, hence our algorithm correctly accepts.
Otherwise, the algorithm tries all possible assignments of non-self-orthogonal vectors of Fd to
the vertices of X. Since the vertices of V \ X form an independent set in G, an assignment to
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the vertices of X can be extended to the whole graph if and only if for each vertex v ∈ V \ X

there exists a non-self-orthogonal vector in Fd that is orthogonal to the vectors assigned to
the neighbors of v (which all lie in X). Since this condition is checked by the algorithm for
all possible assignments to the vertices of X, its answer is correct.

We finally analyze the running time of the algorithm. On instances with d > k, the
algorithm is clearly efficient. For instances with d ≤ k, the number of assignments of vectors
from Fd to the vertices of X is at most |F|d·|X| ≤ |F|k2 . Further, by Lemma 7, given a
collection of vectors of Fd, it is possible to decide in polynomial time whether there exists
a non-self-orthogonal vector in Fd that is orthogonal to all of them. This implies that our
algorithm for Ortho-DimF on Empty + kv graphs can be implemented in time |F|k2 · nO(1),
where n stands for the input size, hence the problem is fixed-parameter tractable. ◀

3.2 General Fields
We turn to the following generalization of Theorem 13.

▶ Theorem 14. Let F be a field for which the Ortho-DimF problem is decidable. Then the
Ortho-DimF problem on Empty + kv graphs is fixed-parameter tractable.

Recall that the algorithm of Theorem 13 for the Ortho-DimF problem on Empty + kv
graphs enumerates all possible assignments of non-self-orthogonal vectors to the vertices
of a given vertex cover. This approach is clearly not applicable when the field F is infinite.
In order to extend the fixed-parameter tractability result to general fields and to obtain
Theorem 14, we use the following definition inspired by an idea of [23].

▶ Definition 15. Let G = (V, E) be a graph, let X ⊆ V be a vertex cover of G, and let
d ≥ m ≥ 1 be integers. We define the graph K = K(G, X, m, d) as follows. We start with
K = G[X]. Then, for every subset S ⊆ X of size m ≤ |S| ≤ d, if there exists a vertex
v ∈ V \ X such that S ⊆ NG(v), then we add to K a new vertex vS and connect it to all the
vertices of S.

The following lemma lists useful properties of the graph given in Definition 15 (recall
Definition 8).

▶ Lemma 16. Let G = (V, E) be a graph, let X ⊆ V be a vertex cover of G of size |X| = k,
let d ≥ m ≥ 1 be integers, and let K = K(G, X, m, d).
1. The set X forms a vertex cover of K.
2. The number of vertices in K is at most k +

∑d
i=m

(
k
i

)
.

3. The graph K can be encoded in
(

k
2
)

+
∑d

i=m

(
k
i

)
bits.

4. For every field F with m ≤ m(F, d), it holds that ξF(G) ≤ d if and only if ξF(K) ≤ d.

Proof. Consider the graph K = K(G, X, m, d) given in Definition 15. Since X is a vertex
cover of G, it immediately follows from the definition that every edge of K is incident with a
vertex of X, hence X is a vertex cover of K, as required for Item 1. It further follows that the
vertex set of K consists of the vertices of X and at most one vertex per every subset S ⊆ X

of size m ≤ |S| ≤ d. Since the number of those subsets is
∑d

i=m

(
k
i

)
, the number of vertices

in K is at most k +
∑d

i=m

(
k
i

)
, as required for Item 2. For Item 3, notice that to encode the

graph K, it suffices to specify the adjacencies in K[X] and the existence of the vertex vS in K
for each S ⊆ X of size m ≤ |S| ≤ d, hence K can be encoded in

(
k
2
)

+
∑d

i=m

(
k
i

)
bits.

We turn to the proof of Item 4. Let F be a field with m ≤ m(F, d). Suppose first that
ξF(G) ≤ d, that is, there exists a d-dimensional orthogonal representation (uv)v∈V of G over
F. We define a d-dimensional orthogonal representation of K over F as follows. First, we
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assign to each vertex v ∈ X the vector uv. It clearly holds that every two vertices of X that
are adjacent in K are assigned orthogonal vectors. Next, for each vertex vS of K with S ⊆ X

and m ≤ |S| ≤ d, there exists a vertex v ∈ V \ X such that S ⊆ NG(v). We assign to vS

the vector uv of such a vertex v. Notice that such a vector is orthogonal to all the vectors
associated with the vertices of S, i.e., the neighbors of vS in K. This gives us a d-dimensional
orthogonal representation of K over F, implying that ξF(K) ≤ d.

