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Preface

The 19th International Symposium on Parameterized and Exact Computation (IPEC 2024)
took place at Royal Holloway, University of London in Egham, United Kingdom, on 4-6
September, 2024. It was a part of ALGO 2024.

IPEC is an annual conference covering all aspects of parameterized and exact algorithms,
and complexity. To emphasize the link between theory and practice, IPEC hosts, since
2016, the Parameterized Algorithms and Computational Experiments (PACE) Challenge.
This year’s problem was one-sided crossing minimization, and attracted a record number of
participants and teams.

IPEC 2024 had two keynote talks. The first was an invited tutorial titled Structurally
tractable graph classes, given by Szymon Toruńczyk. The second was by Daniel Lokshtanov,
one of the 2024 EATCS-IPEC Nerode Prize winners. Indeed, the prize was awarded to Hans
L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh, and
Dimitrios M. Thilikos for their paper (Meta) Kernelization [FOCS 2010, JACM 2016].

We received a total of 51 submissions, out of which the Program Committee accepted 25.
The prize for the Best Paper was awarded to Katrin Casel, Tobias Friedrich, Aikaterini
Niklanovits, Kirill Simonov, and Ziena Zeif for their paper Combining Crown Structures
for Vulnerability Measures. The extended abstract of all accepted papers, as well as short
descriptions of the best solutions to the PACE Challenge, are included in this volume.

Many individuals contributed to the success of IPEC 2024. In particular, we thank:
All authors who submitted their results to IPEC,
The members of the PC and subreviewers, who graciously gave their time and energy,
The Steering Committee for their helpful guidance,
The invited speakers and the 2024 EATCS-IPEC Nerode Prize Committee: Thore Husfeld,
Sang-il Oum, and Russell Impagliazzo,
ALGO 2024 organizing committee, chaired by Argyrios Deligkas and Eduard Eiben, and
The session chairs and all other participants.
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The Tradition of I(W)PEC

2004 1st IWPEC, Bergen, Norway chairs: Rodney Downey, Michael Fellows, Frank Dehne
2006 2nd IWPEC, Zürich, Switzerland chairs: Hans L. Bodlaender, Michael A. Langston
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Abstract
Over the past decades, various metrics have emerged in graph theory to grasp the complex nature of
network vulnerability. In this paper, we study two specific measures: (weighted) vertex integrity
(wVI) and (weighted) component order connectivity (wCOC). These measures not only evaluate the
number of vertices that need to be removed to decompose a graph into fragments, but also take into
account the size of the largest remaining component. The main focus of our paper is on kernelization
algorithms tailored to both measures. We capitalize on the structural attributes inherent in different
crown decompositions, strategically combining them to introduce novel kernelization algorithms
that advance the current state of the field. In particular, we extend the scope of the balanced crown
decomposition provided by Casel et al. [5] and expand the applicability of crown decomposition
techniques.

In summary, we improve the vertex kernel of VI from p3 to 3p2, and of wVI from p3 to
3(p2 + p1.5pℓ), where pℓ < p represents the weight of the heaviest component after removing a
solution. For wCOC we improve the vertex kernel from O(k2W + kW 2) to 3µ(k + √

µW ), where
µ = max(k, W ). We also give a combinatorial algorithm that provides a 2kW vertex kernel in
fixed-parameter tractable time when parameterized by r, where r ≤ k is the size of a maximum
(W + 1)-packing. We further show that the algorithm computing the 2kW vertex kernel for COC
can be transformed into a polynomial algorithm for two special cases, namely when W = 1, which
corresponds to the well-known vertex cover problem, and for claw-free graphs. In particular, we
show a new way to obtain a 2k vertex kernel (or to obtain a 2-approximation) for the vertex cover
problem by only using crown structures.
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1 Introduction

In the study of graph theory different scales have emerged over the past decades to capture
the complex nature of network vulnerability. While the main focus is on the connectivity of
vertices and edges, subtle aspects of vulnerability such as the number of resulting components,
the size distribution of the remaining components, and the disparity between them are
becoming increasingly interesting [3, 13, 14, 16, 15, 20]. Our focus in this study is on two
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specific ways to measure vulnerability: (weighted) vertex integrity and (weighted) component
order connectivity. These measures not only evaluate the number of vertices that need to
be removed to decompose a graph into fragments, but also take into account the size of the
largest remaining component. Incorporating these aspects provides a more comprehensive
understanding of network resilience.

Informally, vertex integrity (VI) is a model for the right balance between removing
few vertices and keeping small connected parts of a graph. More formally, given a graph
G = (V, E) and a number p ∈ N, the task for VI is to find a set of vertices S ⊆ V such
that |S| plus the size of the largest component when removing S from G is at most p. In
the vertex weighted version (wVI), the goal is bounding the total weight of the removed
vertices plus the weight of the heaviest component by p. This problem was introduced by
Barefoot et al. [2] as a way to measure vulnerability of communication networks. Recently, it
has drawn the interest of the parameterized complexity community due to its status as a
natural parameter that renders numerous NP-hard problems amenable to fixed parameter
tractability (FPT). This means that for these problems, solutions can be computed within a
time frame represented by f(p) ·nO(1), where f is a computable function [20]. It is interesting
to see how vertex integrity relates to other well-known measures of network structure. It
imposes greater constraints compared to metrics such as treedepth, treewidth, or pathwidth,
as the vertex integrity of a graph serves as an upper bound for these parameters. However,
it encompasses a wider range of scenarios compared to vertex cover, where a vertex cover of
a graph is an upper bound for its vertex integrity. This makes it a key in understanding how
to efficiently solve problems in the world of network analysis.

The measure component order connectivity (COC) can be seen as the refined version of
VI. Given a graph G = (V, E) and two parameters k, W ∈ N, the goal of COC is to remove k

vertices such that each connected component in the resulting graph has at most W vertices –
also known in the literature as the W -separator problem or α-balanced separator problem,
where α ∈ (0, 1) and W = α|V |. In the vertex-weighted version (wCOC), the goal is to
remove vertices of total weight at most k such that the weight of the heaviest remaining
component is at most W . An equivalent view of this problem is to search for the minimum
number of vertices required to cover or hit every connected subgraph of size W + 1. In
particular, W = 1 corresponds to covering all edges, showing that the COC is a natural
generalization of the vertex cover problem.

The focus of the paper is on kernelization algorithms tailored for both weighted and
unweighted versions of VI and COC when parameterized by p and k + W , respectively.
Kernelization algorithms can be thought of as formalized preprocessing techniques aimed to
reduce optimization problems. Of particular interest in this work are crown decompositions,
which are generally used as established structures for safe instance reduction – where “safe”
in this case means that any optimal solution to the reduced instance can efficiently be
transformed into an optimal solution of the original. Essentially, a crown decomposition
partitions the vertex set into distinct components: crown, head, and body. Here, the
head acts as a separator between the crown and the body. This structural arrangement
becomes useful when specific relationships between the head and the crown are required.
Such relationships ultimately enable us to shrink instances by eliminating these designated
parts from the graph. The properties of this structural layout, coupled with its existence
depending on the instance size, enable the development of efficient kernelization algorithms
for different problem domains. Notably, crown decompositions have also recently found
utility in approximation algorithms for graph packing and partitioning problems [5]. For
further exploration of crown decompositions, including their variations and applications, we
recommend the comprehensive survey paper by Jacob et al. [17].
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Our methods take advantage of the structural characteristics found in various crown
decompositions, leading to the development of new kernelization algorithms that improve
the state of the art. In essence, this work expands upon the applications of the balanced
crown decomposition introduced by Casel et al. [5], specifically by integrating different crown
decompositions into this framework.

Related Work

Recently, the vertex integrity problem (VI) was extensively studied as a structural graph
parameter [3, 13, 15, 20]. Gima et al. [14] conducted a systematic investigation into structural
parameterizations of computing the VI and wVI which was further extended by Hanaka et
al. [16]. Additionally, there are notable results concerning special graph classes [1, 8, 10, 18, 23].
In our context, regarding related work on VI and wVI, Fellows and Stueckle presented an
algorithm that solves the problem in O(p3pn) [11]. This was subsequently improved by Drange
et al. [10], even for the weighted case, to O(pp+1n). In the same paper, they presented the
first vertex-kernel of size p3 for both VI and wVI.

Considering, COC and wCOC, it is unlikely that kernelization algorithms for these
problems can be achieved by considering k or W alone in polynomial time. Indeed, W = 1
corresponds to the NP-hard vertex cover problem, which shows that W (alone) is not a
suitable parameter. For the parameter k, the problem is W [1]-hard even when restricted
to split graphs [10]. These lower bounds lead to the study of parameterization by k + W .
The best known algorithm with respect to these parameters finds a solution in time nO(1) ·
2O(log(W )·k) [10]. Unless the exponential time hypothesis fails, the authors prove that this
running time is tight in the sense that there is no algorithm that solves the problem in time
nO(1) · 2o(log(W )·OPT). The best known approximation algorithm has a multiplicative gap
guarantee of O(log(W )) to the optimal solution with a running time of nO(1) · 2O(W ) [21].
In [21], they also showed that the superpolynomial dependence on W may be needed to
achieve a polylogarithmic approximation. Using this algorithm as a subroutine, the vertex
integrity can be approximated within a factor of O(log(OPT)), where OPT is the vertex
integrity.

Regarding kernelization algorithms, there is a sequence of results which successively
improve the vertex-kernel of COC. The first results came from Chen et al. [7] and Drange et
al. [10], who provided kernels of size in O(kW 3) and O(k2W +kW 2), respectively. The result
of Drange et al. also holds for wCOC and is the only result for this case. This was improved
simultaneously by Xiao [24] as well as by Kumar and Lokshtanov [19] to a O(kW 2) kernel.
These works also provide the first O(kW ) kernels, but with different constants and running
times. Kumar and Lokshtanov [19] present a 2kW kernel in a running time of nO(W ) by using
linear programming (LP) methods with an exponential number of constraints. The runtime
can be improved to 2O(W ) · nO(1) as already mentioned in the book of Fomin et al. [12]
(Section 6.4.2). Roughly speaking, the idea is to use the ellipsoid method with separation
oracles to solve the linear program, where the separation oracle uses a method called color
coding to find violated constraints that makes it polynomial in W . Note that if W is a
constant this 2kW kernel is a polynomial time kernel improving on some previous results.
This includes for instance the improvement of the 5k kernel provided by Xiao and Kou [25]
to a 4k kernel for the well-studied P2-covering problem, where a P2 is a path with 2 edges.
The first linear kernel in both parameters in polynomial time, i.e. an O(kW ) vertex kernel,
is presented by Xiao [24], who provides a 9kW vertex kernel. Finally, this was improved by
Casel et al. [5] to a 3kW vertex kernel, which also holds for a more general setting. Namely,
to find k vertices in a vertex weighted graph such that after their removal each component
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weighs at most W . Note that the weights of the separator, i.e. the chosen k vertices, play no
role in this problem compared to wCOC. With the exception of the O(k2W + kW 2) vertex
kernel of Drange et al. [10], all achieved vertex kernels essentially use crown structures.

Our Contribution

The provided running times are based on an input graph G = (V, E). We improve the
vertex kernel for VI from p3 to 3p2 in time O

(
log(p)|V |4|E|

)
. For wVI, we improve it to

3(p2 + p1.5pℓ) in time O
(
log(p)|V |4|E|

)
, where pℓ ≤ p represents the weight of the heaviest

component after removing a solution.
To better explain the results of COC and wCOC, consider the problem of a maximum

λ-packing for λ ∈ N. Given a (vertex weighted) graph G, this problem aims to maximize
the number of disjoint connected subgraphs, each of size (or weight) at least λ. It is worth
noting that the size of a maximum (W + 1)-packing serves as a lower bound on the size of
an optimal solution of COC (or wCOC), since each element in the packing must contain at
least one vertex of it – in terms of linear programming, it is the dual of COC.

For wCOC we improve the vertex kernel of O(k2W + kW 2) to 3µ(k + √
µW ) in time

O
(
r2k|V ||E|

)
, where µ = max(k, W ) and r ≤ |V | is the size of a maximum (W + 1)-

packing. For the unweighted version, we provide a 2kW vertex kernel in an FPT-runtime of
O(r3|V ||E| · rmin(3r,k)), where r ≤ k is the size of a maximum (W + 1)-packing. Comparing
this result with the state of the art, disregarding the FPT-runtime aspect, we improve upon
the best-known polynomial algorithm, achieving a kernel of size 3kW [5]. A 2kW vertex
kernel is also presented in [19], albeit with an exponential runtime using linear programming
methods, which, as mentioned, can be enhanced to an FPT-runtime regarding parameter W .
In contrast, our result is entirely combinatorial and has an FPT-runtime in the parameter
of a maximum (W + 1)-packing r ≤ k. It should be noted that, strictly speaking, the 2kW

vertex kernel of [19] and our work cannot be considered a kernel, given that the runtime
dependency is exponential with respect to the parameters W and k, respectively. However,
for the sake of simplicity, we will refer to it as a kernel, with an explicit mention of the
runtime dependency. As previously stated, note that it is unlikely that an FPT-runtime will
be able to solve COC (or wCOC) when considering either W or k alone. We further show
that the algorithm computing the 2kW vertex kernel for COC can be transformed into a
polynomial algorithm for two special cases. The first case arises when W = 1, i.e., for the
vertex cover problem. Here, we provide a new method for obtaining a vertex kernel of 2k

(or obtaining a 2-approximation) using only crown decompositions. The second special case
is for the restriction of COC to claw-free graphs. Unfortunately, we currently do not know
whether COC is hard on claw-free graphs and defer this question to future work.

Regarding these special cases, until 2017, a 2k vertex kernel for W = 1 was known
through crown decompositions, albeit computed using both crown decompositions and linear
programming. Previously, only a 3k vertex kernel was known using crown decompositions
alone. In 2018, Li and Zhu [22] provided a 2k vertex kernel solely based on crown structures.
They refined the classical crown decomposition, which possessed an additional property
allowing the remaining vertices of the graph to be decomposed into a matching and odd cycles
after exhaustively applying the corresponding reduction rule. In contrast, our algorithm
identifies the reducible structures, which must exist if the size of the input graph exceeds 2k.
Unfortunately, we were unable to transform the FPT-runtime algorithm into a polynomial-
time algorithm in general. Nevertheless, we believe that our insights into the structural
properties of certain crown decompositions potentially pave the way to achieving this goal.

Lastly, all missing details, i.e. omitted proofs and algorithms as well as more detailed
explanations can be found in the extended arxiv version [6].
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2 Preliminaries

In this section, we briefly discuss terminology related to graphs and parameterized complexity
that we use in the extended abstract (the complete terminology can be found in the extended
arxiv version [6]). Additionally, we introduce the crown structures that are utilized throughout
this paper.

Graph and Parameterized Terminology

We use a standard terminology for graphs G = (V, E). The following is not necessarily
common: For sets of vertex sets V ⊆ 2V we abuse notation and use V (V) =

⋃
Q∈V Q and

N(V) :=
(⋃

Q∈V N(U)
)

\ V (V). We define CC(G) ⊆ 2V as the connected components of
G as vertex sets. Let G = (V, E, w : V → N) be a vertex weighted graph. For V ′ ⊆ V and
G′ ⊆ G we define w(V ′) and w(G′) as

∑
v∈V ′ w(v) and

∑
v∈V (G′) w(v), respectively.

For improved readability, we extend the notation of the inverse function f−1. Henceforth,
sometimes it returns a vertex set that is the union of the corresponding vertex sets, which is
always clear from the context. For instance, for a function f : V → V on the vertices of a
graph G = (V, E), h ∈ V and V ′ ⊆ V we use f−1(h) also for V (f−1(h)), and f−1(V ′) for
V (f−1(V ′)), respectively.

For parameterized complexity we use the standard terminology, which is also used, for
example, in [9, 12]. Of particular interest in this work are kernelizations, which can be roughly
described as formalized preprocessings. More formally, given an instance (I, k) parameterized
by k, a polynomial algorithm is called a kernelization if it maps any (I, k) to an instance
(I ′, k′) such that (I ′, k′) is a yes-instance if and only if (I, k) is a yes-instance, |I ′| ≤ g(k),
and k′ ≤ g′(k) for computable functions g, g′.

Crown Decompositions

We present a more general variant of crown decomposition that also captures commonly used
crown decompositions or expansions (strictly speaking the relevant parts of it), which we
explain in a moment. This novel decomposition can be easily derived from existing results
of [5], but to the best of our knowledge has never been used in this form before. (See Figure 1
(left) for an illustration.)

▶ Definition 1 (Demanded balanced expansion and weighted crown decomposition). For a
graph G = (A ∪ B, E, w), a partition A1 ∪ A2 of A, a function f : CC(G[B]) → A, demands
D = {da}a∈A with da ∈ N for each a ∈ A and y ∈ N the tuple (A1, A2, y, f, D) is a demanded
balanced expansion (DBE) if
1. w(Q) ≤ y for each Q ∈ CC(G[B])
2. f(Q) ∈ N(Q) for each Q ∈ CC(G[B])
3. N(f−1(A1)) ⊆ A1

4. w(a) + w
(
f−1(a)

) {
> da − y + 1 for each a ∈ A1

≤ da + y − 1 for each a ∈ A2

To simplify the notation we introduce two further special cases of a DBE:
If the demands are the same for each a ∈ A, e.g. da = x for every a ∈ A with x ∈ N,
then we write only the value x instead of a vector D = {da}a∈A in a DBE-tuple,
i.e. (A1, A2, y, f, D) = (A1, A2, y, f, x).
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B A }
A1

}
A2

Figure 1
Left: Let A = {a1, a2, a3, a4} be ordered in a top down manner, w(Q) = 1 for every Q ∈ CC(G[B])
and w(a) = 1 for every a ∈ A. Then, ({a1, a2}, {a3, a4}, 1, f, {3, 1, 3, 4}) is a DBE, where the
assignment f are depicted with corresponding colored bold edges.
Right: A λ-balanced crown decomposition, where the assignment f are depicted with corresponding
colored bold edges. The two dashed lines illustrate that w(h) + w(f−1(h)) > λ for every h ∈ H

while w(Q) ≤ λ for every Q ∈ CC(G[C]).

For q ∈ N we call (C, H, f) a (q, y) crown decomposition ((q, y)-CD) if it is a (H,∅, y, f, q+
y − 1) DBE with H = A and C = B = f−1(H). (This term simplifies the reference to
the reducible structure of crown C and head H.)

Considering a graph instance G = (V, E), e.g. from VI or COC, Definition 1 usually
describes only a subgraph where the reducible structure is sought, i.e. A, B are vertex subsets
of V . What is crucial is that A already separates B from V \ B. Then, the vertex set A1 ⊆ A

(cf. Definition 1) typically represents the structure targeted for reduction and can be seen
as the “head” of a crown decomposition. The components within CC(G[B]) assigned to A1
(the separated part through A1), denoted by f−1(A1), form the “crown”. In the context of
optimization problems such as the vertex cover problem, a successful reduction often involves
the head being part of an optimal solution. Subsequently, upon its removal, the crown –
separated by the head – no longer needs to be considered.

Ideally, we wish to have A1 = A, but even when this is not the case the balanced part
of a DBE ensures that the elements mapped to A2 are bounded, which finally allows us to
bound the number of vertices (or the sum of the vertex weights) of A2 ∪ V (f−1(A2)).

Consider a crown decomposition, which is a partition of the vertex set into body, head
and crown, where the head separates the body from the crown. The head and crown of the
classical crown decomposition corresponds to a (1, 1)-CD, the q-expansion for q ∈ N to a
(q, 1)-CD and the weighted crown decomposition for q ∈ N to a (q, x)-CD. The last known
structure captured by Definition 1 is the balanced expansion which corresponds for x, y ∈ N

to a (A1, A2, y, f, x) DBE. The essential new structural property of a DBE compared to a
balanced expansion are the varying demands for A.

Let G = (A ∪ B, E) be a graph. For A′ ⊆ A we define BA′ as the components Q ∈
CC(G[B]) with N(Q) ⊆ A′. The following theorem, easily derived as modification of the
results of [5], gives the runtime to find a DBE and the existence guarantee of A1 depending
on the size or weight in the graph.

▶ Theorem 2 (Demanded balanced expansion). Let G = (A ∪ B, E, w) be a graph with no
isolated components in CC(G[B]), i.e. every component of CC(G[B]) contains at least one
neighbor of A. Let y ≥ maxQ∈CC(G[B]) w(Q) and D = {da}a∈A demands with da ∈ N for
each a ∈ A. A demanded balanced expansion (A1, A2, y, f, D) can be computed in O (|V | |E|)
time. Furthermore, if there is an A′ ⊆ A with w(A′) + w(V (BA′)) ≥

∑
a∈A′ da, then A1 ≠ ∅.
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The next graph structure that we use for our kernelization algorithms is introduced by
Casel et al. [5] and is a combination of a balanced connected partition and a weighted crown
decomposition, which is called balanced crown decomposition. Formally it is defined as follows
(see also Figure 1 (right) for an illustration).

▶ Definition 3 (λ-balanced crown decomposition). A λ-balanced crown decomposition of a
graph G = (V, E, w) is a tuple (C, H,R, f), where {H, C, R} is a partition of V , the set R is
a partition of R, and f : CC(G[C]) → H, such that:

1. w(Q) ≤ λ for each Q ∈ CC(G[C]),
2. f(Q) ∈ N(Q) for each Q ∈ CC(G[C]),
3. N(C) ⊆ H,
4. w(h) + w(f−1(h)) > λ for each h ∈ H and

 (λ, λ)-CD

5. G[R′] is connected and λ < w(R′) ≤ 3λ for each R′ ∈ R.

We use λ-BCD as an abbreviation for a λ-balanced crown decomposition. Looking at the
original definition of a λ-BCD in [5] (Definition 6), we shift the λ value by one, which allows
us to change several inequalities between strict and non-strict for a clearer representation,
while still keeping the definition the same. Furthermore, λ must be at least two in the original
definition, but to simplify the understanding of the application to the problems considered
in this paper, it makes more sense that a λ-BCD can also exist with λ = 1.

The authors in [5] provide an algorithm that finds a λ-BCD in polynomial time, as given
in the following.

▶ Theorem 4 (Balanced crown decomposition theorem, [5] Theorem 7). Let G = (V, E, w) be
a graph and λ ∈ N, such that each connected component in G has weight larger than λ. A
λ-balanced crown decomposition (C, H,R, f) of G can be computed in O

(
r2 |V | |E|

)
time,

where r = |H| + |R| < |V | is at most the size of a maximum (λ + 1)-packing.

We end the preliminary section with a formal definition of the subgraph packing problem.
Given a graph G = (V, E) and two parameters r, λ ∈ N. We say that P1, . . . , Pm ⊆ V is a
λ-packing if for all i, j ∈ [m] with i ̸= j the induced subgraph G[Pi] is connected, |Pi| ≥ λ,
and Pi ∩ Pj = ∅. The task is to find a λ-packing of size at least r.

3 Improved Kernels for VI, wVI and wCOC

The vertex integrity of a graph models finding an optimal balance between removing vertices
and keeping small connected parts of a graph. As a reminder: In the formal definition, a
graph G and a parameter p are given. The task is to find a vertex set S ⊆ V such that
|S| + maxQ∈CC(G−S) |Q| is at most p. In the weighted vertex integrity problem (wVI), i.e. the
vertices have weights, the aim is that w(S) + maxQ∈CC(G−S) w(Q) is at most p. We improve
the vertex kernel of p3 provided by Drange et al. [10] for both variants VI and wVI. To obtain
such a kernel, they essentially established that vertices v ∈ V with w(v) + w(N(v)) > p

belong to a solution if we have a yes-instance in hand. A simple counting argument after
removing those vertices provides a p3 vertex kernel. We improve this by employing crown
decompositions, which offer valuable insights into the structural properties of vertex sets
rather than focusing solely on individual vertices. Directly applying this method to problems
like COC, as seen in prior works such as [5, 7, 19, 25], is challenging because we lack prior
knowledge about the size of remaining components after solution removal. However, if we
had at least a lower bound, we could theoretically safely reduce our instance accordingly. To
establish such a bound, we engage in an interplay between packings and separators, where
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the balanced crown decomposition (BCD) proves instrumental. By identifying reducible
structures in the input instance through embedding a DBE into BCD after determining a
suitable bound, we prove the following theorems regarding VI and wVI.

▶ Theorem 5. The vertex integrity problem admits a vertex kernel of size 3p2 in time
O

(
log(p)|V |4|E|

)
.

▶ Theorem 6. The weighted vertex integrity problem admits a vertex kernel of size 3(p2 +
p1.5pℓ) in time O

(
log(p)|V |4|E|

)
, where pℓ is at most the size of the largest component after

removing a solution.

Closely related to wVI is the weighted component order connectivity problem (wCOC).
Given a vertex-weighted graph G = (V, E, w) and two parameters k, W ∈ N, the task is
to find a vertex set S ⊆ V such that w(S) ≤ k where each component weighs at most W .
The techniques employed to derive the kernel for wVI can be seamlessly applied to wCOC,
thereby enhancing the current state of the art vertex kernel of kW (k + W ) + k. This kernel
is also provided by Drange et al. [10] in a similar way as for wVI.

▶ Theorem 7. The weighted component order connectivity problem admits a vertex kernel of
size 3µ(k + √

µW ), where µ = max(k, W ). Furthermore, such a kernel can be computed in
time O

(
r2k|V ||E|

)
, where r is the size of a maximum (W + 1)-packing.

Before we prove these theorems, we give some notations that we use in this section. We
define them for the weighted case, as the unweighted case can be viewed in the same way
with unit weights. We say that S is a solution if it satisfies w(S) + maxQ∈CC(G−S) w(Q) ≤ p

for wIV or w(S) ≤ k and maxQ∈CC(G−S) w(Q) ≤ W for wCOC. We denote an instance of
wIV by (G, p) and an instance of wCOC by (G, k, W ). We say that (G, p) or (G, k, W ) is a
yes-instance if there is a solution, otherwise, we say that it is a no-instance. Let S ⊆ 2V (G) be
all solutions for (G, p). We define pℓ := minS∈S

(
maxQ∈CC(G−S) w(Q)

)
which is the optimum

lower bound on the size of the connected components after the removal of any solution; where
for no-instances we set pℓ = p. For all instances (G, p) of wVI, we assume w(v) < p for every
v ∈ V and that G contains a connected component of weight more than p.

3.1 Vertex Integrity
The rest of this section is dedicated to the proof of Theorem 5. First, we discuss the reducible
structure we are looking for and then show how to find it. Note that for a, b ∈ N with a < b

a (p, a)-CD is also a (p, b)-CD, but not vice versa. This means that even if we do not know
pℓ exactly, any (p, c)-CD with c ≤ pℓ is a (p, pℓ)-CD that can be used in the following lemma.

▶ Lemma 8.1 Let (G, p) be an instance of VI and let (C, H, f) be a (p, pℓ)-CD in G, such
that N(C) ⊆ H. Then, (G, p) is a yes-instance if and only if (G − {H ∪ C}, p − |H|) is a
yes-instance.

In order to use Lemma 8, we must first determine a suitable lower bound for pℓ. Addi-
tionally, we need to ensure the existence of a corresponding weighted crown decomposition
when the input graph size exceeds 3p2, and that we can find it efficiently. This is where the
BCD comes into play. For λ ∈ N a λ-BCD (C, H,R, f) in G can only be computed within
the components of G that have a size (or weight) greater than λ. For a better readability,

1 This result is an incorrect simplification to describe the idea. Please refer to the Full Version for the
more technical correct reduction.
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we will consistently assume that when computing a λ-BCD, we disregard small components,
meaning that if (C, H,R, f) is a λ-BCD for G, then C ∪ H ∪ V (R) are only the vertices that
are contained in a component of size (or weight) more than λ of G.

We specify the following lemma directly in the weighted version to also use it later. The
lemma provides a lower bound for pℓ by a λ-BCD (C, H,R, f), where we essentially use that
a λ-BCD is also a (λ + 1)-packing of size |H| + |R|. This results from the fact that each
element R ∈ R has the size (or weight) λ + 1 and is connected and that for each h ∈ H the
subgraph G[{h} ∪ V (f−1(h))] is connected and has at least the size (or weight) λ + 1. Note
that the vertex sets {{h} ∪ V (f−1(h))}h∈H ∪ R are pairwise disjoint.

▶ Lemma 9. Let (G, p) be an instance of wVI and for λ ∈ [p] let (C, H,R, f) be a λ-BCD
in G. If |H| + |R| > p, then λ < pℓ for the instance (G[C ∪ H ∪ V (R)], p).

Note that the lower bound λ + 1 of pℓ in Lemma 9 is applicable to the induced graph of
V ′ = C ∪ H ∪ V (R) within G. This implies that the isolated components of G − V ′, defined
as having a size (or weight) of at most λ, can be safely removed. Their removal does not
affect the decision problem of VI or wVI concerning p. Moreover, note that an additional
advantage of a (λ + 1)-BCD (C, H,R, f) is that the balanced part R can be upper bounded
by 3(λ + 1)|R| ≤ 3pℓ|R| < 3p|R|, while a suitable λ choice also upper bounds |R| by p. In
particular, if H = C = ∅ and |R| ≤ p, then we would already have an instance with a size
(or weight) of at most 3p2.

Clearly, a yes-instance cannot have a lower bound for pℓ larger than p as stated in the
following corollary.

▶ Corollary 10. Let (G, p) be an instance of wVI. If for a p-BCD (C, H,R, f) it holds that
|H| + |R| > p, then (G, p) is a no-instance.

The next lemma shows under which conditions we can find a (p, λ)-CD in G with respect
to a λ-BCD and the current graph size.

▶ Lemma 11. Let (G, p) be an instance of VI and for λ ∈ [p] let (C, H,R, f) be a λ-BCD in
G with |H| + |R| ≤ p. If |C| + |H| + |V (R)| ≥ 3p2, then G′ = G[C ∪ H ] contains a (p, λ)-CD
in G. Furthermore, we can extract it from G′ in time O(|V (G′)||E(G′)|) ⊆ O(|V (G)||E(G)|).

If we now combine Lemma 9 and Lemma 11, we can finally use Lemma 8 by finding
a λ ∈ [p − 1] such that a (λ + 1)-BCD (C, H,R, f) satisfies |H| + |R| ≤ p, while a λ-
BCD (C ′, H ′,R′, f ′) satisfies |H ′| + |R′| > p, which only adds a factor of O(log(p)) to the
computation cost. Formulated more precisely: For Q ∈ CC(C) we have |Q| ≤ λ + 1 ≤ pℓ as
λ < pℓ by Lemma 9. Further, we remove all vertices that are in components of size at most
λ, which is a safe reduction rule as explained above. If the vertex size of the remaining input
graph, i.e. G[C ∪ H ∪ V (R)] is at least 3p2, then we can find a (p, λ)-CD for G in G[C ∪ H]
in polynomial time by Lemma 11, which is a reducible structure by Lemma 8.

With these facts in hand we can design a kernelization algorithm. It takes as input an
instance (G, p) of VI and returns an equivalent instance with at most 3p2 vertices.

Find reducible structures (AlgVI)

1. Compute a p-BCD (C1, H1,R1, f1). If |H1| + |R1| > p return a trivial no-instance.
2. Compute a 1-BCD (C2, H2,R2, f2). Let V ′ = V (G)\(C2∪H2∪V (R2)). If |H2|+|R2| ≤ p

and V ′ ̸= ∅, then return (G − V ′, p).2 If |H2| + |R2| ≤ p and V ′ = ∅, then compute a
(p, 1)-CD (H ′

2,C ′
2,f ′

2) in G[H2 ∪ C2] and return (G − {H ′
2 ∪ C ′

2}, p − |H ′
2|).

2 Note that in this case V ′ is the set of isolated vertices in G, as we compute BCD only on components of
size larger than λ = 1.
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3. Otherwise, for λ ∈ [p − 1] find a (λ + 1)-BCD (C, H,R, f) and a λ-BCD (C ′, H ′,R′, f ′),
such that |H| + |R| ≤ p and |H ′| + |R′| > p. Let V ′′ = V (G) \ (C ∪ H ∪ V (R)). If
V ′′ ̸= ∅, then return (G − V ′′, p). Otherwise, compute a (p, λ + 1)-CD (H ′′,C ′′,f ′′) in
G[C ∪ H] for G and return (G − {C ′′ ∪ H ′′}, p − |H ′′|).

We already explained why we can safely remove V ′ or V ′′ in steps 2 and 3 if these are
not empty. Note that if V ′ or V ′′ is empty, then the vertex sets of the corresponding BCD’s,
i.e. C2, H2, V (R2) and C, H, V (R), respectively, form a partition of V (G). The correctness
of step 1 is implied by Corollary 10. Step 2 is correct because pℓ ≥ 1 and if V ′ = ∅ we
obtain by Lemma 11 and |V | = |C2| + |H2| + |V (R2)| ≥ 3p2 that there must be a (p, 1)-CD
if |H2| + |R2| ≤ p. Analogously, for step 3 as pℓ ≥ λ + 1 by Lemma 9 in this step. For the
overall correctness of algorithm AlgVI, it remains to be proven that if we reach step 3, the
required λ exists. For a λ-BCD in a binary search, we cannot ensure that |H| + |R| increases
with decreasing λ values, because the sizes of H and R are not necessarily monotonic with
respect to λ. Note, for example, that the elements in R have a size range from λ + 1 to 3λ.
For a successful binary search, however, it is sufficient to know that there is a λ that satisfies
the desired properties for step 3. Since we only enter this step if the extreme cases (p-BCD
and 1-BCD) in step 1 and 2 hold, there has to exist at least one such λ value in-between.

Finally, we prove the specified running time of Theorem 5, which completes the proof of
Theorem 5. Note that for a yes-instance we have to call the algorithm AlgVI at most |V |
times to guarantee the desired kernel.

▶ Lemma 12. Algorithm AlgVI runs in time O(log(p)|V |3|E|).

3.2 Weighted Vertex Integrity and Component Order Connectivity
In this section, we shift our focus to the weighted variants, namely wVI and wCOC. While
utilizing the packing size of the associated BCD offers a starting point for deriving a lower
bound for VI, it proves insufficient for improvements in the weighted setting. Therefore,
we integrate the weight of the separator H within a BCD (C, H,R, f) into our analysis.
Additionally, we incorporate two distinct DBE’s into a BCD in case a reduction is not
achievable within the respective setting. This approach enables us to establish a tighter lower
bound for pℓ, estimate the remaining instance size more accurately to obtain the desired
kernelization results (cf. Theorems 6 and 7), or identify a no-instance.

Let us start by explaining the type of reducible structure we are searching for.

▶ Lemma 13.3 Let G = (V, E, w) be a vertex weighted graph, a, b ∈ N, (H, H ′, b, f, D) a
DBE in G with D = {dh}h∈H , where dh = a − 2 + b · (w(h) + 1) for each h ∈ H, and let
C = f−1(H) with N(C) ⊆ H.
1. Let (G, p) be an instance of the weighted vertex integrity problem, a = p and 1 ≤ b ≤ pℓ.

Then, (G, p) is a yes-instance if and only if (G − {H ∪ C}, p − w(H)) is a yes-instance.
2. Let (G, k, W ) be an instance of the weighted component order connectivity problem and

a, b = W . Then, (G, k, W ) is a yes-instance if and only if (G − {H ∪ C}, k − w(H), W ) is
a yes-instance.

We are now introducing the two DBE’s mentioned in conjunction with a BCD. Let
G = (V, E, w) be a vertex weighted graph, a, s, λ ∈ N, (C, H,R, f) a λ-BCD with λ ∈ [a]
and |H| + |R| ≤ s, where maxv∈V w(v) ≤ max(a, s) =: µ. Let DY = {dY

h }h∈H and

3 This result is an incorrect simplification to describe the idea. Please refer to the Full Version for the
more technical correct reduction.
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DZ = {dZ
h }h∈H be demands, where dY

h = a−2+λ · (w(h)+1) and dZ
h = w(h)−1+(

√
s+1)λ

for each h ∈ H. Let (Y1, Y2, λ, fY , DY ) and (Z1, Z2, λ, fZ , DZ) be DBE’s in G[C ∪ H]
with Y1, Y2, Z1, Z2 ⊆ H and f−1

Y (Y1), f−1
Y (Y1), f−1

Z (Z1), f−1
Z (Z2) ⊆ CC(C). Observe that if

Y1 ̸= ∅ (resp. Z1 ̸= ∅) then this set separates f−1
Y (Y1) (res. f−1

Z (Z1)) from the rest of the
graph, since H separates C from the rest of the graph. Thus, if a = p and λ ≤ pℓ considering
wVI or a, λ = W considering wCOC and Y1 ̸= ∅, then in both cases we would have a
reducible structure for the corresponding problem (cf. Lemma 13). We conclude this section
by presenting two crucial lemmas. These lemmas serve as the foundation for designing the
algorithms needed to prove Theorems 6 and 7. The first lemma aims to estimate the instance
size, while the second lemma helps establish a more precise lower bound for pℓ or identify
instances with no feasible solutions.

▶ Lemma 14. Let w(Z1) ≤ 2µ1.5. If Y1 = ∅, then w(V ) < 3µ(s + √
µλ).

▶ Lemma 15. If w(Z1) > 2µ1.5, then there is no separator S such that w(S) ≤ s and
maxQ∈CC(G−S) w(Q) ≤ λ.

4 Kernels for Component Order Connectivity

In this section, we consider COC, a refined version of VI. Given a graph G = (V, E) and
parameters k, W ∈ N, COC aims to remove at most k vertices so that resulting components
have at most W vertices each. We present a kernelization algorithm that provides a 2kW

vertex-kernel in an FPT-runtime when parameterized by the size of a maximum (W + 1)-
packing, as stated in the following theorem.

▶ Theorem 16. A vertex kernel of size 2kW for the component order connectivity problem
can be computed in time O(r3|V ||E| · rmin(3r,k)), where r ≤ k is the size of a maximum
(W + 1)-packing.

A kernel of size 2kW is also presented in [19], however with an FPT-runtime in the
parameter W and using linear programming methods. In contrast, our result has an FPT-
runtime in the parameter of a maximum (W + 1)-packing r ≤ k and is fully combinatorial.
Moreover, we showcase how our algorithm transforms into a polynomial one for two cases:
when W = 1 (Vertex Cover) and for claw-free graphs. While generalizing our FPT-runtime
algorithm into polynomial time eludes us, our understanding of crown decomposition’s
structural properties holds promise for future progress.

For VI, wVI, and wCOC, crown structures were integrated into the head and crown of
the BCD. In contrast, we now incorporate them into the body of the BCD. Of particular
interest are the so-called strictly reducible pairs introduced by Kumar and Lokshtanov [19]
who prove that such a structure must exist in graphs with more than 2kW vertices.

▶ Definition 17 ((strictly) reducible pair). For a graph G = (V, E) and a parameter W ∈ N,
a pair (A, B) of vertex disjoint subsets of V is a reducible pair for COC if the following
conditions are satisfied:

N(B) ⊆ A.
The size of each Q ∈ CC(G[B]) is at most W .
There is an assignment function g : CC(G[B]) × A → N0, such that

for all Q ∈ CC(G[B]) and a ∈ A, if g(Q, a) ̸= 0, then a ∈ N(Q)
for all a ∈ A we have

∑
Q∈CC(G[B]) g(Q, a) ≥ 2W − 1,

for all Q ∈ CC(G[B]) we have
∑

a∈A g(Q, a) ≤ |Q|.
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In addition, if there exists an a ∈ A such that
∑

Q∈CC(G[B]) g(Q, a) ≥ 2W , then (A, B) is a
strictly reducible pair.

We say (A, B) is a minimal (strictly) reducible pair if there does not exist a (strictly) reducible
pair (A′, B′) with A′ ⊂ A and B′ ⊆ B. A (strictly) reducible pair is basically a weighted
crown decomposition where A is the head and B is the crown.

In essence, the kernelization algorithm outlined below focuses on analyzing pairs (A, B)
in a W -BCD. We show that the head vertices A have specific traits in a W -BCD, making
it possible to locate them. Structurally, the algorithm operates as a bounded search tree,
hence it is presented recursively. It takes an instance (G, k, W ) of COC as input, where
|V (G)| > 2kW and each component of G has at least W + 1 vertices. The size limits for
the input graph are not arbitrary; if |V (G)| ≤ 2kW , there is nothing to do, and removing
components smaller than W + 1 is a safe reduction.

For V ′ ⊆ V we define sepW (V ′) ∈ N as the cardinality of a minimum W -separator in
G[V ′], and arg sepW (V ′) ⊂ V as an argument suitable to this cardinality. For a graph G′ ⊆ G

let G>W (G′) be the graph obtained by removing all components of size at most W from G.
Lastly, for a W -BCD (C, H,R, f) we define R′ := {R ∈ R | |R| > 2W and sepW (R) = 1}
and SR′ :=

⋃
R∈R′ arg sepW (R). (uniqueness of arg sepW (R) for R ∈ R′ is shown in the

full version [6]).

Find reducible structures (AlgCOC)

1. Compute a W -BCD (C, H,R, f) in G and initialize t = |H| + |R| and S = ∅.
2. Let G′ = G>W (G − S). If G′ is an empty graph return a trivial yes-instance. Otherwise,

compute a W -BCD (C, H,R, f) in G′.
a. If |H| + |R| > k return a trivial no-instance.
b. Let Q be the connected components of size at most W in G − S. Let A = S ∪ H and

B = C∪V (Q). Compute a DBE (A1, A2, W, f, 2W −1) in G[A∪B] by using Theorem 2.
If A1 ̸= ∅, then terminate the algorithm and return (G − (A1 ∪ f−1(A1)), k − |A1|, W ).

3. If the depth of the recursion is more than min(3t, k), then break.
4. For each v ∈ H ∪ SR′ :

Add v to S and recurse from step 2.
5. Return a trivial no-instance.

The interesting part of the algorithm is the localization of a minimal strictly reducible
pair if it exists in the graph. Let (A, B) be a minimal strictly reducible pair in G. As already
mentioned, algorithm AlgCOC is basically a bounded search tree with a working vertex
set S, which are potential head vertices. The crucial step is ensuring that S consistently
matches the vertex set A. Once this alignment is achieved, localization of (A, B) is assured,
as step 2b (specifically Theorem 2) guarantees its extraction.

We conclude this part of the section by presenting a crucial lemma along with its
implication for a depth-wise progression within the bounded search tree towards S = A in
algorithm AlgCOC. Let (A, B) be a minimal strictly reducible pair in G = (V, E) and let
S ⊂ V . Let (C, H,R, f) be a W -BCD in G>W (G − S).

▶ Lemma 18. If S ∩ B = ∅ and S ⊈ A, then (H ∪ SR′) ∩ A ̸= ∅.

If we reach step 4, we have no reducible pair in hand so far and can therefore assume that
S ̸= A. Thus Lemma 18 provides the following relation to the algorithm: if S ⊂ A (where S

is possibly empty), then we can find at least one vertex of A in H ∪ SR′ . Since the algorithm
considers expanding S for each vertex of H ∪ SR′ , at least one of which comes from A, and
repeats this process with the resulting vertex set, we finally arrive at the case S = A.
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Next, we introduce another algorithm designed to compute a 2kW vertex kernel for COC.
This algorithm shares the same principles as AlgCOC but exhibits polynomial running
times for two specific cases.

Find reducible structures (AlgCOC-2)

1. Initialize S = ∅ and G′ = G.
2. While G′ ̸= (∅,∅):

a. Compute a W -BCD (C, H,R, f) in G′, such that for a minimal strictly reducible pair
(A, B) in G we have B ∩ SR′ = ∅.

b. If |H| + |R| > k, or R′ = ∅ and H = ∅, then terminate the while-loop.
c. Add the vertices SR′ and H to S.
d. Let Q be the connected components of size at most W in G − S. Let A = S ∪ H,

B = C∪V (Q). Compute a DBE (A1, A2, W, f, 2W −1) in G[A∪B] by using Theorem 2.
If A1 ̸= ∅, then terminate the algorithm and return (G − (A1 ∪ f−1(A1)), k − |A1|, W ).

e. Update G′ by G>W (G − S).
3. Return a trivial no-instance.

The correctness proof of AlgCOC-2 can be found in the extended version [6]. The
crucial difference to the previous algorithm is step 2a. Unfortunately, we have not succeeded
in finding a polynomial algorithm in general for this step.

To introduce a novel approach for computing a 2k vertex kernel for the vertex cover
problem, we present a result that establishes a 2kW vertex kernel for COC, applicable
for any given W . However, the corresponding algorithm achieves polynomial runtime only
when W = 1. This limitation arises because computing a maximum (W + 1)-packing is
polynomially solvable only for W = 1 where it corresponds to a maximum matching. To
understand how we can apply algorithm AlgCOC-2 (basically ensuring B ∩ SR′ = ∅ in
any iteration of the while-loop) we need to extend the algorithm to compute a W -BCD
(C, H,R, f). First observe that P = R ∪ {{h} ∪ V (f−1)(h)}h∈H forms a (W + 1)-packing of
size |H| + |R|. In order to find R and H in the algorithm computing a W -BCD there are
two according working sets, R′ and H ′, that always guarantee a (W + 1)-packing of size
|H ′| + |R′|. In particular, these sets measure the progress in a sense that the corresponding
packing can only increase. The crucial point now is that we can start the algorithm with an
arbitrary maximal (W + 1)-packing and if this is a maximum (W + 1)-packing, then after the
termination of the algorithm, P corresponds also to a maximum (W + 1)-packing. In fact,
the original algorithm initializes R′ in the beginning as the connected components of the
input graph and H ′ = ∅, but it is also possible to initialize R′ as a maximal (W + 1)-packing
instead (see [5], proof sketch of Theorem 7). The relationship between a W -BCD, where
P represents a maximum (W + 1)-packing, and a reducible pair (A, B) yields a significant
property: every element in P intersects with at most one vertex of A. However, if a vertex
of B is in SR′ in algorithm AlgCOC-2, then the according R ∈ R′ must contain at least
two vertices of A. This contradicts the aforementioned property. These findings form the
key point of the following theorem.

▶ Theorem 19. For W = 1, i.e. for the vertex cover problem, algorithm AlgCOC-2 works
correctly and provides a 2k vertex kernel in polynomial time.

We also demonstrate the application of AlgCOC-2 for claw-free graphs, i.e., graphs
without induced K1,3’s. To achieve this, we use a vertex partitioning algorithm tailored for
such graphs, as proposed by Borndörfer et al. [4]. Essentially, we establish that claw-free
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graphs can be represented by a W -BCD (C, H,R, f) with C and H being empty, and at
most one element of R exceeding size 2W . Utilizing this along with Lemma 18 ensures that
B ∩ SR′ = ∅ in any iteration of the while-loop and provides basically the following theorem.

▶ Theorem 20. The component order connectivity problem admits a 2kW vertex-kernel on
claw-free graphs in polynomial time.
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Abstract
MaxCut is a classical NP-complete problem and a crucial building block in many combinatorial
algorithms. The famous Edwards-Erdős bound states that any connected graph on n vertices with
m edges contains a cut of size at least m

2 + n−1
4 . Crowston, Jones and Mnich [Algorithmica, 2015]

showed that the MaxCut problem on simple connected graphs admits an FPT algorithm, where
the parameter k is the difference between the desired cut size c and the lower bound given by the
Edwards-Erdős bound. This was later improved by Etscheid and Mnich [Algorithmica, 2017] to run
in parameterized linear time, i.e., f(k) · O(m). We improve upon this result in two ways: Firstly,
we extend the algorithm to work also for multigraphs (alternatively, graphs with positive integer
weights). Secondly, we change the parameter; instead of the difference to the Edwards-Erdős bound,
we use the difference to the Poljak-Turzík bound. The Poljak-Turzík bound states that any weighted
graph G has a cut of size at least w(G)

2 + wMSF (G)
4 , where w(G) denotes the total weight of G, and

wMSF (G) denotes the weight of its minimum spanning forest. In connected simple graphs the two
bounds are equivalent, but for multigraphs the Poljak-Turzík bound can be larger and thus yield a
smaller parameter k. Our algorithm also runs in parameterized linear time, i.e., f(k) · O(m + n).
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1 Introduction

The MaxCut(G, c) problem is the problem of deciding whether a given graph G contains a
cut of size at least c. It has been known for a very long time that this problem is NP-complete,
in fact it was one of Karp’s 21 NP-complete problems [9]. The MaxCut problem has been
intensely studied from various angles such as random graph theory and combinatorics, but
also approximation and parameterized complexity. It has numerous applications in areas
such as physics and circuit design; for more background on the MaxCut problem we refer
to the excellent survey [14].
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There are many lower bounds on the maximum cut size µ(G) of a given graph G. If
G is a graph with m edges, a trivial lower bound is µ(G) ≥ m

2 . This can be shown easily
using the probabilistic method, as first done by Erdős [4]. Clearly, MaxCut(G, c) is thus
easily solvable if c ≤ m

2 . But what if c is larger? At which point does the MaxCut problem
become difficult? It turns out that already c = m

2 + ϵm for any fixed ϵ > 0 makes the problem
NP-hard [7]. However, as long as the difference c− m

2 is just a constant, MaxCut(G, c) is still
polynomial-time solvable: Mahajan and Raman showed in 1999 [11] that MaxCut(G, m

2 +k)
is fixed-parameter tractable (FPT), i.e., it can be solved in time f(k) · nO(1). This started
off the study of parameterized algorithms above guaranteed lower bounds.

By the time this FPT algorithm was found, m
2 was no longer the best-known lower bound

for µ(G). Already more than 20 years earlier, Edwards showed the following lower bound
that was previously conjectured by Erdős, and is thus now known as the Edwards-Erdős
bound.

▶ Theorem 1 (Edwards-Erdős bound [2, 3]). For any connected simple graph G with n vertices
and m edges, µ(G) ≥ m

2 + n−1
4 .

Unlike the previous bound of m
2 , this bound is tight for an infinite class of graphs, for

example the odd cliques. It remained open for quite a while whether MaxCut(G, m
2 + n−1

4 +k)
would also be fixed-parameter tractable, i.e., whether the parameter k could be reduced by
n−1

4 compared to the previous result by Mahajan et al. This question was answered in the
positive by Crowston, Jones and Mnich, who proved the following theorem.

▶ Theorem 2 (Crowston, Jones, Mnich [1, Thm. 1]). There is an algorithm that computes,
for any connected graph G with n vertices and m edges and any integer k, in time 2O(k) · n4

a cut of G of size at least m
2 + n−1

4 + k, or decides that no such cut exists.

This algorithm has later been improved to run in linear time (in terms of m) by Etscheid
and Mnich [5]. However, this improvement only holds for deciding the existence of such a
cut, and not for computing a cut if one exists.

We would like to highlight another classic lower bound on the size of the maximum cut of
a graph, nicknamed the “spanning tree” bound: Any connected graph on n vertices has a cut
of size at least n−1, since it contains a spanning tree of this size and trees are bipartite. Note
that this bound is incomparable to the Edwards-Erdős bound. In 2018, Madathil, Saurabh,
and Zehavi [10] showed that MaxCut(G, n − 1 + k) is also fixed-parameter tractable.

In 1986, Poljak and Turzík improved upon the Edwards-Erdős bound by replacing the
term n − 1 with the size of the minimum spanning tree (or forest in disconnected graphs),
thus obtaining the following lower bound for maximum cuts in weighted graphs.

▶ Theorem 3 (Poljak-Turzík bound [13]). For any graph G = (V, E) with weight function
w : E → R>0, we have µ(G) ≥ w(G)

2 + wMSF (G)
4 , where w(G) =

∑
e∈E w(e) and wMSF (G)

denotes the weight of a minimum-weight spanning forest of G.

It is easy to see that Theorem 3 implies the bound in Theorem 1 both for (unweighted)
simple graphs and multigraphs. In unweighted simple graphs it is actually equivalent to
Theorem 1, while on multigraphs and positive integer-weighted graphs it can be strictly
larger.
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The authors of Theorem 2 thus posed as their major open question whether their algorithm
could be extended to solve MaxCut(G, m

2 + n−1
4 + k) on multigraphs as well. We answer

this question in the positive, and improve the result further by replacing the Edwards-Erdős
bound with the Poljak-Turzík bound.

1.1 Results
We provide a parameterized linear time algorithm for deciding MaxCut in multigraphs and
positive integer-weighted (simple) graphs above the Poljak-Turzík bound. A multigraph can
be easily turned into a positive integer-weighted graph and vice versa; in the rest of this
paper we phrase all of our results and proofs in terms of positive integer-weighted graphs for
better legibility.

▶ Theorem 4. There is an algorithm that decides for any graph G = (V, E) with weight
function w : E → N and any integer k, in time 2O(k) · O(|E| + |V |), whether a cut of G of
size at least w(G)

2 + wMSF (G)
4 + k exists.

Using the same techniques we can also get a parameterized quadratic-time algorithm to
compute such a cut, if one exists.

▶ Theorem 5. There is an algorithm that computes for any graph G = (V, E) with weight
function w : E → N and any integer k, in time 2O(k) · O(|E| · |V |), a cut of G of size at least
w(G)

2 + wMSF (G)
4 + k, if one exists.

We would like to point out that Theorem 4 is a strict improvement on the linear-time
algorithm from [5] in two ways: Firstly we increase the types of graphs the algorithm is
applicable to, and secondly we also strictly decrease the parameter for some instances. The
following observation shows that this decrease of parameter can be significant.

▶ Observation 6. There exist sequences of positive-integer-weighted graphs (Gi)i∈N and inte-
gers (ci)i∈N such that Theorem 4 yields a polynomial-time algorithm to solve MaxCut(Gi, ci),
but when replacing wMSF (G) by n − 1, it does not.

Proof. Let Gi be a tree on i + 1 vertices where each edge has weight 2. Then, the Poljak-
Turzík bound yields µ(Gi) ≥ 2i

2 + 2i
4 = 6

4 i, while the Edwards-Erdős bound only yields
µ(Gi) ≥ 2i

2 + i+1−1
4 = 5

4 i. Thus, if we set ci = 6
4 i + k for some constant k, then Theorem 4

yields a 2O(k) ·poly(i) = poly(i) algorithm for MaxCut(Gi, ci), while with the Edwards-Erdős
bound it would yield a 2O(k+ 1

4 i) · poly(i) algorithm, which is not polynomial. ◀

1.2 Algorithm Overview
Our algorithm works in a very similar fashion to the one in [1]. We use a series of reduction
rules that can reduce the input graph down to a graph with no edges. While performing
this reduction, we either prove that G has a cut of the desired size, or we collect a set S

of O(k) vertices such that G − S is a uniform-clique-forest, i.e., a graph in which every
biconnected component is a clique in which every edge has the same weight. Given such a set
S, we can then compute the maximum cut of G exactly: We iteratively test all possibilities
of partitioning the vertices in S between the two sides of the cut, and then compute the
maximum cut of G assuming that the vertices of S are indeed partitioned like this. To do this,
we use a similar approach as in [1]: We compute the maximum cut of G − S with weighted
vertices. In this setting, each vertex v in G − S specifies a weight w0(v) and w1(v) for both
possible sides of the cut v may land in. The value of a cut is given by the total weight of the
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cut edges plus the sum of the correct weight for each vertex. To use this problem to compute
the maximum cut of G, we set the weights of each vertex v in G − S according to the total
weight of the edges between v and S that are cut in the assumed partition of S. Maximizing
over all possible partitions for S gives the maximum cut of G.

While we use very similar techniques as in [1, 5], our main technical contribution lies in
the reduction rules. Our reduction rules have to be more specific, i.e., each reduction rule
has a stronger precondition. This is due to the fact that when performing any reduction, the
change in the weight of a minimum spanning forest (as needed for the Poljak-Turzík bound)
is much more difficult to track than the number of vertices in the graph (as needed for the
Edwards-Erdős bound). Since our rules are more specific, we also need twice as many rules
as in [1] (and one more rule than [5]) to ensure that always at least one rule is applicable to
a given graph.

2 Preliminaries

In the rest of this paper we consider every graph to be a simple graph G = (V, E), where V is
the set of vertices, and E ⊆

(
V
2
)

is the set of edges. A graph is weighted if it is equipped with
a positive integer edge-weight function w : E → N. For any two disjoint subsets A, B ⊆ V

we denote by E(A, B) the set of edges between A and B, by w(A, B) the total weight of
the edges in E(A, B), and by min(A, B) the minimum weight of any edge in E(A, B). For a
subset A ⊆ V , we denote by N(A) the set of vertices in V \ A that have a neighbor in A.

A cut is a subset C ⊆ V , and the weight of a cut C is the total weight of the edges
connecting a vertex in C to a vertex in V \ C, i.e., w(C) = w(C, V \ C).

For any set A ⊆ V we write G[A] for the graph on A induced by G, and G − A for the
graph on V \ A induced by G.

We say that a graph is uniform if all of the edges have the same weight. More specifically,
we call a graph c-uniform if all edges have weight c.

A graph (V, E) is called biconnected, if |V | ≥ 1, and for every vertex v ∈ V , G − {v} is
connected. A biconnected component of a graph is a maximal biconnected subgraph, also
referred to as a block. It is well-known that the biconnected components of every graph
partition its edges. A vertex that participates in more than one biconnected component is a
cut vertex (usually defined as a vertex whose removal disconnects a connected component).
A graph can thus be decomposed into biconnected components and cut vertices.

▶ Definition 7 (Block-Cut Forest). The block-cut forest F of a graph G has vertex set
V (F ) = C ∪ B, where C is the set of cut vertices of G and B is the set of biconnected
components of G, and {B, c} is an edge in F if B ∈ B, c ∈ C, and c ∈ V (B).

It is not hard to see that the block-cut forest F of a graph G is indeed a forest, since a
cycle in it would imply a cycle in G going through multiple biconnected components, thus
contradicting their maximality. Moreover, each connected component of F corresponds to a
connected component of G, and all leaves of F are biconnected components in G. We refer
to the biconnected components of G that correspond to leaves of F as leaf-blocks of G.

▶ Definition 8 (Uniform-Clique-Forest). A weighted graph is a uniform-clique-forest if each
of its blocks B is a uniform clique.
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▶ Definition 9. The problem MaxCut-With-Vertex-Weights is given as follows.
Input: A weighted graph (V, E) with edge-weight function w, as well as two vertex-weight

functions w0 : V → N, w1 : V → N.
Output: A cut C maximizing w(C) +

∑
v∈C w1(v) +

∑
v ̸∈C w0(v).

We show in Section 4 that MaxCut-With-Vertex-Weights is solvable in linear time
if the input graph is a uniform-clique-forest.

3 Reducing to a Uniform-Clique-Forest

In the first part of our algorithm, we wish to either already conclude that the input graph
has a cut of the desired size, or to find some set S of vertices such that G − S is a uniform-
clique-forest.

▶ Lemma 10. For any graph G = (V, E) on n vertices with m edges and weight function
w : E → N and any integer k, in time O(n + k · m) one can either decide that G has a cut
of size at least w(G)

2 + wMSF (G)
4 + k

4 , or find a set S ⊆ V such that |S| ≤ 3k and G − S is a
uniform-clique-forest.

Note that we write k
4 instead of just k. The reason for this is that with our reduction rules

we make “progress” reducing the difference to the Poljak-Turzík bound in increments of 1
4 .

To prove Lemma 10 we use eight reduction rules, closely inspired by the reduction rules
used in [1, 5]. Each reduction rule removes some vertices from the given graph, possibly
marks some of the removed vertices to be put into S, and possibly reduces the parameter k

by 1. To prove Lemma 10, the reduction rules will be shown to fulfill the following properties.
Firstly, each reduction rule ensures a one-directional implication: if the reduced graph G′

contains a cut of size w(G′)
2 + wMSF (G′)

4 + k′

4 (where k′ is the possibly reduced k), then the
original graph G must also contain a cut of size w(G)

2 + wMSF (G)
4 + k

4 . By the Poljak-Turzík
bound, if k ever reaches 0, it is clear that the original graph G must have contained a cut of
the desired size.

Secondly, we need that to every graph with at least one edge, at least one of the rules
applies. To get our desired runtime, we also need that an applicable rule can be found and
applied efficiently.

Thirdly, every rule should only mark at most three vertices to be added to S. If a rule
does not reduce k, it may not mark any vertices. This ensures that at most 3k vertices are
added to S.

Lastly, we require that after exhaustively applying the rules and reaching a graph with
no more edges, the graph G − S is a uniform-clique-forest.

We will now state our reduction rules, and then prove these four properties in Lemmas 11
and 12, Observation 13, and Lemma 14, respectively. For simplicity, each reduction rule is
stated in such a way that it assumes the input graph to be connected. If the input graph is
disconnected, instead consider G to be one of its connected components. Each rule preserves
connectedness of the connected component it is applied to, which we also show in Lemma 11.
Note further that if the connected component the rule is being applied to is also biconnected,
then if the precondition requires some vertex to be a cut vertex, any vertex can play that
role, although technically there are no cut vertices. We state this once here for simplicity,
instead of saying each time that either v is a cut vertex or G is biconnected. We visualize
the eight rules in Figure 1.
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Rule 1: Let {x, y}, {y, z} ∈ E be such that w(x, y) > w(y, z) and G − {x, y} is connected.
Remove: {x, y}
Mark: {x, y}
Reduce k: Yes

Rule 2: Let X ⊆ V , v ∈ V \ X be such that X ∪ {v} is a leaf-block of G with cut vertex
v, and G[X ∪ {v}] is a uniform clique.

Remove: X

Mark: ∅
Reduce k: No

Rule 3: Let X ⊆ V , v ∈ V \ X be such that X ∪ {v} is a clique and a leaf-block of G with
cut vertex v; G[X] is uniform, and G[X ∪ {v}] is not uniform.

Remove: X

Mark: {v}
Reduce k: Yes

Rule 4: Let X ⊆ V , v ∈ V \ X be such that X ∪ {v} is a leaf-block of G with cut vertex
v; v has at least two neighbors in X; G[X] is a uniform clique; G[X ∪ {v}] is not
a clique.

Remove: X

Mark: {v}
Reduce k: Yes

Rule 5: Let X ⊆ V , v ∈ V \ X be such that X ∪ {v} is a leaf-block of G with cut vertex
v; G[X] is a clique; v has exactly two neighbors x, y in X; all edges in G[X] have
weight c, except {x, y}, which has weight w(x, y) > c; w(v, x), w(v, y) ≥ c.

Remove: X

Mark: {v, x, y}
Reduce k: Yes

Rule 6: Let a, b, c ∈ V be such that {a, b}, {b, c} ∈ E; {a, c} /∈ E; G−{a, b, c} is connected;
w(a, b) = w(b, c); and 2w(a, b) > min({a, b, c}, V \ {a, b, c}).

Remove: {a, b, c}
Mark: {a, b, c}
Reduce k: Yes

Rule 7: Let v, a, b, c ∈ V be such that {a, b, c, v} is a leaf-block of G with cut vertex v;
{a, b}, {b, c}, {a, v}, {c, v} ∈ E; {a, c} /∈ E; w(a, b) = w(b, c); w(a, v), w(c, v) ≥
2w(a, b); and if {b, v} ∈ E then w(b, v) ≥ 2w(a, b).

Remove: {a, b, c}
Mark: {a, b, c}
Reduce k: Yes

Rule 8: Let x, y ∈ V be such that {x, y} /∈ E; G − {x, y} has exactly two connected
components X and Y ; G[X ∪ {x}] and G[X ∪ {y}] are both c-uniform cliques; and
x and y have exactly one neighbor v in Y .

Remove: X ∪ {x, y}
Mark: {x, y}
Reduce k: Yes



J. Lill, K. Petrova, and S. Weber 2:7

x y

z

c

<c

Rule 1 Rule 2 Rule 3

Rule 4 Rule 5 Rule 6

Rule 7 Rule 8

v

∀c

X

∀c

v

X

∀c

̸ ∀c

v

X
∀c

v

X

∀c

?

x y>c

≥c≥c

b
ca

w w

∃<2w

v

b

ca

w w

≥2w ≥2w

v

x y

X

∀c

∀c∀c

Figure 1 The eight reduction rules. An edge is drawn normally if it must exist for the rule to
apply. Some edges are drawn dashed to emphasize that they must not exist for the rule to apply.
Some additional edges are drawn dotted to emphasize that they may exist but do not have to. Red
shading indicates the vertices removed by the rule, while vertices marked by the rule are drawn
using a green square.

We first state the formalizations of our four properties, then prove Lemma 10, and only
then prove each of our properties.

▶ Lemma 11. Let G = (V, E) be a graph with weights w, and let k be any positive integer.
Let G′ be the result of one application of one of the rules 1–8 to G, and k′ the resulting
parameter. Then, if G′ has a cut of size at least w(G′)

2 + wMSF (G′)
4 + k′

4 , then G must contain a
cut of size at least w(G)

2 + wMSF (G)
4 + k

4 . Furthermore, if G is connected, then G′ is connected.

▶ Lemma 12. Let G = (V, E) be a weighted graph with at least one edge. Given the block-cut
forest of G we can either apply Rule 2 in time O(|E′|) where E′ is the set of edges removed
by applying Rule 2, or we can find and apply another rule in time O(|E|). In the same time
we can also adapt the block-cut forest.
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▶ Observation 13. Each rule marks at most three vertices. Rule 2, the only rule that does
not reduce k, does not mark any vertices.

▶ Lemma 14. Let S be the set of vertices marked when exhaustively (i.e., until G has no
edges) applying Rules 1–8 to a graph G. Then G − S is a uniform-clique-forest.

Let us now prove Lemma 10 using these properties.

Proof of Lemma 10. We begin by computing the block-cut forest of G in O(n + m) time [8].
Then, we apply rules until we either reach k = 0 or until we reach a graph with no edges.
Whenever we apply a rule, we locally adapt the block-cut forest. In total we apply rules
other than Rule 2 at most k times. By Lemma 12 this takes at most O(k · m) time. Since
applying Rule 2 takes time O(|E′|) where E′ is the set of edges removed, all applications of
Rule 2 together use time O(m). The reduction step can thus be performed in O(k · m).

If we have reached k = 0, by the Poljak-Turzík bound and by Lemma 11 we can decide
that our input graph contains a cut of the desired size. Otherwise, by Observation 13, S

contains at most 3k vertices. By Lemma 14, G − S then forms a uniform-clique-forest, and
we have proven our desired statement. ◀

We will now proceed to prove Lemmas 11, 12, and 14. The main technical challenges
are the proofs of Lemmas 11 and 12. These proofs are more technically involved than the
corresponding proofs from [5]. For Lemma 11 this is due to the fact that the weight of
a minimum spanning forest is much more difficult to track through a reduction than the
number of vertices. For Lemma 12 the proof is more involved since our rules are more specific,
and thus more case distinction is needed. We present the proof of Lemma 11 in Section A,
since despite its technicality, it is not very insightful.

To prove Lemma 12 we use the following lemma, the proof of which follows from the
proof of [5, Lemma 3] rather directly.

▶ Lemma 15. Let G = (V, E) be a connected graph with at least one edge, and let B ⊆ V be a
biconnected component that is a leaf in the block-cut forest of G. Now, we write B as X ∪{v},
where v is the cut vertex disconnecting B = X ∪ {v} from V \ B (if B is an isolated vertex
in the block-cut forest, i.e., it forms a connected component of G that is also biconnected,
then let v be an arbitrary vertex in B). Then at least one of the following properties holds.
A) G[X ∪ {v}] is a clique.
B) G[X] is a clique but G[X ∪ {v}] is not a clique.
C) v has exactly two neighbors in X, x and y. Furthermore, {x, y} /∈ E, and G[X \ {x}]

and G[X \ {y}] are cliques.
D) X ∪ {v} contains vertices a, b, c such that {a, b}, {b, c} ∈ E, {a, c} /∈ E, and G − {a, b, c}

is connected.
Furthermore, such a property (including the vertices x, y and a, b, c for cases C and D,
respectively) can be found in linear time in the number of edges in G[X].

Proof (sketch). One can check whether G[X] is a clique for some X ⊆ V in time linear in
the number of edges in G[X]. To do this, we simply check whether each edge is present in
some fixed order. It is thus easy to check for cases A), B), and C) in linear time.

In the proof of [5, Lemma 3] it is shown that if none of the cases A), B), and C) apply,
then vertices a, b, c certifying case D) can be found in linear time. ◀

Proof of Lemma 12. Without loss of generality we can assume that G is connected; other-
wise, we consider G to be an arbitrary connected component of our input graph that contains
at least one edge. We first apply Lemma 15 on a leaf-block X ∪ {v} to find one of the four
properties.
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Property A) If property A) holds, we can check whether G[X ∪ {v}] is uniform in time
O(|E′|) where E′ is the set of edges in G[X ∪ {v}]. In this process we can track also whether
G[X] is uniform. If G[X ∪ {v}] is uniform we apply Rule 2. Else, if only G[X] is uniform,
we apply Rule 3. If not even G[X] is uniform, we can find two edges {x, y}, {y, z} in G[X]
such that w(x, y) > w(y, z). Since X ∪ {v} is a clique, G − {x, y} must be connected. We
can therefore apply Rule 1.

Property B) We can handle property B) in a similar way. If G[X] is uniform, we can apply
Rule 4. Else, we apply case distinction on the number of vertices in X adjacent to v. We
first consider the case if vertex v is adjacent to exactly two vertices in X. Since X is not
uniform, there exist vertices x, y ∈ X and a vertex u ∈ X ∪ {v} such that w(x, y) > w(x, u).
If the only such choice of x, y is such that x and y are exactly the two vertices in X adjacent
to v, then we can apply Rule 5. Else we can see that G − {x, y} must be connected and
apply Rule 1. Let us now consider the other case, that vertex v is adjacent to at least three
vertices in X. There must again exist vertices u, x, y ∈ X so that w(x, y) > w(x, u). Since v

is adjacent to at least three vertices and G[X] is a clique, G − {x, y} is connected and we
can apply Rule 1.

Property C) To handle Property C) we first check whether G[X] is uniform. If it is not,
we can apply Rule 1, since for any edge {a, b} in G[X], G − {a, b} is connected. Knowing
that G[X] is uniform, and that v has exactly two neighbors, we can apply Rule 8.

Property D) Note that since G − {a, b, c} is connected, and since by its biconnectedness
B ̸= {a, b, c}, if G−B is non-empty, then v /∈ {a, b, c}. Next, again since G[B] is biconnected,
we must have that E({a}, B \ {a, b, c}) ̸= ∅ and E({c}, B \ {a, b, c}) ̸= ∅. From this we
get that G − {a, b} and G − {b, c} must be connected. Thus, we can compare w(a, b)
and w(b, c), and apply Rule 1 if w(a, b) ̸= w(b, c). We can also compute the value m =
min({a, b, c}, B \ {a, b, c}). If 2w(a, b) > m we can apply Rule 6.

Next, we compute the block-cut forests for the four graphs Gabc := G[B] − {a, b, c} and
Gu := G[B] − {u} for all u ∈ {a, b, c}. This can be performed in the required time, and yields
the set of cut vertices for all these graphs. We now test for every u ∈ {a, b, c} and for every
vertex z ∈ B \ {a, b, c} with {z, u} ∈ E whether z is a cut vertex in Gu. If for any such pair
z, u we have that z is not a cut vertex in Gu, this means that G − {u, z} is connected, and
we can thus apply Rule 1 to that edge (recall that since we could not apply Rule 6 earlier,
every edge in E({a, b, c}, B \ {a, b, c}) has weight at least twice as large as w(a, b) = w(b, c)).

If every such z adjacent to some u ∈ {a, b, c} is a cut vertex in Gu, we check whether any
of these vertices is not a cut vertex in Gabc. If one is not, we claim that we can apply Rule 7.
We prove this by distinguishing two cases, depending on u:

u ∈ {a, c}: Suppose without loss of generality that u = a. Since z is a cut vertex of Ga,
it follows that Ga − z has t ≥ 2 connected components C1, . . . , Ct. Suppose without loss
of generality that b, c ∈ C1. If C1 \ {b, c} ̸= ∅, then C1 \ {b, c} and C2 are two different
connected components of Gabc −z, contradicting our assumption that z is not a cut vertex
of Gabc. Thus C1 = {b, c}, implying that b and c have no neighbours in B \ {a, b, c, z}.
Therefore {c, z} ∈ E as E({c}, B \ {a, b, c}) ̸= ∅, so c can also play the role of u. By
symmetry, a has no neighbours in B \{a, b, c, z} and {a, z} ∈ E. It follows that {a, b, c, z}
is a leaf-block of G and so Rule 7 applies.
u = b: Let S := B \ {a, b, c, z}. Recall that we established that E({a}, S ∪ {z}) and
E({c}, S ∪ {z}) are both non-empty. We will show that either {a, z} ∈ E or {c, z} ∈ E

(or both hold). Suppose that is not the case. Then E({a}, S) and E({c}, S) are both
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non-empty. Since z is not a cut vertex in Gabc, the graph G[S] must be connected. That
implies G[S ∪ {a, c}] = G[B] − {b, z} is also connected, which contradicts our assumption
that z is a cut vertex of Gb.
We have shown that at least one of {a, z} and {c, z} is in E, say {a, z}. Thus, without
loss of generality, the case u ∈ {a, c} applies, since z must be a cut vertex of Ga by our
assumption that this holds for all adjacent pairs u, z with u ∈ {a, b, c} and z ∈ B \{a, b, c}.
We have thus reduced the case u = b to u ∈ {a, c}, which we already handled.

One can now show that if this point is reached without having found an applicable rule, then
Rule 7 must be applicable to the graph. Let us collect all the properties we know to be true
(under the assumption that we have not found an applicable rule until now).
1. E({a}, B \ {a, b, c}) ̸= ∅ and E({c}, B \ {a, b, c}) ̸= ∅.
2. w(a, b) = w(b, c)
3. 2w(a, b) ≤ min(B − {a, b, c}, {a, b, c})
4. For every pair of vertices z ∈ B \ {a, b, c} and u ∈ {a, b, c} with {z, u} ∈ E, z is a cut

vertex of both Gu and Gabc.

Observe that since B is biconnected containing at most one cut vertex of G, it follows
that there can be at most one cut vertex of G with a neighbor in {a, b, c}. We will now use
the following claim that we will prove later.

▷ Claim 16. Let G be a connected graph with X ⊂ G where X and G − X are connected,
and for every vertex v ∈ V (G − X), if v has a neighbor in X, then v is a cut vertex of G − X.
If |N(X)| ≥ 2, then there are two distinct vertices v1, v2 ∈ N(X) that are both cut vertices
of G.

We apply Claim 16 on the set X := {a, b, c}. By property 4 above, and by the fact that
N({a, b, c}) contains at most one cut vertex of G, we get that |N({a, b, c})| = 1. The vertex
in N({a, b, c}) must be the cut vertex v. By property 1 we know that {a, v}, {c, v} ∈ E.
By properties 2 and 3 all the weight restrictions of Rule 7 are satisfied, which can thus be
applied. ◀

Proof of Claim 16. Let H be the block-cut forest of G − X and suppose V (H) = C ∪ B, where
C are the cut vertices of G − X and B are the biconnected components of G − X. Since
|N(X)| ≥ 2, we get that |C| ≥ 2. Note that all leaves of H are in B. Consider the tree T

that we obtain by removing all leaves of H, and note that T has at least two vertices since
C ⊆ V (T ). Thus, T has at least two leaves, say ℓ1, ℓ2, each of which must be in C, since its
neighbors in H \ T are in B. Let B′ ∈ B be a leaf of H that is a neighbor of ℓi for some
i ∈ {1, 2}. Since every vertex in N(X) is in C, it follows that E(X, B′ \ {ℓi}) = ∅, so ℓi is a
cut vertex in G. ◁

For this section, it only remains to prove Lemma 14.

Proof of Lemma 14. Let G1, G2, . . . , Gq be the sequence of graphs obtained while exhaus-
tively applying rules 1–8 to G1 (G2 is the graph obtained after applying one rule to G1, G3
is the graph obtained after applying one rule to G2, and so on). We prove that for any graph
Gi in the sequence, Gi − S is a uniform-clique-forest. We run this proof by induction over
the sequence of graphs in reverse order (in the order Gq, Gq−1,. . . ,G2,G1).
Base Case: By Lemma 12, we know that Gq is a graph without edges, therefore Gq = Gq − S

is trivially a uniform-clique-forest.
Induction Hypothesis: Assume Gi − S is a uniform-clique-forest.
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Step Case: We prove that Gi−1 − S is a uniform-clique-forest. We know that one rule among
rules 1–8 was applied to Gi−1 to obtain Gi. We do a case distinction over which rule was
applied:

Rule 1, 6, or 7 was applied to Gi−1. Every vertex these rules remove is also marked,
therefore Gi−1 − S = Gi − S.
Rule 2 was applied to Gi−1. We can create Gi−1 − S from Gi − S by connecting a clique
X to a vertex v ∈ V (Gi) such that X ∪ {v} is a uniform clique. If v is in S, this is instead
adding a disjoint uniform clique. Observe that this just adds a uniform leaf-clique in
either case.
Rule 3, 4, 5, or 8 was applied to Gi−1. We can create Gi−1 − S from Gi − S by adding a
disjoint uniform clique.

We conclude that in all cases Gi−1 −S consists of one or zero uniform cliques added to Gi −S

as a leaf, and thus by the induction hypothesis Gi−1 − S is a uniform-clique-forest. ◀

4 Solving MaxCut-With-Vertex-Weights on Uniform-Clique-Forests

▶ Lemma 17. MaxCut-With-Vertex-Weights on a uniform-clique-forest G with n

vertices and m edges can be solved in O(n + m) time.

Proof. This proof loosely follows the proof of [5, Lemma 4]. We first compute the cut-block
forest of G. We know that every graph contains at least one leaf-block. Let X ∪ {v} be
a leaf-block of G where v ∈ V (G) is the cut vertex of X (if a connected component of G

consists of a single biconnected component B, then X = B − {v} where v is an arbitrary
vertex in B). Let n′ = |X| and m′ be the number of edges in G[X ∪ {v}]. Since G is a
uniform-clique-forest, we know that G[X ∪ {v}] is c-uniform for some c. We now consider
the maximum weighted cut in G[X ∪ {v}] for both possible cases v ̸∈ C and v ∈ C.

We first consider v ̸∈ C. Let δ(x) = w1(x) − w0(x) for every vertex x ∈ X. We can sort
the vertices in X in the order x1, x2, .., xn′ with decreasing δ-value, i.e., δ(x1) ≥ . . . ≥ δ(xn′).
For any p ∈ {0, . . . , n′}, we let Ap be the set {x1, . . . , xp}. Clearly Ap is the best cut among
all cuts C ′ with |C ′ ∩ X| = p. Now we can find the maximum weighted cut in X ∪ {v} by
comparing the n′ + 1 cuts A0, .., An′ . Letting λ be the value of this cut, we update w0(v) = λ.

We can perform the same process for v ∈ C. We instead consider Ap = {v, x1, . . . , xp},
and update w1(v) to the optimum value found. After having updated both weights for v, we
can now delete all vertices in X.

We can apply this method to G exhaustively until we are left with a graph with no edges.
The desired value of the maximum weighted cut on the entire graph G is the sum of the
greater values of w0(v) or w1(v) for all remaining vertices v.

We now calculate the runtime of this method applied to one leaf-block X. Sorting the
vertices takes O(n′ log(n′)) time. Since X is a clique, we have n′ log(n′) ≤ n′(n′+1)

2 = m′ for
all n′ ≥ 4. We can calculate the value of the assignment A0 in O(m′) time. Observe that
the difference between cuts Ai and Ai+1 for any i ∈ {0, .., n − 1} is in only one vertex. By
only considering these local modifications we can calculate the values of the cuts A0, .., An′

in O(m′) time. Since in every iteration we perform this process on a different block, in
total we can bound our runtime with O(n + m), since for blocks with n′ < 4 the runtime
of O(n′ log(n′)) = O(1) can be charged to some vertex in the block, while for blocks with
n′ ≥ 4 the runtime of O(n′ log(n′)) can be expressed as O(m′). ◀
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5 Conclusion

With Lemmas 10 and 17, our main result now follows easily:

Proof of Theorem 4. Given any instance MaxCut(G, w(G)
2 + wMSF (G)

4 + k′

4 ) with k′ := 4k,
by Lemma 10 we can in time O(n + k · m) either decide that the instance is a “yes”-instance,
or find a set S ⊆ V with |S| ≤ 3k′ = 12k such that G − S is a uniform-clique-forest. For each
subset S′ ⊆ S we can then in time O(n + m) build a MaxCut-With-Vertex-Weights
instance on the graph G − S, such that the vertex weights w0(v) and w1(v) of a vertex
v ∈ G − S denote the sum of the weights of edges to vertices in S′ and S \ S′ respectively.
By Lemma 17, each of these instances can be solved in O(n + m) time. The maximum cut
found in any instance given by a set S′ corresponds to the maximum cut C of G obtainable
under the condition that C ∩ S = S′. Taking into account the edges between S and S′ and
taking the maximum over all instances thus computes the maximum cut size of G.

To compute the overall runtime, note that since |S| ≤ 12k, we solve at most 212k MaxCut-
With-Vertex-Weights instances. Thus, the overall runtime is O(n+k·m+2O(k)·(n+m)) =
O(2O(k) · (n + m)). ◀

If we want to find a cut instead of deciding the existence of a cut, we can use very similar
techniques.

Proof of Theorem 5. The proof of Lemma 11 is constructive: given a cut C ′ on the reduced
graph G′ of the assumed size, a cut C on the original graph G of the required size can be
found in linear time in the number of removed edges and vertices. Thus, instead of applying
reduction rules only until k ≤ 0 or until the graph has no edges, we always apply rules
until the graph contains no edges. This requires at most O(n · m) time. Note that when
we have removed all edges from the graph, the required size of a cut (k larger than the
Poljak-Turzík bound) is simply 0

2 + 0
4 + k = k. Thus, if k ≤ 0 is reached, the required cut size

is non-positive, thus we can start with any arbitrary cut C ′ of the remaining independent
set. We can then apply the cut extensions from the proof of Lemma 11 for all applied rules
in reverse. This yields a cut of G of the desired size. If otherwise we have k > 0 when we
reached a graph with no edges, we know that |S| ≤ 12k, and we can again solve 2|S| instances
of MaxCut-With-Vertex-Weights on G − S. ◀

Open Problems
Our result leaves a few interesting open problems.

Other λ-extendible properties. In [13], Poljak and Turzík actually not only show the lower
bound for MaxCut (Theorem 3) but in fact they prove a very similar bound for the existence
of large subgraphs fulfilling any so-called λ-extendible property.2 Mnich, Philip, Saurabh,
and Suchý [12] generalize the approach of [1] for MaxCut to work for a large subset of these
λ-extendible properties. Note that while the title of [12] includes “above the Poljak-Turzík
bound”, the authors restrict their attention to unweighted simple graphs, and thus their
result applied to MaxCut only implies the result of [1], but not our result. We find it a very
interesting direction to see if our result can be extended to also cover some more λ-extendible
properties in multigraphs or positive integer-weighted graphs.

2 For MaxCut this property would be bipartiteness.
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Kernelization. Many previous works on MaxCut parameterized above guaranteed lower
bounds have also provided kernelization results [1, 5, 10]. In particular, together with their
linear-time algorithm parameterized by the distance k to the Poljak-Turzík bound, Etscheid
and Mnich [5] also provide a linear-sized (in k) kernel. We are not aware of any kernelization
results for MaxCut on multigraphs or positive integer-weighted graphs. It would thus be
very interesting to explore whether these results can also be extended to our setting.

FPT above better lower bounds. Recently, Gutin and Yeo [6] proved new lower bounds
for µ(G) for positive real-weighted graphs. In particular, they prove µ(G) ≥ w(G)

2 + w(M)
2

where M is a maximum matching of G, and µ(G) ≥ w(G)
2 + w(D)

4 for any DFS-tree D (which
implies the Poljak-Turzík bound). Both of these bounds are consequences of a more general
bound involving disjoint bipartite induced subgraphs, but the value of this bound is NP-hard
to compute [6]. The weight of the largest DFS-tree is also NP-hard to compute [6]. These
two bounds are thus not very suitable for an FPT algorithm, but the bound involving the
maximum matching may be, since the maximum matching in a weighted graph can be
computed in polynomial time using Edmonds’ blossom algorithm.

General weights. After going from simple graphs to multigraphs and thus positive integer-
weighted graphs, it would be interesting to further generalize to positive real-weighted graphs.
Here, it is not directly clear what the parameter k exactly should be. Generalizing our
algorithm may require completely new approaches since we cannot discretize the decrease
of k.
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A Proof of Lemma 11

We will often use the following claim that slightly strengthens the Poljak-Turzík bound in
certain cases:

▷ Claim 18. Let G = (V, E) be a weighted graph with weights w : E → N such that there
exist edges {u, v}, {v, x} with w(u, v) > w(v, x) and G − {u, v} is connected. Then G has a
cut of size at least w(G)

2 + wMSF (G)
4 + 1

4 .

Proof. Let G′ = G − {u, v}. By the Poljak-Turzík bound we know we have a cut C ′ of G′ of
size at least w(G′)

2 + wMSF (G′)
4 . We can extend this to a cut C in G by adding exactly one

of u and v. We choose the one such that at least half of the weight in E({u, v}, V ′) goes
over the cut. We have that MSF (G′) ∪ {u, v} ∪ {v, x} is a spanning forest of G, therefore
wMSF (G′) + w(u, v) + w(v, x) ≥ wMSF (G). The cut C has weight at least

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + w({u, v}, V ′)
2 + w(u, v)

= w(G)
2 + wMSF (G′)

4 + w(u, v)
2

≥ w(G)
2 + wMSF (G′)

4 + w(u, v)
4 + w(v, x) + 1

4

≥ w(G)
2 + wMSF (G)

4 + 1
4 . ◁

Let us now prove Lemma 11.

Proof of Lemma 11. We first see that each rule preserves connectedness simply by their
preconditions. Each rule either explicitly requires that the resulting graph is connected
(Rules 1, 6, and 8), or removes a whole leaf-block of G, except for the cut vertex (Rules 2–5
and 7).

We now prove the required cut size implication for each rule independently. We need to
prove that if there exists a cut C ′ in G′ that produces a cut of size w(G′)

2 + wMSF (G′)
4 + k′

4 ,
then this can be extended to a cut C of G of size w(G)

2 + wMSF (G)
4 + k

4 . We thus assume that
such a cut C ′ exists, and then extend it in such a way that C ∩ V ′ = C ′. We perform a case
distinction on the rule that we applied to G to obtain G′. Recall that for all rules except
Rule 2, k′ = k − 1.

Rule 1: We extend C ′ by putting x and y on different sides of the cut. Among the two
possibilities, we choose the one such that at least half the weight in E({x, y}, V ′) goes over
the cut. We get a cut of size at least

https://doi.org/10.1016/j.jcss.2014.04.011
https://doi.org/10.1016/0012-365X(86)90192-5
https://doi.org/10.1090/dimacs/020/04
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w(C ′) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + w(x, y) + w(E({x, y}, V ′))
2

= w(G)
2 + wMSF (G′)

4 + k′

4 + w(x, y)
2

≥ w(G)
2 + wMSF (G′)

4 + k′

4 + w(x, y)
4 + w(y, z) + 1

4

We now see that wMSF (G) ≤ wMSF (G′) + w(x, y) + w(y, z), and we thus get

w(C ′) ≥ w(G)
2 + wMSF (G)

4 + k

4 .

Rule 2: We can assume without loss of generality that v ∈ C ′. Let n′ := |X ∪ {v}|. Observe
that the sum of the total weight in G[X ∪ {v}] is c( n′(n′−1)

2 ) for the integer c such that all
edges in G[X ∪ {v}] have weight c. If n′ is odd, |X| is even, and we can add exactly half the
vertices to C. This way we have a cut C ′′ in G[X ∪ {v}] of size at least

w(C ′′) ≥ c
(n′ + 1

2

)(n′ − 1
2

)
= c
(n′(n′ − 1)

4

)
+ c
(n′ − 1

4

)
= w(G[X ∪ {v}])

2 + wMSF (G[X ∪ {v}])
4 .

If n′ is even, we add n′

2 of the vertices of X to C, and leave n′

2 − 1 vertices out of C. In this
case, we have a cut C ′′ in G[X ∪ {v}] of size at least

w(C ′′) ≥ c
(n′

2

)(n′

2

)
= c
(n′(n′ − 1)

4

)
+ c
(n′

4

)
≥ w(G[X ∪ {v}])

2 + wMSF (G[X ∪ {v}])
4 .

In either case, we can see that we can combine C ′ and C ′′ to a cut C in G of size at least

w(C) ≥ w(G[X ∪ {v}])
2 + wMSF (G[X ∪ {v}])

4 + w(G′)
2 + wMSF (G′)

4 + k′

4

= w(G)
2 + wMSF (G)

4 + k

4 ,

where in the last equality we used that k′ = k for this rule.

Rule 3: Since G[X ∪ {v}] is not uniform, we can apply Claim 18 to G[X ∪ {v}] to obtain
a cut C ′′ in G[X ∪ {v}] of size at least w(G[X∪{v}])

2 + wMSF (G[X∪{v}])
4 + 1

4 . We now assume
without loss of generality that v ∈ C ′′ ⇔ v ∈ C ′, i.e., both C ′ and C ′′ put v on the same
side of the cut. In this case we can combine C ′ and C ′′ to a cut C of size at least

w(C) ≥ w(G[X ∪ {v}])
2 + wMSF (G[X ∪ {v}])

4 + 1
4 + w(G′)

2 + wMSF (G′)
4 + k′

4

= w(G)
2 + wMSF (G)

4 + k

4 .
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Rule 4: We know that v must be adjacent to more than 1 and less than |X| vertices of X.
We first do a case distinction on whether G[X ∪ {v}] is uniform or not.

If G[X ∪ {v}] is not uniform, we use the same argument as for the previous rule. Let
y ∈ X be a vertex not adjacent to v. Observe that for any x ∈ X such that {v, x} ∈ E,
G[X ∪ {v} − {v, x}] and G[X ∪ {v} − {x, y}] are both connected. Since G[X ∪ {v}] is
not uniform but G[X] is, we can find such an x such that either w(x, y) > w(x, v) or
w(x, y) < w(x, v). Therefore, we can use Claim 18 on G[X ∪ {v}]. This gives us a cut C ′′ in
G[X ∪ {v}] of size at least w(G[X∪{v}])

2 + wMSF (G[X∪{v}])
4 + 1

4 . Combining this cut with C ′,
we get a cut C in G of size at least

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + w(G[X ∪ {v}])
2 + wMSF (G[X ∪ {v}])

4 + 1
4

≥ w(G)
2 + wMSF (G)

4 + k

4 .

Otherwise G[X ∪ {v}] is c-uniform. Let m′ = w(G[X ∪ {v}]) and n′ = |X|. We can order
the vertices in X as x1, x2, . . . , xn′ such that v is adjacent to exactly x1, . . . , xr, but not
xr+1, . . . , xn′ . Assume without loss of generality that v ∈ C ′. We add v and all xi for i > ⌈ n′

2 ⌉
to a cut C ′′ of G[X ∪{v}]. This cut has size s := c(⌈ n′

2 ⌉·⌊ n′

2 ⌋+min{r, ⌈ n′

2 ⌉}). Note that m′ =
c( n′(n′−1)

2 + r), thus we can rephrase s = m′

2 + c( n′

4 − n′2

4 + (⌈ n′

2 ⌉)(⌊ n′

2 ⌋) + min{ r
2 , ⌈ n′

2 ⌉ − r
2 }).

If n′ is even, (⌈ n′

2 ⌉)(⌊ n′

2 ⌋) = n′2

4 , and then s ≥ m′

2 + c n′

4 + c
2 ≥ m′

2 + c n′

4 + 1
4 .

If n′ is odd, (⌈ n′

2 ⌉)(⌊ n′

2 ⌋) = (n′+1)(n′−1)
4 = n′2

4 − 1
4 , and then s ≥ m′

2 +c n′

4 + c
2 − c

4 ≥ m′

2 +c n′

4 + 1
4 ,

as well.
In either case we can combine C ′′ on G[X ∪ {v}] and C ′ on G′ to get a cut C of G of size at
least

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + m′

2 + c
n′

4 + 1
4

≥ w(G)
2 + wMSF (G)

4 + k

4 ,

where we used that an MSF of G′ can be turned into a spanning forest of G by adding n′

edges of weight c.

Rule 5: Let X ′ = X − {x, y}. If w(x, v) > c or w(y, v) > c, since G[X ∪ {v} − {v, x}] and
G[X ∪ {v} − {v, y}] are connected, we know by Claim 18 that G[X ∪ {v}] has a cut C ′′ of
size at least w(G[X∪{v}])

2 + wMSF (G[X∪{v}])
4 + 1

4 . Since G′ and G[X ∪ {v}] overlap in only one
vertex v we can w.l.o.g. assume that v ∈ C ′′ ⇔ v ∈ C ′, and we can combine C ′′ and C ′ to a
cut C of G of size at least

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + w(G[X ∪ {v}])
2 + wMSF (G[X ∪ {v}])

4 + 1
4

≥ w(G)
2 + wMSF (G)

4 + k

4 .

Thus, from now on we may assume w(x, v) = w(y, v) = c, i.e., the only edge in G[X ∪{v}]
that does not have weight c is the edge {x, y} of weight > c. For the remaining cases, we
perform a case distinction over the size of X ′. Without loss of generality we assume that
v ̸∈ C ′.

Case 1: |X ′| = 1. Let u be the only vertex in X ′. Observe wMSF (G′)+w(x, v)+w(y, v)+
w(u, x) ≥ wMSF (G).
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Assume w(x, y) > 2c. We create C by adding x to C ′. Then C has size at least

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + w(x, y) + w(x, v) + w(x, u)

≥ w(G)
2 + wMSF (G′)

4 + k′

4 + w(x, y) + w(x, v) + w(x, u) − w(y, v) − w(y, u)
2

= w(G)
2 + wMSF (G′)

4 + k′

4 + w(x, y)
2

>
w(G)

2 + wMSF (G′)
4 + k′

4 + 2c

2

≥ w(G)
2 + wMSF (G′)

4 + k′

4 + 3c

4 + 1
4

≥ w(G)
2 + wMSF (G)

4 + k

4 .

Assume w(x, y) ≤ 2c. We create C by adding x and y to C ′. Then C has size at least

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + w(y, v) + w(y, u) + w(x, v) + w(x, u)

≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + 3c + w(x, y)
2

≥ w(G)
2 + wMSF (G′)

4 + k′

4 + c

≥ w(G)
2 + wMSF (G)

4 + k′

4 + c

4

≥ w(G)
2 + wMSF (G)

4 + k

4 .

Case 2: |X ′| =: n′ > 1. Observe w(G) = w(G′) + c( n′(n′−1)
2 + 2n′ + 2) + w(x, y) and

wMSF (G′) + c(n′ + 2) ≥ wMSF (G).

Assume w(x, y) ≥ 2c. We start with a cut on G[X ′] of size at least w(G[X′])
2 +

wMSF (G[X′])
4 = w(G[X′])

2 + c( n′−1
4 ) as guaranteed by the Poljak-Turzík bound. Then

we extend this to a cut on G[X ′ ∪ {x, y}] by adding exactly one of x and y, choosing
of the two possibilities the one that cuts at least half the weight in E(X ′, {x, y}). We
combine this cut with the cut C ′.

The resulting cut C has size at least

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + w(G[X ′])
2 + c

(n′ − 1
4

)
+ |E(X ′, {x, y})|

2 + w(x, y) + c

≥ w(G)
2 + wMSF (G′)

4 + k′

4 + c
(n′ − 1

4

)
+ w(x, y)

2

≥ w(G)
2 + wMSF (G′)

4 + k′

4 + c
(n′ + 3

4

)
≥ w(G)

2 + wMSF (G)
4 + k′

4 + c

4

≥ w(G)
2 + wMSF (G)

4 + k

4 .

Assume w(x, y) < 2c. We add both x and y to the cut C ′.

IPEC 2024



2:18 Linear-Time MaxCut in Multigraphs Parameterized Above the Poljak-Turzík Bound

If n′ is odd we add n′−1
2 vertices of X ′ to C ′. The resulting cut C has size at least

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + c

((n′ + 3
2

)(n′ + 1
2

)
+ 2
)

≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + c
(n′2 + 4n′ + 3

4 + 1
)

+ w(x, y) + 1
2

= w(G)
2 + wMSF (G′)

4 + k′

4 + c
(n′ − 1

4 + 1
)

+ 1
2

= w(G)
2 + wMSF (G′)

4 + k′

4 + c
(n′ + 3

4

)
+ 1

2

≥ w(G)
2 + wMSF (G)

4 + k′

4 + 1
2

≥ w(G)
2 + wMSF (G)

4 + k

4 .

If n′ is even we add n′

2 − 1 vertices of X ′ to C ′. The resulting cut C has size at least

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + c

((n′ + 2
2

)(n′ + 2
2

)
+ 2
)

,

which is strictly larger than in the n′ odd case.

Rule 6: Let min = min(V \ {a, b, c}, {a, b, c}), and let emin be an edge of weight min
in E(V \ {a, b, c}, {a, b, c}). Observe that MSF (G′) together with emin, {a, b}, and {b, c}
forms a spanning forest of G. Therefore wMSF (G′) + min +w(a, b) + w(b, c) = wMSF (G′) +
min +2w(a, b) ≥ wMSF (G).

We consider two subsets of {a, b, c}: A1 = {a, c}, and A2 = {b}. Considering these as
cuts of G, both cuts cut the edges {a, b} and {b, c}, and at least one of these cuts gets at
least half of the total weight in E(V (G′), {a, b, c}). Enhancing C ′ by that set, we therefore
get a cut C of G of size at least

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + w(V (G′), {a, b, c})
2 + w(a, b) + w(b, c)

≥ w(G)
2 + wMSF (G′)

4 + k′

4 + w(a, b)
2 + w(b, c)

2

≥ w(G)
2 + wMSF (G′)

4 + k′

4 + w(a, b)
2 + min +1

4

≥ w(G)
2 + wMSF (G)

4 + k′

4 + 1
4

≥ w(G)
2 + wMSF (G)

4 + k

4 .

Rule 7: If b is adjacent to v we can augment C ′ by adding a, b, c to C if and only if v ̸∈ C ′.
Observe MSF (G′) ∪ {a, v} ∪ {b, v} ∪ {c, v} is a spanning forest of G. Also by the conditions
of Rule 7 we have w(a,v)

4 + w(b,v)
4 ≥ w(a,b)

2 + w(a,b)
2 = w(a,b)

2 + w(b,c)
2 . We can thus analyze

the cut C to have size at least
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w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + w(a, v) + w(b, v) + w(c, v)

≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + 3w(a, v)
4 + 3w(b, v)

4 + w(a, b)
2 + w(b, c)

2 + w(c, v)

≥ w(G)
2 + wMSF (G′)

4 + k′

4 + w(a, v)
4 + w(b, v)

4 + w(c, v)
2

≥ w(G)
2 + wMSF (G)

4 + k′

4 + w(c, v)
4

≥ w(G)
2 + wMSF (G)

4 + k

4 .

If b is not adjacent to v, add a, c to C if and only if v ̸∈ C ′, and we add b to C

if and only if v ∈ C ′. Thus the edges {a, b}, {b, c}, {a, v}, {c, v} are all cut. Note that
MSF (G′) ∪ {c, v} ∪ {a, b} ∪ {b, c} is a spanning forest of G. The cut C has size at least

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + w(a, v) + w(a, b) + w(b, c) + w(c, v)

≥ w(G)
2 + wMSF (G)

4 + k′

4 + w(a, v)
2 + w(c, v)

4 + w(a, b)
4 + w(b, c)

4

≥ w(G)
2 + wMSF (G)

4 + k

4 .

Rule 8: Let v be the only neighbor of {x, y} in Y and let n = |X|. We first extend C ′ to
C ′′ by adding x, y to C ′′ if and only if v ̸∈ C ′. We then extend C ′′ to C as follows.

Without loss of generality, assume x, y ̸∈ C ′′. We perform a case distinction on the parity
of n. Note that w(G[X ∪ {x, y}]) = c( n(n−1)

2 + 2n).
If n is odd, we add n+1

2 of the vertices in X to C. In G[X ∪ {x, y}] this cuts in total a
weight of

c

((
n + 1

2

)(
n − 1

2

)
+2n + 1

2

)
= c
(

n(n − 1)
4 + n − 1

4 +n+1
)

= w(G[X ∪ {x, y}])
2 +c

(
n

4 + 3
4

)
.

If n is even, we add n
2 +1 vertices in X to C. In G[X ∪{x, y}] this cuts in total a weight of

c

((n

2 + 1
)(n

2 − 1
)

+ 2
(n

2 + 1
))

= c
(n2

4 + n + 1
)

= c
(n2

4 + 3
4n + n

4 + 1
)

= w(G[X ∪ {x, y}])
2 + c

(n

4 + 1
)

.

In either case we thus have that C cuts at least half of the weight in G[X ∪ {x, y}] plus
c( n

4 + 3
4 ).

Observe that wMSF (G) ≤ wMSF (G′)+ cn+w(x, v)+w(y, v). In total we can thus bound
the size of the cut C as

w(C) ≥ w(G′)
2 + wMSF (G′)

4 + k′

4 + w(G[X ∪ {x, y}])
2 + c(n

4 + 3
4) + w(x, v) + w(y, v)

= w(G)
2 + wMSF (G′)

4 + k′

4 + c(n

4 + 3
4) + w(x, v)

2 + w(y, v)
2

≥ w(G)
2 + wMSF (G)

4 + k

4 .

We conclude that for every rule, from a cut C ′ of G′ of the guaranteed size we can build
a cut C of G of the required size, and thus the lemma follows. ◀
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Abstract
The approximate computation of twin-width has attracted significant attention already since the
moment the parameter was introduced. A recently proposed approach (STACS 2024) towards
obtaining a better understanding of this question is to consider the approximability of twin-width
via fixed-parameter algorithms whose running time depends not on twin-width itself, but rather on
parameters which impose stronger restrictions on the input graph. The first step that article made
in this direction is to establish the fixed-parameter approximability of twin-width (with an additive
error of 1) when the runtime parameter is the feedback edge number.

Here, we make several new steps in this research direction and obtain:
An asymptotically tight bound between twin-width and the feedback edge number;
A significantly improved fixed-parameter approximation algorithm for twin-width under the same
runtime parameter (i.e., the feedback edge number) which circumvents many of the technicalities
of the original result and simultaneously avoids its formerly non-elementary runtime dependency;
An entirely new fixed-parameter approximation algorithm for twin-width when the runtime
parameter is the vertex integrity of the graph.
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1 Introduction

Twin-width is a comparatively recent graph-theoretic measure which is the culmination
of as well as a catalyst for several recent breakthroughs in the area of algorithmic model
theory [10, 11, 12, 13, 14]. Indeed, it has the potential to provide a unified explanation
of why model-checking first order logic is fixed-parameter tractable on a number of graph
classes which were, up to then, considered to be separate islands of tractability for the
model-checking problem. This includes graphs of bounded rank-width, proper minor-closed
graphs, map graphs [15], bounded-width posets [3] as well as a number of other specialized
graph classes [4, 22].
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While twin-width is related to graph parameters such as rank-width and path-width [14]
as well as to measures which occur in matrix theory such as excluding linear minors [13],
what distinguishes twin-width from these other measures is that we lack efficient algorithms
for computing the twin-width of a graph. In particular, it is known that already deciding
whether a graph has twin-width at most 4 is NP-hard [6]. This is highly problematic for the
following reason: virtually every known algorithm that uses twin-width requires access to a
so-called contraction sequence, which serves the same role as the decompositions typically
used for classical parameters such as treewidth [36] and rank-width [35]. Intuitively speaking,
a contraction sequence of width t – which serves as a witness for G having twin-width at
most t – of a graph G is a sequence C of contractions of (not necessarily pairwise adjacent)
vertex pairs which satisfies the following property: at each step of C, every vertex v only has
at most t neighbors with an ancestor that is not adjacent to some ancestor of v1.

The aforementioned NP-hardness of identifying graphs of twin-width 4 [6] effectively rules
out fixed-parameter as well as XP algorithms for computing optimal contraction sequences
when parameterized by the twin-width itself. One possible approach to circumvent this
obstacle would be to devise a fixed-parameter algorithm which still uses the twin-width t

as the parameter and computes at least an approximately-optimal contraction sequences,
i.e., a contraction sequence of width f(t) for some computable function f . On a complexity-
theoretic level, such a result may be seen as “almost” as good as computing twin-width
exactly, as it would still yield a fixed-parameter algorithm for first-order model checking.

Unfortunately, the task of finding such an algorithm has proven to be highly elusive, and
it is far from clear that one even exists – in fact, whether twin-width can be approximated
in fixed-parameter time (for any function f of the twin-width) can be seen as arguably the
most prominent open question in contemporary research of twin-width. Recently [2], we
attacked this question by first relaxing the running time requirement and ask whether we
can obtain an f(t)-approximation for twin-width at least via a fixed-parameter algorithm
where the runtime parameter is different (and, in particular, larger) than the twin-width t

itself. As a first step in this direction, we developed a non-trivial fixed-parameter algorithm
that computes a contraction sequence of width at most t + 1 and is parameterized by the
feedback edge number of the input graph, i.e., the edge deletion distance to acyclicity [2]. In
the same paper, we also showed that the twin-width of a graph with feedback edge number
k is upper-bounded by k + 1.

Contributions. In this article, we significantly expand on our previous results [2] and present
the next steps in the overarching program of understanding the boundaries of tractability
for computing approximately-optimal contraction sequences. We summarize the three main
contributions of this article below.

In Section 3, we revisit the relationship between twin-width and the feedback edge number.
Here, we improve our previous linear bound [2] to square-root, and also show that this new
bound is asymptotically tight. More precisely, we show that every graph class with feedback
edge number k has twin-width O(

√
k) (Theorem 8), and also construct a graph class with

feedback edge number k whose twin-width is lower-bounded by Θ(
√

k) (Proposition 9).
In Section 4, we revisit the main result of the preceding paper [2]: a polynomial-time

reduction procedure which transforms every input graph G with feedback edge number k

and twin-width t into a (tri-)graph G′ whose twin-width lies between t and t + 1 and whose
size is upper-bounded by a non-elementary function of k. While this suffices to obtain the

1 Formal definitions are provided in Section 2.



desired fixed-parameter approximation algorithm (as one may brute-force over all contraction
sequences of G′), the dependence on the parameter k is astronomical and the proof relies on
a sequence of highly technical arguments about how a hypothetical contraction sequence may
be retrofitted in order to avoid certain degenerate steps. As the second main contribution of
this article, we provide a new proof for the fixed-parameter approximability of twin-width
parameterized by the feedback edge number which not only avoids many of the technical
difficulties faced in the previous approach, but crucially also improves the size bound for the
reduced instance G′ from a non-elementary to a quadratic function of k.

Finally, in Section 5 we push the frontiers of approximability for twin-width by obtaining
an algorithm which computes a contraction sequence for G of width at most twice the graph’s
twin-width and runs in time f(p) · |G|, where p is the vertex integrity of G. Vertex integrity
is a parameter which intuitively measures how easily a graph may be separated into small
parts, and is defined as the smallest integer p such that there exists a separator X with
the following property: each connected component C of G − X satisfies |V (C) ∪ X| ≤ p.
Vertex integrity may be seen as the natural intermediate step between the vertex cover
number (which is the size of the smallest vertex cover in G, and which is known to allow for a
trivial fixed-parameter algorithm for computing twin-width) and decompositional parameters
such as treedepth and treewidth (for which the existence of a fixed-parameter approximation
algorithm for twin-width remains a prominent open question [2]). Our result relies on a
data reduction procedure which incorporates entirely different arguments than those used for
the feedback edge number, and the correctness proof essentially shows that every optimal
contraction sequence can be transformed into a near-optimal one where all “similar parts” of
G are treated in a “similar way”.

Related Work. Beyond the setting of computing twin-width and the associated contraction
sequences, there are numerous other works which have targeted fixed-parameter algorithms
for computing a structural graph parameter X when parameterized by graph parameters
that differ from X. The general aim in this research direction is typically to further
one’s understanding of the fundamental problem of computing the targeted parameter X.
Examples of fixed-parameter algorithms obtained in this setting include those for treewidth
parameterized by the feedback vertex number [9], treedepth parameterized by the vertex
cover number [33], MIM-width parameterized by the feedback edge number and other
parameters [21], and the directed feedback vertex number parameterized by the (undirected)
feedback vertex number [7]. The feedback edge number and vertex integrity have also been
used to obtain parameterized algorithms for a number of other challenging problems [37, 5,
27, 34, 25, 29, 23, 30], whereas the latter parameter has also been studied in the literature
under different asymptotically-equivalent names such as the fracture number [20, 24] and
starwidth [38]. We refer interested readers to the very recent manuscript of Hanaka, Lampis,
Vasilakis and Yoshiwatari [31] for a more detailed overview of vertex integrity and its
relationship to other fundamental graph measures.

2 Preliminaries

For integers i and j, we let [i, j] := {n ∈ N | i ≤ n ≤ j} and [i] := [1, i]. We assume familiarity
with basic concepts in graph theory [17] and parameterized algorithmics [18, 16]. When H

is an induced subgraph of G, we denote it by H ⊆ G. Given vertex sets X and U , we will
use G[X] to denote the graph induced on X and G − U to denote the graph G[V (G) \ U ];
similarly, for an edge set F , G − F denotes G after removing the edges in F .



A dangling path in G is a path of vertices which all have degree 2 in G, and a dangling
tree in G is an induced subtree in G which can be separated from the rest of G by removing
a single edge. The length of a path is the number of edges it contains. The distance between
two vertices u and v is the length of the shortest path between them.

An edge set F in an n-vertex graph G is called a feedback edge set if G − F is acyclic,
and the feedback edge number of G is the size of a minimum feedback edge set in G. We
remark that a minimum feedback edge set can be computed in time O(n) as an immediate
corollary of the classical (DFS- and BFS-based) algorithms for computing a spanning tree in
an unweighted graph G.

A graph has vertex integrity p if p is the smallest integer with the following property: G

contains a vertex set S such that S ̸= V (G) and for each connected component H of G − S,
|V (H) ∪ S| ≤ p. One may observe that the vertex integrity is upper-bounded by the size of a
minimum vertex cover in the graph (i.e., the vertex cover number) plus one, and both vertex
integrity and the feedback edge number are lower-bounded by treewidth minus one [36]. The
vertex integrity of an n-vertex graph can be computed in time O(pp+1 · n) [19].

Twin-Width. A trigraph G is a graph whose edge set is partitioned into a set of black and
red edges. The set of red edges is denoted R(G), and the set of black edges E(G). The
black ( resp. red) degree of u ∈ V (G) is the number of black (resp. red) edges incident to u in
G. We extend graph-theoretic terminology to trigraphs by ignoring the colors of edges; for
example, the degree of u in G is the sum of its black and red degrees (in the literature, this
is sometimes called the total degree). We say a (sub)graph is black ( resp. red) if all of its
edges are black (resp. red); for example, P is a red path in G if it is a path containing only
red edges. Without a color adjective, the path (or a different kind of subgraph) may contain
edges of both colors.

Given a trigraph G, a contraction of two distinct vertices u, v ∈ V (G) is the operation
which produces a new trigraph by (1) removing u, v and adding a new vertex w, (2) adding a
black edge wx for each x ∈ V (G) such that xu, xv ∈ E(G), and (3) adding a red edge wy for
each y ∈ V (G) such that yu ∈ R(G), or yv ∈ R(G), or y contains only a single black edge to
either v or u. A sequence C = (G = G1, . . . , Gn) is a partial contraction sequence of G if it is
a sequence of trigraphs such that for all i ∈ [n − 1], Gi+1 is obtained from Gi by contracting
two vertices. A contraction sequence is a partial contraction sequence which ends with a
single-vertex graph. The width of a (partial) contraction sequence C, denoted w(C), is the
maximum red degree over all vertices in all trigraphs in C. The twin-width of G, denoted
tww(G), is the minimum width of any contraction sequence of G, and a contraction sequence
of width tww(G) is called optimal. An example of a contraction sequence is provided in
Figure 1.
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Figure 1 A contraction sequence of width 2 for the leftmost graph, consisting of 6 trigraphs.

Let us now fix a contraction sequence C = (G = G1, . . . , Gn). For each i ∈ [n], we
associate each vertex u ∈ V (Gi) with a set β(u, i) ⊆ V (G), called the bag of u, which
contains all vertices contracted into u. Formally, we define the bags as follows:



for each u ∈ V (G), β(u, 1) := {u};
for i ∈ [n − 1], if w is the new vertex in Gi+1 obtained by contracting u and v, then
β(w, i + 1) := β(u, i) ∪ β(v, i); otherwise, β(w, i + 1) := β(w, i).

Note that if a vertex u appears in multiple trigraphs in C, then its bag is the same in
all of them, and so we may denote the bag of u simply by β(u). Let us fix i, j ∈ [n], i ≤ j.
If u ∈ V (Gi), v ∈ V (Gj), and β(u) ⊆ β(v), then we say that u is an ancestor of v in Gi

and v is the descendant of u in Gj (clearly, this descendant is unique). If H is an induced
subtrigraph of Gi, then u ∈ V (Gj) is a descendant of H if it is a descendant of at least one
vertex of H . A contraction of u, v ∈ V (Gj) into uv ∈ V (Gj+1) involves w ∈ V (Gi) if w is an
ancestor of uv.

The following definition provides terminology that allows us to partition a contraction
sequence into “steps” based on contractions between a subset of vertices in the original graph.

▶ Definition 1. Let C be a contraction sequence of a trigraph G, and let H be an induced
subtrigraph of G with |V (H)| = m. For i ∈ [m − 1], let C⟨i⟩H be the trigraph in C obtained
by the i-th contraction between two descendants of H, and let C⟨0⟩H = G. For i ∈ [m − 1],
let ui and wi be the two vertices that are contracted into the new vertex of C⟨i⟩H .

A contraction sequence C[H ] = (H = H1, . . . , Hm) is the restriction of C to H if for each
i ∈ [m − 1], Hi+1 is obtained from Hi by contracting the two vertices u, w ∈ V (Hi) such that
β(u) = β(ui) ∩ V (H) and β(w) = β(wi) ∩ V (H).

It will also be useful to have an operation that forms the “reverse” of a restriction; we
define this below.

▶ Definition 2. Let G and H be graphs such that H ⊆ G and let C0 be a partial contraction
sequence of H. We say that a partial contraction sequence C of G is the extension of C0
to G if C[H] = C0 and no contraction in C involves a vertex of G − H. When Gi is the
i-th trigraph in C0, we denote by Gi ↑ G the i-th trigraph in C (this makes sense since the
lengths of C0 and C are the same).

Finally, we introduce a notion that will be useful when dealing with reduction rules in
the context of computing contraction sequences.

▶ Definition 3. Let G, G′ be trigraphs. We say that the twin-width of G′ is effectively at
most the twin-width of G, denoted tww(G′) ≤e tww(G), if (1) tww(G′) ≤ tww(G) and (2)
given a contraction sequence C of G, a contraction sequence C ′ of G′ of width at most w(C)
can be constructed in polynomial time. If tww(G′) ≤e tww(G) and tww(G) ≤e tww(G′), then
we say that the two graphs have effectively the same twin-width, tww(G′) =e tww(G).

Preliminary Observations and Remarks. We begin by stating a simple brute-force algorithm
for computing twin-width.

▶ Observation 4. An optimal contraction sequence of an n-vertex graph can be computed in
time 2O(n·log n).

Proof. Each contraction sequence is defined by n − 1 choices of a pair of vertices, and so
the number of contraction sequences is O((n2)n) = O(22n·log n) ≤ 2O(n·log n). Moreover,
computing the width of a contraction sequence can clearly be done in polynomial time. ◀

The following observation provides a useful insight into the optimal contraction sequences
of trees.



▶ Observation 5 ([15, Section 3]). For any rooted tree T with root r, there is a contraction
sequence C of T of width at most 2 such that the only contraction involving r is the very last
contraction in C.

3 The Square-Root Bound

In this section, we prove that a graph with feedback edge number k has twin-width at most
O(

√
k). On a high level, the idea we will employ here builds on the preprocessing techniques

originally introduced in the context of computing twin-width on tree-like graphs [2]: first we
will contract the dangling trees, then the dangling paths, and for the final step we will use
the following theorem of Ahn, Hendrey, Kim and Oum:

▶ Theorem 6 ([1]). If G is a graph with m edges, than the twin-width of G is at most√
3m + o(

√
m).

An issue we need to resolve before applying the aforementioned high-level approach is
that Theorem 6 only applies to graphs without red edges, whereas the trigraph G we will
obtain after dealing with the dangling trees and paths may contain these. The following
lemma shows, using the properties of the red edges in G, that making all edges of G black
can only decrease the twin-width by a constant.

▶ Lemma 7. Let G be a trigraph with maximum red degree 2 such that each red edge in G is
incident to a vertex of degree at most 2. If G′ is the graph obtained from G by making all
edges black, then tww(G) ≤ tww(G′) + 4.

Proof. Let C ′ be an optimal contraction sequence of G′, and let C be the contraction
sequence of G obtained by following C ′. We will prove that w(C) ≤ w(C ′) + 4.

Let Gi be any trigraph in C and let G′
i be the trigraph in C ′ such that V (Gi) = V (G′

i).
Suppose for a contradiction that there are distinct vertices u, v1, v2, v3, v4, v5 ∈ V (Gi) such
that for each j ∈ [5], uvj is a red edge in Gi but not in G′

i. Recall that β(w) denotes the set
of vertices contracted to w (the bag of w), and observe that for each j ∈ [5], there must be
vertices uj , v0

j ∈ V (G) such that uj ∈ β(u) and v0
j ∈ β(vj), and ujv0

j is an edge that is black
in G′ but red in G. Since uvj /∈ R(G′

i), there must be either all edges or no edges between
β(u) and β(vj) in G′. However, ujv0

j ∈ E(G′), which means that for all j, ℓ ∈ [5], ujv0
ℓ is a

black edge in G′ (and so it is an edge also in G).
Since all vertices of G have red degree at most 2 and ujv0

j ∈ R(G) for each j ∈ [5],
there must be a, b, c ∈ [5] such that |{ua, ub, uc}| = 3. Now observe that each vertex
in {ua, ub, uc, v0

a, v0
b , v0

c } has degree at least 3 in G (since ujv0
ℓ is an edge in G for all

j, ℓ ∈ {a, b, c}). However, each red edge in G has an endpoint of degree at most 2, which is a
contradiction.

We have proven that the red degree of each vertex u ∈ V (Gi) = V (G′
i) may be higher in

Gi than in G′
i by at most 4, which proves that w(C) ≤ w(C ′) + 4. ◀

We are now ready to prove the square-root upper bound on twin-width.

▶ Theorem 8. There exists a function f(k) ∈ O(
√

k) such that every graph G with feedback
edge number k has twin-width at most f(k).

Proof. Let F be a smallest feedback edge set of G and assume k = |F | > 0 (the case k = 0
follows from Observation 5). We will prove the statement by constructing a contraction
sequence for G of width at most f(k) ∈ O(

√
k). We begin by contracting each maximal

dangling tree to a single vertex using Observation 5. After a maximal dangling tree has been



Q

Figure 2 A trigraph after processing the dangling trees and shortening the paths in P. Spikes
are colored in green. The edges between vertices of Q are not depicted. Notice that one of the paths
is black: this means it had no spikes and it has not been shortened. Also notice that one spike is
attached by a black edge: it was a maximal dangling tree with only one vertex in G.

contracted, we call the last remaining vertex a spike, and we say that a vertex adjacent to a
spike has a spike. Whenever a vertex has two spikes, we contract the spikes together (the
obtained vertex is still called a spike). Observe that throughout this process, no vertex has
red degree higher than 2: this is ensured by Observation 5 and the fact that a red neighbor
of a vertex not in a dangling tree must be a spike.

Let Gα be the obtained trigraph and let T be the tree obtained from Gα by removing all
spikes and edges in F . Let us choose any vertex of T to be the root. Let Q0 := {u ∈ V (T ) | u

is incident to an edge of F in Gα}, Q1 := {u ∈ V (T ) | u has degree higher than 2 in T}, and
Q := Q0 ∪ Q1. It is easy to see that |Q0| ≤ 2k and that all leaves of T belong to Q0 (a leaf
not in Q0 would belong to a dangling tree in Gα). Since a tree with n leaves has at most
n vertices of degree higher than 2, we obtain that |Q1| ≤ 2k and |Q| ≤ 4k. Observe that
T − Q is a graph consisting of disjoint dangling paths. Let P be the set of these paths, and
let g : P → Q be the function such that g(P ) is the vertex of Q adjacent to the endpoint of
P that is farther from the root of T . Since g is injective, we obtain that |P| ≤ 4k.

For each path P = (u1, . . . , un) in P, we perform the following contractions (starting
with Gα).

If n > 2, then for each i ∈ [2, n − 1] such that ui has a spike v, contract ui and v (do this
in increasing order). If u1 (resp. un) has a spike v, contract v and u2 (resp. un−1).
If n > 3, shorten P to a path with exactly three vertices by repeatedly contracting
neighboring vertices of P − {u1, un}.

Observe that throughout this process, no vertex has red degree higher than 2: a vertex
in Q has red degree at most 1 (its red neighbor must be a spike) and a vertex in a path P

either has a spike and at most one red neighbor in P or at most two red neighbors in P . See
Figure 2 for an illustration.