For the other direction, suppose that ξF(K) ≤ d. Letting V ′ denote the vertex set of K,
there exists a d-dimensional orthogonal representation (uv)v∈V ′ of K over F. We define a
d-dimensional orthogonal representation of G over F as follows. First, we assign to each vertex
v ∈ X the vector uv. It clearly holds that every two vertices of X that are adjacent in G are
assigned orthogonal vectors. We next extend this assignment to the vertices of the independent
set V \ X of G. Consider some vertex v ∈ V \ X, let W = span({uv′ | v′ ∈ NG(v)}), and
notice that v may be assigned any non-self-orthogonal vector of Fd that lies in W ⊥. If
dim(W ) < m, then by m ≤ m(F, d), there exists a non-self-orthogonal vector in W ⊥, which
can be assigned to the vertex v. Otherwise, there exists a set of vertices S ⊆ NG(v) of size
m ≤ |S| ≤ d whose vectors form a basis of W , that is, W = span({uv′ | v′ ∈ S}). By the
definition of the graph K, it includes the vertex vS , and its vector is orthogonal to the vectors
uv′ with v′ ∈ S, and thus lies in W ⊥. This yields the existence of the desired vector for v, so
we are done. ◀

With Lemma 16 at hand, we are ready to prove Theorem 14.

Proof of Theorem 14. The input of the Ortho-DimF problem on Empty + kv graphs
consists of a graph G, a vertex cover X of G of size |X| = k, and an integer d. Consider
the algorithm that given such an input acts as follows. If d > k then the algorithm accepts.
Otherwise, the algorithm calls an algorithm for the Ortho-DimF problem on the input
(K, d), where K = K(G, X, 1, d) is the graph given in Definition 15, and returns its answer.
Note that we use here the assumption that the Ortho-DimF problem is decidable.

For correctness, observe first that the input graph G is (k + 1)-colorable, as follows by
assigning k distinct colors to the vertices of the vertex cover X and another color to the vertices
of the independent set V \ X. It thus follows, using Claim 12, that ξF(G) ≤ χ(G) ≤ k + 1.
Therefore, if d > k, then it holds that ξF(G) ≤ d, hence our algorithm correctly accepts.
Otherwise, the algorithm calls an algorithm for Ortho-DimF on the input (K, d). The
correctness of its answer follows from Item 4 of Lemma 16, which guarantees that ξF(G) ≤ d

if and only if ξF(K) ≤ d.
We finally analyze the running time of the algorithm. On instances with d > k, the

algorithm is clearly efficient. For instances with d ≤ k, by Item 2 of Lemma 16, the number
of vertices in K is O(kd) ≤ O(kk). Using the decidability of Ortho-DimF, this implies that
the running time of the algorithm is bounded by f(k) · nO(1) for some computable function
f , where n stands for the input size. Therefore, the Ortho-DimF problem on Empty + kv
graphs is fixed-parameter tractable. ◀

In order to apply Theorem 14 to the real field R, one has to show that the Ortho-DimR
problem is decidable. We obtain this result using the problem of the existential theory of
the reals, in which the input is a collection of equalities and inequalities of polynomials over
the reals, and the goal is to decide whether there exists an assignment of real values to
the variables satisfying all the constraints. In 1951, Tarski [31] proved that the problem is
decidable. His result was strengthened in 1988 by Canny [10], who proved that it actually
lies in the complexity class PSPACE. We derive the following simple consequence.
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▶ Proposition 17. The Ortho-DimR problem lies in PSPACE.

Proof. It is sufficient to show that the Ortho-DimR problem is reducible in polynomial
time to the problem of the existential theory of the reals, which lies in PSPACE [10]. Consider
the reduction that given a graph G = (V, E) and an integer d produces a collection PG

of polynomial constraints over the reals defined as follows. For each vertex v ∈ V , let
xv,1, . . . , xv,d denote d variables associated with v. For each vertex v ∈ V , add to PG

the inequality
∑d

i=1 x2
v,i ≠ 0, and for each edge {v, v′} ∈ E, add to PG the equality∑d

i=1 xv,i · xv′,i = 0. The reduction returns the collection PG, which can clearly be computed
in polynomial time. Observe that ξR(G) ≤ d if and only if there exists an assignment over
the reals satisfying the constraints of PG, implying the correctness of the reduction. ◀

Proposition 17 implies that the Ortho-DimR problem is decidable. Using Theorem 14,
we obtain the following corollary, which combined with Theorem 13, confirms Theorem 2.