Now we will count the number of edges in the obtained trigraph Gβ . First, observe that
there are at most 5k edges in Gβ [Q]: k edges belonging to F and at most 4k other edges
since Gβ [Q] − F is a forest. In addition, each vertex of Q may have a spike in Gβ , which
constitutes up to 4k other edges. Second, let P ∈ P. If the length of P in G is at least 2,
then P corresponds to at most four edges in Gβ : at most two edges of the path itself and
two edges connecting P to the rest of the graph (i.e., to vertices of Q). However, if P is
shorter in G, then its vertices may have spikes in Gβ and it may correspond to up to 5 edges:
one edge of the path, two edges connecting it to Q, and two edges going to the spikes. Hence,
P adds at most 20k edges, and thus there are at most 29k edges in Gβ .



Let Gγ be the graph obtained from Gβ by changing the color of all edges to black.
By Theorem 6, Gγ has twin-width at most

√
87k + o(

√
k). Notice that Gβ satisfies the

preconditions of Lemma 7, which means that tww(Gβ) ≤ tww(Gγ)+4. Hence, the twin-width
of Gβ is also at most

√
87k + o(

√
k), and the same also holds for the original graph G (since

the partial contraction sequence from G to Gβ has width at most 2). ◀

We conclude the section by showing that Theorem 8 is asymptotically tight.

▶ Proposition 9. There exists a function f(k) ∈ Ω(
√

k) and an infinite class G of graphs
such that for each G ∈ G with feedback edge number k, tww(G) ≥ f(k).

Proof. Let n be a prime power such that n ≡ 1 (mod 4). It is known that there exists an
n-vertex ((n − 1)/2)-regular graph G (a so-called Paley graph) that has twin-width exactly
(n − 1)/2 [1, Section 3]. Since |E(G)| = (n2 − n)/4 and the spanning forest of G has at most
n−1 edges, we know that the feedback edge number k of G is at least (n2 −5n+4)/4 ∈ Ω(n2).

Let G be the class of all such n-vertex Paley graphs. For each n-vertex graph G in
G, we have k ∈ Ω(n2) and tww(G) ∈ Θ(n). Let f be the function which maps each k to
the minimum of {tww(G) | G ∈ G is a graph with feedback edge number k}. Thus, for each
G ∈ G, tww(G) ≥ f(k), and the aforementioned relationships between the number n of
vertices of that graph, tww(G) and k guarantee that f(k) ∈ Ω(

√
k), as desired. ◀

4 A Better Algorithm Parameterized by the Feedback Edge Number

We begin by recalling that the case of twin-width 2 is known to already admit an exact nearly
single-exponential fixed-parameter algorithm parameterized by the feedback edge number
(see Theorem 10 below), and thus here we focus our efforts on graphs with higher twin-width.

▶ Theorem 10 ([2]). If G is a graph with feedback edge number k and tww(G) ≤ 2, then an
optimal contraction sequence of G can be computed in time 2O(k·log k) + nO(1).

Our algorithm uses the same initial preprocessing steps as our previous result [2]. These
are formalized through the following definition and theorem; note that in the approach we use
here, we can use a slightly more general (and less technical) definition of tidy (H, P)-graphs
than the preceding paper.

▶ Definition 11. A connected trigraph G with tww(G) ≥ 2 is a tidy (H, P)-graph if P is a
non-empty set of dangling red paths in G, and there are two disjoint induced subtrigraphs
of G, namely H and ⊔P (the disjoint union of all paths in P), such that each vertex of G

belongs to one of them. Moreover, if u ∈ V (H) has a neighbor v ∈ V (⊔P) in G, then u has
black degree 0 in G, and v is the only neighbor of u in ⊔P.

The following theorem summarizes the results obtained in [2] that we will use in this
section.

▶ Theorem 12 ([2], Theorem 17 + Corollary 20). There is a polynomial-time procedure
which takes as input a graph G with feedback edge number k and either outputs an optimal
contraction sequence of G of width at most 2, or a tidy (H, P)-graph G′ with effectively the
same twin-width as G such that |V (H)| ≤ 112k and |P| ≤ 4k.

From here on, we pursue an entirely different approach than the one used to obtain the
previous (non-elementary) kernel [2]. In Subsection 4.1, we show how a tidy (H, P)-graph can
be contracted when the paths in P are long enough and a contraction sequence of H is given.
This is then used in Subsection 4.2, where we describe a better algorithm for approximating
twin-width parameterized by the feedback edge number (see Theorem 18).



4.1 Contracting an (H, P)-Graph Using a Contraction Sequence for H

For this subsection, let us fix a tidy (H, P)-graph G and let m := |P|. Assume that each
P ∈ P satisfies |V (P )| ≥ 8m and let F be the subtrigraph of ⊔P induced by the vertices at
distance at most 2m from H in G.

Informally speaking, our goal now is to construct a “good” contraction sequence for such
a trigraph G, see Corollary 16. To achieve that, we need to describe some well-structured
trigraphs obtained by a sequence of contractions from G, which we will call G-tidy trigraphs,
see the following Definition 13. An important property of a G-tidy trigraph is that all
contractions happened either between two vertices of H or two vertices of F at the same
distance from H (see items 1 and 3).

▶ Definition 13. Let G′ be a trigraph obtained by a sequence of contractions from G and let
H ′ (resp. F ′) be the subtrigraph of G′ induced by the vertices u such that β(u) is a subset of
V (H) (resp. V (F )). We say that G′ is a G-tidy trigraph if:
1. For u ∈ V (G′), we have u ∈ V (H ′) ∪ V (F ′) or |β(u)| = 1.
2. Each u ∈ V (H ′) has at most one neighbor outside of H ′ in G′.
3. For each u ∈ V (F ′), all vertices in β(u) have the same distance d from H in G. We say

that d is the level of u.
4. F ′ is a forest such that all its vertices have degree at most 3 in G′. If T is a connected

component of F ′, then:
a. T has exactly one vertex r at level 1 (let us declare it the root of T ).
b. The vertices of T with degree 3 in Gi form a subtree T ′ of T .
c. The vertices of T ′ have level at most |β(r)| − 1, and either T ′ = ∅ or r ∈ V (T ′).

See Figure 3 for an illustration.

H ′

Figure 3 An illustration of Definition 13 when m = 3. The depicted G-tidy trigraph G′ consists
of H ′: vertices colored in grey, F ′: vertices colored in blue (degree-3 vertices in darker shade), and
the remaining vertices are colored in green. The edges inside of H ′ are not depicted (there can be
both red and black edges). Note that instead of each pair of green vertices, there should be at least
12 of them (because each path in P should contain at least 8m = 24 vertices).

Now we show how G can be reduced to a G-tidy trigraph with H ′ being a single-vertex
graph; this will be the first part of the proof of Corollary 16. Note that the assumption that
CH is given will be later handled in the proof of Lemma 17.

▶ Lemma 14. Given a contraction sequence CH of H, one can compute a partial contraction
sequence of width max(w(CH) + 1, 4) from G to a G-tidy trigraph G′ with |V (H ′)| = 1, in
polynomial time.



Proof. For each i ∈ [|V (H)|], we will construct a partial contraction sequence Ci from G to
a G-tidy trigraph Gi such that w(Ci) ≤ max(w(CH) + 1, 4) and the restriction of Ci to H

will be the prefix of CH of length i. We will denote the subtrigraphs of Gi corresponding to
H ′ and F ′ (see Definition 13) by Hi and Fi, respectively. We define C1 = (G), i.e., C1 is
the trivial partial contraction sequence with no contractions. It can be easily verified that
G1 := G is a G-tidy trigraph. In particular, the forest F1 := F consists of 2m disjoint paths.

Suppose that we have constructed Ci for some i < |V (H)|. Let u, v ∈ V (Hi) be the two
vertices contracted in Hi+1 (which is the successor of Hi in CH). If u or v does not have a
neighbor outside of Hi in Gi, then we define Gi+1 to be the trigraph obtained from Gi by
contracting u and v. Clearly, Gi+1 is a G-tidy trigraph and Ci+1 (the sequence obtained by
prolonging Ci with Gi+1) has the required properties. Now suppose that both u and v have
a neighbor outside of Hi in Gi. In this case, we cannot simply contract them because the
new vertex would have two neighbors outside of Hi+1, violating condition 2 of Definition 13.

Let Tu and Tv be the two connected components of Fi with roots adjacent to u and v,
respectively. Informally, we need to merge Tu and Tv before we can contract u and v. Let
T ∈ {Tu, Tv} be a tree with root r. If T contains no degree-3 vertices, we do nothing (we
always mean degree in Gi). Otherwise, let w ∈ V (T ) be the deepest degree-3 vertex such
that all its ancestors in T have degree 3. By item 3 of Definition 13, |β(r)| ≤ 2m because F

contains exactly 2m vertices at level 1 (2 for each path in P). Hence, by item 4c, the level of
w is less than 2m, and so w has two children x and y in T , both of degree 2. We contract x

and y (note that the obtained vertex xy has red degree 3, and the red degree of w drops to
2). We repeat this process as long as such vertex w exists (crucially, xy cannot be chosen as
the next w because its parent has degree 2). Afterwards, we contract the roots ru, rv of Tu

and Tv, and finally, we contract u and v into uv.
Let Ci+1 be the partial contraction sequence of G obtained by prolonging Ci with the

contractions described in the previous paragraph. Let us show that w(Ci+1) ≤ max(w(CH) +
1, 4). By the assumption about Ci, it suffices to discuss red degrees in each trigraph G′

between Gi and Gi+1 (which is the last trigraph in Ci+1). Clearly, any descendant of H

in G′ has red degree at most w(CH) + 1 (it is crucial that u and v are contracted after ru

and rv). Any other vertex of G′ has red degree at most 3, except for the vertex obtained by
contracting ru and rv, whose red degree is 4 (but it drops to 3 when u and v are contracted).

Finally, we need to show that Gi+1 is G-tidy. It is easy to see that Gi+1 satisfies the
first three items of Definition 13. To prove that Gi+1 satisfies item 4, observe that Fi+1 is
indeed a forest: it contains the same trees as Fi, except that Tu and Tv have been merged
into a new tree T with root r. More precisely, T is isomorphic to the tree obtained from the
disjoint union of Tu and Tv by first adding a new vertex r and edges rru, rrv, and second
removing all leaves. Since r has degree 3 in Gi+1, the highest level of a degree-3 vertex in T

is one higher than in the union of Tu and Tv in Gi. Since |β(r)| = |β(ru)| + |β(rv)| and both
of these summands are at least 1, we get that Gi+1 satisfies item 4c, which concludes the
proof. ◀

To prove Corollary 16, we now show that the G-tidy trigraph given by Lemma 14 can be
contracted to a single vertex (without creating vertices with high red degree). Note that the
following proof is inspired by the proof of Theorem 7 in [6].

▶ Lemma 15. If G′ is a G-tidy trigraph G′ with |V (H ′)| = 1, then a contraction sequence
of G′ of width at most 4 can be computed in polynomial time.



Proof. First, observe that by Definition 11, all edges in G′ are red. By item 2 of Definition 13,
the only vertex u of H ′ has a single neighbor r. By Definition 11, G is connected; hence,
also G′ is connected. This implies that F ′ is a tree. Let T be the subtree of F ′ induced by
the vertices with degree 3 in G′. Let us begin by contracting u and r, obtaining a trigraph
G∗ := G′ − u.

Observe that the depth of T is at most 2m − 1 because r contains 2m vertices in its bag
(by property 4c). Consider a path P ∈ P and observe that the descendants of at most 4m

vertices of P belong to T in G∗ (2m from each side). Hence, G∗ − T consists of disjoint
dangling red paths, each with at least 4m vertices (since each P ∈ P satisfies |V (P )| ≥ 8m).
Let P ′ be the set of these red paths in G∗.

Let P ∈ P ′ and let u and u′ be the endpoints of P . Let v, v′ ∈ V (T ) be the neighbors of
u and u′ in T , respectively, and let Q be the path connecting v and v′ in T . Since the depth
of T is at most 2m − 1, we know that Q contains at most 4m − 1 vertices. Let us shorten P

so that it has the same length as Q (by repeatedly contracting consecutive vertices). Let
(u1 = u, . . . , up = u′) and (v1 = v, . . . , vp = v′) be the sequences of vertices of P and Q in the
natural orders. Now for each i ∈ [p] in increasing order, contract ui and vi, and observe that
the obtained trigraph is isomorphic to G∗ − P . Repeat this for all paths P ∈ P ′, obtaining
a trigraph isomorphic to T , which has twin-width at most 3 and can be contracted as per
Observation 5. Finally, observe that during a contraction of a path in P ∈ P ′, there is never
a vertex with red degree higher than 4. Indeed, after contracting ui and vi for i ∈ [p − 1],
the obtained vertex has at most four red neighbors: at most three in T plus ui+1. ◀

4.2 Wrapping up the Proof
In the previous subsection, we proved Lemmas 14 and 15, which together imply the following
corollary.

▶ Corollary 16. Let G be a tidy (H, P)-graph such that each P ∈ P satisfies |V (P )| ≥ 8 · |P|.
Given a contraction sequence CH of H, one can compute a contraction sequence of G of
width max(w(CH) + 1, 4), in polynomial time.

Now we are able to show that if we shorten all long paths in a tidy (H, P)-graph, then
the twin-width increases by at most 1 (formally, shortening a path means contracting its
consecutive vertices).

▶ Lemma 17. Let G be a tidy (H0, P0)-graph such that tww(G) ≥ 3, let m = |P0| and let
G′ be the trigraph obtained from G by shortening each path P ∈ P0 with more than 8 · m

vertices to length exactly 8 · m − 1. Then tww(G′) ≤ tww(G) + 1.

Proof. We begin by handling short paths in P0: let Pshort = {P ∈ P0 : |V (P )| < 8m}, let H

be the union of H0 and ⊔Pshort (including the edges between them), and let P = P0 \ Pshort.
Clearly, G is also a tidy (H, P)-graph. Also observe that G′ is a tidy (H, P ′)-graph (where
P ′ is the set of paths obtained from P by shortening each path in it).

We want to construct a contraction sequence C ′ of G′ of width at most tww(G) + 1
from an optimal contraction sequence C of G. Let CH be the restriction of C to H; clearly,
w(CH) ≤ tww(G). Since tww(G) ≥ 3, it suffices to apply Corollary 16 on G′ using CH ,
which yields the desired contraction sequence C ′. ◀

Finally, we are able to prove the main result of this section.

▶ Theorem 18. Given a graph G with feedback edge number k, a trigraph G′ of size
O(k2) such that tww(G) ≤ tww(G′) ≤ tww(G) + 1 can be computed in polynomial time.
Moreover, a contraction sequence for G of width at most tww(G) + 1 can be computed in
time 2O(k2·log k) + nO(1).



Proof. First, we use Theorem 10 to check whether tww(G) ≤ 2 (if yes, G′ can be any
constant-size graph with the same twin-width as G). From now on, assume tww(G) ≥ 3.
Now let us use Theorem 12 to obtain a tidy (H, P)-graph G1 with effectively the same
twin-width as G such that |V (H)| ≤ 112k and |P| ≤ 4k. Let G′ be the trigraph obtained
when Lemma 17 is applied on G1. By Lemma 17, tww(G′) ≤ tww(G1) + 1. Conversely,
tww(G′) ≥ tww(G1) because there is a partial contraction sequence C1 from G1 to G′ of
width at most tww(G′); it suffices to shorten paths of P that are shorter in G′ than in G1 by
contracting consecutive vertices. Hence, we indeed have tww(G) ≤ tww(G′) ≤ tww(G) + 1.

Next, let us examine the size of G′. By Lemma 17, each of the 4k paths in P has at most
8 · 4k vertices in G′. Hence, we obtain |V (G′)| ≤ 128k2 + 112k ∈ O(k2) as required.

Finally, let us show how a contraction sequence for G of width at most tww(G) + 1 can
be computed. If tww(G) ≤ 2, then this contraction sequence is provided by Theorem 10.
Otherwise, observe that an optimal contraction sequence C ′ of G′ can be computed in time
2O(k2·log k) by Observation 4. Next we concatenate C ′ and C1 (which is defined above and can
be computed trivially) to obtain a contraction sequence of G1 of width at most tww(G1) + 1.
We conclude using the effectiveness part of tww(G) =e tww(G1) (see Definition 3). ◀

5 A Fixed-Parameter Algorithm Parameterized by Vertex Integrity

In this section, we design an FPT 2-approximation algorithm for computing twin-width when
parameterized by the vertex integrity, see Theorem 23.

5.1 Initial Setup and Overview
For the following, it will be useful to recall the definition of vertex integrity presented in
Section 2. Let us fix a graph G and a choice of S ⊆ V (G) witnessing that the vertex integrity
of an input graph G is p, and let C be the set of connected components of G − S. We assume
without loss of generality that G is connected, as the twin-width of a graph is the maximum
twin-width of its connected components. We now define a notion of “component-types” which
intuitively captures the equivalence between components which exhibit the same outside
connections and internal structure.

▶ Definition 19. We say that two graphs H0, H1 ∈ C are twin-blocks, denoted H0 ∼ H1, if
there exist a canonical isomorphism α from H0 to H1 such that for each vertex u ∈ V (H0)
and each v ∈ S, uv ∈ E(G) if and only if α(u)v ∈ E(G). Clearly, ∼ is an equivalence
relation.

In a nutshell, our algorithm first computes an optimal contraction sequence C ′ for a
subgraph G′ of G that is obtained by keeping only a bounded number of twin-blocks from
each equivalence class, and then uses C ′ to obtain a contraction sequence for G of width at
most 2 · tww(G′) ≤ 2 · tww(G). In the following definition, we introduce terminology related
to subgraphs of G.

▶ Definition 20. Let G′ be an induced subgraph of G.
We say that G′ is C-respecting if S ⊆ V (G′) and for each H ∈ C, either H ⊆ G′ or
V (H) ∩ V (G′) = ∅.
We say that an equivalence class [H0] of ∼ is large in G′ if |H| ≥ f(p), where H = {H ∈
[H0] | H ⊆ G′} and f(p) = 27p3 .
We say that G′ is the reduced graph of G if it is obtained from G by removing all but
f(p) twin-blocks from each large class of ∼.



Let us now bound the size of the reduced graph G′.

▶ Observation 21. If G′ is the reduced graph of G, then |V (G′)| ≤ p+p2 ·f(p) ·22p2 ∈ 2O(p3).

Proof. First, let us compute the size of C/∼. Each H ∈ C has at most p vertices, which
means that the number of non-isomorphic graphs in C can be upper-bounded by p · 2p2 .
Since |S| ≤ p, there are at most p2 possible edges between S and each H ∈ C. Hence,
|C/∼| ≤ p · 22p2 . Because |V (H)| ≤ p for each H ∈ C and by definition of G′, the union of
each class of ∼ contains at most p · f(p) vertices. Finally, we again use that |S| ≤ p. ◀

The core of our algorithm is the following lemma, which we will prove in Subsection 5.2:

▶ Lemma 22. If G′ is the reduced graph of G, then given a contraction sequence C ′ for G′

of width t, we can compute a contraction sequence for G of width at most 2t in polynomial
time.

Let us now show how we can use this lemma to design the desired algorithm:

▶ Theorem 23. If G is a graph with vertex integrity p, then a contraction sequence for G

of width at most 2 · tww(G) can be computed in time g(p) · nO(1), where g is an elementary
function.

Proof. The first step of the algorithm is to compute an optimal vertex-integrity decomposition
of G. As noted already in Section 2, this can be done in time O(pp+1 · n) [19]. Using this
decomposition, we can compute the reduced graph G′ of G in polynomial time. Next,
we can compute an optimal contraction sequence C ′ of G′, using Observation 4. Since
the size of G′ is bounded (see Observation 21), we deduce that computing C ′ takes time
g(p) ∈ exp(exp(O(p3))), where exp(x) = 2x.

Finally, we apply Lemma 22 to compute in polynomial time a contraction sequence C for
G of width at most 2 · w(C ′) = 2 · tww(G′). Since G′ is an induced subgraph of G, we know
tww(G′) ≤ tww(G), which implies the desired bound w(C) ≤ 2 · tww(G). ◀

5.2 Extending a contraction sequence from G′ to G

This subsection is dedicated to proving Lemma 22. Recall that we have fixed a graph G and
a set S ⊆ V (G), and that C is the set of connected components of G − S. Let us begin with
several technical definitions.

▶ Definition 24. Let G′ be a C-respecting graph, let H0 and H1 be distinct twin-blocks (with
canonical isomorphism α) such that H0, H1 ⊆ G′, and let G∗ be any trigraph obtained from
G′ by a sequence of contractions. We say that H0 and H1 are merged in G∗ if, for each
u ∈ V (H0), there is a vertex v ∈ V (G∗) such that u, α(u) ∈ β(v).

It might be confusing that in the following definition, we consider a C-respecting graph
and a graph H ∈ C that is not its induced subgraph. The reason for this is that later we will
show that, under some conditions, H can be “added” without increasing the twin-width too
much. In fact, all such graphs H will be progressively added until all of them are present
(and the obtained graph is the whole G). To formalize the process of adding H, we will use
Definition 2 to create an extension of a contraction sequence to a sequence with H “appended”
to all trigraphs.



▶ Definition 25. Let G′ be a C-respecting graph, let H ∈ C be such that H ⊈ G′, let
C ′ = (G′

1, G′
2, . . .) be a contraction sequence of G′.

We say that a trigraph G′
i in C ′ is the C ′-critical trigraph for H if i is the least index

such that some vertex of H has a red neighbor in G′
i ↑ G.

If G′
i is the C ′-critical trigraph for H, then we say that a trigraph G′

j is C ′-safe for H if
j < i and there are two graphs H ′, H ′′ ∈ [H]∼ that are merged in G′

j.

We will show that for each H and C ′ (as in Definition 25), there is a C ′-safe trigraph
for H. The first step towards this is to show that if H has many twin-blocks in G′, then
there are two twin-blocks of H merged in the C ′-critical trigraph G∗ for H. Intuitively, if
the twin-blocks of H were not “sufficiently-merged” in G∗, then some vertex of S would have
high red degree because the existence of a red edge between S and H (see the definition of
C ′-critical) implies red edges between S and all twin-blocks of H.

▶ Lemma 26. If G′ is a C-respecting graph, C ′ is a contraction sequence of G′, H ∈ C is a
graph such that H ⊈ G′, the class H := [H ]∼ is large in G′, and G∗ is the C ′-critical trigraph
for H, then there are two graphs H ′, H ′′ ∈ [H]∼ that are merged in G′

i.

Proof. Let I = [f(p)] and let H1, . . . , Hf(p) ∈ H be distinct graphs such that Hi ⊆ G′ for
each i ∈ I (using the fact that H is large in G′). For i ∈ I and u ∈ V (H), let ui := α(u),
where α : V (H) → V (Hi) is a canonical isomorphism. Let u, v ∈ V (G∗ ↑ G) be two vertices
such that u ∈ V (H) and uv is a red edge in G∗ ↑ G. By Definition 25, such vertices u and v

exist, and by definition of vertex integrity, v is a descendant of S. Let d := 2p+1 + 1. We
shall prove by induction that the following claim holds.

▷ Claim 27. For each a ∈ [0, p − 1], there is a set Ia ⊆ I of size at least f(p)/dpa+1 such
that for each i, j ∈ Ia and each vertex w ∈ V (H) at distance at most a from u in H , there is
a vertex x ∈ V (G∗) such that wi, wj ∈ β(x).

Observe that this statement implies that Hi and Hj for any i, j ∈ Ip−1 are merged in G∗

because the diameter of H is at most p − 1.

Proof of Claim 27. Let us start by proving Claim 27 for a = 0. Let U = {ui | i ∈ I}
and observe that for each i ∈ I, the descendant u′

i of ui is a red neighbor of v in G∗, by
Definition 19 (unless u′

i = v). However, the red degree of v in G∗ is at most tww(G′) ≤ 2p+1

(because the treewidth of G′ is at most the vertex integrity of G′, and the twin-width is
bounded by treewidth, see [32]). Hence, the vertices of U are present in the bags of at most
d vertices in G∗ (note that some vertices of U may be in the bag of v), which means that
there is a vertex w ∈ V (G∗) with at least f(p)/d vertices of U in its bag. Now it suffices to
set I0 := {i ∈ I | ui ∈ β(w)}. This concludes the proof of the base case of the induction.

For the induction step, suppose that Claim 27 holds for some a ∈ [0, p − 2], i.e., there
is a set Ia ⊆ I with the described properties. Let Da, Da+1 ⊆ V (H) be the sets of vertices
at distance exactly a or a + 1 from u in H, respectively. Let w ∈ Da+1 and x ∈ Da be two
neighbors in H. Let x′ be the descendant of xi in G∗ for some i ∈ Ia (or, equivalently, for
each i ∈ Ia, by the induction hypothesis), let W = {wi | i ∈ Ia}, and let w′

i be the descendant
of wi in G∗ (for any i ∈ Ia). Observe that x′w′

i is a red edge of G+, unless x′ = w′
i. Using

the same argument as in the base case, x′ has red degree at most d − 1 in G∗, which means
that the vertices of W are present in the bags of at most d vertices in G∗.

Since |Da+1| ≤ p, Ia can be partitioned into at most dp parts such that if i, j ∈ Ia are in
the same part, then for each vertex w ∈ Da+1, wi and wj are in the bag of the same vertex
in G∗. Hence, one of these parts has size at least |Ia|/dp, and we choose it to be Ia+1. A
simple computation shows that Ia+1 satisfies Claim 27. ◁



Finally, we only need to verify that |Ip−1| ≥ f(p)/dp(p−1)+1 ≥ 2. Recall that f(p) = 27p3

and d = 2p+1 + 1 ≤ 23p since p ≥ 1. Since p(p − 1) + 1 ≤ 2p2, we get |Ip−1| ≥ 27p3
/26p3 ≥ 2,

which concludes the proof. ◀

Now we need to take a closer look at S.

▶ Definition 28. Let H ∈ C and u, v ∈ S. We say that u and v are H-equivalent, denoted
u ∼H v, if and only if for each w ∈ V (H), uw ∈ E(G) ⇔ vw ∈ E(G). Let SH ⊆ S be the
set of vertices with at least one neighbor in H (in G). If G′

i is a trigraph in a contraction
sequence of a C-respecting graph, then we denote by SH

i the set of descendants of SH in G′
i.

A crucial observation is that before the C ′-critical trigraph for H, only very restricted
contractions may involve vertices of SH (so that a red edge to H does not appear).

▶ Observation 29. If G′ is a C-respecting graph, C ′ = (G′
1, G′

2, . . .) is a contraction sequence
of G′, H ∈ C is a graph such that H ⊈ G′, G′

i is the C ′-critical trigraph for H, and j < i,
then for each u ∈ SH

j , the bag β(u) is a subset of an equivalence class of ∼H .

Proof. Suppose for contradiction that there is u ∈ SH
j such that β(u) is not a subset of

an equivalence class of ∼H . If β(u) ⊈ S, then clearly all neighbors of u in H (in G′
j ↑ G)

would be red, a contradiction with j < i and the choice of i. Hence, assume β(u) ⊆ S. If
there are v0, v1 ∈ β(u) such that v0 ≁H v1, then there is a vertex w ∈ H that has exactly
one neighbor in {v0, v1} in G, by Definition 28. Thus, uw is a red edge in G′

j ↑ G, again a
contradiction ◀

Using Observation 29, we can prove the existence of a C ′-safe trigraph.

▶ Lemma 30. If G′, C ′, H and G′
i are as in Observation 29 and the equivalence class [H ]∼

is large in G′, then G′
i−1 is a C ′-safe trigraph for H.

Proof. By Definition 25, it suffices to show that there are two graphs H ′, H ′′ ∈ [H]∼ that
are merged in G′

i−1. By Lemma 26, we know that such merged graphs H ′ and H ′′ exist
for G′

i. Let u, v ∈ V (G′
i−1) be the two vertices that are contracted in G′

i, and suppose for
contradiction that H ′ and H ′′ are not merged already in G′

i−1. This implies that u and
v are both descendants of H ′ ∪ H ′′. However, by Observation 29, u, v /∈ SH

i−1. This is a
contradiction with Definition 25 because the contraction creating G′

i must involve a vertex
of SH so that a red edge incident to H can appear in G′

i ↑ G. ◀

Now we are ready to show how a contraction sequence C ′ of G′ can be modified when a
graph H ∈ C is added to G′. Unfortunately, we cannot do that without increasing the width.
Since our goal is to eventually add many graphs H ∈ C, we need to keep the increase under
control, for which we use the following definition.

▶ Definition 31. A contraction sequence C = (G1, . . . , Gn) has progressive width (a →i b)
if the width of (G1, . . . , Gi−1) is at most a and the width of (Gi, . . . , Gn) is at most b.

▶ Lemma 32. Let G′ be a C-respecting graph, let C ′ = (G′
1, G′

2, . . .) be a contraction sequence
of G′, let H ∈ C, H ⊈ G′ be such that H := [H ]∼ is large in G′, let G+ = G[V (G′) ∪ V (H)],
and let G′

i−1 be a C ′-safe trigraph for H. If C ′ has progressive width (t →i 2t), then we
can construct in polynomial time a contraction sequence C+ for G+ of progressive width
(t →i 2t). Moreover, if j < i, then G′

j ↑ G+ is the j-th trigraph in C+.
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Figure 4 A schematic depiction of the construction of C+ from C′ in the proof of Lemma 32.
Informally, we insert a new contraction segment after G′

i−1 (the green and the yellow block), which
handles H. The blue prefixes of the two contraction sequences are “morally” the same but in C+,
H is still present, and so G′

ℓ is not isomorphic to G+
ℓ for ℓ ∈ [i − 1] but it is an induced subtrigraph

thereof. On the other hand, the red suffixes are exactly the same since H has been contracted
with H ′.

Proof. By Definition 25, there are H ′, H ′′ ∈ H (such that H ′, H ′′ ⊆ G′) that are merged
in G′

i−1. Let ι : H → H ′ be a canonical isomorphism, let C ′
<i be the prefix of C ′ of length

i − 1, and let CH be the partial contraction sequence of H isomorphic to C ′
<i[H ′] with

an isomorphism induced by ι2. Let us now construct C+ = (G+
1 = G+, G+

2 , . . .); see also
Figure 4 for an illustration:
1. C+

i := (G+
1 , . . . , G+

i−1) is the extension of C ′
<i to G+, i.e., the same contractions are

performed, ignoring H. Note that this construction shows that G′
j ↑ G+ for each j < i,

as required.
2. C+

j := (G+
i−1, . . . , G+

j ) is the extension of CH to G+
i−1, i.e., CH is applied to H, ignoring

the rest of G+
i−1.

3. Let Hj and H ′
j be the subtrigraphs of G+

j induced by the descendants of H and H ′,
respectively. By Definition of CH , there is a bijection αj from V (Hj) to V (H ′

j) that
respects3 ι. Let C+

k := (G+
j , . . . , G+

k ) be the contraction sequence that contracts u and
αj(u) for every u ∈ V (Hj) in arbitrary order.

4. We will prove that G+
k

∼= G′
i−1, and we will define the rest of C+ to be the suffix of C ′

starting with G′
i.

Let us argue that C+ can be computed in polynomial time. First, we need to find the two
merged graphs H ′, H ′′ ∈ H: this can be done by brute force because the size of H is at most
O(n) and checking whether given H ′ and H ′′ are merged can be done efficiently (the details
depend on the computational model and the representation of contraction sequences). Then,
we compute CH by going through C ′

<i and looking only at contractions involving vertices of
H ′. Using CH , it is easy to compute C+

j . All other parts of C+ can clearly be computed in
polynomial time.

Now we need to show that C+ has progressive width (t →i 2t). By the assumption about
the progressive width of C ′, C+

i has width at most t (using also the fact that G′
i−1 is a

C ′-safe trigraph for H; no red edge in C+
i is incident to H). Hence, we only need to prove

that the suffix of C+ starting with G+
i has width at most 2t. Let SH

j be the set containing
the descendants SH in G+

j (or, equivalently, in G′
i−1, G+

i−1 or G+
k ).

2 Formally, an isomorphism from (G = G1, . . . , Gn) to (H = H1, . . . , Hn) induced by an isomorphism
α : G → H is a sequence of isomorphisms αi : Gi → Hi such that for each i ∈ [n] and u ∈ V (Gi),
β(u) = α−1(β(αi(u))).

3 By respecting ι, we mean that if u ∈ β(v) for u ∈ V (H), v ∈ V (Hj), then ι(u) ∈ β(αj(v)).



▷ Claim 33. C+
j has width at most 2t. Moreover, descendants of H have red degree at most

t in trigraphs of C+
j .

Proof of the Claim. Let ℓ ∈ [i, j], let Hℓ be the subtrigraph of G+
ℓ induced by the descendants

of H, and let m ∈ [i − 1] be an index such that the subtrigraph H ′
m of G+

m induced by the
descendants of H ′ satisfies |V (Hℓ)| = |V (H ′

m)|. We need to show that the red degree of each
u ∈ V (G+

ℓ ) is at most 2t (and at most t when u ∈ V (Hℓ)). By construction of C+
j , there

is a bijection α : V (Hℓ) → V (H ′
m) such that if u ∈ β(v) for u ∈ V (H), v ∈ V (Hℓ), then

ι(u) ∈ β(α(v)).
Let u ∈ V (Hℓ). We will construct a (partial) injection γ : V (G+

ℓ ) → V (G+
m) such that if

uv ∈ R(G+
ℓ ), then α(u)γ(v) ∈ R(G+

m). Since α(u) has red degree at most t in G+
m, this will

prove that u has red degree at most t in G+
ℓ . Let v ∈ V (G+

ℓ ) be a red neighbor of u in G+
ℓ .

There are two cases to be considered:
1. If v ∈ V (Hℓ), then α(u)α(v) ∈ R(H ′

m), using the fact that β(u), β(v) ⊆ V (H), and we
set γ(v) := α(v).

2. If v /∈ V (Hℓ), then v ∈ SH
j by construction of C+

j . Let v0 ∈ β(v). By Observation 29,
β(v) is a subset of an equivalence class of ∼H . Hence, there are u0, u1 ∈ β(u) such that
u0v0 ∈ E(G) but u1v0 /∈ E(G), and we let γ(v) ∈ V (G+

m) be the unique vertex such that
v0 ∈ β(γ(v)) ⊆ β(v).

Now we only need to show that a vertex v ∈ SH
j has red degree at most 2t in G+

ℓ (no
other vertex is affected by contractions among descendants of H). Let K ⊆ V (Hℓ) be the
set of red neighbors of v in Hℓ (in G+

ℓ ). By Observation 29, some (actually, each) ancestor
v0 ∈ V (G+

m) of v has among its red neighbors all vertices of α(K) in G+
m. Since the red

degree of v0 is at most t in G+
m and α is a bijection, we obtain that |K| ≤ t. Hence, v has at

most t red neighbors in Hℓ (in G+
ℓ ). All other red neighbors of v in G+

ℓ are its red neighbors
also in G+

i−1 (which has maximum red degree at most t), and so v has indeed red degree at
most 2t in G+

ℓ . ◁

▷ Claim 34. C+
k has width at most 2t.

Proof of the Claim. Let ℓ ∈ [j, k], let Hℓ, H ′
ℓ be subtrigraphs of G+

ℓ induced by the descendants
of H and H ′, respectively, let H+

ℓ := Hℓ ∪ H ′
ℓ, and let αj : V (Hj) → V (H ′

j) be the bijection
defined in the construction of C+

k . We need to show that the maximum red degree in G+
ℓ is

at most 2t.
First, let v ∈ V (G+

ℓ − H+
ℓ ). By construction of C+

k , we know that v ∈ V (G+
j ). Suppose

that v has higher red degree in G+
ℓ than in G+

j . This can happen only if a black edge
uv ∈ E(G+

j ) becomes red because of a contraction involving u. However, the only contractions
happening in C+

k are between u and αj(u) for some u ∈ V (Hj), and uv ∈ E(G+
j ) if and only

if αj(u)v ∈ E(G+
j ), by definition of αj . Hence, the red degree of v in G+

ℓ is at most its red
degree in G+

j , and that is at most 2t by Claim 33.
Second, we need to show that each u ∈ V (H+

ℓ ) has red degree at most 2t in G+
ℓ . Observe

that H ′
ℓ contains no black edges because each vertex u ∈ V (H ′

ℓ) is a descendant of both
H ′ and H ′′. Hence, a vertex u ∈ V (H ′

ℓ) \ V (Hℓ) has red degree at most t in G+
ℓ because it

cannot have higher red degree in G+
ℓ than in G+

j . Conversely, let u ∈ V (Hℓ) and let d be
the degree of the ancestor u0 ∈ V (Hj) of u in Hj . Observe that u has degree at most 2d in
H+

ℓ : for each neighbor v0 ∈ V (Hj) of u0 in Hj , u can have two neighbors in H+
ℓ , namely v0

and αj(v0); this happens when u0 has been contracted with αj(u0) into u but no neighbor
v0 ∈ V (Hj) of u0 has been contracted with αj(v0). Moreover, u0 and αj(u0) have exactly
the same red neighbors in SH

j (by definition of αj). Hence, the red degree of u in G+
ℓ has

increased by at most d ≤ t, compared to the red degree of u0 in G+
j , and so u has at most

t + d ≤ 2t red neighbors, which concludes the proof. ◁



Since H ′
j contains no black edges (each of its vertices is a descendant of both H ′ and

H ′′), the contraction of Hj and H ′
j creates no new red edge (using also the fact that Hj and

H ′
j are attached to SH

j in the same way). Hence, we obtain that G+
k

∼= G+
j − Hj

∼= G′
i−1,

and we can indeed define the rest of C+ to be the suffix of C ′ starting with G′
i. This suffix

has width at most 2t, since C ′ has progressive width (t →i 2t). ◀

Now we are finally ready to prove Lemma 22. This is the only remaining part of this
section because we have already shown how Lemma 22 implies Theorem 23, see Subsection 5.1.

Proof of Lemma 22. The idea of the proof is to iteratively apply Lemma 32 to all the graphs
in C not present in the reduced graph G′. However, this requires some care, as applying the
lemma in the wrong order might fail to ensure the precondition on the progressive-width. In
order to prove this lemma, we will consider the following key claim:

▷ Claim 35. Given G∗, C∗, and L∗ satisfying the following properties, we can construct in
polynomial time a contraction sequence C of width at most 2t for G.
1. G∗ is a C-respecting graph;
2. L∗ is a list of pairs (graph H, integer δ), such that the integer value is non-increasing;
3. Each pair (H, δ) in L∗ satisfies all of the following: (i.) H ∈ C, and H appears only once

in L∗, (ii.) H ⊈ G∗, (iii.) [H]∼ is large in G∗, (iv.) G∗
δ is C∗-safe for H;

4. C∗ is a contraction sequence for G∗ of width at most 2t, and if (H0, δ0) is the first pair
in L∗, then C∗ has progressive width (t →δ0+1 2t);

5. V (G∗) ∪
⋃

(H,δ)∈L∗ V (H) = V (G).

Proof of Claim 35. We proceed by induction on the length of L∗. The base case is trivial: if
L∗ is the empty list, the conditions 1. and 5. ensure that G∗ = G, and 4. ensures that C∗

has width 2t.
Now let us suppose that the claim is true for any list of length i, for some i ≥ 0. Consider

G∗, C∗, L∗ satisfying the hypothesis such that L∗ contains i + 1 elements, the first of which
being (H0, δ0). We can apply Lemma 32 to G∗, C∗ and H0 since the points 1., 3. and 4.
are exactly the preconditions of the lemma, and we obtain in polynomial time a contraction
sequence C+ of progressive width (t →δ0+1 2t) for G+ = G[V (G∗) ∪ V (H0)].

Now let us consider L+ the suffix of L∗ of length i – i.e., we only remove (H0, δ0) – and
prove that G+, C+, and L+ satisfy the requirements to apply the induction hypothesis.

The first obvious point is that the length of L+ is i. Since G∗ is C-respecting and H ∈ C,
we obtain that G+ is C-respecting, i.e., it satisfies 1. We can easily verify 5.:

V (G+)∪
⋃

(H,δ)∈L+

V (H) = V (G∗)∪V (H0)
⋃

(H,δ)∈L+

V (H) = V (G∗)∪
⋃

(H,δ)∈L∗

V (H) = V (G).

As a suffix of L∗, L+ satisfies 2., and the first three requirements in 3. are also trivially
satisfied. To prove the 3.iv., it is necessary to observe two things. First, observe that for each
pair (H, δ) ∈ L+, it holds that G+

δ = G∗
δ ↑ G+ since δ ≤ δ0, by Lemma 32 (the “moreover”

part). Second, observe that there is no red edge in G+
δ that is not already present in G∗

δ :
indeed, any such red edge would be incident to H0 by construction of G+

δ , and its existence
would contradict the definition of δ0, i.e., the C∗-safeness for H0 of G∗

δ0
. Hence we conclude

that for every (H, δ) ∈ L+, it holds that G+
δ is C+-safe for H.

The last item to check, requirement 4., is easily handled: we know that C+ has progressive
width (t →δ0+1 2t) by Lemma 32, and for all (H, δ) ∈ L+, it holds that δ ≤ δ0 by 2., i.e., by
the monotony of L∗ in the second component.



Using the induction hypothesis, we can now create in polynomial time a contraction
sequence C of width at most 2t for G. The total running time is polynomial, hence the claim
is proven. ◁

To finish the proof of Lemma 22, we only need to construct the initial list L′ for G′. For
each graph H ∈ C such that H ⊈ G′, let δ(H) be the index of the last C ′-safe trigraph for
H, whose existence is ensured by Lemma 30. Let L′ be the list of pairs (H, δ(H)), ordered
by non-increasing values of δ(H), and recall that C ′ is given. It is easy to see that the
requirements on G′, C ′ and L′ are satisfied – either by definition or by construction – to
apply Claim 35: we obtain in polynomial time a contraction sequence C of width at most 2t

for G, and since the creation of L′ can be achieved in polynomial time, we have proven the
lemma. ◀

6 Concluding Remarks

While we believe that the results presented here provide an important contribution to the
state of the art in the area of computing twin-width, many prominent questions still remain
unanswered. Apart from the “grand prize” – resolving the parameterized approximability
of twin-width when the runtime parameter is twin-width itself – future research may focus
on finding fixed-parameter algorithms that compute optimal or near-optimal contraction
sequences under less restrictive runtime parameters than those considered in this article.

More specifically, the problem remains entirely open when parameterized by treewidth and
treedepth, and resolving this may require new insights into the structural properties of optimal
contraction sequences and lead to tighter bounds on the twin-width of well-structured graphs.
For treedepth in particular, we suspect that combining the ideas presented in Section 5 with
the iterative pruning approach typically used for treedepth-based algorithms [26, 28, 8] may
be an enticing direction to pursue; however, we note that such a combination does not seem
straightforward.
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Abstract
In this paper, we study the Eulerian Strong Component Arc Deletion problem, where the input is a
directed multigraph and the goal is to delete the minimum number of arcs to ensure every strongly
connected component of the resulting digraph is Eulerian.

This problem is a natural extension of the Directed Feedback Arc Set problem and is also known
to be motivated by certain scenarios arising in the study of housing markets. The complexity
of the problem, when parameterized by solution size (i.e., size of the deletion set), has remained
unresolved and has been highlighted in several papers. In this work, we answer this question by ruling
out (subject to the usual complexity assumptions) a fixed-parameter tractable (FPT) algorithm
for this parameter and conduct a broad analysis of the problem with respect to other natural
parameterizations. We prove both positive and negative results. Among these, we demonstrate that
the problem is also hard (W[1]-hard or even para-NP-hard) when parameterized by either treewidth
or maximum degree alone. Complementing our lower bounds, we establish that the problem is
in XP when parameterized by treewidth and FPT when parameterized either by both treewidth
and maximum degree or by both treewidth and solution size. We show that these algorithms have
near-optimal asymptotic dependence on the treewidth assuming the Exponential Time Hypothesis.
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1 Introduction

In the Eulerian Strong Component Arc Deletion (ESCAD) problem, where the input is a
directed graph (digraph)1 and a number k and the goal is to delete at most k arcs to ensure
every strongly connected component of the resulting digraph is Eulerian. This problem was

1 In this paper, the arc set of a digraph is a multiset, i.e., we allow multiarcs. Moreover, we treat multiarcs
between the same ordered pairs of vertices as distinct arcs in the input representation of all digraphs.
Consequently, the number of arcs in the input is upper bounded by the length of the input. We exclude
loops as they play no non-trivial role in instances of this problem.
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first introduced by Cechlárová and Schlotter [3] to model problems arising in the study of
housing markets and they left the existence of an FPT algorithm for ESCAD as an open
question.

The ESCAD problem extends the well-studied Directed Feedback Arc Set (DFAS)
problem. In DFAS, the goal is to delete the minimum number of arcs to make the digraph
acyclic. The natural extension of DFAS to ESCAD introduces additional complexity
as we aim not to prevent cycles, but aim to balance in-degrees and out-degrees within
each strongly connected component. As a result, the balance requirement complicates the
problem significantly and the ensuing algorithmic challenges have been noted in multiple
papers [3, 6, 11].

Crowston et al. [4] made partial progress on the problem by showing that ESCAD is
fixed-parameter tractable (FPT) on tournaments and also gave a polynomial kernelization.
However, the broader question of fixed-parameter tractability of ESCAD on general digraphs
has remained unresolved.

Our contributions. Our first main result rules out the existence of an FPT algorithm for
ESCAD under the solution-size parameterization, subject to standard complexity-theoretic
assumptions.

▶ Theorem 1. ESCAD is W[1]-hard parameterized by the solution size.

The above negative result explains, in some sense, the algorithmic challenges encountered
in previous attempts at showing tractability and shifts the focus toward alternative paramet-
erizations. However, even here, we show that a strong parameterization such as the vertex
cover number is unlikely to lead to a tractable outcome.

▶ Theorem 2. ESCAD is W[1]-hard parameterized by the vertex cover number of the graph.

In fact, assuming the Exponential Time Hypothesis (ETH), we are able to obtain a
stronger lower bound.

▶ Theorem 3. There is no algorithm solving ESCAD in f(k) · no(k/ log k) time for some
function f , where k is the vertex cover number of the graph and n is the input length, unless
the Exponential Time Hypothesis fails.

To add to the hardness results above, we also analyze the parameterized complexity of
the problem parameterized by the maximum degree of the input digraph and show that even
for constant values of the parameter, the problem remains NP-hard.

▶ Theorem 4. ESCAD is NP-hard in digraphs where each vertex has (in, out) degrees in
{(1, 6), (6, 1)}.

We complement these negative results by showing that ESCAD is FPT parameterized
by the treewidth of the deoriented digraph (i.e., the underlying undirected multigraph)
and solution size as well as by the treewidth and maximum degree of the input digraph.
Furthermore, we give an XP algorithm parameterized by treewidth alone. All three results
are obtained by a careful analysis of the same algorithm stated below.

▶ Theorem 5. An ESCAD instance I = (G, k) can be solved in time 2O(tw2) ·(2α+1)2tw ·nO(1)

where tw is the treewidth of deoriented G, ∆ is the maximum degree of G, and α = min(k, ∆).
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In the above statement, notice that α is upper bounded by the number of edges in the
digraph and so, implies an XP algorithm parameterized by the treewidth with running time
2O(tw2) · nO(tw). Notice the running time of our algorithm asymptotically almost matches
our ETH based lower bound (recall that the vertex cover number of a graph is at least the
treewidth) in Theorem 3.

Recall that in general, multiarcs are permitted in an instance of ESCAD. This fact is
crucially used in the proof of Theorem 2 and raises the question of adapting this reduction to
simple digraphs (digraphs without multiarcs or loops) in order to obtain a similar hardness
result parameterized by vertex cover number. However, we show that this is not possible by
giving an FPT algorithm for the problem on simple digraphs parameterized by the vertex
integrity of the input graph. Recall that a digraph has vertex integrity k if there exists a
set of vertices of size q ≤ k which when removed, results in a digraph where each weakly
connected component has size at most k − q. Vertex integrity is a parameter lower bounding
vertex cover number and has gained popularity in recent years as a way to obtain FPT
algorithms for problems that are known to be W[1]-hard parameterized by treedepth – one
example being ESCAD on simple graphs as we show in this paper (see Theorem 7 below).

▶ Theorem 6. ESCAD on simple digraphs is FPT parameterized by the vertex integrity of
the graph.

As a consequence of this result, we infer an FPT algorithm for ESCAD on simple digraphs
parameterized by the vertex cover number, highlighting the difference in the behaviour of
the ESCAD problem on directed graphs that permit multiarcs versus simple digraphs. On
the other hand, we show that even on simple digraphs this positive result does not extend
much further to well-studied width measures such as treewidth (or even the larger parameter
treedepth), by obtaining the following consequence of Theorems 2 and 3.

▶ Theorem 7. ESCAD even on simple digraphs is W[1]-hard parameterized by k and
assuming ETH, there is no algorithm solving it in f(k)n(k/logk) time for some function f ,
where k is the size of the smallest vertex set that must be deleted from the input digraph to
obtain a disjoint union of directed stars and n is the input length.

Related Work. The vertex-deletion variant of ESCAD is known to be W[1]-hard, as shown
by Göke et al. [11], who identify ESCAD as an open problem and note that gaining more
insights into its complexity was a key motivation for their study. Cygan et al. [6] gave the
first FPT algorithm for edge (arc) deletion to Eulerian graphs (respectively, digraphs). Here,
the aim is to make the whole graph Eulerian whereas the focus in ESCAD is on each strongly
connected component. Cygan et al. also explicitly highlight ESCAD as an open problem
and a motivation for their work. Goyal et al. [12] later improved the algorithm of Cygan et
al. by giving algorithms achieving a single-exponential dependence on k.

2 Preliminaries

For a digraph G, we denote its vertices by V (G), arcs by E(G), the subgraph induced by
S ⊆ V (G) as G[S], a subgraph with subset of vertices removed as G − S = G[V (G) \ S],
and a subgraph with subset of edges F ⊆ E(G) removed as G − F = (V (G), E(G) \ F ). For
a vertex v and digraph G, let deg−

G(v) denote its in-degree, deg+
G(v) be its out-degree, and

deg+
G(v) − deg−

G(v) is called its imbalance. If the imbalance of v is 0 then v is said to be
balanced (in G). A digraph is called balanced if all its vertices are balanced. The maximum
degree of a digraph G is the maximum value of deg+

G(v) + deg−
G(v) taken over every vertex v

in the graph.

IPEC 2024
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A vertex v is reachable from u if there exists a directed path from u to v in G. A strongly
connected component of G is a maximal set of vertices where all vertices are mutually reachable.
Let strong subgraph denoted strong(G) be the subgraph of G obtained by removing all arcs
that have endpoints in different strongly connected components. The ESCAD problem can
now be formulated as “Is there a set S ⊆ V (G) of size |S| ≤ k such that strong(G − S) is
balanced?” We call an arc e ∈ E(G) active in G if e ∈ E(strong(G)) and inactive in G

otherwise.
A graph G has vertex cover k if there exists a set of vertices S ⊆ V (G) with bounded size

|S| ≤ k such that G − S is an independent set. A star is an undirected graph isomorphic to
K1 or K1,t for some t ≥ 0 and a directed star is just a digraph whose underlying undirected
graph is a star.

A tree decomposition of an undirected graph G is a pair (T, {Xt}t∈V (T )) where T is a
tree and Xt ⊆ V (G) such that (i) for all edges uv ∈ E(G) there exists a node t ∈ V (T ) such
that {u, v} ⊆ Xt and (ii) for all v ∈ V (G) the subgraph induced by {t ∈ V (T ) : v ∈ Xt} is a
non-empty tree. The width of a tree decomposition is maxt∈V (T ) |Xt| − 1. The treewidth of
G is the minimum width of a tree decomposition of G.

Let (T, {Xt}t∈V (T )) be a tree decomposition of G. We refer to every node of T with
degree one as a leaf node except one which is chosen as the root, r. A tree decomposition
(T, {Xt}t∈V (T )) is a nice tree decomposition with introduce edge nodes if all of the following
conditions are satisfied:
1. Xr = ∅ and Xℓ = ∅ for all leaf nodes ℓ.
2. Every non-leaf node of T is one of the following types:

Introduce vertex node: a node t with exactly one child t′ such that Xt = Xt′ ∪ v

for some vertex v /∈ Xt′ .
Introduce edge node: a node t, labeled with an edge uv where u, v ∈ Xt and with
exactly one child t′ such that Xt = Xt′ .
Forget node: a node t with exactly one child t′ such that Xt = Xt′ \ {v} for some
vertex v ∈ Xt′ .
Join node: a node t with exactly two children t1, t2 such that Xt = Xt1 = Xt2 .

3. Every edge appears on exactly one introduce edge node.

Proofs for results marked ⋆ can be found in the full version [2].

3 Our Results for ESCAD

In the following four subsections we describe three hardness results and tractability results
on bounded treewidth graphs for ESCAD. In Section 3.4 we show that the problem is
XP by treewidth and FPT in two cases – when parameterized by the combined parameter
treewidth plus maximum degree, and when parameterized by treewidth plus solution size.
The hardness results show that dropping any of these parameters leads to a case that is
unlikely to be FPT. More precisely, we show that parameterized by solution size it is W[1]-hard
(in Section 3.1) as is the case when parameterized by vertex cover number (Section 3.2), and
it is para-NP-hard when when parameterized by the maximum degree (Section 3.3).

3.1 W[1]-hardness of ESCAD Parameterized by Solution Size
In this section, we show that ESCAD is W[1]-hard when parameterized by solution size. Our
reduction is from Multicolored Clique. The input to Multicolored Clique consists
of a simple undirected graph G, an integer ℓ, an containing exactly one vertex from each
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set Vi, i ∈ [ℓ]. Multicolored Clique is known to be W[1]-hard when parameterized by
the size of the solution ℓ [5]. Each set Vi for i ∈ [ℓ] is called a color class and for a vertex
v in G, we say v has color i if v ∈ Vi. We assume without loss of generality that in the
Multicolored Clique instance we reduce from, each color class Vi forms an independent
set (edges in the same color class can be removed) and moreover, for each vertex v ∈ Vi

and each j ∈ [ℓ] \ {i} there exists a w ∈ Vj that is adjacent to v (any vertex that cannot
participate in a multicolored clique can be removed).

We start with descriptions of two auxiliary gadgets: the imbalance gadget and the path
gadget.

Imbalance Gadget. Let u, v be a pair of vertices, and b, c be two positive integers. We
construct a gadget Iu,v connecting the vertex u to v by a path with vertices u, w1, . . . , wb, v

where wi’s are b new vertices (we call them intermediate vertices in this gadget); let u = w0
and v = wb+1. For every i ∈ {0, . . . , b} the path contains b+1+c forward arcs (wi, wi+1) and
b + 1 backward arcs (wi+1, wi), see Figure 1a for an illustration. Observe that with respect to
the gadget Iu,v, the vertices u and v have imbalances c and −c, respectively, whereas other
vertices in the gadget have imbalance zero. We refer to this gadget Iu,v as a (b, c)-imbalance
gadget.

c

b+ 2

u w1 w2 w3 w4 w5 v

(a) c-imbalance gadget.

c

b+ 2

u w1 w2 w3 w4 w5 v

(b) c-path gadget.

Figure 1 Black ellipses are vertices, thick edges represent (b + 1) copies of the edges; (b + 2) is
the number of vertices in the gadgets.

Path Gadget. Let u, v be a pair of vertices, and b, c be two positive integers. We construct
a gadget Pu,v connecting the vertex u to v by a path with vertices u, w1, . . . , wb, v where wi’s
are b new intermediate vertices; let u = w0 and v = wb+1. For every i ∈ {0, . . . , b} the path
contains c forward arcs (wi, wi+1). See Figure 1b for an illustration. Notice that, unlike the
imbalance gadget, we do not add backward arcs. Observe that with respect to the gadget
Pu,v, the vertices u and v has imbalances c and −c, respectively, whereas the other vertices
in the gadget have imbalance zero. We refer to this gadget Pu,v as a (b, c)-path gadget.

We use the following properties of the gadgets Iuv and Puv to reason about the correctness
of our construction.

▶ Lemma 8 (⋆). Let (G, b) be a yes-instance of ESCAD and S be a solution. Assume that
for a pair of vertices u, v in G, there is a (b, c)-imbalance gadget Iuv present in G (i.e., Iuv

is an induced subgraph of G). If S is an inclusionwise minimal solution then S contains no
arc of Iuv.

▶ Lemma 9 (⋆). Let (G, b) be a yes-instance of ESCAD and S be an inclusionwise minimal
solution for this instance. Assume that for a pair of vertices u, v in G, there is a (b, c)-path
gadget Puv present in G (i.e., Puv is an induced subgraph of G) and there are more than b arc-
disjoint paths from v to u. If S contains an arc from Puv, then there exists i ∈ {0, . . . , b + 1}
such that S contains every (wi, wi+1) arc in Puv.
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Brief idea of the reduction. The main idea of the following reduction is to “choose” vertices
and edges of the clique using cuts. First, we enforce an imbalance using (b, c)-imbalance
gadgets where b is the budget and let it propagate using path gadgets in a way that chooses
a vertex for each color. For each chosen vertex, the solution is then forced to select (ℓ − 1)
out-going arcs that are incident to it. Choosing the same edge from two sides results in a
specific vertex to be cut from the strongly connected component of the remaining graph,
decreasing the degree by the correct amount. Our solution creates a set of

(
ℓ
2
)

vertices that
have out-degree two – these vertices represent edges of the multicolored clique.

▶ Theorem 1. ESCAD is W[1]-hard parameterized by the solution size.

Proof. Consider an instance I =
(
G, ℓ, (V1, . . . , Vℓ)

)
of Multicolored Clique with n

vertices. Recall our assumption that each color class induces an independent set, and every
vertex has at least one neighbor in every color class distinct from its own. In polynomial
time, we construct an ESCAD instance I ′ = (G′, k) in the following way (see Figure 2 for
an overview).

We set k = 2ℓ(ℓ − 1).
Construction of V (G′) is as follows:

1. We add a vertex s.
2. For each color j ∈ [ℓ], we have a pair of vertices sj and dj .
3. For each vertex u in V (G), we have a vertex xu.
4. For each edge uv in E(G), we have a vertex zuv.
The construction of E(G′) is as follows. We introduce four sets of arcs E1, E2, E3, and
E4 that together comprise the set E(G′). For each color j ∈ [ℓ], let rj := |Vj | · (ℓ − 1),
cj := |{uv : uv ∈ E(G), u ∈ Vj}| − rj . Notice that cj ≥ 0 since every vertex in G has
degree at least ℓ − 1.

1. For each j ∈ [ℓ], we add a (k, rj − ℓ + 1)-imbalance gadget Is,dj
and a (k, cj)-imbalance

gadget Is,sj
to E1.

2. For each j ∈ [ℓ], for each vertex u ∈ Vj we add a (k, |NG(u)| − ℓ + 1)-imbalance gadget
Isj ,xu

and a (k, ℓ − 1)-path gadget Pdj ,xu
to E2.

3. For every edge uv ∈ E(G), we add a pair of arcs (xu, zuv) and (xv, zuv) to E3.
4. For every edge uv ∈ E(G), we add two copies of the arc (zuv, s) to E4.

It is easy to see that the construction can be performed in time polynomial in |V (G)|.
Now, we prove the correctness of our reduction. First, we argue about the imbalances of
vertices in G′. As each vertex of G′ lies on a cycle that goes through s, it follows that G′ is
strongly connected.

▷ Claim 10 (⋆). The only vertices with non-zero imbalance in G′ are those in the set
{s}∪{dj : j ∈ [ℓ]}. Furthermore, the imbalance of the vertex s is −ℓ(ℓ−1) and the imbalance
of dj for each j ∈ [ℓ] is (ℓ − 1).

This shows that there are only ℓ+1 vertices with non-zero imbalance in G′. The imbalance
of the dj ’s will make us “choose” vertices and edges that represent a clique in G as we will
see later.

We now show correctness of our reduction. In the forward direction, assume that (G, ℓ)
is a yes-instance and let K be a multicolored clique of size ℓ in G. Let vj denote the vertex
with color j in K. We now construct a solution S of (G′, k). For each edge vivj we add the
arcs (xvj , zvjvi) and (xvi , zvjvi) to S. There are 2 ·

(
ℓ
2
)

many such arcs. Now for each j ∈ [ℓ]
we add all the incoming arcs of xvj

along the path gadget Pdjxvj
to S. As for each j ∈ [ℓ],
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xu xv

u
v

s

G

G′

zuv

s

E1

E2

E3

E4

zuv

E1

E2

E3

E4

s1 d1 s2 d2 s3 d3

Figure 2 Overview of the reduction from G to G′; four sets of edges are depicted from top to
bottom. E1 contains imbalance gadgets, E2 is a mixture of imbalance and path gadgets, E3 has
directed edges, and E4 has all directed double edges to s. Marked purple edges corresponds to a
solution in G and its respective solution in G′. The thee colored backgrounds in G′ signify part of
the construction tied to the three color classes. All edges of the picture of G′ are oriented from top
to bottom. The picture of G′ wraps up as the vertex s drawn on the bottom is the same as the one
drawn on the top.

the number of such arcs is (ℓ − 1) we have |S| = 2 ·
(

ℓ
2
)

+ ℓ(ℓ − 1) = 2ℓ(ℓ − 1) = k. Now, we
show that each strongly connected component in G′ − S is Eulerian. For an example of S,
refer to Figure 2 (purple arcs).

We consider the strongly connected components of G′ − S and we will show that each of
them is Eulerian. We first define:

Z = {zuw : u, w ∈ K} ∪
( ⋃

j∈[ℓ]

(V (Pdj ,xvj
) \ {dj , xvj

})
)

▷ Claim 11 (⋆). One strongly connected component of G′ − S consists of all the vertices
except Z (we call it the large component) and all other strongly connected components of
G′ − S are singleton – one for each vertex in Z.

Since singleton strongly connected components are always balanced, we only need to
show that the large component is Eulerian i.e., it is balanced inside the strongly connected
component itself.

▷ Claim 12 (⋆). The large component is Eulerian

The claim can be proved through a case analysis going through the various types of vertices
that appear in this strongly connected component, i.e., the vertex s, the vertices in {sj : j ∈
[ℓ]} ∪ {zuv : u /∈ K or v /∈ K} ∪ {xu : u /∈ K}, the vertex dj for j ∈ [ℓ], and xu where u ∈ K.

This completes the argument in the forward direction.
In the converse direction, assume that (G′, k) is a yes-instance and let S be a solution. Let

us first establish some structure on S, from which it will be possible to recover a multicolored
clique for G.

Let C denote the strongly connected component of G′ − S that contains s. Due to
Lemma 8, we may assume that S does not contain any arcs of any of the imbalance gadgets.
This implies that C contains sj and dj for every j ∈ [ℓ] as well as xu for every u ∈ V (G).
Moreover, due to Lemma 9, we know that if S contains arcs of a path gadget Pdj ,xu

, then
they form a cut in it. As all inclusion-wise minimal cuts of the path gadgets are of the same
cardinality and adding any minimal cut of a path gadget to S makes all arcs of the path
gadget inactive in G′ − S, assume that if a cut of a path gadget Pdj ,xu is in S, then the cut
consists of the incoming-arcs of xu in the gadget.
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Recall from Claim 10, that the only imbalanced vertices in G′ are {s} ∪ {dj : j ∈ [ℓ]}. Let
us make some observations based on the fact that these vertices are eventually balanced in
strong(G′ − S).

For each j ∈ [ℓ], since none of the incoming arcs of dj are in S (they lie in an imbalance
gadget), in order to make dj balanced it must be the case that S contains a cut of exactly
one of the path gadgets starting at dj , call it Pdj ,xvj

. Recall that xvj
was originally balanced

in G′. Further, recall that we have argued that xvj is in C along with sj and dj . Since the
imbalance gadget starting at sj and ending at xvj

cannot intersect S and we have deleted
all of the ℓ − 1 incoming arcs to x from the path gadget Pdj ,xvj

, the imbalance of −ℓ + 1
thus created at xvj

needs to be resolved by making exactly (ℓ − 1) of its outgoing arcs in E3
inactive in G′ − S. Since we have already spent a budget of ℓ(ℓ − 1) from the path gadgets,
the budget that remains to be used for resolving these imbalances at {xvj : j ∈ [ℓ]} is ℓ(ℓ − 1).

On the other hand, recall that s is imbalanced in G′ and to make s balanced, we need to
make ℓ(ℓ − 1) incoming arcs of s (from E4) inactive in G′ − S. This is because all outgoing
arcs of s lie in imbalance gadgets and cannot be in S.

And finally, recall that for each uv ∈ E(G), the vertex zuv is balanced in G′ (by Claim 10).
Since the strongly connected component C in G′ − S contains the vertices s, xu, xv (i.e., all
neighbors of zu,v), for the vertex zuv to remain balanced in strong(G′ − S), we have the
following exhaustive cases regarding the arcs between s, xu, xv, zu,v: (1) none of the four arcs
incident to zuv is in S; (2) one incoming and one outgoing arc are in S; (3) both incoming
arcs or both outgoing arcs are in S. In Case (2), two arcs are added to S, which makes two
arcs inactive while in Case (3) two arcs are added to S which makes four arcs inactive. As
previously noted, we still need ℓ(ℓ−1) arcs in E3 and ℓ(ℓ−1) arcs in E4 to become inactive in
G′ − S. The required number of inactive arcs in E3 ∪ E4 is twice the remaining budget, so for
every zuv, xu, xv, the arcs between s, xu, xv, zu,v must be in Case (1) or Case (3). Moreover,
whenever Case (3) occurs, we may assume without loss of generality that the arcs in S are
the two arcs (xu, zuv) and (xv, zuv). Thus, there are exactly

(
ℓ
2
)

vertices zuv such that the
arcs between s, xu, xv, zu,v are in Case (3).

We now extract the solution clique K for (G, ℓ) by taking, for each j ∈ [ℓ], the vertex
vj ∈ V (G) such that a cut of Pdj ,xvj

is contained in S. We have shown that there are exactly(
ℓ
2
)

vertices zuv such that the arcs between s, xu, xv, zu,v are in Case (3) and for each j ∈ [ℓ]
and the vertex xvj

, exactly ℓ − 1 of its outgoing arcs are made inactive by S. This can only
happen if for every j, j′ ∈ [ℓ], there is a vertex zvjvj′ , implying that vjvj′ is an edge in G. ◀

3.2 W[1]-hardness of ESCAD Parameterized by Vertex Cover Number

In this section, we show that ESCAD is W[1]-hard when parameterized by the vertex cover
number. Jansen, Kratsch, Marx, and Schlotter [13] showed that Unary Bin Packing is
W[1]-hard when parameterized by the number of bins h.

Unary Bin Packing
Input: A set of positive integer item sizes x1, . . . , xn encoded in unary, a pair of
integers h and b.
Question: Is there a partition of [n] into h sets J1, . . . , Jh such that

∑
ℓ∈Jj

xℓ ≤ b

for every j ∈ [h]?
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In order to carefully handle vertex balances in our reduction, it is helpful to work with
a variant of the above problem, called Exact Unary Bin Packing, where the inequality∑

ℓ∈Jj
xℓ ≤ b is replaced with the equality

∑
ℓ∈Jj

xℓ = b. That is, in this variant, all bins get
filled up to their capacity.

▶ Theorem 2. ESCAD is W[1]-hard parameterized by the vertex cover number of the graph.

Proof. Let I ′ =
(
(x1, . . . , xm), h, b

)
be an instance of Unary Bin Packing. If b ≥

∑m
i=1 xi,

then I ′ is trivially a yes-instance and we can return a trivial yes-instance of ESCAD with
vertex cover number at most h. In the same way, if b · h <

∑
i∈[m] xi, then I ′ is trivially a

no-instance and we return a trivial no-instance of ESCAD with vertex cover number at most
h. Now, suppose neither of the above cases occur.

Note that the length of the unary encoding of b is upper bounded by the total length
of the unary encoding of all items x1, . . . , xm. Similarly, if h ≥ m then the instance boils
down to checking whether xi ≤ b for every i ∈ [m] (and producing a trivial ESCAD instance
accordingly) so we can assume that h < m, hence, the length of the unary encoding of h is
upper bounded by the total length of the unary encoding of all items. We now construct an
instance I of Exact Unary Bin Packing from I ′ by adding h · b −

∑
i∈[m] xi one-sized

items (this is non-negative because of the preprocessing steps). If I ′ is a yes-instance, then
one can fill-in the remaining capacity in every bin with the unit-size items, to get a solution
for I. Conversely, if I is a yes-instance, then removing the newly added unit-size items yields
a solution for I ′. Let n denote the number of items in I. Note that since

∑
i∈[n] xi = b · h,

this implies that |I| = O(|I ′|2), the instance of Exact Unary Bin Packing remains
polynomially bounded.

We next reduce the Exact Unary Bin Packing instance I to an instance I∗ = (G, k)
of ESCAD in polynomial time. Let us fix the budget k = b · h(h − 1). We now build a
graph G that models the bins by k copies of interconnected gadgets (that form the vertex
cover) and models each item as a vertex of the independent set. In our reduction, we use the
following terms. For a pair of vertices p, q, a c-arc (p, q) denotes c parallel copies of the arc
(p, q) and a thick arc (p, q) denotes a 3k-arc (p, q). The construction of G is as follows.

The vertex set of G is the set {uj : j ∈ [h]} ∪ {vj : j ∈ [h]} ∪ {wi : i ∈ [n]}.
For each j ∈ [h], we add a b-arc (uj , vj), a thick arc (uj , vj) and a thick arc (vj , uj). We
call the subgraph induced by uj , vj and these arcs, the b-imbalance gadget Bj .
Next, we add thick arcs (uj , uj′) for every j < j′ where j, j′ ∈ [h].
Finally, for each i ∈ [n] and j ∈ [h], we add xi-arcs (wi, uj) and (vj , wi).

This concludes the construction, see Figure 3. Before we argue the correctness, let us
make some observations.

Note that the vertices participating in the imbalance gadgets form a vertex cover of the
resulting graph and their number is upper bounded by 2h. Hence, if we prove the correctness
of the reduction, we have the required parameterized reduction from Unary Bin Packing
parameterized by the number of bins to ESCAD parameterized by the vertex cover number
of the graph.

We say that a set of arcs in G cuts a (p, q) arc if it contains all parallel copies of (p, q).
Note that no set of at most k arcs cuts a thick (p, q) arc. In particular, no solution to the
ESCAD instance (G, k) cuts any thick arc (p, q) that appears in the graph.
Exact Unary Bin Packing is a yes-instance ⇒ ESCAD is a yes-instance. Assume that we
have a partition J1, . . . , Jh that is a solution to I. We now define a solution S for I∗. For
every xi ∈ Jj we cut (i.e., add to S) all parallel copies of the arc (wi, uj′) for every j′ < j and
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v3v2v1 v4 v5 v6

w1 w2 w3 · · · · · · wnxi

u3u2u1 u4 u5 u6

b

wi

Figure 3 A part of the resulting ESCAD instance after reduction from Exact Unary Bin
Packing with six bins; connections between the independent vertices and imbalance gadgets are
shown only for one vertex wi. Thick arcs are shown with empty arrowhead, bold arcs incident to wi

are xi-arcs. Crossed off arcs are in a solution and dashed boxes show strongly connected components
of the solution. This example represents xi ∈ J4.

we cut all parallel copies of the arc (vj′′ , wi) for every j′′ > j. This results in cutting a total
of xi · (h − 1) arcs incident to each wi and as

∑n
i=1 xi = b · h we cut exactly b · h(h − 1) = k

arcs in total.

▷ Claim 13 (⋆). strong(G − S) is balanced.

ESCAD is a yes-instance ⇒ Exact Unary Bin Packing is a yes-instance. We aim to show
that in any solution for the ESCAD instance, the arcs that are cut incident to wi for any
i ∈ [n] have the same structure as described in the other direction, i.e., for all wi there exists
j such that the solution cuts (wi, uj′) for all j′ < j and it cuts (vj′′ , wi) for all j′′ > j. This
is equivalently phrased in the following claim.

▷ Claim 14 (⋆). There are no two indices a, b ∈ [h] with a < b such that both (wi, ua) and
(vb, wi) are uncut.

We next argue that if S is a solution, then for all wi, there exists j such that the solution
is disjoint from any (wi, uj) arc and any (vj , wi) arc. Since the budget is k = b · h(h − 1)
we have that: If we cut more than xi(h − 1) arcs incident to wi for some i ∈ [n], then there
exists i′ ∈ [n] \ {i} such that we cut fewer than xi′(h − 1) arcs incident to wi′ . But this
would violate Claim 14. Hence, for any solution S, we can retrieve the assignment of items
to bins in the Exact Unary Bin Packing instance I, by identifying for every i ∈ [n], the
unique value of j ∈ [h] such that S is disjoint from any (wi, uj) arc and any (vj , wi) arc and
then assigning item xi to bin Jj . ◀

Besides establishing that Unary Bin Packing does not have an FPT algorithm unless
W[1] = FPT, Jansen et al. [13] showed that under the stronger assumption2 of the Exponential
Time Hypothesis (ETH) the well-known nO(h)-time algorithm is asymptotically almost optimal
The formal statement follows.

▶ Proposition 15 ([13]). There is no algorithm solving the Unary Bin Packing problem
in f(h) · no(h/ log h) time for some function f , where h is the number of bins in the input and
n is the input length, unless ETH fails.

2 It is known that if ETH is true, then W[1] ̸= FPT [7].
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Since our reduction from Unary Bin Packing to ESCAD transforms the parameter
linearly and the instance size polynomially, we also have a similar ETH based lower bound
parameterized by the vertex cover number for ESCAD.

▶ Theorem 3. There is no algorithm solving ESCAD in f(k) · no(k/ log k) time for some
function f , where k is the vertex cover number of the graph and n is the input length, unless
the Exponential Time Hypothesis fails.

Proof. Follows from the reduction in the proof of Theorem 2 along with Proposition 15. ◀

3.3 NP-hardness of ESCAD on Graphs of Constant Maximum Degree

We show that ESCAD is para-NP-hard when parameterized by the maximum degree.

▶ Theorem 4. ESCAD is NP-hard in digraphs where each vertex has (in, out) degrees in
{(1, 6), (6, 1)}.

Proof. We give a polynomial-time reduction from Vertex Cover on cubic (3-regular)
graphs, which is known to be NP-hard [16], to ESCAD. This reduction is a modification of
the proof in [16] which shows that Directed Feedback Arc Set is NP-hard. The input
to Vertex Cover consists of a graph G and an integer k; the task is to decide whether G

has a vertex cover of size at most k. Let (G, k) be an instance of Vertex Cover with n

vertices where G is a cubic graph. We construct an ESCAD instance I ′ = (G′, k) in the
following way. The vertex set V (G′) = V (G) × {0, 1} and the arc set A(G′) is defined by the
union of the sets {((u, 0), (u, 1)) : u ∈ V (G)} and {((u, 1), (v, 0))2 : uv ∈ E(G)}. We call the
arcs of the form ((u, 0), (u, 1)) internal arcs and arcs of the form ((u, 1), (v, 0)) cross arcs.
Towards the correctness of the reduction, we prove the following claim.

▷ Claim 16 (⋆). (G, k) is a yes-instance of Vertex Cover if and only if (G′, k) is a
yes-instance of ESCAD.

This shows that ESCAD is NP-hard. Moreover, Since G is a cubic graph, every vertex in
D′ has (in, out) degree equal to (1, 6) or (6, 1). This completes the proof of Theorem 4. ◀

3.4 Algorithms for ESCAD on Graphs of Bounded Treewidth

Due to Theorem 2, the existence of an FPT algorithm for ESCAD parameterized by various
width measures such as treewidth is unlikely. In fact, due to Theorem 3, assuming ETH, even
obtaining an algorithm with running time f(k)no(k/ log k) is not possible, where k is the vertex
cover number. On the other hand, this raises a natural algorithmic question – could one
obtain an algorithm whose running time matches this lower bound? In this section, we give
such an algorithm that is simultaneously, an XP algorithm parameterized by treewidth, an
FPT algorithm parameterized by the treewidth and solution size, and also an FPT algorithm
parameterized by the treewidth and maximum degree of the input digraph. Moreover, the
running time of the algorithm nearly matches the lower bound we have.

Let us note that in the specific case of parameterizing by treewidth and maximum degree,
if all we wanted was an FPT algorithm, then we could use Courcelle’s theorem at the cost of
a suboptimal running time. However, our algorithm in one shot gives us three consequences
and as stated earlier, achieves nearly optimal dependence on the treewidth assuming ETH.
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Overview of our algorithm. We present a dynamic programming algorithm over tree
decompositions. When one attempts to take the standard approach, the main challenge
that arises is that by disconnecting strongly connected components, removing an arc can
affect vertices far away and hence possibly vertices that have already been forgotten at the
current stage of the algorithm. Our solution is to guess the partition of each bag into strongly
connected components in the final solution and then keep track of the imbalances of the
vertices of the bag under this assumption of components. This allows us to safely forget a
vertex as long as its “active” imbalance is zero (any remaining imbalance will be addressed
by not strongly connecting the contributing vertices in the future). The remaining difficulty
lies in keeping track of how these assumed connections interact with the bag: whether they
use vertices already forgotten or those yet to be introduced.

▶ Theorem 5. An ESCAD instance I = (G, k) can be solved in time 2O(tw2) ·(2α+1)2tw ·nO(1)

where tw is the treewidth of deoriented G, ∆ is the maximum degree of G, and α = min(k, ∆).

Since the maximum degree is upper bounded by the instance length (recall footnote in
Section 1), this gives an XP algorithm parameterized by treewidth alone. However, when in
addition to treewidth we parameterize either by the size of the solution or by the maximum
degree this gives an FPT algorithm.

▶ Corollary 17. ESCAD is FPT parameterized by tw + k, FPT parameterized by tw + ∆,
and XP parameterized by tw alone.

Recall that in digraphs, multiarcs are permitted. So, we use a variant of the nice tree
decomposition notion. This is defined for a digraph G by taking a nice tree decomposition
with introduce edge nodes (see Section 2) of the deoriented, simple version of G then
expanding each introduce edge node to introduce all parallel copies of arcs one by one.
Note that although the new introduce arc nodes introduce arcs, the orientation does not
affect the decomposition. Let us denote such a tree decomposition of G as (T , {Xt}t∈V (T )).
Korhonen and Lokshtanov [17] gave a 2tw2 · nO(1)-time algorithm that computes an optimal
tree decomposition. Moreover, any tree decomposition can be converted to a nice tree
decomposition of the same width with introduce edge nodes in polynomial time [5], and the
introduce edge nodes can clearly be expanded to introduce arc nodes in polynomial time.
Since the running time of our algorithm dominates the time taken for this step, we may
assume that we are given such a tree decomposition. Let Gt be the subgraph of the input
graph that contains the vertices and arcs introduced in the subtree rooted at t. We refer to
Gt as the past and to all other arcs and vertices as the future.

To tackle ESCAD we need to know whether an arc between vertices in a bag is active in
the graph minus a hypothetical solution or not. Towards this, we express the reachability of
the graph that lies outside (both past and future) of the current bag as follows.

▶ Definition 18. For a set X, let (R, ℓ) be a reachability arrangement on X where R is a
simple digraph with V (R) = X, and ℓ is a labeling ℓ : E(R) → {direct, past, future}.

Let us use ℓ(u, v) to denote ℓ((u, v)). As reachability arrangement implies which vertices
of the bag lie in the same strongly connected components we can determine whether an arc
is active by checking that its endpoints lie in the same strongly connected component. We
aim to track the balance of the vertices in the bag with respect to all past active arcs.

▶ Definition 19. Given G and R the active imbalance bR
G(v) of a vertex v in G with respect

to R is the imbalance of v in the graph H, i.e. deg+
H(v) − deg−

H(v), where H is the graph
induced on G by the vertices of the strongly connected component of R containing v.
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Although the active imbalance is bounded by ∆, it can be large even when the solution
is bounded so we want to instead track how much the active imbalance varies between two
graphs.

▶ Definition 20. Given G1, G2, and R the offset imbalance of a vertex v between G1 and
G2 with respect to R, offR

G1,G2
(v) = bR

G1
(v) − bR

G2
(v).

We will consider the offset imbalance between Gt and Gt −S where S is part of a solution.
The following lemma allows us to bound this quantity by the size of the solution.

▶ Lemma 21 (⋆). For each set of arcs S ⊆ E(G), node t ∈ V (T ), simple digraph R on Xt

and vertex v ∈ Xt, the offset imbalance of v between Gt − S and Gt with respect to R is
between −|S| and |S|.

For a solution S we use a suitable reachability arrangement (R, ℓ), balance labeling B,
and part of the solution in the bag W to express a partial solution, that is: S ∩ Gt along with
how vertices of the bag are partitioned into strongly connected components in G − S. These
give a description of partial solutions that is small enough to guess but detailed enough to
admit a dynamic programming approach.

▶ Definition 22. Given a node of the tree decomposition t, a reachability arrangement (R, ℓ)
on Xt, a labeling b : V (R) → [−α, α], and a subset of arcs W ⊆ E(Gt[Xt]) we call a set of
arcs S ⊆ E(Gt) compatible with R, ℓ, b, W if all of the following parts hold.
1. S agrees with W on Gt[Xt], that is S ∩ E(Gt[Xt]) = W .
2. For each arc e ∈ ℓ−1(direct), e is an arc in Gt[Xt] − S.
3. For each arc (u, w) ∈ ℓ−1(past) there is a path from u to w in Gt − S that contains no

vertices from Xt \ {u, w} (also called path through the past).
4. For each arc (u, w) ∈ ℓ−1(future) there is no path through the past from u to w (see

part 3) and there is a path from u to w in G−S that contains no vertices from Xt \{u, w}
(also called path through the future).

5. For each vertex u ∈ Xt, the offset imbalance of u between Gt − S and Gt with respect to
R is b(u), i.e., offR

Gt,Gt−S(u) = b(u).
6. For each vertex u ∈ V (Gt) \ Xt, the active imbalance of u in Gt − S with respect to

(Gt − S) ∪ R is zero, i.e., b
(Gt−S)∪R
Gt−S (u) = 0.

▶ Observation 23 (⋆). Suppose that S is a solution. For all nodes t there exists R, ℓ, b, W

such that S1 = S ∩ E(Gt) is compatible with R, ℓ, b, W .

▶ Lemma 24 (⋆). Suppose that S is a solution and both S1 = S ∩ E(Gt) and S2 ⊆ E(Gt)
are compatible with R, ℓ, b, W . Then S′ = (S \ S1) ∪ S2 is also a solution.

The above lemma implies that for fixed t, R, ℓ, b, W all solutions S have the same car-
dinality of S ∩ Gt. For fixed t, R, ℓ, b, W to compute existence of some solution S such that
S1 = S ∩ Gt is compatible with R, ℓ, b, W , it suffices to compute the minimum cardinality of
a subset S2 ⊆ E(Gt) compatible with R, ℓ, b, W because one can always produce the solution
S′ = (S − S1) ∪ S2.

Proof of Theorem 5. We will denote by A[t, R, ℓ, b, W ] the minimum size of an arc subset
of Gt that is compatible with R, ℓ, b, and W . In our decomposition (T , {Xt}t∈V (T )) the root
node r has Xr = ∅ and Gr = G so A[r, ∅, ∅, ∅, ∅] is equal to the minimum size of a solution.
In order to compute A[r, ∅, ∅, ∅, ∅] we employ the standard bottom up dynamic programming
over treewidth decomposition approach.
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For leaf nodes Xt = ∅, hence, the graphs and labelings are also empty and the empty arc
set is vacuously compatible with them A[t, ∅, ∅, ∅, ∅] = 0.

For every non-leaf node t and graph R on Xt we first calculate the strongly connected
components of R. Then we can calculate the active imbalance bR

Gt
(v) of each vertex v ∈ Xt

in Gt with respect to R. Then for each ℓ, b, and W we calculate A[t, R, ℓ, b, W ] based on the
type of the node t. We give only an informal description here, the full formulae and proofs
can be found in the full version.

Introduce vertex node: When t is an introduce vertex node and its child is t′ with Xt =
Xt′ ∪ {v} we know that v will be isolated in Gt so we can discount any reachability
arrangements where there are direct or past arcs incident to v. Additionally, the active
imbalance on v must be zero. Any new future connections should be reflected in the old
reachability arrangement, that is, if the new arrangement contains a future arc from u to
v and from v to w there should be a future arc between u and w in the old arrangement.
No arcs were introduced or forgotten so the set W remains the same.

Introduce arc node: Assume t introduces arc (u, v) and its child is t′. In any case, if u and
v are in different strongly connected components then the new arc is inactive so it does
not influence active degrees. We recognize two distinct cases based on whether this new
arc belongs to S. On one hand, say the new arc (u, v) /∈ S, then it may realize a future
path from u to v. Also, if u and v are in the same strongly connected component, then
the added (u, v) arc changes the active imbalance of u and v by one in Gt but also in
Gt − S so the offset imbalance remains the same. On the other hand, if (u, v) ∈ S, then
the active degree of its endpoints changes in Gt but it does not change in Gt − S, hence,
the offset imbalance changes by one. Note that the introduced arc (u, v) may be one
among multiple parallel copies of a multiarc – the only minor difference if we did not
allow multiarcs would be to not allow the label on (u, v) in t′ to be direct.

Forget node: If t is a forget node with child t′ such that Xt = Xt′ \ {v} then we need to
ensure that the forgotten vertex has zero active imbalance in Gt − S and that there are no
future arcs incident to it in the old arrangement. Zero active imbalance is equivalent to
an offset imbalance of −bR

Gt
(v), which we have precalculated. Also, the only change to the

remaining reachability arrangement should be new past arcs where there was previously
a path through v.

Join node: When merging two nodes t1 and t2 to a parent join node t the reachability
arrangements should be nearly the same. The notable exception is that past arcs in
the parent arrangement can be either past in both child arrangements or we can have
past arc in one arrangement while there is a future arc on the other arrangement. In a
similar way, we need to consider for each u ∈ Xt how the imbalance b(u) in Gt is made
up of parts in Gt1 and Gt2 . The new compatible solutions are unions of the solutions
compatible with pairs of such arrangements. Their overlap is exactly W so the size of
the union is simply the sum of their sizes minus |W |.

For a fixed node t there are 4tw2 reachability arrangements on Xt, (2α + 1)tw possible b’s,
and 2tw2 possible W ’s. Both introduce vertex and introduce arc node compute their entry
from a fixed entry of their child node in nO(1) time. Forget node is computed in 2tw ·4tw ·nO(1)

while join node is computed in 3tw2 · (2α + 1)tw · nO(1) time.
It is known that the total number of nodes in the nice tree decomposition with introduce

arc nodes is nO(1) and it can be observed that this still holds for the extension on multiarcs.
Hence, the overall run time is(

4tw2
· (2α + 1)tw · 2tw2)

·
(
2tw · 4tw + 3tw2

· (2α + 1)tw)
· nO(1) = 24tw2

· (2α + 1)2tw · nO(1). ◀
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4 Our Results for ESCAD on Simple Digraphs

In this section, we study ESCAD on simple digraphs, which we formally define as follows.

Simple Eulerian Strong Component Arc Deletion (SESCAD)
Input: A simple digraph G, an integer k

Question: Is there a subset R ⊆ E(G) of size |R| ≤ k such that in G − R each
strongly connected component is Eulerian?

Let us begin by stating a simple observation that enables us to make various inferences
regarding the complexity of SESCAD based on the results we have proved for ESCAD.

▶ Observation 25. Consider an ESCAD instance I = (G, k). If we subdivide every arc
(u, v) into (u, w), (w, v) (using a new vertex w) then we get an equivalent SESCAD instance
I ′ = (G′, k) with |V (G′)| = |V (G)| + |E(G)| and |E(G′)| = 2|E(G)|. Moreover, each arc of
the solution to I is mapped to one respective arc of the subdivision and vice versa.

4.1 Hardness Results for SESCAD

We first discuss the implications of Theorem 1, Theorem 2 and Theorem 4 for SESCAD
along with Observation 25.

▶ Corollary 26. SESCAD is W[1]-hard when parameterized by the solution size.

Proof. Follows from Theorem 1 and Observation 25. ◀

▶ Observation 27. If we subdivide all arcs in a digraph G that has a vertex cover X, we get
a simple digraph G′ such that G′ − X is the disjoint union of directed stars.

▶ Corollary 28. SESCAD is W[1]-hard parameterized by minimum modulator size to disjoint
union of directed stars.

Using the stronger assumption of ETH, we have the following result.

▶ Theorem 29. There is no algorithm solving SESCAD in f(k) · no(k/ log k) time for some
function f , where k is the size of the smallest vertex set that must be deleted from the
input graph to obtain a disjoint union of directed stars and n is the input length, unless the
Exponential Time Hypothesis fails.

Proof. The reduction in the proof of Theorem 2 along with Proposition 15, Observation 25
and Observation 27 implies the statement. ◀

Note that the above result rules out an FPT algorithm for SESCAD parameterized by
various width measures such as treewidth and even treedepth.

▶ Theorem 30. SESCAD is NP-hard in simple digraphs where each vertex has (in, out)
degrees in {(1, 1), (1, 6), (6, 1)}.

Proof. Follows from Theorem 4 and Observation 25. ◀
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4.2 FPT Algorithms for SESCAD
Firstly, the FPT algorithms discussed in the previous section naturally extend to SESCAD.
However, for SESCAD, the lower bound parameterized by modulator to a disjoint union of
directed stars leaves open the question of parameterizing by larger parameters. For instance,
the vertex cover number.

To address this gap, we provide an FPT algorithm for SESCAD parameterized by vertex
integrity, a parameter introduced by Barefoot et al. [1].

▶ Definition 31 (Vertex Integrity). An undirected graph G = (V, E) has vertex integrity k if
there exists a set of vertices M ⊆ V , called a k-separator, of size at most k such that when
removed each connected component has size at most k − |M |. A directed graph has vertex
integrity k if and only if the underlying undirected graph has vertex integrity k. The notion
of a k-separator in digraphs carries over naturally from the undirected setting.

FPT algorithms parameterized by vertex integrity have gained popularity in recent years
due to the fact that several problems known to be W[1]-hard parameterized even by treedepth
can be shown to be FPT when parameterized by the vertex integrity [10]. Since Corollary 28
rules out FPT algorithms for SESCAD parameterized by treedepth, it is natural to explore
SESCAD parameterized by vertex integrity and our positive result thus adds SESCAD to
the extensive list of problems displaying this behavior.

Moreover, this FPT algorithm parameterized by vertex integrity implies that SESCAD
is also FPT when parameterized by the vertex cover number and shows that our reduction
for ESCAD parameterized by the vertex cover number requires multiarcs for fundamental
reasons and cannot be just adapted to simple digraphs with more work.

We will use as a subroutine the well-known FPT algorithm for ILP-Feasibility. The
ILP-Feasibility problem is defined as follows. The input is a matrix A ∈ Zm×p and a
vector b ∈ Zm×1 and the objective is to find a vector x̄ ∈ Zp×1 satisfying the m inequalities
given by A, that is, A · x̄ ≤ b, or decide that such a vector does not exist.

▶ Proposition 32 ([14, 15, 9]). ILP-Feasibility can be solved using O(k2.5k+o(k) · L)
arithmetic operations and space polynomial in L, where L is the number of bits in the input
and k is the number of variables.

▶ Theorem 6. ESCAD on simple digraphs is FPT parameterized by the vertex integrity of
the graph.

Proof. Consider an instance (G, p) of SESCAD, where G has vertex integrity at most k.
Suppose that this is a yes-instance with a solution S and let M be a k-separator of G.
Without loss of generality, assume that V (G) = [n] and M = [|M |]. In our algorithm, we
only require the fact that since M is a k-separator in a digraph G, every weakly connected
component of G − M has size at most k (recall, the definition of vertex integrity bounds
the component sizes even more). Further, we remark that our algorithm does not require
a k-separator to be given as input since there is an FPT algorithm parameterized by k to
compute it [8].

We next guess those arcs of S that have both endpoints in M , remove them and adjust p

accordingly. The number of possible guesses is 2O(k2). Henceforth, we assume that every arc
in the hypothetical solution S has at least one endpoint disjoint from M .

We next guess the reachability relations between the vertices of M in G − S. The correct
guess is called the reachability signature of M in G − S, denoted by σ, which is a set of
ordered pairs where, for every m1, m2 ∈ M , (m1, m2) ∈ σ if and only if m2 is reachable from
m1 in G − S. The number of possibilities for σ is clearly bounded by 2O(k2).
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For every simple digraph comprised of at most |M |+k vertices and every possible injective
mapping λ of M to the vertices of this digraph, we define the type of this digraph as the
label-preserving isomorphism class with the labeling λ. Denote the set of all types by Types.
For each type τ ∈ Types, we denote by Gτ a fixed graph of this type that we can compute in
time depending only on k. Due to the labeling injectively mapping M to the vertices of Gτ ,
we may assume that M ⊆ V (Gτ ).

The number of types is clearly bounded by a function of k and for each weakly connected
component (from now onwards, simply called a component) C of G − M and graph GC =
G[C ∪ M ] with the vertices of M mapped to themselves by the identity labeling on M ,
denoted λM , we compute the type of the graph GC . From now on, we drop the explicit
reference to λM as it will be implied whenever we are handling the graph GC . For every
type τ , we also compute the number nτ of components C such that GC is of type τ . Since
the type of each GC can be computed in f(k)-time for some function f , this step takes FPT
time.

Following that, for every component C, and every arc set SC in GC , we check whether
the type of GC − SC (with labeling λM ) is compatible with σ. To be precise, for a set SC of
arcs in the digraph GC , we verify that every vertex of C is balanced in its strongly connected
component in the graph G′

C = GC − SC + σ. If the answer to this check is yes, then this is a
compatible type. Notice that by adding the ordered pairs in σ as arcs to GC − SC , we ensure
that the arcs of the graph we take into account in this check on balances of the vertices in C

(i.e., active arcs) are exactly all those arcs that are already in strong(GC − SC) plus those
arcs of GC − SC that would be inside a strongly connected component if the relations in σ

were realized. Since each component C has size bounded by k, the number of possibilities for
SC is bounded by a function of k for each component (here, we crucially use the fact that we
have a simple digraph), and hence, in FPT time, we can compute a table Γ stating, for every
C and SC subset of arcs in GC , whether the type of GC − SC is compatible with σ.

Notice that for each component, deleting the arcs of the hypothetical solution S from
each component C transitions GC from one type to another type that is compatible with σ.
To be precise, for each C and set SC = S ∩ A(GC), we can think of SC as taking GC from
the type of GC (call it τ1) to the type of GC − SC (call it τ2), at cost |SC |. Moreover, the
type τ2 is compatible with σ. Thus, the table Γ encodes the cost of transitioning each graph
GC to a type compatible with σ. This can be expressed by a value cost(τ1, τ2) for every pair
of types. If τ2 is not compatible with σ, then set this value to be prohibitively high, say the
number of arcs in G plus one. Otherwise, cost(τ1, τ2) is given by the table Γ.

In our next step, we guess a set of O(k2) types such that for every pair of vertices
m1, m2 ∈ M , if σ requires that m1 can reach m2, then there is a sequence of vertices of M

starting at m1 and ending in m2 such that for every consecutive ordered pair (x, y) in this
sequence, either (x, y) is an arc in G[M ] (and since it is not already deleted, it is disjoint
from S) or there is an x-y path with all internal vertices through a subgraph that belongs to
one of these O(k2) types. Call this set of types T ∗. The bound on the size of T ∗ comes from
the fact that there are O(k2) pairs in σ.

Finally, whether or not the vertices of M are balanced in strong(G − S) is determined
entirely by the number of graphs of each type in G − S subject to the types in T ∗ occurring.
So, for every type, we determine the imbalance imposed by the type on each vertex of M

(taking σ into account). To be precise, for every type τ and vertex u ∈ M , the imbalance on
u due to τ is denoted by I(τ, u) and is obtained by subtracting the number of active incoming
arcs on u from the number of active outgoing arcs on u, where an arc (p, q) ∈ A(Gτ ) where
u ∈ p, q is active, if and only if it lies in the same strongly connected component as u in the
graph Gτ + σ.
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All of the above requirements can be formulated as an ILP-Feasibility instance with
f(k) variables that effectively minimizes the total costs of all the required type transitions.
More precisely, for every pair of types τ1 and τ2, we have a variable xτ1,τ2 that is intended
to express the number of graphs GC of type τ1 that transition to type τ2. We only need
to consider variables xτ1,τ2 where τ1 is the type of some GC and τ2 is compatible with σ.
So, we restrict our variable set to this. Moreover, for every τ that is compatible with σ, we
have a variable yτ that is intended to express the number of components C such that GC

transitions to type τ .
Then, we have constraints that express the following:

1. The cost of all the type transitions is at most p.∑
τ1,τ2∈Types

cost(τ1, τ2) · xτ1,τ2 ≤ p

2. For each type τ in T ∗, there is at least one transition to τ . This will ensure that the
reachability relations required by σ are achieved.∑

τ1∈Types
xτ1,τ ≥ 1

3. For every component C, GC transitions to some type compatible with σ. So, for every
type τ , we have:∑

τ2∈Types
xτ,τ2 = nτ

Recall that nτ denotes the number of components C such that GC is of type τ and we
have computed it already.

4. The number of components C such that GC transitions to type τ , is given by summing
up the values of xτ1,τ over all possible values of τ1.∑

τ1∈Types
xτ1,τ = yτ

5. The total imbalance imposed on each vertex of M by the existing arcs incident to it, plus
the imbalance imposed on it by the types to which we transition, adds up to 0.
For each u ∈ M , let ρu denote the imbalance on u imposed by those arcs of G[M ] that
are incident to u and active in the graph G[M ] + σ. The imbalance imposed on u by a
particular type τ is I(τ, u) and this needs to be multiplied by the number of “occurrences”
of this type after removing the solution, i.e., the value of yτ .
Hence, we have the following constraint for every u ∈ M .

ρu +
∑

τ∈Types
I(τ, u)yτ = 0

6. Finally, we need the variables to all get non-negative values. So, for every τ1, τ2 ∈ Types,
we add xτ1,τ2 ≥ 0 and for every τ ∈ Types, yτ ≥ 0.

It is straightforward to convert the above constraints into the form of an instance of ILP-
Feasibility. Since the number of variables is a function of k, Proposition 32 can be used to
decide feasibility in FPT time. From a solution to the ILP-Feasibility instance, it is also
straightforward to recover a solution to our instance by using the table Γ. ◀
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5 Conclusions

We have resolved the open problem of Cechlárová and Schlotter [3] on the parameterized
complexity of the Eulerian Strong Component Arc Deletion problem by showing that it is
W[1]-hard and accompanied it with further hardness results parameterized by the vertex
cover number and max-degree of the graph. On the positive side, we showed that though
the problem is inherently difficult in general, certain combined parameterizations (such as
treewidth plus either max-degree or solution size) offer a way to obtain FPT algorithms.

Our work points to several natural future directions of research on this problem.
1. Design of (FPT) approximation algorithms for ESCAD?
2. ESCAD parameterized by the solution size is FPT on tournaments [4]. For which other

graph classes is the problem FPT by the same parameter?
3. Our FPT algorithm for SESCAD parameterized by vertex integrity is only aimed at

being a characterization result and we have not attempted to optimize the parameter
dependence. So, a natural follow up question is to obtain an algorithm that is as close to
optimal as possible.

4. Are there parameterizations upper bounding the solution size, for which ESCAD is FPT?
For instance, the size of the minimum directed feedback arc set of the input digraph.
Notice that in the reduction of Theorem 1, we obtain instances with unboundedly large
minimum directed feedback arc sets due to the imbalance gadgets starting at the vertex
sj for some color class j and ending at the vertices in {xu | u ∈ color class j}.
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1 Introduction

In the classical Usplittable Flow on a Path problem (UFP) we are given an m-edge path
graph G = (V, E) with (non-negative integer) edge capacities u : E → N, and a collection of
n tasks T . Each task i is characterized by a demand d(i) ∈ N, a weight (or profit) w(i) ∈ N,
and a subpath P (i)1. A feasible solution consists of a subset of (selected) tasks S ⊆ T such
that, for each edge e,

∑
i∈S:e∈P (i) d(i) ≤ u(e). In other words, the total demand of the

selected tasks using each edge e cannot exceed the capacity of e. Our goal is to compute a
feasible solution OPT of maximum total profit opt = w(OPT) :=

∑
i∈OPT w(i).

UPF has several direct and undirect applications [7, 8, 11, 12, 16, 17, 18, 21, 41, 43]. For
example, one might interpret G as a time interval subdivided into time slots (the edges). At
each time slot we are given some amount of a considered resource, say, energy. The tasks

1 Throughtout this paper, for a subpath P , we sometimes use P also to denote the corresponding set of
edges E(P ): the meaning will be clear from the context.
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5:2 Unsplittable Flow on a Short Path

represent jobs that we might execute, therefore gaining a profit. However each executed job
will consume some amount of the shared resource during its execution, thus we might not be
able to execute all the jobs (hence we need to perform a selection).

UFP is strongly NP-hard [11, 18] and it is well-studied in terms of approximation
algorithms. After a long sequence of improvements [2, 3, 5, 6, 9, 11, 14, 15, 34, 37, 38, 36], a
PTAS for UFP was eventually achieved by Grandoni, Mömke and Wiese [35]. We recall that a
PTAS (for a maximization problem) is an algorithm parameterized by ε > 0, which provides
a (1− ε) approximation in time |I|Oε(1), where |I| is the input size. EPTASs and FPTASs
are defined similarly, however with running times of the form f(1/ε) · |I|O(1) and (|I|/ε)O(1),
resp., where f(·) is a computable function. Wiese [49] proved that UFP, parameterized by
the number of selected tasks, is W [1]-hard: this excludes the existence of an EPTAS for UFP
by standard reductions (unless FPT=W[1] [42]).

In the above scenario there is no flexibility on the time when a job is executed. The BagUFP
problem is a generalization of UFP which was introduced to allow for such flexibility. Here we
are given the same input as UFP, plus a partition of the tasks into ℓ bags B = {B1, . . . , Bℓ},
∪̇ℓ

j=1Bj = T . A feasible solution S has to satisfy the capacity constraints as in UFP, plus
the extra constraint that at most one task per bag can be selected, namely |S ∩Bj | ≤ 1 for
j = 1, . . . , ℓ. This easily captures jobs that can be executed at different times (and even
more general settings). For example, if a job can be executed within a given time window
(also known as the time-windows UFP problem), it is sufficient to create a bag that contains
multiple copies of the same task which differ only in the subpath P (i) (with one subpath per
potential valid scheduling time). BagUFP is APX-hard [47], which rules out the existence
of a PTAS for it. The current best approximation ratio for BagUFP is O(log n/ log log n)
[33], slightly improving on the O(log n) approximation in [13]. A constant approximation for
BagUFP is known for the cardinality version of the problem [33], i.e. when all the profits
are 1. Bag constraints are frequently added to other classic optimization problems, such as
makespan minimization [22, 32], knapsack [46, 44, 40], and bin packing [24, 25, 31].

1.1 Our Results and Techniques
The mentioned PTAS for UFP [35] has a very poor dependence on ε in the running time, which
makes it most likely impractical. Though an improvement of the running time is certainly
possible, as mentioned before an EPTAS for UFP does not exist (unless FPT = W[1]). The
situation for BagUFP is even worse: here even a PTAS does not exist (unless P = NP), and
currently finding a constant approximation algorithm (which might exist) is a challenging
open problem.

Motivated by the above situation, it makes sense to consider parameterized approximation
algorithms for UFP and BagUFP. The general goal here is to identify some integer parameter
p that captures some relevant aspect of the input (or some property of the output), and try
to design approximation algorithms whose running time is better than the state of the art
when p is sufficiently small. In particular a parameterized PTAS (p-PTAS) is defined similarly
to a PTAS, however with running time of the form f(p)|I|Oε(1) for some commutable function
f(·). Parameterized EPTAS (p-EPTAS) and parameterized FPTAS (p-FPTAS) are defined
similarly, w.r.t. EPTAS and FPTAS resp. More explicitly, a p-EPTAS has a running time of
the form f (p + 1/ε) |I|O(1), while a p-FPTAS has a running time of the form f(p)(|I|/ε)O(1).
For a meaningful choice of p, it makes sense to search for a p-EPTAS (or better) for UFP,
and for a p-PTAS (or better) for BagUFP.

Probably the most standard parameter is the number k of tasks in the desired solution.
This is also the objective function for the cardinality version of the problems (with profits
equal to 1). Wiese [49] proved that UFP is W [1]-hard under this parametrization, which
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rules out a p-EPTAS. He also presented a p-PTAS for the cardinality version of UFP with
parameter k (later improved by the PTAS in [35], which also works for arbitrary profits).
To the best of our knowledge, the same parametrization of BagUFP was not studied in the
literature.

In this paper we focus on the parameter m, namely the number of edges in G - the
length of the path. This makes sense in the realistic scenarios where n≫ m i.e., there are
significantly more jobs than time slots. For example, such UFP instances occur in personnel
scheduling [48, 4, 10, 1] where, e.g., workers are assigned to shifts within a working day
(m ≈ 8 working hours), or for an interval of days in the week (m = 7 days). We achieve the
following main results:

1.1.1 Algorithms and Hardness for BagUFP
A simple reduction from Partition shows that (assuming P ̸= NP) there is no FPTAS for
BagUFP even for m = 2 (for m = 1 an FPTAS exists since the problem is equivalent to
Multiple Choice Knapsack). As an obvious corollary, there is no p-FPTAS with parameter m

for the same problem (see Section 4).

▶ Theorem 1. Unless P = NP, there is no FPTAS for BagUFP even in the case m = 2.

▶ Corollary 2. Unless P = NP, there is no p-FPTAS for BagUFP parametrized by the path
length m.

Hence, qualitatively speaking, the best one can hope for is a p-EPTAS. This is precisely
what we achieve (see Section 2).

▶ Theorem 3. There is a p-EPTAS for BagUFP parametrized by the path length m. Its
running time is 2(m/ε1/ε)O(1)

· |I|O(1).

Our approach substantially differs from previous algorithmic approaches for UFP (see,
e.g., [35] and references therein) which relied on concepts such as classification of items by
demands and probabilistic arguments. We observe that the bag constraints induce a matroid
(more specifically, a partition matroid with capacity 1 for each set). Therefore we consider
the standard LP relaxation for a partition matroid (which has integral basic solutions), and
augment it with the m linear constraints corresponding to the capacity constraints. As
proved in [39], a basic optimal solution x∗ to this LP (which can be computed in polynomial
time for arbitrary m) has at most 2m fractional values (with value strictly between 0 and 1).
The variables with value 1 in x∗ induce a feasible BagUFP solution with profit at least the
optimal LP profit minus (almost) the profit of 2m tasks: this is problematic if the latter tasks
have a profit comparable to opt = w(OPT), where OPT is some reference optimal solution.

We can avoid the above issue as follows. Let H be the (heavy) tasks with profit at least
ε
m opt. We can guess the heavy tasks H ∩ OPT in OPT (which are at most m/ε many),
reduce the problem (i.e., remove all the tasks in the bags containing tasks from H ∩OPT,
remove tasks in H, and reduce the available capacity of every edge by the total demand
of OPT ∩H for the specific edge), and apply the mentioned LP-rounding technique to the
remaining (light) tasks. Now the drop of the fractional variables reduces the profit by at
most 2ε · opt, leading to a 1 + O(ε) approximation. Unfortunately, this algorithm would take
time |H|Ω(m/ε), which is still not compatible with a p-EPTAS.

In order to circumvent the latter issue, we exploit the notion of representative sets, which
was introduced in [26, 27, 28] to deal with a class of maximization problems with a single
budget constraint. In contrast, we construct a representative set in the more general regime
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5:4 Unsplittable Flow on a Short Path

of multiple budget constraints imposed by the unsplittable flow setting. In more detail, in
p-EPTAS time, we are able to compute a (representative) subset of tasks R of size depending
only on m and 1/ε, such that there exists a nearly optimal solution S such that S ∩H ⊆ R.
Therefore, one can restrict to R the above guessing of heavy tasks, which takes |R|O(m/ε)

time: this is now compatible with a p-EPTAS. We remark that our techniques, combined with
the representative set techniques of [26, 27, 28], can give a p-EPTAS for the more general
problem of UFP with a general matroid constraint. We leave such efforts to the journal
version of the paper. On the other hand, UFP with a general matroid is somewhat harder
since an FPTAS is ruled out even for an instance with path of length 1 (a single budget
constraint) [30], and an FPTAS exists only for laminar matroids [29].

1.1.2 Algorithms and Hardness for UFP
We start by showing that there is no p-FPTAS for UFP parameterized by m. This, together
with Theorem 3, gives a tight bound for UFP in the short path point-of-view. Notice that
this is not implied by Theorem 1 since UFP is a special case of BagUFP.

▶ Theorem 4. Unless FPT=W[1], there is no p-FPTAS for UFP parametrized by the path
length m.

Unlike previous hardness results [11, 18, 47, 49, 19] for UFP and its variant, which rely
on a path of polynomial length in the input size, our lower bound requires having UFP
instances with a short path. Namely, the number of tasks is significantly larger than the
length of the path. Our starting point is to obtain a hardness result for a multiple choice
variant of k-subset sum in which the numbers are partitioned into sets A1, . . . , Ak, each
set with n numbers, and the goal is to select one number from each set such their sum is
exactly a given target value. We use color-coding to show that multiple-choice k-subset
sum does not have an FPT-algorithm unless W[1]=FPT (which may be useful for other
hardness results). Then, we reduce multiple-choice k-subset sum to UFP by constructing a
UFP instance with m = O(k) edges and with polynomial weights. Roughly, we interpret the
edges of the path in correspondence to the k sets A1, . . . , Ak. The constructed instance has
a pair of tasks zi

j , qi
j , with complementary subpaths, for every number j = 1, . . . , n in the

i-th set Ai. Along with a carefully defined demand and weight functions, This UFP instance
satisfies that exactly k pairs can be chosen for a sufficiently high weight if and only if the
original subset sum instance has a solution. We remark that this construction utilizes the
short path in a non-trivial manner. Due to space constraints, the proof is given in the full
version of the paper [23].

Theorem 3 already provides a p-EPTAS for UFP. We are however able to derive a p-EPTAS
with a substantially better running time (see Section 3).

▶ Theorem 5. There is an p-EPTAS for UFP parameterized by the path length m, with
running time O

(
n3

ε +
( 1

ε

)O(m2)
m3 log n

)
.

In particular, for m ≤ C ·
√

log 1
ε

n, for a sufficiently small constant C > 0, our running time
is the running time of an FPTAS. We recall that achieving an FPTAS (or even an EPTAS)
for UFP in general is not possible and the previous state of the art for UFP with a constant
number of edges is the PTAS for the general problem [35].

The basic idea of the algorithm is a follows. Consider all the tasks Tφ whose path is φ. Let
optφ be the profit of some optimal solution OPT restricted to Tφ, i.e. optφ = w(OPT ∩ Tφ).
Given the value of optφ, it is sufficient to find a minimum-demand subset of tasks Sφ ⊆ Tφ
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with profit at least optφ: the union of the sets Sφ would be feasible and optimal. To achieve
the target running time we use this basic idea along with rounding of the weights and a
coarse guessing of the the values optφ. By a standard rounding argument, we can assume
that the weights are in [ n

ε ] while loosing a factor 1− ε in the approximation. This allows
us to pre-compute the minimal demand subset of Tφ which attains a threshold rounded
weight, for every possible threshold, using a standard dynamic program. The pre-computed
subsets are used to reconstruct a solution Sφ from the value of optφ. Finally, we guess the
values of optφ up to an additive error of ≈ ε

m2 · w(OPT). This coarse guess of the values of
optφ allows us to enumerate over all possible guesses within the running time, while only
introducing an additional 1− ε factor in the approximation.

1.2 Preliminaries

For every n ∈ N we use [n] = {1, . . . , n}. We use (G, u, T, P, d, w,B) to denote a BagUFP
instance and by (G, u, T, P, d, w) to denote a UFP instance. Given and instance I of UFP or
BagUFP, we let OPT(I) denote some reference optimal solution, and opt(I) = w(OPT(I))
be its profit. We use |I| to denote the encoding size of I. When I is clear from the context,
we simply use OPT and opt, resp. Given a subset of tasks S ⊆ T , we use the standard
notation d(S) :=

∑
i∈S d(i) and w(S) :=

∑
i∈S w(i).

2 A p-EPTAS for BagUFP

In this section we prove Theorem 3. For the remaining of this section, fix a instance I of
BagUFP and an error parameter 0 < ε < 1

2 . Let the set of heavy tasks in I be

H =
{

e ∈ E | w(e) >
ε · opt

m

}
.

The remaining tasks T \ H are light. Our first goal is to find the set of heavy tasks in a
nearly-optimal solution. Notice that a naive enumeration takes nΩ( m

ε ) time, which is far
from the running time of a p-EPTAS. To avoid this issue, we compute a (small enough)
representative set, which is defined as follows.

▶ Definition 6. For some R ⊆ T , we say that R is an ε-representative set of I if there is a
solution Sof I such that the following holds.
1. S ∩H ⊆ R.
2. w (S) ≥ (1− 3ε) · opt.

Define q(ε, m) =
⌈
4m · ε−⌈ε−1⌉

⌉
(the meaning of q(ε, m) becomes clear in Section 2.2).

▶ Lemma 7. There is an algorithm RepSet that, given a BagUFP instance instance I =
(G, u, T, P, d, w,B), 0 < ε < 1

2 , and ˜opt ∈ [w(T )], in time m3 · ε−2 · |I|O(1) returns R ⊆ T

with |R| ≤ 3 ·m3 · ε−2 · q(ε, m). Furthermore, if opt
2 < ˜opt ≤ opt, R is an ε-representative set

of I.

In Section 2.1 we use the representative set from Lemma 7 to design a p-EPTAS for
BagUFP. Then, in Section 2.2 we prove Lemma 7.
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5:6 Unsplittable Flow on a Short Path

Algorithm 1 p-EPTAS(I, ε).

input : BagUFP instance I and an error parameter 0 < ε < 1
2 .

output : A (1− 7ε)-approximate solution A for I.
1 A← ∅.
2 for ˜opt ∈

{
1, 2, . . . , 2⌊log2(w(T ))⌋} do

3 Construct R
˜opt ← RepSet(I, ε, ˜opt).

4 for F ⊆ R
˜opt s.t. |F | ≤ m/ε and F is a feasible solution for I do

5 Compute a basic optimal solution λ
˜opt,F for LP ˜opt

F .
6 Define L

˜opt
F :=

{
i ∈ T

˜opt
F

∣∣ λ
˜opt,F

i = 1
}

and A
˜opt

F = L
˜opt

F ∪ F .

7 if w
(

A
˜opt

F

)
> w(A) then

8 A← A
˜opt

F .
9 end

10 end
11 end
12 Return A.

2.1 A Representative Set Based p-EPTAS

Given the representative set algorithm described in Lemma 7, we obtain a p-EPTAS as follows
(the pseudocode is given in Algorithm 1). We consider the powers of two ˜opt in the domain
[w(T )] (i.e., all values ˜opt = 1, 2, 4, . . . , 2⌊log w(T )⌋). We apply the algorithm from Lemma 7
with this parameter ˜opt to obtain a set R ˜opt. Notice that, for opt

2 < ˜opt ≤ opt, R
˜opt is a

representative set. Now we enumerate over all the feasible solutions F ⊆ R ˜opt of cardinality
at most m/ε. For each such F , we compute a feasible solution A

˜opt
F (including F ), and return

the best such solution.
It remains to describe how A

˜opt
F is computed. First of all, we define a reduced BagUFP

instance I
˜opt

F = (G, uF , T
˜opt

F , P, d, w,BF ) as follows. BF is the subset of input bags not
containing any task in F . The set of tasks T

˜opt
F is given by the tasks of weight at most

2ε
m

˜opt which are contained in the bags BF . The capacity function uF is given by uF (e) :=
u(e) −

∑
i∈F :e∈P (i) d(i) (i.e., the residual capacity after accommodating the tasks in F ).

Observe that, for any feasible solution L for I
˜opt

F , L ∪ F is a feasible solution for the input
problem. Indeed, the capacity constraints are satisfied and at most one task per bag can be
selected.

Given the above instance I
˜opt

F , we considering the following LP relaxation LP
˜opt

F :

max
∑

i∈T
˜opt

F

xi · w(i) ( LP
˜opt

F )

s.t.
∑

i∈T
˜opt

F
:e∈P (i)

xi · d(i) ≤ uF (e) ∀e ∈ E

∑
i∈T

˜opt
F

∩B

xi ≤ 1 ∀B ∈ BF

xi ≥ 0 ∀i ∈ T
˜opt

F
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We compute a basic optimal solution λ
˜opt,F for the above LP. Let L

˜opt
F ⊆ T

˜opt
F be the tasks

such that λ
˜opt,F

i = 1. We set A
˜opt

F = L
˜opt

F ∪ F . This concludes the description of the
algorithm.

Obviously the above algorithm computes a feasible solution.

▶ Lemma 8. Algorithm 1 returns a feasible solution.

Proof. Consider a given pair ( ˜opt, F ). Obviously L
˜opt

F is a feasible solution for the BagUFP
instance I

˜opt
F . Indeed, the demand of the tasks in L

˜opt
F whose path contains a given edge e is

upper bounded by
∑

i∈T
˜opt

F
:e∈P (i) λ

˜opt,F
i ·d(i) ≤ uF (e). Furthermore, for a given bag B ∈ BF ,

at most one variable λ
˜opt,F

i with i ∈ B can be equal to 1, hence |L ˜opt
F ∩ B| ≤ 1. Thus, as

argued before, A
˜opt

F = L
˜opt

F ∪ F is a feasible solution for the input BagUFP instance I. Since
the returned solution A is one of the feasible solutions A

˜opt
F (or the empty set, which is a

feasible solution), A is a feasible solution. ◀

It is also not hard to upper bound the running time.

▶ Lemma 9. Algorithm 1 runs in time
(

3·m3

ε2 · q(ε, m)
)m/ε

|I|O(1).

Proof. Lines 3 and 5-8 can be performed in |I|O(1) time. Thus the overall running time
is upper bounded by |I|O(1) multiplied by the number of possible pairs ( ˜opt, F ). There
are O(log w(T )) = |I|O(1) possible choices for ˜opt. For a fixed choice of ˜opt, one has
|R ˜opt| ≤ 3m3

ε2 q(ε, m). Since F is a subset of R
˜opt of cardinality at most m/ε, the number

of possible choices for F (for the considered ˜opt) is at most 2
(

3m3

ε2 q(ε, m)
)m/ε

. The claim
follows. ◀

It remains to bound the approximation factor of the algorithm. To this aim, we critically
exploit the fact that each basic solution λ

˜opt,F is almost integral: more precisely, it has at
most 2m non-integral entries. To prove that, we use a result in [39] about the sparseness of
matroid polytopes with m additional linear constraints.

▶ Lemma 10. Each solution λ
˜opt,F computed by Algorithm 1 has at most 2m non-integral

entries.

Proof. The proof relies on matroid theory; for more details on the subject, we refer the reader
to, e.g., [45]. Consider LP

˜opt
F for any pair ( ˜opt, F ) considered by the algorithm. Let L̃P

˜opt
F be

the LP obtained from LP
˜opt

F by dropping the m capacity constraints
∑

i∈T
˜opt

F
:e∈P (i) xi ·d(i) ≤

uF (e). L̃P
˜opt

F turns out to be the standard LP for a partition matroid (in particular, in an
independent set at most one task per bag can be selected, where the bags induce a partition
of the tasks). In [39] it is shown that every basic solution (including an optimal one) for an
LP obtained by adding m linear constraints to the standard LP for any matroid (including
partition ones) has at most 2m non-integral entries. Hence λ

˜opt,F satisfies this property. ◀

▶ Lemma 11. The solution A returned by Algorithm 1 satisfies w(A) ≥ (1− 7ε)opt.

Proof. It is sufficient to show that some solution C
˜opt

F has large enough profit. Consider the
value of ˜opt such that opt

2 < ˜opt ≤ opt. Notice that the algorithm considers exactly one such
value since 1 ≤ opt ≤ w(T ). We next show how to choose a convenient F ⊆ R

˜opt.
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5:8 Unsplittable Flow on a Short Path

Observe that for the considered choice of ˜opt, R
˜opt is an ε-representative set. Let S be

the solution for I guaranteed by Lemma 7 and Definition 6. Recall that w(S) ≥ (1− 3ε)opt
and S ∩H ⊆ R

˜opt. Since each i ∈ S ∩H has w(i) ≥ ε
m opt by definition and since obviously

w(S ∩H) ≤ w(S) ≤ opt, it must be the case that |S ∩H| ≤ m
ε . This implies that there is

an iteration of the algorithm (for the considered ˜opt) that has F = S ∩H: we will focus on
that iteration.

We claim that w(A ˜opt
S∩H) = w(S ∩ H) + w(L ˜opt

F ) ≥ (1 − 7ε)opt. Notice that each task
i ∈ S \ H has weight w(i) < ε

m opt < 2ε
m

˜opt. Furthermore, by construction i ∈ S \ H is
contained in a bag in BS∩H . Hence i ∈ T

˜opt
S∩H , which implies S \H ⊆ T

˜opt
S∩H . The feasibility of

S implies that
∑

i∈S\H:e∈P (i) d(i) ≤ uF (e) for every edge e, and |(S \H) ∩B| ≤ 1 for every
B ∈ BS∩H . Therefore the integral solution s which has si = 1 for i ∈ S \H and si = 0 for the
remaining entries is a feasible solution for LP

˜opt
S∩H . Define lp

˜opt
S∩H :=

∑
i∈T

˜opt
S∩H

w(i) · λ ˜opt,S∩H
i

as the optimal LP value for LP
˜opt

S∩H . The feasibility of s implies

w(S \H) =
∑

i∈T
˜opt

S∩H

w(i) · si ≤ lp
˜opt

S∩H .

On the other hand,

w(L ˜opt
S∩H) ≥ lp

˜opt
S∩H − 2m · 2ε

m
˜opt ≥ lp

˜opt
S∩H − 4ε · opt.