▶ Corollary 18. The Ortho-DimR problem on Empty + kv graphs is fixed-parameter
tractable.

4 Kernelization for d-Ortho-DimF Parameterized by Vertex Cover

We consider now the d-Ortho-DimF problem for a fixed constant d and study its kernelizab-
ility when parameterized by the vertex cover number (recall Definition 1). We first leverage
our discussion from the previous section to derive Theorem 3, namely, to show that for every
field F and for every integer d ≥ 3, the d-Ortho-DimF problem on Empty + kv graphs
admits a kernel with O(kd) vertices and bit-size O(kd).

Proof of Theorem 3. Fix a field F and an integer d ≥ 3. The input of d-Ortho-DimF on
Empty+kv graphs consists of a graph G and a vertex cover X of G of size |X| = k. Consider
the algorithm that given such an input returns the pair (K, X), where K = K(G, X, 1, d) is
the graph from Definition 15. Since d is a fixed constant, the algorithm can be implemented
in polynomial time. By Lemma 16, the set X forms a vertex cover of K, the graph K has
O(kd) vertices and bit-size O(kd), and the instances (G, X) and (K, X) are equivalent. This
completes the proof. ◀

For the real field R, we prove Theorem 5, which improves on the kernel provided by
Theorem 3 to O(kd−1) vertices and bit-size O(kd−1 · log k). We start with a couple of auxiliary
lemmas.

▶ Lemma 19. For every integer d, if a graph has a d-dimensional orthogonal representation
over R, then it has a d-dimensional orthogonal representation over R, all of whose vectors
have 1 as their first entry.

Proof. The proof applies the probabilistic method. Let d be an integer, let G = (V, E) be a
graph, and set n = |V |. Suppose that there exists a d-dimensional orthogonal representation
(uv)v∈V of G over R. Let a ∈ [2n]d be a random d-dimensional vector, such that each entry
of a is chosen from [2n] uniformly at random. We observe that for every fixed nonzero vector
u ∈ Rd, it holds that ⟨a, u⟩ = 0 with probability at most 1

2n . Indeed, letting i ∈ [d] be an
index with ui ̸= 0, for every fixed choice of the values of aj with j ∈ [d] \ {i}, there is at most
one value of ai in [2n] for which it holds that ⟨a, u⟩ = 0. By the union bound, it follows that
the probability that there exists a vertex v ∈ V such that ⟨a, uv⟩ = 0 is at most n · 1

2n = 1
2 .

In particular, there exists a vector a ∈ [2n]d satisfying ⟨a, uv⟩ ≠ 0 for all v ∈ V . Let us fix
such a vector a.
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Now, let M ∈ Rd×d be some orthonormal matrix (i.e., a matrix satisfying M · M t = Id)
whose first row is the vector a scaled to have Euclidean norm 1, i.e., a/∥a∥. We assign to
each vertex v ∈ V of the graph G the vector M · uv. Since M is orthonormal, it preserves
inner products, hence this assignment forms a d-dimensional orthogonal representation of G

over R. Additionally, for every vertex v ∈ V , the first entry of the vector M · uv is nonzero,
because ⟨a, uv⟩ ≠ 0. By scaling, one can obtain a d-dimensional orthogonal representation of
G over R, all of whose vectors have 1 as their first entry, as required. ◀

Before we state the next lemma, we need a brief preparation. For a field F, a polynomial
in F[x1, . . . , xn] is called homogeneous of degree d if each of its monomials has degree d. Note
that the zero polynomial is homogeneous of degree d for every d ≥ 0. A monomial is called
multilinear if it forms a product of distinct variables, and a polynomial is called multilinear
if it forms a linear combination of multilinear monomials. For example, the determinant
of d × d matrices over a field F, viewed as a polynomial on d2 variables, is multilinear and
homogeneous of degree d. Moreover, it is a linear combination of d! monomials, each of
which forms a product of d variables, one taken from each row of the matrix. Note that the
dimension over F of the vector space of multilinear homogeneous polynomials of degree d in
F[x1, . . . , xn] is

(
n
d

)
.

▶ Lemma 20. For every integer d, there exists a multilinear homogeneous polynomial
p : Rd×d → R of degree d − 1, defined on d2 variables corresponding to the entries of a d × d

matrix, such that for every matrix M ∈ Rd×d whose first row is the all-one vector, it holds
that p(M) = 0 if and only if there exists a nonzero vector in Rd that is orthogonal to all
columns of M .

Proof. For an integer d, consider the determinant polynomial det : Rd×d → R. It is well
known that for every matrix M ∈ Rd×d, it holds that det(M) = 0 if and only if the columns
of M span a subspace of dimension smaller than d, and that this condition is equivalent to
the existence of a nonzero vector in Rd that is orthogonal to all columns of M . Recall that
det is a multilinear polynomial, with each monomial being a product of d variables, each
selected from a different row of the matrix. Let p : Rd×d → R be the polynomial obtained
from det by substituting 1 for the variables that correspond to the first row of the matrix,
and observe that p is a multilinear homogeneous polynomial of degree d − 1. Note that
although p is defined on d2 variables, it actually depends on only d2 − d of them. We finally
observe that for every matrix M ∈ Rd×d whose first row is the all-one vector, it holds that
p(M) = 0 if and only if there exists a nonzero vector in Rd that is orthogonal to all columns
of M . This completes the proof. ◀

We are ready to prove Theorem 5, providing a kernel with O(kd−1) vertices and bit-size
O(kd−1 · log k) for the d-Ortho-DimR problem on Empty + kv graphs for all integers d ≥ 3.

Proof of Theorem 5. Fix an integer d ≥ 3. The input of d-Ortho-DimR on Empty + kv
graphs consists of a graph G = (V, E) and a vertex cover X ⊆ V of G of size |X| = k.
Consider the algorithm that given such an input acts in two phases, as described next.

In the first phase, the algorithm constructs the graph G′ = K(G, X, d, d) given in
Definition 15. Let V ′ denote the vertex set of G′, and recall that every vertex vS ∈ V ′ \ X is
associated with some set S ⊆ X of size |S| = d such that NG′(vS) = S. By Lemma 16, the
set X is a vertex cover of G′, and it holds that |V ′| ≤ k +

(
k
d

)
.

In the second phase, the algorithm constructs a graph G′′. To do so, the algorithm first
associates with each vertex v ∈ X a d-dimensional vector xv of variables over R. Note that
the total number of variables is k · d. For each vertex vS ∈ V ′ \ X, we apply Lemma 20 to
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obtain a multilinear homogeneous polynomial pS of degree d − 1, defined on the d2 variables
associated with the d neighbors of vS in G′ (which all lie in X). The polynomial pS satisfies
that for every assignment M ∈ Rd×d to its variables with first row equal to the all-one vector,
it holds that pS(M) = 0 if and only if there exists a nonzero vector in Rd that is orthogonal
to all columns of M . Let P = span({pS | vS ∈ V ′ \ X}) denote the subspace spanned by the
polynomials associated with the vertices of V ′ \ X. The algorithm proceeds by finding a set
Y ⊆ V ′ \ X, such that the polynomials associated with the vertices of Y form a basis for
P . Note that P is contained in the vector space of multilinear homogeneous polynomials of
degree d − 1 on k · d variables. Since the dimension of the latter is

(
k·d
d−1

)
, recalling that d is

a fixed constant, it follows that |Y | ≤
(

k·d
d−1

)
≤ O(kd−1). Letting V ′′ = X ∪ Y , the algorithm

returns the graph G′′ = G′[V ′′] and the set X, which forms a vertex cover of G′′ because it
forms a vertex cover of G′.

The number of vertices in G′′ is |V ′′| = |X| + |Y | ≤ k + O(kd−1) = O(kd−1). The number
of edges in G′′[X] is at most

(
k
2
)
, and since the degree of each vertex of Y is d, the number

of edges in G′′ that involve vertices of Y is d · |Y |. It follows that the total number of edges
in G′′ is at most

(
k
2
)

+ d · O(kd−1) ≤ O(kd−1). Therefore, the number of bits required to
encode the edges of G′′ is at most O(kd−1 · log |V ′′|) ≤ O(kd−1 · log k), as required.

It is not difficult to verify that the algorithm can be implemented in polynomial time.
Note that the set Y can be calculated in polynomial time by applying Gaussian elimination
with

(
k·d
d−1

)
variables.

For the correctness of the algorithm, we shall prove that ξR(G) ≤ d if and only if
ξR(G′′) ≤ d. By Item 4 of Lemma 16, using m(R, d) = d (see Remark 9), it holds that
ξR(G) ≤ d if and only if ξR(G′) ≤ d. It thus suffices to show that ξR(G′) ≤ d if and only if
ξR(G′′) ≤ d.