In the first inequality above we used the fact that λ
˜opt,S∩H has at most 2m non-integral

values (by Lemma 10), and that each i ∈ T
˜opt

S∩H has w(i) ≤ 2ε
m

˜opt by construction. In the
second inequality above we used the assumption that ˜opt ≤ opt. Putting everything together:

w(A ˜opt
S∩H) = w(L ˜opt

S∩H) + w(S ∩H) ≥ lp
˜opt

S∩H − 4ε · opt + w(S ∩H)
≥ w(S \H)− 4ε · opt + w(S ∩H) = w(S)− 4ε · opt ≥ (1− 7ε)opt. ◀

The proof of Theorem 3 follows directly from Lemma 8, Lemma 9, and Lemma 11.

2.2 Representative Set Construction
In this section, we construct a small ε-representative set for the BagUFP instance I; this
gives the proof of Lemma 7. Let ˜opt ∈ [w(T )] be a guess of the optimum value opt. Recall
that in Section 2.1 we are able to find ˜opt ∈

( opt
2 , opt

]
using exponential search over the

domain [w(T )].
We define a partition of the heavy tasks (and some tasks that are almost heavy) into

classes, such that tasks of the same class have roughly the same weight and have the same
subpath. Specifically, let Φ = {P (i) | i ∈ T} be the set of unique paths in the instance and
define η =

⌈
log1−ε

(
ε

2·m
)⌉

as a parameter describing the number of classes. For all φ ∈ Φ
and r ∈ [η] define the class of φ and r as

H̃ (φ, r) =
{

i ∈ T

∣∣∣∣ w(i)
2 · ˜opt

∈
(

(1− ε)r
, (1− ε)r−1

]
and P (i) = φ

}
. (1)

In simple words, a task i belongs to class H̃ (φ, r) have weight roughly (1− ε)r · 2 · ˜opt and
the subpath of i is φ. Define

H̃ =
⋃

φ∈Φ,r∈[η]

H̃(φ, r)
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as the union of classes. The parameter η is carefully chosen so that the weight of every
task i ∈ H̃ satisfies w(i) ≥ ε· ˜opt

m , implying that i is roughly heavy. Since ˜opt ∈
[ opt

2 , opt
]
,

it follows that H ⊆ H̃ and that H̃ does not contain tasks with significantly smaller weight
than ε·opt

m - that is the minimum weight allowed for heavy tasks.

▶ Observation 12. H ⊆ H̃.

Let D = {H̃(ϕ, r) | ϕ ∈ Φ, r ∈ [η]} be the set of classes. We use a simple upper bound on
the number of classes.

▶ Lemma 13. |D| ≤ 3 ·m3 · ε−2.

Proof. Observe that

log1−ε

( ε

2 ·m

)
≤

ln
( 2·m

ε

)
− ln (1− ε) ≤

2 ·m · ε−1

ε
= 2 ·m · ε−2. (2)

The second inequality follows from x < − ln(1− x), ∀x > −1, x ̸= 0, and ln(y) < y, ∀y > 0.
Moreover, the number of subpaths φ ∈ Φ is bounded by |Φ| =

(
m
2
)
≤ m2. Therefore, the

number of classes is bounded by

|D| ≤ m2 ·
(

log1−ε

( ε

2 ·m

)
+ 1
)
≤ 2 ·m ·ε−2 ·m2 +m2 = 2 ·m3 ·ε−2 +m2 ≤ 3 ·m3 ·ε−2 (3)

The first inequality follows from (2). ◀

Algorithm 2 RepSet(I, ε, ˜opt).

input : BagUFPinstance I, an error parameter 0 < ε < 1
2 , and ˜opt ∈ [w(T )].

output : An ε-representative set R for I (if ˜opt ∈
[ opt

2 , opt
]
).

1 Initialize R← ∅.
2 forall φ ∈ Φ and r ∈ [η] do
3 Let B(φ, r) = {B ∈ B | B ∩ H̃(φ, r) ̸= ∅}.
4 For every B ∈ B(φ, r) define iB(φ, r) = arg mini∈B∩H̃(φ,r) d(i).
5 Sort B(φ, r) in non-decreasing order B1(φ, r), . . . , Bℓ(φ, r)

by d (iB(φ, r)) ∀B ∈ B(φ, r).
6 Define a = min {q(ε, m), |B(φ, r)|}.
7 Update R← R ∪ {iB1(φ, r), . . . , iBa(φ, r)}.
8 end
9 Return R.

Our representative set construction is fairly simple. For each class H̃ (φ, r), consider the
set of active bags B(φ, r) for H̃(φ, r) that contain at least one task in H̃ (φ, r). For every
active bag B ∈ B(φ, r) define the representative of B in the class H̃(φ, r) as the the task
from the bag B in the class H̃ (φ, r) of minimum demand (if there is more than one such
task we choose one arbitrarily). We sort the active bags of the class in a non-decreasing
order according to the demand of the representatives of the bags. Finally, we take the first a

representatives (at most one from each bag) according to this order, where a is the minimum
between the parameter q(ε, m) and the number of active bags for the class. The pseudocode
of the algorithm is given in Algorithm 2.

We give an outline of the proof of Lemma 7. Consider some optimal solution OPT for
the instance. We partition the tasks in OPT into three sets: L, Jk∗ , and Q such that (i) the
maximum weight of a task in Q is at most ε-times the minimum weight of a task in L; (ii) L
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5:10 Unsplittable Flow on a Short Path

is small: |L| ≤ q(ε,m)
2 ; (iii) The weight of Jk∗ is small: w(Jk∗) ≤ ε · opt. To prove that R is a

representative set, we need to replace H ∩OPT with tasks from R. As a first step, we define
a mapping h from H̃ ∩OPT to R, where each task i ∈ H̃ ∩OPT is replaced by a task from
the same class of a smaller or equal demand. For tasks i ∈ H̃ ∩OPT such that R contains a
representative from the bag of i in the class of i, we simply define h(i) as this representative;
for other tasks, we define the mapping via a bipartite matching on the remaining tasks and
representatives.

We define a solution S satisfying the conditions of Definition 6 in two steps. First, we
define initial solutions S1, S2. The solution S1 contains the mapping h(i) of every i ∈ H̃∩OPT
and the tasks in L \ H̃ ; the solution S2 contains all tasks in Q from bags that do not contain
tasks from S1. Finally, we define S = S1 ∪ S2. By the properties of L, Jk∗ , and Q we are
able to show that S is roughly an optimal solution. Specifically, by (iii) discarding Jk∗ from
the solution S does not have a significant effect on the total weight of S. Additionally,by
property (i) there is a large gap between the weights in S1 and S2; thus, combined with
property (ii) we lose only a small factor due to tasks discarded from Q, and it follows that
the weight of S is (1−O(ε)) · opt.

Proof of Lemma 7
We start with the running time analysis of the algorithm.

▷ Claim 14. The running time of Algorithm 2 is bounded by m3 · ε−2 · |I|O(1) on input I, ε,
and ˜opt. Moreover, |R| ≤ 3 ·m3 · ε−2 · q(ε, m).

Proof. Each iteration of the for loop of the algorithm can be trivially computed in time
|I|O(1). In addition, the number of iterations of the for loop is bounded by 3 ·m3 · ε−2 using
Lemma 13. Therefore, the running time of the algorithm is bounded by m3 · ε−2 · |I|O(1). For
the second property of the lemma, recall that the number of classes is bounded by 3 ·m3 · ε−2

using Lemma 13. By Algorithm 2 of the algorithm, the number of tasks taken to R from
each class is at most q(ε, m). Therefore, |R| ≤ 3 ·m3 · ε−2 · q(ε, m). ◁

If ˜opt /∈
[ opt

2 , opt
]
, the proof immediately follows from Claim 14. Thus, for the following

assume that ˜opt ∈
[ opt

2 , opt
]
. Let OPT ⊆ T be an optimal solution for I. Let w∗ = ε· ˜opt

m be
a lower bound on the minimum weight of a task in H̃. We partition a subset of the tasks in
OPT \ H̃ with the highest weights into N =

⌈
ε−1⌉ disjoint sets. For all k ∈ [N ] define the

k-th set as

Jk =
{

i ∈ OPT \ H̃
∣∣ w(i) ∈

(
εk · w∗, εk−1 · w∗]} . (4)

Let k∗ = arg mink∈[N ] w(Jk). By (4) the sets J1, . . . , JN are N ≥ ε−1 disjoint sets (some of
them may be empty); thus, w(Jk∗) ≤ ε · opt. Define

L =
(
OPT ∩ H̃

)
∪

⋃
k∈[k∗−1]

Jk

as the subset of all tasks in OPT of weight greater than εk∗−1 · w∗, and define Q =
OPT\ (L∪Jk∗) as the remaining tasks in OPT excluding Jk∗ . We use the following auxiliary
claim.

▷ Claim 15. |L| ≤ q(ε,m)
2 .
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i2i1 i3

B1 B2 B3

G = (X, Y, Ē)

X

Y

Figure 1 An illustration of the graph G and the maximum matching M (in red). Every edge
(i, B) in the graph indicates that bag B belongs to fit(i); that is, the representative from B in the
class of i belongs to R and the demand of this representative is at most the demand of i. Note that
even though i1 and i2 are both connected to bag B2, i1 and i2 may belong to different classes.

Proof. If L = ∅ the claim trivially follows. Otherwise,

|L| ≤
∑
i∈L

w(i)
εk∗−1 · w∗ = w(L)

εk∗−1 · w∗ ≤
opt

εk∗−1 · w∗ (5)

The first inequality holds since w(i) ≥ εk∗−1 · w∗ for all i ∈ L. The second inequality follows
from the fact that L ⊆ OPT; thus, L is a solution for I. Thus, by (5) and the definition
of w∗

|L| ≤ opt
εk∗−1 · 2 ˜opt · ε

2·m
≤ opt

εk∗−1 · opt · ε
2·m

= 2 ·m
εk∗ ≤

2 ·m
εN

≤ q(ε, m)
2 .

The second inequality holds since we assume that ˜opt ≥ opt
2 . ◁

Let R be the set returned by the algorithm. In the following, we show the existence of a
solution S such that S ∩H ⊆ R and w(S) ≥ (1− 3 · ε) · opt; this gives the statement of the
lemma by Definition 6. To construct S, we first define a mapping h from H̃ ∩ OPT to R.
For a subpath φ ∈ Φ and r ∈ [η], recall the set of active bags B(φ, r) and the representatives
iB(φ, r) for all B ∈ B(φ, r) (see Algorithm 2).

For the simplicity of the notation, for φ ∈ Φ, r ∈ [η], and i ∈ H̃(φ, r) let H̃i = H̃(φ, r)
be the class to which i belongs and let ri = r; moreover, for B ∈ B such that i ∈ B define
Bi = B as the bag containing i. We first consider tasks i in OPT ∩ H̃ whose bag does not
have a representative in R from the class of i, i.e., R∩ H̃i∩Bi = ∅. Define this set of tasks as

X =
{

i ∈ OPT ∩ H̃

∣∣∣∣ R ∩ H̃(φ, r) ∩Bi = ∅
}

. (6)

The above set X contains all tasks i ∈ OPT ∩ H̃ whose corresponding bag does not have a
representative in R from the class of i. We define a bipartite graph, in which X is one side
of the graph. The other side of the graph is

Y = B \
{

B ∈ B
∣∣ ∃i ∈ L s.t. B = Bi

}
. (7)

In words, Y describes all available bags, the collection of all bags that do not contain a task
in L. Define the bipartite graph G = (X, Y, Ē) such that the set of edges is defined as follows.
For some i ∈ X let

fit(i) =
{

B ∈ Y

∣∣∣∣ B ∩R ∩ H̃i ̸= ∅ and d (iB(P (i), ri)) ≤ d(i)
}

. (8)
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5:12 Unsplittable Flow on a Short Path

The set fit(i) describes all bags that can potentially matched to i; these bags have a
representative from the class H̃i = H̃(P (i), ri) that contain i and the representative of the
bag have a smaller or equal demand w.r.t. i. Now, a task i can be matched to a bag B only
if B ∈ fit(i), i.e., define

Ē =
{

(i, B) ∈ X × Y

∣∣∣∣ B ∈ fit(i)
}

. (9)

Let M be a maximum matching in G. We give an illustration of the above construction in
Figure 1. We show that M matches all vertices in X.

▷ Claim 16. For every i ∈ X there is B ∈ Y such that (i, B) ∈M .

Proof. Assume towards a contradiction that there is i ∈ X such that for all B ∈ Y it holds
that (i, B) /∈M . Let φ ∈ Φ and r ∈ [η] such that H̃i = H̃(φ, r). Since i ∈ X, by (6) it holds
that R ∩ H̃(φ, r) ∩Bi = ∅. Intuitively, this means that the algorithm preferred other bags
over Bi in the selection of representatives for class H̃(φ, r). Therefore, by Algorithm 2 of the
algorithm, there are q(ε, m) distinct bags B1 = B1(φ, r), . . . , Bq(ε,m) = Bq(ε,m)(φ, r) such
that for all j ∈ [q(ε, m)] it holds that iBj

(φ, r) ∈ R and d
(
iBj

(φ, r)
)
≤ d(i). Thus, for all

j ∈ [q(ε, m)] it holds that (i, Bj) ∈ Ē by (8) and (9). In addition,

|M | ≤ |X| ≤ |L| ≤ q(ε, m)
2 < q(ε, m). (10)

The first inequality holds since M is a matching in G and X is one side of a bipartition of G.
The second inequality holds since X ⊆ L by (6) and the definition of L. The third inequality
follows from Claim 15. The last inequality holds since q(ε, m) ≥ 2 assuming 0 < ε < 1

2 and
m ≥ 1. By (10) there is j ∈ [q(ε, m)] such that for all t ∈ X it holds that (t, Bj) /∈ M . In
particular, (i, Bj) /∈M and recall that (i, Bj) ∈ Ē. Therefore, M ∪ (i, Bj) is a matching in
G in contradiction that M is a maximum matching in G. ◁

For every i ∈ X define Mi = B such that (i, B) ∈M , i.e., Mi is the bag matched to i in
M . By Claim 16 it holds that each task in X is matched and every bag is matched at most
once. We define the mapping h from H̃ ∩OPT to R. Define h : H̃ ∩OPT→ R such that for
all i ∈ H̃ ∩OPT:

h(i) =
{

iBi (P (i), ri) , if Bi ∩R ∩ H̃i ̸= ∅
iMi

(P (i), ri) , else
(11)

In words, a task i ∈ H̃ ∩OPT is mapped to a task h(i) such that if the bag of i contains a
representative in R in the class of i - then h(i) is this representative; otherwise, h(i) is the
representative of the bag Mi matched to i by the matching M . Clearly, h is well defined by
Claim 16. We list immediate properties of h.

▶ Observation 17. The function h satisfies the following.
For every i ∈ H̃ ∩OPT it holds that d(h(i)) ≤ d(i) and H̃h(i) = H̃i.
For every i, j ∈ H̃ ∩OPT, i ̸= j, it holds that Bh(i) ̸= Bh(j).
For every i ∈ H̃ ∩OPT and t ∈ L \ H̃ it holds that Bh(i) ̸= Bt.

The first property follows from the definition of the graph G and the definition of the bag
representatives in Algorithm 2. The second and third properties hold since OPT takes at
most one task from each bag and using the definition of G. We can finally define the solution
S that satisfies the conditions of Definition 6. Define

S1 =
{

h(i) | i ∈ H̃ ∩OPT
}
∪
(
L \ H̃

)
(12)
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and

S2 =
{

i ∈ Q | Bi ̸= Bt ∀t ∈ S1
}

. (13)

Define S = S1 ∪S2. We show that S satisfies the conditions of Definition 6. As an immediate
property of the construction we have the following.

▶ Observation 18. h is a one-to-one function from H̃ ∩OPT to S ∩ H̃.

We use the above to prove the feasibility of S.

▷ Claim 19. S is a solution for I.

Proof. We show that S satisfies the bag constraints. Let B ∈ B. Since OPT is a solution for
I, there is at most one i ∈ B ∩OPT. We consider four cases depending on the task i.

1. If i ∈ H̃ and R ∩ H̃i ∩Bi ̸= ∅. Then, h(i) ∈ B by (11) and for all t ∈ S1 \ {h(i)} it holds
that t /∈ B by Observation 17. Furthermore, for all t ∈ S2 it holds that t /∈ B by (13).
Thus, |B ∩ S| ≤ 1.

2. If i ∈ H̃ and R ∩ H̃i ∩Bi = ∅. Then, as H̃ ⊆ L it holds that i ∈ L; thus, B /∈ Y by (7).
Therefore, by (12) we conclude that |B ∩ S1| = 0; thus,

|B ∩ S| = |B ∩ S2| ≤ |B ∩Q| ≤ |B ∩OPT| ≤ 1.

The equality holds since |B ∩ S1| = 0. The first inequality follows from (13). The last
inequality holds since OPT is a solution.

3. If i ∈ L \ H̃. Then, by (12) and (13) it holds that |B ∩ S| = |B ∩ i| = 1.
4. If i ∈ Q. Then, there are two sub cases. If i ∈ S2, by (13) for all t ∈ S1 it holds that

B ̸= Bt; thus, as |Q∩B| ≤ |OPT∩B| ≤ 1 it follows that |S ∩B| ≤ 1. Otherwise, i /∈ S2;
then, by (13) it holds that

|B ∩ S| = |B ∩ S1| ≤ 1.

The inequality follows from Observation 17.
By the above we conclude that S satisfies all bag constraints. It remains to prove that S

satisfies the capacity constraints of all edges. For e ∈ E

∑
i∈S s.t. e∈P (i)

d(i) =
∑

i∈S∩H̃ s.t. e∈P (i)

d(i) +
∑

i∈S\H̃ s.t. e∈P (i)

d(i)

=
∑

i∈OPT∩H̃ s.t. e∈P (i)

d(h(i)) +
∑

i∈S\H̃ s.t. e∈P (i)

d(i)

≤
∑

i∈OPT∩H̃ s.t. e∈P (i)

d(h(i)) +
∑

i∈OPT\H̃ s.t. e∈P (i)

d(i)

≤
∑

i∈OPT∩H̃ s.t. e∈P (i)

d(i) +
∑

i∈OPT\H̃ s.t. e∈P (i)

d(i)

=
∑

i∈OPT s.t. e∈P (i)

d(i)

≤ u(e).

The second equality holds since h is a one-to-one mapping from OPT ∩ H̃ to S ∩ H̃ by
Observation 18. The first inequality holds since S \ H̃ ⊆ OPT \ H̃ by (12) and (13). The
second inequality holds since d(h(i)) ≤ d(i) for all i ∈ OPT ∩ H̃ by Observation 17. The last
inequality holds since OPT is a solution for I. ◁

IPEC 2024



5:14 Unsplittable Flow on a Short Path

Observe that there is a substantial gap in weight between tasks in L and tasks in Q. We
use this gap in the following auxiliary claim.

▷ Claim 20. w (Q \ S) ≤ ε · opt.

Proof. Observe that

|Q \ S| = |Q \ S2| =
∣∣{i ∈ Q | ∃t ∈ S1 s.t. Bi = Bt

}∣∣ ≤ |S1| = |L|. (14)

The inequality holds since Qsatisfies the bag constraints (i.e., |Q ∩ B| ≤ 1 for all B ∈ B);
thus, for each t ∈ S1 there can be at most one i ∈ Q such that Bi = Bt (and only in this
case i is discarded from S2). The last equality holds since h is a one-to-one mapping from
OPT ∩ H̃ to S ∩ H̃ by Observation 18 and since L \ H̃ belongs both to S1 and L. Hence,

w(Q \ S) ≤ |Q \ S| · εk∗
· w∗ ≤ |L| · εk∗

· w∗ ≤ ε · w(L) ≤ ε · w(OPT) = ε · opt.

The first inequality holds since w(i) ≤ εk∗ ·w∗ for all i ∈ Q. The second inequality follows
from (14). The third inequality holds since w(i) > εk∗−1 ·w∗ for all i ∈ L. the last inequality
holds since L ⊆ OPT. ◁

The following claim shows that S satisfies the total weight required by Definition 6.

▷ Claim 21. w (S) ≥ (1− 3ε) · opt.

Proof. We first give a lower bound to the weight of S1.

w(S1) = w
(
(L \ H̃) ∪

{
h(i) | i ∈ H̃ ∩OPT

})
= w

(
L \ H̃

)
+

∑
i∈H̃∩OPT

w(h(i))

≥ w
(
L \ H̃

)
+

∑
i∈H̃∩OPT

(1− ε) · w(i)

≥ (1− ε) · w(L).

(15)

The inequality holds since for all i ∈ OPT ∩ H̃ it holds that H̃i = W h(i) by Observation 17;
thus, by (1) it follows that w(h(i)) ≥ (1− ε) ·w(i). For the last inequality, recall that H̃ ⊆ L.
Moreover,

w(S2) = w(Q)− w(Q \ S) ≥ w(Q)− ε · opt ≥ (1− ε) · w(Q)− ε · opt. (16)

The first equality holds since S2 ⊆ Q. The first inequality follows from Claim 20. By (15)
and (16) we have

w(S) = w(S1) + w(S2)
≥ (1− ε) · w(L ∪Q)− ε · opt
= (1− ε) · w(OPT \ Jk∗)− ε · opt
≥ (1− ε) · (1− ε) · opt− ε · opt
≥ (1− 3ε) · opt.

The second inequality holds since w(Jk∗) ≤ ε · opt. ◁

Observe that H ⊆ H̃ by Observation 12. Moreover, S ∩ H̃ = S1 ∩ H̃ ⊆ R by (12) and
(13). Thus, S ∩H ⊆ R. By Claim 19 and Claim 21, it follows that R is a representative set.

The proof follows from Claim 19, Claim 21, and Claim 14. ◀
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3 A Faster p-EPTAS for UFP

In this section we prove Theorem 5. Let (G, u, T, P, d, w) be a UFP instance. For simplicity,
we next assume that 1/ε is integer and that n≫ 1/ε. Recall that Φ = {P (i) | i ∈ T} is the
set of unique paths in the instance, and for every φ ∈ Φ we use Tφ = {i ∈ T |P (i) = φ} to
denote the set of tasks with path φ. Observe that |Φ| ≤ 1

2 ·m · (m + 1).
See Algorithm 3 for a pseudocode description of our approach.

Algorithm 3 p-EPTAS for UFP.

input : UFP instance I = (G, u, T, P, d, w) and a parameter 0 < ε < 0.1
output : A feasible solution APX for the instance I

Notations : Here wmax = maxi∈T w(i) and pφ :=
∑

i∈Tφ
p(i) for all φ ∈ Φ.

1 Define p(i) ←
⌊

n·w(i)
ε·wmax

⌋
for every i ∈ T .

2 For all φ ∈ Φ compute DPφ for the Knapsack instance (Tφ, d, p, mine∈φ u(e)).
3 APX← ∅.
4 for all the powers ˜opt of (1 + ε) in

[
1, n2

ε

]
do

5 for all non-negative integers (Xφ)φ∈Φ such that
∑

φ∈Φ Xφ ≤ |Φ| · 1+ε
ε do

6 Set ˜optφ = Xφ · ε
|Φ| · ˜opt for all φ ∈ Φ.

7 APX′ ←
⋃

φ∈Φ DPφ

(
min

{
pφ,
⌈ ˜optφ

⌉})
.

8 if APX′ is a feasible solution for I and p(APX′) ≥ p(APX) then
APX← APX′.

9 end
10 end
11 Return APX.

We start to perform a standard rounding of the weights (similar to several other packing
problems) so that they are positive integers in a polynomially bounded range. Let wmax =
maxi∈T wi be the maximum weight of any task. Observe that, since w.l.o.g. each task
alone induces a feasible solution, one has opt ≥ wmax. We replace each weight w(i) with
p(i) :=

⌊
n·w(i)
ε·wmax

⌋
. A standard calculation shows that an optimum solution OPT′ computed

w.r.t. the modified weights p is a (1− ε)-approximate solution w.r.t. the original problem.
Now the (rounded) weights are in the range

[
n
ε

]
. With the obvious notation, for S ⊆ T , we

will denote p(S) :=
∑

i∈S p(i).
Now we proceed by describing the two main phases of our p-EPTAS. In the first phase

we consider each path φ ∈ Φ, and define a Knapsack instance Kφ = (Tφ, d, p, mine∈φ u(e)).
Here Tφ is the set of items that can be placed in the knapsack, d(i) and p(i) are the size
and profit of item i ∈ Tφ, resp., and mine∈φ u(e) is the size of the knapsack. We solve this
instance Kφ using the standard algorithm for Knapsack based on dynamic programming. In
more detail, this algorithm defines a dynamic programming table DPφ indexed by the possible
values p′ ∈ [pφ] of the profit, where pφ :=

∑
i∈Tφ

p(i). At the end of the algorithm, for each
such p′, DPφ(p′) contains a subset of items (in Tφ) of minimum total size (or, equivalently,
demand) whose profit is at least p′2. Notice that Tφ satisfies p(Tφ) = pφ ≥ p′, hence all the

2 In a more standard version of the algorithm DPφ(p′) would contain a minimum size solution of profit
exactly p′, or a special character if such solution does not exist. However, it is easy to adapt the
algorithm to rather obtain the desired values.
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5:16 Unsplittable Flow on a Short Path

table entries DPφ(p′) are well defined. We also remark that certain table entries may contain
a solution of total demand larger than mine∈φ u(e), hence such entries will never be used to
construct a feasible UFP solution. Computing the dynamic tables for all φ ∈ Φ takes time

∑
φ∈Φ

O(|Tφ| · pφ) ≤
∑
φ∈Φ

O(|Tφ|) ·
∑
φ∈Φ

O(pφ) = O(|T |) ·O(p(T )) ≤ O

(
n3

ε

)
.

We store these dynamic tables for later use.
At this point the second phase of the algorithm starts. Let opt′ = p(OPT′), where OPT′

is an optimal solution for the UFP instance with the rounded weights p (i.e., (G, u, T, P, d, p)).
Observe that opt′ ∈

[
n2

ε

]
. Let ˜opt be a power of (1 + ε) such that opt′

1+ε < ˜opt ≤ opt′.

We can find this value by trying all the O
(

log1+ε
n2

ε

)
= O

( 1
ε · log n

)
possibilities. Define

OPT′
φ := OPT′ ∩ Tφ and opt′

φ = p(OPT′
φ). For each φ ∈ Φ we guess the largest multiple

˜optφ = Xφ · ε
|Φ| · ˜opt of ε

|Φ| · ˜opt which is upper bounded by opt′
φ. Again by guessing we

mean trying all the possible combinations. Obviously a valid guess must satisfy

ε

|Φ| ·
˜opt ·

∑
φ∈Φ

Xφ =
∑
φ∈Φ

˜optφ ≤
∑
φ∈Φ

opt′
φ = opt′ ≤ (1 + ε) ˜opt,

hence
∑

φ∈Φ Xφ ≤ Y := ⌊ 1+ε
ε |Φ|⌋. Thus it is sufficient to generate all the ordered sequences

of |Φ| non-negative integers whose sum is at most Y . As we will argue, the number of such
sequences is sufficiently small.

Given a guess { ˜optφ}φ∈Φ, we compute a tentative solution APX′ :=
∪φ∈ΦDPφ(min{pφ, ⌈ ˜optφ⌉}) using the pre-computed dynamic tables. Notice that, for
a valid guess of ˜optφ, by integrality we also have ⌈ ˜optφ⌉ ≤ opt′

φ. Upper bounding with
pφ ≥ opt′

φ guarantees that the algorithm only uses well-defined table entries. Among the
solutions APX′ which are feasible, we return one APX of maximum profit p(APX). This
concludes the description of the algorithm.

We can further improve the running time as follows. Let us compute and store the values
d(DPφ(p′)) and p(DPφ(p′)) (this does not affect the asymptotic running time). In the for
loops we only update the current value of apx := p(APX) instead of updating APX explicitly
each time. Furthermore for each tentative solution APX′ we only compute p(APX′) and∑

i∈APX′:e∈P (i) d(i) for each e ∈ E. This can be done in O(|Φ|m) time and it is sufficient
to check whether APX′ is a feasible solution and whether p(APX′) > apx. We maintain
the combination of the parameters X∗

φ and ˜opt∗ that lead to the current value of apx. At
the end of the process from the optimal parameters X∗

φ and ˜opt∗ we derive a corresponding
solution APX of profit apx in O(n + |Φ|) = O(n2) extra time.

▶ Lemma 22. Algorithm 3 produces a feasible UFP solution.

Proof. Obviously since APX = ∅ is a feasible solution, and whenever we update APX, we
do that with the value APX′ of a feasible solution. ◀

▶ Lemma 23. Algorithm 3 produces a (1− 2ε)-approximate solution.

Proof. Let us show that p(APX) ≥ (1 − ε)p(OPT′). Notice that opt′ = p(OPT′) ∈ [ n2

ε ],
hence there is a value ˜opt considered by the algorithm such that 1

1+ε opt′ < ˜opt ≤ opt′. Let
us focus on execution of the external for loop with that value of ˜opt.
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Recall that opt′
φ = p(OPT′

φ) = p(OPT′ ∩ Tφ). As already argued before, there are
corresponding values (Xφ)φ∈Φ considered by the algorithm such that ˜optφ = Xφ · ε

|Φ| · ˜opt
satisfies:

opt′
φ −

ε

|Φ|
˜opt ≤ ˜optφ ≤ opt′

φ.

Let us focus on the execution of the inner for loop with these values of Xφ (hence ˜optφ).
The profit of the corresponding solution APX′ is at least∑

φ∈Φ

˜optφ ≥
∑
φ∈Φ

opt′
φ − ε ˜opt = opt′ − ε ˜opt ≥ (1− ε)opt′.

Observe that OPT′
φ = OPT′ ∩ Tφ is a valid solution for the Knapsack instance Kφ

with profit opt′
φ, where pφ ≥ opt′

φ ≥
⌈ ˜optφ

⌉
, hence also a valid candidate solution for

DPφ

(
min{pφ,

⌈ ˜optφ

⌉}
). As a consequence d(DPφ(min{pφ, ⌈ ˜optφ⌉}) ≤ d(OPT′

φ). We con-
clude that APX′ is a feasible solution. In more detail, for each e ∈ E,∑
i∈APX′:e∈P (i)

d(i) =
∑

φ∈Φ:e∈φ

d(DPφ(
⌈ ˜optφ

⌉
)) ≤

∑
φ∈Φ:e∈φ

d(OPT′
φ) =

∑
i∈OPT′:e∈P (i)

d(i) ≤ u(e).

It follows that p(APX) ≥ p(APX′) ≥ (1− ε)opt′. Using standard arguments, we conclude
that

w(APX) ≥ ε · wmax
n

· p(APX)

≥ (1− ε) · ε · wmax
n

p(OPT′)

≥ (1− ε) · ε · wmax
n

· p(OPT)

≥ (1− ε) ·
(

ε · wmax
n

(
n

ε · wmax
· w(OPT)− n

))
= (1− ε) · (opt− ε · wmax) ≥ (1− ε) · (1− ε)opt. ◀

It remains to upper bound the running time. Let iters be the number of iterations of the
inner loop in Algorithm 3, i.e. the number of possible valid combinations for (Xφ)φ∈Φ. The
bound on the running time follows easily from the following technical lemma.

▶ Lemma 24. iters ≤
( 1+2ε

ε · e
)|Φ|.

▶ Lemma 25. Algorithm 3 runs in time O
(

n3

ε +
( 1

ε

)O(m2) ·m3 · log n
)

.

Proof. We already argued that the dynamic tables can be computed in total time O( n3

ε ).
We also observed that the outer for loop is executed O

( 1
ε log n

)
times. As already discussed,

lines 6-8 take O (|Φ| ·m) time. Thus the second phase of the algorithm can be implemented
in time O(n2 + |Φ| ·m · iters · 1

ε · log n) time. By Lemma 24, the overall running time of the
algorithm is

O

(
n3

ε
+
(

1 + 2ε

ε
· e
)|Φ|

·m · |Φ| · 1
ε

log n

)
.

The claim follows since |Φ| ≤ 1
2 ·m · (m + 1). ◀
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It remains to prove Lemma 24. To that aim, we need a standard bound on the binomial
coefficients. Let H(x) = −x · ln(x)− (1− x) · ln(1− x) be the entropy function and assume
H(0) = H(1) = 0.

▶ Lemma 26 (Example 11.1.3 in [20]). For every n ∈ N and integer 0 ≤ k ≤ n it holds that(
n
k

)
≤ exp

(
n · H

(
k
n

))
.

Proof of Lemma 24. Recall that iters is equal to the possible sequences of |Φ| non-negative
integers whose sume is at most Y =

⌊ 1+ε
ε · |Φ|

⌋
. These sequences can be represented via a

binary string as follows. Let φ1, . . . φ|Φ| be an arbitrary ordering of Φ, and Xi = Xφi
. The

bit string consists of X1 many 1s, followed by one 0, followed by X2 many 1s and so on,
ending with the X|Φ| many 1s, an additional 0 and a final padding of 1s till the target length
of Y is reached. In particular all valid sequences correspond to binary strings with Y + |Φ|
digits and exactly |Φ| zeros. It is therefore sufficient to upper bound the number of the latter
bit strings, namely

(
Y +|Φ

|Φ|
)
. By Lemma 26 we have,

iters =
(
|Φ|+

⌊
|Φ| · 1+ε

ε

⌋
|Φ|

)
≤ exp

((
|Φ|+

⌊
|Φ| · 1 + ε

ε

⌋)
· H

(
|Φ|

|Φ|+
⌊
|Φ| · 1+ε

ε

⌋))

≤ exp
((
|Φ| · 1 + 2ε

ε

)
· H
(

|Φ|
|Φ| · 1+2ε

ε

))
=
(

exp
(

1 + 2ε

ε
· H
(

ε

1 + 2ε

)))|Φ|

,

(17)

where the last inequality holds since x · H
(

a
x

)
is increasing in x for any a ≥ 1 and |Φ| +⌊

|Φ| · 1+ε
ε

⌋
≤ |Φ| · 1+2ε

ε . It also holds that

1 + 2ε

ε
· H
(

ε

1 + 2ε

)
= 1 + 2ε

ε
·
(

− ε

1 + 2ε
· ln
(

ε

1 + 2ε

)
−
(

1 − ε

1 + 2ε

)
· ln
(

1 − ε

1 + 2ε

))
≤ − ln

(
ε

1 + 2ε

)
− 1 + 2ε

ε
·
(

1 − ε

1 + 2ε

)
·
(

− ε

1 + 2ε

(
1 + ε

1 + 2ε

))
= ln

(1 + 2ε

ε

)
+
(

1 − ε

1 + 2ε

)(
1 + ε

1 + 2ε

)
≤ ln

(1 + 2ε

ε

)
+ 1

(18)

where the first inequality follows from ln(1− x) ≥ −x(1 + x) for x ∈ (0.0.1), and the second
inequality holds as (1 + x)(1− x) ≤ 1 for every x ∈ R. By (17) and (18) we have,

iters ≤
(

exp
(1 + 2ε

ε
· H
(

ε

1 + 2ε

)))|Φ|
≤
(

exp
(

ln
(1 + 2ε

ε

)
+ 1
))|Φ|

=
(1 + 2ε

ε
· e
)|Φ|

◀

We now have the tools required to complete the proof of Theorem 5.

Proof of Theorem 5. It follows directly from Lemmas 22, 23 and 25 by choosing the para-
meter ε/2 so as to have a (1− ε) approximation. ◀
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4 A Lower bound for BagUFP

In this section we prove Theorem 1 using a simple reduction from the partition problem.

Proof of Theorem 1
Recall that in the NP -complete Partition problem we are given a collection of n non-negative
integers A = {a1, . . . , an} in [0, 1] whose sum is 2M . Our goal is to determine whether there
exists a subset of numbers whose sum is precisely M .

We show that an FPTAS for BagUFP in the considered case implies a polynomial time
algorithm to solve Partition, hence the claim. We build (in polynomial time) an instance of
BagUFP with 2 edges e1 and e2, both of capacity M . Furthermore, for each aj , we create
two tasks t1

j and t2
j , with demand aj and subpath e1 and e2, resp. All the tasks have profit

1. The bags are given by the pairs {t1
j , t2

j}, j = 1, . . . , n. Obviously, the input Partition
instance is a YES instance iff the optimal solution to the corresponding BagUFP instance has
value n, i.e. exactly one task per bag is selected (notice that a solution cannot have larger
profit). Indeed, given a solution A′ ⊆ A for the Partition instance, a valid solution to the
corresponding BagUFP instance is obtained by selecting all the tasks t1

j with j ∈ A′ and all
the tasks t2

j with j /∈ A′. Notice that the total demand of the tasks using e1 and e2 must
be exactly M . Vice versa, given a BagUFP solution S of profit n, the selected tasks S1 ⊆ S

of type t1
j must have total demand exactly M , hence inducing a valid Partition solution

A′ := {j ∈ {1, . . . , n} : t1
j ∈ S1}.

We run the mentioned FPTAS on the obtained BagUFP instance with parameter ε = 1
2n

(hence taking polynomial time). If the optimal solution is n, the FPTAS will return a solution
of profit at least n

1+ε ≥ n− 1
2+1/n > n− 1, hence a solution of profit n since the profit is an

integer. Otherwise, the FPTAS will return a solution of profit at most n− 1. This is sufficient
to discriminate between YES and NO instances of Partition. ◀
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6:2 On Parameterized Inapproximability of k-Median, k-Max-Coverage, and 2-CSP

include parameterized inapproximability results for the k-Set Intersection problem [38, 6],
k-Set Cover problem [10, 31, 39, 33, 42], k-Clique problem [40, 30, 9], Steiner Orientation
problem [47], fundamental problems in coding theory and lattice theory [4, 3], and more.

A major open question in the theory of parameterized inapproximability is the resolution
of the parameterized inapproximability hypothesis (PIH) [43]. PIH asserts that there exists
some ε > 0, such that it is W[1]-hard to distinguish if a 2-CSP instance on k variables (k is the
parameter) and alphabet size n is completely satisfiable or if every assignment to its variables
satisfies at most 1 − ε fraction of the constraints. The analogue of (the resolution of) PIH in
the NP-world is the celebrated PCP theorem [2, 1, 17], and thus positively resolving PIH is
also appropriately dubbed as proving the “PCP theorem for Parameterized Complexity” [43].

PIH is known to imply the hardness of approximation (to some positive constant factor)
of many fundamental problems in parameterized complexity (for which we do not know
how to prove unconditional constant factor W[1]-hardness), such as k-maxcoverage [14] (and
consequently clustering problems such as minimizing the k-median and k-means objectives;
see [14]), Directed Odd Cycle Transversal [43], Strongly Connected Steiner Subgraph [11],
Planar Steiner Orientation [12], Grid Tiling and Determinant Maximization [46], Independent
Set in H-free graphs [19], etc.

It is known that assuming the Gap Exponential Time Hypothesis (Gap-ETH) [45, 18] one
can show that the gap problem on 2-CSP referred to in PIH is not in FPT (see e.g. [5]), and
moreover that many parameterized inapproximability results discussed in this manuscript
follow from Gap-ETH (e.g. [8, 44]). Moreover, in a recent breakthrough, Guruswami et al. [25],
building on ideas in [41], proved that assuming the Exponential Time Hypothesis [27, 28], the
aforementioned gap problem on 2-CSP is not in FPT. Subsequently, they even obtained near
optimal conditional time lower bounds for the parameterized 2-CSP problem [24]. However,
this paper is solely focused on parameterized inapproximability, and thus we will not further
elaborate on the related works in fine-grained inapproximability.

A popular approach to make progress on central questions such as resolving PIH, is to
prove unconditional hardness results for problems whose hardness is known only assuming PIH.
Such an approach (of proving the implications unconditionally) has been historically very
fruitful in complexity theory, for example, in the last decade it is in the attempt of proving
improved unconditional NP-hardness of approximation result for the vertex cover problem [35]
(whose optimal inapproximability is only known under Unique Games Conjecture [34]), that
the 2-to-2 games theorem was proven [36]. Moreover, this approach is indeed an active
line of research in the theory of parameterized inapproximabily, leading to the hardness of
approximation results for k-set cover problem [10, 31, 39], k-clique problem [40, 30, 9], and
more.

The maximization version of the k-set cover problem, i.e., the k-maxcoverage problem is a
fundamental optimization problem at the heart of many computation problems in computer
science. For example, it is at the heart of many clustering problems [23]. Formally, in the
k-maxcoverage problem we are given as input a pair (U ,S) and a parameter k, where S is a
collection of sets over the universe U , and the goal is to find k sets in S whose union is of
maximum cardinality. The k-maxcoverage problem is a canonical W[2]-complete problem, and
currently the W[1]-hardness of approximating the k-maxcoverage problem to some constant
factor only holds assuming PIH [14]. Thus, we ask:

Is it possible to prove constant inapproximability of the k-maxcoverage problem
circumventing the resolution of PIH?

This question is particularly appealing since W[1]-hardness of approximating k-set cover
(minimization variant of k-maxcoverage) was established circumventing PIH [10, 31, 39], and
more recently, similar progress was achieved for the k-clique problem as well [40, 30, 9].
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Our first result is rather surprising (at least in first glance), that the answer to the above
question is in the negative.

▶ Theorem 1 (Informal statement; See Theorem 5 for a formal statement). For every δ ∈ (0, 1/2]
(where δ is allowed to depend on k), if approximating the k-maxcoverage problem to (1 − δ)
factor is W[1]-hard then approximating 2-CSP to

(
1 − δ2

4

)
factor is also W[1]-hard (under

randomized Turing reductions).

Recall that in [14], the authors proved that for every ε > 0, assuming PIH, approximating
the k-maxcoverage problem to a factor better than 1 − 1

e + ε is W[1]-hard (see Lemma 19
in [14]). Moreover, this inapproximability factor is tight [26]. Together with Theorem 1,
we have that there is a gap preserving reduction in both directions1 between 2-CSP (on k

variables and alphabet size n) and the k-maxcoverage problem on poly(n) sets over universe
of size poly(n).

To the best of our knowledge, we are not aware of a direct gap preserving reduction to
the 2-CSP problem from the maxcoverage problem in the NP world, i.e., in other words we
do not know how to directly prove the PCP theorem for NP, assuming that approximating
maxcoverage to some constant factor is NP-hard. Furthermore, an interesting consequence of
Theorem 1 is a gap amplification result for the k-maxcoverage problem in the parameterized
complexity world: starting from the W[1]-hardness of approximating the k-maxcoverage
problem to (1 − ε) factor (for some constant ε > 0), we can first apply Theorem 1 and then
Lemma 19 of [14], to obtain that approximating the k-maxcoverage problem to (1 − 1

e + ε′)
factor, for any ε′ > 0 is W[1]-hard.

At a high level, the proof of Theorem 1 has three steps. Starting from an instance of the
k-maxcoverage problem containing n sets, in the first step we subsample a universe of size
Ok(log n) while retaining the gap in the completeness and soundness cases (Lemma 6). In
the second step, we reduce from this new k-maxcoverage instance on the smaller universe to
a variant of the 2-CSP instance called “Valued CSP” (see Section 2 for the definition) by first
equipartitioning the universe into Ok(1) many subuniverses and then constructing a Valued
CSP instance where for a subset of variables, each variable in that subset is associated with
a subuniverse and an assignment to that variable determines how each of the k solution sets
cover this subuniverse. The rest of the variables (k many of them) encode the k solution sets
(see Lemma 7). Finally, in the last step, we provide a gap preserving reduction from Valued
CSP to the standard 2-CSP (Lemma 8).

Theorem 1 has further implications on our understanding of the complexity of approxi-
mating the k-maxcoverage problem. While exactly solving the problem is W[2]-hard, it was
known to experts that approximating the k-maxcoverage problem to 1 − 1

F (k) factor, for
any computable function F , is in W[1]. A corollary of Theorem 1 is a formal proof of this
W[1]-membership (by setting δ = 1/F (k) in Theorem 1). Moreover, by modifying the range
of parameters in the reduction of [31] for the k-set cover instance, it is possible to argue that
approximating the k-maxcoverage problem to any 1 − 1/ρ(k) factor is W[1]-hard for every
unbounded computable function ρ (for example think of ρ(k) = log∗(k)). Thus, we obtain
the following.

▶ Theorem 2. Let ρ : N → N be any unbounded computable function. Then approximating
the k-maxcoverage problem to 1 − 1

ρ(k) factor is W[1]-complete.

1 Albeit the reduction from the k-maxcoverage problem to the 2-CSP problem is a randomized Turing
reduction.
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We can extend our line of inquiry and wonder if one can prove the parameterized
inapproximability of clustering objectives such as k-median and k-means without proving
anything about the inapproximability of the k-maxcoverage problem. We will restrict our
attention here to the k-median problem, but our results extend to the k-means problem as
well (see Remark 12).

In the k-median problem (in general metric), we are given as input a tuple ((V, d), C,F , τ)
and a parameter k, where V is a finite set, and d is a distance function for all pairs of points
in V respecting the triangle inequality (or more precisely (V, d) is a metric space), C,F ⊆ V

and the goal is to determine if there exists F ⊆ F such that |F | = k and cost(C,F ) is
minimized, where cost(C,F ) is the sum of distances from every client in C to its closest
facility in F (see Section 2 for a formal definition). The k-median problem is W[2]-complete
by a simple reduction from the k-maxcoverage problem, and currently the W[1]-hardness of
approximating k-median to some constant factor only holds assuming PIH [14]. Thus, we
ask:

Is it possible to prove constant inapproximability of k-median
circumventing the resolution of PIH?

Our result again is rather surprising that the answer to the above question is also in the
negative.

▶ Theorem 3. For any constants α, δ > 0, if approximating the k-median problem to
(1 +α+ δ) factor is W[1]-hard then approximating the multicolored k-maxcoverage problem to(

1 − α
2
)

factor is also W[1]-hard (under randomized Turing reductions). A similar reduction
also holds from the k-means problem to the multicolored k-maxcoverage problem.

In Remark 10 we discuss how to modify the proof of Theorem 1 to obtain the statement
of Theorem 1 to hold even for the multicolored k-maxcoverage problem instead of the (un-
multicolored) k-maxcoverage problem. Then we can put together the reduction in Theorem 3
with the modified Theorem 1 to obtain an FPT gap preserving reduction from the k-median
problem to 2-CSP problem.

The proof of Theorem 3 follows from observing that the
(
1 + 2

e + ε
)
-approximation

algorithm (for any ε > 0) of [14] can be fine-tuned and rephrased as a reduction from
k-median problem to the multicolored k-maxcoverage problem.

Both Theorems 1 and 3 illustrate the power of FPT gap preserving reductions over
classical gap preserving polynomial time reductions. In particular, if we had a polynomial
time analogue of Theorem 3, i.e., if the runtime of the algorithm A and Γ in the Theorem 3
statement are both polynomial functions then this would lead to a major breakthrough in
the field of approximation algorithms. In particular, it would show optimal approximation
thresholds for the celebrated k-median and k-means problems in the NP world, improving
on the state-of-the-art result of [15] and [29] respectively, showing that the hardness of
approximation factors obtained in [23] are optimal!

In Figure 1, we highlight gap-preserving FPT reductions between k-clique, 2-CSP, k-
maxcoverage, and k-median and k-means problems. A glaring open problem in Figure 1 is
whether constant inapproximability of the k-clique problem implies PIH. This is a challenging
open problem, even listed in [22].

2 Preliminaries

In this section, we formally define the problems of interest to this paper. Throughout, we
use the notation Ok(·) and Ωk(·) to denote that the hidden constant can be any computable
function of k.
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k-Clique

k-Max-Coverage2-CSP
k-Median

&
k-Means

Theorem 1

[20]

Open[21]

Theorem 3

[23]

Gap Preserving Reductions
Figure 1 In the above figure, we provide bidirectional FPT gap preserving reductions between

k-clique, 2-CSP, k-maxcoverage, and k-median and k-means problems, whenever possible, with
appropriate references. The reduction from k-median and k-means problems is to the multicolored
version of the k-maxcoverage problem (see Remark 13 for a discussion) and that is why the arrow is
dashed.

k-maxcoverage problem

We denote by (U ,S) a set system where U denotes the universe and S is a collection of
subsets of U . In the k-maxcoverage problem, we are given as input a set system (U ,S) and
a parameter k, and the goal is to identify k sets in S whose union is of maximum size.
We denote by OPT(U ,S) the optimum fraction of the k-maxcoverage instance (U ,S), i.e.

max
Si1 ,...,Sik

∈S

|Si1 ∪···∪Sik
|

|U| .

We denote by GapMaxkCov(τ, τ ′) the decision problem where given as input an in-
stance (U ,S) of the k-maxcoverage problem, the goal is to distinguish the completeness
case where OPT(U ,S) ≥ τ and the soundness case where OPT(U ,S) < τ ′. We also define
GapMaxkCovSmallUni(τ, τ ′) be the same problem but only restricted to the instances where
|U| ≤ Ok(log |S|).

In this paper, we also refer to the multicolored k-maxcoverage problem whose input is
(U ,S := S1∪̇S2∪̇ · · · ∪̇Sk), and the goal is to identify (S1, S2, . . . , Sk) ∈ S1 × S2 × · · · × Sk
such that |S1 ∪ S2 ∪ · · · ∪ Sk| is maximized. Moreover, we extend the above notations of
OPT, GapMaxkCov, and GapMaxkCovSmallUni to the multicolored k-maxcoverage problem.

2-CSP

For convenience, we use weighted version of 2-CSP where the edges are weighted. Note that
there is a simple (FPT) reduction from this version to the unweighted version [16].

A 2-CSP instance Π = (V,E, (Σv)v∈V , (we)e∈E , (Ce)e∈E) consists of the following:
The set of vertices (i.e. variables) V .
The set E of edges between V .
For each v ∈ V , the alphabet set Σv of v.
For each e = (u, v) ∈ E, a weight we and the constraint Ce ⊆ Σu × Σv.

An assignment is a tuple ψ = (ψv)v∈V where ψv ∈ Σv. The (weighted and normalized)
value of an assignment ψ, denoted by valΠ(ψ), is defined as:

1∑
e∈E

we
·

∑
e=(u,v)∈E

we · 1[(ψu, ψv) ∈ Cu,v],

IPEC 2024
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where for any proposition Λ, 1(Λ) is 1 if Λ is true and 0 otherwise. The value of the instance
is defined as val(Π) := max

ψ
valΠ(ψ) where the maximum is over all assignments ψ of Π. The

alphabet size of the instance is defined as max
v∈V

|Σv|. If a 2-CSP instance is provided without
(we)e∈E then the weights are all assumed to be 1.

The Gap2CSP(c, s) problem is to decide whether a 2-CSP instance Π has value at least c
or less than s. Note that the parameter of this problem is the number of variables in Π.

(Finite) Valued 2-CSP

It will also be more convenient for us to employ a more general version known as (Finite)
Valued CSP2. In short, this is a version where different assignments for each edge can results
in different values. This is defined more precisely below.

A Valued 2-CSP instance Π = (V,E, (Σv)v∈V , (fe)e∈E) consists of
V,E, (Σv)v∈V are defined similarly to 2-CSP instances.
For each e = (u, v) ∈ E, the value function fe : Σu × Σv → [0, 1].

The notion of an assignment is defined similar to 2-CSP instance but the value of an assignment
is now defined as:

valΠ(ψ) := E
(u,v)∼E

[f(u,v)(ψu, ψv)].

The value of an instance is defined similar to before. We emphasize that the main difference
between valued 2-CSP and standard 2-CSP is that the function fe can take continuous value.

The Gap2VCSP(c, s) problem is to decide whether a Valued 2CSP instance Π has value
at least c or less than s. Again, the parameter here is the number of variables.

k-median

An instance of the k-median problem is defined by a tuple ((V, d), C,F , k), where (V, d) is a
metric space over a set of points V with d(i, j) denoting the distance between two points
i, j in V . Further, C and F are subsets of V and are referred to as “clients” and “facility
locations” respectively, and k is a positive parameter. The goal is to find a subset F of k
facilities in F to minimize

cost(C,F ) :=
∑
j∈C

d(j, F ),

where d(j, F ) := min
f∈F

d(j, f). The cost of the k-means objective is cost2(C,F ) :=∑
j∈C d(j, F )2.

k-MaxCover problem

We recall the MaxCover problem introduced in [8]. A k-MaxCover instance Γ consists of a
bipartite graph G = (V ∪̇W,E) such that V is partitioned into V = V1∪̇ · · · ∪̇Vk and W is
partitioned into W = W1∪̇ · · · ∪̇Wℓ. We sometimes refer to Vi’s and Wj ’s as left super-nodes
and right super-nodes of Γ, respectively.

A solution to k-MaxCover is called a labeling, which is a subset of vertices v1 ∈ V1, . . . , vk ∈
Vk. We say that a labeling v1, . . . , vk covers a right super-node Wi, if there exists a vertex
wi ∈ Wi which is a joint neighbor of all v1, . . . , vk, i.e., (vj , wi) ∈ E for every j ∈ [k]. We
denote by MaxCover(Γ) the maximal fraction of right super-nodes that can be simultaneously
covered, i.e.,

2 See e.g. [37] and references therein.
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MaxCover(Γ) = 1
ℓ

(
max

labeling v1,...,vk

∣∣{i ∈ [ℓ] | Wi is covered by v1, . . . , vk
}∣∣) .

Given an instance Γ(G, c, s) of the k-MaxCover problem as input, our goal is to distinguish
between the two cases:
Completeness MaxCover(Γ) ≥ c.
Soundness MaxCover(Γ) ≤ s.

Concentration Inequalities

We will also use the multiplicative Chernoff inequality, which is summarized below.

▶ Theorem 4 (Chernoff Inequality). Let X1, . . . , Xm denote i.i.d. Bernoulli random variables
where E[Xj ] = q. Then, for any ζ ∈ (0, 1) we have

Pr[X1 + · · · +Xm ≥ (1 + ζ)qm],Pr[X1 + · · · +Xm ≤ (1 − ζ)qm] ≤ exp
(
−ζ2qm/3

)
.

3 Reducing k-MaxCoverage to 2-CSP

In this section, we prove the following formal version of Theorem 1.

▶ Theorem 5. For every τ > 0 and δ ∈ (0, 1/2] (where both τ and δ are allowed to depend
on k), there is a randomized algorithm A which takes as input a k-maxcoverage instance
(U ,S) and with probability 1 − o(1), outputs Γ(k) many 2-CSP instances {Πi}i∈[Γ(k)], for
some computable function Γ : N → N, such that the following holds.
Running Time: A runs in time T (k) · poly(|U| + |S|), for some computable function T : N →

N.
Size: For every i ∈ [Γ(k)], we have that Πi is defined on Λ(k) variables over an alphabet of

size poly(|U| + |S|) for some computable function Λ : N → N.
Completeness: Suppose there exist k sets in S such that their union is of size τ · |U|. Then,

there exists i ∈ [Γ(k)] and an assignment to the variables of Πi that satisfies all its
constraints.

Soundness: Suppose that for every k sets in S, their union is of size at most (1 − δ) · τ · |U|.
Then, for every i ∈ [Γ(k)] we have that every assignment to the variables of Πi satisfies
at most

(
1 − δ2

4

)
fraction of the constraints of Πi.

The proof of the theorem follows in three steps. We start by providing a randomized
reduction which shows that we may assume w.l.o.g. that |U| ≤ Ok(log n). The rough idea is
to use random hashing and subsampling to reduce the domain, as formalized below.

▶ Lemma 6. For every τ > 0 and δ ∈ (0, 1/2] (where both τ, δ may or may not depend on k),
there is a randomized FPT reduction (that holds w.p. 1 − o(1)) from GapMaxkCov(τ, (1 − δ)τ)
to GapMaxkCovSmallUni(τ ′, (1 − ε)τ ′) for ε = δ2/2 and τ ′ = δ(1 − δ) · (1 + δ2).

In the second step, we show how to reduce the small-universe k-maxcoverage instance to
a Valued CSP instance. The overall idea is to create a set of variables x1, . . . , xk where xi
represents the i-th set selected in the solution. To check that they cover a large number of
constraints, we partition the universe into M groups U1, . . . ,UM each of size O(log n/ log k)
where the small-universe k-maxcoverage instance guarantees that M = Ok(1). For each
partition j ∈ [M ], we create a variable yj . The variable encodes how x1, . . . , xk covers the

IPEC 2024
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j-th partition Uj . Namely, each σ ∈ Σyj encodes whether each element (in Uj) is covered
and, if so, by which set. Notice that there can be as many as (k + 1)|Uj | possibilities here,
but this is not an issue since |Uj | = O(log n/ log k). The constraints are then simply the
consistency checks between xi, yj where the values represents the number of elements the
i-th set covers in Uj . Formally, we prove the following.

▶ Lemma 7. For every τ, ε > 0 (where both τ, ε may or may not depend on k), there is a
deterministic FPT reduction from GapMaxkCovSmallUni(τ, (1 − ε)τ) to Gap2VCSP(c, c(1 − ε))
where c = Ok(τ).

The final part is the following lemma which shows that, in the FPT world, Gap2VCSP
reduces to Gap2CSP. At a high level, this reduction is done by guessing the values of each
edge (in the optimal solution) and turning that into a “hard” constraint as in a 2-CSP.

▶ Lemma 8. For any c > s > 0 such that c/s ≥ 1 + Ωk(1), there is a deterministic FPT
(Turing) reduction from Gap2VCSP(c, s) to Gap2CSP(1, 1 − ε) for ε = c/s−1

c/s+1 .

Finally, we put together the above three lemmas to prove Theorem 5.

Proof of Theorem 5. The algorithm A takes as input an instance of GapMaxkCov(τ, (1−δ)τ),
applies the reduction in Lemma 6 to obtain an instance of GapMaxkCovSmallUni(τ ′, (1− δ2

2 )τ ′)
for τ ′ = δ(1 − δ) · (1 + δ2), and then applies the reduction in Lemma 7 to obtain an instance
of Gap2VCSP(c, c(1 − δ2

2 )) where c = Ok(δ), and finally applies the reduction in Lemma 8 to
obtain an instance of Gap2CSP(1, 1 − ε) for ε = δ2

4−δ2 >
δ2

4 . ◀

3.1 Step I: Universe Reduction for k-MaxCoverage
In this subsection, we prove Lemma 6.

Proof of Lemma 6. Given (U ,S = {S1, . . . , Sn}), an instance of the GapMaxkCov(τ, (1−δ)τ)
problem, we create an instance (U ′,S ′ = {S′

1, . . . , S
′
n}) of the GapMaxkCovSmallUni(τ ′, (1 −

ε)τ ′) problem as follows. Let m := ⌈12k · δ−9 log n⌉ and p := δ
τ ·|U| . Let U ′ = [m]. For

each u ∈ U and j ∈ [m], let Yu,j denote an i.i.d. Bernoulli random variable that is 1 with
probability p. Then, for each i ∈ [n] and j ∈ [m], let j belong to S′

i if and only if there exist
some u ∈ Si such that Yu,j = 1.

Fix any Si1 , . . . , Sik ∈ S. For every j ∈ [m], let Xj denote the indicator whether
j ∈ S′

i1
∪ · · · ∪ S′

ik
. Note that X1, . . . , Xm are i.i.d. and,

Pr[Xj = 1] = 1 − (1 − p)|Si1 ∪···∪Sik
|.

Note also that X1 + · · · +Xm is exactly equal to |S′
i1

∪ · · · ∪ S′
ik

|.

Completeness. Suppose that OPT(U ,S) ≥ τ . Let Si1 , . . . , Sik be an optimal solution in
(U ,S). Then, we have for each j ∈ [m] that:

Pr[Xj = 1] ≥ 1 − (1 − p)τ ·|U| ≥ 1 − 1
(1 + p)τ ·|U| ≥ 1 − 1

1 + pτ |U|
= δ

1 + δ
= 1

1 − δ4 · τ ′,

where the second inequality follows from Bernoulli’s inequality and the last inequality
follows from our choice of parameters. Applying Theorem 4 with ζ = δ4 implies that
Pr[X1 + · · · +Xm ≥ τ ′] ≥ 1 − exp(−δ9m/6) = 1 − o(1) as desired.



K. C. S., E. Lee, and P. Manurangsi 6:9

Soundness. Suppose that OPT(U ,S) < (1 − δ)τ . Consider any Si1 , . . . , Sik ∈ S. We have
for each j ∈ [m] that:

Pr[Xj = 1] ≤ 1 − (1 − p)(1−δ)τ ·|U| ≤ (1 − δ)pτ |U| = δ(1 − δ) = 1
1 + δ2 · τ ′,

where the second inequality follows from Bernoulli’s inequality. Again, applying Theorem 4
with ζ = δ4 implies that Pr[X1 + · · · +Xm ≥ 1+δ4

1+δ2 τ
′] ≤ exp(−δ9(1 − δ)m/3) ≤ exp(−δ9m/6)

(where we used that δ ≤ 1/2). Taking the union bound over all i1, . . . , ik then implies that
this holds for all i1, . . . , ik with probability at least 1 − nk

exp(δ9m/6) ≥ 1 − 1
nk = 1 − o(1). ◀

▶ Remark 9. We note that we can mimic the above proof to extend Lemma 6 to the
multicolored k-maxcoverage problem as well. In particular, this gives a randomized FPT
reduction (that holds w.p. 1−o(1)) from multicolored GapMaxkCov(τ, (1−δ)τ) to multicolored
GapMaxkCovSmallUni(τ ′, (1 − ε)τ ′) for ε = δ2/2 and τ ′ = δ(1 − δ) · (1 + δ2) as well.

3.2 Step II: Small-Universe k-MaxCoverage ⇒ Valued CSP
In this subsection, we prove Lemma 7.

Proof of Lemma 7. Given an instance (U ,S = {S1, . . . , Sn}) of
GapMaxkCovSmallUni(τ, (1 − ε)τ), we construct an instance Π = (V,E, (Σv)v∈V , (fe)e∈E) of
Gap2VCSP(c, c(1 − ε)) as follows:

Let M :=
⌈

|U|
log |S| · log k

⌉
= Ok(1) and let U1∪̇ · · · ∪̇UM be a partition of U into nearly

equal parts, each of size |Ui| = O(|U|/M) = O(log n/ log k).
Let V = {x1, . . . , xk, y1, . . . , yM} and E contains (xi, yj) for all i ∈ [k] and j ∈ [M ].
For each i ∈ [k], let Σxi

= [n].
For each j ∈ [M ], let Σyj

contains all functions from Uj to {0, . . . , k}.
For each i ∈ [k], j ∈ [M ], let f(xi,yj) be defined as follows:

f(xi,yj)(σu, σv) =
{

|σ−1
v (i)|
|U| if σ−1

v (i) ⊆ Sσu
,

0 otherwise.

Finally, let c = τ
k·M .

Note that the new parameter is k + M = Ok(1). Furthermore, the running time of
the reduction is polynomial since |Σyj

| = (k + 1)|Uj | = kO(logn/ log k) = nO(1). Thus, the
reduction is an FPT reduction as desired (where the parameter is the number of variables of
the Gap2VCSP instance).

We next prove the completeness and soundness of the reduction. In fact, we will argue
that val(Π) = OPT(U ,S)

k·M , from which the completeness and soundness immediately follow. To
see that val(Π) ≥ OPT(U ,S)

k·M , let Sℓ1 , . . . , Sℓk
denote an optimal solution. We let ψxi

= ℓi for
all i ∈ [k]. As for ψyj , we let ψyj (u) be 0 if u /∈ Sℓ1 ∪ · · · ∪ Sℓk

; otherwise, we let ψyj (u) = i

such that Sℓi
(if there are multiple such i’s, just pick one arbitrarily). It is obvious by the

construction that ψ−1
yj

(i) ⊆ Sψxi
for all i ∈ [k] and j ∈ [M ]. Thus, we have

val(Π) ≥ valΠ(ψ) = 1
k ·M

∑
j∈[M ]

∑
i∈[k]

|ψ−1
yj

(i)|
|U|

= 1
k ·M

∑
j∈[M ]

|Uj ∩ (Sℓ1 ∪ · · · ∪ Sℓk
)|

|U|

= 1
k ·M

|Sℓ1 ∪ · · · ∪ Sℓk
|

|U|
= OPT(U ,S)

k ·M
.
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On the other hand, to show that val(Π) ≤ OPT(U,S)
k·M , let ψ be any assignment of Π. We have

valΠ(ψ) ≤ 1
k ·M

∑
j∈[M ]

∑
i∈[k]

|ψ−1
yj

(i) ∩ Sψxi
|

|U|

≤ 1
k ·M

∑
j∈[M ]

|Uj ∩ (Sψx1
∪ · · · ∪ Sψxk

)|
|U|

≤ 1
k ·M

|Sψx1
∪ · · · ∪ Sψxk

|
|U|

≤ OPT(U ,S)
k ·M

. ◀

▶ Remark 10. We can extend Lemma 7 to apply for the multicolored k-maxcoverage
problem as well in the following way. In particular, we can start from the multicolored
GapMaxkCov(τ, (1 − δ)τ) problem and as described in Remark 9, we can reduce it to the mul-
ticolored GapMaxkCovSmallUni(τ ′, (1 − ε)τ ′) problem for ε = δ2/2 and τ ′ = δ(1 − δ) · (1 + δ2).
Then, we note that we can mimic the proof of Lemma 7 with one minor modification that
for all i ∈ [k], the alphabet set of variable xi are the indices of the ith collection of the input
sets instead of the entire set [n].

3.3 Step III: Valued CSP ⇒ 2-CSP
In this subsection, we prove Lemma 8.

Proof of Lemma 8. Let Π = (V,E, (Σv)v∈V , (fe)e∈E) be a Valued 2-CSP instance, and let
ℓ = |E| and γ = ℓ · s. We may assume that supp(fe) ⊆ [0, γ) for all e ∈ E. Indeed, if any
σu ∈ Σu, σv ∈ Σv for (u, v) ∈ E satisfies f(u,v)(σu, σv) ≥ ℓ · s, then assigning σu to u and σv
to v alone already yields value at least s. We describe the reduction under this assumption.

Let B = ⌈2ℓ/ε⌉. For each θ ∈ [B]|E|, check if 1
|E|
∑
e∈E θe ≥ B/γ · s

1−ε . If not, then skip
this θ and continue to the next one. Otherwise, if this is satisfied, we create an instance
Πθ = (V,E, (Σv)v∈V , (wθe)e∈E , (Cθe )e∈E) as follows:

V,E, (Σv)v∈V remains the same as in Π.
For each e = (u, v) ∈ E, let wθe = θe and Ce = {(σu, σv) | fe(σu, σv) ≥ γ · θe/B}.

Note that the number of different θ’s is B|E| = O(ℓ/ε)ℓ ≤ 2O(ℓ log ℓ) and thus the above is
an FPT reduction. We next prove the completeness and soundness of the reduction.

Completeness. Suppose that there is an assignment ψ of Π such that valΠ(ψ) ≥ c. Let θψ
be defined by θψe := ⌊B · fe(ψu, ψv)/γ⌋ for all e = (u, v) ∈ E. Notice that

1
|E|

∑
e∈E

θψe = 1
|E|

∑
e=(u,v)∈E

⌊B · fe(ψu, ψv)/γ⌋

≥ 1
|E|

∑
e=(u,v)∈E

(B · fe(ψu, ψv)/γ − 1)

= B/γ · valΠ(ψ) − 1
≥ B/γ · c− 1

≥ B/γ · s

1 − ε
,

where the last inequality follows from our choice of B and ε.
Thus, the instance Πψ is considered in the construction. It is also obvious by the

construction that Πψ is indeed satisfiable.
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Soundness. Suppose (contrapositively) that for some θ with 1
|E|
∑
e∈E θe ≥ B/γ · s such

that Πθ is not a NO instance of Gap2CSP(1, 1 − ε). That is, there exists an assignment ψ
such that valΠθ (ψ) ≥ 1 − ε. From this, we have

valΠ(ψ) = 1
|E|

∑
e=(u,v)∈E

fe(ψu, ψv)

≥ 1
|E|

∑
e=(u,v)∈E

(γ · θe/B) · 1[(ψu, ψv) ∈ Ce]

= 1
|E|

γ/B · valΠθ (ψ) ·

(∑
e∈E

θe

)

≥ 1
|E|

γ/B · (1 − ε) ·
(
B/γ · s

1 − ε

)
≥ s,

where the first inequality is based on how Cθe is defined and the second inequality follows
from valΠθ (ψ) ≥ 1 − ε and the assumption on θ.

Thus, in this case, we have val(Π) ≥ s as desired. ◀

4 Reducing k-median to Multicolored k-MaxCoverage

In this section, we prove the following formal version of Theorem 3.

▶ Theorem 11. For every constant α, δ > 0, there is an algorithm A which takes as input
a k-median instance ((V, d), C,F , τ) and outputs Γ(k) many multicolored k-maxcoverage
instances {(U i,Si := Si1∪̇Si2∪̇ · · · ∪̇Sik)}i∈[Γ(k)], for some computable function Γ : N → N,
such that the following holds.
Running Time: A runs in time T (k) · poly(|V |), for some computable function T : N → N.

Size: For every i ∈ [Γ(k)], we have that |U i|, |Si| = poly(|V | · ∆), where ∆ :=
max

v,v′∈V
d(v,v′)

min
v,v′∈V

d(v,v′)>0

d(v,v′) .

Completeness: Suppose that there exist F ⊆ F such that |F | = k and cost(C,F ) ≤ τ then
there exists i ∈ [Γ(k)] and (S1, S2, . . . , Sk) ∈ Si1 ×Si2 ×· · ·×Sik such that S1 ∪S2 ∪· · ·∪Sk =
U i.

Soundness: Suppose that for every F ⊆ F such that |F | = k we have cost(C,F ) ≥ (1+α+δ)·τ
then for every i ∈ [Γ(k)] and every (S1, S2, . . . , Sk) ∈ Si1 × Si2 × · · · × Sik we have
|S1 ∪ S2 ∪ · · · ∪ Sk| ≤ (1 − α

2 ) · |U i|.

A similar reduction also holds from the k-means problem to the multicolored k-maxcoverage
problem.

Thus, from the above theorem we can show that a (1 − 1/e − ε)-FPT approximation
for the multicolored k-maxcoverage problem implies a (1 + 2/e + 3ε)-FPT approximation
for the k-median problem (by setting α = 2ε + (2/e) and δ = ε in Theorem 11). This
reduction was almost established in Cohen-Addad et al. [13] who gave an (1 + 2/e + ε)-
approximation for k-median in time (k log k/ε)O(k)poly(n), using a (1 − 1/e)-approximation
algorithm for Monotone Submodular Maximization with a (Partition) Matroid Constraint:
given a monotone submodular function f : U → R≥0 and a partition matroid (U, I), compute
a set S ∈ I that maximizes f(S). Here we observe that the multicolored k-maxcoverage
problem can replace the general submodular maximization.
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Algorithm of [13]

First, we summarize the key steps from [13] without proofs. First, they compute a coreset
of size O(k log n/ε2); it is a (weighted) subset of clients C′ ⊆ C such that for any solution
F ⊆ F with |F | = k, the k-median costs for C′ and C are within a (1 + ε) factor of each
other. Therefore, for the rest of the discussion, let C be the coreset itself and assume
|C| = O(k log n/ε2).

Let F ∗ = {f∗
1 , . . . , f

∗
k} be the centers in the optimal solution, and C∗

i be the set of clients
served by f∗

i in the optimal solution. For each i ∈ [k], let ℓi ∈ C∗
i be the client closest to f∗

i

(ties broken arbitrarily) and call it the leader of C∗
i .

By exhaustive enumerations, in (k log n/ε)O(k) time (which is upper bounded by
(k log k/ε)O(k)poly(n) time), one can guess ℓ1, . . . , ℓk as well as R1, . . . , Rk such that
d(ℓi, f∗

i ) ≤ [Ri/(1 + ε), Ri].
Let Fi := {f ∈ F : d(f, ℓi) ≤ Ri}. (One can assume Fi’s are disjoint by duplicating

facilities.)
At this point, opening an arbitrary fi ∈ Fi for each i ∈ [k] ensures a (3+ε)-approximation,

as each client c ∈ C∗
i can be connected to fi where

d(c, fi) ≤ d(c, f∗
i ) + d(f∗

i , ℓi) + d(ℓi, fi) ≤ (3 + ε) · d(c, f∗
i ),

since d(f∗
i , ℓi) ≤ d(c, f∗

i ) follows from the definition of the leader and d(ℓi, fi) ≤ (1+ε)d(ℓi, f∗
i )

by the definition of Ri and Fi.
To further improve the approximation ratio to (1 + 2/e+ ε), [13] defined the function

improv : P(F) → R≥0 as follows (here P denotes the power set). First, for each i ∈ [k], add
a fictitious facility f ′

i , whose distance to ℓi is Ri and the distances to the other points are
determined by shortest paths through ℓi; i.e., for any x, we define d(f ′

i , x) := Ri + d(ℓi, x).
Let F ′ := {f ′

1, . . . , f
′
k}. The above paragraph’s reasoning again also shows that:

cost(C,F ′) ≤ (3 + ε) · OPT. (1)

For S ⊆ F , improv(S) := cost(C,F ′)−cost(C, S∪F ′). Since any f ∈ Fi is at a distance at
most Ri from ℓi, as long as |S∩Fi| ≥ 1 for every i ∈ [k], we have cost(C, S∪F ′) = cost(C, S).

[13] proved that improv(·) is monotone and submodular, so one can use [7]’s algorithm
which obtains an (1−1/e)-approximation algorithm for Monotone Subdmoular Maximization
with a Matroid Constraint to find S such that |S ∩ Fi| = 1 for every i ∈ [k] and improv(S) ≥
(1 − 1/e) · improv(F ∗), which implies that for an approximate solution S∗ we have:

cost(C, S∗) = cost(C,F ′) − improv(S∗)
≤ cost(C,F ′) − (1 − 1/e) · improv(F ∗)
≤ cost(C,F ′) − (1 − 1/e) · (cost(C,F ′) − OPT)
= (1 − 1/e) · OPT + (1/e) · cost(C,F ′)
≤ (1 + 2/e+ ε) · OPT. (2)

improv(·) as a Coverage Function

Since the matroid constraint exactly corresponds to the multicolor part of the multicolored k-
maxcoverage problem, it suffices to show that improv(·) can be realized as a coverage function;
it will imply that a (1 − 1/e− ε)-approximation algorithm for multicolored k-maxcoverage
problem will imply (1 + 2/e+O(ε))-approximation for k-median in FPT time.
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Actually, the structure of improv(·) as the cost difference between two k-median solutions
makes it easy to do so. Let us do it for a weighted coverage function where each element
e has weight w(e) and the goal is to maximize the total weight of covered elements. (It
can be unweighted via standard duplication tricks.) For each c ∈ C, let dc := d(c, F ′) and
let Fc := {f ∈ F : d(f, c) < dc}. Let Fc = {f1, . . . , ft} ordered in the decreasing order
of d(fi, c). We create t elements Ec := {ec,1, . . . , ec,t} where w(ec,1) = dc − d(f1, c) and
w(ec,j) = d(fj−1, c)−d(fj , c) for j ∈ {2, . . . , t}. We will have a set Sf for each f ∈ F , and for
each c ∈ C, if f = fi in Fc’s ordering, Sf ∩ Ec = {ec,1, . . . , ec,i}. (If f /∈ Fc, Sf ∩ Ec} = ∅.)

Then for any F ⊆ F and for any client c ∈ C, our construction ensures that (∪f∈FSf )∩Ec
is equal to Sfc ∩ Ec where fc is the closest facility to c in F , and the total weight of
(∪f∈FSf ) ∩Ec is exactly equal to d(F ′, c) − d(fc, c), which is exactly the improvement of the
cost of c in F ∪ F ′ compared to F ′. Since improv(·) is the sum of all clients, this function is
a coverage function.

Proof of Theorem 11. The algorithm A on input ((V, d), C,F , τ) using the notion of coresets
and exhaustive enumerations (and using randomness), in FPT time constructs an instance for
each guess of the values of ℓ1, . . . , ℓk and R1, . . . , Rk. The choice of ε in the use of coresets
will be specified later. Thus, for a fixed instance (with ℓ1, . . . , ℓk and R1, . . . , Rk fixed),
construct Fc for all c ∈ C, and then the (weighted) set-system {Sf}f∈F over the universe
∪
c∈C

EC . Then, following the exact same calculations as in (2), we have that for a solution

S∗ ⊆ F such that improv(S) ≥
(
1 − α

2
)

· improv(F ∗), (for some α ≥ 0), we have:

cost(C, S∗) = cost(C,F ′) − improv(S∗)

≤ cost(C,F ′) −
(

1 − α

2

)
· improv(F ∗)

≤ cost(C,F ′) −
(

1 − α

2

)
· (cost(C,F ′) − OPT)

=
(

1 − α

2

)
· OPT + α

2 · cost(C,F ′)

≤
(

1 − α

2

)
· OPT + α

2 · (3 + ε) · OPT =
(

1 + α+ αε

2

)
· OPT,

where the last inequality follows from (1). The theorem statement completeness and soundness
claims then follows by choosing ε = 2δ

α . Moreover, the reduction is clearly in FPT time, and
the weights of the elements we constructed are bounded by ∆, which is the blowup that
happens in the size of the set system to reduce to the unweighted multicolored k-maxcoverage
problem.
▶ Remark 12. The theorem statement also holds for the k-means objective as (1) is revised to
cost2(C,F ′) ≤ (9 + ε) · OPT and we can thus conclude that for a solution S∗ ⊆ F such that
improv(S) ≥

(
1 − α

8
)

· improv(F ∗), we have cost2(C, S∗) ≤
(
1 − α

8
)

·OPT+ α
8 · (9+ε) ·OPT =(

1 + α+ αε
8
)

· OPT. ◀

▶ Remark 13. Starting from the multicolored k-maxcoverage problem, we can apply Theorem 5
to obtain a gap preserving reduction to 2-CSP, and then simply apply Lemma 19 in [14] to
obtain a gap preserving reduction to (uncolored) k-maxcoverage problem. However, at the
moment we do not know how to directly reduce the multicolored k-maxcoverage problem to
the uncolored version (while retaining the gap), but this convoluted procedure suggests that
a direct reduction might be plausible.

At this point one may wonder if it is possible to provide a gap preserving FPT reduction
from the multicolored k-maxcoverage problem to the (unmulticolored) k-maxcoverage problem.
Such a reduction would help us avoid Remark 10 and directly compose the results of
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Theorems 11 and 5 in a blackbox manner. While reductions from the multicolored variant
of a problem to its unmulticolored counterpart can be quite straightforward, such as for
the k-clique and k-set cover problem, it can also be quite notorious such as for the k-set
intersection problem [32, 6]. Such reductions are aptly dubbed as “reversing color coding”.
To the best of our knowledge, reversing color coding for the k-maxcoverage problem can
be quite hard (if we want to preserve some positive constant gap). That said, Remark 13
does provide a convoluted argument as to while a direct reversing color coding is currently
out of reach, it can still be plausibly achieved. We note here that if we are promised that
the multicolored k-maxcoverage problem instance has all the input sets of roughly the same
size then there is a simple reduction to the (uncolored) k-maxcoverage problem by simply
introducing k new subuniverses, one for each color class.

5 Inapproximability of k-MaxCoverage

In this section, we prove (the W[1]-hardness part of) Theorem 2. In [31], the authors had
implicitly proved the following: for some computable function F , it is W[1]-hard given (U ,S)
to find k sets in S that cover 1 − 1/F (k) fraction of U whenever there exists k sets in S that
cover U . We show below how that can be extended to obtain the more generalized result
given in Theorem 2.

Our proof builds on the following W[1]-hardness of gap k-MaxCover proved in [31].

▶ Theorem 14 ([31]). There exists a computable function A : N → N such that it is W[1]-hard
to decide an instance Γ =

(
G = (V ∪̇W,E), 1, 1

2
)

of k-MaxCover even in the following setting:
V := V1∪̇ · · · ∪̇Vk, where ∀j ∈ [k], |Vj | = n.
W := W1∪̇ · · · ∪̇Wℓ, where ℓ = (log n)O(1) and ∀i ∈ [k], |Wi| = A(k).

Proof Sketch. All the references here are using the labels in [31]. First we apply Propo-
sition 5.1 to Theorem 7.1 with z = 1

log2( 1
1−δ ) to obtain a (0, O(log2 m), O(t), 1/2)-efficient

protocol for k-player MultEqm,k,t in the SMP model. The proof of the theorem then follows
by plugging in the parameters of the protocol to Corollary 5.5. ◀

Starting from the above theorem, we mimics ideas from Feige’s proof of the NP-hardness
of approximating the Max Coverage problem [20]. Let T := T (k) be an integer such that
ρ(Tk) ≥ 2 · kA(k) (such an integer T exists because ρ is unbounded). Given an instance
Γ(G = (V ∪̇W,E), 1, 1/2) of k-MaxCover, we construct the universe U := {(t, i, f) : t ∈
[T ], i ∈ [ℓ], f : Wi → [k]}, and a collection of sets S := {S(t,j,v)}t∈[T ],j∈[k],v∈Vj

, where for all
t ∈ [T ] we have (t, i, f) ∈ S(t,j,v) ⇐⇒ ∃w ∈ Wi such that f(w) = j and (v, w) ∈ E. Note
that |U| = T · (log n)O(1) · kA(k) and that |S| = T · k · n.

Suppose there exists v1 ∈ V1, . . . , vk ∈ Vk such that for all i ∈ [ℓ] we have that Wi is
covered by v1, . . . , vk. Let wi ∈ Wi be a common neighbor of v1, . . . , vk. Then, we claim that
the collection {S(t,1,v1), S(t,2,v2), . . . , S(t,k,vk)}t∈[T ] covers U . This is because for every t ∈ [T ]
and every (t, i, f) ∈ U we have that S(t,f(wi),vf(wi)) covers it.

On the other hand, suppose that for every v1 ∈ V1, . . . , vk ∈ Vk we have that only 1/2
fraction of the Wis are covered by v1, . . . , vk. Fix some Tk sets S̃ in S. For every t ∈ [T ],
let Ut := {(t, i, f) : i ∈ [ℓ], f : Wi → [k]} and S̃t := S̃ ∩ {S(t,j,v) : j ∈ [k], v ∈ Vj}. We
can partition S̃ to S̃−, S̃=, and S̃+, where for every t ∈ [T ] we include all the sets in S̃t
to S̃− if |S̃t| < k, to S̃+ if |S̃t| > k, and to S̃= if |S̃t| = k. Let R+ ⊆ [T ] (resp. R− ⊆ [T ])
be defined as follows: t ∈ R+ ⇐⇒ |S̃t| > k (resp. t ∈ R− ⇐⇒ |S̃t| < k). Since
|S̃| = Tk, we have that there exists Q ⊆ [T ] × [k] such that |Q| = |S̃+| − (|R+| · k) and
(t, j) ∈ Q ⇐⇒ S̃t ∩ {S(t,j,v) : v ∈ Vj} = ∅ and |S̃t| < k.
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Now, we observe that once we fix t ∈ [T ] and j ∈ [k] and if S̃t ∩ {S(t,j,v) : v ∈ Vj} = ∅
then S̃ does not cover any element in the subuniverse {(t, i, fj) : i ∈ [ℓ]}, where fj is the
constant function which maps everything to j. Therefore, we can conclude that there are
|Q| · ℓ many elements in ∪

t∈R−
Ut such that are not covered by S̃.

Also, suppose we picked S(t,1,v1), S(t,2,v2), . . . , S(t,k,vk) for some t ∈ [T ], v1 ∈ V1, . . . , vk ∈
Vk then for every i ∈ [ℓ] such that v1, . . . , vk does not cover Wi, we have that for every
w ∈ Wi there is some j ∈ [k] such that (vj , w) /∈ E. Therefore, there is some f : Wi → [k]
such that S(t,1,v1), S(t,2,v2), . . . , S(t,k,vk) does not cover (t, i, f). Thus, these k sets do not
cover at least ℓ/2 universe elements.

We can now put everything together to complete the soundness analysis. First note that
for every t ∈ [T ], no element of the subuniverse Ut can be covered by a set in S̃ \ S̃t. For
every t ∈ [T ], if |S̃t| = k then from the above analysis we have that at least ℓ/2 elements of
Ut are not covered by S̃.

Therefore, the total number of universe elements not covered by S̃ is at least
(
|S̃=| · ℓ/2k

)
+

|Q| · ℓ = ℓ ·
(
|S̃=|/2k + |S̃+| − (|R+| · k)

)
. Since |S̃=| = (T −R+ −R−) · k, this implies that

S̃ does not cover at least ℓ ·
(
T/2 + |S̃+| − (|R+| · k) − R++R−

2

)
elements in U . Next, we

note that by the way we partitioned S̃, we have |S̃+| − (|R+| · k) = (|R−| · k) − |S̃−|, and
we also have |S̃+| ≥ |R+| · (k + 1) and |S̃−| ≤ |R−| · (k − 1). From this we can surmise that
|S̃+| − (|R+| · k) ≥ max(|R+|, |R−|) ≥ R++R−

2 . Thus, we have that S̃ does not cover at least
ℓT/2 universe elements.

Thus, we can conclude that S̃ can not cover at least Tℓ/2 universe elements. This
is k−A(k)/2 fraction of U that is not covered by S̃. The proof follows by noting that
k−A(k)/2 ≥ 1/ρ(Tk) = 1/ρ(|S̃|).

References
1 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof

verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.
doi:10.1145/278298.278306.

2 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of
NP. J. ACM, 45(1):70–122, 1998. doi:10.1145/273865.273901.

3 Huck Bennett, Mahdi Cheraghchi, Venkatesan Guruswami, and João Ribeiro. Parameterized
inapproximability of the minimum distance problem over all fields and the shortest vector
problem in all lp norms. In Barna Saha and Rocco A. Servedio, editors, Proceedings of the
55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA,
June 20-23, 2023, pages 553–566. ACM, 2023. doi:10.1145/3564246.3585214.

4 Arnab Bhattacharyya, Édouard Bonnet, László Egri, Suprovat Ghoshal, Karthik C. S., Bingkai
Lin, Pasin Manurangsi, and Dániel Marx. Parameterized intractability of even set and shortest
vector problem. J. ACM, 68(3):16:1–16:40, 2021. doi:10.1145/3444942.

5 Arnab Bhattacharyya, Suprovat Ghoshal, Karthik C. S., and Pasin Manurangsi. Parameterized
intractability of even set and shortest vector problem from gap-eth. In 45th International
Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic, pages 17:1–17:15, 2018. doi:10.4230/LIPIcs.ICALP.2018.17.

6 Boris Bukh, Karthik C. S., and Bhargav Narayanan. Applications of random algebraic
constructions to hardness of approximation. In 62nd IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 237–244.
IEEE, 2021. doi:10.1109/FOCS52979.2021.00032.

7 Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–
1766, 2011. doi:10.1137/080733991.

IPEC 2024

https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/273865.273901
https://doi.org/10.1145/3564246.3585214
https://doi.org/10.1145/3444942
https://doi.org/10.4230/LIPIcs.ICALP.2018.17
https://doi.org/10.1109/FOCS52979.2021.00032
https://doi.org/10.1137/080733991


6:16 On Parameterized Inapproximability of k-Median, k-Max-Coverage, and 2-CSP

8 Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manurangsi,
Danupon Nanongkai, and Luca Trevisan. From gap-exponential time hypothesis to fixed
parameter tractable inapproximability: Clique, dominating set, and more. SIAM J. Comput.,
49(4):772–810, 2020. doi:10.1137/18M1166869.

9 Yijia Chen, Yi Feng, Bundit Laekhanukit, and Yanlin Liu. Simple combinatorial construction
of the ko(1)-lower bound for approximating the parameterized k-clique. CoRR, abs/2304.07516,
2023. doi:10.48550/arXiv.2304.07516.

10 Yijia Chen and Bingkai Lin. The constant inapproximability of the parameterized dominating
set problem. SIAM J. Comput., 48(2):513–533, 2019. doi:10.1137/17M1127211.

11 Rajesh Chitnis, Andreas Emil Feldmann, and Pasin Manurangsi. Parameterized approximation
algorithms for bidirected steiner network problems. ACM Transactions on Algorithms (TALG),
17(2):1–68, 2021. doi:10.1145/3447584.

12 Rajesh Chitnis, Andreas Emil Feldmann, and Ondrej Suchý. A tight lower bound for planar
steiner orientation. Algorithmica, 81(8):3200–3216, 2019. doi:10.1007/s00453-019-00580-x.

13 Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li. Tight fpt
approximations for k-median and k-means. arXiv preprint, 2019. arXiv:1904.12334.

14 Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li. Tight
FPT approximations for k-median and k-means. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132
of LIPIcs, pages 42:1–42:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.ICALP.2019.42.

15 Vincent Cohen-Addad Viallat, Fabrizio Grandoni, Euiwoong Lee, and Chris Schwiegelshohn.
Breaching the 2 lmp approximation barrier for facility location with applications to k-median.
In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 940–986. SIAM, 2023.

16 Pierluigi Crescenzi, Riccardo Silvestri, and Luca Trevisan. On weighted vs unweighted
versions of combinatorial optimization problems. Inf. Comput., 167(1):10–26, 2001. doi:
10.1006/inco.2000.3011.

17 Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007. doi:10.1145/
1236457.1236459.

18 Irit Dinur. Mildly exponential reduction from gap 3sat to polynomial-gap label-cover. Electronic
Colloquium on Computational Complexity (ECCC), 23:128, 2016. URL: http://eccc.hpi-web.
de/report/2016/128, arXiv:TR16-128.

19 Pavel Dvořák, Andreas Emil Feldmann, Ashutosh Rai, and Paweł Rzażewski. Parameterized
inapproximability of independent set in h-free graphs. Algorithmica, pages 1–27, 2022.

20 Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998. doi:10.1145/285055.285059.

21 Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Interactive
proofs and the hardness of approximating cliques. J. ACM, 43(2):268–292, 1996. doi:
10.1145/226643.226652.

22 Andreas Emil Feldmann, Karthik C. S., Euiwoong Lee, and Pasin Manurangsi. A survey on
approximation in parameterized complexity: Hardness and algorithms. Algorithms, 13(6):146,
2020. doi:10.3390/a13060146.

23 Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algorithms.
Journal of algorithms, 31(1):228–248, 1999. doi:10.1006/JAGM.1998.0993.

24 Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, and Kewen Wu. Almost optimal
time lower bound for approximating parameterized clique, csp, and more, under ETH. CoRR,
abs/2404.08870, 2024. doi:10.48550/arXiv.2404.08870.

25 Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, and Kewen Wu. Parameterized
inapproximability hypothesis under ETH. In STOC, 2024.

https://doi.org/10.1137/18M1166869
https://doi.org/10.48550/arXiv.2304.07516
https://doi.org/10.1137/17M1127211
https://doi.org/10.1145/3447584
https://doi.org/10.1007/s00453-019-00580-x
https://arxiv.org/abs/1904.12334
https://doi.org/10.4230/LIPIcs.ICALP.2019.42
https://doi.org/10.4230/LIPIcs.ICALP.2019.42
https://doi.org/10.1006/inco.2000.3011
https://doi.org/10.1006/inco.2000.3011
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1145/1236457.1236459
http://eccc.hpi-web.de/report/2016/128
http://eccc.hpi-web.de/report/2016/128
https://arxiv.org/abs/TR16-128
https://doi.org/10.1145/285055.285059
https://doi.org/10.1145/226643.226652
https://doi.org/10.1145/226643.226652
https://doi.org/10.3390/a13060146
https://doi.org/10.1006/JAGM.1998.0993
https://doi.org/10.48550/arXiv.2404.08870


K. C. S., E. Lee, and P. Manurangsi 6:17

26 Dorit S Hochba. Approximation algorithms for np-hard problems. ACM Sigact News, 28(2):40–
52, 1997. doi:10.1145/261342.571216.

27 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

28 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.
1774.

29 Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silver-
man, and Angela Y Wu. A local search approximation algorithm for k-means clustering.
Computational Geometry, 28(2-3):89–112, 2004. doi:10.1016/J.COMGEO.2004.03.003.

30 Karthik C. S. and Subhash Khot. Almost polynomial factor inapproximability for parameterized
k-clique. In Shachar Lovett, editor, 37th Computational Complexity Conference, CCC 2022,
July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages 6:1–6:21. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CCC.2022.6.

31 Karthik C. S., Bundit Laekhanukit, and Pasin Manurangsi. On the parameterized complexity
of approximating dominating set. J. ACM, 66(5):33:1–33:38, 2019. doi:10.1145/3325116.

32 Karthik C. S. and Pasin Manurangsi. On closest pair in euclidean metric: Monochromatic is as
hard as bichromatic. Combinatorica, 40(4):539–573, 2020. doi:10.1007/S00493-019-4113-1.

33 Karthik C. S. and Inbal Livni Navon. On hardness of approximation of parameterized set cover
and label cover: Threshold graphs from error correcting codes. In Hung Viet Le and Valerie
King, editors, 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Conference,
January 11-12, 2021, pages 210–223. SIAM, 2021. doi:10.1137/1.9781611976496.24.

34 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of computing, pages 767–775. ACM, 2002.
doi:10.1145/509907.510017.

35 Subhash Khot, Dor Minzer, and Muli Safra. On independent sets, 2-to-2 games, and grassmann
graphs. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 576–589. ACM, 2017. doi:10.1145/3055399.3055432.

36 Subhash Khot, Dor Minzer, and Muli Safra. Pseudorandom sets in grassmann graph have near-
perfect expansion. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 592–601. IEEE
Computer Society, 2018. doi:10.1109/FOCS.2018.00062.

37 Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Rolínek. The complexity of general-
valued csps. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations
of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 1246–1258.
IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.80.

38 Bingkai Lin. The parameterized complexity of the k-biclique problem. J. ACM, 65(5):34:1–
34:23, 2018. doi:10.1145/3212622.

39 Bingkai Lin. A simple gap-producing reduction for the parameterized set cover problem. In
46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July
9-12, 2019, Patras, Greece, pages 81:1–81:15, 2019. doi:10.4230/LIPIcs.ICALP.2019.81.

40 Bingkai Lin. Constant approximating k-clique is w [1]-hard. In Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing, pages 1749–1756, 2021. doi:
10.1145/3406325.3451016.

41 Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang. Improved hardness of approximating
k-clique under ETH. In 64th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 285–306. IEEE, 2023. doi:
10.1109/FOCS57990.2023.00025.

42 Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang. Constant approximating parameter-
ized k-setcover is W[2]-hard. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings
of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy,
January 22-25, 2023, pages 3305–3316. SIAM, 2023. doi:10.1137/1.9781611977554.CH126.

IPEC 2024

https://doi.org/10.1145/261342.571216
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1016/J.COMGEO.2004.03.003
https://doi.org/10.4230/LIPIcs.CCC.2022.6
https://doi.org/10.1145/3325116
https://doi.org/10.1007/S00493-019-4113-1
https://doi.org/10.1137/1.9781611976496.24
https://doi.org/10.1145/509907.510017
https://doi.org/10.1145/3055399.3055432
https://doi.org/10.1109/FOCS.2018.00062
https://doi.org/10.1109/FOCS.2015.80
https://doi.org/10.1145/3212622
https://doi.org/10.4230/LIPIcs.ICALP.2019.81
https://doi.org/10.1145/3406325.3451016
https://doi.org/10.1145/3406325.3451016
https://doi.org/10.1109/FOCS57990.2023.00025
https://doi.org/10.1109/FOCS57990.2023.00025
https://doi.org/10.1137/1.9781611977554.CH126


6:18 On Parameterized Inapproximability of k-Median, k-Max-Coverage, and 2-CSP

43 Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Parameterized
complexity and approximability of directed odd cycle transversal. In Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 2181–2200, 2020. doi:10.1137/1.9781611975994.134.

44 Pasin Manurangsi. Tight running time lower bounds for strong inapproximability of maximum
k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In
Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 62–81. SIAM, 2020. doi:
10.1137/1.9781611975994.5.

45 Pasin Manurangsi and Prasad Raghavendra. A birthday repetition theorem and complexity of
approximating dense csps. CoRR, abs/1607.02986, 2016. arXiv:1607.02986.

46 Naoto Ohsaka. On the parameterized intractability of determinant maximization. arXiv
preprint, 2022. doi:10.48550/arXiv.2209.12519.

47 Michal Wlodarczyk. Inapproximability within W[1]: the case of steiner orientation. CoRR,
abs/1907.06529, 2019. arXiv:1907.06529.

https://doi.org/10.1137/1.9781611975994.134
https://doi.org/10.1137/1.9781611975994.5
https://doi.org/10.1137/1.9781611975994.5
https://arxiv.org/abs/1607.02986
https://doi.org/10.48550/arXiv.2209.12519
https://arxiv.org/abs/1907.06529


On Controlling Knockout Tournaments Without
Perfect Information
Václav Blažej #

University of Warwick, Coventry, UK

Sushmita Gupta #

The Institute of Mathematical Sciences, HBNI, Chennai, India

M. S. Ramanujan #

University of Warwick, Coventry, UK

Peter Strulo #

University of Warwick, Coventry, UK

Abstract
Over the last decade, extensive research has been conducted on the algorithmic aspects of designing
single-elimination (SE) tournaments. Addressing natural questions of algorithmic tractability, we
identify key properties of input instances that enable the tournament designer to efficiently schedule
the tournament in a way that maximizes the chances of a preferred player winning. Much of the
prior algorithmic work on this topic focuses on the perfect (complete and deterministic) information
scenario, especially in the context of fixed-parameter algorithm design. Our contributions constitute
the first fixed-parameter tractability results applicable to more general settings of SE tournament
design with potential imperfect information.
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1 Introduction

The algorithmic aspects of designing single-elimination (SE) knockout tournaments has been
the subject of extensive study in the last decade. This format of competition, prevalent
in various scenarios like sports, elections, and decision-making processes [28, 14, 24, 20, 7],
typically involves multiple rounds, ultimately leading to a single winner. Assume that the
number of players n is a power of 2 and consider a complete binary tree T of depth log n. We
can assign each player to a leaf of T , which gives us an initial set of pairings where the player
at a leaf is paired with the player at the sibling of the leaf. In the first round, the players in
each pair play against each other. Then, each loser is knocked out, we assign each winner to
its parent node in T , and have the new siblings play against each other. Eventually there
will only be one player remaining and they will be assigned to the root of the tree: they are
declared the winner. That is, in round i, we label the non-leaf nodes at height i − 1 (leaves
have height 0) with the winner of the match between the labels of its children. Finally, the
label assigned to the root node of T is the overall winner of the SE tournament.
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7:2 On Controlling Knockout Tournaments Without Perfect Information

A major research direction in this topic revolves around the algorithmic efficiency of
computing the initial pairings in a way that maximizes the chances of a chosen player winning
the resulting SE tournament. Here, one aims to understand the theory behind dynamics and
vulnerabilities of such tournament designs from an algorithmic perspective.

When the designer is told the winner of a match between players i and j for every
pair of players i, j (i.e., the information is “complete”) and these predictions are certain
(i.e., the information is deterministic), we get a model with perfect information and in this
case, the problem is termed Tournament Fixing (TF). The goal of the designer is then to
decide whether there is a mapping of the players to the leaves of the complete binary tree T

(this mapping is called a seeding) that results in the chosen player winning the resulting SE
tournament. This special case of complete and deterministic information has already garnered
considerable attention in the literature, particularly from the perspective of parameterized
complexity starting with the work of Ramanujan and Szeider [23] followed by [9, 10, 11, 12, 5]
who parameterize with feedback arc set number, and [31] with feedback vertex set number.

A significant gap in the extensive literature that has been identified in several papers
(see, for example [23, 10, 31, 5]), is that of the parameterized complexity of SE tournament
design problems in cases where the designer does not have perfect information. In this paper,
we aim to bridge this gap by presenting a novel parameterized algorithm for a problem
we call Probabilistic Tournament Fixing (PTF). The input to PTF consists of an
n × n matrix where (i) the (i, j)’th entry is denoted by Pi,j and is some value in [0, 1], and
(ii) Pi,j = 1 − Pj,i, see Figure 1. The goal is to decide if there is a seeding such that the
probability of the chosen player, α∗, winning the resulting tournament is at least a given
value, p∗.

As well as more closely modeling the information available in real tournaments, PTF is a
generalization of TF that has applications to other perspectives. For example, tournament
fixing can be seen as a special case of agenda control [2, 3]–a type of manipulation where a
centralized authority tries to enforce an outcome. In the backdrop of probabilistic tournament
fixing, one can ask the analogous control question: Can the tournament designer ensure
that a chosen player wins the tournament even when it does not have complete information
about the outcome of all possible matches? This “robust” design objective can be expressed
as an instance of PTF where the target probability p∗ = 1. Any uncertain matches can be
assigned any non-integer probability: if the winner of the tournament depends on them then
α∗ will not win with probability 1. This also addresses the scenario where some matches
are susceptible to collusion between the players and so the designer wants to guarantee the
result regardless of this adversarial behavior.

All of the aforementioned papers on tournament design problems that use parameterized
algorithms are in the deterministic setting; and to the best of our knowledge, this is the first
work on probabilistic tournament fixing from the perspective of parameterized complexity.
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Figure 1 An example of PTF. Thickness represents probability of a player winning and probabil-
ities that influence a match are marked by shapes. Here, player 4 wins with probability 6/10.
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Our contributions

To obtain our parameterized algorithm for PTF we introduce and solve a new problem that
we call Simultaneous TF (STF). Unlike PTF, STF is completely deterministic. As it is
easier to state our results for STF in terms of input digraphs rather than matrices, let us
first introduce the following notation.

A certainty digraph is a graphical representation of the integral values in a given set
of pairwise winning probabilities. It is a directed graph with the set of players as vertices,
where the arc ij exists if and only if i deterministically beats j (i.e., Pi,j = 1 and Pj,i = 0).
A tournament digraph is simply the certainty digraph of a matrix of pairwise winning
probabilities where every possible value is present and it is either 0 or 1. Note that in a
tournament digraph, there is exactly one arc between every pair of vertices, but this is not
necessarily true of a certainty digraph in general.

In STF, one is given a sequence of tournament digraphs D1, . . . , Dm over the same set
of n players and a chosen player α⋆. The goal in STF is to compute a single seeding (if
one exists) that makes α⋆ win in the SE tournament resulting from Di for every i. It is
straightforward to see that this problem is NP-hard. For m = 1, it is just TF. We obtain a
novel fixed-parameter (FPT) algorithm for STF parameterized by two parameters, k1 and
k2 where (i) the m tournament digraphs agree on the orientations of all but at most k1 arcs,
and (ii) the largest digraph that appears as a common subgraph of every Di, has a feedback
arc set number (see Section 2 for a formal definition) of at most k2. That is, we obtain an
algorithm with running time f(k1, k2)nO(1) for some function f . So, we get polynomial-time
solvability when both k1 and k2 are bounded. We also show that dropping either parameter
leads to Para-NP-hardness. That is, unless P=NP, there is no FPT algorithm for STF
parameterized by k1 alone or by k2 alone.

Implications for PTF. We obtain an FPT algorithm for PTF parameterized by c1 and c2,
where c1 is the number of vertex pairs {i, j} for which the given value of Pi,j is non-integral,
and c2 is the feedback arc set number of the certainty digraph of the given set of pairwise
winning probabilities. As a consequence, we get polynomial-time solvability of PTF as long
as the number of fractional entries in the input is bounded and a natural digraph defined by
the integral entries has bounded feedback arc set number.

Implications for TF. Our FPT algorithm for STF generalizes and significantly extends the
known fixed-parameter tractability of TF parameterized by the feedback arc set number of
the input tournament digraph [23, 9, 11]. Indeed, if we set m = 1, implying that k1 = 0,
the value of k2 is precisely this parameter.

Our motivation behind the choice of parameter

Small feedback arc set number (FAS) is a natural condition for competitions where there
is a clear-cut ranking of players with a small number of possible upsets. The relevance of
this parameter is evidenced by empirical work [25] and has also received significant attention
in the theoretical literature on this family of problems [1, 23, 9, 11, 12]. Our combined
parameter for PTF is in some sense a generalization of this well-motivated parameter: arcs
corresponding to fractional entries (c1) can have either orientation and hence can contribute
to the eventual FAS, while feedback arcs in the certainty digraph are already counted by c2.
Note that [31] gives an FPT algorithm parameterized by feedback vertex set number but
this does not subsume our work since it is restricted to the deterministic setting.
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Related work
The influential work of Vu et al. [29] has inspired a long line of work in the topic of
tournament fixing [30, 27, 26, 17, 23, 10, 9, 11, 31, 5, 12] primarily in the deterministic
setting. The probabilistic setting, which captures imperfect predictions of games, has also
received some attention over the years, [30, 27, 26, 1]. However, the results in these papers
are not algorithmic and do not necessarily hold for any given instance of PTF. Specifically,
[30, 27, 26] study the Braverman-Mossel probabilistic model for tournament generation and
the existence of desirable properties such as back matchings, seedings where more than half
of the top-players can win, and so on.

The topic of agenda control, initiated by Bartholdi et al. [2, 3], within which the prob-
lems on tournament fixing lie, is of significant interest in computational social choice and
algorithmic game theory. Tournament fixing as a form of agenda control has been discussed
formally in [4, Chapter 19].

Single-elimination tournaments have strong ties to a specific category of elections extens-
ively explored in voting theory, namely sequential elimination voting with pairwise comparison.
This is a vast area of research and we mention a few works that are most closely related to
our setting. Hazon et al. [13] study the algorithmic aspects of rigging elections based on
the shape of the voting tree and assuming probabilistic information. Additionally, Mattei et
al. [21] study the complexity of bribery and manipulation problems in sports tournaments
with probabilistic information. Recently, [6] has studied the parameterized complexity of
some of these bribery questions focusing mainly on another variety of tournaments but also
giving an intractability result on SE tournaments. Furthermore, Konczak et al. [18], Lang et
al. [19] and Pini et al. [22], study sequential elimination voting with incompletely specified
preferences. Their objectives include the identification of winning candidates in either some
or all complete extensions of partial preference profiles based on a given voting rule. This
line of work is related to the special case of PTF where the target probability is 1.

2 Preliminaries

We work only with directed graphs G = (V (G), E(G)) and refer to directed edges (i.e., arcs)
as uv ∈ E(G); note uv ̸= vu. We use the notation [n] = {1, . . . , n} and use [a, b] to represent
values from a range between a and b. We make the standard assumption of dealing with
inputs comprising rational numbers (see, for example, [21]). Throughout the following we
will fix the number of players as n and T as the perfect binary tree with n leaves. We denote
the leaves by L(T ). We will assume that n is a power of 2 and that the number of levels
of T is log n (an integer). We use Desc(v) to refer to the descendants of v in T (including
v), i.e., the vertices w such that there is a path from v to w away from the root. Similarly
the ancestors of v are the vertices w with a path from v to w towards the root. We define
height(v) as the number of edges on a path between v and its closest leaf.

A Q-seeding is a function γ : L(T ) → Q. If we choose Q as our set of players and our
seeding is bijective, this definition coincides with Definition 1 from [29] except that we require
that T is always the perfect binary tree with n leaves, whereas they accept any binary tree.

▶ Definition 1 (Brackets). Given tournament digraph D and a V (D)-seeding γ, a bracket
generated by γ with respect to D is a labeling of T , defined as ℓ : V (T ) → V (D) such that
ℓ(v) = γ(v) for every leaf v ∈ L and for every inner node v of T with children u and w,
ℓ(v) = ℓ(u) if ℓ(u)ℓ(w) ∈ E(D) and ℓ(v) = ℓ(w) otherwise. The player that labels the root of
T is said to win the bracket ℓ.
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▶ Definition 2. A feedback arc set (FAS) of a digraph D is a set of arcs, called back arcs,
whose reversal makes the digraph acyclic. The FAS number of D is the size of a smallest
FAS.

Note that for the graph with reversed back arcs we can devise a topological vertex ordering
≺ such that the set of back arcs in the original graph D is {xy ∈ E(D) | y ≺ x}. Note that
a tournament digraph is acyclic if and only if it is also transitive.

In proofs, we use the following technical folklore tool.

▶ Lemma 3. For every k, n ∈ N where k ≤ n, we have (log n)k ≤ (4k log k)k + n2

We will use as a subroutine the well-known FPT algorithm for ILP-Feasibility. The
ILP-Feasibility problem is defined as follows. The input is a matrix A ∈ Zm×p and a
vector b ∈ Zm×1 and the objective is to find a vector x̄ ∈ Zp×1 satisfying the m inequalities
given by A, that is, A · x̄ ≤ b, or decide that such a vector does not exist.

▶ Proposition 4 ([15, 16, 8]). ILP-Feasibility can be solved using O(p2.5p+o(p)·L) arithmetic
operations and space polynomial in L, where L is the number of bits in the input and p is the
number of variables.

3 The Algorithm for STF and its Analysis

In this section we will present the algorithm for STF. In Section 4 we will show the application
to PTF. We remark that a reader interested in the application can skip ahead to this section
immediately after parsing the main statement (Theorem 5).

Recall that the STF problem is formally defined as follows.

Simultaneous Tournament Fixing (STF)
Input: A sequence of tournament digraphs D1, . . . , Dm on vertex set N and a
player α∗ ∈ N .
Question: Does there exist an N -seeding γ such that for all i ∈ [m], α∗ wins the
bracket generated by γ with respect to Di?

Given tournament digraphs D1, . . . , Dm on common vertex set N , we define the set of
shared arcs, Ê =

⋂m
i=1 E(Di). The remaining vertex pairs are the private arcs. The shared

digraph is the graph (N, Ê). We call the FAS of the shared digraph the shared FAS and
denote it F̂ and let ≺ denote the ordering where the back arcs of the shared FAS is the set
{xy ∈ Ê | y ≺ x}. This ordering is typically depicted left-to-right so for y ≺ x we also say y

is left of x and x is right of y.

▶ Theorem 5. STF is FPT parameterized by the size of the shared FAS and the number of
private arcs.

We argue that both parameters in the above statement are required, by showing that STF
is NP-hard even when either one of the parameters is a constant (i.e., STF is para-NP-hard
parameterized by either parameter alone).

▶ Lemma 6. STF parameterized by the shared FAS is para-NP-hard and STF parameterized
by the number of private arcs is para-NP-hard.

Proof. Notice that if m = 1, then the number of private arcs is 0 and we get the TF problem,
which is NP-hard. On the other hand, let (D, α∗) be an instance of TF. Construct an
instance (D1, D2, α∗) of STF by setting D1 = D and defining D2 as the tournament obtained
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by taking an arbitrary acyclic (re-)orientation of the arcs of D, such that all arcs incident on
α∗ are oriented away from it (i.e., α∗ beats everyone else). Then, it is easy to see that the
constructed instance of STF is a yes-instance if and only if the original TF instance is also a
yes-instance. Moreover, the shared digraph in the STF instance is a subgraph of D2 and so
is acyclic, i.e., the instance has a shared FAS of size 0. ◀

The rest of the section is devoted to the proof of Theorem 5. For ease of description, in
the rest of this section we will denote our combined parameter (i.e., the sum of the size of
the shared FAS and number of private arcs) by k. Note that we can assume that the given
tournament digraphs are distinct and that m ≤ 2k. This holds because k upper bounds the
number of private arcs and there are two possibilities of how a private arc may be present
in a tournament digraph (either uv or vu) so having more than 2k necessarily produces
duplicate tournament digraphs.

Our parameterization allows us to define a small number of “interesting” vertices as
follows. We say a vertex is affected if it is an endpoint of either a feedback arc or a
private arc. Additionally, α∗ is also affected. More precisely, the set of affected vertices is
V (F̂ ) ∪ V (E(D1) \ Ê) ∪ {α∗} denoted by VA = {a1, . . . , ak′} where the ordering agrees with
≺ (i.e. aj ≺ aj+1). Note that |VA| ≤ 2k + 1.

We now use these affected vertices as “breakpoints” and classify the remaining vertices by
where in the order they fall relative to the affected vertices. Define a set Types = [|VA|+1]∪VA

and a type function τ : N → Types where τ(v) = v for each v ∈ VA and otherwise τ(v) = j,
where j is the smallest index in [|VA|] such that v ≺ aj . If there is no such index set
τ(v) = |VA|+1. We say a vertex v is of type t if τ(v) = t. We refer to types in Flex = Types\VA

as flexible types and others as singular types. See Figure 2 for an example.
This “classification” of players is motivated by the following observation, which implies

that for any three distinct players, two of which are of the same type, and the third is of a
different type, the first two have the exact same win/loss relationship with the third one.

▶ Observation 7 (slightly extended Lemma 2 in [23]). For every i ∈ [m], type t ∈ Types,
distinct players u, v ∈ τ−1(t), and w ∈ N such that τ(w) ̸= t, wu ∈ E(Di) if and only if
wv ∈ E(Di).

The above observation allows us to construct a tournament digraph on Types. Moreover,
in our search for a seeding which makes α∗ win, Observation 8 implies that we can ignore
the specific placement of the players that have the same type in relation to each other.

▶ Observation 8. If two seedings γ1 and γ2 of the same tournament digraph D differ only in
placement of players that have the same type, i.e., γ1(u) ̸= γ2(u) =⇒ τ(γ1(u)) = τ(γ2(u)),
then α∗ wins the bracket generated by γ1 with respect to D if and only if α∗ wins the bracket
generated by γ2 with respect to D.

This allows us to view the solution to STF as a seeding on the set Types and fill in the actual
players at a later stage. This insight leads us to the following definitions.

a1 a2 a3

τ−1(1) τ−1(3)τ−1(2)

a4 a5

τ−1(6)τ−1(5)

Figure 2 The set Types = (1, a1, 2, a2, 3, a3, 4, a4, 5, a5, 6) sorted according to ≺. The flexible
types are depicted containing the players of that type; note τ−1(4) = ∅. The back arcs are depicted
above while the remaining arcs go “right”, below the vertices we depict some of the remaining arcs
for illustration.
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Digraph, seeding and bracket of Types

We construct a tournament digraph, denoted by Dτ
i , with vertex set Types where type x

beats type y in Dτ
i when vertices of type x beat vertices of type y in Di. Precisely stated,

Dτ
i = (Types, E) where xy ∈ E if and only if there exist u, v ∈ N such that τ(u) = x,

τ(v) = y, and uv ∈ E(Di). We call Dτ
i the Types-digraph generated by Di. Since Dτ

i is a
tournament digraph we can define a topological ordering ≺ in much the same way as for the
original digraph. Since the flexible types are not affected vertices there are no back arcs so
we have the following observation.

▶ Observation 9. For all x, y ∈ Flex, x ≺ y if and only if xy ∈ E(Dτ
i ) (i.e. x beats y).

As discussed earlier, from now on we will use a Types-seeding to represent the solution
and fill in the actual players in place of their types at the very end. Given an N -seeding
γ, we define the Types-seeding β : L → Types as β(u) = τ(γ(u)), for each u ∈ L(T ). This
corresponds to taking the seeded players and mapping them to their types. Finally, for each
i ∈ [m], we define ℓi as the bracket generated by β with respect to Dτ

i .
To exploit Observation 8 we focus on bracket vertices that may be influenced by differences

between the input tournament digraphs. Bracket vertices that depend only on the shared
digraph always have the same winner (Observation 11), but bracket vertices that have affected
vertices as their descendants may have different winners in different input tournaments. This
distinction inspires definition of the following small structure that we can guess (by iterating
through every possibility) and later extend to find a solution.

▶ Definition 10. For any N -seeding γ, the blueprint generated by γ with respect to
D1, . . . , Dm, denoted by T , consists of

a blueprint subtree T ′ ⊆ T . This is the subtree of T induced by the ancestors of leaves
{γ−1(a) | a ∈ VA}, and
m labelings of T ′ constructed by restricting ℓi to V (T ′) for each i ∈ [m].

We will abuse the notation in the context of blueprints, by using ℓi to denote the labelings
restricted to T ′. See Figure 3 for an example of a blueprint.

Note that for an instance of STF there are a total of n!/2n−1 possible choices for the
solution seeding. Our algorithm approaches this massive search space by instead finding
a blueprint that preserves enough information from the full solution but is simple enough
that there are not many of them. Several papers, such as [23, 9, 10, 11], use a similar
approach where a substructure called a template is used. However, our approach differs
significantly from these papers since our notion of a blueprint is based on the bracket and
hence a complete binary tree representation of the outcome of the tournament. On the
other hand, the previous papers working with FPT algorithms for TF have generally defined
so-called templates using the notion of spanning binomial arborescences (SBA), which are a
specific type of spanning trees. Indeed, TF has a well-established connection to SBAs [30],
that states that there is a solution to the TF instance if and only if the tournament digraph
has an SBA rooted at the favorite player. However, SBAs are unsuitable for our setting since
they directly represent the winner of each match in their structure, in our case we would
have to deal with multiple SBAs in parallel, which appears to be challenging, technically. As
a result, the notion of blueprint considered here, Definition 10, is a significant deviation from
the literature on FPT algorithms for this type of problems.

▶ Observation 11. Every vertex that is not in the blueprint subtree has the same label in
every ℓi. More precisely, for every u ∈ V (T ) \ V (T ′) we have ℓi(u) = ℓj(u) for all i, j ∈ [m].
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v1 v2 v3 v5

P1P3

P4

P5

r

u2

u3

u4

u5

P2

γ−1(a4) = v4

Figure 3 Example of a blueprint subtree on a bracket with n = 16 and |VA| = 5. The blueprint
subtree consists of solid vertices and edges. Empty vertices and dotted edges are in the bracket, but
not in the blueprint. The colored thick edges mark the blueprint partition into paths Pj for j ∈ [5].

That is, the blueprint includes all of the information that changes between the different
input tournament digraphs. We want to find blueprints without knowing the seeding that
generates them. To do this we use the following lemma which specifies conditions under
which (T ′, ℓ1, . . . , ℓm) constitutes a blueprint.

▶ Lemma 12. Given m Types-digraphs Fi, a subtree T ′ ⊆ T , and m labelings ℓi : V (T ′) →
Types, suppose:
1. for each v ∈ V (T ′) with two children in T ′, u and w, for each i ∈ [m] we have ℓi(v) = ℓi(u)

if ℓi(u)ℓi(w) ∈ E(Fi) and ℓi(v) = ℓi(w) otherwise.
2. for each v ∈ V (T ′) with exactly one child u in T ′ there exists a type t ∈ Flex such that for

every i ∈ [m] let q := ℓi(u), either qt ∈ E(Fi) and ℓi(v) = q or tq ∈ E(Fi) and ℓi(v) = t,
and

3. every vertex v with no children in T ′ is also a leaf in T and ℓi(v) = ℓj(v) ∈ VA for all
i, j ∈ [m].

Then there exist m tournament digraphs, D1, . . . , Dm and an N -seeding γ such that
(T ′, ℓ1, . . . , ℓm) is the blueprint generated by γ with respect to D1, . . . , Dm and Fi is the
Types-digraph generated by Di for each i ∈ [m].

Proof. We aim to construct a seeding γ and tournament digraphs D1, . . . , Dm which generate
our blueprint (T ′, ℓ1, . . . , ℓm). Due to Definition 10 and Condition 3 we know that γ(v) = ℓi(v)
for all v ∈ L(T ′) and i ∈ [m], which fixes all affected vertices of the tournament digraphs.
As the remaining leaves Q = L(T ) \ L(T ′) are not part of the blueprint, we know by
Observation 11 that ℓi(v) = ℓj(v) for all i, j ∈ [m] and v ∈ Q. All singular types were
assigned, hence, the leaves Q must be assigned players with flexible types. In particular, for
every non-blueprint vertex w whose parent v is in the blueprint we can find a type t ∈ Flex
according to Condition 2. To ensure that vertex w indeed gets type t we take the set of all
the leaves under w and for each of them q ∈ Q ∩ Desc(w) we create a new player p with type
τ(p) = t and assign γ(q) = t. We see that this way each leaf q ∈ Q gets a new player because
when we follow a path from the leaf to the root then the first vertex of T ′ we encounter is
v and the one before is w which when processed as described above assigned a player to q.
Hence, γ is complete. Finally, for each i ∈ [m] as Fi = Dτ

i we know that the singular types of
Fi directly translate to players in Di. The players that get flexible types were created when
we devised γ. As the last step, we add arcs to Di so that uv ∈ E(Di) ⇐⇒ τ(u)τ(v) ∈ E(Fi)
as implied by Observation 7. ◀

We want to find a bound on the number of blueprints so we can enumerate them in the
desired time complexity. Towards that, we first show that the sequences of labels along paths
from leaves to the root are well structured.
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▶ Lemma 13. Let s1, s2, . . . , slog n be a sequence of types assigned by ℓi along a path in T

starting in a leaf x up to the root r, i.e., s1 = ℓi(x) and slog n = ℓi(r), then the number of
positions j ∈ [log n − 1] such that sj ̸= sj+1 is 2k(k + 1).

Proof. We take a tournament digraph Di and observe, that every of its arcs is used at most
once because such match implies one of its players was eliminated from the bracket. In our
case, however, some types (τ) represent multiple vertices so arcs in Dτ

i may be repeated if
one of their endpoints is not a singleton type. We have ≺ the ordering of the players that
witnesses that the shared graph has FAS at most k. Consider one i ∈ [log n − 1] such that
si ̸= si+1. These types represent players x and y such that τ(x) = si+1 and τ(y) = si and x

won against y so we have arc xy ∈ E(D). There are two possibilities, either the new type
si+1 is strictly right of si or strictly left of si with respect to the ordering ≺. In the strictly
right case, say si is j-th type when we order the types from 1 up to 2k + 1 in the ≺ ordering.
As si ≺ si+1 we know that si+1 is at least (j + 1)-th in the ≺ ordering. Looking at the
whole sequence of type labels, the case where si ≺ si+1 may repeat at most 2k times in a
row. In the strictly left case, we have si+1 ≺ si so xy is a back arc so this case may appear
at most k times in total. For each left case we may have the right case repeating up to 2k

times which gives us an upper bound on the number of positions where the type changes of
2k(k + 1) ∈ O(k2). ◀

While there are O(nn) N -seedings and even O(kn) Types-seedings, there are only f(k) ·
nO(1) different blueprints.

▶ Lemma 14. There exists a function f such that there are only f(k) · nO(1) blueprints.
Additionally, it is possible to iterate through all of them that agree with a given sequence of
Types-digraphs in FPT time.

Proof. First, we partition the blueprint subtree T ′ into |VA| paths Pj in the following way,
see Figure 3. Each path Pj has one endpoint in a leaf vj that maps to an affected vertex
γ(vj) = aj , P1 has the other endpoint in root r, and all the other paths Pj for j ≥ 2 end in
a vertex uj whose parent belongs to a different path Pj′ , j′ ≠ j. These decompositions are
characterized having for each 2 ≤ j ≤ |VA| by height of uj (i.e. length of Pj) and index of
the path parent of uj belongs to. Height of uj is upper bounded by log n and we can upper
bound possible indices of parent paths by |VA|. This gives us an upper bound on the number
of blueprint subtrees (log n · |VA|)|VA|. Note we may be overcounting as one may decompose
T ′ in multiple ways, however, decomposition gives a unique way to retrieve T ′. So every
possible T ′ is counted and the total number of blueprints is upper bounded by the number
of decompositions.

Second, we need to upper bound the number of possible blueprint labelings ℓi for i ∈ [m].
Note that each Pj of the blueprint subtree decomposition is part of path P ′

j that goes from
vj to the root r. Due to Lemma 13 we can upper bound the number of changes of ℓi along P ′

j

to O(k2). Joining this bound over all i ∈ [m] we get that there are no more than O(m · k2)
changes (in any labeling) along P ′

j . Hence, we can represent labelings of P ′
j by O(m · k2) runs

where each run is a tuple made of a run label and a run integer. Run labels have (2k + 1)m

possible values because they combine labels ℓi for all i ∈ [m]. Run integers say how many
vertices have the specified labels in a row and are in [log n]. Therefore, there are at most(
(2k + 1)m · log n

)O(m·k2) labelings of P ′
j . Repeating this argument again for all paths P ′

j ,
j ∈ |VA|, we get that the blueprint subtree contains no more than

(
(2k+1)m ·log n

)O(m·k2·|VA|)

vertices u that have a child v such that ℓi(u) ̸= ℓi(v) for some i ∈ [m].
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Combining the above bounds we have at most (log n·|VA|)|VA| ·
(
(2k+1)m ·log n

)O(m·k2·|VA|)

labeled blueprints. Finally, by the bounds m ≤ 2k and |VA| ≤ 2k+1 we get (k2k ·log n)O(2k·k3).
Choosing f(k) = k2k2

upper bounds the total number of possible blueprints by f(k) · nO(1)

by Lemma 3.
To iterate through all the blueprints we first guess the parent of each path Pj and the

length of each path before it reaches its parent path for j ≥ 2. This gives a tree T ′. We have
T ′ ⊆ T if and only if T ′ is binary so we check that every vertex has at most two children.
Next we guess the labels for each P ′

j by guessing m · 2k(k + 1) runs. We then check that
the guessed labels agree on every vertex that is shared between the P ′

js. Finally we check
the conditions of Lemma 12. This tells us that our guess is a blueprint generated by γ.
We have already shown that the number of guesses we could make is upper bounded by
f(k) · nO(1). ◀

This shows we can guess the blueprint efficiently. Next, we take a blueprint T and
construct an ILP where the existence of a feasible solution is both a necessary and sufficient
condition for the existence of a solution to the instance of STF with blueprint T .

In the remainder of the paper we frequently use the following set of specific blueprint
vertices. We also divide it into two sub-categories.

▶ Definition 15 (Important vertices). For a blueprint T = (T ′, ℓ1, . . . , ℓm) the set of important
vertices imp(T ) is the subset of vertices in V (T ) \ V (T ′) that have a parent from V (T ′). I.e.,
these are the non-blueprint children of the blueprint vertices; note that a blueprint vertex
cannot have two non-blueprint children.

For each important vertex w ∈ imp(T ), let v be the parent of w, and let u be the sibling
of w (the other child of v). Note that T and T ′ agree on these relationships and u, v ∈ V (T ′)
while w is only in V (T ). If ℓi(v) = ℓi(u) for all i ∈ [m], we add (u, v, w) to JT . Otherwise
there exists i ∈ [m] such that ℓi(v) ̸= ℓi(u) and we add (u, v, w, i) to KT for some such i.

The reason for these two categories is that wherever the type label changes at a vertex
with only one child in the blueprint tree, the other child must be labeled with the new type
(Lemma 12). This reduces the number of players needed to pack into this subtree by one.

ILP Feasibility

Given a blueprint T = (T ′, ℓ1, . . . , ℓm), we initialize variables bt and ct for t ∈ Flex where bt

keeps the number of leaves that need to be mapped to a type that either is equal to t or is
beaten by t and ct keeps the number of players of type t that remain to be assigned to the
solution. We initially set bt = 0 and ct = |{j ∈ N : τ(j) = t}| for all t ∈ Flex.

We now consider each important vertex by iterating through JT and KT (in any order):
For each (u, v, w) ∈ JT we add 2height(w) to bq where q is the strongest type from Flex
that gets beaten by all ℓ1(v), . . . , ℓm(v).
For each (u, v, w, i) ∈ KT we add 2height(w) − 1 to bℓi(v) and then decrement cℓi(v) by one.
Recall that i in this case reflects ℓi(v) ̸= ℓi(u).

If ct < 0 for any t ∈ Flex then the blueprint requires more players of type t than are
available, so we can safely reject it.

Now, we define our instance of ILP-Feasibility, denoted by IT , over a set of O(km+1)
non-negative constants bs and ct, and O(km+1) variables xs,t, where s, t ∈ Flex. The ILP
has the following constraints.
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For all t ∈ Flex,
∑

s∈Flex
xs,t = ct, (1)

For all s ∈ Flex,
∑

t∈Flex
xs,t = bs, (2)

For all s, t ∈ Flex with t ≺ s xs,t = 0, (3)
For all s, t ∈ Flex xs,t ≥ 0. (4)

The intuition is as follows. Variable xs,t represents how many leaves we assigned to have
type t that cannot be assigned a type stronger than s. Equation (1) ensures the number of
players assigned type t is equal to the number of players we have available, Equation (2)
ensures that each group of leaves with strongest type s is assigned the correct number of
players, Equation (3) forbids assignment of a player that is too strong to a group, and we
have Equation (4) so that we are assigning a non-negative number of players.

▶ Lemma 16. Given an instance of STF that has a solution γ, there exists a blueprint, T ,
such that IT is feasible.

Proof. We construct the blueprint generated by γ, and denote it T = (T ′, ℓ1, . . . , ℓm). We
will construct a solution to IT as follows.

Initially set xs,t = 0. Then we process the important vertices, see Definition 15, as follows.
For each (u, v, w) ∈ JT we have that ℓi(u) beats ℓi(w) for all i ∈ [m]. So for each t ∈ Flex
we add |{y ∈ Desc(w) ∩ L(T ) : τ(γ(y)) = t}| to xq,t where q is the strongest flexible type
that gets beaten by all ℓ1(v), . . . , ℓm(v).
For each (u, v, w, i) ∈ KT we have that ℓi(w) beats ℓi(u). Even if this also occurs
for some other i there is still only one new label by Observation 11 (the label of u

could be different but there is only one label of w). We can trace back the type
ℓi(w) to a leaf z ∈ Desc(w) ∩ L(T ) where τ(γ(z)) = ℓi(w). For each t ∈ Flex we add
|{y ∈ Desc(w) ∩ L(T ) \ {z} : τ(γ(y)) = t}| to xℓi(w),t.

Effectively, we are taking the important vertices as shown in Definition 15 and assigning
the values xs,t according to the seeding γ.

However, we also know that at least one leaf that is a descendant of a vertex where the
label in the blueprint changes must be assigned a player with the type that the label changes
to. We exclude these known leaves from the count. It remains to show that this assignment
satisfies all the constraints.

We count each player exactly once except for γ(z) for tuples in KT . Since ct starts as
the total number of players of type t and the appropriate ct is decremented for each tuple in
KT , the total number of players of type t we count is exactly ct so Equation (1) is satisfied.

v

wu

(a) ∀i : ℓi(v) = ℓi(u).

v

wu

z

(b) ∃i : ℓi(v) ̸= ℓi(u).

Figure 4 Depiction of ℓi in cases during creation of the ILP instance. Arrows depict match where
the player at arrow tail wins. Red bold path depicts the player that gets to v in ℓi. (a) u beats w so
all leaves necessarily lose to u. (b) There is a leaf z that beats u and it also beats all other leaves.

IPEC 2024
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Every leaf of T that is not in the blueprint is a descendant of exactly one important
vertex. Hence it counts towards exactly one bs except for z for tuples in KT which is excluded.
Therefore the total number of leaves (regardless of the type of the player assigned to them
by γ) that are descendants of w is 2height(w) for tuples in JT and one less for tuples in KT .
Summing over all possible important vertices gives us bs, so Equation (2) is satisfied.

We know that ℓi(x) ≺ ℓi(v) never happens for any i ∈ [m] and x ∈ Desc(w) by the
definition of bracket and since every back arc is between affected vertices and x cannot be
an affected vertex. In particular the flexible types of the leaves y ∈ Desc(w) ∩ L(T ) cannot
beat ℓi(v) for any i ∈ [m]. This means they will never contribute to any xs,t where t ≺ s

and hence the assignment of xs,t will satisfy Equation (3). ◀

We now show the converse of Lemma 16.

▶ Lemma 17. If there exists a blueprint T where IT has a solution, then the instance of
STF is a yes-instance.

Proof. We construct the solution γ by assigning players to γ(v) for all v ∈ L(T ). For this
proof, we define assign player p to leaf v as setting γ(v) = x, and marking x and v so that
they may not be assigned later. The marking plays a role when we assign set P to set L

which means we assign |L| arbitrary players of P to arbitrary leaves in L one by one.
We start by assigning to the leaves of the blueprint. The labelings in any blueprint always

agree on the leaves, i.e., for v ∈ L(T ′) we have ℓi(v) = ℓj(v) for all i, j ∈ [m]. So we can
assign ℓi(v) to v for every v ∈ L(T ′).

It remains to assign players to the other leaves of T . Note that all the remaining players
have flexible types and they form a total order. Let Bs where s ∈ Flex be called a bag, we will
gradually add leaves to the bags. Each bag indicates what is the strongest flexible type s its
leaves can be assigned to. Initially, we set all bags Bs = ∅. Our aim is to add the remaining
leaves to the bags in a way that |Bs| = bs. We process each important vertex as follows:

For each (u, v, w) ∈ JT we add L(T ) ∩ Desc(w) to Bq where q is the strongest flexible
type that gets beaten by all ℓ1(v), . . . , ℓm(v).
For each (u, v, w, i) ∈ KT we choose an arbitrary z ∈ L(T ) ∩ Desc(w) and j ∈ τ−1(ℓi(v)),
assign j to z, then add L(T ) ∩ Desc(w) \ {z} to Bℓi(v).

Observe that for each tuple the number of vertices added to Bs is equal to the increase of
bs in definition of the ILP, hence, we have |Bs| = bs for each s ∈ Flex. Moreover, at this
point the number of unassigned players of type t ∈ Flex is equal to ct because we started
with all non-blueprint vertices and assigned exactly one for each tuple in KT which reflects
the decrease of ct by one in the definition of the ILP.

For each s, t ∈ Flex assign xs,t players of type t to Bs. We assign xs,t players of τ−1(t) to
the leaves Bs. Since xs,t is a solution to IT we know by Equation (1) that we assign the right
number of players to each bag, by Equation (2) we know that from each type we assign the
remaining unassigned ct players. Lastly by Equation (3) we know that the assigned players
will lose as appropriate to players assigned to vertices of the blueprint (for tuples in JT ) or z

(for tuples in KT ). Hence, a feasible ILP implies we have a yes-instance. ◀

Proof of Theorem 5. Given an instance of STF, (D1, . . . , Dm, α∗), we first calculate the
types and the Types-digraphs generated by each Di. Then, according to Lemma 14, we
can iterate through the feasible blueprints in FPT time. For each of these blueprints we
prepare an ILP instance. We first initialize it in O(k2) time. Then for each blueprint we
calculate the O(n) elements of JT and KT and we perform O(1) operations on each element.
The ILP contains Equations (1) and (2) |Flex| times each. Each contains |Flex| variables
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and a constant. It also contains Equation (3) |Flex| · (|Flex| − 1) times and Equation (4)
|Flex|2 times each with one variable and one constant. All values are upper bounded by n so
the total number of bits in the input is O(|Flex|2 · log n) and we have |Flex|2 variables. As
|Flex| = 2k + 1 by Proposition 4 we solve the ILP instance in O

(
(k2)2.5k2+o(k2) · k2 log n

)
time and space polynomial in k2 · log n. If the ILP instance is feasible then, by Lemma 17,
we answer yes. If we have iterated through every blueprint and none of the ILP instances
were feasible we answer no by Lemma 16. ◀

4 Application to PTF

Let us define the parameterization we consider for PTF. Recall an instance of PTF is of the
form (N, P, p∗, α∗) where P is a matrix of pairwise winning probabilities over the player set
N and p∗ is the target probability with which we want the player α∗ to win.

▶ Definition 18 (Parameter for PTF). Recall that for an instance (N, P, p∗, α∗) of PTF, the
certainty digraph is the digraph defined over the vertex set N where there is an arc uv in
the digraph if and only if Pu,v = 1. Define the degree of uncertainty of this instance as the
number of pair sets {u, v} from N such that Pu,v is not equal to 0 or 1.

Notice that in the above definition, if (N, P, p∗, α∗) is an instance of PTF, then the degree
of uncertainty is half the number of fractional values in P .

As a consequence of Theorem 5, we obtain the following algorithm for PTF.

▶ Theorem 19. PTF is FPT parameterized by the FAS number of the certainty digraph and
the degree of uncertainty.

We observe that the shared digraph in STF is analogous to the certainty digraph in PTF.
Hence, we prove Theorem 19 by proving the following lemma that reduces PTF to STF and
then using the algorithm of Theorem 5 in the premise of Lemma 20.

▶ Lemma 20. If one can solve STF in time T , then PTF can be solved in time T · 22k · nO(1)

where k is the degree of uncertainty of the PTF instance and n is the input size.

Proof. Let (N, P, α∗, p∗) denote an instance of PTF and let C be the certainty digraph.
Let us first sketch the idea behind the reduction. If we were to run the probabilistic

experiment (thereby determining who wins each uncertain match) we would get a new arc
between every pair of players u, v where neither uv nor vu are in C: the arc uv appears
in the tournament with probability Puv, otherwise the arc vu appears there instead. Our
goal in the reduction is to consider all 2k possible outcomes of this random process. They
are tournament digraphs on N (i.e. “completions of the certainty digraph”), call them
D1, . . . , D2k , where C ⊆ Di for each i ∈ [2k]. Note that, since the orientations of the arcs
not in the certainty digraph are chosen independently, the probability that we would get Di

is just the product of each Pu,v where uv ∈ E(Di) \ E(C). Since the tournament digraphs
Di are elementary events in our sample space, we have that the probability of an event
D ⊆ {D1, . . . , D2k } occurring is simply the sum of the probabilities of each Di ∈ D. So we
can, completely deterministically, for each event D, calculate its probability of occurrence.

Let us now return to the actual reduction. As described above, for each event D, we
calculate its probability of occurrence. If it is at least p∗ we create a new STF instance
comprising the player α∗ and the digraphs in D and solve the instance in T time using the
algorithm assumed in the premise.

IPEC 2024
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If any of these instances is a yes-instance (i.e. there is a seeding γ where α∗ wins the
bracket generated by γ with respect to Di ∈ D for every i), then we argue that this seeding
is a solution for PTF as follows. The probability of at least one of the Dis occurring is at
least p∗ and in each of them α∗ wins the bracket generated by γ. Hence the probability of
α∗ winning the bracket generated by γ is at least p∗.

Conversely, if we have a solution seeding for the PTF instance then there is some non-
empty collection of Dis (i ∈ [2k]) such that α∗ wins in each. Call this collection D. Since
we started with a solution seeding, the probability of D occurring (i.e., the sum of the
probabilities of occurrence of the Dis in D) is at least p∗ and hence this collection is one of
the STF instances created in our reduction.

As there are 22k possible events D and for each, we perform a polynomial-time processing
to construct the STF instance and then invoke the assumed algorithm that runs in T time,
we obtain T · 22k · nO(1) time complexity for PTF. ◀

5 Concluding remarks and future work

We have obtained the first fixed-parameter tractability results for SE tournament design with
potential imperfect information. The rich body of work on the deterministic version provides
natural directions for future research: for example, a probabilistic version of parameterization
with respect to feedback vertex set number, as studied by Zehavi [31] would be an improvement
over this work. Alternately, probabilistic modeling of demand tournament fixing or popular
tournament fixing, where the goal is to schedule “high-value” matches as opposed to ensuring
a specific player wins, as studied by Gupta et al. [12] and Chaudhary et al. [5], respectively,
are also possible research directions.
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Abstract
The orthogonality dimension of a graph over R is the smallest integer d for which one can assign to
every vertex a nonzero vector in Rd such that every two adjacent vertices receive orthogonal vectors.
For an integer d, the d-Ortho-DimR problem asks to decide whether the orthogonality dimension
of a given graph over R is at most d. We prove that for every integer d ≥ 3, the d-Ortho-DimR

problem parameterized by the vertex cover number k admits a kernel with O(kd−1) vertices and
bit-size O(kd−1 · log k). We complement this result by a nearly matching lower bound, showing
that for any ε > 0, the problem admits no kernel of bit-size O(kd−1−ε) unless NP ⊆ coNP/poly.
We further study the kernelizability of orthogonality dimension problems in additional settings,
including over general fields and under various structural parameterizations.
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1 Introduction

For a field F and an integer d, a d-dimensional orthogonal representation of a graph G = (V, E)
over F is an assignment of a vector uv ∈ Fd with ⟨uv, uv⟩ ̸= 0 to each vertex v ∈ V , such that
for every two adjacent vertices v and v′ in G, it holds that ⟨uv, uv′⟩ = 0. We consider here
the standard inner product, defined for any two vectors x, y ∈ Fd by ⟨x, y⟩ =

∑d
i=1 xi · yi

with operations performed over the field F. The orthogonality dimension of a graph G over
F, denoted by ξF(G), is the smallest integer d for which G admits a d-dimensional orthogonal
representation over F (see Definition 10 and Remark 11).

The notion of orthogonal representations over the real field R was introduced in 1979
by Lovász [26], who used them to define the celebrated ϑ-function that was motivated by
questions in information theory on the Shannon capacity of graphs. Over the years, orthogonal
representations and the orthogonality dimension have found a variety of applications in
several areas of research. In graph theory, orthogonal representations over the reals were
used by Lovász, Saks, and Schrijver [28] to characterize connectivity properties of graphs
(see also [27, Chapter 10]). In computational complexity, the orthogonality dimension over
finite fields was related to lower bounds in circuit complexity by Codenotti, Pudlák, and
Resta [13] (see also [19, 18]). Over the complex field, it was employed by de Wolf [15] to
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determine the quantum one-round communication complexity of promise equality problems
(see also [9, 6, 7]). Additional notable applications from the area of information theory are
related to index coding [3, 1], distributed storage [2], and hat-guessing games [30].

The question of the complexity of determining the orthogonality dimension of a given
graph over a specified field was proposed in 1989 by Lovász et al. [28]. For a field F and
an integer d, consider the decision problem that given a graph G asks to decide whether
ξF(G) ≤ d. It is easy to see that the problem can be solved efficiently for d ∈ {1, 2}, because
a graph G satisfies ξF(G) ≤ 1 if and only if it is edgeless, and it satisfies ξF(G) ≤ 2 if and
only if it is bipartite. For every d ≥ 3, however, it was shown by Peeters [29] in 1996 that
the problem is NP-hard for every field F. More recently, it was shown in [12] that for every
sufficiently large integer d, it is NP-hard to distinguish graphs G that satisfy ξF(G) ≤ d from
those satisfying ξF(G) ≥ 2(1−o(1))·d/2, provided that F is either a finite field or R.

Motivated by the diverse applications of orthogonality dimension, the present paper
delves into the computational complexity of this graph quantity from the perspective of
parameterized complexity. We study the decision problems associated with orthogonality
dimension with respect to various structural parameterizations, with a particular attention
dedicated to the vertex cover number parameterization. We exhibit fixed-parameter tractabil-
ity results for such problems, along with upper and lower bounds on their kernelizability. Our
approach draws its inspiration from prior work on the parameterized complexity of coloring
problems, most notably by Jansen and Kratsch [23] (see also [22, Chapter 7]) and by Jansen
and Pieterse [24]. In what follows, we provide an overview on relevant research on coloring
problems and then turn to a description of our contribution. We use here standard notions
from the area of parameterized complexity, whose definitions can be found in Section 2.4
(see also, e.g., [14, 17]).

Graph coloring is a cornerstone concept in graph theory that has been extensively studied
from a computational point of view. For an integer q, a q-coloring of a graph G is an
assignment of a color to each vertex of G from a set of q colors. The coloring is said to be
proper if it assigns distinct colors to every two adjacent vertices in the graph. A graph G is
called q-colorable if it admits a proper q-coloring, and the smallest integer q for which G is
q-colorable is called the chromatic number of G and is denoted by χ(G). For an integer q,
let q-Coloring denote the decision problem that given a graph G asks to decide whether
χ(G) ≤ q. The Coloring problem is defined similarly, with the only, yet crucial, difference
that the number of colors q is not fixed but forms part of the input. It is well known that the
q-Coloring problem can be solved in polynomial time for q ∈ {1, 2} and is NP-complete
for every q ≥ 3. This implies that the Coloring problem, parameterized by the number of
colors q, is not fixed-parameter tractable unless P = NP.

The study of the parameterized complexity of coloring problems was initiated in 2003 by
Cai [8], who proposed the following terminology. For a family of graphs G and for an integer
k, let G + kv denote the family of all graphs that can be obtained from a graph of G by
adding at most k vertices (with arbitrary neighborhoods). Equivalently, a graph G = (V, E)
lies in G + kv if there exists a set X ⊆ V of size |X| ≤ k, referred to as a modulator, such
that the graph G \ X obtained from G by removing the vertices of X lies in G. For example,
letting Empty denote the family of all edgeless graphs, the family Empty + kv consists of
all the graphs that admit a vertex cover of size at most k. For an integer q, the q-Coloring
problem on G + kv graphs is the parameterized problem defined as follows.

Input: A graph G = (V, E) and a set X ⊆ V such that G \ X ∈ G.
Question: Is χ(G) ≤ q?
Parameter: The size k = |X| of the modulator X.

As before, the Coloring problem on G + kv graphs is defined similarly, except that the
number of colors q is not fixed but forms part of the input.
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A common parameterization of graph problems that received a considerable amount of
attention in the literature is that of the vertex cover number, corresponding to the family
G = Empty (see, e.g., [16]). It is well known that the Coloring problem on Empty + kv
graphs is fixed-parameter tractable. Nevertheless, Bodlaender, Jansen, and Kratsch [5]
proved that the problem does not admit a kernel of polynomial size under the assumption
NP ⊈ coNP/poly, whose refutation is known to imply the collapse of the polynomial-time
hierarchy [32]. Yet, for any fixed integer q ≥ 3, Jansen and Kratsch [23] showed that the
q-Coloring problem on Empty + kv graphs admits a kernel with O(kq) vertices which can
be encoded in O(kq) bits (see also [16]). This result was improved by Jansen and Pieterse [24]
as an application of an algebraic sparsification technique they introduced in [25]. It was
shown in [24] that for every q ≥ 3, the q-Coloring problem on Empty+kv graphs admits a
kernel with O(kq−1) vertices and bit-size O(kq−1 · log k) (see [24] for various generalizations).
On the contrary, it was shown in [23, 24] that for every q ≥ 3 and any ε > 0, the problem
does not admit a kernel that can be encoded in O(kq−1−ε) bits unless NP ⊆ coNP/poly,
thereby settling its kernelization complexity up to a multiplicative ko(1) term.

The paper [23] further studied the kernelization complexity of the q-Coloring problem
on G + kv graphs for general families G. In particular, they considered graph families G
that are hereditary (i.e., closed under removal of vertices) and that are, roughly speaking,
local with respect to the q-List Coloring problem, in the sense that a NO instance of
q-List Coloring that involves a graph from G must have a NO sub-instance whose size
depends solely on q. For such families G, it was shown in [23] that the q-Coloring problem
on G + kv graphs admits a kernel of polynomial size, and this result was complemented
with a lower bound on the kernel size relying on the assumption NP ⊈ coNP/poly. These
results apply, for example, for the families ∪Split and ∪Cochordal of the graphs whose
connected components are split graphs and cochordal graphs respectively. On the other
hand, strengthening a result of Bodlaender et al. [4], the authors of [23] proved that the
3-Coloring problem on Path + kv graphs does not admit a kernel of polynomial size unless
NP ⊆ coNP/poly, where Path stands for the family of path graphs.

1.1 Our Contribution
This paper initiates a systematic study of the parameterized complexity of the orthogonality
dimension of graphs. It is noteworthy that the orthogonality dimension of graphs is related
to their chromatic number. Indeed, for every field F and for every graph G, it holds that
ξF(G) ≤ χ(G), because a proper q-coloring of G may be viewed as a q-dimensional orthogonal
representation of G over F that uses only vectors from the standard basis of Fq (see Claim 12).
Yet, it turns out that the two graph quantities can differ substantially, as there exist graphs
where the orthogonality dimension is exponentially smaller than the chromatic number
(see, e.g., [20, Proposition 2.2]). Our investigation of the parameterized complexity of
orthogonality dimension problems aligns with the approach of [23, 24] for studying coloring
problems within the parameterized complexity framework. While coloring problems are
primarily combinatorial in nature, the attempt to prove analogous results for orthogonality
dimension raises intriguing questions reflecting the algebraic aspects of this graph quantity.

We first introduce the decision problems associated with orthogonality dimension.

▶ Definition 1. For a field F, the Ortho-DimF problem is defined as follows.
Input: A graph G = (V, E) and an integer d.
Question: Is ξF(G) ≤ d?

For a field F and a family of graphs G, the (parameterized) Ortho-DimF problem on G + kv
graphs is defined as follows.
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8:4 Kernelization for Orthogonality Dimension

Input: A graph G = (V, E), a set X ⊆ V such that G \ X ∈ G, and an integer d.
Question: Is ξF(G) ≤ d?
Parameter: The size k = |X| of the modulator X.

For a field F, an integer d, and a family of graphs G, the (parameterized) d-Ortho-DimF
problem on G + kv graphs is defined as follows.

Input: A graph G = (V, E) and a set X ⊆ V such that G \ X ∈ G.
Question: Is ξF(G) ≤ d?
Parameter: The size k = |X| of the modulator X.

Let us stress that the integer d forms part of the input in the Ortho-DimF problem, whereas
it is a fixed constant in the d-Ortho-DimF problem. Note that the hardness result of [29]
implies that for every field F, the Ortho-DimF problem parameterized by the solution value
d is not fixed-parameter tractable unless P = NP.

The main parameterization we consider is the vertex cover number of the input graph,
which corresponds to the family G = Empty. We start with the following fixed-parameter
tractability result.

▶ Theorem 2. Let F be either a finite field or R. The Ortho-DimF problem on Empty+kv
graphs is fixed-parameter tractable.

In fact, we prove an extension of Theorem 2, showing that if the Ortho-DimF problem over
a field F is decidable, then the corresponding Ortho-DimF problem on Empty + kv graphs
is fixed-parameter tractable (see Theorem 14). While it is easy to see that the Ortho-DimF
problem is decidable for any finite field F, the real case relies on a result of Tarski [31] on
the decidability of the existential theory of the reals (see Proposition 17).

We next consider the kernelizability of the d-Ortho-DimF problem parameterized by
the vertex cover number for a fixed integer d. For finite fields F, one may deduce from a
result of [24] that the problem admits a kernel of polynomial size, where the degree of the
polynomial grows exponentially with d. We prove the following generalized and stronger
result.

▶ Theorem 3. For every field F and for every integer d ≥ 3, the d-Ortho-DimF problem
on Empty + kv graphs admits a kernel with O(kd) vertices and bit-size O(kd).

Theorem 3 prompts us to determine the smallest possible kernel size for the d-Ortho-
DimF problem on Empty + kv graphs. The following result furnishes a lower bound,
conditioned on the complexity-theoretic assumption NP ⊈ coNP/poly.

▶ Theorem 4. For every field F, every integer d ≥ 3, and any real ε > 0, the d-Ortho-DimF
problem on Empty + kv graphs does not admit a kernel with bit-size O(kd−1−ε) unless
NP ⊆ coNP/poly.

The proof of Theorem 4 combines the lower bound on kernels for coloring problems proved
in [23, 24] with a novel linear-parameter transformation from those problems to those
associated with orthogonality dimension. More specifically, we show that for every field F
and for every integer d ≥ 3, it is possible to efficiently transform a graph G into a graph
G′ so that χ(G) ≤ d if and only if ξF(G′) ≤ d while essentially preserving the vertex cover
number (see Theorem 25). This is in contrast to a reduction of [29], which is appropriate
only for d = 3 and significantly increases the vertex cover number. The transformation relies
on a gadget graph that enforces the vectors assigned to two specified vertices to be either
orthogonal or equal up to scalar multiplication (see Lemma 21).
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We remark that Theorem 4 implies that, unless NP ⊆ coNP/poly, the degree of the
polynomial lower bound on the size of a kernel for the d-Ortho-DimF problem on Empty+kv
graphs can be arbitrarily large when d grows. This yields that the Ortho-DimF problem on
Empty + kv graphs, in which d constitutes part of the input, is unlikely to admit a kernel of
polynomial size.

Theorems 3 and 4 leave a multiplicative gap of roughly k between the upper and lower
bounds on the kernel size achievable for the d-Ortho-DimF problem parameterized by the
vertex cover number. For the real field R, we narrow this gap to a multiplicative term of
ko(1), as stated below.

▶ Theorem 5. For every integer d ≥ 3, the d-Ortho-DimR problem on Empty + kv graphs
admits a kernel with O(kd−1) vertices and bit-size O(kd−1 · log k).

The proof of Theorem 5 borrows the sparsification technique of [25] (see also [24]). A key
technical ingredient in applying this method lies in a construction of a low-degree polynomial,
which assesses the feasibility of assigning a vector to a vertex based on the vectors of its
neighbors (see Lemma 20). Our construction hinges on the fact that the zero vector is the
only self-orthogonal vector over the reals. It would be interesting to decide whether or not a
similar upper bound on the kernel size could be obtained for finite fields, where this property
does not hold.

We finally turn to the study of kernels for the d-Ortho-DimF problem on G + kv
graphs for general hereditary graph families G. Our first result in this context offers a
sufficient condition on G for the existence of a polynomial size kernel for d-Ortho-DimF
on G + kv graphs. This condition is related to a variant of the d-Ortho-DimF problem,
termed d-Subspace ChoosabilityF, which was previously studied in various forms (see,
e.g., [21, 11]) and may be viewed as a counterpart of the q-List Coloring problem for
orthogonal representations. In this problem, the input consists of a graph G and an assignment
of a subspace of Fd to each vertex, and the goal is to decide whether G admits an orthogonal
representation over F that assigns to every vertex a vector from its subspace. We show
that if the d-Subspace ChoosabilityF problem on graphs from a family G is local, in the
sense that every NO instance has a NO sub-instance on at most g(d) vertices, then the
d-Ortho-DimF problem on G + kv graphs admits a kernel with O(kd·g(d)) vertices. We
demonstrate the applicability of this result for the graph families ∪Split and ∪Cochordal.
On the contrary, for the Path family, we show that it is unlikely that the d-Ortho-DimF
problem on Path + kv graphs admits a polynomial size kernel even for d = 3.

1.2 Outline

The remainder of the paper is structured as follows. In Section 2, we collect several definitions
and facts that will be used throughout the paper. In Section 3, we study the fixed-parameter
tractability of the Ortho-DimF problem parameterized by the vertex cover number and
prove Theorem 2. In Section 4, we present polynomial size kernels for the d-Ortho-DimF
problem parameterized by the vertex cover number and prove Theorems 3 and 5. In Section 5,
we complement the results of Section 4 by providing limits on the kernelizability of the
d-Ortho-DimF problem parameterized by the vertex cover number and prove Theorem 4.
For our study on the kernelizability of the d-Ortho-DimF problem on G + kv graphs for
general hereditary graph families G, we refer the reader to the full version of the paper.
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2 Preliminaries

2.1 Notations
For an integer n, let [n] = {1, 2, . . . , n}. All graphs considered in this paper are simple. For
a graph G = (V, E) and a set X ⊆ V , we let G[X] denote the subgraph of G induced by X.
The set X is called a vertex cover of G if every edge of G is incident with a vertex of X. We
let G \ X denote the graph obtained from G by removing the vertices of X (and the edges
that touch them). For a vertex v ∈ V , we let NG(v) denote the set of neighbors of v in G.

2.2 Linear Algebra
For a field F and an integer d, two vectors x, y ∈ Fd are said to be orthogonal if ⟨x, y⟩ = 0,
where ⟨x, y⟩ =

∑d
i=1 xiyi with operations over F. If ⟨x, x⟩ = 0 then x is self-orthogonal,

and otherwise it is non-self-orthogonal. The orthogonal complement of a subspace W ⊆ Fd

is the subspace W ⊥ of all vectors in Fd that are orthogonal to all vectors of W , that is,
W ⊥ = {x ∈ Fd | ∀y ∈ W, ⟨x, y⟩ = 0}. Note that the orthogonal complement satisfies
dim(W ) + dim(W ⊥) = d and W = (W ⊥)⊥. The following simple lemma, proved in the full
version of the paper, characterizes the subspaces whose orthogonal complement includes a
non-self-orthogonal vector. Recall that the characteristic of a field is the smallest positive
number of copies of the field’s identity element that sum to zero, or 0 if no such number
exists.

▶ Lemma 6. Let F be a field, let d be an integer, and let W be a subspace of Fd.
1. If the characteristic of F is 2, then there exists a non-self-orthogonal vector in W ⊥ if and

only if the all-one vector does not lie in W .
2. If the characteristic of F is not 2, then there exists a non-self-orthogonal vector in W ⊥ if

and only if W ⊥ ⊈ W .

Borrowing the terminology of [25], we say that a field F is efficient if field operations and
Gaussian elimination can be performed in polynomial time in the size of a reasonable input
encoding. All finite fields, as well as the real field R when restricted to rational numbers (to
ensure finite representation), are efficient.

▶ Lemma 7. For every efficient field F, there exists a polynomial-time algorithm that given
a collection of vectors in Fd, decides whether there exists a non-self-orthogonal vector in Fd

that is orthogonal to all of them.

Proof. For input vectors u1, . . . , uℓ ∈ Fd, let W = span(u1, . . . , uℓ). Observe that there
exists a non-self-orthogonal vector in Fd that is orthogonal to u1, . . . , uℓ if and only if there
exists a non-self-orthogonal vector in the orthogonal complement W ⊥. By Lemma 6, for a
field F of characteristic 2, this is equivalent to the all-one vector not lying in W , and for
every other field F, this is equivalent to W ⊥ ⊈ W (that is, at least one vector of a basis
of W ⊥ does not lie in W ). Since F is an efficient field, these conditions can be checked in
polynomial time. This completes the proof. ◀

For a field F and an integer d, if W is a subspace of Fd of dimension smaller than d,
then its orthogonal complement W ⊥ has dimension at least 1, hence there exists a nonzero
vector orthogonal to W . However, if we require this vector not only to be nonzero but also
non-self-orthogonal, its existence is no longer guaranteed. This consideration motivates the
following definition.
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▶ Definition 8. For a field F and an integer d, let m(F, d) denote the largest integer m such
that for every subspace W of Fd with dim(W ) < m, there exists a non-self-orthogonal vector
in W ⊥.

▶ Remark 9. For every field F and for every integer d ≥ 1, it holds that 1 ≤ m(F, d) ≤ d.
Indeed, the lower bound holds because there exists a non-self-orthogonal vector orthogonal to
the zero subspace of Fd, and the upper bound holds because no nonzero vector is orthogonal
to the entire vector space Fd. For a field F of characteristic 2, it holds that m(F, d) = 1,
because no non-self-orthogonal vector is orthogonal to the 1-dimensional subspace spanned
by the all-one vector. For every other field F, it holds that m(F, d) ≥ ⌈d/2⌉. To see this,
consider a subspace W ⊆ Fd of dimension dim(W ) < ⌈d/2⌉, and observe that it satisfies
dim(W ⊥) = d − dim(W ) > d − ⌈d/2⌉ = ⌊d/2⌋, and thus dim(W ⊥) > dim(W ). This implies
that W ⊥ ⊈ W , hence by Item 2 of Lemma 6, there exists a non-self-orthogonal vector in
W ⊥, as required. We also observe that if the vector space Fd has no nonzero self-orthogonal
vectors, then m(F, d) = d, because for every subspace W ⊆ Fd of dimension smaller than
d there exists a nonzero vector in W ⊥. In particular, for every integer d, it holds that
m(R, d) = d.

2.3 Orthogonality Dimension
The orthogonality dimension of a graph over a given field is defined as follows.

▶ Definition 10. For a field F and an integer d, a d-dimensional orthogonal representation
of a graph G = (V, E) over F is an assignment of a vector uv ∈ Fd with ⟨uv, uv⟩ ̸= 0 to
each vertex v ∈ V , such that for every two adjacent vertices v and v′ in G, it holds that
⟨uv, uv′⟩ = 0. The orthogonality dimension of a graph G over a field F, denoted by ξF(G), is
the smallest integer d for which G admits a d-dimensional orthogonal representation over F.

▶ Remark 11. Let us emphasize that the definition of an orthogonal representation does not
require vectors assigned to non-adjacent vertices to be non-orthogonal. Orthogonal repres-
entations that satisfy this additional property are called faithful (see, e.g., [27, Chapter 10]).
Note that orthogonal representations of graphs are sometimes defined in the literature as
orthogonal representations of the complement, requiring vectors associated with non-adjacent
vertices to be orthogonal (with no constraint imposed on vectors of adjacent vertices). We
decided to use here the other definition, but one may view the notation ξF(G) as standing
for ξF(G).

▷ Claim 12. For every field F and for every graph G, it holds that ξF(G) ≤ χ(G).

Proof. For a graph G = (V, E), let q = χ(G), and consider a proper coloring c : V → [q] of
G. Assign to each vertex v ∈ V the vector ec(v) in Fq, where ei stands for the vector of Fq

with 1 on the ith entry and 0 everywhere else. The vectors assigned here to the vertices of
G are obviously non-self-orthogonal vectors of Fq. Further, for every two adjacent vertices
v and v′ in G, it holds that c(v) ̸= c(v′), hence ⟨ec(v), ec(v′)⟩ = 0. This implies that there
exists a q-dimensional orthogonal representation of G over F, and thus ξF(G) ≤ q. ◁

2.4 Parameterized Complexity
We present here a few fundamental definitions from the area of parameterized complexity.
For a thorough introduction to the field, the reader is referred to, e.g., [14, 17].
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A parameterized problem is a set Q ⊆ Σ∗ × N for some finite alphabet Σ. A fixed-
parameter algorithm for Q is an algorithm that given an instance (x, k) ∈ Σ∗ × N decides
whether (x, k) ∈ Q in time f(k) · |x|c for some computable function f and some constant c.
If Q admits a fixed-parameter algorithm, then we say that Q is fixed-parameter tractable.

A compression (also known as generalized kernel and bikernel) for a parameterized
problem Q ⊆ Σ∗ × N into a parameterized problem Q′ ⊆ Σ∗ × N is an algorithm that given
an instance (x, k) ∈ Σ∗ ×N returns in time polynomial in |x|+k an instance (x′, k′) ∈ Σ∗ ×N,
such that (x, k) ∈ Q if and only if (x′, k′) ∈ Q′, and in addition, |x′| + k′ ≤ h(k) for some
computable function h. The function h is referred to as the size of the compression. If h is
polynomial, then the compression is called a polynomial compression. If |Σ| = 2, the function
h is called the bit-size of the compression. When we say that a parameterized problem Q

admits a compression of size h, we mean that there exists a compression of size h for Q into
some parameterized problem. A compression for a parameterized problem Q into itself is
called a kernelization for Q (or simply a kernel). It is well known that a decidable problem
admits a kernel if and only if it is fixed-parameter tractable.

A transformation from a parameterized problem Q ⊆ Σ∗ ×N into a parameterized problem
Q′ ⊆ Σ∗ ×N is an algorithm that given an instance (x, k) ∈ Σ∗ ×N returns in time polynomial
in |x|+k an instance (x′, k′) ∈ Σ∗ ×N, such that (x, k) ∈ Q if and only if (x′, k′) ∈ Q′, and in
addition, k′ ≤ h(k) for some computable function h. If h is polynomial, the transformation is
called polynomial-parameter, and if h is linear, the transformation is called linear-parameter.

3 Fixed-Parameter Tractability of Ortho-DimF

In this section, we prove that the Ortho-DimF problem parameterized by the vertex cover
number is fixed-parameter tractable for various fields F (recall Definition 1).

3.1 Finite Fields
We begin with the simple case, where the field F is finite. The proof resembles the one of the
fixed-parameter tractability of the Coloring problem parameterized by the vertex cover
number.

▶ Theorem 13. For every finite field F, Ortho-DimF on Empty + kv graphs is fixed-
parameter tractable.

Proof. Fix a finite field F. The input of Ortho-DimF on Empty + kv graphs consists of a
graph G = (V, E), a vertex cover X ⊆ V of G of size |X| = k, and an integer d. Consider
the algorithm that given such an input acts as follows. If d > k then the algorithm accepts.
Otherwise, the algorithm enumerates all possible assignments of non-self-orthogonal vectors
from Fd to the vertices of X. For every such assignment, the algorithm checks for every
vertex v ∈ V \ X if there exists a non-self-orthogonal vector in Fd that is orthogonal to
the vectors assigned to the neighbors of v (note that they all lie in X). If there exists an
assignment to the vertices of X such that the answer is positive for all the vertices of V \ X,
then the algorithm accepts, and otherwise it rejects.

For correctness, observe first that the input graph G is (k + 1)-colorable, as follows by
assigning k distinct colors to the vertices of the vertex cover X and another color to the vertices
of the independent set V \ X. It thus follows, using Claim 12, that ξF(G) ≤ χ(G) ≤ k + 1.
Therefore, if d > k, then it holds that ξF(G) ≤ d, hence our algorithm correctly accepts.
Otherwise, the algorithm tries all possible assignments of non-self-orthogonal vectors of Fd to
the vertices of X. Since the vertices of V \ X form an independent set in G, an assignment to
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the vertices of X can be extended to the whole graph if and only if for each vertex v ∈ V \ X

there exists a non-self-orthogonal vector in Fd that is orthogonal to the vectors assigned to
the neighbors of v (which all lie in X). Since this condition is checked by the algorithm for
all possible assignments to the vertices of X, its answer is correct.

We finally analyze the running time of the algorithm. On instances with d > k, the
algorithm is clearly efficient. For instances with d ≤ k, the number of assignments of vectors
from Fd to the vertices of X is at most |F|d·|X| ≤ |F|k2 . Further, by Lemma 7, given a
collection of vectors of Fd, it is possible to decide in polynomial time whether there exists
a non-self-orthogonal vector in Fd that is orthogonal to all of them. This implies that our
algorithm for Ortho-DimF on Empty + kv graphs can be implemented in time |F|k2 · nO(1),
where n stands for the input size, hence the problem is fixed-parameter tractable. ◀

3.2 General Fields
We turn to the following generalization of Theorem 13.

▶ Theorem 14. Let F be a field for which the Ortho-DimF problem is decidable. Then the
Ortho-DimF problem on Empty + kv graphs is fixed-parameter tractable.

Recall that the algorithm of Theorem 13 for the Ortho-DimF problem on Empty + kv
graphs enumerates all possible assignments of non-self-orthogonal vectors to the vertices
of a given vertex cover. This approach is clearly not applicable when the field F is infinite.
In order to extend the fixed-parameter tractability result to general fields and to obtain
Theorem 14, we use the following definition inspired by an idea of [23].

▶ Definition 15. Let G = (V, E) be a graph, let X ⊆ V be a vertex cover of G, and let
d ≥ m ≥ 1 be integers. We define the graph K = K(G, X, m, d) as follows. We start with
K = G[X]. Then, for every subset S ⊆ X of size m ≤ |S| ≤ d, if there exists a vertex
v ∈ V \ X such that S ⊆ NG(v), then we add to K a new vertex vS and connect it to all the
vertices of S.

The following lemma lists useful properties of the graph given in Definition 15 (recall
Definition 8).

▶ Lemma 16. Let G = (V, E) be a graph, let X ⊆ V be a vertex cover of G of size |X| = k,
let d ≥ m ≥ 1 be integers, and let K = K(G, X, m, d).
1. The set X forms a vertex cover of K.
2. The number of vertices in K is at most k +

∑d
i=m

(
k
i

)
.

3. The graph K can be encoded in
(

k
2
)

+
∑d

i=m

(
k
i

)
bits.

4. For every field F with m ≤ m(F, d), it holds that ξF(G) ≤ d if and only if ξF(K) ≤ d.

Proof. Consider the graph K = K(G, X, m, d) given in Definition 15. Since X is a vertex
cover of G, it immediately follows from the definition that every edge of K is incident with a
vertex of X, hence X is a vertex cover of K, as required for Item 1. It further follows that the
vertex set of K consists of the vertices of X and at most one vertex per every subset S ⊆ X

of size m ≤ |S| ≤ d. Since the number of those subsets is
∑d

i=m

(
k
i

)
, the number of vertices

in K is at most k +
∑d

i=m

(
k
i

)
, as required for Item 2. For Item 3, notice that to encode the

graph K, it suffices to specify the adjacencies in K[X] and the existence of the vertex vS in K
for each S ⊆ X of size m ≤ |S| ≤ d, hence K can be encoded in

(
k
2
)

+
∑d

i=m

(
k
i

)
bits.

We turn to the proof of Item 4. Let F be a field with m ≤ m(F, d). Suppose first that
ξF(G) ≤ d, that is, there exists a d-dimensional orthogonal representation (uv)v∈V of G over
F. We define a d-dimensional orthogonal representation of K over F as follows. First, we
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assign to each vertex v ∈ X the vector uv. It clearly holds that every two vertices of X that
are adjacent in K are assigned orthogonal vectors. Next, for each vertex vS of K with S ⊆ X

and m ≤ |S| ≤ d, there exists a vertex v ∈ V \ X such that S ⊆ NG(v). We assign to vS

the vector uv of such a vertex v. Notice that such a vector is orthogonal to all the vectors
associated with the vertices of S, i.e., the neighbors of vS in K. This gives us a d-dimensional
orthogonal representation of K over F, implying that ξF(K) ≤ d.

For the other direction, suppose that ξF(K) ≤ d. Letting V ′ denote the vertex set of K,
there exists a d-dimensional orthogonal representation (uv)v∈V ′ of K over F. We define a
d-dimensional orthogonal representation of G over F as follows. First, we assign to each vertex
v ∈ X the vector uv. It clearly holds that every two vertices of X that are adjacent in G are
assigned orthogonal vectors. We next extend this assignment to the vertices of the independent
set V \ X of G. Consider some vertex v ∈ V \ X, let W = span({uv′ | v′ ∈ NG(v)}), and
notice that v may be assigned any non-self-orthogonal vector of Fd that lies in W ⊥. If
dim(W ) < m, then by m ≤ m(F, d), there exists a non-self-orthogonal vector in W ⊥, which
can be assigned to the vertex v. Otherwise, there exists a set of vertices S ⊆ NG(v) of size
m ≤ |S| ≤ d whose vectors form a basis of W , that is, W = span({uv′ | v′ ∈ S}). By the
definition of the graph K, it includes the vertex vS , and its vector is orthogonal to the vectors
uv′ with v′ ∈ S, and thus lies in W ⊥. This yields the existence of the desired vector for v, so
we are done. ◀

With Lemma 16 at hand, we are ready to prove Theorem 14.

Proof of Theorem 14. The input of the Ortho-DimF problem on Empty + kv graphs
consists of a graph G, a vertex cover X of G of size |X| = k, and an integer d. Consider
the algorithm that given such an input acts as follows. If d > k then the algorithm accepts.
Otherwise, the algorithm calls an algorithm for the Ortho-DimF problem on the input
(K, d), where K = K(G, X, 1, d) is the graph given in Definition 15, and returns its answer.
Note that we use here the assumption that the Ortho-DimF problem is decidable.

For correctness, observe first that the input graph G is (k + 1)-colorable, as follows by
assigning k distinct colors to the vertices of the vertex cover X and another color to the vertices
of the independent set V \ X. It thus follows, using Claim 12, that ξF(G) ≤ χ(G) ≤ k + 1.
Therefore, if d > k, then it holds that ξF(G) ≤ d, hence our algorithm correctly accepts.
Otherwise, the algorithm calls an algorithm for Ortho-DimF on the input (K, d). The
correctness of its answer follows from Item 4 of Lemma 16, which guarantees that ξF(G) ≤ d

if and only if ξF(K) ≤ d.
We finally analyze the running time of the algorithm. On instances with d > k, the

algorithm is clearly efficient. For instances with d ≤ k, by Item 2 of Lemma 16, the number
of vertices in K is O(kd) ≤ O(kk). Using the decidability of Ortho-DimF, this implies that
the running time of the algorithm is bounded by f(k) · nO(1) for some computable function
f , where n stands for the input size. Therefore, the Ortho-DimF problem on Empty + kv
graphs is fixed-parameter tractable. ◀

In order to apply Theorem 14 to the real field R, one has to show that the Ortho-DimR
problem is decidable. We obtain this result using the problem of the existential theory of
the reals, in which the input is a collection of equalities and inequalities of polynomials over
the reals, and the goal is to decide whether there exists an assignment of real values to
the variables satisfying all the constraints. In 1951, Tarski [31] proved that the problem is
decidable. His result was strengthened in 1988 by Canny [10], who proved that it actually
lies in the complexity class PSPACE. We derive the following simple consequence.



I. Haviv and D. Rabinovich 8:11

▶ Proposition 17. The Ortho-DimR problem lies in PSPACE.

Proof. It is sufficient to show that the Ortho-DimR problem is reducible in polynomial
time to the problem of the existential theory of the reals, which lies in PSPACE [10]. Consider
the reduction that given a graph G = (V, E) and an integer d produces a collection PG

of polynomial constraints over the reals defined as follows. For each vertex v ∈ V , let
xv,1, . . . , xv,d denote d variables associated with v. For each vertex v ∈ V , add to PG

the inequality
∑d

i=1 x2
v,i ≠ 0, and for each edge {v, v′} ∈ E, add to PG the equality∑d

i=1 xv,i · xv′,i = 0. The reduction returns the collection PG, which can clearly be computed
in polynomial time. Observe that ξR(G) ≤ d if and only if there exists an assignment over
the reals satisfying the constraints of PG, implying the correctness of the reduction. ◀

Proposition 17 implies that the Ortho-DimR problem is decidable. Using Theorem 14,
we obtain the following corollary, which combined with Theorem 13, confirms Theorem 2.

▶ Corollary 18. The Ortho-DimR problem on Empty + kv graphs is fixed-parameter
tractable.

4 Kernelization for d-Ortho-DimF Parameterized by Vertex Cover

We consider now the d-Ortho-DimF problem for a fixed constant d and study its kernelizab-
ility when parameterized by the vertex cover number (recall Definition 1). We first leverage
our discussion from the previous section to derive Theorem 3, namely, to show that for every
field F and for every integer d ≥ 3, the d-Ortho-DimF problem on Empty + kv graphs
admits a kernel with O(kd) vertices and bit-size O(kd).

Proof of Theorem 3. Fix a field F and an integer d ≥ 3. The input of d-Ortho-DimF on
Empty+kv graphs consists of a graph G and a vertex cover X of G of size |X| = k. Consider
the algorithm that given such an input returns the pair (K, X), where K = K(G, X, 1, d) is
the graph from Definition 15. Since d is a fixed constant, the algorithm can be implemented
in polynomial time. By Lemma 16, the set X forms a vertex cover of K, the graph K has
O(kd) vertices and bit-size O(kd), and the instances (G, X) and (K, X) are equivalent. This
completes the proof. ◀

For the real field R, we prove Theorem 5, which improves on the kernel provided by
Theorem 3 to O(kd−1) vertices and bit-size O(kd−1 · log k). We start with a couple of auxiliary
lemmas.

▶ Lemma 19. For every integer d, if a graph has a d-dimensional orthogonal representation
over R, then it has a d-dimensional orthogonal representation over R, all of whose vectors
have 1 as their first entry.

Proof. The proof applies the probabilistic method. Let d be an integer, let G = (V, E) be a
graph, and set n = |V |. Suppose that there exists a d-dimensional orthogonal representation
(uv)v∈V of G over R. Let a ∈ [2n]d be a random d-dimensional vector, such that each entry
of a is chosen from [2n] uniformly at random. We observe that for every fixed nonzero vector
u ∈ Rd, it holds that ⟨a, u⟩ = 0 with probability at most 1

2n . Indeed, letting i ∈ [d] be an
index with ui ̸= 0, for every fixed choice of the values of aj with j ∈ [d] \ {i}, there is at most
one value of ai in [2n] for which it holds that ⟨a, u⟩ = 0. By the union bound, it follows that
the probability that there exists a vertex v ∈ V such that ⟨a, uv⟩ = 0 is at most n · 1

2n = 1
2 .

In particular, there exists a vector a ∈ [2n]d satisfying ⟨a, uv⟩ ̸= 0 for all v ∈ V . Let us fix
such a vector a.
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Now, let M ∈ Rd×d be some orthonormal matrix (i.e., a matrix satisfying M · M t = Id)
whose first row is the vector a scaled to have Euclidean norm 1, i.e., a/∥a∥. We assign to
each vertex v ∈ V of the graph G the vector M · uv. Since M is orthonormal, it preserves
inner products, hence this assignment forms a d-dimensional orthogonal representation of G

over R. Additionally, for every vertex v ∈ V , the first entry of the vector M · uv is nonzero,
because ⟨a, uv⟩ ̸= 0. By scaling, one can obtain a d-dimensional orthogonal representation of
G over R, all of whose vectors have 1 as their first entry, as required. ◀

Before we state the next lemma, we need a brief preparation. For a field F, a polynomial
in F[x1, . . . , xn] is called homogeneous of degree d if each of its monomials has degree d. Note
that the zero polynomial is homogeneous of degree d for every d ≥ 0. A monomial is called
multilinear if it forms a product of distinct variables, and a polynomial is called multilinear
if it forms a linear combination of multilinear monomials. For example, the determinant
of d × d matrices over a field F, viewed as a polynomial on d2 variables, is multilinear and
homogeneous of degree d. Moreover, it is a linear combination of d! monomials, each of
which forms a product of d variables, one taken from each row of the matrix. Note that the
dimension over F of the vector space of multilinear homogeneous polynomials of degree d in
F[x1, . . . , xn] is

(
n
d

)
.

▶ Lemma 20. For every integer d, there exists a multilinear homogeneous polynomial
p : Rd×d → R of degree d − 1, defined on d2 variables corresponding to the entries of a d × d

matrix, such that for every matrix M ∈ Rd×d whose first row is the all-one vector, it holds
that p(M) = 0 if and only if there exists a nonzero vector in Rd that is orthogonal to all
columns of M .

Proof. For an integer d, consider the determinant polynomial det : Rd×d → R. It is well
known that for every matrix M ∈ Rd×d, it holds that det(M) = 0 if and only if the columns
of M span a subspace of dimension smaller than d, and that this condition is equivalent to
the existence of a nonzero vector in Rd that is orthogonal to all columns of M . Recall that
det is a multilinear polynomial, with each monomial being a product of d variables, each
selected from a different row of the matrix. Let p : Rd×d → R be the polynomial obtained
from det by substituting 1 for the variables that correspond to the first row of the matrix,
and observe that p is a multilinear homogeneous polynomial of degree d − 1. Note that
although p is defined on d2 variables, it actually depends on only d2 − d of them. We finally
observe that for every matrix M ∈ Rd×d whose first row is the all-one vector, it holds that
p(M) = 0 if and only if there exists a nonzero vector in Rd that is orthogonal to all columns
of M . This completes the proof. ◀

We are ready to prove Theorem 5, providing a kernel with O(kd−1) vertices and bit-size
O(kd−1 · log k) for the d-Ortho-DimR problem on Empty + kv graphs for all integers d ≥ 3.

Proof of Theorem 5. Fix an integer d ≥ 3. The input of d-Ortho-DimR on Empty + kv
graphs consists of a graph G = (V, E) and a vertex cover X ⊆ V of G of size |X| = k.
Consider the algorithm that given such an input acts in two phases, as described next.

In the first phase, the algorithm constructs the graph G′ = K(G, X, d, d) given in
Definition 15. Let V ′ denote the vertex set of G′, and recall that every vertex vS ∈ V ′ \ X is
associated with some set S ⊆ X of size |S| = d such that NG′(vS) = S. By Lemma 16, the
set X is a vertex cover of G′, and it holds that |V ′| ≤ k +

(
k
d

)
.

In the second phase, the algorithm constructs a graph G′′. To do so, the algorithm first
associates with each vertex v ∈ X a d-dimensional vector xv of variables over R. Note that
the total number of variables is k · d. For each vertex vS ∈ V ′ \ X, we apply Lemma 20 to
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obtain a multilinear homogeneous polynomial pS of degree d − 1, defined on the d2 variables
associated with the d neighbors of vS in G′ (which all lie in X). The polynomial pS satisfies
that for every assignment M ∈ Rd×d to its variables with first row equal to the all-one vector,
it holds that pS(M) = 0 if and only if there exists a nonzero vector in Rd that is orthogonal
to all columns of M . Let P = span({pS | vS ∈ V ′ \ X}) denote the subspace spanned by the
polynomials associated with the vertices of V ′ \ X. The algorithm proceeds by finding a set
Y ⊆ V ′ \ X, such that the polynomials associated with the vertices of Y form a basis for
P . Note that P is contained in the vector space of multilinear homogeneous polynomials of
degree d − 1 on k · d variables. Since the dimension of the latter is

(
k·d
d−1

)
, recalling that d is

a fixed constant, it follows that |Y | ≤
(

k·d
d−1

)
≤ O(kd−1). Letting V ′′ = X ∪ Y , the algorithm

returns the graph G′′ = G′[V ′′] and the set X, which forms a vertex cover of G′′ because it
forms a vertex cover of G′.

The number of vertices in G′′ is |V ′′| = |X| + |Y | ≤ k + O(kd−1) = O(kd−1). The number
of edges in G′′[X] is at most

(
k
2
)
, and since the degree of each vertex of Y is d, the number

of edges in G′′ that involve vertices of Y is d · |Y |. It follows that the total number of edges
in G′′ is at most

(
k
2
)

+ d · O(kd−1) ≤ O(kd−1). Therefore, the number of bits required to
encode the edges of G′′ is at most O(kd−1 · log |V ′′|) ≤ O(kd−1 · log k), as required.

It is not difficult to verify that the algorithm can be implemented in polynomial time.
Note that the set Y can be calculated in polynomial time by applying Gaussian elimination
with

(
k·d
d−1

)
variables.

For the correctness of the algorithm, we shall prove that ξR(G) ≤ d if and only if
ξR(G′′) ≤ d. By Item 4 of Lemma 16, using m(R, d) = d (see Remark 9), it holds that
ξR(G) ≤ d if and only if ξR(G′) ≤ d. It thus suffices to show that ξR(G′) ≤ d if and only if
ξR(G′′) ≤ d.

It obviously holds that if ξR(G′) ≤ d then ξR(G′′) ≤ d, because G′ contains G′′ as a
subgraph. For the converse, suppose that ξR(G′′) ≤ d, that is, there exists a d-dimensional
orthogonal representation of G′′ over R. By Lemma 19, it further follows that there exists a
d-dimensional orthogonal representation (uv)v∈V ′′ of G′′ over R, such that every vector uv

has 1 as its first entry. For each vertex v ∈ X, assign the vector uv to the vertex v as well as
to the variables of the vector xv associated with v. We will show that this assignment to the
vertices of X can be extended to an orthogonal representation of G′ over R. Indeed, for every
vertex vS ∈ Y of G′′, the nonzero vector uvS

is orthogonal to the vectors of the vertices of S.
This implies, using Lemma 20 and the fact that the first entries of the vectors xv with v ∈ X

are all 1, that the polynomial pS vanishes on this assignment. Since the polynomials pS with
vS ∈ Y form a basis of the subspace P , it follows that all the polynomials pS associated
with the vertices vS ∈ V ′ \ X vanish on this assignment as well. Using Lemma 20 again, we
obtain that for each vertex vS ∈ V ′ \ X, there exists a nonzero vector that is orthogonal to
the vectors of the vertices of S, and these are precisely the neighbors of vS in G′. This gives
us a d-dimensional orthogonal representation of G′ over R, which yields that ξR(G′) ≤ d,
concluding the proof. ◀

5 Lower Bound

In this section, we prove our lower bound on the kernel size of the d-Ortho-DimF problem
parameterized by the vertex cover number. We first present the gadget graph that will be
used in the proof.
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5.1 Gadget Graph
A key ingredient in the proof of our lower bound is the following lemma, which generalizes
a construction of [29] (corresponding to the case of d = 3). Here, two nonzero vectors
u1, u2 ∈ Fd are said to be proportional if there exists some α ∈ F such that u1 = α · u2. The
proof can be found in the full version of the paper.

▶ Lemma 21. For an integer d ≥ 3, let C2d denote the cycle graph on 2d vertices, let x0 and
x1 denote two adjacent vertices in the cycle, and let H = C2d denote its complement graph.
1. There exists a proper d-coloring of H that assigns to x0 and x1 the same color.
2. There exists a proper d-coloring of H that assigns to x0 and x1 distinct colors.
3. For every field F and for every d-dimensional orthogonal representation of H over F, the

vectors assigned to x0 and x1 are either orthogonal or proportional.

5.2 The d-Ortho-DimF Problem on Empty + kv Graphs
We prove the following lower bound on the size of any compression for the d-Ortho-DimF
problem parameterized by the vertex cover number.

▶ Theorem 22. For every field F, every integer d ≥ 3, and any real ε > 0, the d-Ortho-DimF
problem on Empty + kv graphs does not admit a compression with bit-size O(kd−1−ε) unless
NP ⊆ coNP/poly.

Note that Theorem 22 confirms Theorem 4. Another immediate corollary is the following.

▶ Corollary 23. For every field F, the Ortho-DimF problem on Empty + kv graphs does
not admit a polynomial compression unless NP ⊆ coNP/poly.

The starting point of the proof of Theorem 22 is the following theorem, which summarizes
the lower bounds proved in [23, 24] on the size of any compression for the q-Coloring
problem parameterized by the vertex cover number (see [24, Corollary 2]).

▶ Theorem 24 ([23, 24]). For every integer q ≥ 3, the q-Coloring problem on Empty + kv
graphs does not admit a compression with bit-size O(kq−1−ε) unless NP ⊆ coNP/poly.

Equipped with Lemma 21, we relate the d-Coloring and d-Ortho-DimF problems
parameterized by the vertex cover number, as stated below.

▶ Theorem 25. For every field F and for every integer d ≥ 3, there exists a linear-parameter
transformation from d-Coloring on Empty+kv graphs to d-Ortho-DimF on Empty+kv
graphs.

Proof. Fix a field F and an integer d ≥ 3. Consider an instance of the d-Coloring problem
on Empty + kv graphs, namely, a graph G = (V, E) and a vertex cover X ⊆ V of G of size
|X| = k. Our goal is to construct in polynomial time a graph G′ = (V ′, E′) and a vertex
cover X ′ ⊆ V ′ of G′ of size |X ′| = O(k), such that χ(G) ≤ d if and only if ξF(G′) ≤ d.

To do so, we start with the graph G and add to it a clique of size d whose vertices
are denoted by z1, . . . , zd. Then, for each index i ∈ [d] and each vertex v ∈ X, we add to
the graph a copy Hi,v of the complement C2d of the cycle graph on 2d vertices, where two
consecutive vertices of the cycle are identified with the vertices zi and v. Note that we add
here d · k such gadgets to the graph and that each of them involves 2d − 2 new vertices.
Let G′ = (V ′, E′) denote the obtained graph, and let X ′ denote the set that consists of the



I. Haviv and D. Rabinovich 8:15

vertices of X and the vertices that were added to G in the construction. The transformation
returns the pair (G′, X ′). Since X is a vertex cover of G, the set V \ X is an independent
set of G. It follows that V ′ \ X ′ is an independent set of G′, hence X ′ is a vertex cover
of G′. Its size satisfies |X ′| = k + d + d · k · (2d − 2) = O(k), hence the transformation is
linear-parameter. The transformation can clearly be implemented in polynomial time. For
correctness, we shall prove that χ(G) ≤ d if and only if ξF(G′) ≤ d.

Suppose first that χ(G) ≤ d, and consider some proper d-coloring of G with color set [d].
We extend this coloring to a d-coloring of G′ as follows. First, for each i ∈ [d], we assign
the color i to the vertex zi. Clearly, no edge that connects two of the vertices z1, . . . , zd is
monochromatic. Next, for each i ∈ [d] and v ∈ X, consider the vertices of the component
Hi,v. The only vertices of Hi,v that already received colors are zi and v. By Lemma 21, this
partial coloring of Hi,v can be extended to a proper d-coloring of the whole gadget. Indeed,
if zi and v are assigned the same color then this follows from Item 1 of the lemma, and if zi

and v are assigned distinct colors then this follows from Item 2 of the lemma. This gives us
a proper d-coloring of G′, which implies using Claim 12 that ξF(G′) ≤ χ(G′) ≤ d.

For the converse direction, suppose that ξF(G′) ≤ d, and consider a d-dimensional
orthogonal representation (uv)v∈V ′ of G′ over F. Since the vertices z1, . . . , zd form a clique
in G′, it follows that their vectors uz1 , . . . , uzd

are pairwise orthogonal. Since they are
non-self-orthogonal, it follows that they are linearly independent, and thus span the entire
vector space Fd. For each i ∈ [d] and v ∈ X, consider the vectors assigned by the given
orthogonal representation to the vertices of the component Hi,v in G′, and apply Item 3
of Lemma 21 to obtain that the vectors uzi

and uv are either orthogonal or proportional.
However, the vectors uz1 , . . . , uzd

span the vector space Fd, hence for each v ∈ X, the nonzero
vector uv cannot be orthogonal to all of them. This yields that for each vertex v ∈ X, the
vector uv is proportional to exactly one of the vectors uz1 , . . . , uzd

.
We define a d-coloring of G as follows. To each vertex v ∈ X, assign the color i ∈ [d] for

which uv is proportional to uzi . Since the given orthogonal representation assigns orthogonal
vectors to adjacent vertices, it follows that this coloring assigns distinct colors to adjacent
vertices in X. Next, to each vertex v ∈ V \ X, assign a color from [d] that does not appear
on its neighbors. Notice that all the neighbors of v lie in X and were already colored,
because X is a vertex cover of G. To see that such a color exists, recall that the vector uv

is nonzero and orthogonal to the vectors associated with its neighbors in X by the given
orthogonal representation of G′. Since every such vector is proportional to one of uz1 , . . . , uzd

,
it follows that there exists some i ∈ [d] for which no neighbor of v is associated with a vector
proportional to uzi

, yielding the existence of the desired color for v. This gives us a proper
d-coloring of G and implies that χ(G) ≤ d, so we are done. ◀

We finally combine Theorems 24 and 25 to derive Theorem 22.

Proof of Theorem 22. Fix a field F, an integer d ≥ 3, and a real ε > 0. By Theorem 25,
there exists a linear-parameter transformation from d-Coloring on Empty + kv graphs to
d-Ortho-DimF on Empty+kv graphs. Therefore, if d-Ortho-DimF on Empty+kv graphs
admits a compression with bit-size O(kd−1−ε), then by composing this compression with the
given transformation, it follows that d-Coloring on Empty+kv graphs admits a compression
with bit-size O(kd−1−ε) as well. By Theorem 24, this implies that NP ⊆ coNP/poly, and we
are done. ◀
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Abstract
The study of domination in graphs has led to a variety of dominating set problems studied in the
literature. Most of these follow the following general framework: Given a graph G and an integer k,
decide if there is a set S of k vertices such that (1) some inner connectivity property ϕ(S) (e.g.,
connectedness) is satisfied, and (2) each vertex v satisfies some domination property ρ(S, v) (e.g.,
there is some s ∈ S that is adjacent to v).

Since many real-world graphs are sparse, we seek to determine the optimal running time of
such problems in both the number n of vertices and the number m of edges in G. While the
classic dominating set problem admits a rather limited improvement in sparse graphs (Fischer,
Künnemann, Redzic SODA’24), we show that natural variants studied in the literature admit
much larger speed-ups, with a diverse set of possible running times. Specifically, using fast matrix
multiplication we devise efficient algorithms which in particular yield the following conditionally
optimal running times if the matrix multiplication exponent ω is equal to 2:

r-Multiple k-Dominating Set (each vertex v must be adjacent to at least r vertices in S): If
r ≤ k − 2, we obtain a running time of (m/n)rnk−r+o(1) that is conditionally optimal assuming
the 3-uniform hyperclique hypothesis. In sparse graphs, this fully interpolates between nk−1±o(1)

and n2±o(1), depending on r. Curiously, when r = k − 1, we obtain a randomized algorithm
beating (m/n)k−1n1+o(1) and we show that this algorithm is close to optimal under the k-clique
hypothesis.

H-Dominating Set (S must induce a pattern H). We conditionally settle the complexity of
three such problems: (a) Dominating Clique (H is a k-clique), (b) Maximal Independent Set of
size k (H is an independent set on k vertices), (c) Dominating Induced Matching (H is a perfect
matching on k vertices). For all sufficiently large k, we provide algorithms with running time
(m/n)m(k−1)/2+o(1) for (a) and (b), and mk/2+o(1) for (c). We show that these algorithms are
essentially optimal under the k-Orthogonal Vectors Hypothesis (k-OVH). This is in contrast
to H being the k-Star, which is susceptible only to a very limited improvement, with the best
algorithm running in time nk−1±o(1) in sparse graphs under k-OVH.
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9:2 Multiple Domination and Dominating Patterns in Sparse Graphs

1 Introduction

Domination in graphs is among the central topics in graph theory. Although the earliest
evidence of interest in concepts related to domination can be traced back to the mid 1800s
in connection with various chess problems, it was introduced only a century later, in 1958,
as a graph-theoretical concept by Claude Berge. It has since gained a lot of attention and
has been well-studied from both a graph-theoretic perspective, e.g., [2, 11, 19, 48, 49], and
an algorithmic perspective, e.g., [22, 46, 30, 31, 37, 47]. This problem has also played a
central role in the field of complexity theory. Besides being one of the classic NP-complete
problems, the Dominating Set problem has proven valuable within the realm of parameterized
complexity theory, where it is regarded as perhaps the most natural W [2]-complete problem
when parameterized by the solution size k [20], as well as fine-grained complexity in P, where
the k-Dominating Set problem (for fixed k) was among the first problems for which tight lower
bounds under the Strong Exponential Time Hypothesis (SETH) have been established [46].

Over the years, the concept of domination in graphs has spawned many natural variations,
each offering unique insights into the structural properties of a graph, as well as different
practical applications (e.g. in analysing sensor networks, facility management, studying
influence in social networks, etc.). Some examples of such variations include total domination,
paired domination, independent domination, multiple domination, etc. Most of these
domination problems satisfy the following framework: We are given a graph G and an
integer k and we want to decide if there exists a set of vertices S = {x1, . . . , xk} that satisfies
some fixed inner property ϕ(x1, . . . , xk) such that for every vertex v ∈ V (G) the domination
property ρ(x1, . . . , xk, v) is satisfied. Some examples of inner properties ϕ include:

x1, . . . , xk are connected (Connected Domination).
x1, . . . , xk form an independent set (Independent Domination).
Each xi ∈ S is adjacent to at least one xj ∈ S \ {xi} (Total Domination).

Examples of the domination property ρ include:
There exists xi ∈ S such that d(xi, v) ≤ r (Domination at Distance r).
v is adjacent to at least r distinct vertices xi1 , . . . , xir

∈ S (r-Multiple Domination).
There exists a path of length r between v and some xi ∈ S (r-Step Domination).

Many of these domination problems have not seen any polynomial improvements over brute
force in dense graphs, i.e., the best known algorithms for finding a solution of size k typically
run in Ω(nk) time and for some variants it has been shown that improving upon these
algorithms significantly would refute popular fine-grained complexity assumptions. Most
notably, Pătraşcu and Williams [46] show that an O(nk−ϵ) algorithm solving k-Dominating
Set, for any k ≥ 3 and ϵ > 0, would refute the Strong Exponential Time Hypothesis (SETH).
However, by far not all graphs of interest are dense. Particularly, many real-world graphs, for
which the domination problems have been extensively used, are typically sparse (e.g. social
networks, sensor networks, road networks, etc.). Hence, it is natural to ask what is the best
running time of domination problems in sparse graphs. Recently, Fischer, Künnemann and
Redzic [29] proved that the fine-grained complexity of k-Dominating set shows a non-trivial
sensitivity to sparsity of the input graph. More precisely, despite the SETH-based lower
bound of nk−o(1), they prove that when the input graph is sufficiently sparse, we can in
fact improve upon this running time significantly by using sparse matrix multiplication
techniques, and obtain a conditionally optimal running time of mnk−2+o(1) for all k ≥ 7.1
This raises the question if we can obtain similar improvements in sparse graphs for other

1 In fact, this running time is achieved for all k ≥ 2 if the matrix multiplication exponent ω is equal to 2.
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natural domination problems. In this paper we consider two natural classes of domination
problems that exhibit an interesting sensitivity to sparsity, namely r-Multiple Domination
and Pattern Domination.

Multiple Domination in Graphs. The concept of Multiple Domination has been introduced
as a generalization of Dominating Set by Fink and Jacobson in 1985 [27, 28] and has been
intensively studied since (see e.g. [3, 4, 5, 6, 32, 36, 42]). For a graph G = (V, E) we say a
subset of vertices S is an r-multiple dominating set if each vertex v ∈ V \ S has at least r

neighbours in S.2 Given a graph G with n vertices and m edges, the r-Multiple k-Dominating
Set problem is to decide if there is an r-multiple dominating set S of size at most k. Harary
and Haynes [34, 35] introduced, in two papers published in 1996 and 2000, a very related
concept of double domination and, more generally, the r-Tuple Dominating Set, which is
a subset of vertices S, such that the closed neighborhood of every vertex v ∈ V intersects
with S in at least r elements. We note that all of the algorithms and lower bounds that we
provide for r-Multiple k-Dominating Set work with very minor modifications for r-Tuple
Dominating Set as well.

We aim to settle the fine grained complexity of this problem in sparse graphs. Interestingly,
the hardness of this problem depends not only on the trade-off between m and n, but also on
the trade-off between r and k. In particular, we distinguish between the two cases, r ≤ k − 2
and r = k − 1 (note that if r ≥ k, the problem becomes trivial) – it turns out that the
fine-grained complexity for these two cases differs already in dense graphs.

We note that most of the algorithms that we present in this paper use fast matrix
multiplication. The resulting running times thus depend on the matrix multiplication
exponent ω. Since resolving the precise value of ω is a fundamental open question in
theoretical computer science, we aim to obtain upper bounds and conditional lower bounds
that are as close as possible without knowing the true value of ω. To this end, we often focus
on the case ω = 2, for which our algorithms are usually tight (still, we include the precise
running time of each algorithm in its respective technical section). In fact, in many cases we
obtain matching upper and lower bounds already with the current bounds on ω, provided
that k is sufficiently large.

Let us begin with a baseline algorithm for the case r ≤ k − 2:

▶ Theorem 1. Let k ≥ 3 and r ≤ k − 2 be fixed constants. Given a graph G with n vertices
and m edges we can solve r-Multiple k-Dominating Set in time O

(
(m/n)rnk−r+1)

. Using
fast matrix multiplication, this bound improves to (m/n)rnk−r+o(1) if ω = 2.

Let us discuss the obtained upper bound, using for ease of presentation the case of ω = 2:
We note the remarkable improvement by a factor of Θ( n2r

mr ) over the best known algorithm
in dense graphs. Already for Double k-Dominating Set (i.e., r = 2), this yields an algorithm
running in m2nk−4+o(1), which beats the running time of the best k-Dominating Set algorithm
[29] by a factor of Θ(n2/m). Even better, if we want each vertex in our graph to be dominated
by precisely 50% of the solution vertices, we get an algorithm running in m

k
2 +o(1), halving

the exponent in sparse graphs. Perhaps surprisingly, for r close to k, this yields an algorithm
whose running time exponent is independent of k when the input graph is very sparse. In
particular, for r = k − 2, this running time becomes essentially quadratic in very sparse

2 We remark that in the literature, this concept is better known under the name r-Dominating Set. In
the setting of parameterized complexity, however, the notion of k-Dominating Set usually refers to
dominating sets of size k, so for clarity, we use the term r-Multiple Dominating Set.

IPEC 2024
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graphs (m = Õ(n)). The question remains whether this running time is best possible –
perhaps we can always obtain m

k
2 +o(1) (or even better) running time when r ≥ 2? We

answer this question negatively, and in fact show that any polynomial improvement over our
algorithm (up to resolving the matrix multiplication exponent ω) would refute the 3-uniform
Hyperclique Hypothesis3, thus settling the fine-grained complexity of this problem in sparse
graphs whenever r ≤ k − 2.

▶ Theorem 2. Let k ≥ 3, r ≤ k − 2 be fixed constants, and ε > 0. An algorithm solving r-
Multiple k-Dominating Set in time O

(
(m/n)rnk−r−ε

)
would refute the 3-uniform Hyperclique

Hypothesis. This holds even when restricting m = Θ(n1+γ) for any 0 < γ ≤ 1.

While the algorithmic approach of Theorem 1 is applicable also for the remaining case of
r = k − 1, it turns out that the resulting upper bound of (m/n)k−1n1+o(1) (if ω = 2), is not
optimal in general: In fact, we reduce the problem to Clique Detection, by observing that
each pair of solution vertices dominates the whole graph (i.e., forms a dominating set of size
2). The resulting algorithm substantially improves over exhaustive search already in dense
graphs. Furthermore, in sparse graphs, we can apply a Bloom-filter inspired randomized
algorithm of [29], allowing us to list all 2-dominating sets efficiently, to obtain an efficient
randomized reduction to an Unbalanced k-Clique Detection instance with k − 1 parts of size
O( m

n ) and one of size n, which we denote as k-Clique( m
n , . . . , m

n , n).4

▶ Theorem 3. For any fixed constant k ≥ 2, let Tk(m, n) denote the time required to solve
the k-Clique( m

n , . . . , m
n , n) problem. There is a randomized algorithm solving (k − 1)-Multiple

k-Dominating Set in time m
ω
2 +o(1) + O(Tk(m, n)).

It remains to analyze the complexity of the Unbalanced Clique problem. It is straightforward
to obtain an algorithm solving this problem in time n2

m ·
(

m
n

)ωk/3+o(1), which in case of very
sparse graphs (m = Õ(n)) yields a near-linear running time. However, this running time
analysis is still crude, and we can do even better for sufficiently “nice” values of m/n and k.
More precisely, we show that for each positive integer p, we can solve k-Clique(n

1
p , . . . , n

1
p , n)

in time (n
1
p (k−1)+1) ω

3 +o(1) for all sufficiently large k satisfying k ≡ 2p + 1 (mod 3).

▶ Proposition 4. Let G = (V1, . . . , Vk, E) be a k-partite graph with vertex part sizes |V1| = n

and |V2| = · · · = |Vk| = nγ for some 0 ≤ γ ≤ 1. If
1. (k − 1 + 1

γ ) is an integer divisible by 3,
2. 2

γ < k − 1,
then we can decide if G has a clique of size k in time (nγ(k−1)+1) ω

3 +o(1).

Applying this running time to our setting, this yields an algorithm solving (k − 1)-Multiple
k-Dominating Set in the applicable cases in time

(
n( m

n )k−1)ω/3+o(1). We also complement
this with a matching conditional lower bound based on the k-Clique Hypothesis for the
(k − 1)-Multiple k-Dominating Set problem.

▶ Theorem 5. Let G be a graph with n vertices and m = Θ(n1+γ) edges for any rational
0 ≤ γ ≤ 1. For any ε > 0, an algorithm solving (k − 1)-Multiple k-Dominating Set on G in
time O

((
n( m

n )k−1)ω/3−ε
)

would refute the k-Clique Hypothesis.

3 For a definition of the 3-uniform Hyperclique Hypothesis, we refer to Section 2.
4 For more details, we refer to Section 2 and Section 3.
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Dominating Patterns in Graphs. For graphs G and H, we say a subset S ⊆ V (G) is an
H-Dominating Set if S dominates G and induces a subgraph of G that is isomorphic to H.
For a fixed constant k, we define the k-Pattern Dominating Set Problem as follows: Given a
graph G with n vertices and m edges and a graph H with k vertices, decide if G contains
an H-Dominating Set. We can observe that this problem is at most as hard as listing all
dominating sets of size k in a graph and hence we can solve it in mnk−2+o(1) for all sufficiently
large k. On the other hand, it has been implicitly proved in [29] that detecting the patterns
isomorphic to the star graph K1,(k−1) that dominate G takes at least mnk−2−o(1), unless
k-OV hypothesis fails, hence settling the fine-grained complexity of k-Pattern Domination
in sparse graphs. A more interesting direction is to ask what happens to the complexity of
this problem if H is a fixed graph rather than a part of the input. We call this problem
H-Dominating Set Problem. In the context of graph theory, such variants of dominating sets
have been widely studied, for a variety of natural choices of pattern H that include:

Dominating Clique [14, 18, 21, 38, 39, 10, 40]
Dominating Independent Set [15, 16, 17, 41, 45]
Dominating Path [25, 26, 51]
Dominating Cycle [23, 24].

Notably, the Dominating Independent Set problem is equivalent to the well-known Maximal
Independent Set problem [7, 8, 9, 33]. It turns out that the fine-grained complexity of the
H-Dominating Set problem in sparse graphs depends heavily on the choice of H. Obviously,
for any fixed H this problem is at most as hard as the k-Pattern Dominating Set Problem
and hence can be solved in time mnk−2+o(1). As our first contribution for this problem we
show that for no k-vertex graph H and ε > 0, can we solve this problem in the running time
O

((
m(k+1)/2

n

)1−ε
)

, unless k-OV hypothesis fails.

▶ Theorem 6. Let H be any graph on k ≥ 3 vertices. For no ε > 0 is there an algorithm
solving H-Dominating Set in time O

((
m(k+1)/2

n

)1−ε
)

, unless the k-OV hypothesis fails.

We then consider the two most studied patterns, namely k-Clique and k-Independent Set.
For sufficiently large k, by leveraging the simple fact that there are at most O(mk/2) many
cliques in the graph with m edges as well as fast matrix multiplication, we can obtain an
algorithm for Dominating k-Clique problem running in time

(
m(k+1)/2

n

)1+o(1), thus matching
the lower bound from Theorem 6.

▶ Theorem 7. Let k ≥ 5 be a fixed constant. The Dominating k-Clique problem can be
solved on graphs with n vertices and m edges in time

MM(m

n
· m

1
2 ⌊ k−1

2 ⌋, n, m
1
2 ⌈ k−1

2 ⌉).

where MM(a, b, c) is the time required to multiply an a × b matrix by a b × c matrix. If ω = 2,
this becomes

(
m(k+1)/2

n

)1+o(1).

On the other hand, the number of independent sets of size k in sparse graphs is typically much
larger and can be as large as Θ(nk). Still, perhaps surprisingly, by leveraging some simple
structural properties of maximal independent sets, we can obtain an algorithm matching the
lower bound of Theorem 6.

▶ Theorem 8. Let k ≥ 3 be fixed. The Dominating k-Independent Set problem can be solved
on graphs with n vertices and m edges in time ( m(k−1+ω)/2

n )1+o(1). If ω = 2, this becomes(
m(k+1)/2

n

)1+o(1).

IPEC 2024



9:6 Multiple Domination and Dominating Patterns in Sparse Graphs

So far we mentioned the full classification of three structurally very different choices of
patterns H, that all fall into one of the two extreme regimes of being either as hard as the
general k-Pattern Domination problem, or being as easy as any pattern can be. This raises a
question if we could provide a fine-grained dichotomy for this class of problems by showing
that for each pattern H, the conditionally optimal running time for solving H-Dominating
Set problem is either mnk−2±o(1), or

(
m(k+1)/2

n

)1+o(1).
As our last contribution, we answer this question negatively (assuming k-OV hypothesis)

by tightly classifying the k-Induced Matching Domination problem that lies in neither of
those two regimes, unless k-OV hypothesis fails. More precisely, we show that this problem
can be solved in running time m

k
2 +o(1) for all sufficiently large k, and provide a simple

matching conditional lower bound by adapting the reduction from Theorem 6.

2 Preliminaries

Let n be a positive integer. We denote by [n] the set {1, . . . , n}. If S is an n-element set and
0 ≤ k ≤ n is an integer, then

(
S
k

)
denotes the set of all k-element subsets of S.

Let ω < 2.3716 [53] denote the optimal exponent of multiplying two n × n matrices and
MM(a, b, c) the time required to multiply two rectangular matrices of dimensions a × b and
b × c. Note that if ω = 2, MM(a, b, c) ≤ (ab + ac + bc)1+o(1). Let Z≤d[X] denote the set
of all polynomials of degree at most d whose coefficients are integers. For a polynomial
f ∈ Z≤d[X], the (maximum) degree of f is the largest exponent r such that the term Xr has
a non-zero coefficient in f . Symmetrically, the minimum degree of f denotes the smallest
exponent r such that the term Xr has a non-zero coefficient in f .

For a graph G and a vertex v ∈ V (G), the neighbourhood of v is the set of vertices
adjacent to v, denoted N(v). The closed neighbourhood of v, denoted N [v] is defined as
N [v] := N(v) ∪ {v}. For the subset S ⊆ V (G), we denote N(S) :=

⋃
v∈S N(v) (resp.

N [S] :=
⋃

v∈S N [v]). The degree of v denotes the size of its neighbourhood (deg(v) = |N(v)|).
We further denote by deg[v] the size of the closed neighbourhood of the vertex v (deg[v] =
|N [v]|). For any two vertices u, v ∈ V (G), we denote by dG(u, v) the length of the shortest
path between u and v in G. The clique (resp. independent set) in a graph G is a set of
pairwise adjacent (resp. nonadjacent) vertices. The Unbalanced k-Clique problem, denoted
k-Clique(n1, . . . , nk) is to decide, given a k-partite graph with the i-th part consisting of ni

vertices, whether G has a clique of size k.

2.1 Hardness Assumptions
Consider the k-Orthogonal Vectors problem (k-OV) that is stated as follows: Given sets
A1, . . . , Ak ⊆ {0, 1}d, decide whether there exist vectors a1 ∈ A1, . . . , ak ∈ Ak such that for
all t ∈ [d], it holds that

∏k
i=1 ai[t] = 0. A simple brute force approach solves the k-OV in

time O(d ·
∏

i∈[k] |Ai|). On the other hand, it is known that for sufficiently large d (e.g.,
d = log2(|A1| + · · · + |Ak|)), any polynomial improvement over this running time would refute
SETH (see [50, 52]).

▶ Conjecture 9 (k-OV Hypothesis). For no ε > 0 and for no 0 ≤ γ1, . . . , γk ≤ 1 is there an
algorithm solving k-OV with |A1| = nγ1 , . . . , |Ak| = nγk , d = log2 n in time O(n(

∑k

i=1
γi)−ε).

Typically, the k-OV hypothesis is stated for the special case for γ1 = · · · = γk = 1. However,
these two hypotheses are known to be equivalent, in a sense that refuting one would also
refute the other [13, 29], and for the purposes of this paper, we benefit from using the more
general statement.
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The k-Clique Detection problem is to decide, given a graph G with n vertices, if G

contains a clique of size k, i.e., a set of k pairwise adjacent vertices. For the special case of
k = 3, a folklore algorithm based on matrix multiplication detects triangles in time O(nω)
time. Moreover, for larger k (divisible by 3), one can solve k-Clique Detection in O(nωk/3)
by a split-and-list reduction to the triangle case [44, 22]. Notably, no improvements over
these simple algorithms have been made for decades, thus suggesting that they might be
optimal and leading to the following hypothesis (see e.g. [1]).

▶ Conjecture 10 (k-Clique Hypothesis). For no ε > 0 and k ≥ 3 is there an algorithm solving
k-Clique Detection in time O(nkω/3−ε).

The h-Uniform k-Hyperclique Detection problem is to decide, given an h-uniform hypergraph
G with n vertices, if G contains a hyperclique of size k (i.e. k vertices x1, . . . , xk such that each
h-tuple xi1 , . . . , xih

of pairwise distinct i1, . . . , ih ∈ [k] forms an edge in G). When dealing
with h-uniform hypergraphs, it turns out that the same matrix multiplication techniques
used for k-Clique Detection cannot be used to improve over brute-force [43]. In fact, for
h ≥ 3, no algorithm is known that would detect a k-hyperclique in an n-vertex h-uniform
hypergraphs in time O(nk−ε). Moreover any such improvement would cause a breakthrough
for other notoriously hard problems as well, most notably Max-h-SAT (see e.g. [43] for a
more comprehensive discussion on the hardness of hyperclique detection). This has led to
the following hypothesis.

▶ Conjecture 11 (h-Uniform k-Hyperclique Hypothesis). For no ε > 0, h ≥ 3, k ≥ h + 1 is
there an algorithm solving h-Uniform k-Hyperclique Detection in time O(nk−ε).

For the purposes of this paper, we need a seemingly slightly more general assumption.
Specifically, we assume that we cannot detect an h-uniform k-hyperclique in a k-partite
graph G = (V1 ∪ · · · ∪ Vk, E) with arbitrary set sizes |Vi| significantly faster than brute-force,
i.e. in time O(

( ∏
i∈[k] |Vi|

)1−ε).

▶ Conjecture 12 (Unbalanced h-Uniform k-Hyperclique Hypothesis). For no ε > 0, h ≥ 3, k ≥
h + 1 is there an algorithm solving h-Uniform k-Hyperclique Detection in k-partite graph
G = (V1 ∪ · · · ∪ Vk, E), with |V1| = nγ1 , . . . , |Vk| = nγk in time O(n(

∑k

i=1
γi)−ε).

However, it turns out that these two assumptions are equivalent in a sense that refuting the
Unbalanced h-Uniform k-Hyperclique Hypothesis would refute the h-Uniform k-Hyperclique
Hypothesis and vice-versa. The proof is a straightforward self-reduction and is analogous
to the proof that the k-OV Hypothesis is equivalent to the Unbalanced k-OV Hypothesis,
see [13, 29].

3 r-Multiple k-Dominating Set

In this section, we provide the algorithms for the r-Multiple k-Dominating Set in sparse
graphs. In particular, we prove a refined version of Theorem 1 and prove Theorem 3. We
also show that the first algorithm cannot be significantly improved without violating some
standard fine-grained hypotheses, by proving Theorem 2 and finally show a conditional lower
bound for the second algorithm.

3.1 Algorithms
All of our algorithms leverage the following simple lemma.

▶ Lemma 13. For any fixed k ≥ 2 and r ≤ k, any r-Multiple Dominating Set of size k

contains at least r vertices v1, . . . , vr with deg[vi] ≥ n
k .

IPEC 2024



9:8 Multiple Domination and Dominating Patterns in Sparse Graphs

The proof of the lemma can be found in the full version of the paper. We call a vertex v

satisfying deg[v] ≥ n
k a heavy vertex and we let H denote the set of all heavy vertices. A

simple counting argument shows that there are at most O( m
n ) heavy vertices.

We distinguish between two cases based on the dependence of r and k, namely r ≤ k − 2
and r = k − 1 (note that if r = k, the problem becomes trivial), and in both cases we are
able to show polynomial improvements in the sparse graphs. Let us first consider the case
r ≤ k − 2.

Case r ≤ k − 2. To construct the desired algorithm, we modify the approach of [22, 29] by
employing polynomials to not only determine if a vertex is dominated by a set D, but also
count how many vertices from D are in its closed neighbourhood. We obtain the following
refined version of Theorem 1.

▶ Theorem 14. For any fixed k ≥ 3 and r ≤ k −2, we can solve the r-Multiple k-Dominating
Set in time

MM
(

n⌈ k−r
2 ⌉ ·

(
m
n

)⌊ r
2 ⌋

, n, n⌊ k−r
2 ⌋ ·

(
m
n

)⌈ r
2 ⌉

)
.

If ω = 2, or if k is sufficiently large, this running time becomes (m/n)rnk−r+o(1).

Proof. Let S be the set consisting of all subsets of V of size ⌈ k−r
2 ⌉ + ⌊ r

2 ⌋ that contain at
least ⌊ r

2 ⌋ heavy vertices and T be the set consisting of all subsets of V of size ⌊ k−r
2 ⌋ + ⌈ r

2 ⌉
that contain at least ⌈ r

2 ⌉ heavy vertices. By Lemma 13, any potential r-Multiple Dominating
Set of size at most k in G can be written as a union of two elements S ∈ S, T ∈ T . Moreover,
as argued above, we can bound the size of S and T as |S| ≤ O(n⌈ k−r

2 ⌉ ·
(

m
n

)⌊ r
2 ⌋) and

|T | ≤ O(n⌊ k−r
2 ⌋ ·

(
m
n

)⌈ r
2 ⌉). We now construct the matrices A and B as follows. Let the rows

of A be indexed by S and columns by V and set the entry A[S, v] to xc ∈ Z≤k[X] if and only
if there are exactly c elements in S that are in the closed neighbourhood of v. Similarly let
B have columns indexed by T and rows by V and set the entry B[v, T ] to xc ∈ Z[X] if and
only if there are exactly c elements in T that are in the closed neighbourhood of v.

Let C := A · B. We observe that if S, T are disjoint, then the coefficient of xc in C[S, T ]
counts the number of vertices in V that are dominated by exactly c vertices from S ∪ T .
Hence, it suffices to verify if there exists a pair S ∈ S, T ∈ T that are disjoint, such that the
minimum degree of the polynomial C[S, T ] is ≥ r. Moreover, it is straightforward to see that
the degree of any entry in C is bounded by k = O(1), and hence we can compute C in the
desired running time by applying the fastest matrix multiplication algorithm over the ring
Z≤k[X]. The claimed running time follows. ◀

Case r = k − 1. By running the same algorithm as above, we can achieve a running
time of O

(
( m

n )k−1+o(1)n + n2)
(assuming ω = 2, or sufficiently large k). However, perhaps

surprisingly we can beat this running time significantly for larger k. In fact, we proceed to
show that for each k ≥ 3, we can reduce the (k − 1)-Multiple k-Dominating Set problem
to an instance of k-Clique( m

n , . . . , m
n , n). To achieve that, we leverage the following simple

observation.

▶ Observation 15. For any fixed k ≥ 2, let x1, . . . , xk be any (k − 1)-Multiple k-Dominating
Set. Then for each i ̸= j, vertices xi, xj form a dominating set.

Given a graph G, we can exploit this observation to preprocess the graph as follows. Recall
that H denotes the set of heavy vertices in our graph and by Lemma 13, any (k − 1) multiple
dominating set of size k contains at least (k − 1) heavy vertices. Let V1, . . . , Vk−1 be copies
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of H and Vk a copy of V (G). Let G′ = (V ′, E′), where V ′ = V1 ∪ · · · ∪ Vk and for any pair
vi ∈ Vi, vj ∈ Vj (for i ̸= j), add an edge between vi, vj if and only if they form a dominating
set in G.

▶ Lemma 16. Let G′ be constructed as above. Then vertices v1, . . . , vk form a clique in G′

if and only if they form a (k − 1)-Multiple k-Dominating Set in G.

Proof. Assume first that some vertices v1, . . . , vk form a clique in G′. We will call these
vertices solution vertices. Take any vertex w ∈ V (G) and assume that it is dominated by
at most k − 2 solution vertices. In particular, this means w is not dominated by some
pair of solution vertices vi, vj . However, this means that vi, vj is not a dominating set and
consequently, there is no edge between vi and vj in G′, contradicting that the solution vertices
form a clique. The converse follows directly from Observation 15. ◀

By using the approach from [29], we can list all dominating sets of size 2 in time mω/2+o(1).

▶ Lemma 17 ([29]). Given a graph G with n vertices and m edges, there exists a randomized
algorithm listing all dominating sets of size 2 in time mω/2+o(1).

This gives us all the tools necessary to prove Theorem 3.

▶ Theorem 3. For any fixed constant k ≥ 2, let Tk(m, n) denote the time required to solve
the k-Clique( m

n , . . . , m
n , n) problem. There is a randomized algorithm solving (k − 1)-Multiple

k-Dominating Set in time m
ω
2 +o(1) + O(Tk(m, n)).

Proof. Note that it is sufficient to show that we can construct the graph G′ as defined above
in time m

ω
2 +o(1). Given a graph G, let Vi, Vj be two arbitrary parts of G′ as described above.

Using the algorithm from Lemma 17, we can construct all the edges between the two parts in
time at most m

ω
2 +o(1) with high probability. We repeat this for each pair 1 ≤ i < j ≤ k. ◀

Interestingly, this procedure also gives a polynomial improvement over brute-force in dense
graphs.

▶ Corollary 18. We can solve (k − 1)-Multiple k-Dominating Set in time O(nω k
3 +1).

Theorem 3 gives us a useful way to think about our problem in terms of the Unbalanced
k-Clique problem. However, the question arises how to optimally solve this variation of
k-Clique. We partially answer this question by providing infinitely many values of 0 ≤ γ ≤ 1,
such that if m

n = O(nγ), then for infinitely many values of k, we can solve this problem in
time

(
( m

n )k−1n
) ω

3 +o(1), which is optimal under the k-Clique Hypothesis (see Subsection 3.2
for details). The idea is to apply the standard technique of grouping the vertices that form
smaller cliques into three groups W1, W2, W3 of roughly the same size, in such a way that
there is a triangle between any three vertices w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 if and only if
there are vertices v1 ∈ V1, . . . , vk ∈ Vk that form a k-clique. In order to be able to achieve
this tightly, the values k and γ need to satisfy certain conditions.

▶ Proposition 4. Let G = (V1, . . . , Vk, E) be a k-partite graph with vertex part sizes |V1| = n

and |V2| = · · · = |Vk| = nγ for some 0 ≤ γ ≤ 1. If
1. (k − 1 + 1

γ ) is an integer divisible by 3,
2. 2

γ < k − 1,
then we can decide if G has a clique of size k in time (nγ(k−1)+1) ω

3 +o(1).
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Notice that for each positive integer p, by setting γ = 1
p , the first condition is satisfied by

every k ≡ 2p + 1 (mod 3), and the second condition is satisfied by every sufficiently large
k (in particular, for each of the infinitely many such choices of γ, both conditions can be
satisfied by any of the infinitely many choices of k). For a detailed proof, see the full version
of the paper.

3.2 Lower Bound
In this section, we show that the algorithms provided in the previous section are conditionally
optimal. To do so, we introduce an intermediate problem, r-Multiple k-Orthogonal Vectors
defined as follows.

▶ Definition 19 (r-Multiple k-Orthogonal Vectors). Given sets A1, . . . , Ak ⊆ {0, 1}d, determ-
ine if there exist vectors a1 ∈ A1, . . . , ak ∈ Ak such that for each t ∈ [d] there are pairwise
distinct indices i1, . . . , ir ∈ [k] with ai1 [t] = · · · = air

[t] = 0.

We note that when r = 1, this problem is exactly the k-Orthogonal Vectors problem. We can
now adapt the reduction from [29] to show that this problem reduces to a sparse instance of
r-Multiple k-Dominating Set. We note that we are using the moderate-dimensional variant
of r-Multiple k-OV problem (i.e. d = nδ for some small δ > 0).

▶ Lemma 20. For any fixed k ≥ 2, 1 ≤ r ≤ k − 1, let A1, . . . , Ak be a given instance of
r-Multiple k-Orthogonal Vectors with |A1| = · · · = |Ar| = O( m

n ) (for any n ≤ m ≤ n2) and
|Ar+1| = · · · = |Ak| = n. We can construct in linear time an equivalent instance of r-Multiple
k-Dominating Set G with O(n) vertices and O(m + dn) edges.

Proof. Given an instance A1, . . . , Ak of r-Multiple k-Orthogonal Vectors, let V (G) = X1 ∪
· · · ∪ Xk ∪ D ∪ R where the set Xi corresponds to the set Ai, D := [d] corresponds to the set
of dimensions and R is a set containing (k + 1)

(
k
r

)
vertices, representing “redundant” vertices.

For each vertex xi ∈ Xi add an edge between xi and t ∈ D if and only if the corresponding
vector ai satisfies ai[t] = 0. Partition R into

(
k
r

)
many sets RQ (for each Q ∈

([k]
r

)
) of size

(k + 1), and add an edge between any vertex xi ∈ Xi and any vertex y ∈ RQ if and only if
i ∈ Q. It is straightforward to verify now that if G has an r-multiple k-dominating set S,
it must satisfy |S ∩ Xi| = 1 for each i ∈ [k]. Finally for each vertex xi ∈ Xi for i ≤ r and
xj ∈ Xj for j ̸= i add an edge between xi and xj .

It is straightforward to verify that the vectors a1 ∈ A1, . . . , ak ∈ Ak satisfy the r-Multiple
k-OV condition if and only if the corresponding vertices x1 ∈ X1, . . . , xk ∈ Xk form an
r-multiple dominating set in G. It remains to show that the constructed graph has O(n) many
vertices and O(m+dn) many edges. Clearly, G consists of O(r m

n +kn+d) = O( m
n +n) = O(n)

many vertices and there are at most O(d(r m
n + kn) + r m

n · kn) = O(dn + m) edges. ◀

▶ Corollary 21. Let k ≥ 2, 1 ≥ r ≤ k − 1 be fixed and m = Θ(n1+γ) for some 0 < γ ≤ 1.
If we can solve r-Multiple k-Dominating Set on graphs with n vertices and m edges in
time T (m, n), then there exists a δ > 0, such that we can solve any instance A1, . . . , Ak of
r-Multiple k-Orthogonal Vectors with |A1| = · · · = |Ar| = O( m

n ), Ar+1 = · · · = Ak = n and
d = nδ in time O(T (m, n)).

Proof. Let δ = γ/2 and given an instance A1, . . . , Ak of r-Multiple k-Orthogonal Vectors
with |A1| = · · · = |Ar| = O( m

n ), Ar+1 = · · · = Ak = n and d = nδ, apply the reduction from
the previous lemma to obtain a graph with O(n) many vertices and O(m) many edges and
run the algorithm solving r-Multiple k-Dominating Set in time T (m, n) to this graph to
obtain a O(T (m, n)) algorithm for r-Multiple k-Orthogonal Vectors. ◀
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It now remains to show that r-Multiple k-Orthogonal Vectors problem is conditionally hard.
In order to do this, we leverage the fine-grained classification of the first-order properties
provided in [12] (for details see the full version of the paper). This allows us to prove the
following result.

▶ Lemma 22. Let X1, . . . , Xk be an instance of r-Multiple k-OV for 1 ≤ r ≤ k − 2. There
is no algorithm solving r-Multiple k-OV for r ≤ k − 2 in time O

((
|X1| · · · · · |Xk|

)1−ε
)

for
any ε > 0, unless the (k − r + 1)-Uniform Hyperclique Hypothesis fails. This holds even when
restricted to |Xi| = Θ(nγi) for an arbitrary choice of γ1, . . . , γk ∈ (0, 1].

Finally, by combining this lemma and Corollary 21, we can now conclude that our first
algorithm is conditionally optimal (up to subpolynomial factors and resolution of matrix
multiplication exponent) under the 3-Uniform Hyperclique Hypothesis.

▶ Theorem 2. Let k ≥ 3, r ≤ k − 2 be fixed constants, and ε > 0. An algorithm solving r-
Multiple k-Dominating Set in time O

(
(m/n)rnk−r−ε

)
would refute the 3-uniform Hyperclique

Hypothesis. This holds even when restricting m = Θ(n1+γ) for any 0 < γ ≤ 1.

Moreover, we observe that this implies that in dense graphs (m = Θ(n2)), there is no
algorithm solving r-Multiple k-Dominating Set polynomially faster than brute force as long
as r ≤ k − 2, unless 3-Uniform Hyperclique hypothesis fails.

Notably, however, combining r-Multiple k-OV with the tools from [12] fails to provide a
tight lower bound for (k − 1)-Multiple k-Dominating Set in sparse graphs (for dense graphs
we do get a tight classification, as discussed in the full version of the paper). Nevertheless, by
a careful reduction from the Independent Set problem, we can obtain a desired conditional
lower bound. We sketch the reduction here. For the full proof see the full version of the
paper.

▶ Theorem 23. Let 0 < γ < 1 be a rational number. Then solving (k − 1)-
Multiple k-Dominating Set on graphs with N vertices and M = N1+γ edges in time
O

((
Nγ(k−1)+1)ω/3−ε

)
for any ε > 0 would refute the k-Clique Hypothesis.

Proof sketch. Write γ = p/q for coprime positive integers p, q and let k∗ := 3(k − 1)p + 3q.
We reduce from k∗-Independent Set Detection. Let G = (X1, . . . , Xk∗ , E) be a k∗-partite
graph with n vertices in each part. For each i ∈ [k − 1], let Ai be the set consisting of all
independent sets of size 3p from X(i−1)·3p+1, . . . , Xi·3p and Ak be the set consisting of all
independent sets of size 3q from Xk∗−3q+1, . . . , Xk∗ . For each i ∈ [k], let Vi consist of nodes
corresponding to the elements in Ai. Let F be the set corresponding to the edge set E

of G. We now construct a graph G′ as follows. Let V (G′) = V1 ∪ · · · ∪ Vk ∪ F ∪ R, where
R is a gadget of size O(1) that ensures that if G′ contains any (k − 1)-multiple dominating
set of size k, it contains exactly one node from each set Vi. We add the remaining edges
as follows. For any pair of nodes vi ∈ Vi, vj ∈ Vj for i ̸= j, add an edge between them.
Finally, add an edge between a node f ∈ F and vi ∈ Vi if and only if none of the vertices
contained in the corresponding independent set ai ∈ Ai are among the two endpoints of
the edge corresponding to f . By setting N := n3q, we can verify that G′ contains O(N)
nodes and O(N1+γ) edges and that it contains a (k − 1)-multiple dominating set of size k if
and only if G has an independent set of size k∗. Finally, if there was an algorithm solving
(k − 1)-Multiple k-Dominating Set in time O

((
Nγ(k−1)+1)ω/3−ε

)
, by running the reduction

above, we could solve the k∗-Independent Set problem in time

O
((

Nγ(k−1)+1)ω/3−ε
)

= O
((

n3p(k−1)+3q))ω/3−ε
)

= O
(
nk∗ω/3−ε′)

refuting the k-Clique Hypothesis. ◀
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4 Dominating Patterns in Sparse Graphs

In this section we consider the Dominating Pattern problem. In particular, we first provide a
simple argument that shows that for every pattern H consisting of k vertices (for k ≥ 3), we
can solve this problem in mnk−2+o(1) running time. On the lower bound side, we observe
that the literature implicitly proves existence of a pattern H for which this running time is
optimal under the k-OV Hypothesis, thus settling the complexity of the case when the pattern
H is a part of the input. We then consider the problem of detecting an H-Dominating Set
for a fixed k-vertex graph H. To this end, we show that for any fixed pattern H consisting
of k vertices, the existence of an O

(
m(k−1)/2+1−ε

n

)
-time algorithm for this problem would

refute the k-OV Hypothesis. We then show that this general lower bound is matched by a
corresponding algorithm for some patterns H. The fine-grained complexity thus depends
heavily on the structure of the graph H itself, and we focus our attention to some of the
most important patterns.

▶ Proposition 24. Let k ≥ 7. The k-Pattern Domination on graphs with n vertices and m

edges can be solved in time O
(
mnk−2+o(1)) (if ω = 2, we can achieve this running time for

all k ≥ 3).

For a proof, see the full version of the paper. On the other hand, it has been implicitly
proved in [29] that if H is isomorphic to a complete bipartite graph K1,(k−1) (i.e. star graph
on k vertices), then detecting an H-Dominating Set in time O

(
mnk−2−ε

)
for any ε > 0

would refute the k-OV Hypothesis, and thus in the general case, the algorithm above is the
best we can do, up to subpolynomial factors, unless k-OV Hypothesis fails. We summarise
this result in the following.

▶ Proposition 25 ([29, Theorem 1.2], reformulated). Let H be a star graph on k vertices.
Then for no ε > 0 is there an algorithm solving the H-Dominating Set problem in time
O

(
mnk−2−ε

)
, unless the k-OV Hypothesis fails.

The previous two propositions settle the fine-grained complexity of k-Pattern Domination
in sparse graphs, but leave open an interesting research direction. Namely, are there fixed
patterns H for which we can beat this running time, and if so, by how much. Towards
answering this question, we first provide a conditional lower bound, showing that for no
pattern H can we do better than

(
m1+(k−1)/2

n

)1−o(1) under the k-OV hypothesis.

▶ Theorem 6. Let H be any graph on k ≥ 3 vertices. For no ε > 0 is there an algorithm
solving H-Dominating Set in time O

((
m(k+1)/2

n

)1−ε
)

, unless the k-OV hypothesis fails.

We adapt the reduction by Fischer, Künnemann and Redzic [29] to force any dominating set
of size k to induce the graph H. For a detailed proof see the full version of the paper.

4.1 Dominating k-Clique and k-Independent Set
In this section we consider the two classic graph patterns for which this problem has been
well-studied, namely, k-Clique and k-Independent Set. Particularly, we settle the fine-grained
complexity of both Dominating k-Clique and Dominating k-Independent Set by providing
algorithms that match the conditional lower bound from Theorem 6 even in sparse graphs.
Let us focus on the k-Clique case first. In order to obtain a faster algorithm in sparse graphs,
we leverage the following observation (for a proof see the full version).
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▶ Observation 26 (folklore). A graph with n vertices and m edges has at most O(m k
2 )

k-cliques.

▶ Theorem 7. Let k ≥ 5 be a fixed constant. The Dominating k-Clique problem can be
solved on graphs with n vertices and m edges in time

MM(m

n
· m

1
2 ⌊ k−1

2 ⌋, n, m
1
2 ⌈ k−1

2 ⌉).

where MM(a, b, c) is the time required to multiply an a × b matrix by a b × c matrix. If ω = 2,
this becomes

(
m(k+1)/2

n

)1+o(1).

The idea of the proof is to combine Observation 26 with the observation that each dominating
k-clique contains a heavy vertex, in order to restrict the size of our solution space. After
restricting the solution space, we follow the similar lines of the matrix multiplication algorithm
for k-Dominating Set from [22, 29]. For a detailed proof, see the full version.

The last theorem shows that considering the density of the dominating pattern can be
beneficial in obtaining a significant speedup over the standard k-Dominating Set algorithm,
by observing that there are fewer such dense patterns (e.g. k-cliques) in sparse graphs. On
the other extreme of the density spectrum lie the independent sets. There are typically
many k-independent sets in sparse graphs (Ω(nk)), so we cannot use Observation 26 to
obtain a faster algorithm for the Dominating k-Independent Set problem. To nevertheless
obtain a fast algorithm, we take advantage of one simple observation. Namely, if we know
that some fixed vertex v is contained in some dominating k-independent set, by removing
N [v] from G, we can recursively obtain an instance of the Dominating (k − 1)-Independent
Set problem, since no solution vertices will appear in N [v] and moreover, N [v] is already
dominated by v. As a technical note, the crucial reason why this approach fails for instances
of the usual k-Dominating Set problem (without the restriction that the solution vertices
induce a k-Independent Set) lies in the distinction between monochromatic and bichromatic
versions of Dominating Set. In particular, after fixing a solution vertex v of a dominating
set, we no longer have to dominate the vertices from N [v], but some of them might still
appear in our solution. We thus obtain an instance of Bichromatic (k − 1)-Dominating Set
(essentially a graph formulation of k-Set Cover), and it is known that this problem is hard
already in very sparse instances (see [29]).

▶ Lemma 27. Let Ak(G) be an algorithm that finds a dominating k-independent set. Given
a graph G, any dominating k-independent set containing a fixed vertex v can be found by
running Ak−1(G − N [v]).

This gives rise to a simple recursive algorithm whose time complexity we can bound as
follows. (For a formal proof, we refer to the full version).

▶ Lemma 28. Let Tk(n, m) denote the running time of an algorithm solving Dominating
k-Independent Set problem and H denote the set of heavy vertices. Then for every k ≥ 3, the
following inequality holds:

Tk(n, m) ≤
∑
v∈H

Tk−1(n − |N [v]|, m).

As the base case of our algorithm, we take the k = 2 case, which we can solve in randomized
time mω/2+o(1).

▶ Lemma 29. There exists a randomized algorithm solving Dominating 2-Independent Set
in time mω/2+o(1).

IPEC 2024
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Proof. By Lemma 17, we can list all dominating sets of size 2 in time mω/2+o(1) and for
each we can in O(1) time check if it forms an independent set. ◀

We can now give a full algorithm and its analysis by exploiting the previous lemmas.

▶ Theorem 8. Let k ≥ 3 be fixed. The Dominating k-Independent Set problem can be solved
on graphs with n vertices and m edges in time ( m(k−1+ω)/2

n )1+o(1). If ω = 2, this becomes(
m(k+1)/2

n

)1+o(1).

Proof. If k = 2 we apply Lemma 29 to solve the problem in mω/2+o(1). For larger k, for
each heavy vertex v, we ask if G − N [v] contains an independent set of size (k − 1) that
dominates G. If for any choice of v the recursive algorithm returns YES, we return YES
and otherwise return NO. We only have to analyse the time complexity. We know by the
previous lemma that T2(n, m) = mω/2+o(1). For larger values of k, we have

Tk(n, m) ≤
∑
v∈H

Tk−1(n − |N [v]|, m)

≤ min(n,
m

n
) · max

v∈H
Tk−1(n − |N [v]|, m)

≤ m

n
· max

δ∈[0,1]
Tk−1(nδ, m)

Now it only remains to bound the value maxδ∈[0,1] Tk−1(nδ, m). If k ≤ 3, this value is bounded
by mω/2+o(1) and we obtain the claimed running time. So assume that k ≥ 4 and consider
two separate cases, namely when nδ <

√
m and when nδ ≥

√
m. In the former case, we can

simply list all dominating sets of size k − 1 in time nk−1+o(1) < m
k−1

2 +o(1) (assuming ω = 2)
using the algorithm from [46]5, and this again yields a running time of ( m(k−1+ω)/2

n )1+o(1).
In the latter case we can proceed inductively, since m

nδ ≤
√

m, we have that Tk−1(nδ, m) ≤√
m maxδ′∈[0,1] Tk−2(nδ′

, m) and we can bound maxδ′∈[0,1] Tk−2(nδ′
, m) ≤ m(k−2)/2 by a

simple induction on k, yielding the desired running time. ◀

4.2 Dominating k-Induced Matching
So far we considered three different pattern classes (cliques, independent sets and stars),
and in two out of those three cases we can obtain an algorithm that runs in

(
m(k+1)/2

n

)1+o(1)

(if ω = 2), which is the best we can do for any pattern assuming k-OV Hypothesis, and in
the remaining case we can show an mnk−2−o(1) conditional lower bound, which makes this
pattern as hard as any pattern can be. This suggests that there might be a dichotomy of all
k-vertex graphs into two classes:
1. Easy Patterns (those for which there exists an algorithm solving H-Dominating Set in(

m(k+1)/2

n

)1+o(1))
2. Hard Patterns (those for which we can show an mnk−2−o(1) lower bound under k-OV

Hypothesis).
In this section we show that such a dichotomy is unlikely. More precisely, we find a pattern
which is in neither of those two categories (unless k-OV Hypothesis fails). Let the k-induced
matching be the graph consisting of k/2 independent edges. In this section we prove that we
can solve the Dominating k-Induced Matching problem in mk/2+o(1) running time (if ω = 2)
and provide a matching conditional lower bound under the k-OV Hypothesis. Here we only
state our results; the full proofs can be found in the full version.

5 If k ≥ 8, we can obtain this running time, even with the current value of ω.
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▶ Theorem 30. Given a graph G with n vertices and m edges, we can solve Dominating
k-Induced Matching in time

MM(m⌈ k
2 ⌉, n, m⌊ k

2 ⌋).

If ω = 2, this running time becomes m
k
2 +o(1) for every even k ≥ 4.

Finally, we show that this running time cannot be significantly improved, unless k-OV
Hypothesis fails. To achieve this, we apply a simple adaptation of the reduction from
Theorem 6.

▶ Theorem 31. For no even k ≥ 4 and ε > 0 is there an algorithm solving Dominating
k-Induced Matching in time O

(
m

k
2 −ε

)
, unless the k-OV hypothesis fails.
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Abstract
In Clique Cover, given a graph G and an integer k, the task is to partition the vertices of G into
k cliques. Clique Cover on unit ball graphs has a natural interpretation as a clustering problem,
where the objective function is the maximum diameter of a cluster.

Many classical NP-hard problems are known to admit 2O(n1−1/d)-time algorithms on unit ball
graphs in Rd [de Berg et al., SIAM J. Comp 2018]. A notable exception is the Maximum Clique
problem, which admits a polynomial-time algorithm on unit disk graphs and a subexponential
algorithm on unit ball graphs in R3, but no subexponential algorithm on unit ball graphs in
dimensions 4 or larger, assuming the ETH [Bonamy et al., JACM 2021].

In this work, we show that Clique Cover also suffers from a “curse of dimensionality”, albeit
in a significantly different way compared to Maximum Clique. We present a 2O(

√
n)-time algorithm

for unit disk graphs and argue that it is tight under the ETH. On the other hand, we show that
Clique Cover does not admit a 2o(n)-time algorithm on unit ball graphs in dimension 5, unless
the ETH fails.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Clique cover, diameter clustering, subexponential algorithms, unit disk
graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2024.10

Related Version Preprint: https://arxiv.org/abs/2410.03609

Funding Tomohiro Koana: Supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (project CRACKNP under grant agreement
No. 853234).
Kirill Simonov: Supported by DFG Research Group ADYN via grant DFG 411362735.

1 Introduction

Clustering is a general method of partitioning data entries, normally represented by points
in the Euclidean space, into clusters with the goal of minimizing a certain similarity function
for the points in the same cluster. Many popular similarity objectives such as k-means and
k-center are center-based, i.e., the objective function of the cluster is defined in terms of
distance to the additionally selected center of the cluster. On the other hand, arguably the
most natural similarity measure that is defined solely in terms of distances between the given
datapoints, is the maximum diameter of a cluster. That is, the objective function of the
clustering is the maximum distance between any pair of points in the same cluster. Formally,
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we consider the following k-Diameter problem: Given a set of points P in the Euclidean
space Rd, and parameters k, D, is there a partitioning of P into disjoint C1, . . . , Ck, such
that for each j ∈ [k], and each x, y ∈ Cj , ||x − y|| ≤ D?1

The k-Diameter problem admits a natural geometric interpretation. Consider a set of
disks with centers in P and of the same radius D/2. The problem asks to partition the disks
into k sets so that disks in each set pairwise intersect. Given a graph G and an integer k,
let Clique Cover be the problem of partitioning the vertex set of G into k vertex-disjoint
cliques. k-Diameter in Rd is thus equivalent to Clique Cover on unit ball graphs in Rd.
Note that Clique Cover is equivalent to k-Coloring on general graphs by taking the
complement of the graph; however, unit ball graphs are not closed under complements,
therefore Clique Cover on unit ball graphs does not necessarily have the same complexity
as k-Coloring on unit ball graphs.

The main question we ask in this work is the following: Does k-Diameter in Rd, or
equivalently Clique Cover on d-dimensional unit ball graphs, admit subexponential-time
algorithms? Given that Clique Cover is a natural graph problem akin to Maximum
Clique and k-Coloring, our question fits into the recent line of advances for algorithms
on geometric intersection graphs.

In a seminal work, de Berg et al. [6] gave a framework for 2O(n1−1/d)-time algorithms
on, in particular, d-dimensional unit ball graphs, which covers problems such as Maximum
Independent Set, Dominating Set, and Steiner Tree. At the heart of the framework
lies a special kind of tree decomposition, that essentially guarantees that each bag is covered
by O(n1−1/d/ log n) cliques. The target problem is then solved via dynamic programming
over the decomposition, given that the interaction of the solution with the cliques in the bag
could be succinctly represented. For example, in the Maximum Independent Set problem
the solution can have at most one element per clique, and storing the intersection between
the solution and the bag is therefore sufficient for the running time above.

However, Clique Cover stands aside from the problems covered by the framework of
de Berg et al., as the interaction between the smallest clique cover and the given clique cover
of the bag does not immediately seem to admit a succinct representation. Moreover, one can
easily observe that finding the smallest clique cover is still NP-hard even if a clique cover of
the graph of constant size is given. Indeed, it is famously NP-hard to determine whether
a 4-colorable graph admits a 3-coloring [12, 8], and colorings turn into clique covers under
taking the complement of the graph.