It obviously holds that if ξR(G′) ≤ d then ξR(G′′) ≤ d, because G′ contains G′′ as a
subgraph. For the converse, suppose that ξR(G′′) ≤ d, that is, there exists a d-dimensional
orthogonal representation of G′′ over R. By Lemma 19, it further follows that there exists a
d-dimensional orthogonal representation (uv)v∈V ′′ of G′′ over R, such that every vector uv

has 1 as its first entry. For each vertex v ∈ X, assign the vector uv to the vertex v as well as
to the variables of the vector xv associated with v. We will show that this assignment to the
vertices of X can be extended to an orthogonal representation of G′ over R. Indeed, for every
vertex vS ∈ Y of G′′, the nonzero vector uvS

is orthogonal to the vectors of the vertices of S.
This implies, using Lemma 20 and the fact that the first entries of the vectors xv with v ∈ X

are all 1, that the polynomial pS vanishes on this assignment. Since the polynomials pS with
vS ∈ Y form a basis of the subspace P , it follows that all the polynomials pS associated
with the vertices vS ∈ V ′ \ X vanish on this assignment as well. Using Lemma 20 again, we
obtain that for each vertex vS ∈ V ′ \ X, there exists a nonzero vector that is orthogonal to
the vectors of the vertices of S, and these are precisely the neighbors of vS in G′. This gives
us a d-dimensional orthogonal representation of G′ over R, which yields that ξR(G′) ≤ d,
concluding the proof. ◀

5 Lower Bound

In this section, we prove our lower bound on the kernel size of the d-Ortho-DimF problem
parameterized by the vertex cover number. We first present the gadget graph that will be
used in the proof.
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5.1 Gadget Graph
A key ingredient in the proof of our lower bound is the following lemma, which generalizes
a construction of [29] (corresponding to the case of d = 3). Here, two nonzero vectors
u1, u2 ∈ Fd are said to be proportional if there exists some α ∈ F such that u1 = α · u2. The
proof can be found in the full version of the paper.

▶ Lemma 21. For an integer d ≥ 3, let C2d denote the cycle graph on 2d vertices, let x0 and
x1 denote two adjacent vertices in the cycle, and let H = C2d denote its complement graph.
1. There exists a proper d-coloring of H that assigns to x0 and x1 the same color.
2. There exists a proper d-coloring of H that assigns to x0 and x1 distinct colors.
3. For every field F and for every d-dimensional orthogonal representation of H over F, the

vectors assigned to x0 and x1 are either orthogonal or proportional.

5.2 The d-Ortho-DimF Problem on Empty + kv Graphs
We prove the following lower bound on the size of any compression for the d-Ortho-DimF
problem parameterized by the vertex cover number.

▶ Theorem 22. For every field F, every integer d ≥ 3, and any real ε > 0, the d-Ortho-DimF
problem on Empty + kv graphs does not admit a compression with bit-size O(kd−1−ε) unless
NP ⊆ coNP/poly.

Note that Theorem 22 confirms Theorem 4. Another immediate corollary is the following.

▶ Corollary 23. For every field F, the Ortho-DimF problem on Empty + kv graphs does
not admit a polynomial compression unless NP ⊆ coNP/poly.

The starting point of the proof of Theorem 22 is the following theorem, which summarizes
the lower bounds proved in [23, 24] on the size of any compression for the q-Coloring
problem parameterized by the vertex cover number (see [24, Corollary 2]).

▶ Theorem 24 ([23, 24]). For every integer q ≥ 3, the q-Coloring problem on Empty + kv
graphs does not admit a compression with bit-size O(kq−1−ε) unless NP ⊆ coNP/poly.

Equipped with Lemma 21, we relate the d-Coloring and d-Ortho-DimF problems
parameterized by the vertex cover number, as stated below.

▶ Theorem 25. For every field F and for every integer d ≥ 3, there exists a linear-parameter
transformation from d-Coloring on Empty+kv graphs to d-Ortho-DimF on Empty+kv
graphs.

Proof. Fix a field F and an integer d ≥ 3. Consider an instance of the d-Coloring problem
on Empty + kv graphs, namely, a graph G = (V, E) and a vertex cover X ⊆ V of G of size
|X| = k. Our goal is to construct in polynomial time a graph G′ = (V ′, E′) and a vertex
cover X ′ ⊆ V ′ of G′ of size |X ′| = O(k), such that χ(G) ≤ d if and only if ξF(G′) ≤ d.