Previously in the literature, another problem shown to not exhibit such a “gradually
subexponential” behavior was the Maximum Clique problem. Already since the 1990s,
a polynomial-time algorithm for Maximum Clique on unit disk graphs was known [5].
Recently, Bonamy et al. [2] have shown that Maximum Clique only admits a subexponential-
time algorithm on 3-dimensional unit ball graphs, while no 2o(n)-time algorithm is possible
in dimension 4, assuming the ETH.

Our results. As the first step, we show a subexponential algorithm for Clique Cover
on unit disk graphs. Our starting point is the weighted treewidth approach of de Berg et
al. [6]; however, as per the discussion above, on its own this characterization does not seem
to be sufficient. Intuitively, the geometric structure of unit disk graphs has to play a role not

1 Since one can binary search over the value of D, and there are at most |P |2 different distances between
the pairs of points, this decision version of the problem is equivalent to the optimization version, up to
logarithmic factors in the running time.
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only in the decomposition itself, but also in representing the solution with respect to the
decomposition. In order to accommodate this, we build upon the classical lemma due to
Capoyleas, Rote and Woeginger [4], that was rediscovered several times in the literature [7, 13].
Simply put, there always exists an optimal clique cover where all cliques are well-separated,
i.e., the convex hulls of the respective disk centers do not intersect. As only constantly many
cliques may lie in direct vicinity of another clique in an optimal solution, we can show that
there are at most polynomially many possible configurations for each clique in the optimal
solution. This characterization, coupled with the dynamic programming approach, results in
the following theorem.

▶ Theorem 1. Clique Cover can be solved in time 2O(
√

n) on n-vertex unit disk graphs,
when a geometric representation of the graph is given in the input, with bit-length of the
vectors bounded by poly(n).

Note that recognizing unit disk graphs is, in general, NP-hard [3] and even ∃R-complete [11],
which means that one cannot expect to be able to compute a geometric representation of a
given unit disk graph efficiently.

Using the lower bound machinery of de Berg et al. [6], we also observe that the running
time above is tight. Moreover, the lower bound holds for higher dimensions as well.

▶ Theorem 2. Assuming the ETH, Clique Cover on n-vertex unit ball graphs in Rd does
not admit a 2o(n1−1/d)-time algorithm, for any d > 1, even if the geometric representation of
polynomial bit-length is given in the input.

The next natural question is whether the algorithmic result of Theorem 1 could also be
extended to higher dimensions. Unfortunately, the separation property that plays the key role
in Theorem 1 only holds in the two-dimensional case: the original work of Capoyleas, Rote
and Woeginger already observes that the analogous statement in three dimensions admits
a counterexample [4]. This, however does not exclude other potential ways for a succinct
representation of the solution, or another completely unrelated approach. We show that the
separation property is indeed crucial, that is, Clique Cover does not admit subexponential
algorithms on unit ball graphs in constant dimension.

▶ Theorem 3. Assuming the ETH, Clique Cover on n-vertex unit ball graphs in R5 does
not admit a 2o(n)-time algorithm, even if the geometric representation of polynomial bit-length
is given in the input.

To put Theorem 3 into context, recall the result of Bonamy et al. [2], showing that
Maximum Clique does not admit a subexponential algorithm on unit ball graphs in R4.
Their approach is to first argue that Maximum Independent Set is as hard on 2-subdivisions
(graphs obtained by replacing each edge with a path of length 3) as it is on general graphs,
which holds simply because a maximum independent set of a graph can be extracted from
a maximum independent set of its 2-subdivision. Then their key structural observation is
that a complement of any 2-subdivision admits a unit ball representation in R4, therefore
showing hardness of Maximum Clique on unit ball graphs in R4. Note that Maximum
Independent Set turns into Maximum Clique by taking the complement.

Since we target the Clique Cover problem on unit ball graphs, a natural idea is to
conduct the reduction in a similar spirit, but starting from k-Coloring. However, the
obstacle is that 2-subdivisions do not in general preserve the existence of a k-coloring – only
for k = 2, which is not suitable for a hardness reduction. Therefore, instead of replacing
each edge by its 2-subdivision, we need to use a more complicated edge gadget, and the
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4-dimensional representation of Bonamy et al. is no longer applicable. The straightforward
triangle-like edge gadget that preserves 3-colorings could be used in place of the 2-subdivision,
see Figure 1 for an illustration. However, it is not clear whether the resulting graph would
admit a sufficiently low-dimensional representation, namely below dimension 7. Instead,
the gadget that we use is based on two parallel 2-subdivisions, plus special vertices that
impose a list-coloring-like condition on the internal vertices of the subdivisions; this choice of
the gadget allows us to decrease the dimension to 5 (see Figure 1 for the illustration of the
gadget).

u v u v u vu v

c1

c2

. . .

. . .

Figure 1 Edge gadgets encoding the edge between vertices u, v: left, 2-subdivision of the edge,
suitable for maximum independent sets; center, triangle-like gadget suitable for 3-colorings; right,
improved gadget preserving 3-colorings – here vertices c1 and c2 are connected in the same way to
all edge gadgets.

2 Preliminaries

Sets, vectors and coordinates

For an integer n, we use [n] to denote the set {1, 2, . . . , n}. We use the tuple notation for
points in Rd, i.e., a point is defined by the tuple (a1, a2, . . . , ad), where ai ∈ R is the respective
coordinate for each i ∈ [d]. The variables x1, x2, . . . , xd are used to denote the respective
axes. We denote the origin by O = (0, 0, . . . , 0), and by Oxixj , i, j ∈ [d] we denote the plane
spanned on the respective axes; the same notation is used for higher-dimensional subspaces
too. For two points A, B ∈ Rd, −−→

AB denotes the vector pointing from A to B, its coordinates
are expressed as B − A. We use || · || to denote the standard Euclidean norm in R2, therefore,
||B − A|| is the Euclidean distance between the points A and B, and also the length of the
vector −−→

AB.

Unit ball graphs

Let P = {p1, . . . , pn} be a set of points in Rd and B be a set of balls bi of radius 1, centered
at pi. A unit ball graph on P is a graph over the vertex set P , in which two vertices pi and
pj are adjacent if and only if the balls bi and bj intersect.

Exponential-time hypothesis

The exponential-time hypothesis (ETH), due to Impagliazzo, Paturi and Zane [9, 10], implies
that there is no algorithm that solves 3-SAT in 2o(n) time, where n is the number of variables
in the formula. Since by the Sparsification Lemma [10] this holds even for linearly-many
clauses in the formula, ETH also excludes 2o(n+m)-time algorithms for 3-SAT, where m is
the number of clauses. By the standard linear-size reduction from 3-SAT to 3-Coloring,
ETH implies that 3-Coloring does not admit a 2o(n+m)-time algorithm, where n is the
number of vertices and m is the number of edges in the graph.
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Tree decomposition

For a graph G = (V, E), a tree decomposition is a pair (T, σ), where T = (VT , ET ) is a tree
and σ : VT → 2V such that

for each uv ∈ E, there exists t ∈ VT with u, v ∈ σ(t), and
for each v ∈ V , the set of nodes t ∈ VT with v ∈ σ(t) forms a connected subtree in T .

The width of (T, B) is maxx∈V (T )(|B(x)| − 1). The tree-width of G is the minimum width of
all tree decompositions of G.

A nice tree decomposition is a tree decomposition more amenable to the design of dynamic
programming algorithms. Formally, a tree decomposition (T = (VT , ET ), σ) rooted at r ∈ VT

is called nice if σ(r) = ∅ and each node t ∈ VT is one of the following types:
Leaf node. t is leaf in T and σ(t) = ∅.
Introduce node. t has exactly one child t′, and σ(t) = σ(t′) ∪ {v} for a vertex v in G.
Forget node. t has exactly one child t′, and σ(t) = σ(t′) \ {v} for a vertex v in G.
Join node. t has exactly two children t′, t′′, and σ(t) = σ(t′) = σ(t′′).
It is known that given a tree decomposition, a nice tree decomposition of the same width
can be computed in polynomial time [1].

3 Subexponential algorithm for unit disks

In this section, we design a subexponential-time algorithm for Clique Cover on unit disk
graphs.

▶ Theorem 1. Clique Cover can be solved in time 2O(
√

n) on n-vertex unit disk graphs,
when a geometric representation of the graph is given in the input, with bit-length of the
vectors bounded by poly(n).

To design a subexponential-time algorithm, let us introduce two known techniques. We
start with the “separation theorem” of Capoyleas, Rote and Woeginger [4]. Recall that we
aim to partition the vertex set of a given unit disk graph into a collection of k cliques. Each
clique is defined by the convex hull of the centers of disks in the clique. In principle, these
convex hulls may arbitrarily intersect each other. The following states that we may assume
that they are disjoint in an optimal solution.

▶ Theorem 4 (Capoyleas, Rote and Woeginger [4]). For Clique Cover on unit disk graphs,
there exists an optimal solution (C1, . . . , Cℓ) such that the convex hulls of the centers in Ci

are pairwise disjoint.

This was first proven by Capoyleas, Rote and Woeginger [4] but also by Dumitrescu and
Pach [7] and Pirwani and Salavatipour [13] later. Theorem 4 relies crucially on the fact
that for two intersecting convex polygons P1, P2 of diameter at most d, there exists two
disjoint convex polygons P ′

1, P ′
2 of diameter at most d such that the vertices of P1 and P2 are

contained in P ′
1 ∪ P ′

2. In view of Theorem 4, we will show that there are polynomially many
“relevant” cliques in Lemma 6. To prove this, we will also use the following simple fact.

▶ Lemma 5 (Dumitresku and Pach, Lemma 2 [7]). Let (G, ℓ) be an instance of Clique
Cover on unit disk graphs, and (C1, . . . , Cℓ) be an optimal solution satisfying the condition
of Theorem 4. For a set S of vertices contained in a square of constant side length, there are
O(1) cliques Ci that intersect S.

See Dumitrescu and Pach [7] for a concrete bound in the above lemma. Now we prove a
polynomial bound on the number of relevant cliques.
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▶ Lemma 6. Let (G, ℓ) be an instance of Clique Cover on unit disk graphs. Given S ⊆
V (G), we can find in polynomial time a collection R of cliques in G such that |R| ∈ |S|O(1),
and for each optimal solution (C1, . . . , Cℓ) satisfying the condition of Theorem 4, S ∩ Ci ∈ R
for all i ∈ [ℓ].

Proof. Let C = S ∩ Ci be a clique with C ̸= ∅. We will say that a clique Cj is close to C if
their closest vertices have distance at most two and far from C otherwise.

We first show how to separate C from far cliques, i.e., we find a collection of closed regions
P such that C lies within P and any far clique lies outside P . Suppose that u, v ∈ C are
two vertices with the largest distance r ≤ 2 in C. Then, C is contained in the intersection
of two disks of radius r centered at u and v, and every vertex of every far clique from C

is outside of these disks. For each u, v ∈ S, let Pu,v be the intersection of such two disks,
and let Ru,v be the vertices of S that lie in Pu,v. Let R′ be the collection of vertex sets
containing Ru,v for each u, v ∈ S. We then have |R′| ∈ O(|S|2), and for every C = S ∩ Ci

there exists R ∈ R′ that does not intersect any clique far from C.
Next, we discuss how to separate C from close cliques. By the above characterization, C

is contained in a 2 × 4-rectangle (not necessarily axis-aligned). For each close clique C ′ of C,
there exists a vertex t in C ′ with distance at most 2 to a vertex in C, and every vertex in C ′

has distance at most 2 to t, so every vertex of C ′ is at most at distance 4 from some vertex
of C. Therefore by extending the 2 × 4 rectangle containing C by 4 in every direction, we
obtain a 10 × 12 rectangle that contains every close clique of C. Thus, by Lemma 5, there are
O(1) close cliques Cj with j ∈ [ℓ]. For a clique Cj , j ∈ [ℓ], since the convex hulls of C and Cj

do not overlap by Theorem 4, there is a line that separates C and Cj , this line also separates
the convex hulls of C and Cj ∩ S. Moving this line, we find two vertices on the boundary of
the convex hull of C or two vertices on on the boundary of the convex hull of S ∩ Cj , such
that the line through them separates C and S ∩ Cj in the plane. Let P ′′ be the collection of
regions obtained as the intersection of constantly2 many open or closed semi-planes whose
boundaries go through two points of S. Let R′′ be the collection of vertex sets such that for
each region in P ′′, there is a vertex set in R′′ containing exactly the vertices of S lying in
this region.

Finally, let R be the collection of intersections of R′ and R′′ for R′ ∈ R′ and R′′ ∈ R′′.
Clearly, |R| ∈ |S|O(1). By the above, we have that for C = S ∩ Ci, there exists R′ ∈ R′ that
is disjoint from S ∩ Cj for every clique Cj that is far from C, and there exists R′′ ∈ R′′

that is disjoint from S ∩ Ch for every clique Ch close to C; on the other hand, R′ and R′′

contain C. Therefore, R′ ∩ R′′ is disjoint from S ∩ Cj for every j ≠ i, and contains C. Since
V (G) = C1 ∪ . . . ∪ Cℓ and R′, R′′ ⊆ S ⊆ V (G), R′ ∩ R′′ contains no vertices outside of C,
and C = R′ ∩ R′′ ∈ R. Moreover, every R ∈ R is a clique since every R′ ∈ R′ is a clique.
This completes the proof of the lemma. ◀

We will also use the framework of de Berg et al. [6] for the design of subexponential-time
algorithms for geometric intersection graphs. First, let us introduce some terminology. For a
graph G = (V, E) and κ ∈ N, a κ-partition of G is a partition (P1, . . . , Pν) of V such that
every Pi induces a connected subgraph which is a union of at most κ cliques. For a κ-partition
P of G, the P-contraction of G, denoted by GP , is the graph obtained by contracting every
Pi into a single vertex, that is, V (GP) = {P1, . . . , Pν} and E(GP) = {PiPj | ∃vi ∈ Pi, vj ∈
Pj : vivj ∈ E(G)}. Let γ : N → N be a weight function. For a tree decomposition (T, σ)
of GP , its weighted width with respect to γ is defined by maxt

∑
Pi∈σ(t) γ(|Pi|), where the

maximum is over the nodes t of T .

2 The constant depends on Lemma 5.
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The main technical step of the algorithmic framework of de Berg et al. is the following
theorem, restricted to the case of unit disk graphs.

▶ Theorem 7 ([6], Theorem 2.11 applied to unit disk graphs). For a weight function γ such
that γ(t) ∈ O(t1/2−ε) for ε > 0, there exists a κ-partition P for κ ∈ O(1) such that GP has
weighted treewidth O(

√
n) that can be computed in 2O(

√
n) time.

As in Berg et al. [6], we will apply Theorem 7 with γ(t) = O(log t). To design a 2O(
√

n)-
time algorithm, one essentially needs to show that there are |P |O(1) possibilities for each
partition class P ∈ P. We obtain this polynomial bound from Lemma 6. Specifically, let
(C1, . . . , Cℓ) be an optimal solution satisfying the condition of Theorem 4. For P ∈ P, let
R(P ) be the collection of cliques returned by Lemma 6, applied to the subset P ⊆ V (G). By
the lemma, for every i ∈ [ℓ], P ∩Ci ∈ R(P ). On the other hand, every clique is contained in a
2 × 4 rectangle, therefore by Lemma 5 only constantly many cliqes from C1, . . . , Cℓ intersect
this clique. Since P is covered by at most κ cliques, it also holds that only constantly many
cliqes from C1, . . . , Cℓ intersect P , where the constant depends on κ and Lemma 5; denote
this constant by λ. Later in the algorithm, we will characterize the solution (C1, . . . , Cℓ) on
P by listing the λ cliques from R(P ) that result from intersecting (C1, . . . , Cℓ) with P . We
now proceed to the proof of the theorem.

Proof of Theorem 1. We first apply Theorem 7 with γ(t) = ε log t+1 for a sufficiently small
constant ε > 0, obtaining a κ-partition P of G, and a tree decomposition of GP of weight at
most O(

√
n). For P ∈ P , let R(P ) be a collection of relevant cliques in P as per Lemma 6.

We define a configuration of P by a pair (C, χ) as follows. The first element, C ⊆ R(P ), is
a collection of at most λ cliques such that

⋃
C = P . The second element, χ : C → {0, 1},

is a mapping, which we will use to indicate whether a clique C ∈ C has been covered. We
denote the set of configurations of P by ΓP . Since |R(P )| ∈ |P |O(1) by Lemma 6, there are
at most λ · |R(P )|λ · 2λ ∈ |P |O(1) many configurations. Thus, for a bag t, the number of all
combinations of configurations of nodes in t is at most

∏
P ∈σ(t)

|P |O(1) = exp

c
∑

P ∈σ(t)

log |P |

 ∈ 2O(
√

n).

Here, c is a constant, and the second equality is due to the fact that the weighted treewidth
is O(

√
n). The running time will be dominated by this factor.

Our dynamic programming constructs a table ct for a bag t indexed by a configuration
for each P ∈ σ(t) and an integer ℓ. We describe the configuration by a mapping f that maps
P ∈ σ(t) to one of its configurations in ΓP . We use the notation f(P ) = (fC(P ), fχ(P )).
The table ct stores Boolean values, where the entry ct[f, ℓ] is true if and only if there is a
collection (C1, . . . , Cℓ) of ℓ cliques such that⋃

i∈[ℓ] Ci covers all vertices appearing strictly below t (i.e., every vertex in P ∈ P \ σ(t)
such that P appears in the subtree rooted at t is covered by

⋃
i∈[ℓ] Ci)⋃

i∈[ℓ] Ci covers all cliques C ∈ fC(P ) with P ∈ σ(t) and fχ(P )(C) = 1, and
every clique Ci, i ∈ [ℓ], contains a vertex appearing strictly below t.

Our dynamic programming will maintain this invariant.
Now we describe our dynamic programming procedure over a nice tree decomposition

(see Section 2 for the definition). It follows from our invariants that the input graph admits
a clique cover of size ℓ if and only if cr[f, ℓ] = 1 for the root r. For a non-leaf node t, we will
denote its children by t′, t′′ (t′ if t has one child).
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Leaf node. Suppose that t is a leaf node, i.e., σ(t) = ∅. Then, ct[f, ℓ] is true if and only if
ℓ = 0.

Introduce node. Suppose that t is an introduce node, i.e., σ(t) = σ(t′) ∪ {P}.

ct[f, ℓ] =
{

ct′ [f |σ(t′), ℓ] if fχ(P )(C) = 0 for every C ∈ fC(P ),
false otherwise.

Here, f |σ(t′) denotes the restriction of f to σ(t′). As we only consider cliques that intersect
a node strictly below t, we set the table entry to false if fχ(P ) is not uniformly zero.

Forget node. Suppose that t is a forget node, i.e., σ(t) = σ(t′) \ {P}. We have the following
recurrence:

ct[f, ℓ] =
∨

ℓ′∈{0,...,ℓ},f ′

ct′ [f ′, ℓ′]

where
∨

ranges over all f ′ and ℓ′ that satisfy the following condition. Let Hf ′ be an auxiliary
graph as follows. For every C ∈ f ′

C(P ) with fχ(P )(C) = 0, we add a vertex hC . Moreover,
for every P ′ ∈ σ(t) and C ∈ fC(P ′), we add a vertex hC to H if (i) C has not been covered
at t′, i.e., f ′

χ(P ′)(C) = 0 and (ii) C is covered at t, i.e., fχ(P ′)(C) = 1. Two vertices hC

and hC′ are adjacent in Hf ′ if and only if C ∪ C ′ is a clique in the graph G. This concludes
the construction of Hf ′ . Note that Hf ′ has size O(

√
n). Then

∨
ranges over f ′ and ℓ′ such

that Hf ′ has a clique cover (D1, . . . , Dℓ−ℓ′) of size ℓ − ℓ′ such that every clique Di contains a
vertex hC for C ∈ f ′

C(P ). Whether f ′ and ℓ′ fulfills this condition can be checked in 2O(
√

n)

time via dynamic programming.
Specifically, we proceed in a standard fashion for a k-Coloring/Clique Cover subset-

based dynamic programming. For each subset S ⊆ V (Hf ′) and each integer k, 0 ≤ k ≤ ℓ − ℓ′,
we compute the Boolean value d[S, k] that is equal to true if and only if the subgraph Hf ′ [S]
admits a clique cover of size k, where additionally every clique contains a vertex hC for some
C ∈ f ′

C(P ). We initialize by setting d[∅, 0] = true, d[S, 0] = false for each S ≠ ∅, and for each
S ⊆ V (Hf ′), k ∈ [ℓ − ℓ′], compute d[S, k] =

∨
D is an admissible clique in Hf′ [S] d[S \ D, k − 1].

Clearly, the dynamic programming table above is computed in time 2O(|V (Hf′ )|) = 2O(
√

n).
As there are 2O(

√
n) many choices for the configuration f ′, we can compute ct[f, ℓ] in overall

time 2O(
√

n).
Let us verify that the invariant is maintained by the computation above. If ct[f, ℓ] is set

to true, then there exist f ′ and ℓ′ satisfying the aforementioned condition, for which ct′ [f ′, ℓ′]
is also true. Since ct′ [f ′, ℓ′] is true, there exists a collection (C1, . . . , Cℓ′) of cliques. Also,
Hf ′ admits clique cover of size ℓ − ℓ′, which is also a collection of cliques in G. Combining
these cliques indeed satisfies the conditions.

Join node. Suppose that t is a join node, i.e., σ(t) = σ(t′) = σ(t′). We have the recurrence:

ct[f, ℓ] =
∨

ℓ′∈{0,...,ℓ}, f ′, f ′′

(ct′ [f ′, ℓ′] ∧ ct′′ [f ′′, ℓ − ℓ′]),

where
∨

ranges over functions f ′, f ′′ that map P ∈ σ(t) to one of its configurations such
that for every P ∈ σ(t),

P is partitioned in cliques in the same way, i.e., fC(P ) = f ′
C(P ) = f ′′

C (P ), and
for every C ∈ fC(P ), fχ(P )(C) = 1 if and only if C is covered in one of the children, i.e.,
f ′

χ(P )(C) = 1 or f ′′
χ (P )(C) = 1.
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To see why the invariant is maintained, note that if ct[f, ℓ] is set to true, then there are
ℓ′ cliques certifying ct′ [f ′, ℓ′] being true and ℓ − ℓ′ cliques certifying ct′′ [f ′′, ℓ − ℓ′] being true.
Putting them together, we obtain a collection of ℓ cliques satisfying the conditions.

Observe that each entry can be computed in 2O(
√

n) time. Since there are 2O(
√

n) entries,
the running time is bounded by 2O(

√
n). Note that all arithmetic operations can be performed

in polynomial time: we only require comparing distances between the given points and
orientations between triples of given points; see the proof of Lemma 6. Theorem 7 is
representation-agnostic, meaning that no additional arithmetic operations are required,
except for constructing the graph from the given geometric representation.

This concludes the proof of Theorem 1. ◀

4 Subexponential lower bound for d ≥ 2

In this section, we establish the impossibility of solving the Clique Cover problem on
d-dimensional unit ball graphs in time better than 2O(n1−1/d). For this, we use the result
of de Berg et al. [6], which states that, assuming ETH, Grid Embedded SAT cannot be
solved in time 2o(n) time, where n is the number of variables of the given formula.

Grid Embedded SAT is defined as follows. Let G2(n) denote the n × n-grid graph,
where there is a vertex (i, j) for every i, j ∈ [n] and an edge between (i, j) and (i′, j′) are
adjacent if and only if |i − i′| = |j − j′| = 1. We say that a graph H is embedded in G2(n) if a
subdivision of H is isomorphic to a subgraph of G2(n). For a CNF formula ϕ, the incidence
graph Gϕ of ϕ is the bipartite graph, where there is a vertex for each variable and each clause,
and there is an edge between a variable vertex and a clause vertex if and only if the variable
appears in the clause. A (3, 3)-CNF formula is a CNF formula where each variable appears
at most 3 times and each clause has size at most 3.

Input: A (3, 3)-CNF formula ϕ together with an embedding of its incidence graph
Gϕ in G2(n).

Task: Is there a satisfying assignment for ϕ?

Grid Embedded SAT

▶ Proposition 8 ([6], Theorem 3.2). Grid Embedded SAT can not be solved in time 2o(n)

unless ETH fails.

To show ETH-hardness for Rd, d ≥ 3, we use the cube wiring theorem due to de Berg et
al. [6]. Let Bd(n) denote [n]d and Gd(n) denote the d-dimensional hypercube over Bd(n).
Also, for p ∈ Bd−1(n) and h ∈ [n], let ξh(p) = (p1, . . . , pd−1, h) ∈ Bd(n). For s ∈ N, a
set P ⊆ Zd−1 is said to be s-spaced if there is an integer 0 ≤ r < s such that for every
p = (p1, . . . , pd−1) ∈ P and i ∈ [d − 1], pi ≡ r mod 2.

▶ Theorem 9 (Cube wiring theorem [6]). For d ≥ 3, let P and Q be two 2-spaced subsets
of Bd−1(n) and let M be a perfect matching in the bipartite graph (P ∪ Q, P × Q). Then,
for n′ ∈ O(n), Gd(n′) contains vertex-disjoint paths that connect ξ1(p) and ξn′(q) for every
pq ∈ M .

Now we prove our theorem.

▶ Theorem 2. Assuming the ETH, Clique Cover on n-vertex unit ball graphs in Rd does
not admit a 2o(n1−1/d)-time algorithm, for any d > 1, even if the geometric representation of
polynomial bit-length is given in the input.
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Proof. We first present a reduction from Grid Embedded SAT to Clique Cover on
unit disk graphs. Let ϕ be a (3, 3)-CNF formula. We may assume that each variable in ϕ

appears twice positively and once negatively: For every variable v where its occurrences are
all positive or negative, delete the clauses containing v. Also, for every variable v appears
twice negatively and once positively, flip its sign. We first describe how to construct a Grid
Embedded SAT instance (G, k) from ϕ, and specify the embedding later.

For each variable x, we create a variable gadget, which is obtained by gluing K3 and
K2 over one vertex, i.e., it is a paw, consisting of four vertices ux, u′

x, vx, wx and edges
uxu′

x, uxvx, u′
xvx, vxwx. We will call ux, u′

x, wx connection vertices.
For each clause, we introduce a single vertex C. We call it a clause gadget.
We construct a wire gadget, which will be used to connect a variable gadget to a clause
gadget in the embedding. A wire corresponding to a positive literal x is a path with an
even number of edges, starting at ux or u′

x from the variable gadget of x, and ending at
the corresponding clause vertex. For a negative literal, the path starts at wx instead. We
call a wire activated if the value of the corresponding literal of the connection vertex is
true. We call a wire if the corresponding literal is set to true.

This completes the construction of G. Let L be the total edge length of all wires. We show
that the formula ϕ has a satisfying assignment if and only if G has a clique cover of size
k = n + L/2, where n is the number of variables.

Correctness. Suppose that formula ϕ has a satisfying assignment. We construct a clique
cover of G as follows. For each variable x, we pick a clique {ux, u′

x, vx} if x is assigned true
and {vx, wx} otherwise. For each wire with 2ℓ edges, pick ℓ edges as K2’s so that all inner
vertices and the connection vertex is covered if the wire is activated, and all inner vertices
and the clause vertex is covered otherwise. Since the assignment satisfies all the clauses,
every clause gadget has at least one activated wire. If more than one wire ends with K2
containing a clause, then arbitrarily pick one wire and reduce the internal vertices of the
remaining wires into a K1 and pick it into the solution. Hence, all vertices in the variable,
wire and clause gadget are covered. We obtain a clique partition of G with k = n + L/2
cliques.

Conversely, assume G has a clique cover of size k. Each variable gadget contains at least
one clique that covers the common vertices of the gadget. Since in a wire of length 2ℓ, there
are 2ℓ − 1 internal vertices, and only two vertices of a wire can be covered by a clique. Thus,
wire gadgets contain at least L/2 cliques. Since k = n + L/2, the solution contains exactly
one clique for every variable gadget and each wire of length 2ℓ will have exactly ℓ cliques.
Since every clause vertex belongs to a clique in the solution, a literal exists such that the
corresponding wire is activated. Then, the respective connection vertex is not a part of the
wire clusters and thus is a part of the vertex cluster. We assign the variable’s value based on
which side the clique in each variable gadget picks. If the clique picks connection vertices
corresponding to K3, we set the variable to be true. If the clique contains connection vertices
corresponding to K2, then we set the variable to be false. Otherwise, we set variable values
arbitrarily.

Embedding. Suppose that d = 2. Let D be a grid embedding of Gϕ. We start by taking a
2-refinement of D. This will ensure that each wire gadget has even length. For every vertex
in Gϕ, we introduce a disk (of diameter 1) centered at its coordinate, unless it is a variable
vertex. For a variable x, let (i, j) be its coordinate in D. Without loss generality, assume
that three vertices adjacent to x in Gϕ are at (i − 1, j), (i, j + 1), and (i + 1, j). There are
three cases depending on which edge in Gϕ incident with x connects to a negative literal.
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Figure 2 Two cases for a variable gadget. The coordinate (i, j) is marked by the black dot. The
dotted disks are part of wire gadgets. Note that the variable gadget has exactly one disk intersecting
a dotted disk.

First, suppose that the edge between (i, j) and (i, j + 1) leads to a negative literal. Then,
introduce four disks centered at (i − 1/2, j − 1/2), (i + 1/2, j − 1/2) (corresponding to ux and
u′

x), (i, j − 1/2) (corresponding to vx), and (i, j + 1/2) (corresponding to wx). Otherwise,
suppose that the between (i, j) and (i + 1, j) leads to a negative literal. Then, introduce
four disks centered at (i − 1/2, j), (i, j + 1/2) (corresponding to ux and u′

x), (i, j − 1/2)
(corresponding to vx), and (i + 1/2, j − 1/2) (corresponding to wx). See Figure 2 for an
illustration.

Note that only polynomial precision in coordinates is required to construct the instance,
therefore the hardness also holds if the representation is given.

For d ≥ 3, for every variable, we place three vertices adjacent to its variable gadget in a
(d−1)-hypercube of side length 3. We then place all these hypercubes into a (d−1)-hypercube
of side length nO( 1

d−1 ). Placing the clause gadgets on Bd−1(m
1

d−1 ), we apply the cube wiring
theorem (Theorem 9) to obtain an embedding into Bd(n′) for n′ ∈ O(n). We then embed
the variable gadgets similarly to the case d = 2. ◀

5 Exponential lower bound for d = 5

In this section, we present a hardness reduction excluding better-than-exponential running
time for Clique Cover on unit ball graphs in dimension at least 5. We restate the result
next.

▶ Theorem 3. Assuming the ETH, Clique Cover on n-vertex unit ball graphs in R5 does
not admit a 2o(n)-time algorithm, even if the geometric representation of polynomial bit-length
is given in the input.

Proof. We show a reduction from 3-Coloring to Clique Cover, where the target instance
is a unit ball graph in Rd. Let G be the graph in the instance of 3-Coloring. We first
construct an enhanced graph G′ from G and argue that this makes an equivalent instance of
3-Coloring. Then, we show that the complement of the enhanced graph G′ admits a unit
ball representation in R5. Since solving 3-Coloring on G′ is equivalent to solving 3-Clique
Cover on G′, and 3-Clique Cover on unit ball graphs in R5 is the special case of Clique
Cover with k = 3 on the same class of graphs, this completes the reduction.

We now move to the details. First, we define the enhanced graph G′. The vertex set
of G′ contains one vertex for each vertex of G, four vertices for each edge of G, and two
additional special vertices. Formally, V (G′) = W ∪ T ∪ B ∪ C, where W = {wv : v ∈ V (G)},
T = {t1

e, t2
e : e ∈ E(G)}, B = {b1

e, b2
e : e ∈ E(G)}, C = {c1, c2}. The edges are as follows: for

every edge e = uv ∈ E(G), we construct wut1
e, t1

et2
e, t2

ewv, and wub1
e, b1

eb2
e, b2

ewv Additionally,
c1 is adjacent to all vertices of T , c2 is adjacent to all vertices of B, and c1 and c2 are
adjacent. Formally, the edge set of G′ is
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E(G′) = {wut1
e, t1

et2
e, t2

ewv, wub1
e, b1

et2
e, b2

ewv, t1
ec1, t2

ec1, b1
ec2, b2

ec2 : e ∈ E(G)} ∪ {c1c2}.

Intuitively, G′ is obtained from G by replacing each edge e ∈ E(G) with two copies of its
2-subdivision: the vertices t1

e and t2
e are internal vertices of the first copy, and the vertices

b1
e and b2

e are internal vertices of the first copy. Moreover, there are two special vertices c1
and c2 that are adjacent to each other, and c1 is adjacent to the internal vertices of the
first 2-subdivision, while c2 is adjacent to internal vertices of the second 2-subdivision. See
Figure 3 for an illustration of the edge gadget.

wu wv

c1

c2

. . .

. . .

t1e t2e

b1e b2e

Figure 3 Edge gadget in G′, encoding the edge e between vertices u, v in G. Vertices c1 and c2

are connected in the same way to all edge gadgets.

We now argue that G′ is equivalent to G in terms of 3-colorings.

▷ Claim 10. G admits a 3-coloring if and only if G′ admits a 3-coloring.

Proof. Let c : V (G) → {1, 2, 3} be the 3-coloring of G, we construct a 3-coloring c′ of G′.
Let c′ coincide with c on the vertices of W ; let c′(c1) = 1 and c′(c2) = 2. We now assign
colors to vertices th

e and bh
e for e ∈ E(G), h ∈ [2].

Consider an edge e = uv ∈ E(G), so that u is adjacent to t1
e and b1

e in G′. The vertex t1
e

has an available color since only c1 and u have assigned colors among its neighbors; assign
this color to t1

e. Now, assume there is no available color for t2
e, therefore all three colors

appear among c1, v, t1
e. Since c′(c1) = 1, either c′(v) = 2 and c′(t1

e) = 3, or the other
way around. In the former case, c′(u) ̸= 2 since c(·) is a proper 3-coloring of G. Assign
c′(t1

e) = 2 and c′(t2
e) = 3; all edges between the considered vertices are properly colored. In

the alternative case, the argument is symmetric: c′(v) = 3 and c′(u) ̸= 3; assign c′(t1
e) = 3

and c′(t2
e). The argument for the vertices b1

e and b2
e is analogous.

In the other direction, consider a 3-coloring c′ of G′; we claim that the restriction c of c′

to V (G) is a proper 3-coloring of G. Assume this is not the case, therefore there exists an
edge e = uv ∈ E(G) with c′(u) = c(u) = c(v) = c′(v). Since c1 and c2 are adjacent in G′,
they receive different colors under c′ and so either c′(c1) ̸= c′(u) or c′(c2) ̸= c′(u); w.l.o.g.
assume the former case. The vertex t1

e has only one available color since it cannot coincide
with c′(u) and c′(c1), which are two distinct colors. Then the neighborhood of t2

e contains all
three colors, since c′(u) = c′(v). This contradicts the fact that t2

e is properly colored by c′.
◁

Then we proceed to construct a unit ball representation of the complement of G′ in R5.
To this end, we describe the locations of all vertices in G′ under the embedding, and argue
that the distance between the locations exceeds a certain value if and only if the respective
pair of vertices is adjacent in G′.
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First, we embed the vertices of T , B in C in the first three dimensions, i.e., their images
are always zero in coordinates 4 and 5. Then, we embed the vertices of W in the other two
dimensions, i.e., such the coordinates 1–3 are zeroed out. Finally, we shift the embedding of
T and B slightly to achieve the desired edges between W and T ∪ B.

Let ϵ > 0 be a constant to be defined later. We place c1 and c2 symmetrically across the
origin at distance of

√
3 −

√
2/2 + ϵ along the first coordinate; that is,

π(c1) = (
√

3 −
√

2/2 + ϵ, 0, 0, 0, 0),

π(c2) = (−
√

3 +
√

2/2 − ϵ, 0, 0, 0, 0).

We then position the set T on the circumference of a circle with the center on the Ox1 axis
lying in the plane orthogonal to the axis, with radius r = 1 + ϵ′, and such that its center
is

√
2/2 − ϵ away from the origin towards −∞. We shall define the precise value of ϵ′ later.

The points of T1 occupy the “top cap” of the circumference, i.e., a small arc close to x2 = r,
and the points of T2 occupy the “bottom cap”, i.e., close to x2 = −r. We aim that for each
e ∈ E(G), t1

e lies directly opposite to t2
e, while the remaining points are sufficiently close to

each of them. Let E(G) = {e1, . . . , em}, we position the points t1
e1

, . . . , t1
em

evenly along the
arc starting from the “top” of the circle, such that the angle between the two consecutive
points is always δ/m, measured from the center of the circle. We then place the points t2

e1
,

. . . , t2
em

similarly, directly opposite to their counterparts. We define the exact positions as
follows:

π(t1
ej

) = (−
√

2/2 + ϵ, r · cos(δ · j/m), r · sin(δ · j/m), 0, 0),

π(t2
ej

) = (−
√

2/2 + ϵ, −r · cos(δ · j/m), −r · sin(δ · j/m), 0, 0).

The points of B are positioned very similarly, except that they are placed in a circle placed
opposite across the origin to the circle above, i.e., its center is the point (

√
2/2, 0, 0, 0, 0).

And the points of B1 (B2) are placed close to x3 = r (x3 = −r). Formally,

π(b1
ej

) = (
√

2/2 − ϵ, −r · sin(δ · j/m), r · cos(δ · j/m), 0, 0),

π(b2
ej

) = (
√

2/2 − ϵ, r · sin(δ · j/m), −r · cos(δ · j/m), 0, 0).

Note that the image of every point in T ∪ B is exactly R1 =
√

(
√

2/2 − ϵ)2 + r2 away
from the origin. Assume ϵ is such that R1 < 4, and let R2 =

√
4 − R2

1. We place the points
of W in the plane Ox4x5 exactly at the distance of R2 from the origin. Namely, consider
the circle in Ox4x5 centered at the origin with the radius of R2. We place the points of
W = {w1, . . . , wn} evenly along the circumference, such that the angle between consecutive
points is exactly δ/n:

π(wi) = (0, 0, 0, R2 · cos(δ · i/n), R2 · sin(δ · i/n)).

See Figure 4 for the illustration of the embedding π.
We now show that π “nearly” gives the desired embedding of G′. That is, we show that

every adjacent pair is at distance strictly more than 2 and every non-adjacent pair is at
distance strictly less than 2, except for the pairs of form (w, v), w ∈ W , v ∈ T ∪ B, which
are at distance exactly 2. Later we will slightly modify the embedding π to make sure that
exactly the required pairs of this form are sufficiently far from each other.
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O x1c1c2

T1

T2

B

r

√
2/2 − ϵ

√
3 −

√
2/2 + ϵ

x2

O x3c1

T1

T2

B1

r

x2

B2

O x5T ∪B ∪ C

W

R2

x4

Figure 4 Illustration of the embedding π, showed by schematic projections on the three planes.

▷ Claim 11. There exists ξ > 0 such that the following holds:

||π(w) − π(v)|| = 2, for each w ∈ W, v ∈ T ∪ B, (1)
||π(t1

e) − π(t2
e)|| ≥ 2 + ξ, for each e ∈ E(G), (2)

||π(b1
e) − π(b2

e)|| ≥ 2 + ξ, for each e ∈ E(G), (3)
||π(th

e ) − π(c1)|| ≥ 2 + ξ, for each e ∈ E(G), h ∈ [2], (4)
||π(bh

e ) − π(c2)|| ≥ 2 + ξ, for each e ∈ E(G), h ∈ [2], (5)
||π(c1) − π(c2)|| ≥ 2 + ξ, (6)

and for any other two vertices v, u of G′, the distance ||π(v) − π(u)|| is at most 2 − ξ.

Proof. Let ξ = ϵ′/2. Equation (1) holds immediately by construction, since each v ∈ T ∪ B

is situated exactly R1 away from the origin, each w ∈ W exactly R2 away from the origin,
T ∪ B is contained in the 3-dimensional subspace Ox1x2x3 which is orthogonal to the plane
Ox4x5 where W is contained, and R2

1 + R2
2 = 4 by definition of R2.

For Equation (2), observe that ||π(t1
e) − π(t2

e)|| = 2 + 2ϵ′ for each e ∈ E(G) since these
two points are situated diametrically opposite to each other on a circle of radius 1 + ϵ′.
Therefore, ||π(t1

e) − π(t2
e)|| ≥ 2 + ξ since ϵ′ = 2ξ ≥ ξ/2. On the other hand, consider the

points t1
e and t2

e′ for e ≠ e′. Since t2
e′ lies on the same circle at the angle of at least δ/m away

from t2
e, the distance between t1

e and t2
e′ is at most 2(1 + ϵ′) cos(δ/2m). Therefore, if it holds

that (1 + ϵ′) cos(δ/2m) ≤ 1 + ξ/2 = 1 + ϵ′/4, then all distances between the points of T are
as desired. Moreover, exactly the same arguments hold for Equation (3) and the distances
between the points of B. We now show this bound given that ϵ′ is sufficiently small:

ϵ′ ≤ δ2

20m2 =⇒ 1 + ϵ′

ϵ′ ≥ 20m2

δ2 =⇒ δ2

16m2 ≥ 5
4 · ϵ′

1 + ϵ′

=⇒ 1 − δ2

16m2 ≤ 1 − 5
4 · ϵ′

1 + ϵ′ = 1 − ϵ′/4
1 + ϵ′

=⇒ (1 + ϵ′) · cos δ

2m
≤ (1 + ϵ′) · (1 − δ2

16m2 ) ≤ 1 − ϵ′/4.
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Here, we also use that δ is a sufficiently small constant.
Consider now Equation (4), the distance between π(c1) and π(th

e ) is equal to
√

3 + r2 for
each e ∈ E(G) and h ∈ [2]. It is therefore sufficient to have

√
3 + (1 + ϵ′)2 ≥ 2 + ξ, which

holds since ϵ′ = 2ξ, and the same argument holds for Equation (5) because of the symmetry.
Note that the distance between π(c2) and π(th

e ) for any e ∈ E(G), h ∈ [2] is equal to√
(
√

3 −
√

2 + 2ϵ)2 + r2 =
√

(
√

3 −
√

2)2 + 1 + O(ϵ + ϵ′) < 1.5 ≤ 2 − ξ,

for sufficiently small ϵ, ϵ′ and ξ. The same holds for π(c1) and π(bh
e ) for any e ∈ E(G),

h ∈ [2].
For Equation (6),

||π(c1) − π(c2)|| = 2
√

3 −
√

2 + 2ϵ ≥ 2.049 ≥ 2 + ξ

when ξ is sufficiently small.
It remains to verify that pairwise distances not discussed above are bounded by 2 − ξ.

Consider first w ∈ W and ch for h ∈ [2], the respective squared distance is

||π(w) − π(ch)||2 = R2
2 + (

√
3 −

√
2/2 + ϵ)2 = 4 − R2

1 + (
√

3 −
√

2/2)2 + O(ϵ)

≤ 5.025 − R2
1 + O(ϵ) = 5.025 − (

√
2/2 − ϵ)2 − (1 + ϵ′)2 + O(ϵ)

= 5.025 − 1/2 − 1 + O(ϵ + ϵ′) = 3.525 + O(ϵ + ϵ′) ≤ 3.8

for sufficiently small ϵ and ϵ′. Therefore, ||π(w) − π(ch)|| ≤ 2 − ξ when ξ is sufficiently small.
Note also that when δ is a sufficiently small constant, distances between all pairs of

vertices in W under π are at most 1, since the images occupy an arc which is a small fraction
of a constant-radius circle, and the same holds for pairs in T1, T2, B1, B2.

Finally, it remains to consider pairs of the form t ∈ T , b ∈ B. Observe that when
projecting T and B orthogonally on the plane Ox2x3, these sets lie on the same circle of
radius r = 1 + ϵ′, and the radial distance between a point in T and a point in B is always at
most π/2 + δ, since T1, B1, T2, B2 are each rotated π/2 further away from the previous set,
and each of the four sets occupies an arc of radial length at most δ. Therefore,

(2 − ξ)2 − ||π(t) − π(b)||2 ≥ (2 − ξ)2 − (
√

2 − 2ϵ)2 − 2(1 + ϵ′)2(1 + sin δ)

≥ 4(
√

2 − 1)ϵ − 4ξ − 6ϵ′ − 8δ,

by using ϵ′, ϵ ≤ 1 and sin δ ≤ δ. The above value is greater than zero if ϵ ≥ 8(ϵ′ + ξ + δ).
To conclude the proof of the claim, we note that the parameters ξ, ϵ′, δ, ϵ clearly admit

values that satisfy all the restrictions above. Indeed, it is only required that each of them
does not exceed a certain constant independent of the other parameters, and additionally
that 2ξ = ϵ′ ≤ δ2

20m2 , and ϵ ≥ 8(ϵ′ + ξ + δ). ◁

Finally, we construct the embedding π′ that gives the desired representation of G′. For
that, we modify π in the following way: we only change the images of vertices in T ∪ B.
Namely, π′(v) = π(v) for v ∈ V (G′) \ (T ∪ B), and for each e = uv ∈ E(G),

π′(t1
e) = π(t1

e) + θ ·
−−−−→
π(u)O,

π′(b1
e) = π(b1

e) + θ ·
−−−−→
π(u)O,

π′(t2
e) = π(t2

e) + θ ·
−−−−→
π(v)O,

π′(b2
e) = π(b2

e) + θ ·
−−−−→
π(v)O,

where θ > 0 is a small value to be defined later. We show that the embedding π′ is indeed a
unit ball representation of the complement of G′.
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▷ Claim 12. For every u, v ∈ V (G′), uv ∈ E(G′) if and only if ||π′(u) − π′(v)|| > D, for
some D > 2.

Proof. First, we consider distances between the pairs π′(w), π′(v), where w ∈ W , v ∈ T ∪ B.
Let v ∈ T ∪ B and let w be the unique vertex in W such that π′(v) = π(v) + θ ·

−−−−→
π(w)O.

The respective squared distance is then ||π′(v) − π′(w)||2 = R2
1 + (R2 + θ)2. On the other

hand, consider a vertex w′ ∈ W with w′ ≠ w. For v and w′, the squared distance is
||π′(v) − π′(w′)||2 ≤ R2

1 + R2
2 + θ2 + 2R2θ cos(δ/n), since the distance is independent in

Ox1x2x3 and Ox4x5, and in the latter plane the vertex w′ is at least at angle of δ/n away
from the line

−−−−→
Oπ(w), which by the law of cosines gives the upper bound above.

By setting D =
√

R2
1 + R2

2 + θ2 + 2R2θ cos(δ/n) we therefore achieve that ||w′ − v|| ≤ D

for each w′ ̸= w, while ||w − v|| > D since

(R2
1 + (R2 + θ)2) − (R2

1 + R2
2 + θ2 + 2R2θ cos(δ/n)) = 2R2θ · (1 − cos(δ/n)) > 0.

Observe that 2 < D since R2
1 + R2

2 = 4, and that D < 2 + ξ/2 for a sufficiently small value
of θ; fix θ so that the latter holds. We now verify the distance condition for the remaining
pairs. First, the distance between vertices of W and c1/c2 is the same under π and π′, so
it is at most 2 < D. It remains to consider distances between pairs of vertices in X, where
X = T ∪ B ∪ C. For each v, u ∈ X,

||π′(u) − π′(v)||2 − ||π(u) − π(v)||2 ≤ 2θ2R2
2

since the change from π to π′ shifts each vertex by at most the vector of θ ·
−−−−→
π(w)O for some

w ∈ W ; the length of this vector is θR2, and π acts only into the subspace Ox1x2x3 on X.
Clearly, for sufficiently small θ we get that

−ξ/2 < ||π′(u) − π′(v)|| − ||π(u) − π(v)|| < ξ/2.

Therefore, all distances that were at most 2 − ξ (at least 2 + ξ, respectively) under π

from Claim 11 remain at most 2 − ξ/2 (at least 2 + ξ/2, respectively) under π′. Since
2 − ξ/2 < 2 < D < 2 + ξ/2, the proof of the claim is concluded. ◁

By Claim 12, we get the correctness of the presented reduction. It remains to observe
that the reduction can be done in polynomial time: Only precision polynomial in input size
is required for the parameters used for the computation of the coordinates. Since in the
resulting instance of Clique Cover there are O(n + m) vertices, and 3-Coloring does not
admit a 2o(n+m)-time algorithm under the ETH, the statement of the theorem follows. ◀
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Abstract
The Co-Path/Cycle Packing problem (resp. The Co-Path Packing problem) asks whether we
can delete at most k vertices from the input graph such that the remaining graph is a collection
of induced paths and cycles (resp. induced paths). These two problems are fundamental graph
problems that have important applications in bioinformatics. Although these two problems have
been extensively studied in parameterized algorithms, it seems hard to break the running time bound
3k. In 2015, Feng et al. provided an O∗(3k)-time randomized algorithms for both of them. Recently,
Tsur showed that they can be solved in O∗(3k) time deterministically. In this paper, by combining
several techniques such as path decomposition, dynamic programming, cut & count, and branch-
and-search methods, we show that Co-Path/Cycle Packing can be solved in O∗(2.8192k) time
deterministically and Co-Path Packing can be solved in O∗(2.9241k) time with failure probability
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1 Introduction

In the classic Vertex Cover problem, the input is a graph G and an integer k, and the
problem asks whether it is possible to delete at most k vertices such that the maximum degree
of the remaining graph is at most 0. A natural generalization of Vertex Cover is that:
can we delete at most k vertices such that the maximum degree of the remaining graph is at
most d? Formally, for every integer d ≥ 0, we consider the following d-Bounded-Degree
Vertex Deletion problem.

d-Bounded-Degree Vertex Deletion
Instance: A graph G = (V, E) and two integers d and k.
Question: Is there a set of at most k vertices whose removal from G results in a graph with
maximum degree at most d?
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11:2 Solving Co-Path/Cycle Packing and Co-Path Packing Faster Than 3k

The d-Bounded-Degree Vertex Deletion problem finds applications in computa-
tional biology [7] and social network analysis [16]. In this paper, we focus on the case that
d = 2, which is referred to as the Co-Path/Cycle Packing problem. The Co-Path/Cycle
Packing problem also has many applications in computational biology [4]. Formally, the
Co-Path/Cycle Packing problem is defined as follows.

Co-Path/Cycle Packing
Instance: A graph G = (V, E) and an integer k.
Question: Is there a vertex subset S ⊆ V of size at most k whose deletion makes the graph
a collection of induced paths and cycles?

We also focus on a similar problem called Co-Path Packing, which allows only paths
in the remaining graph, defined as follows.

Co-Path Packing
Instance: A graph G = (V, E) and an integer k.
Question: Is there a vertex subset S ⊆ V of size at most k whose deletion makes the graph
a collection of induced paths?

Related Work. In this paper, we mainly consider parameterized algorithms. When d

is an input, the general d-Bounded-Degree Vertex Deletion problem is W[2]-hard
with the parameter k [7]. Xiao [22] gave a deterministic algorithm that solves d-Bounded-
Degree Vertex Deletion in O∗((d + 1)k) time for every d ≥ 3, which implies that the
problem is FPT with parameter k + d. In term of treewidth (tw), van Rooij [21] gave an
O∗((d + 2)tw)-time algorithm to solve d-Bounded-Degree Vertex Deletion for every
d ≥ 1. Lampis and Vasilakis [14] showed that no algorithm can solve d-Bounded-Degree
Vertex Deletion in time (d + 2 − ϵ)twnO(1), for any ϵ > 0 and for any fixed d ≥ 1 unless
the SETH is false. The upper and lower bounds have matched. This problem has also been
extensively studied in kernelization. Fellows et al. [7] and Xiao [23] gave a generated form of
the NT-theorem that study polynomial kernels for the problem with each fixed d.

For each fixed small d, d-Bounded-Degree Vertex Deletion has also been paid
certain attention. The 0-Bounded-Degree Vertex Deletion problem is referred to as
Vertex Cover, which is one of the most fundamental problems in parameterized algorithms.
For a long period of time, the algorithm of Chen et al. [3] held the best-known running time
of O∗(1.2738k), and recently this result was improved by Harris and Narayanaswamy [11]
to O∗(1.25284k). The 1-Bounded-Degree Vertex Deletion problem is referred to as
P3 Vertex Cover, where Tu [20] achieved a running time of O∗(2k) by using iterative
compression. This result was later improved by Katrenič [12] to O∗(1.8127k). Then, Chang
et. al. [2] gave an O∗(1.7964k)-time polynomial-space algorithm and an O∗(1.7485k)-time
exponential-space algorithm. Xiao and Kou [24] gave an O∗(1.7485k)-time polynomial-space
algorithm. This result was improved by Tsur [18] to O∗(1.713k) through a branch-and-search
approach and finally by Červenỳ and Suchỳ [1] to O∗(1.708k) through using an automated
framework for generating parameterized branching algorithms.

Co-Path/Cycle Packing is the special case of d-Bounded-Degree Vertex Dele-
tion with d = 2. A closely related problem is Co-Path Packing, where even cycles are
not allowed in the remaining graph. Chen et al. [4] initially showed that Co-Path/Cycle
Packing and Co-Path Packing can be solved in O∗(3.24k) time, and a finding subsequently
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Table 1 Algorithms for Co-Path/Cycle Packing and Co-Path Packing.

Years References Co-Path/Cycle Deterministic Co-Path Deterministic
2010 Chen et al. [4] O∗(3.24k) Yes O∗(3.24k) Yes
2015 Feng et al. [8] O∗(3k) No O∗(3k) No
2016 Xiao [22] O∗(3.07k) Yes – –
2022 Tsur [19] O∗(3k) Yes O∗(3k) Yes
2024 This paper O∗(2.8192k) Yes O∗(2.9241k) No

refined to O∗(3.07k) for Co-Path/Cycle Packing by Xiao [22]. Feng et al. [8] introduced
a randomized O∗(3k)-time algorithm for the Co-Path Packing, which also works for
Co-Path/Cycle Packing. However, we do not know how to derandomize this algorithm.
Recently, Tsur [19] provided O∗(3k)-time algorithms solving Co-Path/Cycle Packing
and Co-Path Packing deterministically. It seems that the bound 3k is hard to break for
the two problems. As shown in Tsur’s algorithms [19], many cases, including the case of
handling all degree-4 vertices, lead to the same bottleneck. One of the main targets in this
paper is to break those bottlenecks. Previous results and our results for Co-Path/Cycle
Packing and Co-Path Packing are summarized in Table 1.

Our Contributions. The main contributions of this paper are a deterministic algorithm
for Co-Path/Cycle Packing running in O∗(2.8192k) time and O∗(2.5199k) space and a
randomized algorithm for Co-Path Packing running in O∗(2.9241k) time and space with
failure probability ≤ 1/3. To obtain this result, we need to combine path decomposition,
dynamic programming, branch-and-search and some other techniques. In the previous
O∗(3k)-time algorithms for both Co-Path/Cycle Packing and Co-Path Packing, many
cases, including dealing with degree-4 vertices and several different types of degree-3 vertices,
lead to the same bottleneck. It seems very hard to avoid all the bottleneck cases by simply
modifying the previous algorithms. The main idea of the algorithm in this paper is as follows.
We first design some new reduction and branching rules to handle some good structures of the
graph. After this, we prove that the remaining graph has a small pathwidth and then design
an efficient dynamic programming algorithm based on a path decomposition. Specifically, our
algorithm firstly runs the branch-and-search algorithm to handle the degree-≥ 5 vertices and
the degree-4 vertices adjacent to at least one degree-≥ 3 vertex. In the branch-and-search
phase, our algorithm runs in O∗(2.8192k) time for both Co-Path/Cycle Packing and
Co-Path Packing. When branching steps cannot be applied, we can construct a path
decomposition of width at most 2k/3 + ϵk for any ϵ > 0 and call our dynamic programming
algorithm. The running time and space of the dynamic programming algorithm are bounded
by O∗(2.5199k) for Co-Path/Cycle Packing and bounded by O∗(2.9241k) with failure
probability ≤ 1/3 for Co-Path Packing. Therefore, the whole algorithm runs in O∗(2.8192k)
time and O∗(2.5199k) space for Co-Path/Cycle Packing and runs in O∗(2.9241k) time
and space with failure probability ≤ 1/3 for Co-Path Packing.

For the dynamic programming algorithms based on a path decomposition, the first
algorithm is an O∗((d+2)p)-time algorithm to solve d-Bounded-Degree Vertex Deletion
for every d ≥ 1, where p is the width of the given path decomposition. This was firstly found
in [21]. We also present it in our way to make this paper self-contained. The second algorithm
is designed for Co-Path Packing. In this algorithm, we use an algorithm framework called
cut & count [6]. Given a path decomposition of width p, we show that Co-Path Packing
can be solved in O∗(5p) time and space with failure probability ≤ 1/3.
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Reading Guide. Section 2 begins with a review of fundamental definitions and the estab-
lishment of notation. In Section 3 we solve Co-Path/Cycle Packing and in section 4 we
solve Co-Path Packing. In Section 3.1, we show that a proper graph has a small pathwidth
and present a dynamic programming algorithm for Co-Path/Cycle Packing. In Section
3.2, we give the branch-and-search algorithm for Co-Path/Cycle Packing. Similarly,
in Section 4.1, we present a randomized dynamic programming algorithm for Co-Path
Packing. In Section 4.2, we give the branch-and-search algorithm for Co-Path Packing.
Most of the content of this branching algorithm is the same as the branching algorithm for
Co-Path/Cycle Packing. In Section 5, we give a conclusion. Due to lack of space, the
proof of theorems marked ♣ is omitted here and they can be found in the full version of this
paper [15].

2 Preliminaries

In this paper, we only consider simple and undirected graphs. Let G = (V, E) be a graph
with n = |V | vertices and m = |E| edges. A vertex v is called a neighbor of a vertex u if
there is an edge uv ∈ E. Let N(v) denote the set of neighbors of v. For a subset of vertices
X, let N(X) =

⋃
v∈X N(v) \ X and N [X] = N(X) ∪ X. We use d(v) = |N(v)| to denote

the degree of a vertex v in G. A vertex of degree d is called a degree-d vertex. For a subset
of vertices X ⊆ V , the subgraph induced by X is denoted by G[X]. The induced subgraph
G[V \ X] is also written as G \ X. A path P in G is a sequence of vertices v1, v2, · · · , vt such
that for any 1 ≤ i < t, {vivi+1} ∈ E. Two vertices u and v are reachable to each other if
there is a path v1, v2, · · · , vt such that v1 = u and vt = v. A connected component of a graph
is a maximum subgraph such that any two vertices are reachable to each other. A vertex
subset S is called a cPCP-set of graph G if the degree of any vertex in G \ S is at most 2. A
vertex subset S is called a cPP-set of graph G if G \ S is a collection of disjoint paths. For a
graph G, we will use V (G) and E(G) to denote the vertex set and edge set of it, respectively.
A complete graph with 3 vertices is called a triangle. A singleton {v} may be denoted as v.

Path decomposition. We will use the concepts of path decomposition and nice path
decomposition of a graph.

▶ Definition 1 ([5]). A path decomposition of a graph G is a sequence P = (X1, X2, · · · , Xr)
of vertex subsets Xi ⊆ V (G) (i ∈ {1, 2, · · · , r}) such that:
(P1)

⋃r
i=1 Xi = V (G).

(P2) For every uv ∈ E(G), there exists l ∈ {1, 2, · · · , r} such that Xl contains both u and v.
(P3) For every u ∈ V (G), if u ∈ Xi ∩ Xk for some i ≤ k, then u ∈ Xj for all i ≤ j ≤ k.

For a path decomposition (X1, X2, · · · , Xr) of a graph, each vertex subset Xi in it is called
a bag. The width of the path decomposition is maxi{|Xi|} − 1. The pathwidth of a graph G,
denoted by pw(G), is the minimum possible width of a path decomposition of G. A path
decomposition (X1, X2, · · · , Xr) is nice if X1 = Xr = ∅ and for every i ∈ {1, 2, · · · , r − 1}
there is either a vertex v /∈ Xi such that Xi+1 = Xi ∪ {v}, or there is a vertex w ∈ Xi such
that Xi+1 = Xi \ {w}. The following lemma shows that any path decomposition can be
turned into a nice path decomposition without increasing the width.

▶ Lemma 2 ([5]). If a graph G admits a path decomposition of width at most p, then it also
admits a nice path decomposition of width at most p. Moreover, given a path decomposition
P = (X1, X2, · · · , Xr) of G of width at most p, one can in time O(p2 · max(r, |V (G)|))
compute a nice path decomposition of G of width at most p.
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There are also easy ways to reduce the length r of a path decomposition to a polynomial
of the graph size. Next, we will also assume that r is bounded by a polynomial of the number
of vertices. In terms of the pathwidth, there is a known bound.

▶ Theorem 3 ([10]). For any ϵ > 0, there exists an integer nϵ such that for every graph G

with n > nϵ vertices,

pw(G) ≤ 1
6n3 + 1

3n4 + n≥5 + ϵn,

where ni i ∈ {3, 4} is the number of vertices of degree i in G and n≥5 is the number of
vertices of degree at least 5. Moreover, a path decomposition of the corresponding width can
be constructed in polynomial time.

Branch-and-Search Algorithm. For a branch-and-search algorithm, we use a parameter k

of the instance to measure the running time of the algorithm. Let T (k) denote the maximum
size of the search tree generated by the algorithm when running on an instance with the
parameter no greater than k. Assume that a branching operation generates l branches and
the measure k in the i-th instance decreases by at least ci. This operation generates a
recurrence relation

T (k) ≤ T (k − c1) + T (k − c2) + ... + T (k − cl) + 1.

The largest root of the function f(x) = 1 −
∑l

i=1 x−ci is called the branching factor of
the recurrence. Let γ denote the maximum branching factor among all branching factors in
the search tree. The running time of the algorithm is bounded by O∗(γk). For more details
about analyzing branch-and-search algorithms, please refer to [13].

3 A Parameterized Algorithm for Co-Path/Cycle Packing

In this section, we propose a parameterized algorithm for Co-Path/Cycle Packing. First,
in Section 3.1, we show that Co-Path/Cycle Packing on a special graph class, called
proper graph, can be quickly solved by using the dynamic programming algorithm based on
path decompositions in Theorem 6. The key point in this section is to bound the pathwidth of
proper graphs by 2k/3+ ϵk for any ϵ > 0. Second, in Section 3.2, we give a branch-and-search
algorithm that will implement some branching steps on special local graph structures. When
there is no good structure to apply our branching rules, we show that the graph must be
a proper graph and then the algorithm in Section 3.1 can be called directly to solve the
problem.

3.1 Proper Graphs with Small Pathwidth
A graph is called proper if it satisfies the following conditions:
1. The maximum degree of G is at most 4.
2. For any degree-4 vertex v, all neighbors are of degree at most 2.
3. For any degree-2 vertex v, at least one vertex in N(v) is of degree at least 3.
4. Each connected component contains at least 6 vertices.

We are going to solve Co-Path/Cycle Packing on proper graphs first. Next, we try
to bound the pathwidth of proper graphs.
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▶ Lemma 4 (♣). Let G be a proper graph. If G has a cPCP -set (resp. cPP -set) of size at
most k, then it holds that

|V (G)| ≤ 100k and n3

6 + n4

3 ≤ 2k

3 , (1)

where n3 and n4 are the number of degree-3 and degree-4 vertices in G, respectively.

▶ Lemma 5 (♣). Let G be a proper graph. For any ϵ > 0, in polynomial time we can
either decide that G has no cPCP-set (resp. cPP-set) of size at most k or compute a path
decomposition of width at most 2k

3 + ϵk.

The following theorem shows that there exists an algorithm for the general d-Bounded-
Degree Vertex Deletion problem based on a given path decomposition of the graph.
The running time bound of the algorithm is O∗((d + 2)p), where p is the width of the
given path decomposition. Previously, an O∗(3p)-time algorithm for 1-Bounded-Degree
Vertex Deletion was known [2]. Recently, this result was extended for any d ≥ 1 by van
Rooij [21]. We also present it (in the full version of this paper) in our way to make this paper
self-contained.

▶ Theorem 6 (♣). Given a path decomposition of G with width p. For any d ≥ 1, d-
Bounded-Degree Vertex Deletion can be solved in O∗((d + 2)p) time and space.

However, the algorithm given in Theorem 6 cannot be used to solve Co-Path Packing
since there is a global connectivity constraint for Co-Path Packing. We will discuss it in
Section 4. Based on Theorem 6, we have the following lemma.

▶ Lemma 7. Co-Path/Cycle Packing on proper graphs can be solved in O∗(2.5199k)
time.

Proof. We first call the algorithm in Lemma 5. If the algorithm decides that G has no
cPCP -set of size at most k, we claim that (G, k) is a no-instance. Otherwise, we can obtain
a nice path decomposition of width at most 2k

3 + ϵk. Then we call the algorithm in Theorem
6. This algorithm runs in O∗(42k/3+ϵk) = O∗(2.5199k), where we choose ϵ < 10−6. This
lemma holds. ◀

3.2 A Branch-and-Search Algorithm
In this subsection, we provide a branch-and-search algorithm for Co-Path/Cycle Packing,
which is denoted by cPCP(G, k). Our algorithm contains several reduction and branching
steps. After recursively executing these steps, we will get a proper graph and then call the
dynamic programming algorithm in Section 3.1 to solve it.

3.2.1 Reduction and Branching Rules
Firstly we have a reduction rule to reduce small connected components.

▶ Reduction-Rule 1. If there is a connected component C of the graph such that |V (C)| ≤ 6,
then run a brute force algorithm to find a minimum cPCP-set S in C, delete C and include
S in the deletion set.

▶ Lemma 8. Let u and v be two adjacent vertices of degree at most 2 in G and G′ be the
graph after deleting edge uv from G. Then (G, k) is a yes-instance if and only if (G′, k) is a
yes-instance.
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This lemma holds because adding an edge between two vertices of degree at most 1 back to
a graph will not make the two vertices of degree greater than 2. Based on this lemma, we
have the following reduction rule.

▶ Reduction-Rule 2. If there are two adjacent vertices u and v of degree at most 2, then
return cPCP(G′ = (V (G), E(G) \ {uv}), k).

▶ Lemma 9. Let {u, v, w} be a triangle such that |N({u, v, w})| = 1. Let x be the vertex in
N({u, v, w}). There is a minimum cPCP-set containing x.

This lemma holds because we must delete at least one vertex in {u, v, w, x} and delete any
vertex in {u, v, w} cannot decrease the degree of vertices in V (G) \ {u, v, w, x}. Based on
this lemma, we have the following reduction rule.

▶ Reduction-Rule 3. If there is a triangle {u, v, w} such that |N({u, v, w})| = 1, then return
cPCP(G \ N [{u, v, w}], k − 1).

After applying the three simple reduction rules, we will execute some branching steps.
Although we have several branching steps, most of them are based on the following two
branching rules.

For a vertex v of degree at least 3, either it is included in the deletion set or it remains in
the graph. For the latter case, there are at most two vertices in N(v) that can remain in the
graph. So we have the following branching rule.

Branching-Rule (B1). For a vertex v of degree at least 3, branch on it to generate
(|N(v)|

2
)
+1

branches by either (i) deleting v from the graph and including it in the deletion set, or (ii) for
every pair of vertices u and w in N(v), deleting N(v) \ {u, w} from the graph and including
N(v) \ {u, w} in the deletion set.

A vertex v dominates a vertex u if N [u] ⊆ N [v]. We have the following property for
dominated vertices.

▶ Lemma 10. If a vertex v dominates a vertex u, then there is a minimum cPCP-set either
containing v or containing none of v and u.

Proof. Let S be a cPCP-set. Assume to the contrary that S ∩ {v, u} = {u}. Since v

dominates u, we know that S′ = S \ {u} ∪ {v} is still a feasible cPCP-set with |S′| = |S|.
There is a minimum cPCP-set containing v. This lemma holds. ◀

Assume that v dominates u. By Lemma 10, we know that either v is included in the
deletion set or both of v and u remain in the graph. For the latter case, there are at most
two vertices in N(v) that can remain in the graph. Thus, at least |N(v)| − 2 vertices in
N(v) \ {u} will be deleted. We get the following branching rule.

Branching-Rule (B2). Assume that a vertex v of degree at least 3 dominates a vertex u.
Branch on v to generate 1 + (|N(v)| − 1) = |N(v)| branches by either (i) deleting v from the
graph and including it in the deletion set, or (ii) for each vertex w ∈ N(v) \ {u}, deleting
N(v) \ {u, w} from the graph and including N(v) \ {u, w} in the deletion set.

3.2.2 Steps
When we execute one step, we assume that all previous steps are not applicable in the current
graph anymore. We will analyze each step after describing it.
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𝑢2𝑢1 𝑢4𝑢3

v

Figure 1 Degree-4 vertex v dominates a degree-3 vertex u1.

Step 1 (Vertices of degree at least 5). If there is a vertex v of d(v) ≥ 5, then branch on v

with Branching-Rule (B1) to generate
(

d(v)
d(v)−2

)
+ 1 branches and return the best of

cPCP(G \ {v}, k − 1)
and cPCP(G \ (N(v) \ {u, w}), k − |N(v) \ {u, w}|) for each pair {u, w} ⊆ N(v).

For this step, we get a recurrence

T (k) ≤ T (k − 1) +
(

d(v)
d(v) − 2

)
× T (k − (d(v) − 2)) + 1,

where d(v) ≥ 5. For the worst case that d(v) = 5, the branching factor of it is 2.5445.
After Step 1, the graph contains only vertices with degree at most 4.

Step 2 (Degree-4 vertices dominating some vertex of degree at least 3). Assume that there is
a degree-4 vertex v that dominates a vertex u1, where d(u1) ≥ 3. Without loss of generality,
we assume that the other three neighbors of v are u2, u3 and u4, and u1 is adjacent to u2 and
u3 (u1 is further adjacent to u4 if d(u1) = 4). See Figure 1 for an illustration. We branch on
v with Branching-Rule (B2) and get |N(v)| branches

cPCP(G \ {v}, k − 1), cPCP(G \ {u2, u3}, k − 2),

cPCP(G \ {u2, u4}, k − 2), and cPCP(G \ {u3, u4}, k − 2).

The corresponding recurrence is

T (k) ≤ T (k − 1) + 3 × T (k − 2) + 1,

which has a branching factor of 2.3028.

A triangle {u, v, w} is called heavy if it holds that |N({u, v, w})| ≥ 4.

Step 3 (Degree-4 vertices in a heavy triangle). Assume that a degree-4 vertex v is in a heavy
triangle. Let u1, u2, u3 and u4 be the four neighbors of v, where we assume without loss of
generality that {v, u1, u2} is a heavy triangle. See Figure 2 for an illustration. We branch
on v with Branching-Rule (B1). In the branch of deleting {u3, u4}, we can simply assume
that the three vertices v, u1 and u2 are not deleted, otherwise this branch can be covered
by another branch and then it can be ignored. Since v, u1 and u2 form a triangle, we need
to delete all the vertices in N({v, u1, u2}) in this branch. Note that {v, u1, v2} is a heavy
triangle and we have that |N({v, u1, u2})| ≥ 4. We generate the following

(4
2
)

+ 1 branches

cPCP(G \ {v}, k − 1),
cPCP(G \ ({u1, ui}), k − |{u1, ui}|) for each i = 2, 3, 4,

cPCP(G \ ({u2, ui}), k − |{u2, ui}|) for each i = 3, 4,

and cPCP(G \ N({v, u1, u2}), k − |N({v, u1, u2})|).
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𝑢2𝑢1 𝑢4𝑢3

v

Figure 2 Degree-4 vertex v is in a heavy triangle {v, u1, u2}.

The corresponding recurrence is

T (k) ≤ T (k − 1) + (
(

4
2

)
− 1) × T (k − 2) + T (k − |N({v, u1, u2})|) + 1,

where |N({v, u1, u2})| ≥ 4. For the worst case that |N({v, u1, u2})| = 4, the branching factor
of it is 2.8186.

▶ Lemma 11. If a vertex v has two degree-1 neighbors u1 and u2, then there is a minimum
cPCP-set containing none of u1 and u2. Furthermore, If v is a vertex of degree at most 3,
then there is a minimum cPCP-set containing none of v, u1, and u2.

Proof. Let S be a minimum cPCP-set. If v ∈ S, then S\{u1, u2} is still a minimum cPCP-set.
Next, we assume that v ̸∈ S. If at least one of u1 and u2 is in S, then S′ = (S \{u1, u2})∪{v}
is a cPCP-set with |S′| ≤ |S|. Thus, S′ is a minimum cPCP-set not containing u1 and u2.

If v is a degree-2 vertex, then the component containing v is a path of three vertices.
None of the three vertices should be deleted. If v is a degree-3 vertex, we let u3 be the
third neighbor of v. Note that at least one vertex in {v, u1, u2, u3} should be deleted and
then any solution S will contain at least one vertex in {v, u1, u2, u3}. We can see that
S′ = (S \ {v, u1, u2, u3}) ∪ {u3} is still a cPCP-set with size |S′| ≤ |S|. There is always a
minimum cPCP-set containing none of v, u1, and u2. ◀

Step 4 (Degree-4 vertices in a triangle). Assume that there is still a degree-4 vertex v in a
triangle {v, u1, u2}. We also let u1, u2, u3 and u4 be the four neighbors of v. Since triangle
{v, u1, u2} can not be a heavy triangle now, we know that |N({v, u1, u2})| ≤ 3. First, we show
that it is impossible |N({v, u1, u2})| = 2. Assume to the contrary that |N({v, u1, u2})| = 2.
Then u1 and u2 can only be adjacent to vertices in N [v]. If both of u1 and u2 are degree-2
vertices, then Reduction-Rule 1 should be applied. If one of u1 and u2 is a vertex of degree
at least 3, then v would dominate this vertex, and then the condition of Step 2 would hold.
Any case is impossible. Next, we assume that |N({v, u1, u2})| = 3 and let u5 denote the
third vertex in N({v, u1, u2}). We further consider several different cases.
Case 1: One of u1 and u2, say u1 is a degree-4 vertex. For this case, vertex u1 is adjacent to
u5, otherwise the degree-4 vertex v would dominate the degree-4 vertex u1. Since u1 is of
degree 4, we know that u1 is also adjacent to one of u3 and u4, say u3. Vertices u2 and u3 can
only be adjacent to vertices in N [v] ∪ {u5}, otherwise {v, u1, u2} or {v, u1, u3} would form
a heavy triangle and Step 3 should be applied. Thus, neither u2 nor u3 can be a degree-3
vertex, otherwise degree-4 vertex u1 or v dominates a degree-3 vertex u2 or u3 and then Step
2 should be applied. Thus, we have that either d(u2) = d(u3) = 2 or d(u2) = d(u3) = 4. We
further consider the following three cases:
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𝑢2𝑢1 𝑢4𝑢3

v

𝑢5

Figure 3 In the Case 2 of Step 4, degree-4 vertex v is in a triangle {v, u1, u2} and both of u1 and
u2 are degree-3 vertices.

Case 1.1: d(u2) = d(u3) = 2. For this case, we have that v dominates u2 and u3. By Lemma
10, we have that there is a minimum cPCP-set either containing v or containing none of v,
u2 and u3. For the first branch, we delete v from the graph and include it in the deletion set.
For the second branch, we delete u1 and u4 from the graph and include it in the deletion set.
The corresponding recurrence is

T (k) ≤ T (k − 1) + T (k − 2) + 1,

the branching factor of which is 1.6181.
Case 1.2: d(u2) = d(u3) = 4 and u2 and u3 are not adjacent. For this case, both of u2 and
u3 are adjacent to u4 and u5. Since v does not dominate u4, we know that u4 is adjacent to
at least one vertex out of N [v]. Since triangle {v, u2, u4} is not a heavy triangle, we know
that u4 is not adjacent to any vertex other than N [v] ∪ {u5}. Thus, u4 is also adjacent to
u5. Since the maximum degree of the graph is 4 now, we know that this component only
contains six degree-4 vertices N [v] ∪ {u5}, which should be eliminated by Reduction-Rule 2.
Case 1.3: d(u2) = d(u3) = 4 and u2 and u3 are adjacent. For this case, since v does not
dominate u3, we know that u3 is adjacent to at least one vertex out of N [v]. This vertex can
only be u5. Thus, the four neighbors of u3 are v, u1, u2, and u5. Now u1 is a degree-4 vertex
dominating a degree-4 vertex u3. Step 2 should be applied. Thus, this case is impossible.
Case 2: Both of u1 and u2 are degree-3 vertices. It holds that N(u1) = {v, u2, u5} and
N(u2) = {v, u1, u5}, otherwise vertex v would dominate u1 or u2. See Figure 3 for an
illustration. For this case, we first branch on v with Branching-Rule (B1) to generate(

d(v)
d(v)−2

)
+ 1 branches. We can only get a recurrence relation

T (k) ≤ T (k − 1) +
(

4
2

)
T (k − 2) + 1.

This recurrence is not good enough. Next, we look at the branch of deleting v and try
to get some improvements on this subbranch. After deleting v, vertices u1 and u2 become
degree-2 vertices in a triangle. We first apply Reduction-Rule 1 to delete edge u1u2 between
u1 and u2. Then, vertices u1 and u2 become degree-1 vertices adjacent to u5.
Case 2.1: u5 is a degree-2 vertex. This case is impossible otherwise Reduction Rule 3 would
be applied before this step.
Case 2.2: u5 is a degree-3 vertex. By Lemma 11, we can delete N [u5] directly and include
the third neighbor of u5 in the deletion set. We generate the following

(4
2
)

+ 1 branches

cPCP(G \ ({v} ∪ N [u5]), k − 2)
and cPCP(G \ (N(v) \ {u, w}), k − |N(v) \ {u, w}|) for each pair {u, w} ⊆ N(v).
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The corresponding recurrence is

T (k) ≤ T (k − 2) +
(

4
2

)
T (k − 2) + 1.

which has a branching factor of 2.6458.
Case 2.3: u5 is a degree-4 vertex. By Lemma 11, we know that there is a minimum cPCP-set
either containing u5 or containing none of u5, u1, and u2. For the first case, we delete u5
and include it in the deletion set. For the second case, we delete N [u5] from the graph and
include N(u5) \ {u5, u1, u2} in the deletion set. Note that |N(u5) \ {u5, u1, u2}| = 2 since u5
is a degree-4 vertex. Combining with the previous branching on v, we get the following

(4
2
)

+
2 branches

cPCP(G \ {v, u5}, k − 2),
cPCP(G \ ({v} ∪ N [u5]), k − 3),

and cPCP(G \ (N(v) \ {u, w}), k − |N(v) \ {u, w}|) for each pair {u, w} ⊆ N(v).

The corresponding recurrence is

T (k) ≤ T (k − 1 − 1) + T (k − 1 − 2) +
(

4
2

)
T (k − 2) + 1,

which has a branching factor of 2.7145.
After Step 4, no degree-4 vertex is in a triangle.

Step 5 (Degree-4 vertices adjacent to some vertex of degree at least 3). Assume there is a
degree-4 vertex v adjacent to at least one vertex of degree at least 3. Let u1, u2, u3 and
u4 be the four neighbors of v, where we assume without loss of generality that d(u1) ≥ 3.
First, we branch on v by either (b1) including it in the solution set or (b2) excluding it from
the solution set. Next, we focus on the latter case (b2). In (b2), we further branch on u1
by (b2.1) either including it in the solution set or (b2.2) excluding it from the solution set.
For case (b2.1), there are at least |N(v)| − 2 = 2 vertices in N(v) that should be deleted
by the same argument for Branching-Rule (B1). Thus, we can generate three subbranches
by deleting {u1, u2}, {u1, u3}, and {u1, u3}, respectively. For case (b2.2), there are still
at least |N(v)| − 2 = 2 vertices in N(v) that should be deleted, which can be one of the
following three sets {u2, u3}, {u2, u4}, and {u3, u4}. Furthermore, there are also at least
|N(u1)| − 2 ≥ 1 vertices in N(u1) that should be deleted. Note that v ∈ N(u1) is not allowed
to be deleted now. Thus, at least |N(u1) \ {v}| − 1 vertices in N(u1) \ {v} should be deleted.
We will generate

( |N(u1)\{v}|
|N(u1)\{v}|−1

)
= |N(u1) \ {v}| = d(u1) − 1 branches by decreasing k by

|N(u1) \ {v}| − 1 = d(u1) − 2. Since after Step 3, the degree-4 vertex v is not in any triangle,
we know that N(u1) \ {v} is disjoint with {u2, u3, u4}. For case (b2.2), we will generate
3 × (d(u1) − 1) subbranches by decreasing k by at least 2 + d(u1) − 2 = d(u1) in each, where
d(u1) = 3 or 4. See Figure 4 for an illustration. In total, we will generate the following
1+3+3 × (d(u1) − 1) branches

cPCP(G \ {v}, k − 1),
cPCP(G \ ({u1, ui}), k − 2) for each i = 2, 3, 4,

cPCP(G \ ({u2, u3} ∪ (N(u1) \ {v, w})), k − d(u1)), for each w ∈ N(u1) \ {v},

cPCP(G \ ({u2, u4} ∪ (N(u1) \ {v, w})), k − d(u1)), for each w ∈ N(u1) \ {v},

and cPCP(G \ ({u3, u4} ∪ (N(u1) \ {v, w})), k − d(u1)), for each w ∈ N(u1) \ {v}.
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Case (b1).

Case (b2.1).

Case (b2.2).

𝑢2𝑢1 𝑢4𝑢3

v

𝑢2𝑢1 𝑢4𝑢3

v

𝑢2𝑢1 𝑢4𝑢3

v

𝑢2𝑢1 𝑢4𝑢3

v

𝑢2𝑢1 𝑢4𝑢3

v

𝑢2𝑢1 𝑢4𝑢3

v

𝑢2𝑢1 𝑢4𝑢3

v

𝑢2𝑢1 𝑢4𝑢3

v

Figure 4 Vertices in the deletion set are denoted by black vertices, and vertices not allowed to be
deleted are denoted by grey vertices.

Table 2 The branching factors of each of the first five steps.

Steps Step 1 Step 2 Step 3 Step 4 Step 5
Branching factors 2.5445 2.3028 2.8186 2.7145 2.8192

We get a recurrence

T (k) ≤ T (k − 1) + 3 × T (k − 2) + 3(d(u1) − 1) × T (k − d(u1)) + 1,

where d(u1) = 3 or 4. For the case that d(u1) = 3, the branching factor is 2.8192, and for
the case that d(u1) = 4, the branching factor is 2.6328.

The worst branching factors in the above five steps are listed in Table 2. After Step 5,
any degree-4 vertex can be only adjacent to vertices of degree at most 2. It is easy to see
that the remaining graph after Step 5 is a proper graph. We call the algorithm in Lemma 7
to solve the instance in O∗(2.5199k) time.

▶ Theorem 12. Co-Path/Cycle Packing can be solved in O∗(2.8192k) time.

Fomin et al. [9] introduced the monotone local search technique for deriving exact
exponential-time algorithms from parameterized algorithms. Under some conditions, a
cknO(1)-time algorithm implies an algorithm with running time (2 − 1/c)n+o(n). By ap-
plying this technique on our O∗(2.8192k)-time algorithm in Theorem 12, we know that
Co-Path/Cycle Packing can be solved in (2 − 1/2.8192)n+o(n) = O(1.6453n) time.

▶ Corollary 13. Co-Path/Cycle Packing can be solved in O(1.6453n) time.

4 A Parameterized Algorithm for Co-Path Packing

In this section, we show a randomized O∗(2.9241k) time algorithm for Co-Path Packing.
We also use the method for Co-Path/Cycle Packing, which consists of two phases. The
first one is the dynamic programming phase, and the second one is the branch-and-search
phase.

In the dynamic programming phase, it is more difficult to solve Co-Path Packing based
on a path decomposition in comparison to Co-Path/Cycle Packing. The reason is that
Co-Path/Cycle Packing involves only local constraints, which means that the object’s
properties can be verified by checking each vertex’s neighborhood independently. For this
problem, a typical dynamic programming approach can be used to design a cpw(G)|V (G)|O(1)
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time algorithm straightforwardly. In contrast, there is a global connectivity constraint
for Co-Path Packing. The problem with global connectivity constraint is also called
connectivity-type problem. For connectivity-type problems, the typical dynamic programming
approach has to keep track of all possible ways the solution can traverse the corresponding
separator of the path decomposition that is Ω(ll), where l is the size of the separator and
hence the pathwidth [6].

To obtain a single exponential algorithm parametrized by pathwidth for Co-Path
Packing, we use the cut & count framework. Previously, cut & count significantly improved
the known bounds for various well-studied connectivity-type problems, such as Hamiltonian
Path, Steiner Tree, and Feedback Vertex Set [6]. Additionally, for k-Co-Path Set,
cut & count has been used to obtain a fast parameterized algorithm [17]. In Section 4.1, we
present a randomized fpt algorithm with complexity O∗(5pw(G)) for Co-Path Packing.

In the branch-and-search phase, our algorithm for Co-Path Packing is similar to the
branching algorithm for Co-Path/Cycle Packing. Specifically, our branching algorithm for
Co-Path Packing contains two reduction rules, two branching rules, and four steps, while
the first reduction rule, both two branching rules, the first two steps, and the last step are
the same as the branching algorithm for Co-Path/Cycle Packing. The branch-and-search
phase is shown in Section 4.2.

4.1 A DP Algorithm via Cut & Count for Co-Path Packing
In this section, we use the cut & count framework to design a 5pwnO(1) one-sided error Monte
Carlo algorithm with a constant probability of a false negative for Co-Path Packing. Due
to the limited space, we do not provide the proof of the following theorem here.

▶ Theorem 14 (♣). Given a path decomposition of G with width p. Co-Path Packing can
be solved in O∗(5p) time and space with failure probability ≤ 1/3.

4.2 The Whole Algorithm
In this section, we propose a parameterized algorithm for Co-Path Packing. First, in
Section 4.2.1, we show that Co-Path Packing on a proper graph class can be quickly solved
by using the dynamic programming algorithm based on path decompositions in Theorem 14.
Similarly, we will use Lemma 5 to conclude this result. Second, in Section 4.2.2, we give a
branch-and-search algorithm that will implement some branching steps on special local graph
structures. Our branching algorithm for Co-Path Packing is similar to the branching
algorithm for Co-Path/Cycle Packing. Specifically, our branching algorithm for Co-Path
Packing contains two reduction rules, two branching rules, and four steps, while the first
reduction rule, both two branching rules, the first two steps and the last step are the same
as the branching algorithm for Co-Path/Cycle Packing. When all the steps cannot be
applied, we show that the graph must be a proper graph and then the algorithm in Section
4.1 can be called directly to solve the problems.

4.2.1 Proper Graphs with Small Pathwidth
Recall that a graph is called proper if it satisfies the following conditions:
1. The maximum degree of G is at most 4.
2. For any degree-4 vertex v, all neighbors are of degree at most 2.
3. For any degree-2 vertex v, at least one vertex in N(v) is of degree at least 3.
4. Each connected component contains at least 6 vertices.
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Combine Lemma 5 for Co-Path Packing with Lemma 14, we have the following lemma.

▶ Lemma 15 (♣). Co-Path Packing on proper graphs can be solved in O∗(2.9241k) time
with probability at least 2/3.

4.2.2 A Branch-and-Search Algorithm
In this subsection, we provide a branch-and-search algorithm for Co-Path Packing, which
is denoted by cPP(G, k). Our algorithm contains several reduction and branching steps.
After recursively executing these steps, we will get a proper graph and then call the dynamic
programming algorithm in Lemma 15 to solve it.

4.2.2.1. Reduction and Branching Rules. Firstly, we present two reduction rules. The first
reduction rule is Reduction Rule 1 for Co-Path/Cycle Packing and Reduction Rule *2 is
a new reduction rule for Co-Path Packing.

Reduction-Rule 1. If there is a connected component C of the graph such that |V (C)| ≤ 6,
then run a brute force algorithm to find a minimum cPP-set S in C, delete C and include S

in the deletion set.

A path v0v1 . . . vh−1vh is called a degree-two-path if the two vertices v0 and vh are of
degree not 2 and the other vertices v1 . . . vh−1 are of degree 2, where we allow v0 = vh.

▶ Lemma 16 (♣). For a degree-two-path P = v0v1 . . . vh−1vh with h ≥ 4 in G = (V, E), let
G′ = (V \ v2, E \ {v1v2, v2v3} ∪ {v1v3}), we have that (G, k) is a yes-instance if and only if
(G′, k) is a yes-instance.

Based on this lemma, we have the following reduction rule for Co-Path Packing.

Reduction-Rule *2. If there is a degree-two-path P = v0v1 . . . vh−1vh with h ≥ 4, then
return cPP(G′ = (V \ v2, E \ {v1v2, v2v3} ∪ {v1v3}), k).

If Reduction Rules 1 and *2 cannot be applied, we have a property that for any degree-2
vertex v, at least one vertex in N(v) is of degree at least 3.

After applying the three simple reduction rules, we will execute some branching steps. For
Co-Path Packing, we have two branching rules, which are the same as the two branching
rules for Co-Path/Cycle Packing. The correctnesses of these two branching rules for
Co-Path Packing are similar to the two branching rules for Co-Path/Cycle Packing.

Branching-Rule (B1). For a vertex v of degree at least 3, branch on it to generate
(|N(v)|

2
)
+1

branches by either (i) deleting v from the graph and including it in the deletion set, or (ii) for
every pair of vertices u and w in N(v), deleting N(v) \ {u, w} from the graph and including
N(v) \ {u, w} in the deletion set.

Branching-Rule (B2). Assume that a vertex v of degree at least 3 dominates a vertex u.
Branch on v to generate 1 + (|N(v)| − 1) = |N(v)| branches by either (i) deleting v from the
graph and including it in the deletion set, or (ii) for each vertex w ∈ N(v) \ {u}, deleting
N(v) \ {u, w} from the graph and including N(v) \ {u, w} in the deletion set.
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4.2.2.2. Steps. When we execute one step, we assume that all previous steps are not
applicable in the current graph anymore. In this subsection, we present four steps: Step 1,
Step 2, Step *3 and Step *4 for Co-Path Packing. Steps 1 and 2 are the Steps 1 and 2 for
Co-Path/Cycle Packing. Step *3 is a new step designed for Co-Path Packing. Step *4
is the Step 5 for Co-Path/Cycle Packing.

Step 1 (Vertices of degree at least 5). If there is a vertex v of d(v) ≥ 5, then branch on v

with Branching-Rule (B1) to generate
(

d(v)
d(v)−2

)
+ 1 branches.

Step 2 (Degree-4 vertices dominating some vertex of degree at least 3). Assume that there is
a degree-4 vertex v that dominates a vertex u1, where d(u1) ≥ 3. Without loss of generality,
we assume that the other three neighbors of v are u2, u3 and u4, and u1 is adjacent to u2
and u3 (u1 is further adjacent to u4 if d(u1) = 4). We branch on v with Branching-Rule (B2)
and get |N(v)| branches.

Step *3 (Degree-4 vertices in a triangle). Assume that a degree-4 vertex v is in a triangle.
Let u1, u2, u3 and u4 be the four neighbors of v, where we assume without loss of generality
that {v, u1, u2} is a triangle. We branch on v with Branching-Rule (B1). In the branch of
deleting {u3, u4}, we can simply assume that the three vertices v, u1 and u2 are not deleted,
otherwise this branch can be covered by another branch and then it can be ignored. Since v,
u1 and u2 form a triangle, we know this case is impossible, so we can ignore this subbranch.
We generate the following

(4
2
)

branches

cPP(G \ {v}, k − 1),
cPP(G \ ({u1, ui}), k − |{u1, ui}|) for each i = 2, 3, 4,

and cPP(G \ ({u2, ui}), k − |{u2, ui}|) for each i = 3, 4.

The corresponding recurrence is

T (k) ≤ T (k − 1) + (
(

4
2

)
− 1) × T (k − 2) + 1.

The branching factor of it is 2.7913.

After Step *3, no degree-4 vertex is in a triangle.

Step *4 (Degree-4 vertices adjacent to some vertex of degree at least 3). Assume there is
a degree-4 vertex v adjacent to at least one vertex of degree at least 3. Let u1, u2, u3 and
u4 be the four neighbors of v, where we assume without loss of generality that d(u1) ≥ 3.
First, we branch on v by either (b1) including it in the solution set or (b2) excluding it from
the solution set. Next, we focus on the latter case (b2). In (b2), we further branch on u1
by (b2.1) either including it in the solution set or (b2.2) excluding it from the solution set.
For case (b2.1), there are at least |N(v)| − 2 = 2 vertices in N(v) that should be deleted
by the same argument for Branching-Rule (B1). Thus, we can generate three subbranches
by deleting {u1, u2}, {u1, u3}, and {u1, u3}, respectively. For case (b2.2), there are still
at least |N(v)| − 2 = 2 vertices in N(v) that should be deleted, which can be one of the
following three sets {u2, u3}, {u2, u4}, and {u3, u4}. Furthermore, there are also at least
|N(u1)| − 2 ≥ 1 vertices in N(u1) that should be deleted. Note that v ∈ N(u1) is not allowed
to be deleted now. Thus, at least |N(u1) \ {v}| − 1 vertices in N(u1) \ {v} should be deleted.
We will generate

( |N(u1)\{v}|
|N(u1)\{v}|−1

)
= |N(u1) \ {v}| = d(u1) − 1 branches by decreasing k by
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Table 3 The branching factors of each of the steps.

Steps Step 1 Step 2 Step *3 Step *4
Branching factors 2.5445 2.3028 2.7913 2.8192

|N(u1) \ {v}| − 1 = d(u1) − 2. Since after Step *3, the degree-4 vertex v is not in any triangle,
we know that N(u1) \ {v} is disjoint with {u2, u3, u4}. For case (b2.2), we will generate
3 × (d(u1) − 1) subbranches by decreasing k by at least 2 + d(u1) − 2 = d(u1) in each, where
d(u1) = 3 or 4.

The worst branching factors in the above steps are listed in Table 3. After Step *4, any
degree-4 vertex can be only adjacent to vertices of degree at most 2. It is easy to see that
the remaining graph after Step *4 is a proper graph. We call the algorithm in Lemma 15 to
solve the instance for Co-Path Packing in O∗(2.9241k) time with probability at least 2/3.

▶ Theorem 17. Co-Path Packing can be solved in O∗(2.9241k) time with probability at
least 2/3.

5 Conclusion

In this paper, we show that given a path decomposition of width p, Co-Path Packing can
be solved by a randomized fpt algorithm running in O∗(5p) time. Additionally, by combining
this algorithm with a branch-and-search algorithm, we show that Co-Path/Cycle Packing
can be solved in O∗(2.8192k) time and Co-Path Packing can be solved in O∗(2.9241k) time
with probability at least 2/3. For Co-Path/Cycle Packing, the new bottleneck in our
algorithm is Step 5, which is to deal with degree-4 vertices not in any triangle. For Co-Path
Packing, the new bottleneck in our algorithm is the dynamic programming phase. The idea
of using path/tree decomposition to avoid bottlenecks in branch-and-search algorithms may
have the potential to be applied to more problems. It would also be interesting to design a
deterministic algorithm for Co-Path Packing faster than O∗(3k).
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1 Introduction

Planar graphs are well-studied algorithmically. For example, starting with the work of
Baker [1], many efficient approximation schemes for NP-complete problems on planar graphs
have been designed. Within parameterized complexity, widely applicable tools such as
bi-dimensionality [6] helped to grasp a firm understanding of the “square-root phenomenon”:
Many problems can be solved in 2O(

√
n) time, or even in 2O(

√
k) ·nO(1) time, where n denotes

the number of vertices of the input graph and k denotes the size of the sought solution.
Actually most of these algorithms are also shown to extend to superclasses1 of planar graphs,
such as bounded genus or even minor free graphs (as for example showed in [6]).

One problem that is very well-studied on planar graphs is Steiner Tree. In the Steiner
Tree problem we are given a weighted graph G = (V, E) on n vertices with edge weights
we ∈ R≥0 for e ∈ E and a set of vertices T = {t1, . . . , tk} ⊆ V called terminals, and we
are tasked with finding an edge set S minimizing w(S) =

∑
e∈S w(e) such that any pair of

terminals t, t′ are connected in the subgraph (V, S). For example, an efficient approximation
scheme was given in [4], and a lower bound excluding 2o(k) time algorithms on planar
graphs under the Exponential Time Hypothesis was given in [17]. Interestingly, the latter
result shows that planarity alone is not too helpful to solve Steiner Tree quickly, because
it implies that the classic 3knO(1) dynamic programming algorithm for general Steiner
Tree [8] cannot be significantly improved.

1 Wagner’s theorem states that a graph is planar unless it contains a complete graph on 5 vertices (K5)
or complete bipartite graph with two blocks of 3 vertices (K3,3) as a minor.
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12:2 A Polynomial Time Algorithm for Steiner Tree When Terminals Avoid a K4-Minor

A seminal paper by Erickson et al. [9] shows that Steiner Tree on planar graphs is
in P if all terminals lie on one face in a planar embedding of G. The study of the setting
in which terminals lie in a few number of faces dates back all the way to the work of Ford
and Fulkerson [11], and has been the subject of many classic works (such as the Okamura-
Seymour Theorem [21, Chapter 74] or [18]). The algorithm [9] is used as subroutine in several
other papers such as the aforementioned approximation scheme [4], but also preprocessing
algorithms [19].

Often the algorithms that exploit planarity or minor-freeness need to combine graph
theoretic techniques (such as a grid minor theorem in the case of bi-dimensionality) with
algorithmic perspective (such as divide and conquer or dynamic programming over tree
decompositions). For the Steiner Tree problem, and especially the algorithm from [9], the
graph theoretic techiques employed are intrinsically geometric. And indeed, many extensions
of the algorithm, such as the one in which the terminals can be covered the k outer faces of
the graph [2], or the setting in which the terminals can be covered by a “path-convex region”
studied in [20], all have a strong geometric flavor.

With this in mind, it is natural to ask whether there is an extension of the algorithm
of [9] to minor free graphs.

Rooted Minors

We study a setting with rooted minors. A graph H is a minor of a graph G if it can be
constructed from G by removing vertices or edges, or contracting edges. In a more general
setting, G has a set of roots R ⊆ V (G) and there is a mapping π that prescribes for each
v ∈ V (H) the set of roots π(v) ⊆ R. Then a rooted minor is a minor that contracts r into v,
for every v ∈ V (H) and r ∈ R such that r ∈ π(v). Rooted minors play a central in Robertson
and Seymour’s graph minor theory, and directly generalize the Disjoint Paths problem.
Recently it was shown [16] that rooted minors can be detected in (m + n)1+o(1) time, for
fixed |H| and |R|, improving over the quadratic time algorithm from [15]. A number of
recent papers have studied rooted minors in their own right [3, 12–14,22,23]. In particular,
Fabila-Monroy and Wood [10] gave a characterization of when a graph contains a K4-minor
rooted at four given vertices. Recently, links between rooted minors and “rooted” variants of
treewidth, pathwidth and treedepth were given in [12].

Motivated by the missing extension of the algorithm of [9] to a (non-geometric) setting of
excluded minors, we propose studying the complexity of instances without minors rooted at
the terminals.

Our Result

We will be interested in the closely related (but slightly different) setting of R-rooted
K4-minor : In a graph G = (V, E) with vertices R ⊆ V (referred to as roots), an R-rooted
K4-minor is a collection of disjoint vertex sets S1, S2, S3, S4 ⊆ V such that G[Si] is connected
and Si ∩R ̸= ∅ for all i ∈ {1, . . . , 4}, and such that there is an edge from Si to Sj for each
i ̸= j.

▶ Theorem 1. Steiner Tree without K4 minor rooted at terminals can be solved in O(n4)
time.

This generalizes the result from [9]: It is easily seen that a planar graph has no K4-minor
rooted at four vertices on the same face. On the other hand, it is easy to come up with
example instances that have no K4-minor and are not planar (see Figure 1 for such two such
examples).
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Figure 1 Terminals are depicted in red. The left figure has 3 terminals and hence no rooted K4

minor, but it is a K5 and hence not planar. The right figure has no rooted K4 minor (since the
middle vertex and two non-adjacent terminals separate the remaining terminals), and has many K5

subgraphs and hence is not planar.

We hope that our result paves the road for additional polynomial time algorithms (solving
non-geometrically) restricted versions of Steiner Tree. In particular, it would be interesting
to see whether Theorem 1 can be extended to a polynomial time algorithm for a richer set
of rooted F-minor free instances (e.g., instances that do not contain any member of F as
rooted minor). Note however that such a strengthening with F = {K5} would imply P=NP
since Steiner Tree on planar graphs is NP-hard.

Our Approach

It is not too difficult to show from ideas given in [10] that if there is no R-rooted K4-minor
in a 3-connected graph, then there is a cycle C passing through all vertices in R. We need a
slightly stronger variant of this result, where the graph is not quite 3-connected but the only
2-cuts allowed are those which isolate a single vertex that is a terminal (see Lemma 4). Our
algorithm will recurse on 2-cuts until it can apply this lemma, and then performs dynamic
programming in a similar fashion to the Dreyfus-Wagner algorithm [8] restricted to subsets
of terminals that form a contiguous segment of the cycle C (in a fashion that is analogous to
the algorithm for [9], although the virtual edges considerably increase the technical difficulty
of our proof). Since the number of such segments is at most quadratic in n, this gives a
polynomial time algorithm.

We stress that the approach of [9] does not work directly: The approach of [9] crucially
relies on the fact that if one decomposes an optimal Steiner Tree S into two trees S1 ∪ S2
where S1, S2 are the connected components of S \ e for some e ∈ S, then the set R1 (and
R2) of terminals covered by S1 (and S2) is a contiguously visited along the cycle enclosing
the face that contains all terminals. In our setting, there is a priori no guarantee how the
set R1 will look, and therefore such a decomposition approach will not work. To overcome
this, we also decompose the optimal tree along 2-cuts via recursion and processing outcomes
of recursive calls with virtual edges. Even though the virtual edges lead to some technical
challenges, this allows us to make the idea of [9] work in 3-connected graphs.

2 Preliminaries

For n ∈ N, we define [n] as the set {1, . . . , n}. In this work, we assume that all graphs do
not have self-loops, but we allow the graph to have parallel edges. We will say that a graph
is simple if there is no parallel edge. The vertex set and edge set of a graph G are denoted
by V (G) and E(G), respectively.

IPEC 2024



12:4 A Polynomial Time Algorithm for Steiner Tree When Terminals Avoid a K4-Minor

For two vertices u and v, let dist(u, v) be the length of a shortest path between u and v.
Let X ⊆ V (G) be a subset of vertices. We use G[X] to denote the subgraph induced by X

and G−X := G[V (G) \X] to represent the graph obtained by removing the vertices in X.
For these notations, if X is a singleton {x}, we may write x instead of {x}. Moreover, X

is called a cut if deleting X increases the number of connected components. In particular,
x is called a cut vertex if {x} is a cut. For an edge set F ⊆ E, let V (F ) denote the set of
vertices covered by F , i.e., V (F ) = {u | u ∈ e ∈ F}.

Avoiding a (rooted) minor is preserved under deletion of vertices, deletion of edges and
contraction of edges.

▶ Observation 2. If G does not contain an R-rooted K4-minor and H is a minor of G, then
H does not contain an (V (H) ∩R)-rooted K4-minor.

Our structural analysis will also crucially build on the following simple lemma.

▶ Lemma 3 (Lemma 7 in [10]). Suppose that a graph G has a cycle containing vertices
v1, v2, v3, v4 in that order. Suppose moreover that there are two disjoint paths P1 and P2
where P1 is from v1 to v3, and P2 is from v2 to v4. Then G has a {v1, v2, v3, v4}-rooted
K4-minor.

3 Finding a cycle passing through terminals and virtual edges

In this section, we prove a structural lemma that our algorithm needs. This builds on ideas
from [10], but we require additional analysis due to the presence of “virtual edges”.

▶ Lemma 4. Let G = (V, E) be a 3-connected graph and let R ⊆ V be a set of roots with
|R| ≥ 3. Let E′ ⊆ E and let G′ be obtained by subdividing each edge in E′ once. Let S

denote the set of subdivision vertices added with this operation.
If G′ has no (R ∪ S)-rooted K4-minor, then G′ contains a cycle containing all vertices in

R ∪ S. Furthermore, this cycle can be found in nm1+o(1) time for n the number of vertices
and m the number of edges of G′.

Proof. We first show that if there is no R-rooted K4-minor in G and G is 3-connected, then
we can find a cycle C in G that passes through all vertices of R.

We start with C being any cycle. Suppose there is a vertex r ∈ R that is not on C.
Since G is 3-connected, by Menger’s theorem (see [7, Theorem 3.3.1], applied with sets C

and N(v)), there exist three paths P1, P2, P3 from r to C, where the paths mutually only
intersect in r and each path only intersects C in their other endpoint. We can find these
paths in m1+o(1) time with the max flow algorithm from e.g. [5]. Let v1, v2, v3 ∈ C denote
these endpoints. If there are three disjoint arcs on the cycle that each contains a root from
R and one of {v1, v2, v3}, then G contains a rooted K4 minor (see Figure 2).

But if such arcs do not exist, then after renumbering we may assume that there is no root
vertex between v1 and v2 on C. The cycle C ′ which goes from v1 to v2 via the path contained
in C containing v3, and then back to v1 via r via P1 and P3, forms a cycle containing
(R ∩ V (C)) ∪ {r}. Hence we can reiterate with this cycle until C contains R.

This means there is also a cycle C in G′ containing all vertices in R: whenever an edge
in E′ is used, it is possible to pass through the subdivision vertex instead. We next modify
the cycle C to be a cycle containing all vertices in R and all vertices in S.

Let uv ∈ E′ be the edge whose subdivision resulted in s. We first ensure that C contains
both u and v (and R and all vertices in S already contained in it).
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Figure 2 If there are three vertex-disjoint paths from a root to disjoint arcs of the cycle containing
roots (left), we obtain a rooted K4-minor (right). The roots are depicted by boxes.

v3
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v3

v2
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S1,2

v

v3

s

uv1

v3

v2

v

S1,2

v

Figure 3 If the segment S1,2 contains v and no roots of C (left), then there is a cycle through
v, u, s and all roots of C.

Suppose that u is not in C. As before, since G is 3-connected and u ∈ V (G), there must
be three paths from u to C, vertex-disjoint except for their endpoint u, meeting C in distinct
endpoints v1, v2, v3. Again, we can find these paths in m1+o(1) time with [5]. We consider
the same two cases as before.

Case 1: there are three disjoint arcs on C, each of which contains a vertex of R ∪ S and
one vertex from {v1, v2, v3}. After contracting the edge between s and u, we obtain a
rooted K4-minor in the same way as in the 3-connected case (see Figure 2). Hence this
case does not happen by assumption.
Case 2: the segment S1,2 between v1 and v2 (excluding v1, v2 and v3) contains no vertices
from S ∪R. Then there is a cycle C ′ containing V (C) ∩ (S ∪R) and u. Note that C ′ no
longer contains the vertices from S1,2, so we could potentially lose v if v ∈ S1,2. But if
v ∈ S1,2, then there is a cycle C ′′ that goes through V (C) ∩ (S ∪R) ∪ {s} (see Figure 3).
Either way we ensured that the cycle contains u without affecting whether it contains v.

After renumbering if needed, we are always either in Case 1 or Case 2. Repeating the
argument above for v if needed, we can find a cycle passing through (R ∪ S) ∩ V (C) ∪ {u, v}.

IPEC 2024
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Figure 4 The segment Suv contains vertices between u and v, including w and excluding u and v

itself (left). If there is a path from Suv to x or the segment between x and y, then there is a rooted
K4-minor (right), where v is included with y and u with s.

So we will assume C passes through u and v. Now we claim that one of the two arcs of
C between u, v ∈ C does not contain any vertices from S ∪ R, and hence we may replace
this by the path via s to get a cycle C that additionally passes through s.

Suppose this is not the case. Recall we assumed in our lemma statement that there are
at least three vertices in R, and already established that C contains all vertices of R. So
we can find w, x, y in R ∪ S such that C passes in order through u, w, v, y, x, u (with some
vertices in between those, possibly). We choose x, y such that there are no vertices from
R ∪ S between v and y and between x and u. (See also Figure 4.)

Let Suv be the maximum segment of C between u and v which includes w but excludes u

and v. That is, if u, a1, . . . , aℓ, w, b1, . . . , bk, v are the vertices of C between u and v containing
w, then

Suv = {a1, . . . , aℓ, w, b1, . . . , bk}.

If there is a path intersecting C only in its endpoints from a vertex in Suv to x or the segment
of C in between x, y that excludes Suv, then we have an (S ∪R)-rooted K4-minor in G′, as
shown in Figure 4.

Similarly, if there is a path from Suv to y, a vertex in the segment between x and u (not
including u) or the segment between y and v (not including v), then there is an (S∪R)-rooted
K4-minor in G′, as depicted in Figure 5.

Since w and x are not the subdivision vertex of u and v, Suv and V (C) \ ({u, v} ∪ Suv)
both contain at least one vertex from G. Therefore, there is a path in G \ {u, v} from
Suv ∩ V (G) to (C \ Suv) ∩ V (G), since G is 3-connected. This means that one of the paths
mentioned above exists, contradicting the fact that G′ has no (S ∪R)-rooted K4-minor. This
contradiction shows that C must contain all vertices of S, as desired.

Hence, one of the two arcs of C between u, v ∈ C does not contain any vertices from
S ∪R, and we may replace this by the path via s to get a cycle C that additionally passes
through s. Reiterating this argument at most n times gives the cycle passing through R ∪ S.
Since each iteration takes at most m1+o(1) time, the lemma follows. ◀
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Figure 5 If there is a path from Suv to the segment between x and u (not including u), then
there is a rooted K4-minor (left). If there is a path from Suv to y, then there is a rooted K4-minor
(right).

4 Description of algorithm

This section is organized as follows. In Section 4.1, we define an auxiliary problem called
Virtual Edge Steiner Tree. In Section 4.2 we present a dynamic programming algorithm
for Virtual Edge Steiner Tree for the case that all roots lie on a cycle. This cycle
will be provided to us by Lemma 4. Section 4.3 discusses preprocessing steps. Finally, in
Section 4.4, we describe our algorithm for Virtual Edge Steiner Tree.

4.1 Virtual edges
We first slightly generalize the Steiner Tree problem to a problem that we call Virtual
Edge Steiner Tree in order to facilitate a recursive approach.

This problem is defined as follows. The input to Virtual Edge Steiner Tree is
a graph G = (V, E) with weights we for e ∈ E,
a set of terminals T = {t1, . . . , tk} ⊆ V ,
a set of “virtual edges” E∗ with weights we∗ : {u, v, d, c} → R≥0 for e∗ = {u, v} ∈ E∗.

We will assume that E ∩ E∗ = ∅.
A solution to the Virtual Edge Steiner Tree problem is a (virtual) edge set S ⊆ E∪E∗

such that T ⊆ V (S) and V (S) ∩ V (e∗) ̸= ∅ for each virtual edge e∗ ∈ E. Since the edge
weights are non-negative we can assume S is a tree. For a (virtual) edge set S, the cost
ce∗(S) of a virtual edge e∗ = {u, v} ∈ E∗ with respect to S is given by

we∗(u) if u ∈ V (S) and v ̸∈ V (S), representing the cost when u is included in the solution
and v is not,
we∗(v) if v ∈ V (S) and u ̸∈ V (S), representing the cost when v is included in the solution
and u is not,
we∗(c) if e ∈ S, representing the cost when u, v are both included in the solution and
connected “via the virtual edge”, that is, in the part of the graph we “forgot about”,
we∗(d) if u, v ∈ V (S) and e ̸∈ S, representing the cost when u, v are both included in the
solution but are not connected “via the virtual edge”.

The total cost of a solution S is defined as

c(S) =
∑
e∈S

we +
∑

e∗∈E∗

ce∗(S). (1)

IPEC 2024



12:8 A Polynomial Time Algorithm for Steiner Tree When Terminals Avoid a K4-Minor

The purpose of virtual edges with cost functions is to enable our algorithm to handle 2-cuts
{u, v} effectively. When the algorithm identifies such a cut, it recursively solves the four
subproblems for the smaller side first, encoding the costs in w{u,v}. It is crucial to ensure
that the solutions on both sides of the cut agree on the inclusion of vertices u and v in the
final solution. Additionally, if both vertices are included, the algorithm must determine
which side will contain the path connecting them.

In an instance of Virtual Edge Steiner Tree, we will assume that there is no terminal
incident with a virtual edge. If there is a terminal t and a virtual edge tt′, then we assign
the virtual edge weight wtt′(t′) =∞, and remove t from the terminal set.

It will be convenient for the description of the dynamic program to view a root as either
a singleton set consisting of a vertex (if it is a terminal), or an edge (if it is a virtual
edge). Therefore, for an instance (G, w, T , E∗, {we∗}e∗∈E∗), we define the set of roots as
R = {{t} : t ∈ T} ∪ E∗. We say the instance has no rooted K4-minor if the graph G∗ has
no R∗-rooted K4-minor, where G∗ is the graph obtained from the graph (V, E ∪ E∗) by
subdividing each edge in E∗ once, and R∗ is the union of T and the subdivision vertices
of G∗.

Note that Virtual Edge Steiner Tree can be reduced to Steiner Tree as follows:

▶ Observation 5. There is a reduction from an instance of Virtual Edge Steiner Tree
with k terminals and ℓ virtual edges to 4ℓ instances of Steiner Tree with at most k + 2ℓ

terminals.

Proof. Recall that there are four cases for each virtual edge: (i) u is covered but v is not,
(ii) v is covered but u is not, (iii) both u and v are covered and the edge uv is part of the
solution, and (iv) u and v are covered and the edge uv is not part of the solution. For each
virtual edge, we delete it from the graph, and do one of the following. For case (i), add u

as a terminal and delete v. For case (ii), add v as a terminal and delete u. For case (iii),
contract u and v into a single vertex and add it as a terminal. For case (iv), add both u

and v as terminals. This results in a Steiner Tree instance with at most k + 2ℓ terminals.
The minimum cost of solutions among these instances plus the virtual edge weights is the
minimum cost of the original instance of Virtual Edge Steiner Tree. ◀

4.2 Dynamic programming when roots lie on a cycle
In this subsection, we present a polynomial-time algorithm for the Virtual Edge Steiner
Tree problem when all roots lie on a cycle.

▶ Lemma 6. An instance of Virtual Edge Steiner Tree on an n-vertex graph without
rooted K4-minor that has a cycle passing through all roots, can be solved in O(n4) time.

Proof. We may also assume that there are at least five roots, since otherwise the problem
can be efficiently solved via Observation 5. Let R = {r1, . . . , rk} denote the set of roots. We
renumber the indices so that r1, . . . , rk appear on C in the order of their indices. Recall
that no terminal is incident with a virtual edge, and since the virtual edges lie on C,
each non-terminal is incident with at most two virtual edges. Indices will be considered
modulo k (identifying rk with r0). We use the shorthand R[a, b] to denote the set of roots
{rc ∈ R : c ∈ [a, b]}. In particular, R[a, b] = {ra, . . . , rk, r1, . . . , rb} for a > b.

We say a tree T = (V (T ), E(T )) is a partial interval solution if V (T ) ⊆ V (G), E(T ) ⊆
E ∪E∗ and the set R(T ) of roots r ∈ R for which r ∩ V (T ) ̸= ∅ forms an interval R[a, b] for
some a, b ∈ [k].
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We determine the status of virtual edges incident with the partial interval solution in the
same way as we do for a solution, and we also assign a cost in a way similar to (1), but we
now ignore virtual edges that are not incident with S

c(T ) =
∑

e∈E(T )∩E

we +
∑

e∗∈E(T )∩E∗

ce∗(E(T )).

Note that each solution S ⊆ E ∪ E∗ gives rise to a partial interval solution T = (V (E) ∪
V (E∗), E ∪ E∗), since R(T ) = [k] is always an interval.

We say a partial interval solution T is a minimal solution if R(T ) = R (so it contains all
terminals and contains at least one endpoint per virtual edge) and it is minimal in the sense
that there is no strict subtree which also has this property. The last assumption is needed
for technical reasons since the weights could also be zero.

We compute a dynamic programming table DP with entries DP[a, b, v, sa, sb], where
a, b ∈ [k], v ∈ V (G) \ T , sa ∈ ra ∪ {d, c} and sb ∈ rb ∪ {d, c}. If ra is a terminal, then the
table may ignore sa: we will store the same value irrespective sa. The same applies to sb.

The table entry DP[a, b, v, sa, sb] represents the minimum cost of a partial interval solution
T with R(T ) ⊇ R[a, b] and v ∈ V (T ), where the status of ra and rb are indicated by sa and
sb, respectively. In fact, the minimum will not go over all partial interval solutions, but only
those that can be built in a specific manner as defined next. This means the lower bound is
always true.

We define a collection B of partial interval solutions via the following set of rules.
R1. Every partial interval solution ({v}, ∅) consisting of a single vertex with v ∈ V (G) is

in B.
R2. Every partial interval solution T obtained from a partial interval solution T ′ ∈ B by

adding a new vertex v ∈ V (G) not incident to any roots with an edge in E is in B.
R3. Every partial interval solution T obtained from two partial interval solutions T1, T2 ∈ B

by “gluing on v” is in B when V (T1) ∩ V (T2) = {v} and all points in the intersection of
the intervals R(T1) and R(T2) are endpoints of both intervals.

Note that by the definition of partial interval solution, R(T ) is an interval R[a, b] for each
T ∈ B. The following claim shows our dynamic program may restrict itself to partial interval
solutions.

▷ Claim 7. Let T be a minimal solution. Then T ∈ B.

Proof. We want to root our tree T in a well-chosen vertex v and eventually prove the claim
by induction. For w ∈ V (T ), let Tw denote the subtree of T containing all descendants of
w. The choice of v needs to ensure that R(Tw) ̸= [k] for all children w of v. By minimality,
R(Tw) ̸= ∅ for all children w of v.

If there is at least one terminal ra, then we can choose v = ra, since ra will then be
missing from R(Tw) for all w ̸= v. We show in the remainder of this paragraph that such a
vertex v can also be chosen when no terminal exists. If there is a virtual edge incident to a
single vertex u, we can choose v = u similar to the terminal case. Moreover, if there is a
vertex u incident with two virtual edges, then we may choose v = u. Otherwise, all roots
come from virtual edges that have both endpoints present in T and each vertex is incident
with at most one edge. We give each vertex of G incident with a virtual edge weight 1. Since
T is a tree, we can root it in a “balanced separator”: a vertex v such that the total weight in
each component of T − v is at most half the total weight of T . The only way R(Tw) can then
be [k] for w a child of v, is when all roots are coming from edges incident with one vertex
in Tw and one outside. Since there are at least five roots, we can choose roots ra, rb, rc, rd

IPEC 2024



12:10 A Polynomial Time Algorithm for Steiner Tree When Terminals Avoid a K4-Minor

consecutive on the cycle, and connect ra to rc using only internal vertices from V (Tw) and
rb to rd using only internal vertices not in V (Tw), finding a rooted K4-minor with Lemma 3,
a contradiction.

In this paragraph, we show that R(Tw) is an interval. We are done if |R(Tw)| ≥ k − 1.
So we assume that |R(Tw)| ≤ k − 2 and w ̸= v. Suppose towards a contradiction that R(Tw)
is not an interval. This means there exist a < b < c < d in [k] such that ra, rc ∈ R(Tw) and
rb, rd ̸∈ R(Tw) (or b < c < d < a, but this case is analogous). This means there is a path
between (the roots of) ra and rc via vertices in V (Tw). Moreover, rb and rd are not in R(Tw),
and so they are either part of the tree T ′ obtained from T by removing Tw, or incident to
a vertex in this tree. This provides a path between (the roots of) rb and rd using vertices
not in V (Tw) ∪R(Tw). Thus, by Lemma 3, we obtain an {ra, rb, rc, rd}-rooted K4-minor, a
contradiction.

In this paragraph we show that Sw = ({w}, ∅) ∈ B for each w ∈ V (T ). For this, we need
to show that R(T ) forms an interval. Recall that no terminal is incident with a virtual edge,
and since the virtual edges lie on C, each non-terminal is incident with at most two virtual
edges which are then also consecutive on the cycle. This means |Sw| ≤ 2 and that R(Sw) is
an interval. Since Sw consists of a single vertex, it is now added to B in R1.

The remainder of the proof shows that Tw ∈ B for each w ∈ V (T ) by induction on |V (Tw)|.
We already proved (a stronger variant of) the case when the size is 1 above. Suppose Tw ∈ B
has been shown for all w with |V (Tw)| ≤ ℓ for some ℓ ≥ 1 and now assume |V (Tw)| = ℓ + 1.

We first show a property that we need in both cases considered below. Let w′ be a child
of w and suppose that rx ∈ R(Sw) ∩ R(Tw′). Then rx must correspond to a virtual edge
ww1 with w1 ∈ V (Tw′). We show that rx is an endpoint of the interval R(Tw′). Recall that
R(Tw′) ̸= [k] by choice of v. If rx is not an endpoint, then there are vertices ra, w1, rx, w, rb, rd

appearing in order on the cycle for some ra, rb ∈ R(Tw′) and rd ̸∈ R(Tw′). In particular, rx

can be connected to rd via w using vertices outside of V (Tw′) and we can connect ra and rb

using internal vertices in V (Tw′). We then apply Lemma 3 to obtain an {ra, rx, rb, rd}-rooted
K4-minor, a contradiction.

We now turn to the proof that Tw ∈ B. We already proved its roots form an interval.
Suppose that w has a single child w′. By the induction hypothesis, Tw′ is a partial interval
solution. If w is not incident with any roots, then Tw can be obtained from Tw′ with R2.

If w is incident with at least one root, we show we can obtain Tw by gluing the partial
interval solution Sw = ({w}, ∅) with Tw′ . To apply R3, we need to show all points in the
intersection R(Sw) ∩R(Tw′) are endpoints of the corresponding intervals.

If w is a terminal ra, then it is not incident with any virtual edges and hence there are
no intersection points.
Suppose that w is not a terminal, but it is incident with either one or two virtual edges
rx1 = ww2 and rx2 = ww2. This means R(Sw) = {rx1 , rx2} and so these are the only
possible intersection points. We proved above that if rxj exists and is in R(Tw′), it
must be an endpoint of that interval (for j = 1, 2). Moreover, each root in R(Sw) is
automatically an endpoint of the interval since the size is 1 or 2.

So we may assume w has at least two children. Let w1, . . . , wd denote the children of w in T
and for each i ∈ [d], let Ti = Twi denote the subtree of T containing all descendants of wi.
We already showed that for each i ∈ [d], R(Ti) is an interval R[ai, bi] for some ai, bi ∈ [k].

The union of these intervals will be R(Tw) \ {w}. We now describe when R[ai, bi] and
R[aj , bj ] can intersect for some i ̸= j. Every intersection point comes from a virtual edge uu′

with u ∈ Ti and u′ ∈ Tj , and in particular each root appears in at most two of the Ti. We
show that when rx ∈ R[ai, bi] ∩R[aj , bj ], we must have x ∈ {ai, bi}. Indeed, if not, we select
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rc ̸∈ R[ai, bi] and now rc, rai , rx, rbi appear consecutively on the cycle, with a path between
rai

and rbi
contained within V (Ti) and a path between rx and rc outside of V (Ti) (via u′),

yielding a contradiction via an {rc, rai
, rx, rbi

}-rooted K4-minor by Lemma 3.
Moreover, we already argued that R(Sw) ∩R[ai, bi] can only intersect in ai or bi (and in

fact, at most one of those two by minimality arguments). Combined, this means that there
is a way to renumber such that

j⋃
i=1

R[ai, bi] ∪R(Sw) and
d⋃

i=j+1
R[ai, bi] ∪R(Sw)

form intervals intersecting only in their endpoints. Here j is chosen so that either w = rj

if w is terminal, and w is between rbj and raj+1 on the cycle if one (or both) of those is a
virtual edge incident to w, and otherwise R(Sw) = ∅ and does not affect whether the sets
are intervals. ◁

Our dynamic program will ensure that each partial interval solution in B is considered by
following rules R1-R3. Since these rules are also easily seen to result in a valid Steiner tree,
the final output therefore will be optimal by Claim 7.

Base case. All entries are set to ∞ initially. We compute all entries DP[a, b, v, sa, sb]
corresponding to a partial interval solution consisting of a single vertex via Observation 5.
That is, for each vertex v,

if v is a terminal ra, we set DP[a, a, v, sa, s′
a] = 0;

if v has exactly one incident virtual edge ra, we set DP[a, a, v, v, v] = wra
(v).

if v has incident virtual edges ra and ra+1, we set DP[a, a + 1, v, v, v] = wra(v) + wra+1(v).

Adding a vertex. We first implement R2: adding a vertex not incident to any roots.
Suppose that v is not incident with any roots. For any edge uv ∈ E, we add the rule

DP[a, b, v, sa, sb]← min(DP[a, b, u, sa, sb] + wuv, DP[a, b, v, sa, sb]).

Next, we implement R3, “gluing on v”, which has multiple cases because we also need to
properly keep track of the costs of the virtual edges.

Gluing two solutions without intersection. We first consider the case in which the intervals
of the roots are disjoint, in which case the partial interval solutions that we are gluing do
not have any virtual edges between them. When a2 = b1 + 1 and a1 ̸∈ [a2, b2], we set

DP[a1, b2, v, sa1 , sb2 ]← min(DP[a1, b2, v, sa1 , sb2 ], DP[a1, b2, v, sa1 , sb2 ] + DP[a2, b2, v, sa2 , sb2 ]).

Gluing two solutions with one intersection. Now suppose that the intervals overlap in
exactly one point.

When a2 = b1 with ra2 a terminal and a1 ̸∈ [a2 + 1, b2], we set

DP[a1, b2, v, sa1 , sb2 ]← min(DP[a1, b2, v, sa1 , sb2 ], DP[a1, b1, v, sa1 , sb1 ] + DP[a2, b2, v, sa2 , sb2 ]).

We may forget about sa2 , sb1 since the “status” of the terminal is irrelevant to us.
When ra2 = uu′ is a virtual edge, we need to consider various options, depending on the

status this edge used to be in for both solutions, and what final state we want it to be, and
whether a1 = b1 and/or a2 = b2.
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We start with when we want to make the status d. We need to ensure u, u′ are part of
the solution, and the solutions must overlap elsewhere in some vertex v. So when a2 = b1,
a1 ̸∈ [a2 + 1, b2], we set

DP[a1, b2, v, x1, x2]← min(DP[a1, b2, v, x1, x2],
DP[a1, b1, v, sa1 , u] + DP[a2, b2, v, u′, sb2 ]− wuu′(u)− wuu′(u′) + wuu′(d)),
DP[a1, b1, v, sa1 , u′] + DP[a2, b2, v, u, sb2 ]− wuu′(u)− wuu′(u′) + wuu′(d)),

where we require x1 = sa1 if a1 ̸= b1 and x = d when a1 = b1; and we require x2 = sb2

if a2 ̸= b2 and x2 = d when a2 = b2. In the last line, for example, we use that the first
partial interval solution has paid the cost wuu′(u′) (as recorded by the status) and the second
wuu′(u). We allow here to replace the cost by wuu′(d), since the solutions can be merged
via the vertex v. If a1 = b1 or a2 = b2, we will keep the status d recorded at the relevant
endpoint.

We also give the option to “connect” via the virtual edge ra2 . When ra2 = uu′ is a virtual
edge, a2 = b1 a1 ̸∈ [a2 + 1, b2], we set

DP[a1, b2, u, x1, x2]← min(DP[a1, b2, u, x1, x2],
DP[a1, b1, u, sa1 , u] + DP[a2, b2, u′, u′, sb2 ]− wuu′(u)− wuu′(u′) + wuu′(c)),

DP[a1, b2, u′, x1, x2]← min(DP[a1, b2, u′, x1, x2],
DP[a1, b1, u, sa1 , u] + DP[a2, b2, u′, u′, sb2 ]− wuu′(u)− wuu′(u′) + wuu′(c)),

where again, we require xi = sai if ai ̸= bi and xi = c otherwise.

To allow the edge to be in status u (or u′, analogously), we also add

DP[a1, b2, v, x1, x2]← min(DP[a1, b2, v, x1, x2],
DP[a1, b1, v, sa1 , u′] + DP[a2, b2, v, u, sb2 ]− wuu′(u′),
DP[a1, b1, v, sa1 , u] + DP[a2, b2, v, u, sb2 ]− wuu′(u),
DP[a1, b1, v, sa1 , u] + DP[a2, b2, v, u′, sb2 ]− wuu′(u′)),

where again, we require xi = sai
if ai ̸= bi and xi = c otherwise.

Gluing two solutions with two intersections It remains now to glue intervals with two
intersection points to a final solution. The rules for this are analogous to the previous case,
but now the compatibility is checked at both endpoints, a1 = b2 and a2 = b1.

We apply the rules in a bottom-up fashion. The final output is the minimum over all
entries DP[a, b, v, sa, sb] with R[a, b] = R.

Running time. There are O(n3) entries, each of which takes O(n) time to compute. Thus,
the total running time is O(n4). ◀

4.3 Preprocessing
Throughout, the algorithm works on a simple graph G∗ (that is, at most one edge per pair
of vertices). We can always obtain this via the following edge pruning steps.
1. If there are two edges e and e′ containing the same two endpoints with we ≤ we′ , then

delete e′.
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2. If there are two virtual edges e∗
1 and e∗

2 over the same endpoints u and v, then delete e∗
1

and e∗
2 add a new virtual edge e∗ between u and v with the virtual weight defined as

follows:
we∗(u) = we∗

1
(u) + we∗

2
(u).

we∗(v) = we∗
1
(v) + we∗

2
(v).

we∗(c) = min(we∗
1
(c) + we∗

2
(d), we∗

1
(d) + we∗

2
(c)).

we∗(d) = we∗
1
(d) + we∗

2
(d).

3. If there is an edge e and virtual edge e∗ over the same endpoints say u and v, then
delete e, and update the virtual weight of e∗ by we∗(c) = min(we∗(c), we∗(d) + we).

We briefly discuss the correctness of the preprocessing steps above, though all of them
follow directly from the definition of Virtual Edge Steiner Tree. Firstly, note that
we exactly remove all multiple edges (and preserve which vertices have at least one edge
between them). For (1), an edge with a larger weight is never included in an optimal solution
so can be removed. For (2), at most one of the two virtual edges will be used to “connect”
the vertices, but we still need to pay the cost for both even if they are not “included” in the
solution. Hence the new edge has the weight defined as the sum of the weight of two virtual
edges for the cases u, v, and d. For the case c, we may assume that exactly one of e∗

1 and
e∗

2 is included into the solution. Lastly, for (3), we update we∗ to take into account that it
may be cheaper to connect via the edge e in the scenario that u and v needs to be connected.
That is, if there is an edge e and virtual edge e∗ such that we∗(c) ≥ we∗(d) + we, then we
update we∗(c) to we∗(d) + we. In the other scenarios an optimal solution would never add
the edge e.

We define a preprocessing procedure as follows to ensure that every biconnected component
has at least one root and that every triconnected component has at least two roots.

We say a vertex set A ⊆ V is incident with a root if A ∩ T ̸= ∅ or there is a virtual edge
incident with a vertex of A.
1. Perform edge pruning.
2. If there is a cut vertex v such that G − v has a connected component A that is not

incident with any roots, then delete A from the graph. Return to 1.
3. If there is a 2-cut {u, v} such that G[V \ {u, v}] has a connected component A that is

not incident with a root, then delete A from the graph and add an edge uv, where the
weight wuv equals distG[A∪{u,v}](u, v). Return to 1.

4. If there is a 2-cut {u, v} such that G[V \ {u, v}] has a connected component A that is
incident with exactly one root, we compute the weights for a new virtual edge {u, v} by
solving four Virtual Edge Steiner Tree instances using Observation 5.

wuv(u) is the cost of the instance induced by A∪ {u} with u as an additional terminal.
wuv(v) is the cost of the instance induced by A∪ {v} with v as an additional terminal.
wuv(c) is the cost of the instance induced by A ∪ {u, v} with {u, v} as terminals but
where we do not include a virtual edge between u and v if it had one.
wuv(d) = min(wuv(u), wuv(v)).

We add a new virtual edge {u, v} with the costs as defined above and remove all vertices
from A. (If there was already a virtual edge between u and v, we keep it and it will be
dealt with during the cleaning.) Return to 1.

For (2), note that since v is a cut vertex, there is always an optimal solution that has
empty intersection with A.

For (3), if u and v are connected in an optimal solution via A, then this will be done via
a shortest path between u and v.

IPEC 2024



12:14 A Polynomial Time Algorithm for Steiner Tree When Terminals Avoid a K4-Minor

Algorithm 1 A polynomial-time algorithm for Virtual Edge Steiner Tree. We assume that
the input graph is connected and that there is no rooted K4-minor in the instance.

1: procedure Algo((G, T, E∗, we))
2: Apply preprocessing from Section 4.3
3: if |T |+ |E∗| = O(1) then return Solve by Observation 5 and Dreyfus-Wagner.
4: if G∗ is not 2-connected then
5: Let v be a cut vertex that separates G into A and B.
6: return Algo(G[A ∪ {v}], (T ∩A) ∪ {v}, E∗ ∩

(
A
2
)
, w)

7: + Algo(G[B ∪ {v}], (T ∩B) ∪ {v}, E∗ ∩
(

B
2
)
, w).

8: else if G∗ is not 3-connected then
9: Let {u, v} be a cut that separates G into A and B with |A| ≤ |B|.

10: Let e be a virtual edge connecting u and v.
11: we(u)← Algo(G[A ∪ {u}], (T ∩A) ∪ {u}, E∗ ∩

(
A
2
)
, w)

12: we(v)← Algo(G[A ∪ {v}], (T ∩A) ∪ {v}, E∗ ∩
(

A
2
)
, w)

13: we(c)← Algo(G[A ∪ {u, v}], (T ∩A) ∪ {u, v}, E∗ ∩
(

A
2
)
, w)

14: we(d)← Algo(G[A ∪ {u, v}] + uv, (T ∩A) ∪ {u, v}, E∗ ∩
(

A
2
)
, w)]

15: return Algo(G[B ∪ {u, v}], T, E∗ ∪ {e}, w)
16: else
17: return the result for 3-connected case.

For (4), there are four cases to consider. In the first three cases, we enforce u, v or both
u and v are contained in the optimal Steiner tree by making them terminals. In the last, we
note that the solution on A is allowed to go either via u or via v. Note that the instances
that we solve to define the costs all have at most 3 roots (virtual edges or terminals) and so
can be solved in polynomial time in terms of |A| using Observation 5.

4.4 Our algorithm

See Algorithm 1 for the outline of the algorithm. Our algorithm maintains the invariant that
there is no rooted K4-minor over the terminals T and virtual edges E∗. We first apply the
preprocessing steps in Section 4.3. If this results in a graph with O(1) roots, we solve the
problem by reducing to Steiner Tree with O(1) terminals, which can then be solved using
the Dreyfus-Wagner algorithm [8] in O(1) time.

G∗ is not 2-connected. Let v be a cut vertex separating G into A and B. (Here, A and
B each may contain multiple connected components of G − v.) We recursively solve two
instances induced on vertex sets A ∪ {v} and B ∪ {v} where v is an additional terminal. To
see why this recursion is correct, note that A and B each contains at least one terminal or
virtual edge by the preprocessing steps. So, any Steiner tree must cover v as well, and thus
it is obtained by “gluing” the two solutions on the vertex v. The total cost equals the sum of
the two recursive instance costs.

We claim that no rooted K4-minor is introduced in the recursive calls. As v is a cut
vertex, there is a path from v to each vertex in B. Moreover, by the preprocessing, B contains
a root (there is either a virtual edge in B ∪ {v} or a terminal in B). This means that any
rooted K4-minor in the instance on A ∪ {v} with v as terminal also gives rise to a rooted
K4-minor in G.
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G∗ is not 3-connected. We first find a 2-cut {u, v} that separates the graph into A and B

with |A| ≤ |B|. Our algorithm considers four cases based on whether u and v are covered by
the solution.

We solve the subproblem over G[A ∪ {u, v}] with u as an additional terminal, to account
for the case in which u is covered but v is not.
We solve the subproblem over G[A ∪ {u, v}] with v as an additional terminal, to account
for the case in which v is covered but u is not.
We solve the subproblem over G[A ∪ {u, v}] with u and v as additional terminals. This
accounts for the case that both u and v are covered, and they are connected through A.
We solve the subproblem over G[A∪{u, v}] with u as terminal and the edge {u, v} added
(in E) with cost w({u, v}) = 0. This accounts for the case in which both u and v are
covered, and they are not connected through A.

Next, we solve a single instance on vertex set B ∪ {u, v} where {u, v} is added as virtual
edge (in E∗). The cost of the virtual edge {u, v} is determined by the previous calculations

We verify that no rooted K4-minor is introduced in the recursive calls. The first two
recursive calls (corresponding to the cases u and v) are analogous to the scenario where G∗

has a cut vertex. For the third and fourth calls (cases c and d), assume for contradiction
that there exists a rooted K4-minor over T ∪ {u, v} in G[A∪ {u, v}] + uv. Our preprocessing
steps ensure two roots r, r′ ∈ T ∪ E∗. Since there is no cut vertex, there are two disjoint
paths connecting {r, r′} to {u, v}. Using these paths, we can construct a rooted K4-minor in
G, which is a contradiction. For the final recursive call on B ∪ {u, v}, the argument for the
case where G∗ has a cut vertex again shows the non-existence of a rooted K4-minor.

G∗ is 3-connected. If G∗ is 3-connected, then we can find a polynomial time a cycle going
through all roots by Lemma 4 presented in Section 3, and Virtual Edge Steiner Tree
can be solved as described in Section 4.2

Runtime analysis

When we solve an instance with G∗ being 3-connected, we already showed the running time
is at most c′n4 for some constant c′ > 0, assuming n ≥ n0 for some constant n0. After
making c′ larger if needed, we can also assume all additional steps in the algorithm such as
finding a 2-cut and preprocessing take at most c′n3 on inputs of n ≥ n0 vertices.

We let T (n) denote the maximal running time on an input graph on n vertices and show
that T (n) ≤ cn4 for some constant c > 0 by induction on n. We will choose c such that
c ≥ c′ and T (n) ≤ cn4 when n ≤ n0.

When G∗ is not 2-connected, we find a cut vertex v splitting the graph into A and B

and recursively solve two instances on A ∪ {v} and B ∪ {v} and obtain the cost from there.
So with |A| = i, we find the running time is at most T (i + 1) + T (n− i) + c′n3.

When G∗ is 2-connected, but not 3-connected, we find a 2-cut {u, v} that separates G∗

into A and B with |A| ≤ |B|, and therefore |A| ≤ (n − 2)/2. With i = |A|, we recursively
solve four instances of size at most i and one instance of size |B| ≤ n − i, resulting in a
running time of at most

max
1≤i≤n/2

T (n− i) + 4T (i + 2) + c′n3.

Applying the inductive hypothesis, we find T (n− i) ≤ c(n− i)4 and T (i + 2) ≤ c(i + 2)4 for
all 1 ≤ i ≤ n/2. The function f(i) = c(n− i)4 + 4c(i + 2)4 + c′n3 is convex within the domain
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1 ≤ i ≤ n/2 because the second derivative f ′′(i) (with respect to i) is positive. Therefore,
the maximum value is attained either at i = 1 or i = n/2. Evaluating these points,

f(1) = c(n− 1)4 + 4c(34) + c′n3

f(n/2) = c(n/2)4 + 4c(n/2 + 2)4 + c′n3,

we see both are less than cn4 when n is sufficiently large since c ≥ c′. Hence, we conclude
that T (n) = O(n4).
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Abstract
In the Kr-Hitting problem, given a graph G and an integer k one has to decide if there exists a set
of at most k vertices whose removal destroys all r-cliques of G.

In this paper we give an algorithm for Kr-Hitting that runs in subexponential FPT time on
graph classes satisfying two simple conditions related to cliques and treewidth. As an application we
show that our algorithm solves Kr-Hitting in time

2Or(k(r+1)/(r+2) log k) · nOr(1) in pseudo-disk graphs and map-graphs;
2Ot,r(k2/3 log k) · nOr(1) in Kt,t-subgraph-free string graphs; and
2OH,r(k2/3 log k) · nOr(1) in H-minor-free graphs.
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1 Introduction

In the Kr-Hitting problem, given a graph G and an integer k one has to decide if there are
k vertices in G whose deletion yields a Kr-free graph. This problem falls within the general
family of (implicit) hitting problems and encompasses several extensively studied problems
such as the case r = 2 better known under the name Vertex Cover and the case r = 3
that we usually refer to as Triangle Hitting. Already for these small values the problem
is NP-complete.

In this paper we are interested in subexponential parameterized algorithms for Kr-Hitting,
i.e., algorithms that run in Fixed Parameter Tractable (FPT) time (that is, time f(k) · nO(1)

for some computable function f) and where additionally the contribution of the parameter
k is subexponential, in other words f(k) ∈ 2o(k). Under the Exponential Time Hypothesis
of Impagliazzo and Paturi [10], such algorithms do not exist in general for vertex deletion
problem to nontrivial hereditary properties [13] (like Kr-Hitting problem) and so we have
to focus on particular graph classes.

Historically, subexponential graph algorithms were first obtained for specific problems in
sparse graph classes such as planar graphs. The techniques used have then been unified and
extended by Demaine, Fomin, Hajiaghayi, and Thilikos in the meta-algorithmic theory of
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bidimensionality [7], which provides a generic machinery to solve a wide range of problems in
subexponential FPT time on H-minor free graphs. Initially bidimensionality was defined
for graph classes with some “flatness” property similar to planar graphs, typically graphs of
bounded genus and H-minor-free graphs. Over the years, the theory saw several improvements
and extensions in order to deal with different settings like map graphs and other classes of
intersection graphs, which are initially not sparse as they contain large cliques for example,
but where we can branch in subexponential-time to reduce to sparse instances (see for
instance the bibliography cited in [4]). However, despite its generality, bidimensionality can
only handle the so-called bidimensional problems where, informally, as soon as the instance
(G, k) contains a large t × t grid as a minor (for t ∈ o(k), typically t =

√
k), we know

that (G, k) is necessarily a no-instance (or yes-instance depending on the problem). This
is the case of Vertex Cover but unfortunately not of Triangle Hitting (as grids are
triangle-free) and more generally not of Kr-Hitting for r ≥ 3.

The focus of this paper is on this blind spot: subexponential FPT algorithms for a
problem that is not bidimensional, namely Kr-Hitting. About this problem, we note that
using arguments developed in the context of approximation [9], the following subexponential
FPT algorithm can be obtained for apex-minor free graphs (which are sparse).

▶ Theorem 1 (from [9]). For every apex1 graph H and every r ∈ N there is an algorithm
solving Kr-Hitting in H-minor-free graphs in time 2OH,r(√

k) · nOr(1).

Regarding classes that are not sparse, Triangle Hitting received significant attention
in the last years in classes of intersection graphs such as (unit) disk graphs2, pseudo-disk
graphs, and subclasses of segment graphs3 [14, 2, 4, 3]. We only recall below the most general
results and do not mention those that require a geometric representation.

▶ Theorem 2. There are algorithms that given a parameter k and a n-vertex graph (without
a geometric representation) solve Triangle Hitting in time
1. 2O(k3/4 log k)nO(1) in disk graphs [2];4
2. 2O(k3/4 log k)nO(1) in contact-segment5 graphs [4];
3. 2Ot,d(k2/3) log knO(1)in Kt,t-subgraph-free d-DIR6 graphs [4].

▶ Theorem 3 ([4]). Assuming the Exponential Time Hypothesis, there is no algorithm solving
Triangle Hitting in time
1. 2o(n) in 2-DIR graphs;
2. 2o(

√
∆n) in 2-DIR graphs with maximum degree ∆; and

3. 2o(
√

n) in K2,2-free contact-2-DIR graphs of maximum degree 6.

Our contribution
Our main result is the following subexponential parameterized algorithm for Kr-Hitting
in graph classes satisfying two conditions related to cliques and treewidth. Notice that the
statement of the following theorem is a simplified version of the actual Theorem 22 that we
prove in Section 5.

1 A graph is apex if the deletion of some vertex yields a planar graph.
2 (Unit) disk graphs are intersection graphs of (unit) disks in R2.
3 Segment graphs are intersection graphs of segments in R2.
4 The published version of the paper gives a bound of 2O(k4/5 log k)nO(1) but it can easily be improved to

2O(k3/4 log k)nO(1), as confirmed to us by the authors of [2] (private communication).
5 Contact-segment graphs are the intersection graphs of non-crossing segments in R2.
6 A graph is d-DIR if it is the intersection graph of segments of R2 with at most d different slopes.
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▶ Theorem 4. Let r ∈ N, α ∈ (0, 1), µ ∈ R>0 and let G be a hereditary graph class where
every G ∈ G with n vertices and clique number ω has Or(ωµn) cliques of order less than r

and treewidth Or(ωµnα). There exists ε < 1 and an algorithm that solves Kr-Hitting on G
in time 2kε · nOr(1).

One additional motivation for this work was to generalize to Kr-Hitting the techniques
used in previous work to solve Triangle Hitting (in specific graph classes) and to extract
the minimal requirements for such an approach to work in more general settings. We believe
we met this goal as we actually describe a single generic approach that solves Kr-Hitting
on any input graph, for any r. The properties of the class in which the inputs are taken is
only used to bound its running time. Such a generalization effort can be fruitful and indeed
it allowed us afterwards to identify natural graph classes where subexponential algorithms
exist as a consequence of our general result, as we detail now.

In Section 6 we derive from Theorem 22 the following applications.

▶ Theorem 5. There is an algorithm solving Kr-Hitting in pseudo-disk graphs in time
2Or(k(r+1)/(r+2) log k) · nOr(1).

Pseudo-disk graphs are a classical generalization of disk graphs where to each vertex is
associated a pseudo-disk (a subset of the plane that is homeomorphic to a disk), two vertices
are adjacent if the corresponding pseudo-disks intersect and additionally we require that for
any two intersecting pseudo-disks, their boundaries intersect on at most two points. Disk
graphs and contact segment graphs are pseudo-disk graphs, so Theorem 5 applies to the two
settings handled by the algorithms of [2] and [4] mentioned at items 1 and 2 of Theorem 2.
Another application is the following:

▶ Theorem 6. There is an algorithm solving Kr-Hitting in map graphs7 in time
2Or(k(r+1)/(r+2) log k) · nOr(1).

We cannot expect a similar consequence for the more general class of string graphs.8

Indeed, there are n-vertex string graphs that are triangle-free and have treewidth Ω(n), for
instance the balanced bicliques.9 Note that such graphs prevent string graphs from satisfying
the requirement of Theorem 4. Also, and more importantly, by Theorem 3 under ETH there
is no 2o(n)-time algorithm for K3-Hitting in 2-DIR graphs, a restricted subclass of string
graphs. As we will show, large bicliques are the only obstructions in the sense that forbidding
them in string graphs allows us to solve the problem in subexponential FPT time. For this
we use the following light version of Theorem 4 (also consequence of Theorem 22) suited for
classes where the clique number is already bounded.

▶ Theorem 7. Let r ∈ N, α ∈ (0, 1) and let G be a hereditary graph class where every G ∈ G
with n vertices has O(n) cliques of order less than r and treewidth O(nα). There exists an
algorithm that solves Kr-Hitting on G in time 2Or(k2/(1+1/α) log k) · nOr(1).

As a consequence we obtain a subexponential FPT algorithm for string graphs excluding
large bicliques.

7 Map graphs are intersection graphs of interior-disjoint regions of R2 homeomorphic to disks.
8 String graphs are intersection graphs of Jordan arcs in R2. They generalize many of the most studied

classes of intersection graphs of geometric objects in the plane such as disk graphs, pseudo-disk graphs,
segment graphs, chordal graphs, etc.

9 Kn,n can be drawn as a 2-DIR graph with n horizontal disjoint segments that are all crossed by n
vertical disjoint segments.
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▶ Theorem 8. There is an algorithm solving Kr-Hitting in Kt,t-subgraph-free string graphs
in time 2Ot,r(k2/3 log k) · nOr(1).

Theorem 8 is a generalization in two directions (the objects to hit and the graph to consider)
of item 3 of Theorem 2. We note that under ETH the contribution of k cannot be improved
to 2o(

√
k), according to Theorem 3. Finally we observe that Theorem 4 can also be applied

to certain classes of sparse graphs.

▶ Theorem 9. For every graph H, there is an algorithm solving Kr-Hitting in H-minor-free
graphs in time 2OH,r(k2/3 log k) · nOr(1).

This is a more general statement than Theorem 1 in the sense that we are not limited to
apex-minor free graphs, with the price of a slightly larger time complexity.

Our techniques
Our subexponential algorithm for Kr-Hitting of Theorem 4 is obtained as follows. Given
(G, k), we first perform in Section 3 a preliminary branching step whose objective is to get
rid of large cliques (i.e., cliques of order at least kε for some ε ∈ (0, 1) that we will fix
later). This step is a folklore technique which is frequently used for any problem where a
solution has to contain almost all vertices of a large clique, like Triangle Hitting (or in
general Kr-Hitting), Feedback Vertex Set, or Odd Cycle Transversal. After this
preprocessing has been performed we can assume that the instances to solve have no clique
on more than kε vertices. Then, we greedily compute an r-approximate Kr-hitting set M . If
|M | > kr we can already answer negatively, so in the following we may assume |M | ≤ kr

and will use the fact that there is no Kr in G − M .
Now, the crucial part of the algorithm is Section 4. Informally, the goal of the algorithms

described in this section is to extend M into a superset M ′ together with a new parameter
k′ ≤ k, such that |M ′| = O

(
k1+cε

)
(for some c > 0) and that vertices of V (G) \ M ′ are

irrelevant for the problem of hitting r-cliques. In that way, we can remove them, and it remains
only to solve (G[M ′], k′), whose treewidth can be typically bounded by

√
ω(G)|M ′| in the

graph classes we consider. As
√

ω(G)|M ′| = O
(

k1/2+ c+1
2 ε

)
, this leads to a subexponential

algorithm. We stress that the high-level description above is not a kernelization because first
we actually do not produce a single reduced instance but instead we have to branch and
obtain a subexponential (in k) number of sub-instances and second because the reduction
steps are not carried out in polynomial time, but in subexponential (in k) time.

To obtain this set M ′, we use lemmatas 14 and 21 that are inspired from the following
“virtual branching” procedure of [14, Lemma 6.5]. This routine was introduced for Triangle
Hitting and works as follows. It starts with a triangle hitting set M (obtained by greedily
packing disjoint triangles), and outputs a slightly larger superset M ′ such that vertices
in G − M ′ are almost useless, in the sense that every triangle has at least two vertices
in M ′ (we do not detail here how to handle the triangles with exactly two vertices in M ′

and refer to [14]). This is done as follows. For a vertex v ∈ M , consider a maximum
matching M(v) ⊆ N(v) ∩ (V (G) \ M). If for every v ∈ M such a matching is small, meaning
|M(v)| ≤ kε, then we can define M ′ = M ∪

⋃
v∈M M(v). We are done as |M ′| = O(k1+ε)

remains small, and there is no longer a v ∈ M ′ with an edge in N(v) \M ′ (as this would form
a triangle outside M). Otherwise, if for some v ∈ M , |M(v)| > kε, a solution of Triangle
Hitting should either take v, or otherwise hits all edges of M(v). In the second case, it
would be too costly to guess which vertex is taken in each e ∈ M(v), so instead the procedure
“absorbs” M(v) by defining M ′ = M ∪ M(v). This absorption increases the size of M , but
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“virtually” decreases the parameter k, as it increases by |M(v)| the size of a matching that the
solution will have to hit. This leads to a running time typically dominated by the recurrence
f(k) = f(k − 1) + f(k − kε), which is subexponential in k.

Now, coming back to Kr-Hitting, given a set M , let us say10 that a type-i clique
is an r-clique X such that |X ∩ M | = i. We could remove type-1 cliques by using the
previous virtual branching procedure, defining now M(v) as a packing of r − 1 cliques
instead of a packing of edges, but the problem is that, if we want to obtain a set M ′ as
promised (where vertices of V (G) \ M ′ are useless), we also have to remove type-i cliques
for i ∈ {2, . . . , r − 1}. However, there is a first obstacle to remove such type-i cliques: as
the part common with M (which was before a single vertex in M) is now an i-clique, we
cannot afford to enumerate all possible choices X ′ of such an i-clique in M . Indeed, already
for i = 2 we would possibly consider a quadratic number of sets X ′, so absorbing every
packing (of (r − i)-cliques) M(X ′) (in the unfortunate case where these are all small) would
result in a set M ′ = M ∪

⋃
X′⊆M,|X′|=2 M(X ′) with |M ′| = Ω(k2), which is too large for our

purpose. To circumvent this issue, we identified a key property that holds in many geometric
graph classes like pseudo-disk or Kt,t-subgraph-free string graphs: in such graphs, there is
only a linear (in the number of vertices) number of i-cliques for fixed i, and for fixed clique
number ω. In our case, as ω is small, and i ≤ r is fixed, this implies that there are O(|M |)
such i-cliques in M . Hence, it allows us to control the size of M ′. Of course, dealing with
r-cliques instead of triangles also raises other problems, in particular related to the way we
hit their intersection with M which is no longer a single vertex but a clique. To deal with
this issue we had to introduce an annotated variant of the problem where additional sets of
vertices have to be hit besides r-cliques.

Organization of the paper
In Section 2 we give the necessary definitions. We describe the first branching in Section 3
and the second in Section 4. The algorithm is given in Section 5. We give applications to
selected graph classes in Section 6. We conclude with open questions in Section 7.

2 Preliminaries

Running times
When stating results related to algorithms, the variable n in the running time always refers to
the number of vertices of the graph that is part of the input. For any parameter p (typically
a graph H, or an integer r) and integer k, and any functions f(p, k) and g(k), we write
f = Op(g(k)) to indicate that for any fixed p, the restricted function k → f(p, k) is O(g(k)).
To simplify the presentation we will assume that r is a fixed constant instead of explicitly
give it as a parameter in all our algorithms and lemmas.

Graphs
Unless otherwise stated we use standard graph theory terminology. A clique in a graph G is
a complete subgraph and when there is no ambiguity we also use clique to denote a subset
of V (G) inducing a complete subgraph. The clique number of G is the maximum number
of vertices of a clique it contains and we denote it by ω(G). For any i ∈ N, an i-clique is a

10 This notion of type-i clique will not be used later and is just introduced for this sketch.
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clique on i vertices and a (< i)-clique is a clique on less than i vertices. For any graph G

and subset of vertices X ⊆ V (G), we denote G − X the graph whose vertex set is V (G) \ X

and edge set is {e ∈ E(G) : e ∩ X = ∅}. Let H be a graph. We say that G is H-free if G

does not contain H as induced subgraph.

Hypergraphs and hitting sets
A hypergraph is simply a collection of sets, where any set is referred as an hyperedge. So
|D| refers to the number of sets in the hypergraph D and we define V (D) =

⋃
D∈D D. By

Kr(G) (resp. K<r(G)) we denote the hypergraph of r-cliques (resp. (< r)-cliques) of G, i.e.
Kr(G) = {X ⊆ V (G), X is an r-clique}.

A hitting set of D is a subset X ⊆ V (D) that intersects every hyperedge of D. A matching
of D is a collection of disjoint hyperedges. The maximum size of a matching in D is denoted
by ν(D). Note that a hitting set of D has always size at least ν(D) as it needs to intersect
each of the elements of a maximum matching, which are disjoint.

Special cases of hitting sets of hypergraphs are the hitting sets of subgraphs of a graph.
For G, H two graphs, an H-hitting set in G is a subset X ⊆ V (G) such that G − X is
H-free. In other words it is a hitting set of the hypergraph of the (induced) subgraphs of G

isomorphic to H. In the H-Hitting problem, given a graph G and an integer k ∈ N, one
has to decide whether G has a H-hitting set of size at most k.

3 Dealing with large cliques

A Kr-Hitting can be useful to detect large cliques, as we explain now. This will allow us to
identify cliques on which to branch.

▶ Lemma 10. Given a graph G, a Kr-hitting set M , and an integer p > r, one can find a
p-clique of G, or correctly conclude none exists, in O(p2|M |pnr−1) steps.

Proof. For each choice of p − r + 1 vertices of M and r − 1 other vertices of G we check
whether they form a clique (which takes O(p2) time), in which case return it and stop. If
no clique is found we return that G is Kp-free. The correctness follows from the following
observation: as G − M is Kr-free, every p-clique of G has at least p − r + 1 of its vertices
in M . ◀

As noted in the proof of Lemma 10, every large clique of the input graph will have most
of its vertices in a Kr-hitting set so we can branch on which these are.

▶ Lemma 11. There is an algorithm that, given two integers r ≥ 1 and p > r, an instance
(G, k) of Kr-Hitting and a Kr-hitting set M of G, runs in 2kr(log p)/p|M |pnO(r) steps and
returns a collection Y of 2kr(log p)/p · |M |p instances of the same problem such that:
1. (G, k) is a yes-instance if and only if Y contains a yes-instance;
2. for every (G′, k′) ∈ Y, G′ has no p-clique.

Proof. The algorithm is the following:
1. Using the algorithm of Lemma 10 on G and M , we find a p-clique K (if none is found

return Y = {(G, k)}).
2. We initialize Y = ∅.
3. Observe that any solution contains at least p − r + 1 vertices from K. For every subset

X of K with p − r + 1 ≤ |X| ≤ k vertices:
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M

D ∈ D

X
Y ∈ Petals5(G,X)

Figure 1 A 3-clique X with two 5-petals that live in G − M . Here D contains two hyperedges,
represented in orange. Observe that no hyperedge of D is contained in X, so X is a lush 3-clique.

a. We look for solutions S that contain X with a recursive call on (G − X, k − |X|) and
M \ X;

b. We then add the resulting collection of instances to Y.
4. Return Y.

Regarding correctness, Item (2) follows from the base case of the recursion (step 1) and
Item (1) can be proved by induction on the number of recursive calls, using the observation
that (G, k) has a solution containing a set X if and only if (G − X, k − |X|) has a solution.

We denote by Tr,p(n, k) the time complexity of the above algorithm with parameters
r, p, (G, k) where |G| = n. The time taken by each computation step is the following:
1. Finding a p-clique takes time O(p2|M |pnr−1) by Lemma 10.
2. When a p-clique K is found we consider at most pr−1 subsets X on which we perform a

recursive call of cost at most Tr,p(n − p + r − 1, k − p + r − 1).

So

Tr,p(n, k) ∈ |M |pnO(r) + pr−1 · Tr,p(n − p + r − 1, k − p + r − 1).

We deduce

Tr,p(n, k) ∈ pk(r−1)/(p−r+1)|M |pnO(r)

∈ 2kr(log p)/p|M |pnO(r),

as desired. Note that a similar recurrence can be used to bound the number of output
instances. ◀

4 Picking petals

Let i ∈ {1, . . . , r − 1} and let X be an i-clique in a graph G. An r-petal of X is a subset of
vertices of G − X that together with X forms an r-clique. We denote by Petalsr(G, X) the
hypergraph of r-petals of X, i.e., Petalsr(G, X) = {Y ⊆ V (G) \ X, X ∪ Y ∈ Kr(G)}. See
Figure 1 for an illustration.

In order to deal more easily with the recursive steps in our algorithms we introduce
Ann.-Kr-Hitting, an annotated version of Kr-Hitting where a number of choices have
already been made, which is recorded by extra vertex subsets that the solution is required to
hit.
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In the Ann.-Kr-Hitting problem, one is given a triple (G, D, k) where G is a graph,
D ⊆ K<r(G) and k is an integer. A solution to this instance is a set of vertices that hits
Kr(G) and D and has at most k vertices. The question is whether the input instance admits
a solution.

In the forthcoming algorithms it will also be more convenient to consider, together with
an instance, a non-optimal solution M . This motivates the following definition. A context is
a pair ((G, D, k), M) where (G, D, k) is an instance of Ann.-Kr-Hitting, M is a Kr-hitting
set (possibly larger than k), and V (D) ⊆ M . We say that a context is positive if the instance
of Ann.-Kr-Hitting it contains is a yes-instance, and negative otherwise.

Given a context ((G, D, k), M) and i ∈ {1, . . . , r − 1}, a lush i-clique is an i-clique X of
G[M ] that has an r-petal in G − M and such that no D ∈ D is subset of V (X). See Figure 1
for an example.

Informally, if X is a lush clique then we are not guaranteed that hitting D alone does
always also hit the cliques induced by X and its petals, so we have to take care of them
separately. Ideally we would like to get rid of lush cliques so that we can focus on D to solve
the problem. We say that the context ((G, D, k), M) is i-stripped if for every i′ < i it has no
lush i′-clique. These notions are motivated by the following easy lemma.

▶ Lemma 12. Let ((G, D, k), M) be an r-stripped context. The instances (G, D, k) and
(G[M ], D, k) of Ann.-Kr-Hitting are equivalent.

Proof. First, recall that as ((G, D, k), M) is a context, V (D) ⊆ M so (G[M ], D, k) is indeed
a valid instance of Ann.-Kr-Hitting. Also as Kr(G[M ]) ⊆ Kr(G), if (G, D, k) has a solution
then (G[M ], D, k) does. So we only need to show the other direction. Let v ∈ V (G) \ M and
suppose that G contains some r-clique X with v ∈ X. The set M ∩ X is not empty because
M is a Kr-hitting set. Note that X ∩ M has a petal X \ M disjoint from M . It cannot
form a lush i-clique (for i = |M ∩ X| < r) as this would contradict the assumption that the
considered context is r-stripped, so there is some D ∈ D that is subset of X ∩ M . Therefore
every solution of (G[M ], D, k) does hit X in G, as it hits D. As this holds for every v and X

as above, every solution of (G[M ], D, k) is a solution of (G, D, k), as desired. ◀

By the above lemma, if we manage to get rid of lush cliques, we can obtain an equivalent
instance whose graph is not larger than G[M ]. As we will see, we are able to handle lush
cliques with the price of slightly increasing the size of M and producing several instances to
represent the solutions of the original instance.

▶ Lemma 13. There is an algorithm that, given an integer i < r and an i-stripped context
((G, D, k), M), runs in time nO(r) and either correctly concludes that the context is (i + 1)-
stripped, or returns a lush i-clique X.

Proof. The input context is i-stripped so we only have to check whether it contains a lush
i-clique. We iterate over the i-cliques of G[M ]. For every such clique X, we first check if
D ⊆ V (X) for some D ∈ D. If so X is not a lush i-clique so we can move to the next choice
of X. Otherwise we check if the common neighborhood of the vertices of X in G − M has
an (r − i)-clique. If so this is an r-petal so X is lush and we can return it. Otherwise we
continue to the next choice of X. If the iteration terminates without detecting a lush i-clique,
we can safely return that the input context is (i + 1)-stripped. The complexity bound follows
from the fact that |D| = nO(r) and that G[M ] has nO(r) i-cliques. ◀

The following lemma is the key branching step in our subexponential algorithms for
Kr-Hitting.
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▶ Lemma 14. There is an algorithm that, given i ∈ {1, . . . , r − 1} and λ ∈ {1, . . . , k} and an
i-stripped context ((G, D, k), M) where we denote by ζ the number of i-cliques in G[M ], runs
in time 2O((k/λ)·log ζ) · nO(r) and returns a collection Z of size 2O((k/λ)·log ζ) of (i + 1)-stripped
contexts such that:
1. ((G, D, k), M) is a positive context if and only Z contains one; and
2. for every ((G′, D′, k′), M ′) ∈ Z, M ⊆ M ′, |M ′| ≤ |M | + r(λζ + k), and k′ ≤ k.

Proof. Let us define an auxiliary algorithm that takes as input (i, λ, (G, D, k), M, P∗), where
(i, λ, (G, D, k), M) is as specified in the statement of the lemma, and P∗ is a matching of D,
and output the promised collection Z. Such an auxiliary algorithm will imply the lemma, as
we will run it with parameters (i, λ, (G, D, k), M, ∅). For simplicity, as i and λ will not change
between recursive calls: we denote by ((G, D, k), M, P∗) the parameter of this auxiliary
algorithm, which is defined as follows:
1. If k < |P∗|, we can immediately return Z = ∅.
2. Run the algorithm of Lemma 13 on i and ((G, D, k), M). If no lush i-clique is found

then the input context is already (i + 1)-stripped so we return Z = {((G, D, k), M)}.
Otherwise let X denote the lush i-clique we found.

3. Construct the hypergraph BX of those r-petals of X that are subset of V (G) \ M .
4. Greedily compute a maximal matching P in BX .
5. If ν̃X ≤ λ, we return the result of the recursive call with parameters ((G, D, k), M ∪

V (P), P∗) (and quit).
6. Otherwise, we investigate the different ways to hit the r-cliques induced by X and BX

(via X or via BX) as follows.
a. Solutions containing some (yet unspecified) vertex of X: this is done by a recursive

call with parameters ((G, D ∪ {X}, k), M, P∗). We call Z1 the resulting family.
b. Solutions hitting P.11 As P is disjoint from M (hence from P∗), such solutions exist

only if k ≥ |P∗| + |P|. In this case we define Z2 as the result of the recursive call with
parameters

((G, D ∪ P , k), M ∪ V (P), P∗ ∪ P).

Otherwise we set Z2 = ∅.
7. We return Z1 ∪ Z2.

Observe first that in step (6b), the last parameter P∗ ∪ P is a matching as required, as
in particular V (P) ⊆ V (G) − M and V (P∗) ⊆ M , by definition. We first prove the following
fragment of item (2).

▷ Claim 15. For every ((G′, D′, k′), M ′) ∈ Z, M ⊆ M ′ and k′ ≤ k.

Proof. The only places where M is updated are steps 5 and 6b, where new vertices are added
to it. Besides we never change the value of the parameter k. ◁

Let us describe the recursion tree T of the above algorithm on some input ((G, D, k), M, P).
The nodes of this tree are inputs. The root is ((G, D, k), M, ∅) and a node s′ is child of a
node s if a call of the above algorithm on the input s triggers a call on the input s′. So the
leaves of this tree are the inputs that do not trigger any recursive call.

11 Notice that some of these solutions have possibly already been investigated in the previous step. For
our purpose it is not an issue however to consider several times the same solution.
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Let us consider a path from the root of T to some leaf. We denote by

((Gj , Dj , kj), Mj , P∗
j )j∈{1,...,ℓ}

the inputs along this path, and by Cj = ((Gj , Dj , kj), Mj) the corresponding contexts,
with ((G1, D1, k1), M1, P∗

1 ) = ((G, D, k), M, ∅) and ((Gℓ, Dℓ, kℓ), Mℓ, P∗
ℓ ) corresponding to

the aforementioned leaf. Also, for every j ∈ {1, . . . , ℓ − 1} we denote by Xj the lush i-clique
of Cj that is considered in the corresponding call.

We first show that all lush i-cliques considered along this path belong to the hitting set
M = M1 of the initial context.

▷ Claim 16. For every j ∈ {1, . . . , ℓ − 1}, Xj ⊆ M .

Proof. Suppose towards a contradiction that for some j, Xj ⊈ M . Observe that since Cj is
not a leaf, BXj is not empty so Xj induces an r-clique together with some r-petal B ∈ BXj .
Recall that B is disjoint from Mj , by definition of BXj

. As Mj is a superset of M (Claim 15),
B is disjoint from M as well. So M intersects Xj otherwise the r-clique Xj ∪ B would not
be hit by M . Let i′ = |Xj ∩ M |. Note that Xj ∩ M is a lush i′-clique of C1 since it has an
r-petal B ∪ (X \ M) disjoint from M (the fact that no set of D is subset of Xj ∩ M follows
from the fact that this property holds for Xj). By our initial assumption and as |Xj | = i, we
have i′ < i. This contradicts the fact that C1 is i-stripped. ◁

With a similar proof we can show the following (so the recursive calls are indeed made
on valid inputs).

▷ Claim 17. For every i ∈ {1, . . . , ℓ}, Ci is i-stripped.

Let us now show that each lush clique is only considered once.

▷ Claim 18. For every distinct j, j′ ∈ {1, . . . , ℓ − 1}, Xj ̸= Xj′ .

Proof. Suppose towards a contradiction that for some j < j′ we have Xj = Xj′ . Then in the
call on the context Cj , the next context Cj+1 was obtained at step 5 or 6b (since at step 6a
we would include Xj in Dj , preventing it to be considered in future calls). In any of these
two possibilities we set Mj+1 = Mj ∪ V (Pj), where Pj denotes the maximal matching of
step 4 in the call on context Cj .

Besides, as Xj is a lush i-clique in the context Cj′ , then it has some r-petal B subset
of V (Gj′) − Mj′ . As Mj+1 ⊇ Mj′ (Claim 15), B is also an r-petal of Xj and is subset
of V (Gj) − Mj and by the above observation, it is disjoint from Pj . This contradicts the
maximality of Pj . ◁

Recall that the number of i-cliques in M is ζ. As a consequence of Claim 16 and Claim 18,
we get the following.

▷ Claim 19. The recursion tree has depth at most ζ.

We can now conclude the proof of item (2).

▷ Claim 20. For every ((G′, D′, k′), M ′) ∈ Z, |M ′| ≤ |M | + r(λζ + k).

Proof. When considering the context Cj , and given the chosen maximal matching Pj of the
petals of Xj , the set Mj+1 is defined from Mj by:

either adding the at most λ(r − 1) new vertices of Pj , if we make the recursive call at
step 5,
or by adding the vertices of the petals of Pj , if we recurse at step 6b. Recall that in this
case we also have Dj+1 = Dj ∪ Pj and P∗

j+1 = P∗
j ∪ Pj
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In the later case the number of added vertices is not directly bounded however we have
|P∗

j+1| = |P∗
j | + |Pj |. Because of the stopping condition of step 1, we will overall (from C1

to Cℓ) add at most k petals to the hypergraph and each petal has at most r − 1 vertices.
Hence we get |M ′| ≤ |M | + r(λζ + k), as claimed. ◁

Let us now show that the algorithm is correct, i.e., item 1 of the statement of the lemma.
The proof is by induction on the depth of the recursion tree (i.e., ℓ − 1 with the notation
above). When the depth is 0, there is no recursive call. This corresponds to the two base
cases in this algorithms: step 1, when the “budget” k is insufficient, and step 2, when the
input context is already (i + 1)-stripped. Clearly the outputs in these cases satisfy 1.

So we now consider the case of a run of the algorithm where the recursion tree has depth
at least 1 and suppose that item 1 holds for all runs with recursion trees of smaller depth.

If the recursive call is made at step 5 then item 1 trivially holds because the instance is
unchanged.
Otherwise, note that any solution has to hit the r-cliques induced by X and BX . So any
solution either contains a vertex of X, or hits BX (or both). These are exactly the two
branches that are explored in steps 6a and 6b, respectively, by our induction hypothesis.

The above shows that the algorithm is correct. It remains to prove that it has the claimed
running time. Note that we do not update the graph neither the parameter between recursive
calls: we will always work on the graph G with n vertices and with the parameter k. So the
induction proving the time bound will use two different parameters as we explain now. For
every x, y ∈ N, let us denote by T (x, y) the worst-case running time of the above algorithm
on an input ((G, D, k), M, P∗) with |G| = n such that there is at most x (non-necessarily
disjoint) lush i-cliques in G[M ] and such that |P∗| ≥ y. Let Sr(n) be the sum of the
worst-case complexity of all subroutines needed in the different steps of item (1) to item (7)
to the exception of recursive calls (one such subroutine is the algorithm of Lemma 13, another
one is the construction of the hypergraph BX). Observe that T (x, y) ≤ Sr(n) when y > k

(as we fall into base case of step 1) or when x = 0 (as we fall into base case of step 2). Notice
also that by definition we have T (x, y) ≤ T (x′, y) for any x ≤ x′, and T (x, y) ≤ T (x, y′) for
any y′ ≤ y.

If we make a recursive call at step 5, we return in time at most T (x − 1, y) (by induction)
as, by Claim 18, no lush i-clique of the original instance is considered twice. Otherwise, we will
make recursive calls in step 6 which by induction take time at most T (x−1, y)+T (x−1, y+|P|)
as, in the first branch 6a of recursion, Claim 18 implies again that no lush i-clique is considered
two times, and in the second branch 6b, we know in addition that the size of the matching
given as parameter increases by |P|. Thus, in both cases (and including the other computation
steps which take time Sr(n)), we obtain the upper bound:

T (x, y) ≤ T (x − 1, y) + T (x − 1, y + |P|) + Sr(n)
≤ T (x − 1, y) + T (x, y + λ) + Sr(n).

(For the last line recall that T is anti-monotone with respect to its second parameter.)
Let us now show that for every x, y ∈ N, T (x, y) ≤ xT (x, y + λ) + (x + 1)Sr(n). The proof

is by induction on x. The base case x = 0 holds as observed above. Suppose the inequality
holds for x − 1. As proved above

T (x, y) ≤ T (x − 1, y) + T (x, y + λ) + Sr(n)
≤ (x − 1)T (x − 1, y + λ) + xSr(n) (by induction)

+ T (x, y + λ) + Sr(n)
≤ xT (x, y + λ) + (x + 1)Sr(n), as claimed. (1)
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We now prove that for every x, y ∈ N,

T (x, y) ≤ x
k+1−y

λ +
(

1 + k + 1 − y

λ

)
(x + 1)Sr(n).

This time the induction is on y. The base case y > k hold as observed above. Let x ≥ 1 and
y ≤ k and suppose the inequality holds for any pair (x′, y′) with y′ > y. Then as proved
above in Eq. 1,

T (x, y) ≤ xT (x, y + λ) + (x + 1)Sr(n)

≤ x · x
k+1−y−λ

λ +
(

1 + k + 1 − y − λ

λ

)
(x + 1)Sr(n) + (x + 1)Sr(n)

≤ x
k+1−y

λ +
(

1 + k + 1 − y

λ

)
(x + 1)Sr(n).

Observe that Sr(n) is dominated by the time spent in the algorithm of Lemma 13, and
thus Sr(n) ∈ nO(r). As we initially have x ≤ ζ and y ≥ 0, we obtained the claimed running
time. A similar analysis can be used to bound the size of the output family Z. ◀

By iterating the algorithm of Lemma 14 for increasing values of i we can obtain a collection
of r-stripped contexts, as we explain now.

▶ Lemma 21 (picking petals). There is an algorithm that, given i ∈ {1, . . . , r}, λ ∈ R≥1,
a context ((G, D, k), M), where we denote by ζ the number of (< r)-cliques in G[M ], runs
in time 2O((i·k/λ)·log ζ) · nO(r) and returns a collection Z of size 2O((i·k/λ)·log ζ) of i-stripped
contexts such that:
1. (G, D, k) is a yes-instance if and only if some input of Z contains one; and
2. for every ((G′, D′, k′), M ′) ∈ Z, M ⊆ M ′, |M ′| ≤ |M | + ir(λζ + k), and k′ ≤ k.

Proof. Again for the sake of clarity we assume λ is a fixed constant.
The proof is by induction on i. For the base case i = 1 we simply observe that

((G, D, k), M) is already 1-stripped so there is nothing to do.
So let us now suppose that i > 1 and that the statement holds for i − 1. So from the

input context ((G, D, k), M) and i − 1 we can use the induction hypothesis to construct
a collection Zi−1 of (i − 1)-stripped contexts satisfying the statement for i − 1. Now we
apply the algorithm of Lemma 14 to i − 1 and each context in Zi−1 and call Zi the union
of the obtained collections. Item 1 follows from the properties of Zi−1 and the correctness
of the algorithm of Lemma 14. Constructing Zi−1 takes time 2O(((i−1)·k/λ)·log ζ) · nO(r) (by
induction) and then we run the

(
2O((k/λ)·log ζ) · nO(r)) -time algorithm of Lemma 14 on each of

its 2O(((i−1)·k/λ)·log ζ) contexts. This results in an overall running time of 2O((i·k/λ)·log ζ) ·nO(r),
as claimed. In each context of Zi−1 the set M ′ has size at most |M | + (i − 1)r(λζ + k)
(by induction) and after the run of the algorithm Lemma 14, the corresponding set in the
produced instances has at most r(λζ + k) vertices more so we get the desired bound. Finally,
as in the proof of Lemma 14 the value of k never changes. ◀

5 Kick the cliques

For every ϕ, γ ∈ R≥0 and α ∈ (0, 1), we say that graph class G has property Pr(ϕ, γ, α) if
there are functions f(x) ∈ O(xϕ) and g(x) ∈ O(xγ) such that for G ∈ G with n vertices and
clique number less than ω,
(P1) G has at most f(ω) · n cliques of order less than r; and
(P2) tw(G) ≤ g(ω)nα.
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Our main contribution is the following.

▶ Theorem 22. For every hereditary graph class G that has property Pr(ϕ, γ, α) for some
α ∈ (0, 1), ϕ, γ ∈ R≥0, there is an algorithm that solves Kr-Hitting on G in time

2Or,ϕ(kε log k) · nOr(1) with ε = γ + α(ϕ + 2)
γ + α(ϕ + 1) + 1 < 1,

i.e., subexponential FPT time.

Proof. Let f : x 7→ cf · xϕ and g : x 7→ cg · xγ (for some cf , cg > 0) be as in the definition of
property Pr(ϕ, γ, α). For the sake of readability we will here use (when deemed useful) exp
to denote the function x 7→ 2x defined over reals. Given an instance (G, k) of Kr-Hitting,
we consider the context ((G, D, k), M) where D = ∅ and M is an r-approximation of a
Kr-hitting set computed in nO(r) time by greedily packing disjoint r-cliques. If |M | > kr we
can already answer negatively, so in what follows we suppose that |M | ≤ kr. We run the
algorithm of Lemma 11 with p = ⌈kε⌉ for some constant ε ∈ (0, 1) that we will fix later. In
time

2O(rk1−ε log k)nO(r)

we obtain a set Y of 2O(rk1−ε log k) contexts that have no p-clique. For each such context we
apply the petal-picking algorithm of Lemma 21 with

λ = kε and
ζ = f(p) · |M |

∈ O
(
rk1+εϕ

)
.

Let Z denote the union of the outputs families of these algorithms. Computing this set then
takes time

|Y| · 2O((r·k/λ)·log ζ) · nO(r) ∈ 2O(r·k1−ε(log k+log ζ)) · nO(r)

∈ 2O(r2·(1+εϕ)k1−ε log k) · nO(r).

For every ((G′, D′, k), M ′) ∈ Z we have

|M ′| ≤ |M | + r2(λζ + k) by Lemma 21
∈ O

(
kr + r2(rk1+εϕ+ε + k)

)
∈ O

(
r3k1+ε(ϕ+1)

)
.

So given any such context, we can decide whether it is positive or not in time

2g(p)|M ′|α

nO(1) ∈ exp
(

O
(

pγ ·
(

r3k1+ε(ϕ+1)
)α))

· nOr(1)

∈ exp
(

O
(

r3α · kεγ+α(1+ε(ϕ+1))
))

· nOr(1)

as follows: first we use Lemma 12 to delete irrelevant vertices and obtain an equivalent
instance H on |M ′| vertices, then we use property Pr(ϕ, γ, α) to bound the treewidth of H and
then we solve the problem by dynamic programming on an approximate tree-decomposition in
2O(tw(H))nO(1) time by noting that every r-clique and every D′ ∈ D′ (which is an (< r)-clique)
has to be contained in a bag.
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So overall, computing Z and solving the problem in each sub-instance takes time

exp
(

Or

(
(1 + εϕ)k1−ε log k + kεγ+α(1+ε(ϕ+1))

))
· nOr(1)

∈ exp
(

Or

(
(1 + εϕ)k1−ε log k + kε(γ+α+αϕ)+α

))
· nOr(1).

As we aim for algorithms where the contribution of k to the time complexity is of the
form 2o(k), the above bound sets the following constraint: ε < 1−α

γ+α+αϕ . Let ε = 1−α−δ
γ+α+αϕ for

some constant δ ∈ (0, 1) that we will fix later. Then the above complexity becomes:

exp
(
Or

(
(1 + εϕ)k1−ε log k + k1−δ

))
· nOr(1).

We optimize (ignoring logarithmic factors) by choosing the value of δ so that 1 − ε = 1 − δ,
i.e., δ = 1−α

γ+α(ϕ+1)+1 . This gives the following overall time bound:

2Or

(
(1+εϕ)kε′

log k
)

· nOr(1) with ε′ = γ + α(ϕ + 2)
γ + α(ϕ + 1) + 1 .

As α < 1 we have ε′ < 1 so the algorithm runs in subexponential FPT time, as desired. ◀

6 Applications

In this section we give applications of Theorem 22 to specific graph classes. First we have to
show that the considered classes satisfy property Pr (recall that this property is defined at
the beginning of Section 5).

6.1 Pseudo-disk graphs and map graphs
In this subsection we will prove the following lemma.

▶ Lemma 23. Pseudo-disk graphs and map graphs have the property Pr(r − 2, 1/2, 1/2).

As a consequence we get the two following results.

▶ Theorem 5. There is an algorithm solving Kr-Hitting in pseudo-disk graphs in time
2Or(k(r+1)/(r+2) log k) · nOr(1).

▶ Theorem 6. There is an algorithm solving Kr-Hitting in map graphs12 in time
2Or(k(r+1)/(r+2) log k) · nOr(1).

To prove Lemma 23, we first need to state some external results. For d ∈ N we say that
a graph G is d-degenerate if every subgraph of G (including G itself) has a vertex of degree
at most d. In order to bound the number of small cliques in the considered graphs we can
bound their degeneracy and then rely on the following result of Chiba and Nishizeki.

▶ Theorem 24 ([6]). Any string graph G with n vertices and degeneracy d has O(idi−1n)
i-cliques.

Actually [6] gives a time bound for the enumeration of i-cliques in graphs of arboricity d.
As arboricity and degeneracy are linearly bounded by each other and since the time bound
implies a bound on the number of enumerated objects (up to a constant factor), we get the
above statement.

12Map graphs are intersection graphs of interior-disjoint regions of R2 homeomorphic to disks.
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▶ Theorem 25 ([3]). Pseudo-disk graphs on n vertices with clique number ω have at most
3eωn edges and treewidth O(

√
ωn). In particular they are (3eω)-degenerate.

▶ Theorem 26 ([5]). Map graphs on n vertices with clique number ω have at most 7ωn edges.
In particular they are (7ω)-degenerate.

To bound the treewidth of map graphs we use the following combination of results on balanced
separators of string graphs of Lee and the links between separators and treewidth of Dvořák
and Norin.

▶ Theorem 27 ([12] and [8]). Any m-edge string graph has treewidth O(
√

m).

As a consequence of Theorem 26 and Theorem 27 we get the following.

▶ Corollary 28. Map graphs on n vertices with clique number ω have treewidth O(
√

ωn).

Proof of Lemma 23. Let G be a pseudo-disk graph with n vertices and clique number ω. By
Theorem 25 the pseudo-disk graphs with n vertices and clique number ω are (3eω)-degenerate,
so by Theorem 24 they have O((r − 1)2(3eω)r−2n) cliques of order less than r. So property
P1 holds with ϕ = r − 2. By Theorem 25 property P2 is satisfied with α = 1/2 and γ = 1/2.
The proof for map graphs is very similar, using Theorem 26 and Corollary 28. ◀

6.2 String graphs
We now move to string graphs where, as discussed in the introduction, forbidding large
bicliques is necessary. Actually for Kt,t-subgraph free string graphs the branching of Lemma 10
to reduce the clique number is not necessary in the algorithm of Theorem 22 as the number
of small cliques and the treewidth are already suitably bounded. This explains the zeroes in
Lemma 29 hereafter. In this subsection we will prove the following lemma.

▶ Lemma 29. Kt,t-subgraph-free string graphs have the property Pr(0, 0, 1/2).

As a consequence we get the following result.

▶ Corollary 30. There is an algorithm solving Kr-Hitting in Kt,t-subgraph-free string
graphs in time

2Ot,r(k2/3 log k) · nOr(1).

The contributions of t and r to the complexity in Corollary 30 are not explicit due to the
way we stated the bound of Theorem 22 but can be extracted from the proof of this theorem.

▶ Theorem 31 ([12]). For every t ∈ N, Kt,t-subgraph-free string graphs on n vertices have
degeneracy O(t log t) and treewidth O(

√
n · t log t).

Proof of Lemma 29. Combining Theorem 24 and Theorem 31 we get that the number of
(< r)-cliques in Kt,t-subgraph-free string graphs is Or((t log t)r−2n), i.e. P1 holds with ϕ = 0.
Theorem 31 gives P2 with α = 1/2 and γ = 0. ◀

6.3 Minor-closed classes
In this subsection we will prove the following lemma.

▶ Lemma 32. For every graph H, H-minor-free graphs have the property Pr(0, 0, 1/2).
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As a consequence we get the following result.

▶ Theorem 9. For every graph H, there is an algorithm solving Kr-Hitting in H-minor-free
graphs in time 2OH,r(k2/3 log k) · nOr(1).

To prove Lemma 32, we first need to state some external results.

▶ Theorem 33 (see [16]). Every d-degenerate graph with n ≥ d vertices has at most
2d(n − d + 1) cliques.

▶ Theorem 34 ([11, 15]). For every h-vertex graph H there is a constant d = O(h
√

log h)
such that H-minor-free graphs are d-degenerate.

▶ Theorem 35 ([1]). For every graph H, n-vertex H-minor-free graphs have treewidth
OH(

√
n).

Proof of Lemma 32. As a consequence of Theorem 34 and Theorem 33, H-minor-free graphs
have a linear number of cliques (regardless of their clique number). Hence they satisfy P1
with ϕ = 0. By Theorem 35 they also satisfy P2 with α = 1/2 and γ = 0. ◀

7 Open problems

As discussed in the introduction, our main result provides a generic way to obtain subex-
ponential parameterized algorithms for Kr-Hitting, which can in particular be applied to
several graph classes for which such algorithms were know from previous work (for Triangle
Hitting, the special case r = 3). Nevertheless there is still a gap between the running times
of these different applications of our algorithm and the best time bounds for these specific
classes. One can for instance compare our Theorem 5 (resp. Theorem 9) with the previous
results corresponding to items 1 and 2 of Theorem 2 (resp. Theorem 1). It would be nice to
match these known bounds, or to improve them when possible. More generally we can ask
about the infimum ε such that Kr-Hitting can be solved in time 2O(kε)nO(1) in the classes
we considered. We recall that under ETH, K3-Hitting cannot be solved in time 2o(

√
n) (so

ε ≥ 1/2) even for a very restricted subclass of string graphs (Theorem 3).
A second research direction is to understand for which graphs H our results can be

extended to the H-Hitting problem (where one wants to hit any subgraph isomorphic to
H). In disk graphs for example, it is already known [14] that there exist subexponential
FPT algorithms for Pℓ-Hitting when ℓ ≤ 5.

Recall that in this paper we gave sufficient conditions for a hereditary graph class to
admit a subexponential FPT algorithm for Kr-Hitting. It remains an open problem to
characterize such classes.
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1 Introduction

We study Two-Sets Cut-Uncut, a natural optimization variant of 2-Disjoint Connec-
ted Subgraphs. In 2-Disjoint Connected Subgraphs, we are given an undirected
graph G and two disjoint sets S, T of vertices. The question is whether there are two
disjoint sets R, B of vertices such that S ⊆ R, T ⊆ B, and both G[R] and G[B] (the graphs
induced by R and B, respectively) are connected. 2-Disjoint Connected Subgraphs
is the special case of Disjoint Connected Subgraphs with two sets of terminals (a
problem that played a crucial role in the graph-minors project by Robertson and Sey-
mour [20]). Consequently, 2-Disjoint Connected Subgraphs has received considerable
research attention, particularly from the graph-algorithms and the computational-geometry
communities [7, 12, 13, 15, 18, 22]. In Two-Sets Cut-Uncut, we not only want to decide
whether there are disjoint connected sets containing terminal sets S and T , respectively,
but also minimize the size of the corresponding cut (if it exists). Formally, Two-Sets
Cut-Uncut is defined as follows. Therein, an S-T -cut (R, B) is a partition of the set of
vertices into R and B with S ⊆ R and T ⊆ B. The set cutG(R) contains all edges in G with
exactly one endpoint in R (and the other in B).

Input: A connected undirected graph G = (V, E), two sets S, T ⊆ V , and an integer ℓ.
Question: Is there an S-T -cut (R, B) of G with | cutG(R)| ≤ ℓ such that the vertices of S

are in the same connected component of G[R] and the vertices of T are in the
same connected component of G[B]?

Two-Sets Cut-Uncut

We mention in passing that we assume the input graph to be connected as it becomes
trivial if there are at least two connected components containing terminal vertices (vertices
in S ∪ T ) and if all terminals belong to one connected component, then we can discard all
other connected components. When G is connected, it is also easy to see that any optimal
solution for Two-Sets Cut-Uncut cuts the graph in exactly two connected components
as any connected component not containing any terminal can be merged with any other
connected component reducing the size of the cut in the process. Finally, if S ∩ T ≠ ∅, then
the instance is a trivial no-instance.

Related work. 2-Disjoint Connected Subgraphs was intensively studied and its com-
plexity is quite well understood. Gray et al. [12] showed that 2-Disjoint Connected
Subgraphs is NP-hard on planar graphs and van ’t Hoft et al. [13] showed NP-hardness even
if |S| = 2 and on P5-free split graphs. Note that the problem becomes trivial if |S| = 1. Since
split graphs are chordal, their results also show that 2-Disjoint Connected Subgraphs
is NP-hard on split graphs. They also complemented the NP-hardness on P5-free graphs by
providing a polynomial-time algorithm for P4-free graphs (also known as cographs). Kern et
al. [15] generalized this result by showing that for each graph H, 2-Disjoint Connected
Subgraphs is polynomial-time solvable on H-free graphs if and only if H is a subgraph
of a P4 together with any number of isolated vertices (and otherwise NP-hard). Cygan et
al. [7] studied the parameterized complexity with respect to the number k = n − |S ∪ T | of
non-terminal vertices in the graph. They showed that 2-Disjoint Connected Subgraphs
cannot be solved in O∗((2 − ε)k) time for any ε > 0 unless the strong exponential time
hypothesis fails. Moreover, they showed that it does not admit a polynomial kernel for this
parameter unless NP ⊆ coNP/poly. As 2-Disjoint Connected Subgraphs is the special
case of Two-Sets Cut-Uncut where ℓ = m, all of the above hardness results directly
transfer to Two-Sets Cut-Uncut.



M. Bentert, F. V. Fomin, F. Hauser, and S. Saurabh 14:3

The problem Two-Sets Cut-Uncut was introduced by Bentert et al. [2] who showed
that the problem is W[1]-hard parameterized by |T | even if |S| = 1 in general graphs but
fixed-parameter tractable when parameterized by |S ∪ T | in planar graphs. They also showed
fixed-parameter tractability on planar graphs, when parameterized by the minimum size
of a set of faces in any planar embedding such that each terminal is incident to one of the
faces in the set. Moreover, Two-Sets Cut-Uncut is a special case of Mixed Multiway
Cut-Uncut. In this problem, one is not restricted to two sets of terminals and one is given
two integers k and ℓ as input. The question is whether one can delete at most k vertices
and at most ℓ edges to separate all terminals in different sets while maintaining connectivity
within each terminal set. Rai et al. [19] showed that this problem is fixed-parameter tractable
when parameterized by k + ℓ which immediately implies that Two-Sets Cut-Uncut is
fixed-parameter tractable when parameterized by ℓ.

Another related problem is called Largest Bond. Here, we are looking for a largest cut
that cuts a connected graph into exactly two connected components (and no terminal sets
are given). Duarte et al. [9] showed that the problem is NP-hard on bipartite split graphs,
fixed-parameter tractable when parameterized by treewidth, does not admit a polynomial
kernel when parameterized by the solution size, can be solved in f(k)nO(k) time, where k is
the clique-width of the input graph, but not in f(k)no(k) time unless the exponential time
hypothesis fails. In particular, this also excludes fixed-parameter tractability.

Last but not least, Two-Sets Cut-Uncut is closely related to Network Diversion,
which has been studied extensively by the operations-research and networks communit-
ies [5, 6, 10, 14, 16]. In this problem, we are given an undirected graph G, two terminal
vertices s and t, an edge b = {u, v}, and an integer ℓ. The question is whether it is possible
to delete at most ℓ edges such that the edge b will become a bridge with s on one side and t

on the other. Equivalently, is there a minimal s-t-cut of size at most ℓ + 1 containing b.
While this problem seems very similar to the classic Minimum s-t-Cut, the complexity
status of this problem (polynomial-time solvable or NP-hard) is widely open. This problem
is a special case of Two-Sets Cut-Uncut where |S| = |T | = 2 as there are only two cases.
Either s is in the same component as u or s is in the same component as v. These two
cases correspond to instances of Two-Sets Cut-Uncut with S = {s, u} and T = {t, v}
and S = {s, v} and T = {t, u}, respectively.

Our contribution. We provide an almost complete tetrachotomy for Two-Sets Cut-
Uncut distinguishing between parameters that allow for polynomial kernels, fixed-parameter
tractability, or slicewise polynomial (XP-time) algorithms. Our results are summarized in
Figure 1. The rest of this work is organized as follows. In Section 2, we introduce concepts
and notation used throughout the paper. In Section 3, we present fixed-parameter tractable
and slicewise polynomial (XP-time) algorithms. In Section 4, we exclude the possibility for
further fixed-parameter tractable or XP-time algorithms by presenting W[1]-hardness and
para-NP-hardness results, respectively. Section 5 is devoted to both positive and negative
results regarding the existence of polynomial kernels and we conclude with Section 6.

2 Preliminaries

For a positive integer n, let [n] = {1, 2, . . . , n}. We use standard graph-theoretic terminology
and all graphs in this work are undirected. In particular, for an undirected graph G = (V, E)
we set n = |V | and m = |E|. For a subset V ′ ⊆ V of the vertices, we use G[V ′] to denote the
subgraph of G induced by V ′ and denote by G − V ′ the subgraph G[V \ V ′]. Moreover, for
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Figure 1 Overview of our results. An edge between two parameters α and β, where α is above β,
indicates that in any instance, the value of β is upper-bounded by a function only depending on
the value of α. Any hardness result for α immediately implies the same hardness result for β and
any positive result for β immediately implies the same positive result for α (where we additionally
require that the dependency is polynomial if we show or exclude a polynomial kernel). Green
boxes indicate the existence of polynomial kernels, yellow boxes show that the parameter admits
fixed-parameter tractability but no polynomial kernel, an orange box indicates polynomial-time
algorithms for constant parameter values (XP) but no fixed-parameter tractability, and a red box
shows that the parameter is NP-hard for some constant parameter value. We mention that the
status of Two-Sets Cut-Uncut parameterized by distance to interval graphs, number of terminals
(XP/para-NP-hard), and clique-width (fixed-parameter tractable/W[1]-hard) remain open.

an edge set E′ ⊆ E, we denote by G − E′ = (V, E \ E′) the graph resulting from deleting the
edges in E′ from G. The degree degG(v) of v is the number of vertices adjacent to v in G.
A path P = (v1, v2, . . . , vℓ) on ℓ vertices is a graph with vertex set {v1, v2, . . . , vℓ} and edge
set {{vi, vi+1} | i ∈ [ℓ − 1]}. The vertices v1 and vℓ are called endpoints. The length of a path
is its number of edges. A connected component in a graph is a maximal set V ′ of vertices
such that for each pair u, v ∈ V ′, there is a path in the graph with endpoints u and v. A cut
in a graph is the set of edges between any partition of the vertices of a graph into two disjoint
subsets. A separation in a graph G = (V, E) is a pair (X, Y ) of sets of vertices with X ∪Y = V

and no edges between X \ Y and Y \ X. The size of the separation is X ∩ Y . The disjoint
union of two graphs G1 = (V1, E1) and G2 = (V2, E2) results in the graph (V1 ∪ V2, E1 ∪ E2).
The join of G1 and G2 results in the graph (V1 ∪ V2, E1 ∪ E2 ∪ {{u, v} | u ∈ V1 ∧ v ∈ V2}),
that is, we first take the disjoint union and then add all possible edges between the two
graphs. We refer to the Bachelor’s thesis of Schröder [21] for an overview over how the
different parameters are related to one another.

To streamline some of our arguments, we use the following natural reinterpretation of
Two-Sets Cut-Uncut. The task is to color each vertex in the graph red or blue such that
all vertices in S are red, all vertices in T are blue, the graphs induced by the set of all red
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vertices (and all blue vertices, respectively) are connected, and there are at most ℓ edges with
a red and a blue endpoint. We call such edges multicolored. We often keep sets R and B of
red and blue vertices, respectively, and we use the notation Nr

X(v) and N b
X(v) to denote all

red and blue neighbors of v in a set X of vertices, respectively.

Parameterized complexity. A parameterized problem is a set of instances (I, k) where I ∈ Σ∗

is a problem instance from some finite alphabet Σ and the integer k is the parameter.
A parameterized problem L is fixed-parameter tractable if (I, k) ∈ L can be decided
in f(k) · |I|O(1) time, where f is a computable function only depending on k. We call (I, k)
a yes-instance (of L) if (I, k) ∈ L. The class XP contains all parameterized problems which
can be decided in polynomial time if the parameter k is constant, that is, in f(k) · |I|g(k) time
for computable functions f and g. It follows from the definition that each fixed-parameter
tractable problem is contained in XP. To show that a problem is not contained in XP, one
can show that the problem remains NP-hard for some constant parameter value. To show
that a parameterized problem L is presumably not fixed-parameter tractable, one may use
a parameterized reduction from a W[1]-hard problem to L [8]. A parameterized reduction
from a parameterized problem L to another parameterized problem L′ is an algorithm that,
given an instance (I, k) of L, computes an instance (I ′, k′) of L′ in f(k) · |I|O(1) time such
that (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance and k′ ≤ g(k) for two
computable functions f and g. A kernelization is an algorithm that, given an instance (I, k)
of a parameterized problem L, computes in |I|O(1) time an instance (I ′, k′) of L (the kernel)
such that (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance and |I ′| + k′ ≤ f(k)
for some computable function f only depending on k. We say that f measures the size
of the kernel. If f is a polynomial, then we say that P admits a polynomial kernel. A
problem is fixed-parameter tractable if and only if it admits a kernel of any size. Assuming
NP ̸⊆ coNP/poly, one can show that certain parameterized problems do not admit a polyno-
mial kernel. This can for example be done via OR-cross-compositions. For the definition
of OR-cross-compositions, we first need the following. Given an NP-hard problem L, an
equivalence relation R on the instances of L is a polynomial equivalence relation if one can
decide for any two instances in polynomial time whether they belong to the same equivalence
class, and for any finite set S of instances, R partitions the set into at most (maxI∈S |I|)O(1)

equivalence classes.

▶ Definition 1 (OR-cross-composition [3]). Given an NP-hard problem Q, a parameterized
problem L, and a polynomial equivalence relation R on the instances of Q, an OR-cross-
composition of Q into L (with respect to R) is an algorithm that takes t instances I1, I2, . . . , It

of Q belonging to the same equivalence class of R and constructs in time polynomial
in

∑t
i=1 |Ii| an instance (I, k) of L such that k is polynomially upper-bounded by maxi∈[t] |Ii|+

log(t) and (I, k) is a yes-instance of L if and only if there exists an i ∈ [t] such that Ii is a
yes-instance of Q.

If a parameterized problem admits an OR-cross-composition, then it does not admit a
polynomial kernel unless NP ⊆ coNP/poly [3].

Graph parameters and classes. We give an overview of the different graph parameters
and graph classes used throughout the paper. To this end, let G = (V, E) be a graph.
The maximum degree of G is the largest degree of any vertex in V . The distance to Π for
some graph class Π is the minimum number of vertices needed to be removed from G such
that it becomes a graph in Π. A cograph is a graph without induced paths of length three.
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Equivalently, a cograph is a graph that can be represented by a cotree. A cotree is a rooted
binary tree in which the leaves correspond to the vertices in the cograph and the internal
nodes correspond to taking the disjoint union or the join of the cographs corresponding
to the two children. A join of two graphs G1 = (V1, E1) and G2 = (V2, E2) results in the
graph (V1 ∪ V2, E1 ∪ E2 ∪ {{u, v} | u ∈ V1 ∧ v ∈ V2}), that is, we first take the disjoint union
and then add all possible edges between the two graphs. An interval graph is a graph where
each vertex can be represented by an interval of real numbers such that two vertices are
adjacent if and only if their respective intervals overlap. An independent set in a graph is a
set of pairwise non-adjacent vertices. The vertex set of a bipartite graph can be partitioned
into two independent sets. The vertex cover number of G is the distance to an independent
set. A clique in a graph is a set of pairwise adjacent vertices. The minimum clique cover
of G is the minimum number of cliques needed to partition V . A dominating set in a graph
is a set of vertices such that each vertex not contained in the set has at least one neighbor in
the set. A tree decomposition of G is a tree T with nodes X1, X2, . . . , Xp, where each Xi is a
subset of V such that each vertex in V and both endpoints of each edge in E are contained
in some Xi and all Xi that contain some vertex v form one connected component in T . The
width of a tree decomposition is the size of its largest set Xi minus one and the treewidth
of G is the minimum width of any tree decomposition of G. The clique-width of G is defined
as the minimum number of labels needed to construct G using the following operations in
which i and j are some arbitrary labels: Creating a single vertex with label i, the disjoint
union of two graphs, adding all possible edges between the vertices of label i and the vertices
of label j, and changing the label of all vertices of label i to label j. The feedback edge
number of G is the minimum size of a set F of edges such that G − F is a forest. Given an
injective function f that maps the vertices in V to distinct integers, the bandwidth cost of f

for G is defined as max{u,v}∈E |f(u) − f(v)|. The bandwidth of G is the minimum bandwidth
cost for G over all possible injective functions. The bisection width of G is the minimum size
of a set F of edges such that the vertices of G − F can be partitioned into two parts of equal
size (or with a difference of one in case n is odd) with no edges between the two parts.

3 Parameterized Algorithms

In this section, we present some parameterized algorithms for Two-Sets Cut-Uncut. We
start with the distance to cographs.

▶ Theorem 2. Two-Sets Cut-Uncut parameterized by the distance k to cographs can be
solved in kO(k)n3 time.

Proof. Let (G = (V, E), S, T, ℓ) be an instance of Two-Sets Cut-Uncut. We transform G

into a weighted graph by assigning a weight of one to each edge in G. We denote the weight
of an edge e by w(e). We first compute in O(3.303k(m + n)) time a set X ⊆ V of size at
most k such that G′ = (V ′, E′) = G − X is a cograph [17]. A cotree T of G′ is a rooted
binary tree where each vertex of G′ corresponds to a leaf node of T and an inner node t of T
either represents taking the disjoint union or the join of the cographs corresponding to the
two children of t. Each cograph has a cotree which can be computed in linear time. For each
node t of T , let Tt be the subtree of T rooted in t, let Gt = (Vt, Et) be the graph represented
by Tt, and let nt = |Vt|. For technical reasons, we want to assume that X contains at least
one red and one blue vertex in an optimal solution. Hence, if X does not contain a terminal
from S already, then we add an arbitrary vertex from S to X. We do the same for T .
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We begin by guessing1 the coloring of X. Then, we remove all edges between a red and a
blue vertex in X. Let ℓ′ be the number of edges that we removed. We then contract each
component of X into a single vertex. If the resulting (multi)graph has j edges with the same
endpoints (with one endpoint in X and one in V ′), then we remove all but one of the edges
and set its weight to j.

We compute a coloring for the remaining vertices of G by computing optimal solutions
for partial instances for each node of T via dynamic programming. A partial instance is a
tuple (t, r, Cr, Cb) where t is a node of T , r is an integer at most nt and Cr, Cb are partitions
of subsets of X including ∅. For each partial instance, we want to store in a table D the
minimum number of edges between blue and red vertices in G[Vt ∪ X] after all vertices in Vt

are colored and exactly r vertices are colored red. Additionally, we require that for each
set C ∈ Cr, there exists a connected component with vertex set Z in G[(Vt ∪ X) ∩ R] such
that Z ∩ X ∩ R = C. Analogously for each set C ∈ Cb, there has to exist a connected
component with vertex set Z in G[(Vt ∪ X) ∩ B] such that Z ∩ X ∩ B = C. We will use these
sets to store whether the red vertices are connected in G[Vt ∪ X], while also storing which
vertices of X ∩ R are connected to the same connected component in Gt[R]. We use this
information to ensure that in a coloring for the entire graph G, the graph G[R] is connected.
We do the same for the blue vertices with the set Cb.

In the end, the optimal solution (minus the ℓ′ edges we already removed between vertices
in X) will be stored in D[w, r, Cr, Cb] for some value of r, where w is the root of T and Cr = ∅
if r = 0 and Cr = {X ∩ R}, otherwise. Similarly, Cb = ∅ if r = nw and Cb = {X ∩ B},
otherwise. Note that this corresponds to a solution where all vertices of either color form a
single connected component as all vertices are connected to all vertices of the same color
in X (which is at least one vertex as constructed above).

Before we present the algorithm, we first define two operations on sets of sets. For two
sets A, B of sets of vertices, if there exists a ∈ A and b ∈ B with a∩b ̸= ∅, then we recursively
define A ⊎ B as ((A \ a) ⊎ (B \ b)) ⊎ {a ∪ b} and as A ∪ B otherwise. This operation can be
seen as taking the union of the connected components of two subgraphs. If there are two
connected components (one in A and one in B) which share a vertex, then both components
are merged into one. The components that do not share a vertex with any other component
remain as they are. We also define A⋓B as A if B = ∅, as B if A = ∅ and as {

⋃
X∈A∪B X},

otherwise. With these definitions at hand, we compute the entries of D based on the type of
node t as follows.

Leaves. Let t be a leaf node and let a be the vertex of G corresponding to t. We set

D[t, r, Cr, Cb] =



∑
v∈Nb

X
(a)

w({a, v}), if r = 1, Cr = {Nr
X(a)}, Cb = ∅ and a /∈ T∑

v∈Nr
X

(a)
w({a, v}), if r = 0, Cr = ∅, Cb = {N b

X(a)} and a /∈ S

∞, else.

We show that the solutions for all partial instances are computed correctly. It is easy to
verify that whenever a table entry of D is set, then this corresponds to a valid solution for
the partial instance. So it remains to show that each optimal solution for any partial instance
is considered. Let (t, r, Cr, Cb) be a partial instance and consider an optimal solution for

1 Whenever we pretend to guess something, we actually iterate over all possibilities and consider for the
presentation/proof an iteration leading to an optimal solution.
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it. Note that the partial instance only has a valid solution if r ∈ {0, 1}. If r = 1, then the
vertex a has to be colored red. This is only possible if a /∈ T since all vertices in T have
to be colored blue. The red vertices of X which are adjacent to vertices of Gt[R] are the
vertices in Nr

X(a). If a is not adjacent to any red vertices of X, then Cr = {∅} or there is
no solution to the partial instance. Since Gt cannot have any blue vertices, Cb has to be
the empty set (and not the set containing the empty set). Note that all edges between a

and blue neighbors of a in X are multicolored and this is precisely what we computed above.
The argument for r = 0 (coloring a blue) is symmetric.

Disjoint union. Let t be a disjoint-union node with children t1 and t2. We set

D[t, r, Cr, Cb] = min
r1

Cr=Cr1 ⊎Cr2
Cb=Cb1 ⊎Cb2

(D[t1, r1, Cr1 , Cb1 ] + D[t2, r − r1, Cr2 , Cb2 ]).

We again show that each optimal solution for any partial instance is considered. To
this end, we assume that the table entries for the children t1 and t2 are computed correctly.
Let (t, r, Cr, Cb) be a partial instance and consider an optimal solution for it. Since the
disjoint union of two graphs does not create any edges, it holds that all multicolored edges
in the solution are contained in G[Vt1 ∪ X] and G[Vt2 ∪ X]. This gives a partitioning
of the multicolored edges in the solution as there are no edges between vertices in X.
Let r1 be the number of red vertices in Vt1 in the solution and consider the connected
components in G[(Vt1 ∪ X) ∩ R]. Denote the respective partitioning by Cr1 and do the
same for Cb1 , Cr2 , and Cb2 . Note that Cr corresponds to the union of the connected
components corresponding to Cr1 and Cr2 (and the same for Cb). Hence, it holds that Cr =
Cr1 ⊎ Cr2 and Cb = Cb1 ⊎ Cb2 . It now also holds that the size of the considered solution
is D[t1, r1, Cr1 , Cb1 ] + D[t2, r − r1, Cr2 , Cb2 ], which is precisely what we computed.

Join. Let t be a join node with children t1, t2. We set (with r2 = r − r1)

D[t, r, Cr, Cb] = min
r1

Cr=Cr1 ⋓ Cr2
Cb=Cb1 ⋓ Cb2

{D[t1, r1, Cr1 , Cb1 ] + D[t2, r2, Cr2 , Cb2 ] + r1(n2 − r2) + r2(n1 − r1)}.

We show a final time that each optimal solution for any partial instance is considered
when the table entries for the children t1 and t2 are computed correctly. Let (t, r, Cr, Cb) be a
partial instance and consider an optimal solution for it. Similar to the disjoint union, we can
partition all multicolored edges of the solution. In this case, we partition the multicolored
edges into four parts, the edges in G[Vt1 ∪ X], G[Vt2 ∪ X], the newly created edges between
red vertices in Vt1 and blue vertices in Vt2 and similarly between blue vertices in Vt1 and
red vertices in Vt2 . Let r1 be the number of red vertices in Vt1 in the solution and again
consider the connected components in G[(Vt1 ∪ X) ∩ R]. Denote the respective partitioning
by Cr1 and do the same for Cb1 , Cr2 , and Cb2 . If there is at least one red vertex in each of Vt1

and Vt2 , then all red vertices of Gt will be connected in Gt[R]. Thus the red vertices of X

which where connected to any vertex of Gt[R] will be in the same set in Cr. If either Vt1 or
Vt2 do not contain any red vertices in the considered solution, then no edges between two red
vertices are added and the connected components of Gt[R] are the same as of Gt1 [R] ∪ Gt2 [R]
(as at least one of the two sets is the empty set). This is precisely what the ⋓ operator
computes and the argument for the blue vertices is analogous. Hence, the optimal solution
is D[t1, r1, Cr1 , Cb1 ] + D[t2, r − r1, Cr2 , Cb2 ] + r1(n2 − (r − r1)) + (r − r1)(n1 − r1), which is
what we compute in the dynamic program.
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It remains to analyze the running time. Note that both ⊎ and ⋓ can be computed
in O(k2) time. The number of possible guesses for the coloring of X is at most 2k. The number
of partial instances is at most O(n2(k + 2)k+2) as there are at most n possibilities for t and r

each and both Cr and Cb are partitions of subsets of X which have size at most k + 2 (as we
added a terminal of S and of T to X). Computing each entry takes O((k+2)4(k+2)+2 ·n) time.
Thus, the overall runtime is in O(2k · (k + 2)6k+14 · n3) ⊆ kO(k) · n3. ◀

We next show fixed-parameter tractability for the parameter treewidth. We mention
that the algorithm is a simple adaptation of a dynamic program for Largest Bond [9].
In essence, each entry in the dynamic program over the tree decomposition (except for the
leaves) are computed by combining the solutions for the children using a maximum over
all combinations of solutions that color the vertices in the given bag in a certain way and
ensure certain connectivity conditions. By replacing the maximum with a minimum, we can
solve a version of Two-Sets Cut-Uncut without terminals (which is not a hard problem
to solve). However, we can also incorporate terminals by setting the value of all leaf nodes
corresponding to a vertex v to infinity whenever v ∈ S and the given coloring of the bag
colors v blue (or analogously v ∈ T and the coloring for v is red). This yields the following.

▶ Observation 3. Two-Sets Cut-Uncut is solvable in nkO(k) time when parameterized
by treewidth k.

We now turn towards XP-time algorithms, that is, polynomial-time algorithms for constant
parameter values. We show that Two-Sets Cut-Uncut parameterized by the maximum
size of an independent set is in XP. The main idea is to first observe that the graphs induced
by the vertices in S (and in T , respectively) cannot have too many connected components
as this would imply a large independent set in the input graph. Next, these connected
components cannot be too far apart from one another as any long induced path contains a
large independent set. Based on these two observations, it is enough to guess a small number
of vertices to ensure connectivity between all vertices in S and in T , respectively. For each
guess, we can then compute a minimum cut between the vertices we already colored red and
blue to find an optimal solution.

▶ Proposition 4. Two-Sets Cut-Uncut parameterized by the size k of a maximum
independent set in the input graph can be solved in O(n4k2) time.

Proof. Let (G = (V, E), S, T, ℓ) be an instance of Two-Sets Cut-Uncut where G has a
maximum independent set of size k. Let S1, S2, . . . Sp be the connected components of G[S]
and let T1, T2, . . . Tq be the connected components of G[T ]. Note that p ≤ k and q ≤ k as we
can otherwise chose one vertex from each component to get an independent set of size k + 1,
a contradiction. In the beginning only the vertices of S are colored red and the vertices
of T are colored blue. We claim that in any solution, at most (k − 1)(2k − 2) additional
red vertices are needed to connect all vertices of S and at most (k − 1)(2k − 2) additional
blue vertices are needed to connect all vertices of T . To show this, consider any solution. To
connect two connected components Si and Sj of G[S], there has to exist a path between Si

and Sj such that all vertices of the path are colored red. Note that this also implies that
there is an induced path between them where all vertices are colored red. It is now possible
to bound the length of this path by the size of the maximum independent set. Any induced
path between Si and Sj contains at most 2k vertices as any induced path of length 2k + 1
contains an independent set of size k + 1. Hence, to connect Si and Sj in any solution at
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most 2k − 2 additional red vertices are needed. Since there are p connected components and
p ≤ k, at most (k − 1)(2k − 2) vertices have to be colored red to make G[R] connected. The
argument for the vertices of T is analogous.

Our algorithm now guesses two sets R′, B′ ⊆ V , each of size at most (k − 1)(2k − 2).
We discard any guess where T ∩ R′ ̸= ∅ or S ∩ B′ ≠ ∅. Additionally, we discard all guesses
where G[S ∪ R′] or G[T ∪ B′] are not connected. Finally, we color all remaining vertices of V

by computing a minimum S ∪ R′-T ∪ B′-cut. If there are at most ℓ multicolored edges in G,
then (G, ℓ) is a yes-instance.

We next show that the running time is in O(n4k ). Note that for k = 1, we do not need to
guess any vertices and therefore the running time is O(m1+o(1)) ⊆ O(n4) as we only need to
find a minimum cut [4]. For k ≥ 2, we need to guess 2(k −1)(2k −2) = 4k2 −8k +4 ≤ 4k2 −4
vertices. Hence, there at most n4k2−4 possible guesses and for each guess finding a minimum
cut can be done in m1+o(1) ∈ O(n4) time. Thus, the overall runtime is in O(n4k2). ◀

Finally, we show that Two-Sets Cut-Uncut parameterized by clique-width is in XP.
We note that it remains open whether this parameter allows for fixed-parameter tractability.
Our algorithm is an adaptation of an algorithm for Largest Bond due to Duarte et al. [9].
They use dynamic programming over a k-expression of the input graph where they store the
size of a largest cut with exactly si red vertices of each label i under certain connectivity
conditions. As in the case of treewidth, we can replace a maximum in their calculation by
a minimum to solve a version of Two-Sets Cut-Uncut without any terminals. We can
then incorporate terminals by first modifying the k-expression into a 3k-expression where all
vertices in S of label i get label iS instead and all vertices in T of label i get label iT instead.
We then simply discard any table entry in which the number of red vertices of label iS does
not equal the number of vertices of label iS or where there are any red vertices of label iT .
Since their algorithm runs in O(n2k+436·2k ) time, this yields the following.

▶ Observation 5. Two-Sets Cut-Uncut can be solved in O(n6k+436·8k ) time when
parameterized by the clique-width k.

4 Parameterized Hardness

In this section, we show a number of hardness (both para-NP-hardness and W[1]-hardness)
results for Two-Sets Cut-Uncut and 2-Disjoint Connected Subgraphs. As 2-
Disjoint Connected Subgraphs is a special case of Two-Sets Cut-Uncut, all hardness
results for the former directly translate to the latter. First, 2-Disjoint Connected
Subgraphs remains NP-hard even in bipartite graphs of bisection width one. The idea for
the reduction is to first add a copy of the graph (without any terminals) and connect one
vertex of the graph to a vertex in S. Note that all vertices in the copy can be colored red
and hence the size of an optimal solution remains the same. Next, we can make the graph
bipartite by subdividing each edge once. This results in an equivalent bipartite instance of
bisection width one and shows the following.

▶ Observation 6. 2-Disjoint Connected Subgraphs is NP-hard in bipartite graphs with
bisection width one.

Next, we show that Two-Sets Cut-Uncut is W[1]-hard when parameterized by the
clique cover number even if the size of a smallest dominating set is one. Our reduction is
based on a reduction by Bentert et al. [2] and we prove a couple of additional properties of
the reduction that will be useful when excluding polynomial kernels for the solution size.
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Figure 2 Illustration of the reduction by Bentert et al.. The dashed edges represent n + 2m

parallel P3’s as indicated between s and v1.

▶ Proposition 7. Two-Sets Cut-Uncut is W[1]-hard when parameterized by the clique
cover number of the input graph even if the input graph contains a dominating set of size one,
when |S| = 1, and when there exist constants c1 ≥ 0, c2 > |T | such that (i) ℓ = c1+|T |(c2−|T |)
and (ii) any cut that keeps any set of j terminals in T connected to at least one other terminal
in T while separating the terminal in S from all terminals in T has size at least c1 + j(c2 − j).

Proof. Our proof is based on a reduction by Bentert et al. [2]. We first summarize their
reduction, which shows that Two-Sets Cut-Uncut is W[1]-hard when parameterized by
the number of terminals even if |S| = 1. Starting from an instance (G, k) of Regular
Multicolored Clique, a version of Multicolored Clique where each vertex in the
input graph has degree exactly d for some d, they construct an equivalent instance (H, S, T, ℓ)
of Two-Sets Cut-Uncut as shown next and depicted in Figure 2. They start with an
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induced copy of G, set S = {s} and T = {t1, t2, . . . , tk}, and make ti adjacent to all vertices
of color i in G. Moreover, they add vertices vj

i for each vertex vi in G and each j ∈ [n + 2m],
where n and m are the number of vertices and edges in G, respectively. Each vertex vj

i is
made adjacent to vi and s. Finally, they set ℓ = n − k + k(n + 2m) + k(d − k + 1).

We next modify the construction to make s adjacent to all vertices in the induced copy
of G in H and adjacent to all vertices in T . Next, we assume that there are the same
number n/k of vertices of each color in G as this version of the problem is also known to
be NP-hard. We further modify the reduction to make each vertex vi in H adjacent to
all other vertices that have the same color (in G) and all vertices of the form vj

i pairwise
adjacent. We adjust the value of ℓ = 2n + k(n + 2m + d − k + 1). Note that the new graph H

has a dominating set of size one (the vertex s is adjacent to everything) and has a clique
cover number of at most k + 1. The latter holds as all vertices of one color in G form a
clique together with one vertex from T and all other vertices (s and all vertices vj

i ) form one
clique Cs. Moreover, observe that ℓ = c1 + |T |(c2 −|T |) for c1 = 2n and c2 = (n+2m+d+1).

It remains to prove that the adjusted instance is equivalent to the input instance of
Regular Multicolored Clique and that any cut that keeps a set of j terminals in T

connected to at least one other terminal in T while separating all terminals in T from s

has size at least c1 + j(c2 − j). We start with the latter. First note that any cut of size at
most ℓ cannot cut through the clique Cs. Moreover, in order for any set of j vertices T ′ ⊆ T

to be connected to at least one other vertex in T , we need to add at least one neighbor
of ti to the connected component of ti for each ti ∈ T ′. Since the neighborhoods of two
vertices ti and tj are by construction disjoint, this also implies that we need to separate
at least j of the original vertices in G from Cs. Moreover, any such cut is minimized
when we pick exactly one neighbor of each ti as each neighbor is adjacent to n + 2m

vertices in Cs and only n/k + d < n + 2m vertices outside of Cs. So consider any cut that
separates all of T and j additional vertices from Cs. Observe that the size of the cut is at
least n + k − j + j(n + 2m + d − j + 1 + n/k) as the vertices in T are incident to n + k edges
and all but j of them are in the cut. Moreover, each of the j additional vertices are adjacent
to n/k − 1 vertices of the same color (which are not separated from Cs), at least d − j + 1
vertices of different colors that are not separated from Cs, and n + 2m + 1 vertices in Cs.
Since we may assume that n/k > k (otherwise there is a simple kk time algorithm), it holds
that n + k − j + j(n + 2m + d − j + 1 + n/k) ≤ 2n + j(n + 2m + d + 1 − j) = c1 + j(c2 − j).

To show that the constructed instance is equivalent to the original instance of Regular
Multicolored Clique, we closely follow the proof by Bentert et al. [2]. If the constructed
instance is a yes-instance, then we separate exactly one neighbor of each vertex in T from Cs

as shown above. Let C be the set of these vertices. In order for a cut between T ∪ C

and the rest of the graph to be of size at most ℓ, we show that C needs to induce a
clique in G. First, each vertex in T is incident to exactly n/k edges in the cut, that is, the
vertices in T are incident to exactly n edges in the cut. This leaves a remaining budget
of n + k(n + 2m + d − k + 1) for edges incident to the vertices in C. Hence, each of these
vertices can be adjacent to (n + 2m + d − k + 1 + n/k) edges in the cut on average. Note
that every vertex is adjacent to exactly n + 2m + 1 vertices in Cs and to exactly n/k − 1
vertices of the same color (which are all not separated from Cs). Hence, on average each
vertex in C can be incident to at most d − k + 1 edges to vertices of other colors in G that
are not separated from Cs. As all of these edges are exactly the edges in G and since G

is d-regular, each vertex needs to be incident to k − 1 edges to other vertices in C, that is, C

needs to be a clique of size k.
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Figure 3 An illustration of the reduction behind Proposition 8 with C1 = (x1 ∨ x2 ∨ xn).

If there is a (multicolored) clique C of size k in G, then consider the cut in H between T ∪C

and the rest of the graph. Each vertex in T is incident to n/k + 1 edges and adjacent to
one other vertex in T ∪ C. Hence, the cut contains k(n/k) edges incident to vertices in T .
Moreover, it contains k(n/k − 1 + d − (k − 1)) edges between the original vertices in G in H

and k(n + 2m + 1) edges between vertices in C and vertices in Cs. In total, the cut has
size k(2n/k + d − k + n + 2m + 1) = 2n + k(n + 2m + d − k + 1) = ℓ. This concludes the
proof. ◀

Finally, we show that 2-Disjoint Connected Subgraphs remains NP-hard on graphs
of maximum degree three based on a reduction due to van ’t Hof et al. [13]. Note that both
2-Disjoint Connected Subgraphs and Two-Sets Cut-Uncut become trivial on graphs
of maximum degree at most 2 as the input graph is then restricted to a path or a cycle.

▶ Proposition 8. 2-Disjoint Connected Subgraphs is NP-hard even if the input graph
has maximum degree three.

Proof. We give a reduction from 3,4-SAT, which is known to be NP-hard [23]. Therein, one
is given a Boolean formula ϕ in which each clause contains at most three literals and each
variable appears in at most four clauses. Let X = {x1, x2, . . . , xn} and X = {x | x ∈ X} be
a set of all positive and negative literals in ϕ and let C = {C1, C2, . . . , Cm} be the set of
clauses in ϕ. We construct an instance (G, S, T ) of 2-Disjoint Connected Subgraphs
as follows. For each clause Ci, we add a vertex ci to G and for each variable xi, we add
paths Pi = (x1

i , x2
i , . . . , x6

i ) and P i = (x1
i , x2

i , . . . , x6
i ) to G. If a literal xi ∈ X ∪ X appears in

the clause Cj , then we add an edge between cj and one vertex of {x2
i , x3

i , x4
i , x5

i } which is not
adjacent to any other vertex cj′ . Such a vertex always exists as each variable appears in at
most four clauses. Finally, we add edges {x6

i , x1
i+1}, {x6

i , x1
i+1}, {x6

i , x1
i+1} and {x6

i , x1
i+1} for

all i ∈ [n − 1] and vertices f1 and f2 with edges {f1, x1
1}, {f1, x1

1}, {f2, x6
n} and {f2, x6

n}. We
conclude the construction by setting S = {f1, f2} and T = C. See Figure 3 for an illustration.

We next show that the maximum degree in G is three. Note hat each vertex ci has degree
at most three as each clause in ϕ contains at most three variables. For each path Pi, the
vertices xj

i with 2 ≤ j ≤ 4 have degree at most 3 because each xj
i is only adjacent to xj−1

i

and xj+1
i and at most one vertex of C. The vertices x1

i and x6
i have degree 3 since they are

not adjacent to any vertices in C and only have edges to x6
i−1, x6

i−1, x2
i and x1

i+1, x1
i+1, x5

i ,
respectively (or to f1 or f2 in the case of x1

1, x1
1, x6

n, and x6
n). The vertices f1 and f2 each

only have degree two and the entire graph has therefore maximum degree three.
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Since the reduction can clearly be computed in polynomial time, it only remains to show
that the constructed instance is a yes-instance of 2-Disjoint Connected Subgraphs
if and only if ϕ is satisfiable. To this end, first assume that the constructed instance is
a yes-instance and let (R, B) be a coloring of G such that G[R] and G[B] are connected
and S ⊆ R and T ⊆ B. We set each variable xi to true if and only if any vertex of Pi is
colored blue. We next prove that this is a satisfying assignment. The vertices f1 and f2
are both colored red. Any path that connects f1 to f2 in G[R] cannot contain any vertices
of C as C = T . Hence, any path between f1 and f2 has to contain all vertices of Pi or all
vertices of P i for each i ∈ [n]. As a result, all vertices of Pi or all vertices of P i are colored
red. Since the vertices of C = T are independent, one neighbor x of each vertex cj has to
be colored blue by the solution. If x = xp

i for some i ∈ [n] and 2 ≤ p ≤ 5, then we set xi

by construction to true and cj is satisfied. If x = xp
i for some i ∈ [n] and 2 ≤ p ≤ 5, then

coloring one vertex of P j blue forces all vertices of Pj to be colored red and thus xi was by
construction set to false. The vertex ci is only adjacent to a vertex of P j if xi appears in Ci

and therefore setting xj to false satisfies Ci. This proves that ϕ is satisfiable.
Now assume that there is a truth assignment β that satisfies ϕ. We color all vertices of Pi

blue and all vertices of P i red if xi is set to true by β and we color all vertices of Pi red and
all vertices of P i blue, otherwise. Next, we color the vertices of C blue and f1 and f2 red. In
this coloring exactly one path of Pi and P i is colored red and the other is colored blue. All
paths Pi and P i are connected to Pi−1, P i−1, Pi−1, and P i+1 (which the exception of P1, P 1
and Pn, P n which are connected to f1 and f2 instead). Hence, all red vertices in the paths
are connected and all blue vertices in the paths are connected as well. The vertices f1 and f2
are by construction adjacent to one red vertex in one of the paths Finally for each ci ∈ C,
since β satisfies Ci, there has to be a blue neighbor of ci in one of the paths. This shows
that both G[R] and G[B] are connected in the constructed coloring and this concludes the
proof. ◀

5 Polynomial Kernels

In this section, we analyze which parameters allow for polynomial kernels. Note that we
can restrict our attention to parameters that allow for fixed-parameter tractability as this is
equivalent to having a kernel of any size [8]. We first show that Two-Sets Cut-Uncut
does not admit a polynomial kernel when parameterized by the vertex cover number of
the input graph plus the number of terminals. Note that for this parameter, 2-Disjoint
Connected Subgraphs has a simple kernel of size O(k3). We can 2-approximate a vertex
cover in polynomial time by repeatedly taking both endpoints of any uncovered edge into
the solution. We can then, for each pair of vertices in this vertex cover, mark k non-terminal
vertices in the common neighborhood (or all such vertices if there are less than k). Removing
all unmarked non-terminal vertices that do not belong to the approximated vertex cover
results in a cubic kernel as we keep at most 2k vertices in the approximate vertex cover and
at most (2k)2 · k = 4k3 marked vertices.

▶ Theorem 9. Two-Sets Cut-Uncut parameterized by vertex cover number plus number
of terminals does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. We present an OR-cross composition from Vertex Cover in 3-regular graphs, which
is known to be NP-hard [11]. We start with t instances, all with the same number n of
vertices and the same solution size k. Note that since all graphs have the same number of
vertices and are 3-regular, they also have the same number m of edges.
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Figure 4 An illustration of the construction in the proof of Theorem 9. The solid boxes indicate
cliques and the dashed boxes indicate independent sets.

Our OR-cross composition consists of three different gadgets. The first gadget is called
the instance-selection gadget and it consists of one vertex vj for each input instance and t

additional dummy vertices D. These 2t vertices all form an independent set. Next, we add a
vertex s and make it adjacent to all vertices vj and a set W of 4

(
n
2
)

vertices and make them
adjacent to each vertex in the instance-selection gadget. We add s to S and W to T .

The second gadget is called a vertex-selection gadget. We start with a clique of (n + 1) · k

vertices xj
i for each i ∈ [n + 1] and each j ∈ [k]. All vertices xj

n+1 are contained in T . Next,
for each pair xp

i and xq
i with p ̸= q ∈ [k] and each i ∈ [n], we add a vertex yp,q

i , add it to T and
make it adjacent to xp

i and xq
i . We do the same for each pair xj

p and xj
q for each p ̸= q ∈ [n]

and each j ∈ [k] and call the constructed terminal yj
p,q. Finally, for each j ∈ [k], we create a

vertex zj , add it to S, and make it adjacent to each vertex xj
i for i ∈ [n].

The third and final gadget is called the verification gadget and it consists of a clique
of 3

(
n
2
)

vertices aj
i for i ∈ [

(
n
2
)
] and j ∈ [3]. For each i ∈ [

(
n
2
)
], we add four additional

vertices bi, c1
i , c2

i , c3
i . The vertex bi is added to S and the other three are added to T . We

make bi adjacent to all vertices aj
i for j ∈ [3]. Moreover, c1

i is adjacent to a1
i and a2

i , vertex c2
i

is adjacent to a1
i and a3

i , and c3
i is adjacent to a2

i and a3
i .

It remains to connect the different gadgets. We arbitrarily order the vertices in each input
instance and assign them numbers in [n]. Next, we pick an arbitrary bijection f between
numbers in [

(
n
2
)
] and pairs {p, q} with p ̸= q ∈ [n]. For each i ∈ [

(
n
2
)
], the vertex a1

i is adjacent
to vj if and only if f(i) is not an edge in the instance corresponding to vj . Moreover, a1

i

is adjacent to some arbitrary vertices in D to ensure that it has exactly t neighbors in the
instance-selection gadget. The vertices a2

i and a3
i are adjacent to the t vertices in D.

Next, for each i ∈ [
(

n
2
)
], we make a1

i adjacent to xj
n+1 in the vertex-selection gadget for

all j ∈ [k]. Let f(i) = {p, q} with p < q. Then, we make a2
i adjacent to xj

p and a3
i adjacent

to xj
q for all j ∈ [k]. Finally, we set ℓ = 2

(
n
2
)2 +

(
n
2
)
(t+k+7)+k2n+k(3n+2k−4)+t−m−1.

Note that the instance-selection gadget contains an independent set of size 2t which does
not contain any terminals. There are only 1 + 4

(
n
2
)

+ k(n + 2) + k
(

n
2
)

+ n
(

k
2
)

+ 7
(

n
2
)

< 14n3

other vertices. Thus, the vertex cover number and the number of terminals of the resulting
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graph is in O(n3). Since the instance can be computed in polynomial time (in n + t), it only
remains to show that the constructed instance is a yes-instance if and only if at least one of
the input instances of Vertex Cover is a yes-instance.

To this end, first assume that one of the t instances of Vertex Cover is a yes-instance,
that is, the respective graph Gj contains a vertex cover K = {p1, p2, . . . , pk} of size k. Let vj

be the vertex in the instance-selection gadget corresponding to that instance. We show that
the constructed instance is also a yes-instance by describing the connected component CS

containing S. This component contains all the vertices of S as well as vj , xi
pi

for each i ∈ [k],
and the following vertices of the verification gadget. For each i ∈

(
n
2
)
, if f(i) = {p, q}

(with p < q) is not an edge in Gj , then we add a1
i to CS . Otherwise, at least one of the

endpoints p or q is contained in K and we add a2
i if p ∈ K and a3

i if p /∈ K. Note that
we added exactly one vertex of each column in the vertex-selection gadget and exactly one
vertex in each row of the verification gadget. It remains to show that the cut between CS

and the rest of the graph is of size at most ℓ.
We first analyze the sizes of cuts within each of the gadgets. Note s is incident to exactly t

edges and exactly one of the neighbors (vj) is contained in CS . Hence, s is incident to t − 1
edges in the cut between CS and the rest of the graph. Next, observe that vj is incident
to 4

(
n
2
)

vertices in W (which are not contained in CS). Each vertex zj in the vertex-selection
gadget is incident to n vertices exactly one of which is in CS . Each of the other k vertices
in CS in the vertex-selection gadget are adjacent to ((n + 1)k − 1) + (n − 1) + (k − 1) + 1 other
vertices in the vertex-selection gadget, exactly k of which belong to CS . Next, each vertex bi

is adjacent to exactly two vertices not contained in CS and each vertex aj
i in CS is adjacent

to exactly 2
(

n
2
)

+ 2 vertices in the verification gadget that are not contained in CS .
We next analyze the number of edges in the cut between CS and the rest of the graph that

go between different gadgets. Note that there are no edges between the instance-selection
gadget and the vertex-selection gadget. Hence, we only need to consider edges leaving the
verification gadget. We start with the size of such a cut assuming that no vertex in the
verification gadget belongs to CS . Note that vj has

(
n
2
)

− m edges to the verification gadget
and each of the k vertices xj

i in the vertex-selection gadget that belong to CS have n − 1
edges to the verification gadget. This leads to a baseline cut of size

(
n
2
)

− m + k(n − 1). Now
notice that adding any vertex in the verification gadget to CS increases the described cut
by (t + k) if none of the neighbors of the vertex in other gadgets are contained in CS and
by t + k − 2 if one neighbor belongs to CS . By construction, it never happens for a vertex
in the verification gadget that two neighbors outside the verification gadget are contained
in CS . Moreover, we constructed the solution such that one neighbor is always contained
in CS . Hence, the overall size of the described cut is

(
n
2
)

− m + k(n − 1) +
(

n
2
)
(t + k − 2).

Combined with the size of the cuts within each gadget, the total cut size is

t − 1 − m +
(

n

2

)
(t − k + 5) + k(nk + 3n + 2k − 4) +

(
n

2

)
(2

(
n

2

)
+ 2)

= 2
(

n

2

)2
+

(
n

2

)
(t + k + 7) + k2n + k(3n + 2k − 4) + t − m − 1 = ℓ.

Note that both CS and the rest of the graph induce a single connected component each.
For the reverse direction, suppose that the constructed instance of Two-Sets Cut-

Uncut is a yes-instance. Let CS ⊇ S be the set of vertices in the connected component
containing S after removing the edges of a solution (a cut of size at most ℓ). First, we will
argue that we can assume without loss of generality that CS \S contains exactly one vertex vj ,
exactly one vertex from the set {a1

i , a2
i , a3

i } for each i ∈
(

n
2
)
, exactly one vertex from the
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set {xj
1, xj

2, . . . , xj
n} for each j ∈ [k], and at most one vertex from each set {x1

i , x2
i , . . . , xk

i }
for each i ∈ [n]. Note that this also implies that CS \ S contains exactly

(
n
2
)

+ k + 1 vertices
as all other vertices belong to S or T . Assume that CS \ S contains at least two vertices from
the instance-selection gadget. If connectivity within CS is not of concern, then removing
one of the two vertices from CS will always decrease the size of the cut as each vertex in the
instance-selection gadget is adjacent to at most 3

(
n
2
)

vertices in CS but also to 4
(

n
2
)

vertices
in W (which are contained in T and therefore not in CS). Moreover, since all vertices in
the verification gadget that have neighbors in the instance-selection gadget (all a-vertices)
form a clique and vertices in the instance-selection gadget are only incident to such vertices
and s, two vertices are never required to ensure connectivity within CS . On the other hand,
at least one vertex from the vertex-selection gadget needs to be contained in CS in order to
connect s ∈ S with the rest of S.

Next, assume that two vertices from a set {a1
i , a2

i , a3
i } are contained in CS . Then, these

two vertices have a common neighbor cj
i for some j ∈ [3] which is contained in T but only

has these two neighbors. This contradicts the fact that we started with some solution to
Two-Sets Cut-Uncut. Again, at least one such vertex needs to be included in CS in order
to connect bi ∈ S with the rest of S. The same arguments apply to the sets {xj

1, xj
2, . . . , xj

n}
and {x1

i , x2
i , . . . , xk

i } with the exception that there is no vertex in S enforcing that at least
one vertex of {x1

i , x2
i , . . . , xk

i } belongs to CS .
We next show that the vertices K encoded by the set of vertices in CS \ S in the vertex-

selection gadget form a vertex cover in the instance corresponding to the vertex vj ∈ CS \S in
the instance-selection gadget. As in the forward direction, the size of the cut between CS and
the rest of the graph has size at least ℓ = 2

(
n
2
)2 +

(
n
2
)
(t+k+7)+k2n+k(3n+2k−4)+t−m−1

and this bound is only achieved if each vertex in CS \ S in the verification gadget (each
a vertex in CS) has exactly one neighbor in CS \ S outside the verification gadget. We
call such a neighbor the buddy of the vertex. For each i ∈ [

(
n
2
)
], if a1

i is in CS and has a
buddy, then this buddy must be vj indicating that f(i) is not an edge in vj . If a2

i or a3
i is

contained in CS and has a buddy, then at least one of the endpoints of f(i) is contained
in K. This implies that for each pair {p, q} of vertices it holds that {p, q} is not an edge in
the instance corresponding to vj or p or q is contained in K, that is, K is a vertex cover in
this instance. Note that the set K has size k as CS \ S does not contain two vertices from
the set {xj

1, xj
2, . . . , xj

n} for any j ∈ [k]. This concludes the proof. ◀

We can make the instance-selection gadget into a clique in the above proof without
changing any of the proof details except for the fact that the size of an optimal solution
increases by exactly 2t−1 (as we still need to include exactly one vertex of the vertex-selection
gadget in the connected component containing S). This gives the following.

▶ Corollary 10. Two-Sets Cut-Uncut parameterized by distance to clique plus the number
of terminals does not admit a polynomial kernel unless NP ⊆ coNP/poly.

We next show that Two-Sets Cut-Uncut admits a linear kernel in the feedback edge
number of the graph by simple data reduction rules for vertices of degree one and two.

▶ Proposition 11. Two-Sets Cut-Uncut parameterized by feedback edge number k admits
a kernel with at most 5k vertices and 6k edges.

Proof. We present data-reduction rules that eliminate all degree-1 vertices and bound the
length of maximal induced paths, that is, paths whose internal vertices have degree two in
the input graph. Using standard arguments, this will result in a kernel with O(k) vertices
and edges [1].
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First, note that since the input graph is connected, we can assume without loss of
generality that there are no isolated vertices (vertices without any neighbors). Next, consider
a vertex u with exactly one neighbor v. If u /∈ S ∪ T , then we can simply remove u as in
any optimal solution, we will color u with the same color as v and therefore u will not be
incident to any solution edges. If u ∈ S ∪ T (we assume without loss of generality in S),
then there are two cases. If S = {u}, then the instance is trivial as if T = ∅, then it is a
yes-instance and if T ̸= ∅, then the instance is a yes-instance if and only if ℓ ≥ 1 as deleting
the edge {u, v} is an optimal solution (as the input graph is connected). If |S| ≥ 2, then u

needs to be in the same connected component as v in any optimal solution. Hence, we can
remove u and add v to S instead. If v was already contained in T , then we return a trivial
no-instance.

After applying the above procedure exhaustively, we are left with a graph without any
vertices of degree at most one. Consider any maximal induced path, that is, a path P =
(v0, v1, . . . , vp) for some p such that degG(v0), degG(vp) > 2 and degG(vi) = 2 for all i ∈ [p−1].
Let I = {vi | i ∈ [p − 1]} be the set of internal vertices of P . We consider the following cases
based on whether I ∩ S = ∅ and I ∩ T = ∅. If I ∩ S = ∅ and I ∩ T = ∅, then we remove all
vertices in I except for v1 and add the edge {v1, vp}. Let P ′ = (v0, v1, vp) be the resulting
maximal induced path. Note that if v0 and vp are colored with the same color, then the
internal vertices of P can be colored with the same color and therefore do not increase the
solution size. If v0 and vp are colored differently, then we need to remove exactly one of
the edges in P and this also holds true for P ′. If I ∩ S ̸= ∅ and I ∩ T = ∅, then we again
replace P by P ′ but this time we add v1 to S. In this case, we can assume without loss of
generality that all vertices in I are colored red as we need to delete at least one edge for each
of v0 and vp that are colored blue and we can assume without loss of generality that these
edges are {v0, v1} and/or {vp−1, vp}. The case where I ∩ S = ∅ and I ∩ T ̸= ∅ is analogous.
Finally, assume that I ∩ S ̸= ∅ and I ∩ T ̸= ∅. Then let vi ∈ S and vj ∈ T such that no
vertex between vi and vj is contained in S ∪ T . Note that such a pair of vertices always
exists. We assume without loss of generality that i < j. Since some edge between vi and vj

has to belong to any solution, we can remove the edge {vi, vi+1} without loss of generality
and reduce ℓ by one. Note that both vi and vi+1 now have degree one and applying the
above procedure for degree-1 vertices exhaustively removes all vertices in I (or produces a
trivial kernel).

Hence, we can now assume that the graph does not contain any degree-1 vertices and
all maximal induced paths have at most one internal vertex. Using standard arguments,
the graph contains now at most 5k vertices and at most 6k edges, where k is the feedback
edge number of the constructed graph [1, Lemma 2]. Note that the feedback edge number
of the graph never increases in the above procedures. Hence, the produced instance has at
most 5k vertices and 6k edges, where k is the feedback edge number of the input graph. This
concludes the proof. ◀

We next show that the solution size does not allow for a polynomial kernel. Therein, we
use Proposition 7 to construct an OR-cross composition in which a solution to the entire
instance can only consist of a solution to one of the input instances.

▶ Proposition 12. Two-Sets Cut-Uncut parameterized by solution size ℓ does not admit
a polynomial kernel unless NP ⊆ coNP/poly.

Proof. We present an OR-cross composition from Two-Sets Cut-Uncut, where |S| = 1
and there exist constants c1 ≥ 0, c2 > |T | such that ℓ = c1 + |T |(c2 − |T |) and any cut
that keeps any set of j terminals in T connected to at least one other terminal in T while
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Figure 5 An illustration of the reduction behind Proposition 12.

separating the terminal in S from all terminals in T has size at least c1 + j(c2 − j). This
variant is NP-hard by Proposition 7. We consider the polynomial equivalence relation
where all instances in the same equivalence class have the same solution size ℓ′, the same
constants c1, c2, and the same number k = |T | of terminals in T . We assume that the
number t of input instances is 2q for some integer q. Note that this can be achieved by
duplicating one of the input instances at most t times.