To do so, we start with the graph G and add to it a clique of size d whose vertices
are denoted by z1, . . . , zd. Then, for each index i ∈ [d] and each vertex v ∈ X, we add to
the graph a copy Hi,v of the complement C2d of the cycle graph on 2d vertices, where two
consecutive vertices of the cycle are identified with the vertices zi and v. Note that we add
here d · k such gadgets to the graph and that each of them involves 2d − 2 new vertices.
Let G′ = (V ′, E′) denote the obtained graph, and let X ′ denote the set that consists of the
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vertices of X and the vertices that were added to G in the construction. The transformation
returns the pair (G′, X ′). Since X is a vertex cover of G, the set V \ X is an independent
set of G. It follows that V ′ \ X ′ is an independent set of G′, hence X ′ is a vertex cover
of G′. Its size satisfies |X ′| = k + d + d · k · (2d − 2) = O(k), hence the transformation is
linear-parameter. The transformation can clearly be implemented in polynomial time. For
correctness, we shall prove that χ(G) ≤ d if and only if ξF(G′) ≤ d.

Suppose first that χ(G) ≤ d, and consider some proper d-coloring of G with color set [d].
We extend this coloring to a d-coloring of G′ as follows. First, for each i ∈ [d], we assign
the color i to the vertex zi. Clearly, no edge that connects two of the vertices z1, . . . , zd is
monochromatic. Next, for each i ∈ [d] and v ∈ X, consider the vertices of the component
Hi,v. The only vertices of Hi,v that already received colors are zi and v. By Lemma 21, this
partial coloring of Hi,v can be extended to a proper d-coloring of the whole gadget. Indeed,
if zi and v are assigned the same color then this follows from Item 1 of the lemma, and if zi

and v are assigned distinct colors then this follows from Item 2 of the lemma. This gives us
a proper d-coloring of G′, which implies using Claim 12 that ξF(G′) ≤ χ(G′) ≤ d.

For the converse direction, suppose that ξF(G′) ≤ d, and consider a d-dimensional
orthogonal representation (uv)v∈V ′ of G′ over F. Since the vertices z1, . . . , zd form a clique
in G′, it follows that their vectors uz1 , . . . , uzd

are pairwise orthogonal. Since they are
non-self-orthogonal, it follows that they are linearly independent, and thus span the entire
vector space Fd. For each i ∈ [d] and v ∈ X, consider the vectors assigned by the given
orthogonal representation to the vertices of the component Hi,v in G′, and apply Item 3
of Lemma 21 to obtain that the vectors uzi

and uv are either orthogonal or proportional.
However, the vectors uz1 , . . . , uzd

span the vector space Fd, hence for each v ∈ X, the nonzero
vector uv cannot be orthogonal to all of them. This yields that for each vertex v ∈ X, the
vector uv is proportional to exactly one of the vectors uz1 , . . . , uzd

.
We define a d-coloring of G as follows. To each vertex v ∈ X, assign the color i ∈ [d] for

which uv is proportional to uzi . Since the given orthogonal representation assigns orthogonal
vectors to adjacent vertices, it follows that this coloring assigns distinct colors to adjacent
vertices in X. Next, to each vertex v ∈ V \ X, assign a color from [d] that does not appear
on its neighbors. Notice that all the neighbors of v lie in X and were already colored,
because X is a vertex cover of G. To see that such a color exists, recall that the vector uv

is nonzero and orthogonal to the vectors associated with its neighbors in X by the given
orthogonal representation of G′. Since every such vector is proportional to one of uz1 , . . . , uzd

,
it follows that there exists some i ∈ [d] for which no neighbor of v is associated with a vector
proportional to uzi

, yielding the existence of the desired color for v. This gives us a proper
d-coloring of G and implies that χ(G) ≤ d, so we are done. ◀

We finally combine Theorems 24 and 25 to derive Theorem 22.

Proof of Theorem 22. Fix a field F, an integer d ≥ 3, and a real ε > 0. By Theorem 25,
there exists a linear-parameter transformation from d-Coloring on Empty + kv graphs to
d-Ortho-DimF on Empty+kv graphs. Therefore, if d-Ortho-DimF on Empty+kv graphs
admits a compression with bit-size O(kd−1−ε), then by composing this compression with the
given transformation, it follows that d-Coloring on Empty+kv graphs admits a compression
with bit-size O(kd−1−ε) as well. By Theorem 24, this implies that NP ⊆ coNP/poly, and we
are done. ◀
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