Given t instances I1 = (G1, S1, T1, ℓ′), I2 = (G2, S2, T2, ℓ′), . . . , It = (Gt, St, Tt, ℓ′) of the
same equivalence class, we construct an instance (H, S, T, ℓ) of Two-Sets Cut-Uncut as
follows. We start with H being the disjoint union of all graphs Gi and S being the union
of all Si. Let w = k log(t) + 1. We replace each edge {u, v} in the current graph by w

paths of length two, that is, we add a set Wu,v of w new vertices and for each p ∈ Wu,v,
we add the edges {u, p} and {p, v}. Next, we add k binary trees of depth log(t), add the
roots of these trees to T , and identify the ith leaf of each of these trees with one vertex
in Ti in such a way that each vertex in Ti is identified with the leaf of exactly one tree. See
Figure 5 for an illustration. Finally, we add edges between each pair of vertices in S and
set ℓ = wℓ′ + k log(t). This concludes the construction.

Since the solution size ℓ is by construction polynomially upper-bounded by n + log(t) and
the reduction can be computed in polynomial time (in n + t), it only remains to show that
the constructed instance is a yes-instance if and only if at least one of the input instances
is a yes-instance. To this end, first assume that one input instance Ii is a yes-instance.
We construct a solution of size at most ℓ in the constructed instance as follows. For each
edge {u, v} in the solution, we add all edges between vertices in Wu,v and u to our solution
cut. Note that this cut has size at most wℓ′. Next, for each of the k binary trees, we separate
the path from the root to the vertex in Gi from the rest of the tree. Note that this cuts
exactly one edge in each layer and hence exactly log(t) edges per tree. Thus, the constructed
cut has size at most wℓ′ + k log(t) = ℓ. Note that all vertices in T (the roots of the binary
trees) are connected to one another through the graph Gi and are separated from all other
graphs Gj with j ̸= i as they are separated from all other leaves in the binary tree and
within Gi they are separated from Si. Since all vertices in S are connected by construction,
this shows that the constructed instance is a yes-instance.
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Figure 6 A connection gadget in the proof of Proposition 13.

For the reverse direction, assume that the constructed instance is a yes-instance and
let F be a solution cut of size at most ℓ in H . First note that if for some pair u, v of vertices,
an edge incident to a vertex in Wu,v is contained in F , then we can assume without loss of
generality that for each vertex in Wu,v exactly one incident edge is cut. Since w > k log(t),
this means that we can assume that F contains edges incident to at most ℓ′ sets Wu,v. Let F ′

be the set of edges in the t original graphs corresponding to these ℓ′ sets. Note that if
some set of j terminals in T are connected through some graph Gi in H − F , then they are
connected through a path in their respective binary trees and the j corresponding terminals
in Gi have to be separated from Si. By assumption, such a cut (in the original graph Gi)
has size at least c1 + j(c2 − j) and in H, this corresponds to a cut of size w(c1 + j(c2 − j)).
In order to connect all terminal pairs, we have to connect all k through one graph Gi as if
we use at least two graphs to connect sets of size j1, j2, . . . , jp with

∑p
i=1 ji ≥ k, then this

cut has size at least
p∑

i=1
w(c1+ji(c2−ji)) ≥

p∑
i=1

w(c1+ji(c2−k)) ≥ w(pc1+k(c2−k)) ≥ w(c1+1+k(c2−k)) > ℓ,

a contradiction. If all terminals are connected through a single graph Gi, then the vertices
in Ti remain connected to one another in H − F and are separated from Si. That is, there
is a set of ℓ′ edges in Gi to separate all vertices in Ti from Si while keeping all vertices
in Ti connected. Since |Si| = 1, this shows that instance Ii is a yes-instance of Two-Sets
Cut-Uncut and this concludes the proof. ◀

Finally, we show that 2-Disjoint Connected Subgraphs does not admit a polynomial
kernel parameterized by bandwidth.

▶ Proposition 13. 2-Disjoint Connected Subgraphs parameterized by bandwidth does
not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. We present an OR-cross composition from 2-Disjoint Connected Subgraphs.
Given t instances I1 = (G1, S1, T1), I2 = (G2, S2, T2), . . . , It = (Gt, St, Tt), we construct a
new instance (H, S, T ) as follows. Initially H is the disjoint union of all Gi and S and T are
the unions of all Si and Ti respectively, where we put graph Gi+1 to the right of graph Gi.
We then use the gadget depicted in Figure 6 to connect Gi and Gi+1 for all i ∈ [t − 1]. We
call this gadget a connection gadget and it simply consists of two vertices u and v. We
make u adjacent to all vertices in Si and Ti+1 as well as one arbitrary vertex in Ti and one
arbitrary vertex in Si+1. The vertex v is adjacent to all vertices in Ti and Si+1 as well as
one arbitrary vertex in each of Si and Ti+1. This concludes the construction.

Since the instance can be computed in polynomial time, it only remains to show that the
bandwidth of the constructed instance is polynomial in the maximum number n of vertices in
any of the instances and that the constructed instance is a yes-instance if and only if at least
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one of the input instances is a yes-instance. For the former, note that placing all vertices
of G1 (in any ordering) first, then the two vertices of the connection gadget between G1
and G2, then all vertices of G2 and so on results in an ordering where each edge within one
of the graphs has length at most n − 1 and each edge incident to a vertex in the connection
gadget has length at most n + 1. Since this covers all edges in the constructed instance, this
shows that the bandwidth is upper-bounded by n + 1.

We next show that the constructed instance is a yes-instance if and only if one of the input
instances is a yes-instance. To this end, first assume that one instance Ii is a yes-instance.
We construct a cut in the constructed instance as follows. We start with the solution cut
in Gi that leaves both Si and Ti connected and separates the two within Gi. Next, for the
connection gadget between Gj and Gj+1 for all j ≥ i, we color u blue and v red. For all
other connection gadgets, we color u red and v blue. Finally, in each graph Gj with i ̸= j,
we compute a minimum Sj-Tj-cut (ignoring connectivity) and add it to the solution. Note
that all terminals in Sj and Tj for all j ̸= i are connected to one another by a vertex in a
connection gadget and also connected to one vertex of the same color in the next graph Gj+1.
Hence, the constructed instance is a yes-instance.

For the reverse direction, assume that the constructed instance is a yes-instance. Note that
in each connection gadget, any optimal solution colors both vertices of the gadget differently
as otherwise at least one set of terminals is separated. Consider the set of connection gadgets
in which u is colored red. If this set is empty, then we consider I1 and otherwise we consider
the instance directly to the right of the last connection gadget in the set. We claim that the
considered instance Ii is a yes-instance. As we assume that the u vertex in the connection
gadget between Gi−1 and Gi is colored red (if it exists) and the u vertex in the connection
gadget between Gi and Gi+1 is colored blue (again assuming it exists), each vertex in a
connection gadget is adjacent to one terminal of the same color in Gi, that is, they do not
provide any additional connectivity between vertices in Si and Ti. Hence, the solution for
the constructed instance contains a cut in Gi such that all vertices of Si remain connected,
are separated from all vertices in Ti, which in turn remain connected to one another. That
is, the instance Ii is a yes-instance. This concludes the proof. ◀

6 Conclusion

In this work, we studied the parameterized complexity of Two-Sets Cut-Uncut, a natural
optimization variant of 2-Disjoint Connected Subgraphs. We gave an almost complete
tetrachotomy in terms of the existence of polynomial kernels, fixed-parameter tractability,
and XP-time algorithms. We conclude with a couple of open questions. First, the complexity
with respect to the distance to interval graphs remains unclear, with everything between
fixed-parameter tractability and para-NP-hardness still being possibilities. In particular,
the complexity of Two-Sets Cut-Uncut on interval graphs (polynomial-time solvable
or NP-hard) is unknown. Second, we showed that there is an XP-time algorithm for the
parameter clique-width. Moreover, it is known that Largest Bond is W[1]-hard when
parameterized by the clique-width. We conjecture that the same holds true for Two-Sets
Cut-Uncut. Finally, it is known that Two-Sets Cut-Uncut is W[1]-hard parameterized
by the number of terminals (vertices in S ∪ T ) [2]. However, it is not known whether there is
an XP-time algorithm and in particular, even whether Network Diversion, a special case
of Two-Sets Cut-Uncut with four terminals, is polynomial-time solvable or not has been
a long-standing open question, which we repeat here.
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Abstract
The NP-hard Odd Cycle Transversal problem asks for a minimum vertex set whose removal
from an undirected input graph G breaks all odd cycles, and thereby yields a bipartite graph. The
problem is well-known to be fixed-parameter tractable when parameterized by the size k of the
desired solution. It also admits a randomized kernelization of polynomial size, using the celebrated
matroid toolkit by Kratsch and Wahlström. The kernelization guarantees a reduction in the total
size of an input graph, but does not guarantee any decrease in the size of the solution to be sought;
the latter governs the size of the search space for FPT algorithms parameterized by k. We investigate
under which conditions an efficient algorithm can detect one or more vertices that belong to an
optimal solution to Odd Cycle Transversal. By drawing inspiration from the popular crown
reduction rule for Vertex Cover, and the notion of antler decompositions that was recently proposed
for Feedback Vertex Set, we introduce a graph decomposition called tight odd cycle cut that
can be used to certify that a vertex set is part of an optimal odd cycle transversal. While it is
NP-hard to compute such a graph decomposition, we develop parameterized algorithms to find a
set of at least k vertices that belong to an optimal odd cycle transversal when the input contains a
tight odd cycle cut certifying the membership of k vertices in an optimal solution. The resulting
algorithm formalizes when the search space for the solution-size parameterization of Odd Cycle
Transversal can be reduced by preprocessing. To obtain our results, we develop a graph reduction
step that can be used to simplify the graph to the point that the odd cycle cut can be detected via
color coding.
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1 Introduction

The NP-hard Odd Cycle Transversal problem asks for a minimum vertex set whose
removal from an undirected input graph G breaks all odd cycles, and thereby yields a
bipartite graph. Finding odd cycle transversals has important applications, for example
in computational biology [8, 21] and adiabatic quantum computing [6, 7]. Odd Cycle
Transversal parameterized by the desired solution size k has been studied intensively,
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leading to important advances such as iterative compression [19] and matroid-based kernel-
ization [14, 15]. The randomized kernel due to Kratsch and Wahlström [15, Lemma 7.11]
is a polynomial-time algorithm that reduces an n-vertex instance (G, k) of Odd Cycle
Transversal to an instance (G′, k′) on O((k log k log log k)3) vertices, that is equivalent
to the input instance with probability at least 2−n. Experiments with this matroid-based
kernelization, however, show disappointing preprocessing results in practice [18]. This formed
one of the motivations for a recent line of research aimed at preprocessing that reduces the
search space explored by algorithms solving the reduced instance, rather than preprocessing
aimed at reducing the encoding size of the instance (which is captured by kernelization). To
motivate our work, we present some background on this topic.

A kernelization of size f : N → N for a parameterized problem P is a polynomial-time
algorithm that reduces any parameterized instance (x, k) to an instance (x′, k′) with the
same yes/no answer, such that |x′|, k′ ≤ f(k). It therefore guarantees that the size of the
instance is reduced in terms of the complexity parameter k. It does not directly ensure a
reduction in the search space of the follow-up algorithm that is employed to solve the reduced
instance. Since the running times of FPT algorithms for the natural parameterization of Odd
Cycle Transversal [8, 19, 16] depend exponentially on the size of the sought solution,
the size of the search space considered by such algorithms can be reduced significantly by a
preprocessing step that finds some vertices S that belong to an optimal solution for the input
graph G: the search for a solution of size k on G then reduces to the search for a solution of
size k − |S| on G − S. Researchers therefore started to investigate in which situations an
efficient preprocessing phase can guarantee finding part of an optimal solution.

One line of inquiry in this direction aims at finding vertices that not only belong to an
optimal solution, but are even required for building a c-approximate solution [2, 13]; such
vertices are called c-essential. This has resulted in refined running time guarantees, showing
that an optimal odd cycle transversal of size k can be found in time 2.3146k−ℓ ·nO(1), where ℓ

is the number of vertices in the instance that are essential for making a 3-approximate
solution [2]. Another line of research, more relevant to the subject of this paper, aims at
finding vertices that belong to an optimal solution when there is a simple, locally verifiable
certificate of the existence of an optimal solution containing them. So far, the latter direction
has been explored for Vertex Cover (where a crown decomposition [1, 5] forms such a
certificate), and for the (undirected) Feedback Vertex Set problem (where an antler
decomposition [4]) forms such a certificate.

A crown decomposition (see Figure 1) of a graph G consists of a partition of its vertex
set into three parts: the crown I (which is required to be a non-empty independent set), the
head H (which is required to contain all neighbors of I), and the remainder R = V (G)\(I∪H),
such that the graph G[I ∪ H] contains a matching M of size |H|. Since I is an independent
set, this matching partners each vertex of H with a private neighbor in I. The existence of a
crown decomposition shows that there is an optimal vertex cover (a minimum-size vertex set
intersecting all edges) that contains all vertices of H and none of I: any vertex cover contains
at least |M | = |H| vertices from I ∪ H to cover the matching M , while H covers all the edges
of G that can be covered by selecting vertices from I ∪ H. Hence a crown decomposition
forms a polynomial-time verifiable certificate that there is an optimal vertex cover containing
all vertices of H. It facilitates a reduction in search space for Vertex Cover: graph G

has a vertex cover of size k if and only if G − (I ∪ H) has one of size k − |H|. A crown
decomposition can be found in polynomial time if it exists, which yields a powerful reduction
rule for Vertex Cover [1].
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Figure 1 Examples of crown decomposition (left), antler decomposition for Feedback Vertex
Set (middle) and a tight OCC for Odd Cycle Transversal (right). Packings of forbidden
subgraphs are highlighted in bold.

Inspired by this decomposition for Vertex Cover, Donkers and Jansen [4] introduced
the notion of an antler decomposition of a graph G. It is a partition of the vertex set
into three parts: the antler A (which is required to induce a non-empty acyclic graph),
the head H (which is required to contain almost all neighbors of A: for each tree T in
the forest G[A], there is at most one edge that connects T to a vertex outside H), and
the remainder R = V (G) \ (A ∪ H), while satisfying an additional condition in terms of
an integer z that represents the order of the antler decomposition. In its simplest form
for z = 1 (we discuss z > 1 later), the additional condition says that the graph G[A ∪ H]
should contain |H| vertex-disjoint cycles. Since G[A] is acyclic, each of these cycles contains
exactly one vertex of H. They certify that any feedback vertex set of G contains at least |H|
vertices from A ∪ H . Since A induces an acyclic graph, and all cycles in G that enter a tree T

of G[A] from R must leave A from H, the set H intersects all cycles of G that contain a
vertex of A ∪ H. Hence there is an optimal feedback vertex set containing H. By finding an
antler decomposition we can therefore reduce the problem of finding a size-k solution in G to
finding a size-(k − |H|) solution in G − (A ∪ H), and therefore reduce the search space for
algorithms parameterized by solution size.

Donkers and Jansen proved that, assuming P ̸= NP, there unfortunately is no polynomial-
time algorithm to find an antler decomposition if one exists [4, Theorem 3.4]. However, they
gave a fixed-parameter tractable preprocessing algorithm, parameterized by the size of the
head. There is an algorithm that, given a graph G and integer k such that G contains an
antler decomposition (A, H, R) with |H| = k, runs in time 2O(k5) · nO(1) and outputs a set of
at least k vertices that belong to an optimal feedback vertex set. For each fixed value of k,
this yields a preprocessing algorithm to detect vertices that belong to an optimal solution if
there is a simple certificate of their membership in an optimal solution.

In fact, Donkers and Jansen gave a more general algorithm; this is where z-antlers
for z > 1 make an appearance. Recall that for a 1-antler decomposition (A, H, R) of a
graph G, the graph G[A ∪ H ] must contain a collection C of |H| vertex-disjoint cycles. These
cycles certify that the set H is an optimal feedback vertex set in the graph G[A ∪ H ]. In fact,
the feedback vertex set H in G[A ∪ H] is already optimal for the subgraph C ⊆ G[A ∪ H],
and that subgraph C is structurally simple because each of its connected components (which
is a cycle) has a feedback vertex set of size z = 1. This motivates the following definition
of a z-antler decomposition for z > 1: the set H should be an optimal feedback vertex set
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for the subgraph G[A ∪ H], and moreover, there should be a subgraph Cz ⊆ G[A ∪ H] such
that (1) H is an optimal feedback vertex set in Cz, and (2) each connected component of Cz

has a feedback vertex set of size at most z. So for a z-antler decomposition (A, H, R) of a
graph G, there is a certificate that H is part of an optimal solution in the overall graph G

that consists of the decomposition together with the subgraph Cz ⊆ G[A ∪ H ] for which H is
an optimal solution. The complexity of verifying this certificate scales with z: it comes down
to verifying that H ∩ V (C) is indeed an optimal feedback vertex set of size at most z for each
connected component of the subgraph Cz. Donkers and Jansen presented an algorithm that,
given integers k ≥ z ≥ 0 and a graph G that contains a z-antler decomposition whose head
has size k, outputs a set of at least k vertices that belongs to an optimal feedback vertex
set in time 2O(k5z2)nO(z). For each fixed choice of k and z, this gives a reduction rule (that
can potentially be applied numerous times on an instance) to reduce the search space if the
preconditions are met.

Our contribution. We investigate search-space reduction for Odd Cycle Transversal,
thereby continuing the line of research proposed by Donkers and Jansen [4]. We introduce
the notion of tight odd cycle cuts to provide efficiently verifiable witnesses that a certain
vertex set belongs to an optimal odd cycle transversal, and present algorithms to find vertices
that belong to an optimal solution in inputs that admit such witnesses.

To be able to state our main result, we introduce the corresponding terminology. An
odd cycle cut (OCC) in an undirected graph G is a partition of its vertex set into three
parts: the bipartite part B (which is required to induce a bipartite subgraph of G), the cut
part C (which is required to contain all neighbors of B), and the rest R = V (G) \ (B ∪ C).
An odd cycle cut is called tight if the set C forms an optimal odd cycle transversal for the
graph G[B ∪ C]. In this case, it is easy to see that there is an optimal odd cycle transversal
in G that contains all vertices of C, since all odd cycles through B are intersected by C.
A tight OCC (B, C, R) has order z if there is a subgraph Cz of G[B ∪ C] for which C is
an optimal odd cycle transversal, and for which each connected component of Cz has an
odd cycle transversal of size at most z. This means that for z = 1, if there is such a
subgraph Cz ⊆ G[B ∪ C], then there is one consisting of |C| vertex-disjoint odd cycles. We
use the term z-tight OCC to refer to a tight OCC of order z. Our notion of z-tight OCCs
forms an analogue of z-antler decompositions. Note that the requirement that C contains all
neighbors of B is slightly more restrictive than in the Feedback Vertex Set case. We
need this restriction for technical reasons, but discuss potential relaxations in Section 7.

Similarly to the setting of z-antlers for Feedback Vertex Set, assuming P ̸= NP there
is no polynomial-time algorithm that always finds a tight OCC in a graph if one exists;
not even in the case z = 1. We therefore develop algorithms that are efficient for small k

and z. The following theorem captures our main result, which is an OCT-analogue of the
antler-based preprocessing algorithm for FVS. The width of an OCC (B, C, R) is defined
as |C|. Our theorem shows that for constant z we can efficiently find k vertices that belong
to an optimal solution, if there is a z-tight OCC of width k.

▶ Theorem 1. There is a deterministic algorithm that, given a graph G and integers
k ≥ z ≥ 0, runs in 2O(k33z2) · nO(z) time and either outputs at least k vertices that belong to
an optimal solution for Odd Cycle Transversal, or concludes that G does not contain a
z-tight OCC of width k.
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One may wonder whether it is feasible to have more control over the output, by having
the algorithm output a z-tight OCC (B, C, R) of width k, if one exists. However, a small
adaptation of a W[1]-hardness proof for antlers [4, Theorem 3.7] shows that the corresponding
algorithmic task is W[1]-hard even for z = 1. This explains why the algorithm outputs a
vertex set that belongs to an optimal solution, rather than a z-tight OCC.

In terms of techniques, our algorithm combines insights from the previous work on
antlers [4] with ideas in the representative-set based kernelization [15] for Odd Cycle
Transversal. The global idea behind the algorithm is to repeatedly simplify the graph,
while preserving the structure of z-tight OCCs, to arrive at the following favorable situation:
if there was a z-tight OCC of width k in the input, then the reduced graph has a z-tight
OCC (B, C, R) of the same width that satisfies |B| ∈ kO(1). At that point, we can use color
coding with a set of kO(1) colors to ensure that the structure B ∪ C gets colored in a way
that makes it tractable to identify it. The simplification steps on the graph are inspired
by the kernelization for Odd Cycle Transversal and involve the computation of a cut
covering set of size kO(1) that contains a minimum three-way {X, Y, Z}-separator for all
possible choices of sets {X, Y, Z} drawn from a terminal set T of size kO(1). The existence of
such sets follows from the matroid-based tools of Kratsch and Wahlström [15]. We can avoid
the randomization incurred by their polynomial-time algorithm by computing a cut covering
set in 2O(k) · nO(1) time deterministically. Compared to the kernelization for Odd Cycle
Transversal, a significant additional challenge we face in this setting is that the size of
OCTs in the graph can be arbitrarily large in terms of the parameter k. Our algorithm is
looking for a small region of the graph in which a vertex set exists with a simple certificate
for its membership in an optimal solution; it cannot afford to learn the structure of global
OCTs in the graph. This local perspective poses a challenge when repeatedly simplifying the
graph: we not only have to be careful how these operations affect the total solution size in G,
but also how these modifications affect the existence of simple certificates for membership in
an optimal solution. This is why our reduction step works with three-way separators, rather
than the two-way separators that suffice to solve or kernelize OCT.

Organization. The remainder of this work is organized as follows. The first twelve pages of
the manuscript present the key statements and ideas. For statements marked (⋆), the proof
can be found in the full version [12]. After presenting preliminaries on graphs in Section 2,
we define (tight) OCCs in Section 3 and explore some of their properties. In Section 4 we
show how color coding can be used to find an OCC whose bipartite part is connected and
significantly larger than its cut. Given such an OCC, we show in Section 5 how to simplify
the graph while preserving the essential structure of odd cycles in the graph. This leads
to an algorithm that finds vertices belonging to an optimal solution the presence of a tight
OCC in Section 6. Finally, we conclude in Section 7.

2 Preliminaries

Graphs. We only consider finite, undirected, simple graphs. Such a graph G consists
of a set V (G) of vertices and a set E(G) ⊆

(
V (G)

2
)

of edges. For ease of notation, we
write uv for an undirected edge {u, v} ∈ E(G); note that uv = vu. When it is clear
which graph is referenced from context, we write n and m to denote the number of vertices
and edges in this graph respectively. For a vertex v ∈ V (G), its open neighborhood
is NG(v) := {u ∈ V (G) | uv ∈ E(G)} and its closed neighborhood is NG[v] := NG(v) ∪ {v}.
For a vertex set S ⊆ V (G) we define its open neighborhood as NG(S) := (

⋃
v∈S NG(v)) \ S
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and its closed neighborhood as NG[S] :=
⋃

v∈S NG[v]. The subgraph of G induced by a vertex
set S ⊆ V (G) is the graph G[S] on vertex set S with edges {uv ∈ E(G) | {u, v} ⊆ S}. We
use G−S as a shorthand for G[V (G)\S] and write G−v instead of G−{v} for singletons. A
walk is a sequence of (not necessarily distinct) vertices (v1, . . . , vk) such that vi, vi+1 ∈ E(G)
for each i ∈ [k − 1]. The walk is closed if we additionally have vk, v1 ∈ E(G). A cycle
is a closed walk whose vertices are all distinct. The length of a cycle (v1, . . . , vk) is k. A
path is a walk whose vertices are all distinct. The length of a path (v1, . . . , vk) is k − 1.
The vertices v1, vk are the endpoints of the path. For two (not necessarily disjoint) vertex
sets S, T of a graph G, we say that a path P = (v1, . . . , vk) in G is an (S, T )-path if v1 ∈ S

and vk ∈ T . If one (or both) of S and T contains only one element, we may write this single
element instead of the singleton set consisting of it.

The parity of a path or cycle refers to the parity of its length. For a walk W = (v1, . . . , vk),
we refer to its vertex set as V (W ) = {v1, . . . , vk}. Observe that if W is a closed walk of odd
parity (a closed odd walk), then the graph G[V (W )] contains a cycle of odd length (an odd
cycle): any edge connecting two vertices of V (W ) that are not consecutive on W splits the
walk into two closed subwalks, one of which has odd length.

For a positive integer q, a proper q-coloring of a graph G is a function f : V (G) →
{0, . . . , q − 1} such that f(u) ̸= f(v) for all uv ∈ E(G). A graph G is bipartite if its vertex
set can be partitioned into two partite sets L∪̇R such that no edge has both of its endpoints
in the same partite set. It is well-known that the following three conditions are equivalent
for any graph G: (1) G is bipartite, (2) G admits a proper 2-coloring, and (3) there is no
cycle of odd length in G. An odd cycle transversal (OCT) of a graph G is a set S ⊆ V (G)
such that G − S is bipartite. An independent set is a vertex set S such that G[S] is edgeless.
We say that a vertex set X in a graph G separates two (not necessarily) disjoint vertex
sets S and T if no connected component of G − X simultaneously contains a vertex from S

and a vertex from T . For a collection {T1, . . . , Tm} of (not necessarily disjoint) vertex sets
in a graph G, we say that a vertex set X is an {T1, . . . , Tm}-separator if X separates all
pairs (Ti, Tj) for i ̸= j. Note that X is allowed to intersect

⋃
i∈[m] Ti.

The following lemma gives a simple sufficient condition for a graph to be bipartite.

▶ Lemma 2. Let G be a graph and let VL ∪ V0 ∪ VR = V (G) be a partition of its vertices such
that V0 is a {VL, VR}-separator. If there exist proper 2-colorings fL : (V0 ∪ VL) → {0, 1} and
fR : (V0 ∪ VR) → {0, 1} of G[V0 ∪ VL] and G[V0 ∪ VR] respectively such that fL(v0) = fR(v0)
for every v0 ∈ V0, then G is bipartite.

Proof. To show that G is bipartite, we provide a proper 2-coloring of the graph. We define
this coloring f : V (G) → {0, 1} such that f(v0) = fL(v0)(= fR(v0)) for every v0 ∈ V0,
f(vL) = fR(vL) for every vL ∈ VL and f(vR) = fR(vR) for every vR ∈ VR. To see that f is
a proper 2-coloring, we show that no edge e ∈ E(G) is monochromatic under f .

By the assumption that V0 is a separator, each edge e ∈ E(G) is contained in G[V0 ∪ VL]
or G[V0 ∪ VR] (or both). If e is an edge in the former, its endpoints are colored the same
as in fL and are therefore bichromatic. The analogous argument for fR holds when e is an
edge of the latter. ◀

The next lemma captures the main idea behind the iterative compression algorithm [19]
(cf. [3, §4.4]) for solving Odd Cycle Transversal. Given a (potentially suboptimal) odd
cycle transversal W of a graph, it shows that the task of finding an odd cycle transversal
disjoint from W whose removal leaves a bipartite graph with W0, W1 ⊆ W in opposite partite
sets of its bipartition is equivalent to separating two vertex sets derived from a baseline
bipartition of G − W . Our statement below is implied by Claim 1 in the work of Jansen and
de Kroon [9].
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▶ Lemma 3 ([9, Claim 1]). Let W be an OCT in graph G. For each partition of W = W0 ∪W1
into two independent sets, for each proper 2-coloring c of G − W , we have the following
equivalence for each X ⊆ V (G) \ W : the graph G − X has a proper 2-coloring with W0 color
0 and W1 color 1 if and only if the set X separates A from R in the graph G − W , with:

A = (NG(W0) ∩ c−1(0)) ∪ (NG(W1) ∩ c−1(1)),
R = (NG(W0) ∩ c−1(1)) ∪ (NG(W1) ∩ c−1(0)).

Multiway cuts. Let T = (T1, . . . , Ts) be a partition of a set T ⊆ V (G) of terminal vertices
in an undirected graph G. A multiway cut of T in G is a vertex set X ⊆ V (G) such that for
each pair ti, tj ∈ T \ X that belong to different parts of partition T , the graph G − X does
not contain a path from ti to tj . A restricted multiway cut of T is a vertex set X that is a
multiway cut for T such that X ∩ T = ∅, i.e., it does not contain any terminals.

For a positive integer s, a generalized s-partition of a set T is a partition T ∗ =
(T0, T1, . . . , Ts, TX) of T into s + 2 parts, some of which can be empty. The parts T0 and TX

play a special role, which are the free and deleted part of T ∗, respectively. Let T ′ = T1∪. . .∪Ts.
A multiway cut of T ∗ is a (non-restricted) multiway cut in G − TX of the partition
T = (T1, . . . , Ts) of T ′. Hence the vertices of TX are deleted from the graph, while no
cut constraints are imposed on the vertices of T0.

A minimum multiway cut of a generalized s-partition T ∗ in a graph G is a minimum-
cardinality vertex set that satisfies the requirements of a multiway cut for T ∗. The following
cut covering lemma by Kratsch and Wahlström will be useful for our algorithm.

▶ Theorem 4 ([15, Theorem 5.14]). Let G be an undirected graph on n vertices with a
set T ⊆ V (G) of terminal vertices, and let s ∈ N be a constant. There is a set Z ⊆ V (G)
with |Z| = O(|T |s+1) such that Z contains a minimum multiway cut of every generalized
s-partition T ∗ of T , and we can compute such a set in randomized polynomial time with
failure probability O(2−n).

For a generalized s-partition T = (T0, T1, . . . , Ts, TX) of a terminal set T ⊆ V (G) in an
undirected graph G, we call a multiway cut X of T restricted if it satisfies X ∩ (

⋃s
i=1 Ti) = ∅.

Hence a restricted multiway cut does not delete any vertex that is active as a terminal in the
generalized partition. A minimum restricted multiway cut of T is a restricted multiway cut
whose size is minimum among all restricted multiway cuts.

The following lemma shows that the randomization in the polynomial-time algorithm by
Kratsch and Wahlström can be avoided by the use of a single-exponential FPT algorithm,
and that the cut covering set can be adapted to work for restricted multiway cuts as long as
we have a bound on their size.

▶ Lemma 5 (⋆). Let s ∈ N be a constant. There is a deterministic algorithm that, given an
undirected n-vertex graph G and a set T ⊆ V (G) of terminals, runs in time 2O(|T |) · nO(1)

and computes a set Z ⊆ V (G) with |Z| = O(|T |2s+2) with the following guarantee: for each
generalized s-partition T of T , if there is a restricted multiway cut for T of size at most |T |
in G, then the set Z contains a minimum restricted multiway cut of T .

3 Odd Cycle Cuts

In order to extend the “antler” framework of [4] to Odd Cycle Transversal (OCT),
we define a problem-specific decomposition which we term Odd Cycle Cuts (OCCs). Our
decompositions have three parts – a bipartite induced subgraph XB , a vertex separator XC

(which we call the head), and a remainder XR.
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▶ Definition 6 (Odd Cycle Cut). Given a graph G, a partition (XB , XC , XR) of V (G) is an
Odd Cycle Cut (OCC) if (1) G[XB ] is bipartite, (2) there are no edges between XB and XR,
and (3) XC ∪ XB ̸= ∅.

We say |XC | is the width of an OCC, and observe that XC hits all odd cycles in G − XR.
We denote the minimum size of an OCT in G by oct(G).

▶ Observation 7. If (XB , XC , XR) is an OCC in G, then |XC | ≥ oct(G[XC ∪ XB ]).

Analogous to z-antlers [4], here we define a tight OCC as a special case of an OCC. For a
graph G, a set XC ⊆ V (G) and an integer z, an XC-certificate of order z is a subgraph H

of G such that XC is an optimal OCT of H, and for each component H ′ of H we have
|XC ∩ V (H ′)| ≤ z. Throughout the paper, and starting with the following definition, we will
use the convention of referring to a tight OCC as (AB , AC , AR) to emphasize its stronger
guarantees compared to an arbitrary OCC (XB , XC , XR).

▶ Definition 8 ((z-)tight OCC). An OCC (AB , AC , AR) of a graph G is tight when |AC | =
oct(G[AC ∪AB ]). Furthermore, (AB , AC , AR) is a tight OCC of order z (equivalently, z-tight
OCC) if G[AC ∪ AB ] contains an AC-certificate of order z.

Note this definition naturally implies oct(G) = |AC | + oct(G[AR]): the union of AC

with a minimum OCT in G[AR] forms an OCT for G (since AC separates AB from AR)
for which the requirement |AC | = oct(G[AC ∪ AB ]) guarantees optimality. The main result
of this section is that assuming a graph G has a z-tight OCC, there exists a z-tight OCC
(AB , AC , AR) such that the number of components in G[AB] is bounded in terms of z and
|AC |. This is an extension of [4, Lemma 4.6], and we defer its proof to the full version of this
paper [12].

▶ Lemma 9 (⋆). Let (AB , AC , AR) be a z-tight OCC in a graph G for some z ≥ 0. There
exists a set A′

B ⊆ AB such that (A′
B , AC , AR ∪ AB \ A′

B) is a z-tight OCC in G and G[A′
B ]

has at most z2|AC | components.

Finally, we introduce the notion of an imposed separation problem whose solutions
naturally correspond to odd cycle transversals of specific subgraphs.

▶ Definition 10. Let (XB , XC , XR) be an OCC of G, and let fB : XB → {0, 1} be a proper
2-coloring of G[XB ]. Let C1, C2 ⊆ XC be two disjoint subsets of XC and let fC : C1 → {0, 1}
be a (not necessarily proper) 2-coloring of the vertices in C1. Based on this 4-tuple of objects
(C1, C2, fC , fB), we define three (potentially overlapping) subsets A, R, N ⊆ XB.
1. Let A be the set of vertices vb ∈ XB with a neighbor vc ∈ C1 such that fB(vb) = fC(vc).
2. Let R be the set of vertices vb ∈ XB with a neighbor vc ∈ C1 such that fB(vb) ̸= fC(vc).
3. Finally, let N := NG(C2) ∩ XB.

We refer to the problem of finding a smallest {A, R, N}-separator in G[XB ] as the {A, R, N}-
separation problem imposed onto G[XB ] by (C1, C2, fC , fB).

To see the connection between solutions and OCTs, one may let C1 and fB in this
definition correspond to W and c respectively in Lemma 3, while the color classes of fC

correspond to the sets W0 and W1 respectively. As shown below in Lemma 11, we can
recognize parts of tight OCCs as optimal solutions to specific imposed separation problems.

Although Definition 10 requires fB and fC to be colorings of XB and C1 respectively, we
sometimes abuse the notation by providing colorings whose domains are supersets of these
intended domains. In these cases, one may interpret the definition of the imposed separation
problem as if given the restrictions of these colorings to their respective intended domains.
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One important role of these separation problems is to allow us to characterize intersections
of two OCCs when at least one is tight. Specifically, in Lemma 11, we show that the
intersection of one OCC’s head with the other OCC’s bipartite part forms an optimal solution
to a specific 3-way separation problem, which is even optimal for a corresponding 2-way
problem.

▶ Lemma 11 (⋆). Let (XB , XC , XR) be a (not necessarily tight) OCC in the graph G

and let (AB , AC , AR) be a tight OCC in G. Let fX : XB → {0, 1} and fA : AB → {0, 1} be
proper 2-colorings of G[XB] and G[AB] respectively. Let A, R and N be the three sets to
be separated in the separation problem imposed onto G[XB ] by (XC ∩ AB , XC ∩ AR, fA, fB)
and let their names correspond to their roles as defined in Definition 10. Then, AC ∩ XB is
both a minimum-size {A, R}-separator and a minimum-size {A, R, N}-separator in G[XB ].

This will prove to be a useful property in Section 5 by which we are able to recognize part
of a tight OCC (AB , AC , AR) in an arbitrary graph. We complement it with the statement
below, indicating that the intersection AC ∩ XB is even bounded in size.

▶ Lemma 12. Let (XB , XC , XR) be a (not necessarily tight) OCC in the graph G and let
(AB , AC , AR) be a tight OCC in G. Then |AC ∩ XB | ≤ |XC |.

Proof. Suppose for contradiction that |AC ∩ XB | > |S|. Then, A′
C := (AC \ XB) ∪ (XC ∩

(AB ∪ AC)) is a subset of AB ∪ AC that is strictly smaller than AC . Now, showing that A′
C

is an OCT of G[AB ∪ AC ] contradicts the assumption that AC is a smallest such OCT by
virtue of (AB , AC , AR) being a tight OCC.

To show that A′
C is an OCT of G[AB ∪ AC ], we let F be an arbitrary odd cycle in this

graph and show that it intersects A′
C . First, if F intersects XC , it intersects A′

C in particular,
since XC ∩ (AB ∪ AC) ⊆ A′

C .
Otherwise, since XC separates XB and XR in G, F is completely contained in either

G[XB] or G[XR]. The former is not possible, since G[XB] is bipartite by assumption, so
F lives in G[XR]. Furthermore, since F was assumed to live in G[AB ∪ AC ] and G[AB]
is bipartite, F intersects AC . In particular, as we found F to live in G[XR], it intersects
AC ∩ XR which is a subset of A′

C by construction. Hence, F intersects A′
C in any case. ◀

4 Finding Odd Cycle Cuts

Our ultimate goal is to show that if the graph contains any tight OCC (XB , XC , XR) with
|XC | ≤ k, then we can produce a tight OCC with |XC | ≤ k and |XB | upper-bounded by
some function of k. To achieve this, we first show that we can efficiently find some OCC
where |XB | is large enough, and then (in Section 5) that we can reduce any such cut so that
|XB | is small without destroying any essential structure of the input graph.

Specifically, we say an OCC (XB , XC , XR) is reducible with respect to some function
gr if |XB | > gr(|XC |). Our results all hold for a specific polynomial gr(x) in Θ(x16). Its
definition relies on Lemma 5 in which sets Z and T are specified. Setting the value of s in
this lemma to 3 yields the existence of a constant c ∈ N such that |Z| ≤ c · |T |8 for large
enough |T |. Given this constant c, we define gr : N → N as gr(x) = (6(28c + 1)2 + 28c) · x16.

We say an OCC (XB , XC , XR) is a single-component OCC if G[XB ] is connected. Given
a graph G, our goal is to output a reducible OCC efficiently assuming that G contains a
single-component OCC (XB , XC , XR) with |XB | > gr(2|XC |) and |XC | ≤ k. We achieve this
by color coding of the vertices in G (see the full version [12] for details). Consider a coloring
χ : V (G) → {Ḃ, Ċ}. For an integer ℓ, an OCC (XB , XC , XR) with |XB | ≥ ℓ is ℓ-properly
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colored by χ if XC ⊆ χ−1(Ċ) and there is a set of ℓ vertices of XB that are colored Ḃ and
induce a connected subgraph of G. First, we show how to construct an OCC with large XB

from a proper coloring.

▶ Lemma 13 (⋆). Given a graph G, integers k, ℓ, and a coloring χ : V (G) → {Ḃ, Ċ} of
V (G) that ℓ-properly colors a single-component OCC (XB , XC , XR) with |XC | ≤ k, an OCC
(X ′

B , X ′
C , X ′

R) such that |X ′
B | ≥ ℓ and |X ′

C | ≤ 2k can be found in polynomial time.

Proof sketch. We iterate over the connected components of G[χ−1(Ḃ)]. For any component
which is both large (≥ ℓ) and bipartite, we try to find an OCC of small enough width where
the component is contained in the XB side of the cut. To do this, we use the machinery of
bipartite separations introduced in Jansen et al. [11] (see the full version [12] for details).
Intuitively, given a vertex set C which induces a connected bipartite subgraph, they either
find a set of at most 2k vertices which separates C ′ ⊇ C from the remainder of the graph so
that G[C ′] is bipartite, or certify that C is not part of XB for any OCC with width ≤ k. ◀

Now, we use this coloring scheme to find a reducible OCC, assuming that a graph G has
a single-component OCC (XB , XC , XR) with large XB .

▶ Lemma 14. There exists a 2O(k16)nO(1)-time algorithm that, given a graph G and an
integer k, either determines that G does not contain a single-component OCC (XB , XC , XR)
of width at most k with |XB | > gr(2k) or outputs a reducible OCC in G.

Proof. We will invoke the algorithm from Lemma 13 multiple times for ℓ = gr(2k) + 1. If
we supply a coloring that ℓ-properly colors (XB , XC , XR), then the algorithm is guaranteed
to find an OCC (X ′

B , X ′
C , X ′

R) such that |X ′
B | > gr(2k) and |X ′

C | ≤ 2k, which is reducible
as |X ′

B | > gr(2k) ≥ gr(|X ′
C |). If all relevant colorings fail to find such a reducible OCC,

then we can conclude that G does not contain a single-component OCC (XB , XC , XR) with
|XC | ≤ k and |XB | ≥ ℓ > gr(2k).

Let X ′
B ⊆ XB be an arbitrary vertex set of size ℓ that induces a connected subgraph

of G. Since G[XB] is connected, such X ′
B must exist. Observe that we obtain an ℓ-proper

coloring if XC ∪ X ′
B are colored correctly. Let s = |XC ∪ X ′

B | = k + gr(2k) + 1 = O(k16).
Using an (n, k)-universal set, which is a well-known pseudorandom object [17, 3] used to

derandomize applications of color coding (see [3, Theorem 5.20]), we can construct a family
of 2O(s) log n many subsets A1, . . . , A2O(s) log n with the guarantee that for each set S ⊆ V (G)
of size s, for each subset S′ of S, there exists a set in the family with Ai ∩ S = S′. This
can be done in 2O(s)n log n = 2O(k16)n log n time. From this family, we can construct
a family of colorings that is guaranteed to include one that ℓ-properly colors a suitable
OCC (XB , XC , XR) if one exists. To derive a coloring χi from a member Ai ⊆ V (G) of the
(n, s)-universal set, it suffices to pick χ(a ∈ A) = Ṙ and χ(a /∈ A) = Ḃ.

We run the nO(1)-time algorithm from Lemma 13 for each coloring, which results in the
overall runtime 2O(k16)nO(1). ◀

5 Reducing Odd Cycle Cuts

Given an OCC (XB , XC , XR) of G with |XB | > gr(|XC |), the next step is to “shrink” XB

in a way that preserves some of the structure of the input graph. In this section, we give
a reduction to do this and prove that it preserves the general structure of minimum-size
OCTs and of tight OCCs in the graph. The reduction starts with a marking scheme that is
discussed separately in Section 5.1. We give the full reduction, which includes this marking
scheme as a subroutine, in Section 5.2. The reduction will only affect G[XB ] and the edge
set between XB and XC , which already ensures that an important part of the input graph is
maintained.
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5.1 A marking scheme for the reduction
The goal of the marking scheme is to mark a set B∗ ⊆ XB of size |XC |O(1) as “interesting”
vertices that the reduction should not remove or modify. Intuitively, we want this set to
contain vertices which we expect might be part of the cut part of a tight OCC in G. More
precisely, we guarantee that for every tight OCC in G there is a (possibly different) tight
OCC (AB , AC , AR) such that AC ∩ XB is contained in the marked set B∗.

As seen in Lemma 11, for every tight OCC (AB , AC , AR) in the graph, the intersection
AC ∩ XB forms an optimal solution to a specific imposed separation problem (Definition 10).
As such, it suffices if B∗ is a cut covering set for these imposed separation problems.

Indeed, the key ingredient of the algorithm presented below is the computation of such a
cut covering set. Preceding this computation is a graph reduction ensuring that the computed
set covers precisely the imposed separation problems. In Lemma 5, we will show that a cut
covering set can be computed in deterministic FPT time parameterized by the size of the
terminal set, which leads to a total running time of 2O(|XC |)nO(1) time for the marking step.

▶ Marking step. Consider the following algorithm.
Input: A graph G and an OCC (XB , XC , XR) of G.
Output: Marked vertices B∗ ⊆ XB.

1. Find a proper 2-coloring fX : XB → {0, 1} of G[XB ].
2. Construct an auxiliary (undirected) graph G′, initialized to a copy of G[XB]. For each

v ∈ XC , do the following:
Add vertices v(0) and v(1) to G′.
For each neighbor u ∈ NG(v) ∩ XB, add an edge v(fX (u))u.

Let T be the set {v(i) | v ∈ XC , i ∈ {0, 1}}. Note that |T | = 2|XC |.
3. Compute a cut covering set B∗ ⊆ V (G′) via Lemma 5 such that for every partition T ∗ =

(T0, T1, T2, T3, TX) of T , the set B∗ contains a minimum-size solution to the following
problem:

find a vertex set S ⊆ V (G′) \ (T1 ∪ T2 ∪ T3) such that S separates Ti and Tj in the
graph G′ − TX for all 1 ≤ i < j ≤ 3,

as long as this problem has a solution of size at most |T |.

▶ Lemma 15 (⋆). Let B∗ be constructed as in the Marking step when given the graph G and
an OCC (XB , XC , XR) of G as input. If there exists a z-tight OCC (AB , AC , AR) in G, then
there exists a z-tight OCC (A∗

B , A∗
C , A∗

R) in G with |A∗
C | = |AC | and with A∗

C ∩ XB ⊆ B∗.

Proof sketch. Let fX : XB → {0, 1} be the 2-coloring obtained in step 1 of the Marking step,
let fA : AB → {0, 1} be a proper 2-coloring of G[AB] and consider the separation problem
imposed onto G[XB ] by (XC ∩ AB , XC ∩ AR, fA, fB). Let A, R and N be the three sets to
be separated in this problem with their names corresponding to their roles as in Definition 10.

By putting the correct copy of each vertex from AB ∩ XC into T1 and T2 respectively,
putting both copies of vertices from AR ∩ XC into T3 and putting both copies of vertices
from AC ∩ XC into TX , we obtain a partition (∅, T1, T2, T3, TX) of the set T defined in
step 2, such that the corresponding separation problem has the same solution space as the
{A, R, N}-separation problem imposed onto G[XB ]. By construction of B∗ in step 3, there
is a set S ⊆ B∗ (possibly different from AC ∩ XB) that is an optimal {A, R, N}-separator
in G[XB ]. To construct the tight OCC (A∗

B , A∗
C , A∗

R), we use this set S as replacement for
AC ∩ XB , which is also a minimum-size {A, R, N}-separator in G[XB ] by Lemma 11.
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As such, we define A∗
C := (AC \ XB) ∪ S. To define A∗

B , let U be the set of vertices from
XB \ S that are not reachable from N in G[XB ] − S. Now, we define A∗

B := (AB \ XB) ∪ U .
Finally, we define A∗

R := V (G) \ (A∗
B ∪ A∗

C). Clearly, this 3-partition of V (G) satisfies the
constraints |A∗

C | = |AC | and A∗
C ∩ XB ⊆ B∗. We proceed by showing that it satisfies the

three additional properties required to be a z-tight OCC.
First, to see that G[A∗

B] is bipartite, we note that A∗
B only contains vertices from AB

and XB \ S. Both are vertex sets that induce a bipartite subgraph. Then, noting the
correspondence between the sets A and R obtained from the separation problem and the
sets A and R as in Lemma 3, we invoke this lemma on G[(XC ∩ AB) ∪ XB] with c = fA

and with W0 and W1 being the two color classes of this coloring restricted to XC ∩ AB . It
follows that the vertices from A∗

B in XB \ S can be properly 2-colored by a coloring f that
agrees with fA on the vertex set XC ∩ AB that separates A∗

B ∩ XR and A∗
B ∩ XB . As these

two vertex sets are properly colored by fA and f respectively, these colorings combine to a
proper 2-coloring of the entire graph G[A∗

B ] (see Lemma 2).
Secondly, a case distinction shows that there are no edges between A∗

B and A∗
R. It

combines the fact that AC ∩ XB is an {A, R, N}-separator in G[XB ] – thereby in particular
separating AB ∩ XB from N in G[XB] – and the fact that A∗

B only contains vertices that
already belonged to AB and vertices from XB that are not reachable from N in G[XB ] − A∗

C .
Finally, it remains to show that (A∗

B , A∗
C , A∗

R) has an A∗
C -certificate of order z. To prove

this, we show that the order-z certificate D of the original OCC (AB , AC , AR) is also an
order-z certificate in (A∗

B , A∗
C , A∗

R). The main effort here is to prove that D even lives in
A∗

B ∪ A∗
C , after which it is easy to see that it is also an order-z certificate for our new OCC.

As Lemma 11 guarantees that AC ∩ XB is not only an optimal {A, R, N}-separator in
G[XB] but even an optimal {A, R}-separator in this graph, it contains exactly one vertex
from every path of a maximum packing P of pairwise vertex-disjoint (A, R)-paths in G[XB ],
due to Menger’s theorem [20, Theorem 9.1]. Likewise, A∗

C ∩ XB = S is also an optimal
{A, R}-separator in G[XB ] and hence also contains exactly one vertex from every path of P .

Intuitively, for any path P ∈ P, a vertex on this path that stops being reachable from
one endpoint of P when sliding the picked vertex along the path, starts becoming reachable
from the other endpoint of P . As both endpoints of P belong to A ∪ R and S only differs
from AC ∩ XB by which vertex is picked from each path in P, it cannot drastically alter
which vertices are reachable from A ∪ R, which in turn are all vertices that end up in A∗

B .
Using the observation that AB and A∗

B are separated from N by AC and A∗
C respectively,

we see that all vertices that are disconnected from A ∪ R by substituting AC ∩ XB for S are
in particular also disconnected from N . Thereby, these vertices end up in A∗

B . This shows
that (AB ∪ AC) ⊆ (A∗

B ∪ A∗
C), which implies that the certificate D also lives in the latter. ◀

5.2 Simplifying the graph
Our eventual reduction starts with the Marking step from the previous section, after which
the graph is modified in a way that leaves marked vertices untouched. We want the reduction
to preserve the general structure of optimal OCTs and tight OCCs in the input graph. As
this is governed by the locations and interactions of odd cycles in the graph, we encode this
information in a more space-efficient manner using the following reduction.

▶ Reduction step. Given a graph G and an OCC (XB , XC , XR) of it, we construct a graph
G′ as follows.
1. Use the Marking step with input G and (XB , XC , XR) to obtain the set B∗ ⊆ XB.
2. Initialize G′ as a copy of G − (XB \ B∗).
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3. For every u, v ∈ XC ∪ B∗ and for every parity p ∈ {even, odd}, check if the subgraph
G[XB \ B∗] contains the internal vertex of a (u, v)-path with parity p. If so, then:

if p = even, add two new vertices x and x′ to G and connect both of them to u and v.
if p = odd, add four new vertices x, y, x′ and y′ to G and add the edges {u, x}, {x, y},
{y, v}, {u, x′}, {x′, y′} and {y′, v}.

Note that we explicitly allow u = v in this step.

Effectively, this reduction deletes the vertices XB \ B∗ from the graph. For each pair of
neighbors u, v from that set, if the deleted vertices provided an odd (resp. even) path between
them, then we insert two vertex-disjoint odd (resp. even) paths between u and v. Hence we
shrink the graph while preserving the parity of paths provided by the removed vertices.

As we prove in the full version of this paper [12], the reduction can be performed in
2O(|XC |) · nO(1) time and it is guaranteed to output a strictly smaller graph than its input
graph whenever it receives an OCC that is reducible with respect to the function gr as in
Section 4. To show that the reduction also preserves OCT and OCC structures, we prove
that it satisfies two safety properties formalized below in Lemmas 16 and 17.

▶ Lemma 16 (⋆). Let G be a graph, let (XB , XC , XR) be an OCC in G and let G′ be the
graph obtained by running the Reduction step with these input parameters. For all z ≥ 0, if
there exists a z-tight OCC (AB , AC , AR) in G, then there exists a z-tight OCC (A′

B , A′
C , A′

R)
in G′ with |A′

C | = |AC |.

The proof of the lemma above uses Lemma 15 to infer that, for any z-tight OCC
(AB , AC , AR) of G, the graph G also contains a z-tight OCC (A∗

B , A∗
C , A∗

R) of the same width
such that A∗

C ⊆ V (G) ∩ V (G′). This allows for the construction of an OCC (A′
B , A′

C , A′
R) in

G′ with A′
C = A∗

C . Then, A′
B can be defined as the union of A∗

B ∩ V (G) ∩ V (G′) and the
set of vertices that were added during the reduction to provide a replacement connection
between any two vertices from A∗

C ∪ (A∗
B ∩V (G)∩V (G′)). Finally, A′

R := V (G′)\ (A′
B ∪A′

C).
The proof proceeds to show that the resulting partition (A′

B , A′
C , A′

R) is a z-tight OCC
of G′. The two main insights used to prove this are the facts that:

optimal OCTs of G′ are disjoint from the set of newly added vertices V (G′) \ V (G), and
odd cycles in G can be translated to very similar odd cycles in G′ and vice versa.

These insights are also covered in the proof sketch of the second safety property below.

▶ Lemma 17 (⋆). Let G be a graph, let (XB , XC , XR) be an OCC in G and let G′ be
the graph obtained by running the Reduction step with these input parameters. If S′ is a
minimum-size OCT of G′, then S′ ⊆ V (G) ∩ V (G′) and S′ is a minimum-size OCT of G.

Proof sketch. To see that S′ ⊆ V (G) ∩ V (G′), we show that S′ contains none of the newly
added vertices in V (G′) \ V (G). These newly added vertices come in pairs that form degree-2
paths connecting the same endpoints. Consider two such paths and let u and v be the
endpoints of both of them. Suppose for contradiction that S′ uses an internal vertex p1 from
one path to break an odd cycle F . Then it must also contain an internal vertex p2 from the
other path to break the odd cycle obtained by swapping one path for the other in F . As
both these cycles also pass through u and v by construction, substituting p1 and p2 for one
of u and v in S′ yields a strictly smaller solution. This contradicts the optimality of S′.

To see that S′ is an OCT of G, suppose for contradiction that G − S′ contains an odd
cycle F . Every subpath of F that connects two vertices from V (G) ∩ V (G′) via a path whose
internal vertices lie in G − V (G′) can be replaced by one of the paths inserted during the
construction of G′, with the same endpoints and parity. Substituting every subpath of F

that is absent in G′ for such a replacement path yields a closed odd walk in G′ − S′; but this
contradicts the fact that S′ is an OCT of G′. Hence S′ ⊆ V (G) ∩ V (G′) is an OCT in G.
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It remains to show that S′ is an OCT of minimum size. Suppose for contradiction that T

is a strictly smaller OCT of G. We start by showing how to modify T into an OCT S of G

that is at most as large and lives in V (G) ∩ V (G′). To this end, let f : V (G) \ T → {0, 1}
and fX : XB → {0, 1} be proper 2-colorings of G − T and G[XB ] respectively and consider
the separation problem imposed onto G[XB ] by (XC \ T, ∅, f, fB). Let A, R, N be the three
sets to be separated in this problem with their names corresponding to their roles as in
Definition 10. Since the second argument C2 in the 4-tuple is ∅, we obtain N = ∅.

The fact that N = ∅ ensures that the separation problem above is merely a 2-way
separation problem between the sets A and R in G[XB]. These sets are defined in such a
way that, for a suitable choice of input parameters to Lemma 3, they coincide with the sets
A and R in this lemma. Applying the lemma in one direction to G[(XC \ T ) ∪ XB] with
c = f and with W0 and W1 being the two color classes of this coloring restricted to XC \ T ,
yields that T ∩ XB is an {A, R}-separator in G[XB ]. Applying it in the other direction yields
that the removal of any {A, R}-separator T ′ from G allows for a proper 2-coloring f ′ of
G[(XC \ T ) ∪ (XB \ T ′)] that agrees with the coloring f on the vertex set XC \ T . As this set
separates the subgraphs G[XR \T ] and G[XB \T ′] in G−((T \XB)∪T ′) and these subgraphs
are properly 2-colored by f and f ′ respectively, those two colorings combine to properly
2-color G − ((T \ XB) ∪ T ′) (see Lemma 2). By construction of B∗, there is a minimum-size
{A, R}-separator T ∗ in G[XB ] with T ∗ ⊆ B∗. Hence, S := (T \XB)∪T ∗ is an OCT of G that
lives in V (G) ∩ V (G′). Furthermore, since T ∗ is a minimum-size {A, R}-separator in G[XB ]
and it replaces T ∩ XB , which is also an {A, R}-separator, we find that |S| ≤ |T | < |S′|.

Since S′ was assumed to be a minimum-size OCT of G′, the smaller set S is not an OCT
of G′. Therefore, G′ − S contains an odd cycle F ′. The argument used before to convert an
odd cycle in G to one in G′ can also be used in the reverse direction to construct an odd
cycle F in G − S from F ′. The existence of this cycle contradicts the assumption that S is an
OCT of G, which concludes the proof by showing that S′ is a minimum-size OCT of G. ◀

6 Finding and Removing Tight OCCs

Now we find tight OCCs by the same color coding technique used in previous work [4].
Consider a coloring χ : V (G) ∪ E(G) → {Ḃ, Ċ, Ṙ} of the vertices and edges of a graph G. For
every color c ∈ {Ḃ, Ċ, Ṙ}, let χ−1

V (c) = χ−1(c) ∩ V (G). For any integer z ≥ 0, a z-tight OCC
(AB , AC , AR) is z-properly colored by a coloring χ if all the following hold: (i) AC ⊆ χ−1

V (Ċ),
(ii) AB ⊆ χ−1

V (Ḃ), and (iii) for each component H of G′ = G[AB ∪ AC ] − χ−1(Ṙ) we have
oct(H) = |AC ∩ V (H)| and |AC ∩ V (H)| ≤ z. Note that χ−1(Ṙ) may include both vertices
and edges, so that the process of obtaining G′ involves removing both the vertices and edges
colored Ṙ. By a straight-forward adaptation of the color coding approach from previous
work [4, Lemma 6.2], we can reconstruct a tight OCC from a proper coloring.

▶ Lemma 18 (⋆). There is an nO(z) time algorithm taking as input an integer z ≥ 0, a
graph G, and a coloring χ : V (G) ∪ E(G) → {Ḃ, Ċ, Ṙ} that either determines that χ does not
z-properly color any z-tight OCC, or outputs a z-tight OCC (AB , AC , AR) in G such that for
each OCC (ÂB , ÂC , ÂR) that is z-properly colored by χ, we have ÂB ⊆ AB and ÂC ⊆ AC .

Combining all ingredients in the previous sections leads to a proof of the main theorem.

▶ Theorem 1. There is a deterministic algorithm that, given a graph G and integers
k ≥ z ≥ 0, runs in 2O(k33z2) · nO(z) time and either outputs at least k vertices that belong to
an optimal solution for Odd Cycle Transversal, or concludes that G does not contain a
z-tight OCC of width k.
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Proof sketch. Given an input graph G, we repeatedly invoke Lemma 14 to find a reducible
OCC and use the Reduction step to shrink it. When we stabilize on a graph G′, Lemma 16
guarantees that G′ contains a z-tight OCC of width |A′

C | = k if G had one. By Lemma 9,
there is such a z-tight OCC (A′

B , A′
C , A′

R) in G′ for which G′[A′
B ] has at most z2k components.

As each such component gives rise to a single-component OCC, none of them are large enough
to be reducible. Hence |A′

C ∪ A′
B | ∈ (zk)O(1). Hence we can deterministically construct

a family of 2(kz)O(1)
nO(1) colorings that includes one that properly colors (A′

B , A′
C , A′

R).
Invoking Lemma 18 with such a coloring identifies a z-tight OCC in G′ whose head A∗

C

contains A′
C and therefore has size at least k. Then A∗

C is contained in an optimal OCT
in G′, so that Lemma 17 ensures A∗

C belongs to an optimal OCT in G. We output A∗
C . ◀

7 Conclusion

Inspired by crown decompositions for Vertex Cover and antler decompositions for Feed-
back Vertex Set, we introduced the notion of (tight) odd cycle cuts to capture local regions
of a graph in which a simple certificate exists for the membership of certain vertices in an
optimal solution to Odd Cycle Transversal. In addition, we developed a fixed-parameter
tractable algorithm to find a non-empty subset of vertices that belong to an optimal odd cycle
transversal in input graphs admitting a tight odd cycle cut; the parameter k we employed is
the width of the tight OCC. Finding tight odd cycle cuts and removing the vertices certified
to be in an optimal solution leads to search-space reduction for the natural parameterization
of Odd Cycle Transversal. To obtain our results, one of the main technical ideas
was to replace the use of minimum two-way separators that arise naturally when solving
Odd Cycle Transversal, by minimum three-way separators that simultaneously handle
breaking the odd cycles in a subgraph and separating the resulting local bipartite subgraph
from the remainder of the graph.

Theoretical challenges. There are several interesting directions for follow-up work. We
first discuss the theoretical challenges. The algorithm we presented runs in time 2kO(1)

nO(z),
where z is the order of the tight odd cycle cut in the output guarantee of Theorem 1. The
polynomial term in the exponent has a large degree, which is related to the size of the cut
covering sets used to shrink the bipartite part of an odd cycle cut in terms of its width.
While we expect that some improvements can be made by a more refined analysis, it would
be more interesting to see whether an algorithmic approach that avoids color coding can
lead to significantly faster algorithms.

An odd cycle cut (XB , XC , XR) of width |XC | = k in a graph G gives rise to a k-
secluded bipartite subgraph G[XB]; recall that a subgraph is called k-secluded if its open
neighborhood has size k. For enumerating inclusion-maximal connected k-secluded subgraphs
that satisfy a property Π, a bounded-depth branching strategy was recently proposed [10]
that generalizes the enumeration of important separators. Can such branching techniques be
used to improve the running time for the search-space reduction problem considered in this
paper to 2O(k)nO(z)?

The dependence on the complexity z of the certificate is another topic for further
investigation. The search-space reduction algorithm for Feedback Vertex Set by Donkers
and Jansen [4] that inspired this work, also incurs a factor nO(z) in its running time. For
Feedback Vertex Set, it is conjectured but not proven that such a dependence on z is
unavoidable. The situation is the same for Odd Cycle Transversal. Is there a way to rule
out the existence of an algorithm for the task of Theorem 1 that runs in time f(k, z) · nO(1)?
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A last theoretical challenge concerns the definition of the substructures that are used
to certify membership in an optimal odd cycle transversal. Our definition of an odd cycle
cut (XB , XC , XR) prohibits the existence of any edges between XB and XR. Together with
the requirement that G[XB ] is bipartite, this ensures that all odd cycles intersecting XB are
intersected by XC . In principle, one could also obtain the latter conclusion from a slightly
less restricted graph decomposition. Since any odd cycle enters a bipartite subgraph on
one edge and leaves via another, knowing that each connected component H of G[XB] is
connected to XR by at most one edge is sufficient to guarantee that all odd cycles visiting XB

are intersected by XC . The prior work on antler structures for Feedback Vertex Set
allows the existence of one pendant edge per component, and manages to detect such antler
structures efficiently. It would be interesting to see whether our approach can be generalized
for relaxed odd cycle cuts in which each component of G[XB ] has at most one edge to XR.
To adapt to this setting, one would have to refine the type of three-way separation problem
that is used in the graph reduction step.

For Odd Cycle Transversal, one could relax the definition of the graph decomposition
even further: to ensure that odd cycles visiting XB are intersected by XC , it would suffice
for each connected component H of G[XB ] to have at most one neighbor vH in XR, as long
as all vertices of H adjacent to vH belong to the same side of a bipartition of H.

Practical challenges. Since the investigation of search-space reduction is inspired by practi-
cal considerations, we should not neglect to discuss practical aspects of this research direction.
While we do not expect the algorithm as presented here to be practical, it serves as a proof
of concept that rigorous guarantees on efficient search-space reduction can be formulated.
Our work also helps to identify the types of substructures that can be used to reason locally
about membership in an optimal solution. Apart from finding faster algorithms in theory
and experimenting with their results, one could also target the development of specialized
algorithms for concrete values of k and z.

For k = 1, a tight odd cycle cut of width 1 effectively consists of a cutvertex c of the graph
whose removal splits off a bipartite connected component B but for which the subgraph
induced by B ∪ {v} contains an odd cycle. Preliminary investigations suggest that in this
case, an algorithm that computes the block-cut tree, analyzes which blocks form non-bipartite
subgraphs, and which cut vertices break all the odd cycles in their blocks, can be engineered
to run in time O(|V (G)| + |E(G)|) to find a vertex v belonging to an optimal odd cycle
transversal when given a graph that has a tight odd cycle cut of width k = 1. Do linear-time
algorithms exist for k > 1? These would form valuable reduction steps in algorithms solving
Odd Cycle Transversal exactly, such as the one developed by Wernicke [21].

The k = 1 case of the relaxed odd cycle cuts described above are in fact used as one of the
reduction rules in Wernicke’s algorithm [21, Rule 7]. His reduction applies whenever there is
a triangle {u, v, w} in which w has degree two and v has degree at most three. Under these
circumstances, there is an optimal solution that contains u while avoiding v and w: since the
removal of u decreases the degree of w to one, while w is one of the at most two remaining
neighbors of v, the removal of u breaks all odd cycles intersecting {u, v, w}. This corresponds
to the fact that the triple (XB = {v, w}, XC = {u}, XR = V (G) \ {u, v, w}) forms a tight
relaxed odd cycle cut. We interpret the fact that the k = 1 case was developed naturally in an
existing algorithm as encouraging evidence that refined research into search-space reduction
steps can eventually lead to impact in practice.
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The modularity score is one of the most important measures for assessing the quality of clusterings
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1 Introduction

One of the most central topics in network science is the detection of community structure [18].
This can be achieved via graph clustering. In its most simple form, this is the task of
searching for a partition of the vertex set into clusters and the underlying assumption is that
edges are more likely to be present inside clusters than between them. The corresponding
optimization goal is to maximize the edge coverage of the partition, that is, the number of
intracluster edges. Of course, the trivial partition into one single cluster trivially maximizes
the number of intracluster edges. To counter this, several approaches have been proposed,
for example one may demand that clusters form highly connected subgraphs [11, 12] or one
may penalize missing edges inside clusters [19].

The arguably most popular way of achieving clusterings with high edge coverage while
avoiding the trivial clustering is to maximize modularity [17]. In the modularity measure, the
contribution of a cluster consists of two parts: the first part corresponds to the edge coverage
and the second part is a degree tax which penalizes clusters that have many high-degree
vertices. The idea behind the degree tax is that such clusters are expected to contain many
edges simply because there are many edges that are incident with the cluster vertices. Hence,
for a positive contribution to the modularity score, the number of present edges should
exceed the number of expected ones. More formally, a clustering of a graph G = (V, E) is a
partition of V and for a vertex set C ⊆ V , E(C) denotes the set of edges with both endpoints
in C. Now the definition of modularity reads as follows.

▶ Definition 1.1. The modularity of a clustering C of a graph G with m edges is given by

q(C) =
∑
C∈C

|E(C)|
m

−
(∑

v∈C deg(v)
)2

4m2 .
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16:2 Modularity Clustering Parameterized by Max Leaf Number

The problem of computing an optimal clustering under this measure is now defined as follows.

Modularity
Input: A graph G = (V, E).
Task: Find a clustering C with maximum modularity q(C).

Modularity is NP-hard [4] and therefore heuristics, for example greedy algorithms [5] or
local search [3], are prevalent in practice. The modularity measure has some counterintuitive
behavior [4]. Consequently, some research focuses on better understanding the properties of
optimal clusterings [4] or on providing bounds for the modularity values of certain graph
classes [1, 14, 15, 8, 20]; for an overview, refer to the work of Skerman [20].

The importance of the modularity measure has motivated further research into the
complexity of Modularity. For example, computing the best clustering with exactly two
clusters is also NP-hard [4] even when the input graphs are restricted to be d-regular for
any d ≥ 9 [7]. Meeks and Skerman [16] initiated the analysis of Modularity within the
framework of parameterized complexity obtaining the following results: They showed that
Modularity can be solved in polynomial time on graphs with constant treewidth and that
Modularity is fixed-parameter tractable with respect to the vertex cover number of the
input graph G. Moreover, it was shown that Modularity is W[1]-hard with respect to
the parameter pathwidth of G plus feedback vertex set number of G, so presumably there
exists no FPT-algorithm for this parameter. For the parameter max leaf number of G,
denoted λ(G), an XP-algorithm was shown. That is, the algorithm has a polynomial running
time for constant values of λ(G), but the degree of the polynomial depends on λ(G). The
precise parameterized complexity of Modularity with respect to the max leaf number of G

was left open.
In this work, we continue this line of research. We show that the XP-algorithm for the

max leaf number λ(G) can be improved to an FPT-algorithm. While the max leaf number,
one of the most classic structural parameters [10], is quite restrictive, our result provides only
the second nontrivial FPT-algorithm for this very important problem. Roughly speaking, our
algorithm exploits that large graphs with bounded max leaf number contain very long paths
consisting of degree-2 vertices and that the clustering for these paths follows a relatively
regular pattern. The algorithm consists of three steps. In a first branching, the global
structure of the clustering is constrained. In particular, it is determined how the vertices of
degree at least 3 are clustered and with which degree-2 paths these clusters share vertices.
To prepare the next step, it is shown that the clusters consisting of degree-2 vertices have
roughly the same size and, based on this, that the clusters containing high-degree vertices
also deviate by at most 22 λ(G)2 from the size of the path clusters. This allows us to find
the correct cluster sizes via branching. The remaining problem of computing an optimal
clustering under these size constraints is then solved via an ILP formulation.

Our algorithm works also on disconnected graphs G, where we define λ(G) to be the
sum of the max leaf numbers of the connected components of G. The only proofs where
we assume connectivity are those that bound the number of high-degree vertices in terms
of λ(G) and they are easily seen to also hold for disconnected graphs by summing over the
connected components.

On the negative side, we strengthen the previous W[1]-hardness for Modularity para-
meterized by pathwidth plus feedback vertex set number by showing that Modularity is
W[1]-hard with respect to the vertex deletion distance of G to a disjoint union of stars. This
parameter is obviously at least as large as the feedback vertex set number of G. Moreover,
the parameter is also lower-bounded by pathwidth + 1: Any vertex deletion set S to a
disjoint union of stars gives a path decomposition where every bag contains S plus a star
center plus one leaf of the star.
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In our opinion, this W[1]-hardness for distance to stars puts the FPT-algorithm for
the admittedly large parameter max leaf number into context by underlining once more
that Modularity is resistant to quite large structural parameterizations. Due to space
constraints for statements marked with a star (*), the proofs are deferred to the long version
of this work.

2 Preliminaries

We consider undirected graphs G = (V, E) and let n denote the number of vertices of G and m

the number of edges of G. The neighborhood of a vertex v ∈ V is defined as N(v) = {u ∈
V | {u, v} ∈ E} and for a set of vertices V ′ ⊆ V we define N(V ′) = (

⋃
v∈V ′ N(v)) \ V ′. The

degree of a vertex v is denoted by deg(v) = |N(v)|. We define V=1 = {v ∈ V | deg(v) = 1}
and analogously V=2 = {v ∈ V | deg(v) = 2} and V≥3 = {v ∈ V | deg(v) ≥ 3}.

We denote the degree sum of a vertex set C, also called volume of C, by vol(C) :=∑
v∈C deg(v). For two clusterings C and C′ we say that C is better than C′ if q(C) > q(C′).

Since we are often not interested in the actual value of the modularity of a clustering, but
only whether it is better than another clustering, we define the function q̃(C) = 4m2q(C) =
4m
∑

C∈C |E(C)| −
∑

C∈C vol(C)2. Clearly, for two clusterings C and C′ of the same graph
we have q(C) ≥ q(C′) if and only if q̃(C) ≥ q̃(C′).

A 2-path is a path (v1, v2, . . . , vk) with deg(vi) ≤ 2 for all i ∈ [k]. A 2-path is maximal if
it is not contained in a longer 2-path. For a maximal 2-path P = (v1, v2, . . . , vk) we refer
to v1 and vk as the endpoints of P and define V (P ) = {v1, v2 . . . , vk}. A 2-path is pendent
if deg(v1) = 1 or deg(vk) = 1. A branch of a graph G is a maximal path or cycle in which
every internal vertex of the path has degree 2 in G. We denote with BG the set of all
branches in G and with β(G) = |BG| the number of all branches in G. Note that β(G) can
be computed in O(n + m) time. Let G be a connected graph. The maximum leaf number
λ(G) of G (or just max leaf number) is the maximum number of leaves in any spanning tree
of G. When the graph G is clear from the context we just write λ for the max leaf number.

▶ Lemma 2.1 ([4]). There is always a clustering with maximum modularity, in which each
cluster induces a connected subgraph.

▶ Lemma 2.2 ([4]). A clustering with maximum modularity has no cluster that consists of a
single vertex with degree 1.

In our correctness proofs, we are often concerned with the effect of removing one vertex
from some cluster Ci and adding some vertex to another cluster Cj . In particular, we are
interested in the change of the total degree tax for these two clusters. The following lemma
describes a situation where the degree tax decreases.

▶ Lemma 2.3. Let Ci and Cj be two clusters and let u and v be two vertices of the same
degree such that u ∈ Ci and deg(u) > 0. If vol(Ci\{u}) > vol(Cj), then vol(Ci)2+vol(Cj)2 >

vol(Ci \ {u})2 + vol(Cj ∪ {v})2.

Proof. The claim holds trivially if v ∈ Cj , thus assume v /∈ Cj . Since u ∈ Ci, we
have vol(Ci) = vol(Ci \ {u}) + deg(u). Therefore,

vol(Ci)2 = (vol(Ci \ {u}) + deg(u))2 = vol(Ci \ {u})2 + 2 · vol(Ci \ {u}) · deg(u) + deg(u)2.

Since deg(u) = deg(v), we similarly have

vol(Cj ∪ {v})2 = (vol(Cj) + deg(u))2 = vol(Cj)2 + 2 · vol(Cj) · deg(u) + deg(u)2.
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Thus,

vol(Ci)2 + vol(Cj)2 − (vol(Ci \ {u})2 + vol(Cj ∪ {v})2)
= 2 · vol(Ci \ {u}) · deg(u) + deg(u)2 − (2 · vol(Cj) · deg(u) + deg(u)2)
= 2 · deg(u) · (vol(Ci \ {u}) − vol(Cj)) > 0. ◀

We now show that the number of vertices v ∈ V with deg(v) ≥ 3 is bounded by a function of
the max leaf number. More precisely, we give a bound on the sum of the degrees of these
vertices. This bound is obtained via bounding the number of branches in G. Eppstein [9]
already showed that this number is O(λ(G)2). We give a precise bound on the hidden
constant since we will use it in our algorithm.

▶ Lemma 2.4 (*). Let G = (V, E) be a connected graph. Then we have β(G) ≤ 21 λ(G)2.

The next statement directly follows from Lemma 2.4, since each edge incident with a
vertex v ∈ V≥3 corresponds to a branch and each branch contains at most two vertices
in V≥3.

▶ Corollary 2.5. Let G = (V, E) be a connected graph. Then we have
∑

v∈V≥3
deg(v) ≤

42 λ(G)2.

3 Preclusterings and Cluster Sizes

3.1 Preclustering Branching
The general approach of the algorithm is to consider in a branching step all the possibilities
of how some optimal clustering might interact with the vertices of degree at least 3. The
structure containing this information is a partial clustering defined as follows.

▶ Definition 3.1. A preclustering is a set P := {C1, . . . , Cs} of nonempty disjoint subsets
of V .

▶ Definition 3.2. A clustering C = {C ′
1, . . . , C ′

t} extends a preclustering P = {C1, . . . , Cs} if
for each Ci ∈ P there is exactly one cluster C ′

j ∈ C such that Ci ⊆ C ′
j and each cluster C ′

j ∈ C
has nonempty intersection with at most one cluster of P.

To find an optimal solution efficiently from a preclustering, we will need to fix not only which
vertices of degree 3 are contained in which clusters but also how these clusters interact with
the potentially very long 2-paths connecting them. The necessary information is provided by
what we call full preclusterings, defined as follows (see Figure 1 for an example).

▶ Definition 3.3. A preclustering P = {C1, . . . , Cs} is a full preclustering if every vertex
of V≥3 is contained in some cluster of P and for every maximal 2-path P = (v1, v2, . . . , vk)
of G either

all vertices of P are contained in some common cluster Ci,
no vertex of P is contained in any cluster Ci, or
k ≥ 2, for each cluster Ci we have Ci ∩ V (P ) ⊆ {v1, vk} and if v1 ∈ Ci then also u1 ∈ Ci,
where u1 is the unique neighbor of v1 in V≥3, and if vk ∈ Ci then also uk ∈ Ci, where uk

is the unique neighbor of vk in V≥3.
The idea of full preclusterings is as follows. For the fully contained maximal 2-paths P , the
cluster is already fixed. For the endpoints of the other maximal 2-paths, we know that they
are either 1) in different clusters than their high-degree neighbors which helps us to separate
the instance in smaller pieces, or 2) in the same cluster as their high-degree neighbors which
allows us to use the clusters with these high-degree vertices in some exchange arguments
because they also contain some degree-2 vertices.
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p2
1 p2

2 p2
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p1
1

p3
1

p3
2

p3
3
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Figure 1 Example of a full preclustering P = {C1, C2}. The cluster C1 is encircled in red,
the cluster C2 is encircled in blue. Cluster C1 contains the complete maximal 2-path (p1

1),
cluster C2 contains one endpoint of the maximal 2-path (p2

1, p2
2, p2

3) and no vertex of the max-
imal 2-path (p3

1, p3
2, p3

3, p3
4) is contained in any cluster in P.

▶ Definition 3.4. A clustering C legally extends a full preclustering P if
C extends P,
a cluster C ∈ C contains {u, v} where u is an endpoint of a maximal 2-path P and v is a
neighbor of u in V≥3 only if some cluster of P does.

Note that for a given clustering C, there is exactly one full preclustering P such that C legally
extends P. We say that P is the preclustering that corresponds to C.

Let us first show that we may indeed consider all full preclusterings within FPT time.

▶ Lemma 3.5. Any graph G has λ(G)O(λ(G)2) full preclusterings.

Proof. A full preclustering P can be identified by
1. the partition of V≥3 that it induces,
2. for each 2-path, the information whether that 2-path is fully contained in some cluster

of P , disjoint from all clusters of P , or whether its endpoints are contained in some cluster
of P.

In the latter case, the cluster which contains an endpoint is uniquely determined to be
the cluster containing the neighbor of the endpoint in V≥3. By Corollary 2.5, the number
of vertices in V≥3 is O(λ(G)2) and thus the number of partitions of V≥3 is λ(G)O(λ(G)2).
By Lemma 2.4, the number of branches and thus the number of 2-paths is O(λ(G)2).
For each 2-path, we need to distinguish altogether five cases, hence there are 2O(λ(G)2)

possibilities for the 2-path information. The total number of full preclusterings is thus
λ(G)O(λ(G)2) · 2O(λ(G)2) = λ(G)O(λ(G)2). ◀

A full preclustering P constrains some edges of the graph to not be contained in any cluster
of a clustering that legally extends P. This set of edges is defined as follows.

▶ Definition 3.6. Let P = {C1, . . . , Cs} be a full preclustering of G. The separation induced
by P is the edge set

S(P) :=
⋃

i∈[s]

{{u, v} ∈ E | u ∈ Ci ∩ V≥3 and v /∈ Ci}.

As the name suggests a separation fully separates some parts of the instance. These are
exactly the connected components of G − S(P), they are called the separated components
of P . By Lemma 2.1 it is sufficient to consider clusterings such that every cluster induces a
connected subgraph. For any such clustering C that legally extends a full preclustering P,
we have that every cluster C is completely contained in some separated component of P . We
thus compute an optimal clustering of each separated component of P individually.
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We will distinguish those clusters that contain at least one vertex from V≥3, these are
called base clusters, from those clusters that are contained in the 2-paths, these are called
path clusters. The two main parts that are not yet determined by a full preclustering are how
far each base cluster extends into the neighboring 2-paths and how large the clusters which
are fully contained in 2-paths are. The next step is now to show that the 2-path clusters
inside a separated component have roughly the same size. Note that this is not true for all
full preclusterings but rather that there is some preclustering which has a globally optimal
legal extension for which this is the case.

▶ Lemma 3.7. There exists an optimal clustering C such that
C legally extends some full preclustering P, and
in every separated component S of P, there is some number p such that the path clusters
in S have size p or p + 1.

The approach to show Lemma 3.7 is, roughly speaking, to show that a big size difference
between path clusters leads to suboptimality because we can exchange some degree-2 vertices
to balance the cluster sizes. This exchange may need to involve base clusters which contain
some vertices of 2-paths. To distinguish whether a base cluster contains some vertices of a
2-path or not, we say a base cluster C extends into a 2-path P if |C ∩ P | ≥ 1. Note that
per definition a base cluster C extends into a 2-path P if and only if in the corresponding
preclustering there is a cluster CP ⊆ C such that |CP ∩ P | ≥ 1.

▶ Definition 3.8. Two clusters C ∈ C and C ′ ∈ C are neighboring clusters or neighbors if
{u, v} ∈ E for some u ∈ C, v ∈ C ′.

For a clustering C with neighboring path clusters C1 = {ui, . . . , uj} and C2 = {uj+1, . . . , uj+ℓ}
on a 2-path P = (u1, . . . , ut), we define the clustering C′ obtained by the swap of C1 and C2
as the clustering that is the same as C except for clusters C1 and C2 which are replaced
by the clusters C ′

1 = {ui, . . . , ui+ℓ−1} and C ′
2 = {ui+ℓ, . . . , uj+ℓ}. In other words, the swap

exchanges the lengths of two neighboring path clusters. Clearly, the clustering resulting from
applying a swap to C has the same modularity as C.

3.2 Difference in Cluster Sizes is bounded in λ

We now prove a series of lemmas which are needed for the proof of Lemma 3.7. We distinguish
those path clusters that contain a degree-1 vertex which we call pendent path clusters and
those that do not contain a degree-1 vertex which are called nonpendent path clusters.

Note that a separated component consisting of a 2-path with two vertices of degree 1 is
an isolated path, a graph with constant treewidth, for which the optimal clustering can be
computed directly in polynomial time [16]. We therefore assume in the following that there
is at most one pendent path cluster per 2-path.

The first lemma shows that in optimal solutions, pendent clusters are at least as large as
neighboring nonpendent clusters.

▶ Lemma 3.9 (*). Let G = (V, E) be a graph and C a clustering of G. Let P be a pendent
2-path and C1 ∈ C and C2 ∈ C be path clusters in P such that C2 is pendent, C1 is nonpendent,
and |C1| > |C2|. Then, C is not optimal.

The next lemma shows that path clusters from the same 2-path in G can only differ in size
by at most one vertex.

▶ Lemma 3.10. Let G = (V, E) be a graph and C a clustering of G. Let P be a 2-path and
C1 ∈ C and C2 ∈ C be path clusters in P with |C1| > |C2| + 1. Then, C is not optimal.
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Proof. Recall that we can assume that not both of C1 and C2 are pendent, since otherwise P

is an isolated path for which the optimal clustering can be computed directly in polynomial
time. Since P is a 2-path, we can swap neighboring clusters of P without changing the
modularity, so we can assume that C1 and C2 are neighboring clusters.

Let v1 ∈ C1 ∩ N(C2) be the neighbor of C2 in C1. Consider the clustering C′ where C1
and C2 are replaced by clusters C ′

1 = C1 \ {v1} and C ′
2 = C2 ∪ {v1}, respectively, and all

other clusters are unchanged.
Note that we only have to consider the contribution of C1 and C2 to q̃(C) and the

contribution of C ′
1 and C ′

2 to q̃(C′) since the other clusters are identical for both clusterings.
Furthermore, since v1 is part of a 2-path, we have |E(C ′

1)| = |E(C1)| − 1 and |E(C ′
2)| =

|E(C2)| + 1, so the total number of intracluster edges remains the same.
Moreover, by Lemma 3.9, we may assume that C2 is nonpendent. Now, if C1 is nonpendent,

then vol(C1 \ {v1}) = 2|C1| − 2 > 2|C2| = vol(C2) since |C1| > |C2| + 1. Thus Lemma 2.3
implies vol(C1)2 + vol(C2)2 > vol(C1 \ {v1})2 + vol(C2 ∪ {v1})2. Finally, if C1 is pendent,
then again vol(C1 \ {v1}) = 2|C1| − 3 ≥ 2|C2| + 1 > 2|C2| = vol(C2) since |C1| > |C2| + 1
and thus |C1| ≥ |C2| + 2. Hence, C′ is a better clustering. ◀

The next lemma shows that two path clusters with the same base cluster as a neighbor can
only differ in size by at most one vertex.

▶ Lemma 3.11 (*). Let G = (V, E) be a graph and C a clustering of G. Let C ∈ C be a base
cluster that extends into a 2-path P1 and a 2-path P2. Let CP1 ∈ C be a path cluster in P1
and CP2 ∈ C be a path cluster in P2 with |CP1 | > |CP2 | + 1. Then, C is not optimal.

We are now ready to show Lemma 3.7.

▶ Lemma 3.7. There exists an optimal clustering C such that
C extends some full preclustering P, and
in every separated component of P, there is some number p such that the path clusters
have size p or p + 1.

For the proof of Lemma 3.7 we need the following definition.

▶ Definition 3.12. Let C be a clustering that extends some full preclustering P and let S be
a separated component of P. Let C and C̃ be path clusters in S contained in the 2-paths P

and P̃ , respectively. Since C and C̃ are part of the same separated component, there is a
smallest number ℓ ≥ 1 for which there is a sequence of 2-paths P1, . . . , Pℓ and a sequence
of extended base clusters B1, . . . , Bℓ−1 such that P = P1, P̃ = Pℓ and Bi extends into Pi

and Pi+1 for each i ∈ [ℓ − 1]. We then say that C and C̃ have path cluster distance ℓ.

Proof (of Lemma 3.7). Assume towards a contradiction that for every optimal clustering C
and its corresponding full preclustering P , there is a separated component of P that contains
path clusters C1 and C2 with |C1| − |C2| ≥ 2. We choose C in such a way that there is a
separated component S of P such that S contains path clusters C and C̃ with

p := |C| and p̃ := |C̃| = p + c for some c > 1,
the clusters C and C̃ have path cluster distance r, and
r is the minimal path cluster distance of any two path clusters C1, C2 with |C1|− |C2| ≥ 2
in the same separated component of any optimal clustering.

Let P be the 2-path that contains C and P̃ be the 2-path that contains C̃. Let P1, . . . , Pr

and B1, . . . , Br−1 be the sequences of 2-paths and extended base clusters for C and C̃ as
described in Definition 3.12.
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16:8 Modularity Clustering Parameterized by Max Leaf Number

If r = 1, then we have p̃ ∈ {p, p+1} by Lemma 3.10 and the optimality of C, contradicting
the assumption p̃ = p + c. If r = 2, then there is a base cluster B1 that extends into both P

and P̃ , so we have again p̃ ∈ {p, p + 1}, since otherwise C would not be optimal according to
Lemma 3.11, contradicting the assumption p̃ = p + c. Now consider the case r ≥ 3. First,
we show that we can assume that C and B1 are neighboring clusters: If C is pendent and
has a neighboring nonpendent path cluster C ′ of size p + 1, then the clustering C is not
optimal by Lemma 3.9. Hence, if C is pendent and not a neighboring cluster of B1, then we
may choose the nonpendent cluster C ′ instead of C. Now, if C is nonpendent, since P1 is
a 2-path, we can swap neighboring clusters of P1 until we reach B1 without changing the
modularity. Altogether, we can assume that C and B1 are neighboring clusters. Let Ĉ be
the path cluster of P2 neighboring B1. Note that |Ĉ| ∈ {p − 1, p, p + 1} due to Lemma 3.11.
If |Ĉ| ∈ {p − 1, p}, then we have a contradiction to C and C̃ having minimal path cluster
distance, since |C̃| − |Ĉ| ≥ 2 and Ĉ and C̃ have path cluster distance r − 1. Thus, let
|Ĉ| = p + 1. Let v1 ∈ B1 ∩ N(C) be the neighbor of C in B1 and let v2 ∈ Ĉ ∩ N(B1) be
the neighbor of B1 in Ĉ. Consider the clustering C′ where B1, C, and Ĉ are replaced by
clusters B′

1 = (B1 \ {v1}) ∪ {v2}, C ′ = C ∪ {v1}, and Ĉ ′ = Ĉ \ {v2}, respectively. Clearly, we
have q̃(C′) = q̃(C), so C′ is also an optimal clustering. Note that in C′ the clusters Ĉ ′ and C̃

are in the same separated component of the preclustering P ′ corresponding to C′. Moreover,
in C′ the clusters Ĉ ′ and C̃ have path cluster distance r − 1 and |Ĉ ′| = p. Altogether, we
thus have a contradiction to C and C̃ having minimal path cluster distance. ◀

By Lemma 3.7 for each separated component we can distinguish between small and big path
clusters of size p and p + 1, respectively. The next lemma shows that for an extended base
cluster and a neighboring path cluster the size difference is bounded by a function of λ(G).

▶ Lemma 3.13. Let G = (V, E) be a graph and C a clustering of G. Let C ∈ C be a base cluster
that extends into a 2-path P and let CP ∈ C be a path cluster in P . If |CP | > |C| + 22 λ(G)2

or |CP | < |C| − 2, then C is not optimal.

Proof. Without loss of generality, we may assume that CP is a neighboring cluster of the
base cluster C, as otherwise all exchanges between C and CP can be carried out by moving
the path clusters between C and CP .

First, consider the case where |CP | > |C| + 22 λ(G)2. Let v ∈ CP ∩ N(C) be the
neighbor of C in CP . Consider the clustering C′ where CP and C get replaced by clusters
C ′

P = CP \ {v} and C ′ = C ∪ {v}, respectively, and all other clusters are not changed.
Note that we only have to consider the contribution of CP and C to q̃(C) and the

contribution of C ′
P and C ′ to q̃(C′) since the other clusters are identical for both clusterings.

Furthermore, since v is part of a 2-path, we have |E(C ′
P )| = |E(CP )| − 1 and |E(C ′)| =

|E(C)| + 1, so the total number of intracluster edges remains the same. We can express the
volume of the base cluster C as the sum vol(C) = vol(C ∩V=1) + vol(C ∩V=2) + vol(C ∩V≥3).
According to Lemma 2.5 we have vol(V≥3) ≤ 42 λ(G)2 and therefore also vol(C ∩ V≥3) ≤
42 λ(G)2. Thus, if CP is nonpendent, we have

vol(CP \ {v}) = 2|CP | − 2 > 2|C| + 44 λ(G)2 − 2 > vol(C).

Similarly, if CP is pendent, then

vol(CP \ {v}) = 2|CP | − 3 > 2|C| + 44 λ(G)2 − 3 > vol(C).

Thus, in both cases Lemma 2.3 implies vol(CP )2 + vol(C)2 > vol(CP \ {v})2 + vol(C ∪ {v})2

and C′ is a better clustering.
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Second, consider the case |CP | < |C| − 2. Let v ∈ C ∩ N(CP ) be the neighbor of CP

in C. Consider the clustering C′ where C and CP get replaced by clusters C ′ = C \ {v} and
C ′

P = CP ∪ {v}, respectively, and all other clusters are not changed.
Again, we only have to consider the contribution of CP and C to q̃(C) and the contribution

of C ′
P and C ′ to q̃(C′) since the other clusters are identical for both clusterings. Furthermore,

note that since v is part of a 2-path, we have |E(C ′
P )| = |E(CP )|+1 and |E(C ′)| = |E(C)|−1,

so the total number of intracluster edges remains the same. Moreover, since C is connected
we have vol(C) > 2|C| − 2. Hence, vol(C \ {v}) > 2|C| − 4 = 2(|C| − 2) > 2|CP | ≥ vol(CP ).
Thus, Lemma 2.3 implies vol(C)2 + vol(CP )2 > vol(C \ {v})2 + vol(CP ∪ {v})2 and therefore
the clustering C is not optimal. ◀

▶ Lemma 3.14. Let G = (V, E) be a graph and C a clustering of G. Let C ∈ C and Ĉ ∈ C
be base clusters of the same separated component such that |C| + 22 λ(G)2 < |Ĉ|. Then, C is
not optimal.

Proof. Let (C = C1, C2, . . . , Ct = Ĉ) be a sequence of clusters such that Ci and Ci+1 extend
into the same 2-path Pi. Consider the clustering C′ obtained as follows: Cluster C1 gains
one vertex from P1, all path clusters on P1 are shifted by one position on the path, C2 loses
one vertex on P1 and gains one vertex on P2 and so on until we reach Ĉ which only loses
one vertex on Pt−1.

The number of edges covered by C′ is the same as for C. Moreover, the only two
clusters whose volume has changed are C and Ĉ with C gaining a degree-2 vertex u

and Ĉ losing a degree-2 vertex v. By Corollary 2.5, we have vol(C) ≤ 2|C| + 42λ(G)2

and vol(Ĉ \{v}) ≥ 2(|C|+22λ(G)2 −1) = 2|C|+44λ(G)2 −2 > 2|C|+42λ(G)2 since Ĉ \{v}
is connected and |Ĉ \ {v}| ≥ |C| + 22λ(G)2 and λ(G) ≥ 2. Thus, C, Ĉ, u, and v fulfill the
conditions of Lemma 2.3 and C′ is a better clustering than C. ◀

▶ Lemma 3.15. There exists an optimal clustering C such that
C extends some full preclustering P, and
in every separated component of P there is some number p such that each path cluster
has size p or p + 1 and the base clusters have a size in the range [p − 22 λ2, p + 2].

Proof. Note that the second statement is true for every separated component S that does
not contain any path clusters, since we can set p as the size of the largest base cluster and
all other base clusters in S then have a size in the range [p − 22 λ2, p] according to Lemma
3.14. Thus it is sufficient to consider separated components that contain a path cluster.

Moreover, due to Lemma 3.7, we can assume that there is a non-empty family F of
optimal clusterings where in every separated component of the corresponding preclustering
there is some number p such that the path clusters have size p or p + 1. We thus assume
towards a contradiction that for every optimal clustering C ∈ F and its corresponding full
preclustering P, there is a separated component S of P that contains a base cluster C of
size |C| /∈ [p − 22 λ2, p + 2], where p and p + 1 are the sizes of path clusters in S.

Now, let C ∈ F be an optimal clustering with its corresponding full preclustering P
and let S be a separated component of P such that in S there is a base cluster C with
|C| /∈ [p − 22 λ2, p + 2]. Let P be a 2-path in S that C extends into and let CP be a path
cluster in P of size p. Since |CP | = p > |C| + 22 λ2 or |CP | = p < |C| − 2, according to
Lemma 3.13 the clustering C is not optimal, a contradiction to the assumption. ◀
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4 Solving Separated Components

We now show how to compute an optimal clustering extending a given full preclustering P
under the assumption that the full preclustering can be legally extended to an optimal
clustering. The algorithm considers the separated components one by one. We thus assume
in the following, that we are given one separated component H. Let C1, . . . , Ct denote the
base clusters of the full preclustering that are contained in H, and let P1, . . . , Pq denote the
maximal 2-paths of vertices in H that are not contained in any cluster Ci. The problem
is thus to determine how far the clusters extend into the paths Pi and how large the path
clusters in each 2-path Pi are.

The main observations from Section 3.2 are that for each separated component there is
a number p such that the path clusters have size p or p + 1 and that the size of each base
cluster Ci is in [p − 22 λ2, p + 2]. The algorithm to compute the optimal clustering will now
consist of two main steps. First, we perform a branching to fix p and the size of each base
cluster. Afterwards, we formulate the problem as an ILP.

For the branching step, first observe that the number of choices for p is less than n. Now
the number of different choices for the base clusters is λO(λ2) since there are O(λ2) base
clusters, and for each the number of possible sizes is 22 λ2 +3. Hence, the total number of
created branches is n · λO(λ2).

Now, for each branch we search for an optimal clustering of H that legally extends the
preclustering and fulfills all the cluster size constraints of the branch. Let c1, . . . , ct denote
the cluster size constraints for the base clusters.

The first observation now is that the modularity of a cluster C ′
i containing a cluster Ci is

determined by the branch assumption: the only aspect of the cluster Ci that is not fixed
by the preclustering is the total number of vertices from neighboring 2-paths of Ci that are
contained in C ′

i \ Ci. This number is fixed by the branching, it is precisely ci − |Ci|. Each of
these additional vertices contributes a value of 2 to vol(C ′

i) and one additional edge to |E(C ′
i)|.

Hence, the contribution of the final clusters C ′
i ⊇ Ci is fixed for all base clusters Ci.

Moreover, for each path cluster C the modularity contribution is
q1 := (p − 1)/m − (2p)2/4m2 when C is nonpendent and |C| = p, and
q2 := p/m − (2p + 2)2/4m2 when C is nonpendent and |C| = p + 1.
q′

1 := (p − 1)/m − (2p − 1)2/4m2 when C is pendent and |C| = p, and
q′

2 := p/m − (2p + 1)2/4m2 when C is pendent and |C| = p + 1.
Consequently, the only unknown quantity that influences the modularity of the clustering is
the number of pendent and nonpendent path clusters that have size p and the number of
pendent and nonpendent path clusters that have size p + 1.

With this discussion in mind, we find the optimal clustering by the following ILP. For
each 2-path Pi we introduce variables x1,i and x2,i representing the number of path clusters
contained in Pi of size p and p + 1, respectively. If Pi is pendent, then we also introduce
variables x′

1,i and x′
2,i representing the number of pendent clusters of size p and p + 1,

respectively. For each 2-path Pi, we declare one endpoint to be the right endpoint of Pi and
one to be the left endpoint of Pi, we also introduce variables er

i and eℓ
i that represent the

number of vertices of Pi that do not belong to path clusters but to the base clusters that
extend into Pi containing the right and left endpoint, respectively. Now, for a base cluster Ci,
we let Nr

i denote the set of 2-paths Pj such that Ci extends from the right into Pj (that
is, Ci contains the neighbor of the right endpoint of Pj) and N ℓ

i denote the set of 2-paths Pj

such that Ci extends from the left into Pj . All variables are constrained to be nonnegative
integers. Then, the ILP reads as follows.
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max
∑
Pi

q1 · x1,i + q2 · x2,i + q′
1 · x′

1,i + q2 · x′
2,i (1)

s.t. p · x1,i + (p + 1) · x2,i + er
i + eℓ

i = |Pi| ∀ nonpendent Pi (2)
p · x1,i + (p + 1) · x2,i + p · x′

1,i + (p + 1) · x′
2,i + er

i = |Pi| ∀ pendent Pi (3)∑
Pj∈Nr

i

er
j +

∑
Pj∈Nℓ

i

eℓ
j = ci − |Ci| ∀ Ci (4)

x′
1,i + x′

2,i ≤ 1 ∀ 1-pendent Pi (5)
x′

1,i + x′
2,i ≤ 2 ∀ 2-pendent Pi (6)

Here, a 1-pendent path is a pendent path with one vertex of degree 1, and a 2-pendent path
is a path with two vertices of degree 1.1

By the discussion above, the objective function (1) maximizes the modularity of the
clustering for the separated component given the size constraints. Constraint (2) guarantees
that the number of length-p and length-(p + 1) paths together with the path vertices that
end up in base clusters gives the total path length for nonpendent paths. Constraint (3)
guarantees the same for pendent paths. Constraint (4) guarantees that the base clusters
fulfill the size constraints of the current branch. Finally, observe that Lemma 2.4 implies that
the ILP has O(λ2) variables since we have a constant number of variables for each branch of
the separated component.

We now have all the necessary parts to prove the main result of this work.

▶ Theorem 4.1. Modularity can be solved in λO(λ2) ·nO(1) time.

Proof. The algorithm enumerates all full preclusterings. For each full preclustering P, a
clustering is computed that legally extends P. The correctness of the algorithm can be
seen as follows. Fix an optimal clustering C. Then, there is a full preclustering P such
that C legally extends P . By Lemma 3.15, there exists for each separated component of P a
number p such that all path clusters of the component have size p or p + 1 and the size of
each base cluster Ci is in [p − 22 λ2, p + 2]. For each separated component, the algorithm
considers one branch where p and the sizes of the base clusters in the component are the
same as the sizes of the corresponding clusters in C. For this branch, the ILP computes a
clustering of the component which has maximum modularity under the constraints. Thus,
the modularity of the computed clustering for each separated component is the same as the
modularity of C for this component, and the returned clustering is globally optimal.

It remains to show the running time bound. By Lemma 3.5, the number of full preclus-
terings is λO(λ2). For each of them, the algorithm branches for each separated component
into n · λO(λ2) cases for the sizes of the path and base clusters. For each branch, an ILP
with O(λ2) variables is solved. This can be done in λO(λ2) ·nO(1) time [6]. The overall
running time follows. ◀

5 Parameterization by distance to stars

In this section, we strengthen previous hardness results for Modularity by showing W[1]-
hardness for the parameter vertex deletion distance to disjoint union of stars. This parameter
is defined as follows. Let G = (V, E) be a graph. A modulator set to a disjoint union of

1 These are isolated paths for which the optimal clustering can be also computed directly in polynomial
time, but for the sake of brevity, we decided to describe a unified approach that can solve all separated
components.
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16:12 Modularity Clustering Parameterized by Max Leaf Number

stars for G is a set of vertices S ⊆ V , such that G[V \ S] is a disjoint union of stars. For a
graph G, the vertex deletion distance to disjoint union of stars dts(G) is the size of a smallest
modulator set to a disjoint union of stars for G.

We show W[1]-hardness for Modularity parameterized by dts(G) by presenting a
reduction from Unary Bin Packing defined as follows.

Unary Bin Packing
Input: A number of bins r, a capacity of a single bin k, and a multi-set of integers
A = {a1, . . . , an} such that

∑
a∈A a = rk and r and k are encoded in unary.

Question: Is there a surjective mapping α : A → [r] such that for every j ∈ [r] we
have

∑
a∈α−1(j) a = k?

Unary Bin Packing is W[1]-hard for the parameter number of bins r [13]. Our reduction is
an adaption of a parameterized reduction for showing the hardness of Equitable Connected
Partition parameterized by the vertex deletion distance to various graph classes [2]. A main
difficulty that needs to be overcome for our proof is that the sizes of the different gadgets
need to be carefully balanced to achieve that a clustering corresponds to a bin packing and
that a size-balanced clustering achieves the optimal modularity. In our proof, we consider
the decision variant of Modularity where we ask if there is a clustering C for G with a
modularity score q(C) (or equivalently q̃(C)) of at least some threshold value q∗.

Construction: Let I = (A = {a1, . . . an}, r, k0) be an instance of Unary Bin Packing.
Let k = k0 · r2 · n2 and a∗

i = ai · r2 · n2. Clearly,
∑n

i=1 a∗
i = r · k. Note that the instance I∗ =

(A∗ = {a∗
1, . . . , a∗

n}, r, k) of Unary Bin Packing is equivalent to I, since each item and
bin size is scaled by the same factor r2 · n2. We construct an instance I ′ = (G, q∗) of
Modularity that is equivalent to I∗ as follows. Let G be an initially empty graph. For
every number a∗

i ∈ A∗, we create an item gadget Si which is a star with a∗
i − 1 leaf vertices

and star center vertex ci. Next, we create r bin gadgets B1, . . . , Br. Each of these gadgets Bj

consists of a star with p := 5r2k2n2 leafs and a star center vertex bj . We add an edge between
every center vertex bj of a bin gadget and every center vertex ci of an item gadget. Finally,
we add x := 8pk = 40r2k3n2 isolated edges e1, . . . , ex. Since

∑n
i=1 a∗

i = r · k, the constructed
graph G has m := rn + rp + (rk − n) + x edges. This concludes the construction, except for
the concrete modularity threshold q∗ whose definition is deferred to the long version of this
work.

Observe that after deleting all star centers bj of bin gadgets Bj for j ∈ [r] each connected
component of the resulting graph G′ = G − (

⋃
j∈[r]{bj}) is either an isolated edge eℓ, an item

gadget Si or an isolated vertex that was a leaf vertex of a bin gadget Bj , all of which are
stars. Thus dts(G) ≤ r where r is the number of bins for I∗. Since Unary Bin Packing is
W[1]-hard for the number of bins, it thus remains to show the correctness of the construction.

First, observe that, by Lemmas 2.1 and 2.2, in every optimal clustering the vertices of a
star Si belong to the same cluster. The same is true for a star Bj . Moreover, each of the
isolated edges eℓ forms a separate cluster and we denote E := {eℓ | ℓ ∈ [x]}. Thus from here
on out we can assume that an optimal clustering C for G has the form C = {C1, . . . , Ct} ∪ E ,
where Ci contains ri ∈ [0, r] bin gadgets Bi

1, . . . , Bi
ri

as well as ni ∈ [0, n] items gadgets,
where the item gadgets have si leafs in total. For the value of q̃(C) we thus get

q̃(C) = 4m

(
t∑

i=1
|E(Ci)|

)
−

t∑
i=1

vol(Ci)2 + q̃(E) (7)

= 4m

(
t∑

i=1
rip + rini + si

)
−

t∑
i=1

(2rip + rin + rni + 2si)2 + q̃(E), (8)

where q̃(E) is the contribution of the partial clustering E to the total modularity score.
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The idea of the reduction is as follows. A modularity score for G of at least q∗ can only be
achieved by a clustering where each cluster (that is not an isolated edge eℓ) contains exactly
one bin gadget and some item gadgets with total number of vertices k. Such a clustering
corresponds to a partition of the items in A into r bins of size k0, scaled by the factor r2 · n2.
The values for p and x as well as the scaling factor r2 · n2 for the items and bin sizes are
chosen accordingly.

▶ Theorem 5.1 (*). Modularity is W[1]-hard when parameterized by the vertex deletion
distance to disjoint union of stars dts.

6 Conclusion

We provided an FPT-algorithm for Modularity parameterized by a classic graph parameter,
the max leaf number. Clearly, improvements of the running time for the max leaf number
parameterization and FPT-algorithms for smaller structural parameters are desirable. In
terms of running time improvements, it would also be interesting to reconsider and improve
the FPT-algorithm for Modularity parameterized by the vertex cover number of G [16].
A particularly interesting question is whether one can replace the quadratic programming
part for the vertex cover parameterization by a purely combinatorial algorithm or by an ILP
formulation. The W[1]-hardness for the parameterization by distance to stars underlines
once more the algorithmic difficulty of the problem. One approach that is not ruled out
by our reduction would be to combine parameterizations by vertex deletion distance to
tractable graph classes with other parameterizations, for example the maximum degree of
the input graph. Another approach could be to consider FPT-approximation algorithms for
Modularity with structural parameterizations.
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Abstract
In the Feedback Vertex Set in Tournaments (FVST) problem, we are given a tournament T

and a positive integer k. The objective is to determine whether there exists a vertex set X ⊆ V (T )
of size at most k such that T − X is a directed acyclic graph. This problem is known to be equivalent
to the problem of hitting all directed triangles, thereby using the best-known algorithm for the
3-Hitting Set problem results in an algorithm for FVST with a running time of 2.076k · nO(1)

[Wahlström, Ph.D. Thesis]. Kumar and Lokshtanov [STACS 2016] designed a more efficient algorithm
with a running time of 1.6181k · nO(1). A generalization of FVST, called Subset-FVST, includes
an additional subset S ⊆ V (T ) in the input. The goal for Subset-FVST is to find a vertex set
X ⊆ V (T ) of size at most k such that T − X contains no directed cycles that pass through any
vertex in S. This generalized problem can also be represented as a 3-Hitting Set problem, leading
to a running time of 2.076k · nO(1). Bai and Xiao [Theoretical Computer Science 2023] improved this
and obtained an algorithm with running time 2k+o(k) · nO(1). In our work, we extend the algorithm
of Kumar and Lokshtanov [STACS 2016] to solve Subset-FVST, obtaining an algorithm with a
running time O(1.6181k + nO(1)), matching the running time for FVST.
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1 Introduction

In the d-Hitting Set problem, given a set family F over a universe U of sets of size at most
d and an integer k, the goal is to find a set S ⊆ U of size at most k that intersects every
set in F . The importance of the d-Hitting Set problem stems from the number of other
problems that can be re-cast in terms of it. For example, in the Feedback Vertex Set in
Tournaments (FVST) problem, the input is a tournament T together with an integer k.
The task is to determine whether there exists a subset S of vertices of size at most k such
that the sub-tournament T − S obtained from T by removing S is acyclic. It turns out that
FVST is a d-Hitting Set problem, where the vertices of T are the universe, and the family
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F is the family containing the vertex set of every directed cycle on three vertices (triangle) of
T . Indeed, it can easily be shown that for every vertex set S, T − S is acyclic if and only if S

is a hitting set for F . Another example is the Cluster Vertex Deletion (CVD) problem.
Here, the input is a graph G and an integer k, and the task is to determine whether there
exists a subset S of at most k vertices such that every connected component of G − S is a
clique (such graphs are called cluster graphs). Also, this problem can be formulated as a
d-Hitting Set problem where the family F contains the vertex sets of all induced P3’s of G.
An induced P3 is a path on three vertices where the first and last vertex are non-adjacent in
G. Other examples include Subset Feedback Vertex Set (SFVS) on chordal graphs,
Triangle Packing in tournaments, Induced P3-Packing, etc.

The best-known fixed-parameter tractable (FPT) algorithm for d-Hitting Set runs in
time O∗((d−0.7262)k)1 [21]. It is also known that d-Hitting Set admits O((2d−1)kd−1 +k)
kernel [1]. This implies an algorithm with running time O∗(2.270k) and a O(k2) elements
kernel for the 3-Hitting Set problem. However, 3-Hitting Set can also be solved in time
O∗(2.076k) [23]. For a long time, advancements in its kernel size and FPT algorithms have
stagnated. In response, researchers have shifted focus towards designing algorithms and
kernels for implicit 3-Hitting Set problems such as FVST, CVD.

The design of algorithms with a running time better than O∗(2k) and kernels with
subquadratic elements for implicit 3-Hitting Set problems has emerged as a highly active
and significant area of research. In pursuit of this objective, several important problems
have been investigated, leading to notable successes. Fomin et al. in [9] broke the kernel
barrier of some of the implicit 3-Hitting Set problems and obtained subquadratic kernels
for several problems such as O(k3/2) vertex kernel for FVST, O(k5/3) vertex kernel for CVD,
O(k3/2) vertex kernel for Triangle Packing in tournaments (TPT), and O(k5/3) vertex
kernel for Induced P3-Packing. Recently, Bessy et al. [3] introduced a novel technique
called rainbow matching to design kernels for implicit 3-Hitting Set problems. They

demonstrated that TPT and FVST admit (almost linear) kernels of O(k
1+ O(1)√

log k ) vertices.
Utilizing the same technique, they showed that Induced 2-Path-Packing and Induced
2-Path Hitting Set admit kernels of O(k) vertices.

Another well-studied implicit 3-Hitting Set problem is Subset Feedback Vertex
Set (SFVS) on chordal and split graphs. A feedback vertex set in a graph G is a vertex set
whose removal makes the remaining graph acyclic. The Feedback Vertex Set problem
(FVS) is to decide whether a graph has a feedback vertex set of size at most k. In the more
general SFVS problem, an additional subset S of vertices is given, and we want to find a
vertex set of size at most k that hits all cycles passing through a vertex in S. SFVS has been
shown to admit an algorithm with a running time of O∗(4k) [15, 16]. However, on chordal
and split graphs, Philip et al. [22] showed that this problem could be solved in O∗(2k) time.

In this paper, we focus on Subset Feedback Vertex Set in Tournaments (Subset-
FVST). Below, we formally define the problem.

Subset Feedback Vertex Set in Tournaments (Subset-FVST) Parameter: k

Input: A tournament T = (V, A), a vertex set S ⊆ V , and a positive integer k.
Task: Find X ⊆ V with |X| ≤ k such that T − X has no cycle containing a vertex of S.

A tournament is a directed graph formed by a complete graph with oriented arcs.
Motivated by applications such as voting systems and rank aggregation, FVST has drawn
certain interests. It is well known that a tournament has a directed cycle if and only if there

1 We use O∗ notation to hide factors polynomial in the input size.
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is a directed triangle [7]. The fastest algorithm for FVST runs in time O∗(1.619k) [19] and
by the rainbow matching technique of Bessy et al. [3] FVST admit (almost linear) kernel of

O(k
1+ O(1)√

log k ). Subset-FVST can also be framed as a 3-Hitting Set problem, resulting
in an algorithm with running time O∗(2.076k) and an O(k2) kernel. Recently, in 2023,
Bai and Xiao [2] improved this and obtained an algorithm that runs in time O∗(2k+o(k));
however, the question to obtain an algorithm with running time better than O∗(2k) was left
open. In our research, we build upon the algorithm of Kumar and Lokshtanov [19] to tackle
Subset-FVST, achieving an algorithm with running time O∗(1.6181k), that matches the
running time for FVST. We obtain the following theorem.

▶ Theorem 1. Subset-FVST is solvable in O(1.6181k + nO(1)) time.

Ideas for Theorem 1. We closely follow the approach of Kumar and Lokshtanov [19], but
due to the inherent generality of our problem, we need to deviate significantly from it while
implementing the outline. Let (T, S, k) be an instance of Subset-FVST. The algorithm relies
on a simple observation that T has no S-cycle (directed cycle containing a S vertex) if and
only of T has no S-triangle. Our algorithm enumerates subexponential many sets (2o(k)) or
branches with a branching vector (1, 2). The algorithm first identifies 2o(k) subsets of S, such
that for every solution H , there is at least one set, say M , that is disjoint from it. The set M

allows us to discover several structures and apply reduction rules. For example, we know that
T [M ] is a directed acyclic graph (DAG). In other words, if any vertex v ∈ V (T )−M , we have
that T [M ∪ {v}] has a directed cycle, then v must be in H. Let σ be a unique topological
ordering of T [M ]. This immediately gives us the notion of M -block: the set of vertices which
are common out-neighbors and in-neighbors of two consecutive vertices of M in σ (and not
containing any M vertex). Now we analyze S-triangles: those that are fully contained inside
a block (local triangle) or contain vertices of at least 2 blocks (shared triangle). Our main
objective is to reduce the case of shared triangles to a vertex-cover like branching (either a
vertex or its neighbors must be in a solution) and independently solve the problem of hitting
local triangles. In the latter case, we use the fact that each block has at most logO(1) k many
vertices from S and hence any solution must contain at most logO(1) k many vertices from
each block. Thus, using the fact that Subset-FVST has a polynomial kernel of size O(k2),
we can solve these instances in kO(logO(1) k) time. The most interesting part of the algorithm
is to reduce to this case. This requires branching on “backward arcs” between two blocks. If
there is a vertex v with at least two incident backward arcs, then we branch on v, leading
to a branching vector (1, 2). When this is not possible, then we have that these backward
arcs form a matching. In this case if no block has many backward arcs incident then we can
partition these edges and decompose the problem. This leads to a divide-and-conquer step
in our algorithm. This concludes a brief description of our algorithm.

Related Work on Feedback Vertex Set

The Feedback Vertex Set problem (FVS) is one of the earliest known NP-complete
problems shown in the influential paper by Karp [18] and has been thoroughly explored in
the realm of parameterized complexity. The earliest known FPTalgorithms for FVS date
back to the late 1980s and early 1990s. These algorithms relied on the groundbreaking
Graph Minor Theory by Robertson and Seymour. Over time, there have been multiple
advancements and refinements, leading to the current best deterministic FPT algorithm
for FVS, which runs in O∗(3.460k) time [14]. The fastest known randomized algorithm for
this problem given by Li and Nederlof [20] runnning in time O∗(2.7k). Recently a factor
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(1 + ϵ) approximation algorithm for FVS, which has better running time than the best-known
(randomized) FPT algorithm for every ϵ ∈ (0, 1) is given by Jana et al. [17]. In directed graphs,
FVS becomes harder in terms of parameterized algorithms. Whether FVS in directed graphs
is FPT has been a long-standing open problem. Finally, Chen et al. [4] gave a FPT algorithm
running in time O∗(4kk!).

Subset Feedback Vertex Set problem (SFVS) was first systematically studied by
Even et al. [8] where they showed that SFVS in undirected graphs admits an 8-approximation.
Cygan et al. [6] showed that SFVS in undirected graphs admits an FPT algorithm running
in time O∗(2O(k log k)). Recently, Iwata et al. [15, 16] improved this to single-exponential
algorithm with running time O∗(4k). This problem is also studied in special graph classes.
Philip et al. [22] showed that in split and chordal graphs this problem can be solved in time
O∗(2k). Regarding kernelization, Hols and Kratsch [13] obtained a randomized kernel with
O(k9) vertices. Chitnis et al. [5] considered this problem in directed graph and provide a
FPT algorithm running in time giving a O∗(2O(k3)).

2 Preliminaries

Let [n] be the set of integers {1, . . . , n}. For a pair a, b of integers with a < b, we denote
the set {a, a + 1, . . . , b} by [a, b]. For a directed graph D, we denote the set of vertices of
D by V (D) and the set of arcs by A(D). For a subset X of vertices X ⊆ V (D), we use the
notation D − X to mean the graph D[V (D) \ X]. Given a digraph D, a vertex set X ⊆ V (D)
is called a feedback vertex set (in short, fvs) of D if there is no directed cycle in the graph
D − X. Given a directed graph D and a vertex set S, a vertex v ∈ V (D) is called an S-vertex
if v ∈ S. A directed cycle in D is called an S-cycle if the cycle contains at least one S-vertex.
A S-cycle is called an S-triangle if it is a cycle of three vertices. D is called S-acyclic if D

has no S-cycle. A vertex set X ⊆ V (D) is called an S-feedback vertex set of D (in short,
S-fvs) if D − X is S-acyclic. Let σ be an ordering of V (D). For a pair of adjacent vertices
u, v with an arc (u, v), we say the arc is backward (resp, forward) with respect to the ordering
σ if v ≤σ u (resp, u ≤σ v). It is called an S-backward arc (resp, S-forward arc) if there exists
some S-vertex s such that v ≤σ s ≤σ u (resp, u ≤σ s ≤σ v). We call an ordering without
S-backward arcs an S-topological ordering. A directed graph is called a tournament if there
is an arc between every pair of vertices. Unless specified, we use cycle to mean directed cycle.

Fixed parameter tractable. A parameterized problem Π is a subset of Γ∗ × N for some
finite alphabet Γ. An instance of a parameterized problem consists of (X, k), where k is
called the parameter. A parameterized problem L is considered to have a fixed parameter
tractable (FPT) algorithm if there is an algorithm A that can determine whether (X, k) ∈ L

in time f(k) · nO(1) for some computable function f , where n is the size of the input. An
important tool from the FPT toolkit is kernelization [10, 11]. A kernelization replaces, in
polynomial time, an instance by a decision equivalent instance (the kernel) whose size can be
bounded by a function of the parameter k, that is, it will not depend on the original problem
size n anymore.

3 FPT algorithm for SUBSET-FVST

In this section, we prove the following result.

▶ Theorem 1. Subset-FVST is solvable in O(1.6181k + nO(1)) time.

A schematic diagram showing the main steps of our algorithm is shown in Figure 1.
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Figure 1 A summary of the steps of our algorithm.

3.1 Preprocessing Step
It is well-known that a tournament is acyclic if and only if it does not contain any triangle [7],
which allows us to formulate FVST as a 3-Hitting Set problem. We first observe a similar
statement for the subset variant in the next lemma proved in [2].

▶ Lemma 2 ([2, Lemma 2]). A tournament is S-acyclic if and only if it does not contain an
S-triangle.

Lemma 2 immediately gives rise to a greedy 3-approximation algorithm for Subset-FVST.
However, Gupta et al. [12] designed a 2-factor approximation algorithm for Subset-FVST.
Using this result, we get the following lemma.

▶ Lemma 3. Given a tournament T with n vertices, a subset S ⊆ V (T ) and integer k, in
nO(1) time we correctly conclude that T has no S-feedback vertex set of size at most k or
outputs a S-feedback vertex set of size at most 2k.

The initial phase of our algorithm for Subset-FVST involves reducing the problem to
its kernel. By reducing the instance of the Subset-FVST problem into an instance of the
3-Hitting Set problem, by using a kernel for 3-Hitting Set [1], one can derive a kernel
on O(k2) vertices for Subset-FVST, which is an induced subgraph of the input tournament.
Formally, we have the following lemma.

▶ Lemma 4 ([1, 2]). Given a tournament T with n vertices, a subset S ⊆ V (T ) and an
integer k, in nO(1) time we can output a tournament T ′ (an induced subgraph), a vertex set
S′ ⊆ V (T ′) and an integer k′ such that |V (T ′)| ≤ O(k2), k′ ≤ k, and T ′ has a S′-feedback
vertex set of size at most k′ if and only if T has a S-feedback vertex set of size at most k.

In what follows, we assume that we have applied Lemma 4 and obtained an equivalent
instance, (T, S, k), such that |V (T )| ≤ O(k2). We call such instances reduced.

3.2 Discovering Structure I: Universal Undeletable Family M
In the second step of our algorithm, we find a family of subsets of S such that any solution
avoids at least one set in our family. Toward defining the family we first need a notion of
block which relies on the notion of between and consecutive.
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17:6 Subset FVS in Tournaments as Fast as Without the Subset

▶ Definition 5 (Between and Consecutive). Let D be a directed graph.
For any pair of vertices u, v ∈ V (D), the set between(D; u, v) is defined as N+(u) ∩
N−(v) \ {u, v}.
Let X ⊆ V (D). Two vertices u, v ∈ X are called X-consecutive if (u, v) ∈ A(D) and
between(D; u, v) ∩ X = ∅.

▶ Definition 6 (X-block). Let D be a directed graph and X ⊆ V (D). We define the set of
X-blocks in D as follows.

For each pair of X-consecutive vertices u and v, we define the X-block, denoted by
block(X; u, v), as between(D; u, v). That is, block(X; u, v) = between(D; u, v).
For each vertex u ∈ X with no in-neighbors in X we define the X-block, denoted by
block(X; u), as N−(u). That is, block(X; u) = N−(u).
For each vertex v ∈ X with no out-neighbors in X we define the X-block, denoted by
block(X; v), as N+(v). That is, block(X; v) = N+(v).

These definitions immediately imply the following observation for an acyclic tournament.

▶ Observation 7. Let T be an acyclic tournament and X ⊆ V (T ). Furthermore, let σ be
the unique topological order of V (T ). Then the following holds.
1. For any pair of vertices u, v ∈ V (T ) the set between(T ; u, v) is exactly the set of vertices

in T that appear between u and v in σ.
2. Two vertices u, v ∈ X are X-consecutive if no vertex of X appears between u and v in σ.
3. X-blocks form a unique partition of V − X, where two vertices belong to a different block

if and only if there exists a vertex of X that appears between them in σ.

Now we are ready to define the notion of universal undeletable family.

▶ Definition 8 (Universal Undeletable Family). Let (T, S, k) be an instance of Subset-FVST.
A universal undeletable family, M, is a family of subsets of S, which satisfies the following
properties. For every S-feedback vertex set H of T size at most k there exists a set M ∈ M
such that
1. H ∩ M = ∅;
2. in each M -block B in T − H we have |B ∩ S| ≤ 2 log2 k.
Our main result in this section is the following.

▶ Lemma 9. Let (T, S, k) be a reduced instance. There exists an algorithm that takes (T, S, k)
as input and outputs a universal undeletable family M of size 2O( k

log k ).

Proof. Let X be a S-feedback vertex set of size at most 2k obtained using Lemma 3. Let
Y := V (T ) \ X, SX := X ∩ S, SY := Y ∩ S and v1, v2, . . . , v|SY | be the topological sort of
T [SY ] such that the edges in T [SY ] are directed from left to right. We color SY using ⌊log2 k⌋
colors {1, 2, . . . , ⌊log2 k⌋} such that for each d ∈ [|SY |], vd gets color d mod ⌊log2 k⌋. For
each c ∈ [⌊log2 k⌋], let Sc be the set of vertices in SY which get color c. Each M ∈ M is
specified by a 4-tuple ⟨c, Ĥ, R̂, X̂⟩ where

c is a color in [⌊log2 k⌋],
Ĥ ⊆ Sc such that |Ĥ| ≤ k

log2 k
,

R̂ ⊆ SY \ Sc, |R̂| ≤ |Ĥ|, and
X̂ ⊆ X such that |X̂| ≤ 2k

log2 k
.

For each 4-tuple ⟨c, Ĥ, R̂, X̂⟩, let M := (Sc \ Ĥ) ∪ R̂ ∪ X̂. Hence |M| is upper bounded
by the maximum possible number of such 4-tuples.
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|M| ≤ log2 k ×
(

O(k2)
k

log2 k

)
×

(
O(k2)

k
log2 k

)
×

(
2k
2k

log2 k

)
≤ 2log(log2 k) × O(k2)

2k
log2 k × (2k)

2k
log2 k

= 2O( k
log k )

This completes the description of the enumeration of M. Next, we prove the correctness
of the above algorithm by showing that for every S-feedback vertex set H of T with size
at most k, M contains a set M that satisfies the properties listed in the statement of the
lemma. Consider an arbitrary S-feedback vertex set H of T with size at most k.

For each j ∈ [⌊log2 k⌋], let Hj := Sj ∩ H. By the pigeonhole principle, there is a color c

such that 0 < |Hj | ≤ k
log2 k

. For this color c, let Ĥ := Hc. Note that Hc ⊆ Sc ⊆ SY . Now,
consider a set R̂ obtained as follows: for every vertex v ∈ Hc, pick the first vertex after v

(if there is any) in SY \ (Sc ∪ H), in the topological ordering of T [SY ]. Note that T [X \ H]
is S-acyclic. Let SH

X := S ∩ (X \ H). Now |SH
X | ≤ 2k and there is a topological ordering

of T [SH
X ]. We then color SH

X using ⌊log2 k⌋ colors in a similar way as we did for SY . Let
X̂ ⊆ SH

X be the set of all vertices with color 1 in this coloring. Clearly, |X̂| ≤ 2k
log2 k

.
The 4-tuple ⟨c, Ĥ, R̂, X̂⟩ described above satisfies all the properties listed in the construc-

tion of M. Let M := (Sc \ Ĥ) ∪ R̂ ∪ X̂. Clearly, M ⊆ S, M ∩ H = ∅, and M ∈ M. Since in
any [(Sc \ Hc) ∪ R̂]-block B in Y , it holds |B ∩ S| ≤ log2 k, it also holds in each M -block B

in T − H that |B ∩ S| ≤ 2 log2 k. ◀

3.3 Discovering Structure II: Forced Deletable Set I
Lemma 9 gets us one step closer to our goal. Let H be a hypothetical solution of size at
most k of (T, S, k). We know that there exists a set M ∈ M such that in each M -block in
T − H, we have a small number of S-vertices, i.e., each M -block contains a small number
(≤ 2 log2 k) of non-solution S-vertices. However, it is possible that there is a M -block of T

that contains too many vertices of S, because that block contains many solution S-vertices,
that is, vertices of H ∩ S. In this section, we deal with this case. We assume that we know
M corresponding to the hypothetical solution H. Indeed, we can achieve this by going over
each set in M, and that will only cost us a factor of 2O( k

log k ) in the running time of our
algorithm. It will be useful to remember that T [M ] is a directed acyclic tournament.

We start with a simple definition that will be useful.

▶ Definition 10 (Consistency). Let T be a tournament and M ⊆ V (T ). For a vertex
v ∈ V (T ), we say that v is consistent with M if there is no {v}-cycle in T [M ∪ v].

Observe that if v is not consistent with M , then there is a v-cycle in T [M ∪ v], which
is also a S-cycle, since M ⊆ S. Thus, since we know that M ∩ H = ∅, v must belong to
H. We next integrate such vertices and blocks that may contain a lot of S vertices (in the
solution) into the notion of universal undeletable families. We call this notion universal
(deletable-undeletable) families (in short, du-family).

▶ Definition 11 (du-Family). Let (T, S, k) be an instance of Subset-FVST. A du family,
F =

{
(M1, P1), . . . , (Mℓ, Pℓ)

}
, is a family of disjoint pairs of vertex sets, which satisfies the

following properties. For every S-feedback vertex set H of T size at most k there exists a set
pair (M, P ) ∈ F such that the following holds.
1. M ⊆ S, M ∩ H = ∅.
2. P ⊆ H (recall, M ∩ P = ∅).
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3. Every vertex of T − P is consistent with M .
4. In each M -block B in T − P , we have |B ∩ S| ≤ 2 log4 k.
Furthermore, the set H is said to be compatible with the pair (M, P ).

▶ Lemma 12. Let (T, S, k) be a reduced instance. There exists an algorithm that takes
(T, S, k) as input and outputs a du-family F of size 2O( k

log k ).

Proof. We define a function f that for a given tournament T and a subset M ⊆ V (T ),
outputs a set of vertices that are not consistent with M . We denote this output set as
f(T, M). More specifically

f(T, M) :=
{

v | v ∈ V (T ) \ M and T [M ∪ {v}] has a {v}-cycle
}

Observe that each v-cycle here is also a S-cycle since M ⊆ S. Thus, since we know that
M ∩ H = ∅, v must belong to H. Furthermore, we define another function g that, given
a tournament T , two subsets M ⊆ S ⊆ V (T ), and an integer k, outputs the S-vertices
contained within some M -block B in T − f(T, M) with |B ∩ S| > 2 log4 k. We denote this
output set as g(T, S, M, k). We can compute f and g in time kO(1).

We use the algorithm of Lemma 9 to compute M. Then for each M ∈ M, we compute
the sets f(T, M) and g(T, S, M, k). For each Z ⊆ g(T, S, M, k) such that |Z| ≤ 2k

log2 k
, we

output a pair of sets (M, P ) = (M, f(T, M) ∪ (g(T, S, M, k) \ Z)). The family F is the
collection of all such pairs of sets.

We prove that the algorithm satisfies the stated properties. Consider a S-feedback vertex
set H of size at most k. By Lemma 9 there exists M ∈ M such that M ⊆ S and M ∩ H = ∅.
Because of the definition of f(T, M) and M ∩ H = ∅, the vertex set f(T, M) must be
contained in H. Now for every vertex u ∈ V (T − M) \ f(T, M) the induced subtournament
T [M ∪{v}] of T is acyclic. So u can be placed uniquely in the topological order of T [M ∪{v}].
Hence, for each u ∈ V (T − M) \ f(T, M), there is a unique M -block containing it. Since in
each M -block B in T − H we have |B ∩ S| ≤ 2 log2 k, we also have in each M -block B in
T − f(T, M) that |B ∩ S| ≤ k + 2 log2 k.

We say that a M -block B in T − C is large if |B ∩ S| ≥ 2 log4 k. From each large M -block
at least (2 log4 k − 2 log2 k) many S-vertices belong to H. So the number of large blocks is
bounded by k

2 log4 k−2 log2 k
. Hence in total at most k

2 log4 k−2 log2 k
× 2 log2 k ≤ 2k

log2 k
many

S-vertices from the union of large M -blocks do not belong to H. Since the algorithm loops
over all choices of subsets Z ⊆ g(T, S, M, k) with |Z| ≤ 2k

log2 k
, the family F contains a pair

(M, P ) satisfying the properties listed in the lemma.
Moreover, |F| is bounded by the product of |M| and the number of subsets Z. Now Z ⊆ S

and |Z| ≤ 2k
log2 k

together imply that the number of subsets Z is at most O(k2)
2k

log2 k = 2O( k
log k ).

Hence |F| = |M| × 2O( k
log k ) ≤ 2O( k

log k ) × 2O( k
log k ) = 2O( k

log k ). ◀

Our algorithm for Subset-FVST applies Lemma 12 and obtains a du-family F . The
algorithm then iterates over each pair (M, P ) ∈ F , and looks for a S-feedback vertex set H

of size at most k that is compatible with (M, P ). Henceforth, our problem reduces to the
following.

Given an instance (T, S, k), and a pair (M, P ) of vertex sets in T . The objective is to
find a S-feedback vertex set H for T of size at most k that is compatible with (M, P ).

We first apply the following reduction rule to make the instance smaller. The correctness
of Reduction Rule 1 follows from the fact that we are looking for a S-feedback vertex set H

for T of size at most k that is compatible with (M, P ) (Lemma 12).
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▶ Reduction Rule 1. Delete P from the graph. The resultant instance is (T −P, S\P, k−|P |).

The pair (M, P ) naturally partitions the vertices of T − (P ∪ M) into local subtournaments
corresponding to the induced graphs on the M -blocks in T − P . For clarity of notation,
we denote the reduced instance (T − P, S \ P, k − |P |) by (T, S, k) itself. The properties of
(T − P, S \ P, k − |P |) = (T, S, k) that we need in the future are encapsulated below.

1. For all v ∈ V (T ) \ M , we have that T [M ∪ {v}] does not contain a {v}-cycle. In
particular, T [M ∪ {v}] is acyclic.

2. In each M -block B in T , we have |B ∩ S| ≤ 2 log4 k.

Following the implementation of Reduction Rule 1, we categorize S triangles in T into
two distinct groups, as described below.
(i) Local S-triangle: All three vertices are within one M -block in T .
(ii) Shared S-triangle: Those that are not local.

Notice that in each shared S-triangle (not containing a vertex of M) there exists a pair of
vertices in the triangle that belong to different M -blocks in T − P . Next, we understand how
M participates in a S-triangle. Observe that every S-triangle contains at most one vertex
from M . Furthermore, we show that every S-triangle containing a M vertex (which we say
M -triangle) must be a shared S-triangle.

▶ Observation 13. Every M-triangle is a shared S-triangle. That is, there is no pair of
vertices u, v such that both vertices u, v belong to the same M-block in T and there is a
vertex w ∈ M that forms a triangle with u, v.

Proof. Let u, v be a pair of vertices in T . Since we have applied Reduction Rule 1, it
follows that the vertex u ∈ V (T ) is consistent with M , meaning that there is no {u}-cycle
in T [M ∪ {u}]. That implies T [M ∪ {u}] is a DAG. Thus, there exists a unique partition
M1 ·∪ M2 of M such that for all x ∈ M1, y ∈ M2 we have (x, u), (u, y) ∈ V (T ). Similarly,
since T [M ∪ {v}] is also a DAG, there exists a unique partition M ′

1 ·∪ M ′
2 of M such that for

all x′ ∈ M1, y′ ∈ M2 we have (x′, v), (v, y′) ∈ V (T ). Furthermore, since u and v belong to
the same M -block, it must be that M1 = M ′

1 and M2 = M ′
2. Therefore, both T [M1 ∪ {u, v}]

and T [M2 ∪ {u, v}] are DAGs. Now, the vertex w is in either M1 or M2. In either case, w

cannot form a cycle with {u, v}. This concludes the proof. ◀

Next, we show that having shared S-triangle is equivalent to having a M -triangle

▶ Lemma 14. If there is a shared S-triangle uvw, then there exists a vertex m ∈ M such
that there is a shared S-triangle umw.

Proof. If there is a shared S-triangle, say uvw, then it must contain vertices from two
different M blocks, say B1 and B2, where the vertices in B1 appear before B2 and there
is an arc (v, u) with u ∈ B1 and v ∈ B2. Let m be a vertex of M that appears before any
vertex of B2 and after every vertex of B1. This implies we have arcs (u, m) and (m, v). This
implies that we have a triangle umv containing a M vertex. ◀

Observation 13 and Lemma 14 imply the following.

▶ Lemma 15. There is a shared S-triangle if and only if there is a M -triangle.
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Before we proceed further, we design an algorithm for Subset-FVST that runs in time
2k+o(k) + nO(1). Branch on each of the triangles containing M -vertices. This will lead to 2k

branching factor. Lemma 15 implies that the only S-triangle that remains after branching are
local S-triangles, and hence we can solve the problem independently on each block. However,
observe that in each M -block B in T , we have |B ∩ S| ≤ 2 log4 k. This implies that the size
of an optimal solution in B is upper-bounded by 2 log4 k. Thus, we can solve the problem
for each block independently in time kO(log4 k). This results in the following.

▶ Theorem 16. Subset-FVST is solvable in time 2k+o(k) + nO(1).

This algorithm is comparable to the best known algorithm of Bai and Xiao [2]. We move on
to designing the faster algorithm. This algorithm also follows the route of Theorem 1. We
move on to Section 3.4 when there is at least one shared S-triangle, otherwise we move to
Section 3.7.

3.4 Branching Structure I: Shared S-triangle
Our objective is to reduce to “vertex cover” (either a vertex or all of its neighbors must go in
any solution) like branching in this case. Towards this, we first define the set of edges for
which we need vertex cover.

Dealing with shared S-triangles. Consider the ordered partition of the vertices of T based
on M vertices in the following way: each M vertex is a singleton and they are ordered
according to the unique topological ordering σ of T [M ]. The other parts are defined by
M -block with corresponding order. For example, let |M | = ℓ and m1, . . . , mℓ be the vertices
of M such that m1 < · · · < mℓ in σ. Then our ordered partition of T would be

B1 = block(X, m1) ·∪ {m1} ·∪ B2 = block(M ; m1, m2) ·∪ . . . ·∪ {mℓ} ·∪ Bℓ+1 = block(X, mℓ).

Observe that every vertex v not in M belongs to a unique block as T [M ∪ {v}] is acyclic.
Let R be the set of arcs (u, v) of A(T ) such that u ∈ Bj and v ∈ Bi and i, j ∈ [ℓ + 1],

and i < j. We call R a set of red arcs. Next, we show that dealing with shared triangles is
equivalent to hitting arcs in R.

▶ Lemma 17. Every shared S-triangle has a red arc. Furthermore, for every red arc
e = (u, v) ∈ R we have a M-triangle containing e. This implies that we have a shared
S-triangle if and only if there is a red arc.

Proof. If a S-triangle is not local, then it contains vertices of two distinct blocks or two
vertices of the same block and a M vertex. By Observation 13 we know that there is no
S-triangle containing two vertices of the same block and a M vertex. It is clear that any
S-triangle containing vertices of two distinct blocks contains a red arc.

Let e = (u, v) ∈ R. Then there exists i, j ∈ [ℓ + 1] such that u ∈ Bj and v ∈ Bi where
i < j. Let m be a vertex of M that appears before any vertex of Bj and after every vertex of
Bi. We know from the properties of the M blocks that we have arcs (v, m) and (m, u). This
implies that we have a triangle vmu containing a M vertex. This concludes the proof. ◀

▶ Lemma 18. Let H be a solution to (T, S, k). Then H is a vertex cover of R (that is, it
intersects each edge in R).

Proof. For every red arc e = (u, v) ∈ R we have a M -triangle containing e (Lemma 17).
Since, by construction no red arc has an end-point in M and M ∩ H = ∅ by assumption, we
have that H must contain either u or v. This concludes the proof. ◀
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We first consider the case where there are some vertices that are incident to more than
one red arc. Once we deal with that case, the only situation left is that all the red arcs that
remain to hit form a matching. Now we describe a recursive algorithm which searches for a
potential solution H of size at most k by branching. Let G = (V (T ), R) be an undirected
graph with vertex set V (T ) and edge set R (without orientation). For any vertex v, let Red(v)
(the red-degree) denote the degree of v in G. Consider a vertex v of highest red-degree. We
know Red(v) > 0. If k = 0, then return No. From now on, assume that k ≥ 1. If Red(v) ≥ 2,
the algorithm branches into two cases: v ∈ H or v /∈ H. In the branch where v is added to
H, k drops by 1. Hence, we return the instance (T − v, S \ {v}, k − 1). In the other branch
where v is not added to H, we know that all the neighbors in G must be in the solution (by
Lemma 18). Hence, we return the instance

(
T − NG(v), S \ NG(v), k − Red(v)

)
. Here, NG(v)

denotes the neighbors of v in G. This (1, 2) branching step dominates the running time of
the algorithm and corresponds to O(1.6181k × kO(1)) time.

Now we assume that maximum red-degree of any vertex is at most 1. In this case, all
the red arcs form a matching in G. We refer to these kind of red arcs as matching arcs. Let
(T, S, k, M) obtained after branching be called the matching instance. In Section 3.5, we look
for more structure in the input and take advantage of it.

3.5 Discovering Structure III: Matching Arcs
We now introduce the notion of a bad block to represent blocks that are incident to a large
number of matching arcs.

▶ Definition 19 (Bad block). An M -block B is said to be bad if the number of matching arcs
incident to the vertices in B is at least log4 k. Otherwise we say that the block B is good.

Now, in the following observation, we show that the number of bad blocks will be bounded.

▶ Observation 20. The number of bad M -blocks in T is at most 2k
log4 k

.

Proof. We know that from each matching-arc, at least one end-point of the arc must belong
to H (by Lemma 18). If the number of bad M -blocks in T is more than 2k

log4 k
, then the

number of vertices incident to the matching arcs is more than 2k which in turn implies that
the number of matching arcs are more than k. So we cannot hit all the matching arcs using
at most k vertices. ◀

▶ Lemma 21. Let (T, S, k, M) be a matching instance of Subset-FVST. Then there exists
an algorithm that in 2O( k

log k ) time outputs a family F ′ = {(M ′
1, P ′

1), . . . , (M ′
ℓ, P ′

ℓ)} of sets
with |F ′| = 2O( k

log k ) such that if there exists a S-feedback vertex set H of T of size at most k

such that H ∩ M = ∅ and there exists (M ′, P ′) ∈ F ′ satisfying:
1. M ∩ M ′ = ∅
2. M ′ ∪ P ′ ⊆ S,
3. M ′ ∩ H = ∅, P ′ ⊆ H,
4. In each (M ∪ M ′)-block B in T − P ′ we have |B ∩ S| ≤ 2 log4 k.
5. In each (M ∪ M ′)-block B in T − P ′ either B has no S-vertex or B is good.

Proof. Let B be the set of all bad M -blocks. Let Q denote the set of all S-vertices in B.
For each Q ⊆ Q such that |Q| ≤ 4k

log2 k
, we output a pair of sets (M ′, P ′) = (Q, Q \ Q). The

family F ′ is the collection of all such pairs of sets.
We prove that the algorithm satisfies the stated properties. Clearly, M ′∪P ′ ⊆ S. Consider

a S-feedback vertex set H of size at most k such that H ∩M = ∅. Due to the Lemma 9, in any
M -block B in T −H , we have |B ∩S| ≤ 2 log2 k. So from each bad M -block in T there are at
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most 2 log2 k many non solution S-vertices. As the number of bad M -blocks in T is bounded
by 2k

log4 k
(by Observation 20), in total there are at most 2k

log4 k
× 2 log2 k many S-vertices

from the union of bad M -blocks that do not belong to H. Since the algorithm loops over
all choices of subsets Q ⊆ Q, |Q| ≤ 4k

log2 k
, the family F ′ contains a pair (M ′, P ′) such that

M ′ ∩ H = ∅, P ′ := Q \ M ′ ⊆ H. As in each of the M -block in T we have |B ∩ S| ≤ 2 log4 k

(by Lemma 12), we also have in each M ∪ M ′-block B in T − P ′ that |B ∩ S| ≤ 2 log4 k. It
remains to show that in each M ∪ M ′-block B in T − P ′ either B has no S-triangle or B is
good. Note that we only refine the partition for bad blocks. So if any M ∪ M ′-block B is not
good in T − P ′, then it must be obtained by partitioning a bad block but in that case, we
brute force over all non-solution S vertices (part of M ′) and delete all the solution S vertices
(part of P ′). So, there is no S-triangle inside (in fact, there are no S-vertices at all) if it is
not good.

Now Q ⊆ S and |Q| ≤ 4k
log2 k

together imply that the number of pair of sets (Q, Q \ Q)

(i.e., (M ′, P ′)) is at most (k2)
4k

log2 k = 22 log k× 4k
log2 k = 2O( k

log k ). Hence |F ′| = 2O( k
log k ) and

this can be computed in 2O( k
log k ) time. ◀

Our algorithm for Subset-FVST applies Lemma 21 and obtains a family F ′. The
algorithm then iterates over each pair (M ′, P ′) ∈ F ′ and looks for a S-feedback vertex set
H of size at most k that is compatible with (M ∪ M ′, P ′). In particular, we delete all the
vertices of P ′ and obtain an instance (T − P ′, S \ P ′, k − |P ′|, M ∪ M ′) = (T, S, k, M) such
that the following holds.

1. For all v ∈ V (T ) \ M , we have that T [M ∪ {v}] does not contain a {v}-cycle. In
particular, T [M ∪ {v}] is acyclic.

2. In each M -block B in T , we have |B ∩ S| ≤ 2 log4 k.
3. Either each block B is good or it does not have a S-vertex.

We also need the following lemma, which will allow us to show that Lemma 21 is not applied
more than once.

▶ Observation 22. Let T be a tournament and M ⊆ M⋆, then every M⋆ block is a refinement
of M block. That is, for each M⋆ block B⋆, there exists a block M block B such that B⋆ ⊆ B.

This implies that if we add vertices to M to get M⋆, then a good M block can be partitioned
into several good blocks or if it does not have a S vertex, then none of the resulting blocks
after partitioning will have a S vertex.

3.6 Branching Structure II: High Red Degree Again

In the beginning of Section 3.5, we were in the situation where red arcs only formed matching
arcs in T . That is, we had (T, S, k, M) which was a matching instance. However, after
application of Lemma 21, M -blocks can get partitioned and can have a set of red arcs which
share a common vertex. This is possible because some local S-triangle for M -blocks in T can
become a shared S-triangle for (M ∪ M ′)-blocks in T − P ′. Thus, in this scenario, we return
to the case of Section 3.4. Therefore, we can use the same branching algorithm as before in
Section 3.4. However, because of Observation 22 Lemma 21 is not applied more than once.

If the previous scenario does not happen, this means that the collection of red arcs indeed
form matching arcs. In that case, we proceed to Section 3.7.
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3.7 Discovering Structure IV: Matching Reduction Rule
Let (T, S, k, M⋆) be an instance such that the following holds.

1. For all v ∈ V (T ) \ M⋆, we have that T [M⋆ ∪ {v}] does not contain a {v}-cycle. In
particular, T [M⋆ ∪ {v}] is acyclic.

2. In each M⋆-block B in T , we have |B ∩ S| ≤ 2 log4 k.
3. Either each block B is good or it does not have a S-vertex.
4. Red arcs form a matching in G = (V (T ), R).

Now observe that, any M -block of T which contains no local S-triangle still may contain
end-points of too many (more than log4 k) matching arcs. In other words, T can have some
bad M -blocks that have no local S-triangles. We address this issue in this section.

▶ Definition 23 (inner and outer). Given a directed graph D with an ordered partition V1 ·∪
V2 ·∪ . . . ·∪Vt of V (D), and an integer i ∈ [t], we define two functions inner : {V1, V2, . . . , Vt} →
V (D) and outer : {V1, V2, . . . , Vt} → V (D) as follows.

inner(Vi) = {v : (v, u) ∈ A(D), v ∈ Vi, u ∈ Vj , j ∈ [i − 1]} ∪ {v : (w, v) ∈ A(D), v ∈
Vi, w ∈ Vj′ , j′ ∈ [i + 1, t]}
outer(Vi) = {u : (v, u) ∈ A(D), v ∈ Vi, u ∈ Vj , j ∈ [i − 1]} ∪ {w : (w, v) ∈ A(D), v ∈
Vi, w ∈ Vj′ , j′ ∈ [i + 1, t]}

Notice that we are in the situation where all the red arcs are matching arcs in the ordered
partition of M -blocks in T . Consider the directed graph D = (V (T ), R) with partitions
accorded by M⋆. This leads us to the following observation.

▶ Observation 24. For each M -block B in T we have |inner(B)| = |outer(B)|.

Now consider a bad block B that does not contain any local S-triangle. We will now
prove that for an Yes-instance, there is always a solution of size at most k which is disjoint
from inner(B).

▶ Lemma 25. Let H be a solution of size at most k for an instance (T, S, k, M⋆) of Subset-
FVST and let B be a bad M⋆-block in T . Then H⋆ := (H \ inner(B)) ∪ outer(B) is also a
solution for (T, S, k, M⋆) of Subset-FVST with |H⋆| ≤ |H|.

Proof. By Observation 24, |H⋆| ≤ |H|. It remains to show that H⋆ is also a solution. In
contrary, assume that H⋆ is not a solution. So, there exists a S-triangle denoted by △
in T − H⋆ and the the triangle △ must contain a vertex v from inner(B) where V (△) is
disjoint from outer(B). Now we have following two cases.

Case 1: △ is a shared S-triangle. Observe that this case can not happen because this
triangle △ must contain a matching-arc (red arc) whose one end point is v ∈ inner(B).
Hence the other end point, say u must be in outer(B) which is also a vertex of the
triangle △, which is a contradiction to the fact that outer(B) ⊆ H.

Case 2: △ is a local S-triangle. In this case V (△) ⊆ B. That means the block B contains
a local S-triangle which implies that B is good (by condition 5 of Lemma 21), which is a
contradiction to the assumption that B is a bad M⋆-block.

This concludes the proof. ◀

Now we obtain the following reduction rule whose correctness follows from Lemma 25.
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17:14 Subset FVS in Tournaments as Fast as Without the Subset

▶ Reduction Rule 2. If B is a bad M⋆-block in T then we delete inner(B) ∪ outer(B) from
T . The resultant instance is (T − {inner(B) ∪ outer(B)}, S \ {inner(B) ∪ outer(B)}, k −
|outer(B)|, M⋆).

After the exhaustive application of Reduction Rule 2, we have the following observation.

▶ Observation 26. Every M⋆-block in T is good.

Currently, we are in the situation where every M⋆-block in T is good, which means that
the number of matching arcs incident to the vertices of every M⋆-block is at most log4 k. In
the following section, we will construct an undirected multigraph of bounded degree. This
graph will guide us in developing a divide-and-conquer algorithm that achieves our final goal.

3.8 Balanced Edge Partitioning
In this section we deal with the case where every block is good.

Construction of a undirected multigraph. Given (T, S, k, M⋆) we construct an undirected
multigraph T as follows:

Each M⋆-block B in T corresponds to a vertex vB in V (T ).
For every matching-arc (u, v), u ∈ Bi and v ∈ Bj where Bi, Bj are two different M⋆-blocks
in T , we introduce an edge between vBi

and vBj
in E(T ).

At this stage, according to Observation 26, every M -block in T is good. Therefore by
definition, the number of matching arcs that are incident to the vertices of every M⋆-block
is at most log4 k. This leads us to the next observation.

▶ Observation 27. The maximum degree of T is bounded by log4 k.

The following fact is known regarding graph partitioning which will be useful for us.

▶ Proposition 28 (Theorem 15 [19]). Given an undirected multigraph without self-loops and
isolated vertices G of maximum degree at most d and |E(G)| = m, there exists a partition
(A, B) of V (G) such that

m
4 − d

2 ≤ |E(G[A])| ≤ m
4 + d

2 ,
m
4 − d

2 ≤ |E(G[B])| ≤ m
4 + d

2 , and
m
2 − d ≤ |E(G[A, B])| ≤ m

2 + d.
where E(G[A, B]) is the set of edges with one endpoint in A and other in B. Furthermore,
there is a polynomial time algorithm to obtain this partition.

Recursive algorithm. We are now ready to describe our recursive algorithm to deal with
good M⋆-blocks. First, we construct an undirected multigraph T from (T, S, k, M⋆). We
then use Theorem 28 to find a balanced partition of the M⋆-blocks with respect to the
number of matching-arcs. We then guess which endpoints of these matching-arcs to add to H

and solve the two sides independently. Our algorithm starts with an empty set W ⊆ V (T ),
initialized as ∅. If T is disconnected, then the algorithm solves each connected component
independently and outputs W as the union of solutions returned for each component. Now
we have following two cases.

Case 1. |E(T )| = 0: This case implies that there is no matching-arc in T . In that case, we
solve the problem independently in each M⋆-block (by brute force) and return W as the
union of solutions returned for each M -block.
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Case 2. |E(T )| > 0: In this case, first we run the algorithm of Proposition 28 to get a
partition (A, B) of the multigraph T . For a vertex set X ⊆ V (T ) and edge set Y ⊆ E(T ),
the set VX(Y ) denotes the set of all the vertices in T that are incident on the matching-arcs
corresponding to Y and belong to M⋆-blocks in X. Our algorithm loops over all subsets
C ⊆ E(A, B), calling itself recursively on T (V (T ) \

(
VA(C) ∪ VB(E(A, B) \ C)

)
) (the

multigraph corresponding to the subgraph of T without VA(C) and VB(E(A, B) \ C))
and computes WC := VA(C) ∪ VB(E(A, B) \ C)) ∪ S′ where S′ is the set returned at
the recursive call. Finally, the algorithm outputs the smallest set WC over all choices of
C ⊆ E(A, B).

3.9 Correctness and Running Time
The correctness of the algorithm follows from each individual pieces we have proved. For the
running time observe the following steps:
1. Apply kernelization algorithm in polynomial time. (Lemma 4)
2. Obtain a universal undeletable family M of size 2O( k

log k ). (Lemma 9).
3. Obtain a du-family F of size 2O( k

log k ). (Lemma 12).
4. Let G = (V (T ), R) be an undirected graph with the vertex set V (T ) and the edge set

R (without orientation). Branch on vertices of red-degree at least 2 in G. This leads to
(1, 2) branching and corresponds to O(1.6181k × kO(1)).

5. Making each block B good or it does not have a S-vertex by branching in 2O( k
log k ) ways

(followed by (1, 2) branching). (Lemma 21).
6. Getting rid of blocks that do not contain any S-vertex in kO(1) time. (Lemma 25)
7. All blocks are good. In this situation, we do divide and conquer based on Proposition 28.

Now we proceed to the runtime analysis of this step of the algorithm. When |E(T )| = 0,
we do brute force on the instance and that takes kO(log4 k) = 2O(log5 k) time. Because
when |E(T )| = 0, in each connected component the number of S-vertices gets bounded
by 2 log4 k (Lemma 12), so the size of an optimal solution in each component is bounded
by 2 log4 k. Let h(k, d) be the maximum number of leaves in the recursion tree of the
algorithm when run on an input with parameter k and maximum degree d. Since in each
recursive call, k decreases by at least 1, the depth of the recursion tree is at most k. In
each internal node of the recursion tree, the algorithm spends kO(1) time plus constant
time for each child (which are at most h(k, d)) and in each leaf, it spends at most 2O(log5 k)

time (as in leaf |E(T )| = 0). Thus, the running time of the algorithm on any input with
parameters k and d is upper bounded by h(k, d) × 2O(log5 k) × kO(1). To upper bound
h(k, d), first note that h(a, d) + h(b, d) ≤ h(a + b, d) because h(a, d) and h(b, d) represent
the number of leaves of two independent sub-trees. Now for each C ⊆ E(X, Y ) there are
no edges between A and B in T (V (T )\(VA(C)∪VB(E(A, B)\C))). Hence, the algorithm
effectively solves T (V (T ) \ (VA(C))) and T (V (T ) \ (VB(E(A, B) \ C))) independently. By
Proposition 28 and since we know that we need to hit all edges in T , the number of edges
in E(A, B) is at most k

4 + d
2 . As we have seen for each C, the algorithm calls itself twice

for each C and so in total, the algorithm makes 2 k
2 +d+1 recursive calls with parameter

k
4 + d

2 (and d does not increase). Thus h(k, d) is upper-bounded by the recurrence
relation h(k, d) ≤ 2 k

2 +d+1h( k
4 + d

2 , d) and h(k, 0) = 2O(log5 k) ≤ 2O(log5 k). This solves to
h(k, d) = 1.5874k · 2O(d log5 k). Hence, the running time of the algorithm is bounded by
h(k, d) × 2O(log5 k) × kO(1) = 1.5874k · 2O(d log5 k) · 2O(log5 k) · kO(1). As d ≤ log4 k, the
running time is bounded by 1.5874k · 2O(log9 k) · kO(1).

8. Taking into account running time in each step we get that the algorithm runs in time
O(1.6181k + nO(1)). This concludes the proof of Theorem 1.

IPEC 2024



17:16 Subset FVS in Tournaments as Fast as Without the Subset

References
1 Faisal N. Abu-Khzam. A kernelization algorithm for d-hitting set. J. Comput. Syst. Sci.,

76(7):524–531, 2010. doi:10.1016/J.JCSS.2009.09.002.
2 Tian Bai and Mingyu Xiao. A parameterized algorithm for subset feedback vertex set in

tournaments. Theor. Comput. Sci., 975:114139, 2023. doi:10.1016/J.TCS.2023.114139.
3 Stéphane Bessy, Marin Bougeret, Dimitrios M Thilikos, and Sebastian Wiederrecht. Ker-

nelization for graph packing problems via rainbow matching. In Proceedings of the 2023
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3654–3663. SIAM,
2023. doi:10.1137/1.9781611977554.CH139.

4 Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. J. ACM, 55(5):21:1–21:19, 2008.
doi:10.1145/1411509.1411511.

5 Rajesh Hemant Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, and Dániel Marx.
Directed subset feedback vertex set is fixed-parameter tractable. ACM Trans. Algorithms,
11(4):28:1–28:28, 2015. doi:10.1145/2700209.

6 Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. Subset
feedback vertex set is fixed-parameter tractable. SIAM J. Discret. Math., 27(1):290–309, 2013.
doi:10.1137/110843071.

7 Michael Dom, Jiong Guo, Falk Hüffner, Rolf Niedermeier, and Anke Truß. Fixed-parameter
tractability results for feedback set problems in tournaments. J. Discrete Algorithms, 8(1):76–86,
2010. doi:10.1016/J.JDA.2009.08.001.

8 Guy Even, Joseph Naor, and Leonid Zosin. An 8-approximation algorithm for the subset
feedback vertex set problem. SIAM J. Comput., 30(4):1231–1252, 2000. doi:10.1137/
S0097539798340047.

9 Fedor V. Fomin, Tien-Nam Le, Daniel Lokshtanov, Saket Saurabh, Stéphan Thomassé, and
Meirav Zehavi. Subquadratic kernels for implicit 3-hitting set and 3-set packing problems.
ACM Trans. Algorithms, 15(1):13:1–13:44, 2019. doi:10.1145/3293466.

10 Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory
of parameterized preprocessing. Cambridge University Press, 2019.

11 Jiong Guo and Rolf Niedermeier. Invitation to data reduction and problem kernelization.
SIGACT News, 38(1):31–45, 2007. doi:10.1145/1233481.1233493.

12 Sushmita Gupta, Sounak Modak, Saket Saurabh, and Sanjay Seetharaman. Quick-sort
style approximation algorithms for generalizations of feedback vertex set in tournaments.
In José A. Soto and Andreas Wiese, editors, LATIN 2024: Theoretical Informatics - 16th
Latin American Symposium, Puerto Varas, Chile, March 18-22, 2024, Proceedings, Part I,
volume 14578 of Lecture Notes in Computer Science, pages 225–240. Springer, 2024. doi:
10.1007/978-3-031-55598-5_15.

13 Eva-Maria C. Hols and Stefan Kratsch. A randomized polynomial kernel for subset feedback
vertex set. Theory Comput. Syst., 62(1):63–92, 2018. doi:10.1007/S00224-017-9805-6.

14 Yoichi Iwata and Yusuke Kobayashi. Improved analysis of highest-degree branching for feedback
vertex set. Algorithmica, 83(8):2503–2520, 2021. doi:10.1007/S00453-021-00815-W.

15 Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. Half-integrality, lp-branching, and
FPT algorithms. SIAM J. Comput., 45(4):1377–1411, 2016. doi:10.1137/140962838.

16 Yoichi Iwata, Yutaro Yamaguchi, and Yuichi Yoshida. 0/1/all csps, half-integral a-path packing,
and linear-time FPT algorithms. In Mikkel Thorup, editor, 59th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages
462–473. IEEE Computer Society, 2018. doi:10.1109/FOCS.2018.00051.

17 Satyabrata Jana, Daniel Lokshtanov, Soumen Mandal, Ashutosh Rai, and Saket Saurabh.
Parameterized approximation scheme for feedback vertex set. In Jérôme Leroux, Sylvain Lom-
bardy, and David Peleg, editors, 48th International Symposium on Mathematical Foundations
of Computer Science, MFCS 2023, August 28 to September 1, 2023, Bordeaux, France, volume
272 of LIPIcs, pages 56:1–56:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPICS.MFCS.2023.56.

https://doi.org/10.1016/J.JCSS.2009.09.002
https://doi.org/10.1016/J.TCS.2023.114139
https://doi.org/10.1137/1.9781611977554.CH139
https://doi.org/10.1145/1411509.1411511
https://doi.org/10.1145/2700209
https://doi.org/10.1137/110843071
https://doi.org/10.1016/J.JDA.2009.08.001
https://doi.org/10.1137/S0097539798340047
https://doi.org/10.1137/S0097539798340047
https://doi.org/10.1145/3293466
https://doi.org/10.1145/1233481.1233493
https://doi.org/10.1007/978-3-031-55598-5_15
https://doi.org/10.1007/978-3-031-55598-5_15
https://doi.org/10.1007/S00224-017-9805-6
https://doi.org/10.1007/S00453-021-00815-W
https://doi.org/10.1137/140962838
https://doi.org/10.1109/FOCS.2018.00051
https://doi.org/10.4230/LIPICS.MFCS.2023.56


S. Jana, L. Kanesh, M. Kundu, and S. Saurabh 17:17

18 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

19 Mithilesh Kumar and Daniel Lokshtanov. Faster exact and parameterized algorithm for
feedback vertex set in tournaments. In Nicolas Ollinger and Heribert Vollmer, editors, 33rd
Symposium on Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016,
Orléans, France, volume 47 of LIPIcs, pages 49:1–49:13. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2016. doi:10.4230/LIPICS.STACS.2016.49.

20 Jason Li and Jesper Nederlof. Detecting feedback vertex sets of size k in O⋆ (2.7k) time. ACM
Trans. Algorithms, 18(4):34:1–34:26, 2022. doi:10.1145/3504027.

21 Rolf Niedermeier and Peter Rossmanith. An efficient fixed-parameter algorithm for 3-hitting set.
Journal of Discrete Algorithms, 1(1):89–102, 2003. doi:10.1016/S1570-8667(03)00009-1.

22 Geevarghese Philip, Varun Rajan, Saket Saurabh, and Prafullkumar Tale. Subset feedback
vertex set in chordal and split graphs. Algorithmica, 81(9):3586–3629, 2019. doi:10.1007/
S00453-019-00590-9.

23 Magnus Wahlström. Algorithms, measures and upper bounds for satisfiability and related
problems. PhD thesis, Linköping University, Sweden, 2007. URL: https://nbn-resolving.
org/urn:nbn:se:liu:diva-8714.

IPEC 2024

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.4230/LIPICS.STACS.2016.49
https://doi.org/10.1145/3504027
https://doi.org/10.1016/S1570-8667(03)00009-1
https://doi.org/10.1007/S00453-019-00590-9
https://doi.org/10.1007/S00453-019-00590-9
https://nbn-resolving.org/urn:nbn:se:liu:diva-8714
https://nbn-resolving.org/urn:nbn:se:liu:diva-8714




Parameterised Distance to Local Irregularity
Foivos Fioravantes
Department of Theoretical Computer Science, FIT,
Czech Technical University in Prague, Czech Republic

Nikolaos Melissinos
Department of Theoretical Computer Science, FIT,
Czech Technical University in Prague, Czech Republic

Theofilos Triommatis
School of Electrical Engineering, Electronics and Computer Science University of Liverpool, UK

Abstract
A graph G is locally irregular if no two of its adjacent vertices have the same degree. The authors of
[Fioravantes et al. Complexity of finding maximum locally irregular induced subgraph. SWAT, 2022]
introduced and provided some initial algorithmic results on the problem of finding a locally irregular
induced subgraph of a given graph G of maximum order, or, equivalently, computing a subset S of
V (G) of minimum order, whose deletion from G results in a locally irregular graph; S is called an
optimal vertex-irregulator of G. In this work we provide an in-depth analysis of the parameterised
complexity of computing an optimal vertex-irregulator of a given graph G. Moreover, we introduce
and study a variation of this problem, where S is a subset of the edges of G; in this case, S is denoted
as an optimal edge-irregulator of G. We prove that computing an optimal vertex-irregulator of a
graph G is in FPT when parameterised by various structural parameters of G, while it is W[1]-hard
when parameterised by the feedback vertex set number or the treedepth of G. Moreover, computing
an optimal edge-irregulator of a graph G is in FPT when parameterised by the vertex integrity of
G, while it is N P-hard even if G is a planar bipartite graph of maximum degree 6, and W[1]-hard
when parameterised by the size of the solution, the feedback vertex set or the treedepth of G. Our
results paint a comprehensive picture of the tractability of both problems studied here.
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1 Introduction

A fundamental problem in graph theory is “given a graph G, find an induced subgraph H of
G, of maximum order, that belongs in the family of graphs verifying a property Π”, in which
case we say that H ∈ Π:

Largest Induced Subgraph with Property Π (ISP-Π)[19]
Input: A graph G = (V, E), an integer k, a property Π.
Task: Does there exist a set S ⊆ V such that |S| ≤ k and G − S ∈ Π?
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There is a plethora of classical problems that fall under this general setting. Consider, for
example, the Vertex Cover and the Feedback Vertex Set, where Π is the property
“the graph is an independent set” and “the graph is a forest”, respectively.

In this paper we study the ISP-Π problem where Π is the property “the graph is locally
irregular”, recently introduced in [16]. A graph G = (V, E) is called locally irregular if no two
adjacent vertices in V have the same degree. We extend the work of [16], by more thoroughly
investigating the parameterised behaviour of the problem. In addition, we take the first step
towards the problem of finding large locally irregular (not necessarily induced) subgraphs of
a given graph G. In particular, we introduce the problem where the goal is to find a subset
of edges of G of minimum order, whose removal renders the graph locally irregular. Our
results allow us to paint a rather clear picture concerning the tractability of both problems
studied here in relation to various standard graph-structural parameters (see Figure 1 for an
overview of our results).

vertex cover

neighborhood
diversity

clique-width

twin cover +ω

twin cover cluster deletion +ω

vertex integrity

treedepth*
modular-width

pathwidth

treewidth

feedback vertex set*
cluster deletion

shrub-depth

↑W[1]-h

FPT Iv ↓

↓ FPT Ie

FPT Iv ↓

Figure 1 Overview of our results. A parameter A appearing linked to a parameter B with A

being below B is to be understood as “there is a function f such that f(A) ≥ f(B)”. The bold
font is used to indicate the parameters that we consider in this work. The asterisks are used to
indicate that the corresponding result follows from observations based on the work in [16]. In light
blue (olive resp.) we exhibit the FPT results we provide for finding an optimal vertex (edge resp.)
irregulator. In red we exhibit the W[1]-hardness results we provide for both problems. The clique
number of the graph is denoted by ω.

ISP-Π and hereditarity. The ISP-Π problem has been extensively studied for hereditary
properties. That is, a property Π is hereditary if, for any graph G verifying it, any induced
subgraph of G also verifies that property. The properties “the graph is an independent set”
or “the graph is a forest” are, for example, hereditary. It was already shown in [29] that
ISP-Π is an N P-hard problem for any non-trivial hereditary property. On the positive side,
the ISP-Π problem always admits an FPT algorithm, when parameterised by the size of the
solution, if Π is a hereditary property [8, 25]. This is an important result, as it allows us to
conceive efficient algorithms to solve computationally hard problems, as long as we restrict
ourselves to graphs verifying such properties.

It is also worth mentioning the work in [17], which provides a framework that yields exact
algorithms that are significantly faster than brute-force to solve a more general version of the
ISP-Π problem: given a universe, find a subset of maximum cardinality which verifies some
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hereditary property. On a high level, the algorithm proposed in [17] builds the solution which
is a subset H of maximum cardinality with the wanted property, by continuously extending
a partial solution X ⊆ H. Note that this approach only works if Π is indeed a hereditary
property. More recently, this approach was generalised by the authors of [14], who provide a
framework that yields exponential-time approximation algorithms.

However, not all interesting properties are hereditary. E.g., “all vertices of the induced
subgraph have odd degree”, and “the induced subgraph is d-regular”, where d is an integer
given in the input (recall that a graph is d-regular if all of its vertices have the same degree d),
are non-hereditary properties. The authors of [5] studied the ISP-Π problem for the former
property, showing that it is an N P-hard problem, and providing an FPT algorithm that
solves it when parameterised by the rank-width. Also, the authors of [1, 3, 31] studied the
ISP-Π problem for the latter property. It is shown in [3] that finding an induced subgraph of
maximum order that is d-regular is N P-hard to approximate, even on bipartite or planar
graphs. The authors of [3] also provide a linear-time algorithm to solve this problem for
graphs with bounded treewidth. Lastly, it is also worth mentioning [7], where the authors
consider the non-hereditary property “the induced subgraph is k-anonymous”, where a graph
G is k-anonymous if for each vertex of G there are at least k − 1 other vertices of the same
degree.

An important observation is that, in the case of non-hereditary properties, the ISP-Π
problem does not necessarily admit an FPT algorithm parameterised by the size of the
solution. Indeed, the authors of [31] proved that when considering Π as “the induced subgraph
is regular”, the ISP-Π problem is W[1]-hard when parameterised by the size of the solution.
This indicates the importance of considering graph-structural parameters for conceiving
efficient algorithms for such problems. This is exactly the approach followed in [18, 27],
where the authors consider a generalisation of Vertex Cover, the ISP-Π problem where Π
is “the graph has maximum degree k”, for an integer k given in the input.

Distance from local irregularity. In some sense, the property that interests us lies on the
opposite side of the one studied in [1, 3, 31]. Recall that a graph G is locally irregular if
no two of its adjacent vertices have the same degrees. This notion was formally introduced
in [4], where the authors take some steps towards proving the so-called 1-2-3 Conjecture
proposed in [23] and recently proven in [24]. Roughly, this conjecture is about functions
assigning weights from [k] = {1, . . . , k} to the edges of a graph, called proper k-labellings, so
that all adjacent vertices have different weighted degrees; the conjecture states that for any
non-trivial graph, this is always achievable for k ≤ 3.

The authors of [16] introduced the problem of finding a locally irregular induced subgraph
of a given graph G of maximum order (a non-hereditary property). Equivalently, find a set
of vertices of minimum cardinality whose deletion renders the given graph locally irregular;
such sets are named optimal vertex-irregulators. The main focus of [16] was to study the
complexity of computing optimal vertex-irregulators. It was shown that this problem is
N P-hard even for subcubic planar bipartite graphs, W[2]-hard parameterised by the size of
the solution and W[1]-hard parameterised by the treewidth of the input graph. Moreover, for
any constant ε < 1, there cannot be a polynomial-time O(n1−ε)-approximation algorithm
(unless P=N P). On the positive side, there are two FPT algorithms that solve this problem,
parameterised by the maximum degree of the input graph plus either the size of the solution
or the treewidth of the input graph. Note that the notion of vertex-irregulators proved to be
fruitful in the context of proper labellings. Indeed, the authors of [6] observed a connection
between finding large locally irregular induced subgraphs and constructing proper k-labellings
that also maximise the use of weight 1 on the edges of the given graph.

IPEC 2024
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Apart from improving the results of [16], in this paper we also introduce the novel problem
of computing a subset of a graph’s edges, of minimum order, whose deletion renders the graph
locally irregular; such sets are named optimal edge-irregulators. This problem is introduced
as a first step towards understanding the problem of finding large locally irregular (not
necessarily induced) subgraphs of a given graph. Problems concerned with finding maximum
subgraphs verifying a specific property have also been extensively studied (e.g., [9, 10, 2]). One
might expect that finding edge-irregulators could be easier than finding vertex-irregulators as
it is often the case with graph theoretical problems concerned with subsets of edges, whose
versions considering subsets of vertices are intractable (recall, e.g., Edge Cover, Feedback
Edge Set and even Min Weighted Lower-Upper-Cover [33]). As it turns out, however,
finding small edge-irregulators is also a computationally hard problem.

Our contribution. In this paper we study the complexity of computing optimal vertex
and edge-irregulators. We identify the parameters for which the tractability of the former
problem changes, considering a multitude of standard graph-structural parameters. We also
take steps towards the same goal for the latter problem. In Section 2 we introduce the needed
notation and provide some first results. In particular, we observe that computing optimal
vertex-irregulators is W[1]-hard when parameterised by the treedepth or the feedback vertex
set of the given graph. Section 3 provides FPT algorithms for the problem of finding optimal
vertex-irregulators. The considered parameters are the neighborhood diversity, the vertex
integrity, or the clusted deletion number of the input graph. In Section 4, we focus on the
problem of finding optimal edge-irregulators. First, we prove that this problem is N P-hard,
even when restricted to planar bipartite graphs of maximum degree 6. We also show that
the problem is W[1]-hard parameterised by the size of the solution or the feedback vertex
set of the input graph. Lastly, we modify the FPT algorithm for computing an optimal
vertex-irregulator parameterised by the vertex integrity in order to provide an FPT algorithm
that solves the edge version of the problem (once more parameterised by the vertex integrity).
We close the paper in Section 5, where we propose some directions for further research.

2 Preliminaries

We follow standard graph theory notations [12].
Let G = (V, E) be a graph and G′ = (V ′, E′) be a subgraph of G (i.e., created by deleting

vertices and/or edges of G). Recall first that the subgraph G′ is induced if it can be created
only by deleting vertices of G; in this case we denote G′ by G[V ′]. That is, for each edge
uv ∈ E, if u, v ∈ V ′, then uv ∈ E′. For any vertex v ∈ V , let NG(v) = {u ∈ V : uv ∈ E}
denote the neighbourhood of v in G and dG(v) = |NG(v)| denote the degree of v in G. Note
that, whenever the graph G is clear from the context, we will omit the subscript and simply
write N(v) and d(v). Also, for S ⊆ E, we denote by G − S the graph G′ = (V, E \ S). That
is, G′ is the graph resulting from the deletion of the edges of S from the graph G.

Let G = (V, E) be a graph. We say that G is locally irregular if, for every edge uv ∈ E, we
have d(u) ̸= d(v). Now, let S ⊆ V be such that G[V \ S] is a locally irregular graph; any set
S that has this property is denoted as a vertex-irregulator of G. Moreover, let Iv(G) be the
minimum order that any vertex-irregulator of G can have. We will say that S is an optimal
vertex-irregulator of G if S is a vertex-irregulator of G and |S| = Iv(G). Similarly, we define
an edge-irregulator of G to be any set S ⊆ E such that G − S is locally irregular. Moreover,
let Ie(G) be the minimum order that any edge-irregulator of G can have. We will say that S

is an optimal edge-irregulator of G if S is an edge-irregulator of G and |S| = Ie(G).
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We begin with some simple observations that hold for any graph G = (V, E).

▶ Observation 1. If G contains two vertices u, v such that uv ∈ E and d(u) = d(v), then any
edge-irregulator of G contains at least one edge incident to u or v. Also, any vertex-irregulator
of G contains at least one vertex in N(u) ∪ N(v).

▶ Observation 2. If G contains two vertices u, v ∈ V that are twins, i.e., N(u) \ {v} =
N(v) \ {u}, such that uv ∈ E, then any vertex-irregulator of G contains at least one vertex
in {u, v}.

The importance of upcoming Lemma 3 lies in the fact that we can repeatedly apply it,
reducing the size of the graph on which we are searching for a vertex-irregulator. This is a
core argument behind the algorithms of Theorems 7 and 11.

▶ Lemma 3. Let G = (V, E) be a graph and u, v ∈ V be a pair of adjacent twins. Let
G′ = (V ′, E′) be the graph resulting from the deletion of either u or v from G. Then,
Iv(G) = Iv(G′) + 1.

Proof. Assume w.l.o.g. that u /∈ V ′. We first prove that Iv(G) ≤ Iv(G′) + 1. Indeed, assume
that Iv(G) > Iv(G′) + 1 and let S′ be an optimal vertex-irregulator of G′. Next, consider the
graph G̃ = G[V \ (S′ ∪ {u})]. From the construction of G′, it follows that G̃ = G′[V ′ \ S′].
Since S′ is a vertex-irregulator of G′, we obtain that G̃ is locally irregular. In other words,
the set S′ ∪ {u} is a vertex-irregulator of G and |S′ ∪ {u}| = Iv(G′) + 1, a contradiction.

Next, assume that Iv(G) < Iv(G′) + 1 and let S be an optimal vertex-irregulator of G. It
follows from Observation 2 that |{u, v} ∩ S| ≥ 1. Assume w.l.o.g. that u ∈ S. Thus, and by
the construction of G′, we have that G′[V ′ \ (S \ {u})] = G[V \ S] and the set S \ {u} is a
vertex-irregulator of G′. In other words, Iv(G′) ≤ |S| − 1 = Iv(G) − 1, a contradiction. ◀

We close this section with some observations on the proof that computing Iv(G) is W[1]-hard
parameterised by the treewidth of G, initially presented in [16], which allows us to show that
this result holds even if we consider more “restricted” parameters, such as the treedepth or
the feedback vertex set number (i.e., size of a minimum feedback vertex set) of the input
graph. Recall that the treedepth of a graph G = (V, E) can be defined recursively: if |V | = 1,
then G has treedepth 1. Then, G has treedepth k if there exists a vertex v ∈ V such that
every connected component of G[V \ {v}] has treedepth at most k − 1. Given a graph G and
a tree T rooted at a vertex u, by attaching T on a vertex v of G, we mean the operation of
adding T to G and identifying u with v, i.e., V (T ) ∩ V (G) = {u} = {v}.

▶ Observation 4. Let G be a graph with vertex cover number ( i.e., size of a minimum vertex
cover) k1 and T be a rooted tree of depth k2. Let G′ be the graph after attaching an arbitrary
number of copies of T directly on vertices of G. Then G′ has treedepth O(k1 + k2) and
feedback vertex set number O(k1).

The reduction presented in [16, Theorem 16] starts with a graph G which is part of an
instance of the List Colouring problem, and constructs a graph G′ by attaching some
trees of depth at most 3 on each vertex of G. The List Colouring problem was shown
to be W[1]-hard in [15] when parameterised by the vertex cover number of the input graph.
Thus, by Observation 4, we obtain the following:

▶ Corollary 5. Given a graph G, it is W[1]-hard to compute Iv(G) parameterised by either
the treedepth or the feedback vertex set number of G.
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3 FPT algorithms for vertex-irregulators

In this section we present two FPT algorithms that compute an optimal vertex-irregulator of
a given graph G, when parameterised by the neighbourhood diversity or the vertex integrity
of G. The latter algorithm is then used to show that this problem is in FPT also when
parameterised by the cluster deletion number of G. We begin by recalling the needed
definitions.

The twin equivalence of G is the relation on the vertices of V where two vertices belong
to the same equivalence class if and only if they are twins.

▶ Definition 6 ([26]). A graph G has neighbourhood diversity k (denoted as nd(G) = k) if
its twin equivalence has k classes.

Let G = (V, E) be a graph with nd(G) = k and let V1, . . . , Vk be the partition of V

defined by the twin equivalence of G. Observe that for any i ∈ [k], we have that G[Vi] is
either an independent set or a clique.

▶ Theorem 7. Given a graph G = (V, E) such that nd(G) = k, there exists an algorithm
that computes Iv(G) in FPT-time parameterised by k.

Proof. Let V1, . . . , Vk be the partition of V defined by the twin equivalence of G. Note that
this partition can be computed in linear time [26]. We begin by constructing an induced
subgraph G′ = (V ′, E′) of G by applying the following procedure: for each i ∈ [k], if G[Vi] is
a clique on at least two vertices, delete all the vertices of Vi except one; let D be the set of
vertices that were deleted and d = |D|. This procedure terminates after k iterations and,
thus, runs in polynomial time. Moreover, it follows from Lemma 3 that Iv(G) = Iv(G′) + d.
Thus, it suffices to solve the problem on G′. For every i ∈ [k], let V ′

i = Vi ∩ V ′.
Observe that for every locally irregular graph H, there exists a prime number p such

that dH(u) − dH(v) ̸= 0 mod p for every uv ∈ E(H). In our case, since for every uv ∈ E′ we
have that u ∈ V ′

i and v ∈ V ′
j for i < j ≤ [k], it follows that there can be at most

(
k
2
)

possible
differences modulo p between the degrees of adjacent vertices in G∗, where G∗ = (V ∗, E∗) is
a locally irregular induced subgraph of G′.

We claim that p ≤ (k2 log n+1)(log(k2 log n+1)+log log(k2 log n+1)− 1
2 ). Indeed, since

each one of the differences we considered in the previous paragraph is at most n, each one of
them has at most log n prime divisors. Thus, p is at most the k2 log n + 1th prime number.
This, in conjunction with the classical results from [32] gives us the claimed inequality.

For every i ∈ [k], let V ∗
i = V ′

i ∩ V ∗. For every such prime p, we consider all the possible
cases for pi = |V ∗

i | mod p, for every i ∈ [k]; there are at most pk such instances. Let us
consider any such instance such that dG∗(u)−dG∗(v) ̸= 0 mod p for every uv ∈ E∗. Checking
this inequality is straightforward from the pis. We store the maximum orders of the V ∗

i s such
that |V ∗

i | mod p = pi for every i ∈ [k]. Having repeated this procedure for all such instances,
we are certain to have computed a locally irregular induced subgraph of G′ of maximum
order. In total, this procedure takes time pk+1nO(1) which is in FPT due to the upper bound
on p by [32] and since logk n ≤ f(k)n, for some computable function f [22]. ◀

We now present an FPT algorithm to compute an optimal vertex-irregulator of an
input graph G when parameterised by the vertex integrity of G, which can be computed in
FPT-time [13].

▶ Definition 8. A graph G = (V, E) has vertex integrity k if there exists a set U ⊆ V such
that |U | = k′ ≤ k and all connected components of G[V \ U ] are of order at most k − k′.



F. Fioravantes, N. Melissinos, and T. Triommatis 18:7

▶ Theorem 9. Given a graph G = (V, E) with vertex integrity k, there exists an algorithm
that computes Iv(G) in FPT-time parameterised by k.

Proof. Let U ⊆ V be such that |U | = k′ ≤ k and C1, . . . , Cm be the vertex sets of the
connected components of G[V \ U ] such that |Cj | ≤ k − k′, j ∈ [m]. Assume that we know
the intersection of an optimal vertex-irregulator S of G and the set U , and let S′ = S ∩ U

and U ′ = U \ S (there are at most 2|U | ≤ 2k possible intersections S′ of U and S). Notice
that the graph G[V \ S′] has an optimal vertex-irregulator that contains only vertices from⋃

i∈[m] Ci. Indeed, assuming otherwise contradicts that S′ is the intersection of an optimal
vertex-irregulator and U . Thus, in order to find an optimal vertex-irregulator S of G, it
suffices to compute S∗ ⊆

⋃
i∈[m] Ci, which is an optimal vertex-irregulator of G[V \ S′], for

every set S′ ⊆ U . Then, we return the set S∗ ∪ S′ of minimum order. We compute S∗

through an ILP with bounded number of variables. To do so, we define types and sub-types
of graphs G[U ′ ∪ Cj ], j ∈ [m].

Informally, the main idea is to categorise the graphs G[U ′ ∪ Cj ], j ∈ [m], into types based
on their structure (formally defined later), whose number is bounded by some function of k.
Each type i is associated with a number noi that represents the number of the subgraphs
G[U ′ ∪ Cj ], j ∈ [m], that belong in that type. Then, for each type i, we will define sub-types
based on the induced subgraphs G[(U ′ ∪Cj)\Sq], for Sq ⊆ Cj . We also define a variable noi,q

that is the number of the subgraphs G[U ′ ∪ Cj ], j ∈ [m], that are of type i and of sub-type q

in G[V \ S]. Note that knowing the structure of these types and sub-types, together with
noi,q, is enough to compute the order of S∗. Finally, for any j ∈ [m], the graph G[U ′ ∪ Cj ] is
of order at most k. Thus, the number of types, sub-types and their corresponding variables,
is bounded by a function of k. We will present an ILP formulation whose objective is to
minimise the order of S∗.

We begin by defining the types. Two graphs G[U ′ ∪ Ci] and G[U ′ ∪ Cj ], i, j ∈ [m], are of
the same type if there exists a bijection1 f : Ci ∪ U ′ → Cj ∪ U ′ such that f(u) = u for all
u ∈ U ′ and NG[U ′∪Ci](u) = {f−1(v) | v ∈ NG[U ′∪Cj ](f(u))} for all u ∈ Ci. Note that if such
a function exists, then G[U ′ ∪ Ci] is isomorphic to G[U ′ ∪ Cj ].

Let p be the number of different types. Notice that p is bounded by a function of k as
any graph G[U ′ ∪ Ci] has order at most k. Also, we can decide if two graphs G[U ′ ∪ Ci] and
G[U ′ ∪ Cj ], i, j ∈ [m], are of the same type in FPT-time parameterised by k. For each type
i ∈ [p], set noi to be the number of graphs G[U ′ ∪ Cj ], j ∈ [m], of type i. Furthermore, for
each type i ∈ [p] we select a Cj , j ∈ [m], such that G[U ′ ∪ Cj ] is of type i, to represent that
type; we will denote this set of vertices by Ri.

We are now ready to define the sub-types. Let i ∈ [p] be a type represented by Ri and
Si

1, . . . , Si
2|Ri|be an enumeration of the subsets of Ri. For any q ∈ [2|Ri|], we define a sub-type

(i, q) which represents the induced subgraph G[(U ′ ∪ Ri) \ Si
q]. Let noi,q be the variable

corresponding to the number of graphs represented by G[U ′ ∪ Ri], i ∈ [p], that is of type
(i, q) in G[V \ S∗], for a vertex-irregulator S∗ such that S∗ ∩ Ri = Si

q.
Notice that, given a vertex-irregulator S∗ ⊆

⋃
j∈[m] Cj of G[V \S′], there exists a sub-type

(i, q), i ∈ [p], q ∈ [2|Ri|], for each j ∈ [m], such that the graph G[(U ′ ∪ Cj) \ S∗] is of sub-type
(i, q). Also, assuming that we know the order of |Si

q| and the number noi,q for all i ∈ [p],
q ∈ [2|Ri|], then |S∗| =

∑
i∈[p]

∑
q∈[2|Ri|] noi,q|Si

q|.

1 Recall that a function f : A → B is a bijection if, for every a1, a2 ∈ A with a1 ̸= a2, we have that
f(a1) ̸= f(a2) and for every b ∈ B, there exists an a ∈ A such that f(a) = b. Recall also that the
inverse function of f , denoted as f−1, exists if and only if f is a bijection, and is such that f−1 : B → A
and for each b ∈ B we have that f−1(b) = a, where f(a) = b.
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Before giving the ILP formulation whose goal is to find a vertex-irregulator S∗ while
minimising the above sum, we guess the (i, q) such that noi,q ̸= 0. Let S2 be the set of
pairs (i, q), i ∈ [p] and q ∈ [2|Ri|], such that there are two vertices u, v ∈ Ri \ Si

q where
uv ∈ E(G[(U ′ ∪ Ci) \ Si

q]) and dG[(U ′∪Ri)\Si
q ](u) = dG[(U ′∪Ri)\Si

q ](v). For every (i, q) ∈ S2,
we have that noi,q = 0. Indeed, assuming otherwise contradicts the fact that S∗ is a vertex-
irregulator. We guess S1 ⊆ {(i, q) | i ∈ [p], q ∈ 2|Ri|}\S2 such that noi,q ̸= 0 for all (i, q) ∈ S1.
Observe that the number of different sets that are candidates for S1 is bounded by some
function of k.

Constants
noi i ∈ [p] number of components of type i

euv ∈ {0, 1} u, v ∈ U ′ set to 1 iff uv ∈ E(G[U ′])

ei,q
u,v ∈ {0, 1} i ∈ [p], q ∈ [2|Ri|], u ∈ U ′ set to 1 iff uv ∈ E(G[(U ′ ∪ Ri) \ Si

q])
and v ∈ Ri \ Si

q

bi,q
u ∈ [n] i ∈ [p], q ∈ [2|Ri|] and u ∈ U ′ set to dG[({u}∪Ri)\Si

q ](u)

di,q
u ∈ [n] i ∈ [p], q ∈ [2|Ri|] and u ∈ Ri \ Si

q set to dG[(U′∪Ri)\Si
q ](u)

Variables noi,q i ∈ [p], q ∈ [2|Ri|] number of graphs of types (i, q)

Objective

min
∑

i∈[p]

∑
q∈[2|Ri|]

noi,q|Si
q| (3.1)

Constraints

noi,q = 0 iff (i, q) /∈ S1 (3.2)∑
q∈[2|Ri|]

noi,q = noi ∀i ∈ [p] (3.3)

∑
w∈U ′

ewv +
∑
i∈[p]

noi,qbi,q
v ̸=

∑
w∈U ′

ewu +
∑
i∈[p]

noi,qbi,q
u ∀u, v ∈ U ′, euv = 1 (3.4)

di,q
v ̸=

∑
w∈U ′

ewu +
∑
i∈[p]

noi,qbi,q
u ∀ei,q

u,v = 1 and (i, q) ∈ S1 (3.5)

Assume that we have found the values noi,q for (i, q), i ∈ [p], q ∈ [2|Ri|]. We construct
an optimal vertex-irregulator of G[V \ S′] as follows. Start with an empty set S∗. For each
i ∈ [p] take all components Cj of type i. Partition them into 2|Ri| sets Ci

q such that any set
q ∈ [2|Ri|] contains exactly noi,q of these components. For any component C ∈ Ci

q, select all
vertices represented by the set Si

q (as it was defined before) and add them to S∗. The final
S∗ is an optimal vertex-irregulator for G[V \ S′].

Let S = S′ ∪ S∗. We show that S is a vertex-irregulator of G. To do so, it suffices to
verify that in the graph G[V \ S] there are no two adjacent vertices with the same degree.
Let u, v be a pair of adjacent vertices in a component represented by Ri \ S, which is of type
(i, q). If dG[V \S](u) = dG[V \S](v), then (i, q) ∈ S2. Therefore, noi,q = 0 and we do not have
such a component in G[V \ S]. Thus, it suffices to focus on adjacent vertices such that at
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least one of them is in U ′. Notice that, in G[V \ S], the degree of vertex u ∈ U ′ is equal to∑
w∈U ′ ewv +

∑
i∈[p] noi,qbi,q

v . In other words, no two adjacent vertices in U ′ have the same
degree due to the constraint 3.4. Lastly, the constraint 3.5 guarantees that no vertex in U ′ is
adjacent to a vertex in Ci \ S (for some i ∈ [p]) such that both of them have the same degree
in G[V \ S]. Moreover, both S′ and S∗ are constructed to be minimum such sets. Thus, S is
an optimal vertex-irregulator of G. Finally, since the number of variables in the model is
bounded by a function of k, we can obtain S∗ in FPT time parameterised by k (by running
for example the Lenstra algorithm [28]). ◀

The previous algorithm can be used to find an optimal vertex-irregulator of a graph G in
FPT-time when parameterised by the cluster deletion number of G. Note that the cluster
deletion number of a graph can be computed in FPT-time parameterised by k [21].

▶ Definition 10 ([21]). A graph G = (V, E) has cluster deletion number k if there exists a
set S ⊆ V such that all the connected components of G[V \ S] are cliques, and S is of order
at most k.

▶ Theorem 11. Given a graph G = (V, E) with cluster deletion number k, there exists an
algorithm that computes Iv(G) in FPT-time parameterised by k.

Proof. Let S be such that |S| = k and G[V \ S] is a disjoint union of cliques C1, . . . Cm for
m ≥ 1. Our goal is to reduce the size of these cliques so that each one of them has order
at most 2k. We achieve this through the the following procedure. Let i ∈ [m] be such that
the clique Ci = (VCi

, ECi
) has |VCi

| > 2k. Let V1, . . . , Vp be the partition of VCi
defined by

the twin equivalence of G[VCi
∪ S]. That is, two vertices u, v ∈ VCi

belong in a Vj , j ∈ [p],
if and only if u and v are twins. Note that p ≤ 2k. Observe that, since Ci is a clique, the
graphs Ci[Vj ], j ∈ [p], are also cliques. In other words, for each j ∈ [p], all the vertices of
Vj are adjacent twins. We delete all but one vertex of Vj , for each j ∈ [p], and repeat this
process for every i ∈ [m] such that |VCi

| > 2k. Let G′ = (V ′, E′) be the resulting subgraph
of G and d = |D|, where D is the set of vertices that were removed throughout this process.
It follows from Lemma 3 that Iv(G) = Iv(G′) + d. Observe also that S ⊆ V ′ and that each
connected component of G′[V ′ \ S] is a clique of at most 2k vertices. In other words, G′ has
vertex integrity at most 2k + k. To sum up, to compute Iv(G) it suffices to compute Iv(G′),
which can be done in FPT-time by running the algorithm presented in Theorem 9. ◀

4 Edge-irregulators

In this section we begin the study of finding an optimal edge-irregulator of a given graph. It
turns out that the decision version of this problem is N P-complete, even for quite restrictive
classes of graphs (see Theorem 12). Furthermore, it is also W[1]-hard parameterised by the
size of the solution.

▶ Theorem 12 (⋆). Let G be a graph and k ∈ N. Deciding if Ie(G) ≤ k is N P-complete,
even if G is a planar bipartite graph of maximum degree 6.

Sketch of Proof. The problem is clearly in N P. We focus on showing it is also N P-hard.
This is achieved through a reduction from the Planar 3-SAT problem which is known to
be N P-complete [30]. In that problem, a 3CNF formula ϕ is given as an input. We say that
a bipartite graph G′ = (V, C, E) corresponds to ϕ if it is constructed from ϕ in the following
way: for each literal xi (resp. ¬xi) that appears in ϕ, add the literal vertex vi (resp. v′

i) in
V (for 1 ≤ i ≤ n) and for each clause Cj of ϕ add a clause vertex cj in C (for 1 ≤ j ≤ m).
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u1

u3

u2

u4

u5

v′
i

vi

u6

u8

u7

u12

u11

u10

u9

e4
i

e2
i

e1
i

e3
i

cj

Figure 2 The construction in the proof of Theorem 12. The dashed lines are used to represent
the edges between the literal and the clause vertices.

Then the edge vicj (resp. v′
icj) is added if the literal xi (resp. ¬xi) appears in the clause

Cj . Finally, we add the edge viv
′
i for every i. A 3CNF formula ϕ is valid as input to the

Planar 3-SAT problem if the graph G′ that corresponds to ϕ is planar. Furthermore,
we may assume that each variable appears in ϕ twice as a positive and once as a negative
literal [11]. The question is whether there exists a truth assignment to the variables of X

satisfying ϕ. Starting from a 3CNF formula ϕ, we construct a graph G such that Ie(G) ≤ 3n

if and only if ϕ is satisfiable.

Construction. We start with the graph G′ that corresponds to the formula ϕ. Then, for
each 1 ≤ i ≤ n, we remove the edge viv

′
i, and attach the gadget illustrated in Figure 2 to vi

and v′
i. Let Ei denote the edges of the gadget attached to vi and v′

i plus the edges e1
i , e2

i and
e3

i . Finally, for each 1 ≤ j ≤ m, we attach two leaves to cj and then we add the star with 7
vertices and identify one of its leaves as the vertex cj . Note that the edges e1

i , e2
i correspond

to the two positive appearances of the literal xi, while the edge e3
i corresponds to the one

negative appearance of the same literal. We stress that the edge e4
i is a “simple” edge leading

to a vertex of degree 1, and does no correspond to any appearance (positive or negative) of
xi. Observe that the resulting graph G is planar, bipartite and ∆(G) = 6. This finishes the
construction.

The rest of the reduction is based on some useful observations about the constructed
graph. Indeed, we prove that for every edge-irregulator S of G, for every 1 ≤ i ≤ n, we have
that |S ∩ Ei| ≥ 3. Also, if S is such that |S| ≤ 3n, then, for every 1 ≤ i ≤ n, we have that
if |S ∩ {e1

i , e2
i }| ≥ 1 then |S ∩ {e3

i , e4
i }| = 0 and if |S ∩ {e3

i , e4
i }| ≥ 1 then |S ∩ {e1

i , e2
i }| = 0.

Finally, we show that there exists a satisfying truth assignment of ϕ if and only if Ie(G) ≤ 3n,
where G is the graph constructed from the input formula ϕ as explained above. Starting
from a satisfying truth assignment of ϕ, we insert {v′

iu6, e1
i , e2

i } ({viu6, e3
i , e4

i } resp.) into the
constructed edge-irregulator S if xi is set to true (false resp.). For the reverse direction, we
set the variable xi to true if and only if S ∩ {e1

i , e2
i } ̸= ∅. ◀

▶ Theorem 13 (⋆). Let G be a graph and k ∈ N. Deciding if Ie(G) ≤ k is W[1]-hard
parameterised by k.

The proof of this theorem is based on a reduction from k-Multicoloured Clique.
Additionally, this problem exhibits a similar behaviour to finding optimal vertex-

irregulators, as it also remains intractable even for “relatively large” structural parameters.

▶ Theorem 14. Let G and k ∈ N. Deciding if Ie(G) ≤ k is W[1]-hard parameterised by
either the feedback vertex set number or the treedepth of G.
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ui,j

ui

. . . . . . . . . . . . . . . . . .

. . . . . . . . .
. . .

di,j − 1 di,j − 1

n2 stars

di,j − 2 di,j − 2

n2 stars

di,j − n2 di,j − n2

n2 + q stars

2in4 − a′
j stars

Figure 3 The tree Ti,j that is attached to the vertex ui, where j is such that aj ∈ L(ui), in the
proof of Theorem 14. The value of q is such that, in total, d(ui,j) = 2in4 − a′

j + 1.

Proof. The reduction is from the General Factor problem:

General Factor
Input: A graph H = (V, E) and a list function L : V → 2∆(H) that specifies the
available degrees for each vertex u ∈ V .
Task: Does there exist a set S ⊆ E such that dH−S(u) ∈ L(u) for all u ∈ V ?

This problem is known to be W[1]-hard when parameterised by the vertex cover number
of H [20].

Starting from an instance (H, L) of General Factor, we construct a graph G such
that Ie(G) ≤ n2, where n = |V (H)|, if and only if (H, L) is a yes-instance. Moreover,
the constructed graph G will have treedepth and feedback vertex set O(vc), where vc is
the vertex cover number of H. For every vertex u ∈ V (H), let us denote by L(u) the set
{0, 1, . . . , dH(u)} \ L(u). In the case where {0, 1, . . . , dH(u)} \ L(u) = ∅, we set L(u) = {−1}.
On a high level, the graph G is constructed by adding some trees on the vertices of H.
In particular, for each vertex u ∈ V (H) and for each element a in L(u), we will attach a
tree to u whose purpose is to prevent u from having degree a in G − S, for any optimal
edge-irregulator S of G. We proceed with the formal proof.

Construction. We begin by defining an arbitrary order on the vertices of H. That is,
V (H) = {u1, u2, . . . , un}. Next, we describe the trees we will use in the construction of
G. In particular, we will describe the trees that we attach to the vertex ui, for every
1 ≤ i ≤ n. First, for each aj ∈ L(ui), define the value a′

j = dH(ui) − aj . Also, for each j, let
di,j = 2in4 − a′

j . For each “forbidden degree” aj in the list L(ui), we will attach a tree Ti,j

to ui. We define the tree Ti,j as follows.
First, for every 0 ≤ k ≤ n2 − 1, create n2 copies of Sdi,j−k (the star on di,j − k vertices)

and q additional copies of Sdi,j−n2+1 (the exact value of q will be defined in what follows).
Then, choose one leaf from each one of the above stars, and identify them into a single vertex
denoted as ui,j ; the value of q is such that d(uij) = di,j − 1 = 2in4 − a′

j − 1. Let Ti,j be the
resulting tree and let us say that ui,j is the root of Ti,j (see Figure 3).

Let us now describe the construction of G. For each vertex ui ∈ V (H) and for each
aj ∈ L(ui), add the tree Ti,j to H and the edge ui,jui. Then, for each vertex ui ∈ V (H), for
any j such that ui,j is a neighbour of ui, add pi additional copies of the tree Ti,j , as well
as the edges between ui and the roots of the additional trees, so that dG(ui) = 2in4. The
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resulting graph is G. Note that, for each vertex of V (H), we are adding at most O(n) trees,
each one containing at most O(n10) vertices. Thus, the construction of G is achieved in
polynomial time.
Reduction. Assume first that (H, L) is a yes-instance of General Factor, and let S ⊆ E

be such that dH−S(u) ∈ L(u) for all u ∈ V (H). We claim that S is also an edge-irregulator
of G. By the construction of G, and since S only contains edges from H, there are no
two adjacent vertices in G[V (G) \ V (H)] that have the same degree in G − S. Thus, it
remains to check the pairs of adjacent vertices x, y such that, either both x and y belong
to V (H), or, w.l.o.g., x ∈ V (H) and y ∈ V (G − H). For the first case, let x = ui and
y = ui′ , for 1 ≤ i < i′ ≤ n. Then, assuming that dG−S(ui) = dG−S(ui′), we get that
2in4 − p = 2i′n4 − p′, where S contains 0 ≤ p ≤ n2 and 0 ≤ p′ ≤ n2 edges incident to ui and
ui′ respectively. Thus, 2n4(i − i′) = p − p′, a contradiction since −n2 ≤ p − p′ ≤ n2, i < i′

and −n ≤ i − i′ ≤ n. For the second case, for every i, let dG−S(ui) = 2in4 − p, where the set
S contains 1 ≤ p ≤ n2 edges of H incident to ui. Also, by the construction of G and since S

only contains edges from H, we have that for every j, dG−S(ui,j) = dG(ui,j) = 2in4 − a′
j ,

where, recall, a′
j = dH(ui) − aj for aj ∈ L(ui) (see Figure 3). Assume now that there

exist i, j such that dG−S(ui) = dG−S(ui,j). Then, 2in4 − p = 2in4 − dH(ui) + aj and thus
dH(ui) − p = aj . But then dH−S(ui) = aj , which is a contradiction since aj ∈ L(ui). Thus,
S is an edge-irregulator of G and |S| ≤ n2 since S only contains edges of E(H).

For the reverse direction, assume that Ie(G) ≤ n2 and let S be an optimal edge-irregulator
of G. We will show that S is also such that dH−S(ui) ∈ L(ui), for every i. Let us first prove
the following claim.

▷ Claim 15. Let S be an optimal edge-irregulator of G. Then either S ⊆ E(H) or |S| > n2.

Proof. Assume there exist i, j such that |S ∩ Ei,j | = x ≥ 1 and x ≤ n2. Among those edges,
there are x1 ≥ 0 edges incident to u and x2 ≥ 0 edges incident to children of u (but not to
u), with x1 + x2 = x ≤ n2.

Assume first that x1 = 0. Then x = x2 and there is no edge of S ∩ Ei,j that is incident
to u. Then dG−S(u) = dG(u) and observe that dG(u) is strictly larger than that of any of its
children (by the construction of G). It follows that S \ Ei,j is also an edge-irregulator of G,
contradicting the optimality of S. Thus x1 ≥ 1. It then follows from the construction of G

that there exist at least n2 children of u, denoted by z1, . . . , zn2 , such that dG−S(u) = dG(zk),
for every 1 ≤ k ≤ n2. Since x ≤ n2, there exists at least one 1 ≤ k ≤ n2 such that
dG−S(u) = dG−S(zk), contradicting the fact that S is an edge-irregulator. Thus x > n2. ◁

It follows directly from Claim 15 that S contains only edges of E(H). Assume that there
exist i, j such that dH−S(ui) = aj and aj ∈ L(ui). Then dG−S(ui) = 2in4 − a′

j . Also, by
the construction of G, ui is adjacent to a vertex ui,j for which (since S contains only edges
of E(H)) we have that dG−S(ui,j) = dG(ui,j) = 2in4 − a′

j . This is contradicting the fact
that S is an edge-irregulator of G. Thus, for every i, j, we have that if dH−S(ui) = aj , then
aj ∈ L(ui), which finishes our reduction.

Finally, if H has vertex cover number vc, then, by Observation 4, we have that G has
treedepth and feedback vertex set O(vc). ◀

We close this section by observing that the proof of Theorem 9 can be adapted for the case
of edge-irregulators. Indeed, it suffices to replace the guessing of vertices and the variables
defined on vertices, by guessing of edges and variables defined on the edges of the given
graph. Finally, the definition of the sub-types is done through subgraphs produced only by
deletion of edges. This leads us to the following:
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▶ Corollary 16. Given a graph G with vertex integrity k, there exists an algorithm that
computes Ie(G) in FPT-time parameterised by k.

5 Conclusion

In this work we continued the study of the problem of finding optimal vertex-irregulators,
and introduced the problem of finding optimal edge-irregulators. In the case of vertex-
irregulators, our results are somewhat optimal, in the sense that we almost characterise
which are the “smallest” graph-structural parameters that render this problem tractable. The
only “meaningful” parameter whose behaviour remains unknown is the modular-width of the
input graph. The parameterised behaviour of the case of edge-irregulators is also somewhat
understood, but there are still some parameters for which the problem remains open. Another
interesting direction is that of approximating optimal vertex or edge-irregulators. In particular
it would be interesting to identify parameters for which either problem becomes approximable
in FPT-time (recall that vertex-irregulators are not approximable within any decent factor
in polynomial time [16]). Finally, provided that the behaviour of edge-irregulators is better
understood, we would also like to propose the problem of finding locally irregular minors, of
maximum order, of a given graph G.
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Abstract
We study the fundamental scheduling problem 1 | rj |

∑
wjUj : schedule a set of n jobs with weights,

processing times, release dates, and due dates on a single machine, such that each job starts after its
release date and we maximize the weighted number of jobs that complete execution before their
due date. Problem 1 | rj |

∑
wjUj generalizes both Knapsack and Partition, and the simplified

setting without release dates was studied by Hermelin et al. [Annals of Operations Research, 2021]
from a parameterized complexity viewpoint.

Our main contribution is a thorough complexity analysis of 1 | rj |
∑

wjUj in terms of four key
problem parameters: the number p# of processing times, the number w# of weights, the number d#

of due dates, and the number r# of release dates of the jobs. 1 | rj |
∑

wjUj is known to be weakly
para-NP-hard even if w# + d# + r# is constant, and Heeger and Hermelin [ESA, 2024] recently
showed (weak) W[1]-hardness parameterized by p# or w# even if r# is constant.

Algorithmically, we show that 1 | rj |
∑

wjUj is fixed-parameter tractable parameterized by p#

combined with any two of the remaining three parameters w#, d#, and r#. We further provide
pseudo-polynomial XP-time algorithms for parameter r# and d#. To complement these algorithms,
we show that 1 | rj |

∑
wjUj is (strongly) W[1]-hard when parameterized by d# + r# even if w# is

constant. Our results provide a nearly complete picture of the complexity of 1 | rj |
∑

wjUj for p#,
w#, d#, and r# as parameters, and extend those of Hermelin et al. [Annals of Operations Research,
2021] for the problem 1 ||

∑
wjUj without release dates.
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19:2 Single-Machine Scheduling to Minimize the Number of Tardy Jobs

1 Introduction

The problem of scheduling jobs to machines is one of the core application areas of combinatorial
optimization [25]. Typically, the task is to allocate jobs to machines in order to minimize
a certain objective function while complying with certain constraints. In our setting, the
jobs are characterized by several numerical parameters: a processing time, a release date,
a due date, and a weight. We have access to a single machine that can process one job
(non-preemptively) at a time. We consider one of the most fundamental objective functions,
namely to minimize the weighted number of tardy jobs, where a job is considered tardy if it
completes after its due date. In the standard three-field notation for scheduling problems by
Graham [8], the problem is called 1 | rj |

∑
wjUj . We give a formal definition in Section 2.

The interest in 1 | rj |
∑

wjUj comes from various sources. It generalizes several
fundamental combinatorial problems. In the most simple setting, without weights and release
dates, the classic algorithm by Moore [24] computes an optimal schedule in polynomial
time. When weights are added, the problem (1 ||

∑
wjUj) encapsulates the Knapsack

problem, a cornerstone in combinatorial optimization and one of Karp’s 21 NP-complete
problems [15]. Precisely, when all jobs are released at time zero and all jobs have a common
due date, we obtain the Knapsack problem. Karp’s NP-hardness proof (from his seminal
paper [15]) is the first example of a reduction to a problem involving numbers. The problem
1 ||

∑
wjUj is one of the most extensively studied problems in scheduling and can be solved

in pseudopolynomial time by the classic algorithm by Lawler and Moore [19]. Hermelin et
al. [14] showed that this algorithm can be improved in various restricted settings. Better
running times have been achieved for the special case where the weights of the jobs equal
their processing times [3, 6, 17, 26].

The problem 1 ||
∑

wjUj (so without release dates) has been studied from the perspective
of parameterized complexity by Hermelin et al. [13]. They considered the number p# of
different processing times, the number d# of different due dates, and the number w# of
different weights as parameters and showed fixed-parameter tractability for w# +p#, w# +d#,
and p# + d# as well as giving an XP-algorithm for the parameters p# and w#. These results
are presumably tight, as Heeger and Hermelin [9] recently showed (weak) W[1]-hardness for
the parameters p# and w#. The problem has also been studied under fairness aspects [10].

The addition of release dates is naturally motivated in every scenario where not all jobs
are initially available. The aim of this paper is to study the parameterized complexity of
the problem (1 | rj |

∑
wjUj) in this setting. Here, it encapsulates Partition and becomes

weakly NP-hard [20], even if there are only two different release dates and two different
due dates and all jobs have the same weight. It has previously been studied for the case of
uniform processing times, both on a single machine [7] and for parallel machines [2, 11], as
well as for the special case of interval scheduling [1, 12, 18, 27].

Our Contributions. In this paper, we deploy the tools of parameterized complexity to study
the computational complexity of 1 | rj |

∑
wjUj . In the spirit of “parameterizing by the

number of numbers” [5], we analyze the complexity picture with respect to (i) the number p#
of distinct processing times of the jobs, (ii) the number w# of distinct weights of the jobs, (iii)
the number d# of distinct due dates of the jobs, and (iv) the number r# of distinct release
dates of the jobs. Thereby, we extend and complement the results obtained by Hermelin et
al. [13] for the case where all release dates are zero.

In summary, we obtain an almost complete classification into tractable cases (meaning
that we find a fixed-parameter algorithm) and intractable cases (meaning that we show the
problem to be W[1]-hard) depending on which subset of parameters from {p#, w#, d#, r#}
we consider.
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First note that for some parameter combinations, the problem complexity has already
been resolved. In particular, 1 | rj |

∑
wjUj is known to be weakly NP-hard for d# = 1 and

r# = 1, as this setting captures the Knapsack problem [15]. Furthermore, 1 | rj |
∑

wjUj

is known to be weakly NP-hard for d# = 2, w# = 1, and r# = 2 [20]. For parameter p# as
well as w#, Heeger and Hermelin [9] showed weak W[1]-hardness even if r# = 1.

That leaves open the parameterized complexity for several parameter combinations. We
extend the known hardness results by showing the following:

1 | rj |
∑

wjUj is (strongly) W[1]-hard parameterized by d# + r# even if w# = 1.
This result is obtained by a straightforward reduction showing that 1 | rj |

∑
wjUj generalizes

Bin Packing. Our main results are on the algorithmic side, where we show the following:
1 | rj |

∑
wjUj is fixed-parameter tractable parameterized by p# + d# + r#.

1 | rj |
∑

wjUj is fixed-parameter tractable parameterized by p# + w# + d# or
p# + w# + r#.
1 | rj |

∑
wjUj can be solved in pseudo-polynomial time for constant r# or constant d#.

For the first two, we employ reductions to Mixed Integer Linear Programming (MILP),
and for the latter, we give a dynamic programming algorithm. Due to space constraints,
proofs of results marked with ⋆ are deferred to a full version [16].

With our results, we resolve the parameterized complexity of 1 | rj |
∑

wjUj for almost all
parameter combinations of {p#, w#, r#, d#} and hence give the first comprehensive overview
thereof. The remaining question is whether 1 | rj |

∑
wjUj is polynomial-time solvable

for constant p# or fixed-parameter tractable for p# + w#. It also remains open whether
1 | rj |

∑
wjUj is fixed-parameter tractable parameterized by p# if all numbers are encoded

in unary. A technical report [4] claims (strong) NP-hardness even for p# = 2 and w# = 1. If
that result holds, then it would also settle the parameterized complexity for the parameter
combination p# + w#, and for p# when all processing times and weights are encoded in
unary. Otherwise, those questions would remain open.

Our results contribute to the growing body of investigating the parameterized complexity
of fundamental scheduling problems [23]; for reference, we refer to the open problem collection
by Mnich and van Bevern [22].

2 Preliminaries

Scheduling. The problem considered in this work is denoted 1 | rj |
∑

wjUj in the standard
three-field notation for scheduling problems by Graham [8]. In this problem, we have n

jobs and one machine that can process one job at a time. Each job j ∈ {1, . . . , n} has a
processing time pj , a release date rj , a due date dj , and a weight wj , where we pj , rj , dj ,
and wj are non-negative integers. We use p#, r#, d#, and w# to denote the number of
different processing times, release dates, due dates, and weights, respectively.

A schedule σ : {1, . . . , n} → N assigns to each job j a starting time σ(j) to process it
until its completion time σ(j) + pj , so no other job j′ ≠ j must start during j’s execution
time σ(j), . . . , σ(j) + pj − 1. We call a job j early in a schedule σ if σ(j) + pj ≤ dj ; otherwise
we call job j tardy. We say that the machine is idle at time s in a schedule σ if no job’s
execution time contains s. The goal is to find a schedule that minimizes the weighted number
of tardy jobs or, equivalently, maximizes the weighted number of early jobs

W =
∑

j|σ(j)=s∧s+pj≤dj

wj .

IPEC 2024
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We call a schedule that maximizes the weighted number of early jobs optimal. Formally, the
problem is defined as follows:

1 | rj |
∑

wjUj

Input: A number n of jobs, a list of processing times (p1, p2, . . . , pn), a list of
release dates (r1, r2, . . . , rn), a list of due dates (d1, d2, . . . , dn), and a list of
weights (w1, w2, . . . , wn).

Task: Compute an optimal schedule, that is, a schedule σ that maximizes W =∑
j|σ(j)=s∧s+pj≤dj

wj .

Given an instance I of 1 | rj |
∑

wjUj , we make the following observation:

▶ Observation 1. Let I be an instance of 1 | rj |
∑

wjUj and let dmax be the largest due
date of any job in I. Let I ′ be the instance obtained from I by setting r′

j = dmax − dj and
d′

j = dmax − rj for each job j. Then I admits a schedule where the weighted number of early
jobs is W if and only if I ′ admits a schedule where the weighted number of early jobs is W .

Observation 1 holds, as we can transform a schedule σ for I into a schedule σ′ for I ′ (with
the same weighted number of early jobs) by setting σ′(j) = dmax − σ(j) − pj . Intuitively,
this means that we can switch the roles of release dates and due dates to obtain instances
with the same objective value.

Mixed Integer Linear Programming. For several of our algorithmic results, we use re-
ductions to Mixed Integer Linear Programming (MILP). This problem is defined as
follows:

Mixed Integer Linear Programming (MILP)
Input: A vector x of n variables, a subset S of the variables which are considered integer

variables, a constraint matrix A ∈ Rm×n, and two vectors b ∈ Rm, c ∈ Rn.
Task: Compute an assignment to the variables (if one exists) such that all integer variables

in S are set to integer values, Ax ≤ b, x ≥ 0, and c⊺x is maximized.

If all variables are integer variables, the problem is simply called Integer Linear
Programming (ILP). Due to Lenstra’s well-known result for MILP [21], we have that:

▶ Theorem 2 ([21]). MILP is fixed-parameter tractable when parameterized by the number
of integer variables.

3 Hardness Results

In this section, we first discuss known hardness results for 1 | rj |
∑

wjUj , and then present
a novel parameterized hardness result. Observe that for rj = 0 and dj = d (that is, all jobs
have the same deadline), the problem 1 | rj |

∑
wjUj is equivalent to Knapsack, which

is known to be weakly NP-hard [15]. Further, there is a straightforward reduction from
Partition to 1 | rj |

∑
wjUj that only uses two release dates and two due dates, and

uniform weights [20]. Finally, Heeger and Hermelin [9] recently showed that the special
case of 1 | rj |

∑
wjUj without release dates is weakly W[1]-hard when parameterized by

either p# or w#. Hence, (together with Observation 1) we have that:

▶ Proposition 3 ([9, 15, 20]). The problem 1 | rj |
∑

wjUj is
weakly NP-hard even if d# = 1 and r# = 1,
weakly NP-hard even if r# = d# = 2 and w# = 1,
and weakly W[1]-hard when parameterized by either p# or w# even if r# = 1 or if d# = 1.
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The reduction from Partition to 1 | rj |
∑

wjUj by Lenstra et al. [20] can straightfor-
wardly be extended to a reduction from Bin Packing, which yields the following result:

▶ Theorem 4 (⋆). The problem 1 | rj |
∑

wjUj is strongly NP-hard, and strongly W[1]-hard
when parameterized by r# + d#, even if w# = 1.

4 1 | rj | ∑
wjUj parameterized by p# + r# + d#

In this section, we present the following result.

▶ Theorem 5. The problem 1 | rj |
∑

wjUj is fixed-parameter tractable when parameterized
by p# + r# + d#.

To prove Theorem 5, we present a reduction from 1 | rj |
∑

wjUj to MILP that creates
instances of MILP where the number of integer variables is upper-bounded by a function of
p#, r#, and d#. The result then follows from Theorem 2.

Given an instance of 1 | rj |
∑

wjUj , we say that two jobs j and j′ have the same type
if they have the same processing time, the same release date, and the same due date, that
is, pj = pj′ , rj = rj′ , and dj = dj′ . Let T denote the set of all types. Note that we have
|T | ≤ p# · r# · d#. Furthermore, we sort all release dates and due dates such that if the
kth release date equals the ℓth due date, we require the release date to appear later in the
ordering. Let L denote an ordered list of all release dates and due dates that complies to the
aforementioned requirement. Note that we have |L| ≤ r# + d#.

We now create an integer variable xt
a,b for all t ∈ T and all a, b ∈ L with a < b. Intuitively,

if a and b are consecutive in L, then this variable tells us how many jobs of type t to schedule
in the time interval [a, b]. If a and b are not consecutive in L, then xt

a,b is a zero-one variable
that tells us whether we schedule a job of type t in a way such that its processing time
intersects all c ∈ L with a < c < b.

We create the following constraints. The first set of constraints is

∀t ∈ T :
∑

a,b∈L|a<b

xt
a,b ≤ nt, (1)

where nt denotes the number of jobs of type t in the 1 | rj |
∑

wjUj instance. Intuitively,
these constraints ensure that we do not try to schedule more jobs of type t than there are
available.

The second set of constraints is

∀a, b ∈ L with a < b and ∀t ∈ T with rt > b or dt < a : xt
a,b = 0, (2)

where rt denotes the release date of jobs of type t and dt denotes the due date of jobs of
type t. Intuitively, these constraints prevent us from trying to schedule a job of a certain
type into an interval that conflicts with the job’s release date or due date.

The third set of constraints is

∀c ∈ L :
∑
t∈T

∑
a,b∈L|a<c<b

xt
a,b ≤ 1 . (3)

Intuitively, these constraints ensure that for each c ∈ L at most one job is scheduled that
intersects c.

IPEC 2024
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The fourth set of constraints is

∀a, b ∈ L with a < b :

∑
t∈T

 ∑
a′,b′∈L|a′≥a,b′≤b,a′<b′

pt · xt
a′,b′ +

∑
a′,b′∈L|a′<a,b′>b

(b− a) · xt
a′,b′

 ≤ b− a, (4)

where pt denotes the processing time of jobs of type t. Intuitively, these constraints make
sure that for every interval [a, b] with a, b ∈ L we do not schedule jobs with total processing
time more than b− a into that interval.

Now we specify the objective function. If we want to schedule a certain number of
jobs with type t early, we take the ones with the largest weight in order to minimize the
weighted number of tardy jobs. Let xt =

∑
a,b∈L;a<b xt

a,b. Intuitively, xt is the number of
jobs with type t that are scheduled early. For each type, t ∈ T , order the jobs of type t in
the 1 | rj |

∑
wjUj instance by their weight (largest to smallest) and let wt

i denote the ith

largest weight of jobs with type t. The objective function we aim to maximize is

∑
t∈T

xt∑
i=1

wt
i . (5)

Note that constraints (1), (2), (3), and (4) are linear. The objective function (5) is
convex [13] and it is known that we can obtain an equivalent MILP with a linear objective
function at the cost of introducing additional fractional variables and constraints [13].
Furthermore, we can observe the following:

▶ Observation 6. The number of integer variables in the created MILP instance is in
O(p# · r# · d# · (r# + d#)2).

Next, we show the correctness of the reduction.

▶ Lemma 7 (⋆). If the 1 | rj |
∑

wjUj instance admits a schedule where the weighted
number of early jobs is W , then the created MILP instance admits a feasible solution that
has objective value at least W .

▶ Lemma 8. If the created MILP instance is feasible and admits a solution with objective
value W , then the 1 | rj |

∑
wjUj instance admits a schedule where the weighted number of

early jobs is at least W .

Proof. Suppose we are given a solution to the MILP instance with objective value W . We
create a schedule σ as follows.

We iterate through pairs a, b ∈ L with a < b as follows. We start with the smallest
element a ∈ L and the smallest element b ∈ L with a < b according to the ordering. We
maintain a current starting point s that is initially set to s = a. Furthermore, we consider
all jobs initially as “unscheduled”. We proceed as follows.

We iterate through all t ∈ T in some arbitrary but fixed way. If xt
a,b > 0, take the xt

a,b

unscheduled jobs of type t with the maximum weight and schedule those between s and
s + xt

a,b · pt, where pt is the processing time of jobs of type t. Now consider those jobs
scheduled and set s← s + xt

a,b · pt. Continue with the next type.
Replace b with the next-larger element in L. If b is the largest element in L, then replace a

with the next-larger element in L, set b to the smallest element b ∈ L with a < b according
to the ordering, and set s← max{a, s}. If a is the largest element of L, terminate the
process. Otherwise, go to the first step.
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Since the solution to the MILP obeys constraint (1), we have that there are sufficiently
many jobs of each type that can be scheduled. All jobs that remained unscheduled after the
above-described procedure are scheduled in some arbitrary but feasible way.

We claim that the above procedure produces a schedule where the weighted number of
early jobs is at least W . We start by showing that the procedure indeed produces a schedule.
Clearly, there are no two jobs in conflict in the produced schedule. Furthermore, since we
always have s ≥ a and since the solution to the MILP obeys constraints (2), we have that no
job is scheduled to start before their release date.

In the remainder of the proof, we show that we schedule xt =
∑

a,b∈L;a<b xt
a,b jobs of

type t early. In particular, we schedule the xt jobs of type t with the largest weights early.
As the solution to the MILP has objective value W , it follows that the total weight of early
jobs is at least W .

We show that all jobs scheduled in the first step of the above-described procedure are
early. To this end, we identify where the procedure inserts idle times and argue that all jobs
scheduled in the first step between two consecutive idle times by the procedure are early. An
idle time is inserted by the procedure whenever we set s ← max{a, s} and we have a > s.
Consider the case where we set s← max{a, s} = a for some a ∈ L. (Note that, for technical
reasons, this includes the case where a = s.) Let a′ ∈ L denote the next larger element
of L for which we set s← max{a′, s} = a′. Now suppose, for the sake of contradiction, that
there is a job with a starting time between a and a′ that is scheduled in the first step of the
procedure and is tardy. Let j be the first such job, that is, the one with the smallest starting
time. Let xt

a′′,b ≥ 1 with some a ≤ a′′ ≤ a′ be the variable that was considered by the
procedure when j was scheduled. Then we have that dj ≥ b, since otherwise constraints (2)
are not met. We make the following case distinction:
1. If a = a′′, then the completion time of j is at most a +

∑
t∈T

∑
b′∈L|b′≤b,a<b′ pt · xt

a,b′ .
However, since constraints (4) are met by the solution to the MILP, in particular the one
for a, b ∈ L, we have that

a +
∑
t∈T

∑
b′∈L|b′≤b,a<b′

pt · xt
a,b′ ≤ b .

Since b ≤ dj , this contradicts the assumption that j is tardy.
2. Assume that a < a′′ ≤ a′. We argue that in this case, for all xt′

a′′′,b′ with t′ ∈ T and
a′′′, b′ ∈ L with a ≤ a′′′ < a′′ and b′ > b we must have that xt′

a′′′,b′ = 0. Assume
that xt′

a′′′,b′ for some t′ ∈ T and a′′′, b′ ∈ L with a ≤ a′′′ < a′′ and b′ > b. Consider the
constraint (4) for a′′, b ∈ L. Then we have

∑
t∈T

 ∑
a′,b′∈L|a′≥a′′,b′≤b,a′<b′

pt · xt
a′,b′ +

∑
a′,b′∈L|a′<a′′,b′>b

(b− a′′) · xt
a′,b′

 ≤ b− a′′ .

However, we also have that

b− a′′ < pt · xt
a′′,b + (b− a′′) · xt′

a′′′,b′

≤
∑
t∈T

 ∑
a′,b′∈L|a′≥a′′,b′≤b,a′<b′

pt · xt
a′,b′ +

∑
a′,b′∈L|a′<a′′,b′>b

(b− a′′) · xt
a′,b′

 ,

contradicting the assumption that xt′

a′′′,b′ ≥ 1. It follows that the completion time of
job j is at most a +

∑
t∈T

∑
a′,b′∈L|a′≥a,b′≤b,a′<b′ pt · xt

a′,b′ . Since constraint (4) is met
for a, b ∈ L, we have that

a +
∑
t∈T

∑
a′,b′∈L|a′≥a,b′≤b,a′<b′

pt · xt
a′,b′ ≤ b .
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Since b ≤ dj , this contradicts the assumption that j is tardy.
We conclude that all jobs scheduled by the above-described procedure in the first step are
early. Since for every a, b ∈ L and t ∈ T , the procedure schedules the xt

a,b jobs of type t

with the largest weights early, we have that the total weight of early jobs is at least W . This
concludes the proof. ◀

Now we have all the pieces available that are needed to prove Theorem 5.

Proof of Theorem 5. Theorem 5 follows directly from Observation 6, Lemmas 7 and 8, and
Theorem 2. ◀

5 1 | rj | ∑
wjUj parameterized by p# + w# + d#

In this section, we present the following result.

▶ Theorem 9. The problem 1 | rj |
∑

wjUj is fixed-parameter tractable when parameterized
by p# + w# + r# or when parameterized by p# + w# + d#.

We show the second part of Theorem 9, that is, 1 | rj |
∑

wjUj is fixed-parameter tractable
when parameterized by p# + w# + d#. By Observation 1, from this immediately follows
that 1 | rj |

∑
wjUj is also fixed-parameter tractable when parameterized by p# + w# + r#.

To prove the second part of Theorem 9, present a reduction from 1 | rj |
∑

wjUj to MILP.
Given an instance of 1 | rj |

∑
wjUj , we create a number of instances of MILP where in each

of them, the number of integer variables is upper-bounded by a function of p#, w#, and d#.
We solve each instance using Theorem 2 and prove that the 1 | rj |

∑
wjUj instance admits

a schedule where the weighted number of early jobs is at least W if and only if one of the
generated instances admits a solution with objective value at least W . Furthermore, we can
upper-bound the number of created MILP instances by a function of p#, w#, and d#.

Given an instance of 1 | rj |
∑

wjUj , we say that two jobs j and j′ have the same type
if they have the same processing time, the same weight, and the same due date, that is,
pj = pj′ , wj = wj′ , and dj = dj′ . Let T denote the set of all types. Note that we have
|T | ≤ p# · w# · d#. For some r ∈ N0 and some t ∈ T we denote by t(r) the set of jobs with
type t whose release date is at least r. Further, we denote by pt the processing time of jobs
with type t. Let d1, . . . , dd# be the sorted sequence of due dates. We denote with dℓ the ℓth

due date and we use dj to denote the due date of job j (same with release dates). To keep
the notation concise we will use d0 = 0 occasionally.

We fix some optimal schedule σ : {1, . . . , n} → N for the instance so that we may guess
some part of it by enumeration. If for a job j and a due date dℓ we have σ(j) < dℓ < σ(j)+pj ,
we will say that the job overlaps the due date. Notice that in any schedule, any due date is
overlapped by at most one job, but a job may overlap multiple due dates.

We now want to enumerate all possible ways due dates can be overlapped by early
jobs from some type t ∈ T in σ. That is, we consider all ways to partition d1, . . . , dd#

into subsequences of consecutive due dates. There are 2d# such partitions. For each such
subsequence S we consider all job types that might be scheduled overlapping all due dates
in S. For the subsequences containing only a single due date, we also consider the case that
no job overlaps that due date. This gives p# · w# · d# + 1 choices for each subsequence,
of which there are d#. Thus we end up with at most 2d# · dp#·w#·d#+1

# possible overlap
structures to consider. By enumerating them it is now possible to assume that we know
which overlap structure is present in σ.
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We make a small simplification at this stage. Suppose we know that some sequence of due
dates da, da+1, . . . , db is overlapped by the same job. Then σ schedules every job with one of
these due dates such that it is either scheduled to end before da, or it is late. Therefore, we
can decrease the due date of such jobs to be da without changing the optimality of σ. We
may thus assume that every job overlaps at most one due date. So suppose that for each dℓ

we are given the job type T (dℓ) = t overlapping that due date, or an assertion that no job
overlaps dℓ, represented by T (dℓ) = ∅. If the due date of jobs of type T (dℓ) is at most dℓ we
can reject the arrangement immediately, so assume that the due date of jobs of type T (dℓ)
is larger than dℓ. We can formulate a MILP that computes an optimal schedule under the
constraint that this structure of overlaps is respected. It uses the following variables:
1. xℓ

t ∈ N0 counts the number of jobs of type t to be scheduled between dℓ−1 and dℓ.
2. oℓ

a, oℓ
b ∈ N0 are the portions of the job scheduled overlapping dℓ that is processed before

and after dℓ, respectively.
3. xj ∈ [0, 1] indicates whether job j is scheduled. These variables are fractional, but we

will be able to show that they can be rounded.
We could omit generating variables xℓ

t that are known to schedule jobs late, that is, those
where jobs of type t have a due date that is earlier than dℓ. For simplicity, we keep these
variables, but one can assume them to be set to 0.

The MILP needs the following sets of constraints. The first constraint sets handle the
overlaps around due dates:

∀ℓ ∈ {1, . . . , d# − 1} : oℓ
a + oℓ

b = pt, if T (dℓ) = t. (6)
∀ℓ ∈ {1, . . . , d# − 1} : oℓ

a + oℓ
b = 0, if T (dℓ) = ∅. (7)

∀ℓ ∈ {1, . . . , d# − 1} : dℓ + oℓ
b ≤ dℓ+1. (8)

∀ℓ ∈ {1, . . . , d# − 1} : dℓ−1 + oℓ
a ≤ dℓ . (9)

The next set of constraints ensures that we do not try to schedule more jobs of a certain
type than there are available:

∀t ∈ T :
∑

j has type t

xj =
∑

ℓ∈{1,...,d#}

xℓ
t + |{dℓ | T (dℓ) = t}| . (10)

The next two sets of constraints, intuitively, ensure that we respect the release dates of
the jobs, and that we do not schedule too many jobs between two consecutive due dates.

∀ℓ ∈ {1, . . . , d#}, ℓ′ ∈ {1, . . . , r#} with rℓ′ ≤ dℓ

oℓ
a +

∑
t∈T

pt ·

 ∑
j∈t(rℓ′ )

xj −
∑
ℓ′′>ℓ

xℓ′′

t − |{dℓ′′ | T (dℓ′′) = t, ℓ′′ ≥ ℓ}|

 ≤ dℓ − rℓ′ . (11)

∀ℓ ∈ {1, . . . , d#} : oℓ
a + oℓ−1

b +
∑
t∈T

pt · xℓ
t ≤ dℓ − dℓ−1 . (12)

The objective function (to be maximized) of the MILP is simply∑
j

wj · xj . (13)

We observe the following:
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▶ Observation 10. The number of created MILP instances is in O(2d# · dp#·w#·d#+1
# ) and

the number of integer variables in each instance is in O(p# · w# · d2
#).

Next, we show the correctness of the reduction.

▶ Lemma 11 (⋆). If the 1 | rj |
∑

wjUj instance admits a schedule where the weighted
number of early jobs is W , then one of the created MILP instances admits a feasible solution
that has objective value at least W .

It remains to show that we can construct a schedule from a solution to the MILP. We
will first show some auxiliary result for the case of a single due date.

▶ Lemma 12. Consider any instance I of 1 | rj |
∑

wjUj with a common due date d. If for
all release dates rj we have∑

j′∈I|rj′ ≥rj

pj′ ≤ d− rj .

then we can schedule all jobs early.

Proof. The statement holds if the instance I contains a single job. Otherwise, we apply
induction on the number of jobs. Let j∗ be a job with maximum release date. We schedule
that job at time d− pj∗ . This yields a new instance I ′ of 1 | rj |

∑
wjUj with one fewer job

and common due date d− pj∗ . For any of the release dates r′
j of this new instance, it holds

that ∑
j′∈I′|rj′ ≥r′

j

pj′ =
∑

j′∈I′|rj′ ≥r′
j

pj′ − pj∗ ≤ d− r′
j − pj∗ .

The lemma statement follows. ◀

▶ Lemma 13. If one of the created MILP instances admits a solution that has objective
value W , then the 1 | rj |

∑
wjUj instance admits a schedule where the weighted number of

early jobs is at least W .

Proof. Assume we are given a feasible solution with objective value W to one of the MILP
instances. We will begin by rounding the xj such that they are integral. Suppose there
is some job j with xj ∈ (0, 1). Due to constraint (10) there exists some other job j′ with
the same type as j and with xj′ ∈ (0, 1). Assume, without loss of generality, that j has
an earlier release date than j′. Then we claim that setting xj := min{1, xj + xj′} and
xj′ := max{0, xj′ + xj − 1} maintains feasibility. Note that xj + xj′ does not change, xj′

decreases, and in any constraint where xj occurs, xj′ occurs also because j has the earlier
release date and they have the same type. Therefore, the left-hand sides of constraint (10)
are unchanged, and those of constraint (11) do not increase, maintaining feasibility. Since j

and j′ have the same type, the objective value is unchanged. By repeating this rounding
operation, we can increase the number of integral xj until all of them are integral. The same
argument can also be used to ensure that no job j has xj = 1 if there is another job j′ with
the same type and an earlier release date having xj′ = 0.

We now show how to schedule every early job j with xj = 1. Note that this implies
that the weighted number of early jobs is at least W . First, let J1

t , . . . , J
r#
t be the list

of jobs with type t sorted by their release dates, and omitting all jobs with xj = 0. It
will suffice to prove that we can schedule the last x

d#
t jobs from each list into the interval

I := [dd#−1 + o
d#−1
b , dd# ], and that we can then schedule a job of type T (dd#−1) into

[dd#−1 − o
d#−1
a , dd#−1 + o

d#−1
b ].
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Notice that constraint (11) simplifies for dd# to be
∑

t∈T
∑

j∈t(rℓ′ ) pt · xj ≤ dd# − rℓ′ .
Further, for the purposes of scheduling into I, we may consider the x

d#
t jobs from each type t

with the latest release dates to have release date at least dd#−1 + o
d#−1
b , which transforms

constraint (12) into
∑

t∈T
∑

j∈t(dd#−1+o
d#−1
b

)
pt ·xj ≤ dd#−dd#−1−o

d#−1
b . From Lemma 12

we see that we can indeed schedule all the required jobs into I.
Remove all the jobs we just scheduled from the instance, and update the MILP solution by

setting to 0 the x
d#
t , as well as all xj for the scheduled jobs. Now we need to schedule the job j∗

with the latest due date from the jobs of type T (dd#−1) into [dd#−1− o
d#−1
a , dd#−1 + o

d#−1
b ].

By constraints (6)-(9) we see that the interval has the correct length for the job, and that
the job will not be late. We only need to ensure that it is not scheduled before its release
date rj∗ . We use constraint (11) to observe

o
d#−1
a +

∑
t∈T

pt·

 ∑
j∈t(rj∗ )

xj −
∑

ℓ′′>d#−1
xℓ′′

t − |{dℓ′′ | T (dℓ′′) = t, ℓ′′ ≥ d# − 1}|

 ≤ dd#−1−rj∗

=⇒ rj∗ − pj∗ +
∑
t∈T

pt ·
∑

j∈t(rj∗ )

xj ≤ dd#−1 − o
d#−1
a

=⇒ rj∗ ≤ dd#−1 − o
d#−1
a .

We see that j∗ can be scheduled as desired. Now we update the MILP solution again by
setting dd#−1 to dd#−1 − o

d#−1
a , as well as xj∗ , o

d#−1
b , and o

d#−1
a to 0. We also update

T (dd#−1) := ∅. This yields a feasible solution to the MILP of the residual instance where we
discard the constraints for the final due date. We can iterate this until all jobs j with xj = 1
have been scheduled. We schedule the remaining jobs in an arbitrary but feasible way. Since
the objective value of the solution for the MILP is W , we have that the weighted number of
early jobs is also at least W . ◀

Now we have all the pieces available that are needed to prove Theorem 9.

Proof of Theorem 9. Between Lemma 11 and Lemma 13 we see that the MILP is equivalent
to the original scheduling problem if the correct overlap structure is chosen. By Observation 10
the number of MILPs we need to solve and the number of integer variables in each MILP
depends only on p#+w#+d#, and thus Theorem 9 follows from Theorem 2 and Observation 1.

◀

6 Unary 1 | rj | ∑
wjUj parameterized by r#

Recall that 1 | rj |
∑

wjUj is weakly NP-hard in the case where there is only one due date
and one release date. Thus even for instances of 1 | rj |

∑
wjUj with constant r# or d#, we

cannot expect a polynomial-time algorithm solving them in general. However, we show in
the following that such instances can be solved in pseudo-polynomial time2, using dynamic
programming, thus generalizing the folklore algorithm for Knapsack. Formally, we prove
the following:

2 A problem can be solved in pseudo-polynomial time if it can be solved in polynomial time when all
numeric values are encoded unarily.
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▶ Theorem 14. The problem 1 | rj |
∑

wjUj is in XP when parameterized by r# or d# if
all numbers are encoded in unary.

By Observation 1, we can focus on r# as a parameter, and the result for d# as a parameter
follows. We begin by ordering the release dates and denote with rℓ and rk the ℓth and kth

release date, respectively, and we use ri and rj to denote the release date of jobs i and j,
respectively (same with due dates). We also use ≤d to denote a fixed order of the jobs such
that their due dates are non-descending. We encode this directly into the indexing of the
jobs, that is, i ≤d j if and only if i ≤ j.

We can now assume that there exists some optimal schedule such that at every release
date rℓ there is a job scheduled to start exactly at rℓ. This can be ensured by enumerating
the possible overlap structures of the optimal schedule with respect to the release dates, as
in Section 5. To do this, we need to guess for each release date rℓ if there is a job scheduled
there and what the completion time of that job is. We know the completion time to be in
[rℓ + 1, rℓ + pmax], so in reality we will need to solve (pmax)r# dynamic programs and return
the best solution found. This is only a pseudo-polynomial time overhead, so we will suppress
it in the following.

Notice that between two consecutive release dates, we can now assume the scheduled
early jobs to be ordered according to ≤d, that is, by the earliest due date (all tardy jobs
are scheduled later on in a feasible but arbitrary way). If they are not ordered as such two
adjacent out-of-order jobs can be swapped while maintaining feasibility.

This structural simplification allows us to write a dynamic program with the following
recursive definition of the dynamic programming table:

T [j, t1, . . . , tr# ] = max
ℓ with rℓ ≥ rj

and rℓ + tℓ ≤ dj

{T [j−1, t1, . . . , tr# ], T [j−1, t1, , . . . , tℓ−pj , . . . , tr# ]+wj}.

The base cases for the recursion are:
T [0, 0, . . . , 0] = 0,
T [0, t1, . . . , tr# ] = −∞ if any of the tℓ are not zero,
T [j, ·, tℓ, ·] = −∞ if tℓ > rℓ+1 − rℓ or tℓ < 0 for some ℓ.

The entry T [j, t1, . . . , tr# ] intuitively represents the most valuable schedule attainable
using only the first j jobs according to ≤d, and with a total scheduled job time of tℓ starting
at rℓ.

We will first notice that the DP-table T has at most n · (n · pmax)r# finite entries.
Furthermore, each of those entries can be computed in time O(r#) if we process them in
increasing order of the first index. It remains to show that there exists a schedule attaining
the value maxt1,...,tr#

(T [|J |, t1, . . . , tr# ]), as well as that there is some cell T [|J |, t1, . . . , tr# ]
that has value at least as high as that of an optimal schedule.

▶ Lemma 15 (⋆). If the 1 | rj |
∑

wjUj instance admits a schedule where the weighted
number of early jobs is W , then there exists some entry of the dynamic programming table T

with value at least W .

▶ Lemma 16 (⋆). Let T [i, t1, . . . , tr# ] be a cell of the dynamic program with finite value W .
Then there is a schedule where at most the first i jobs are early, that attains a weighted
number of early jobs W , and which schedules a total processing time of tℓ immediately after
release date rℓ.

We may now conclude the following:
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▶ Corollary 17. Let W = maxt1,...,tr#
{T [n, t1, . . . , tr# ]}. Then W is the maximum weighted

number of jobs that can be scheduled early in the 1 | rj |
∑

wjUj instance.

Proof. By Lemma 15 we have that the maximum weighted number of jobs that can be
scheduled early in the 1 | rj |

∑
wjUj instance is ar least W . However, let T [n, t1, . . . , tr# ]

be an entry with value W . Then Lemma 16 guarantees that there exists a schedule for the
1 | rj |

∑
wjUj instance such that the weighted number of early jobs is W . ◀

Now we have all the pieces to prove a running time upper bounds for our dynamic-
programming algorithm for 1 | rj |

∑
wjUj .

▶ Lemma 18. The problem 1 | rj |
∑

wjUj can be solved in time O(pr#
max ·n ·(n ·pmax)r# ·r#).

Proof. We first need to guess the correct overlap structure between jobs and release dates of
which there are at most p

r#
max many. For each of these overlap structures, we then compute

the dynamic programming in time O(n · (n ·pmax)r# ·r#). We finally return the best objective
value found in any of the dynamic programming tables. By Corollary 17, this is the maximum
weighted number of jobs that can be scheduled early in the 1 | rj |

∑
wjUj instance. ◀

Now we have all the pieces to prove Theorem 14.

Proof of Theorem 14. Theorem 14 follows directly from Lemma 18 and Observation 1. ◀

Notice that the proof of Lemma 16 also gives a backtracking procedure which allows us
to compute an optimal schedule in time O(n · r#) for a given filled in dynamic programming
table with the maximum entry already computed.

7 Conclusion

In this work, we give a comprehensive overview of the parameterized complexity of 1 | rj |∑
wjUj for the parameters number p# of processing times, number w# of weights, number

r# of release dates, and number d# of due dates. We leave several questions for future
research, in particular:

Is 1 | rj |
∑

wjUj in XP when parameterized by p#?
Is 1 | rj |

∑
wjUj fixed-parameter tractable when parameterized by p# + w#?

Is 1 | rj |
∑

wjUj fixed-parameter tractable when parameterized by p# and all numbers
are encoded unarily?

We remark that a technical report [4] claims (strong) NP-hardness even for p# = 2 and
w# = 1. If that result holds, then it would also settle the parameterized complexity for the
parameter combination p# + w#, and for p# even when all processing times and weights are
encoded in unary.
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Abstract
In distance query reconstruction, we wish to reconstruct the edge set of a hidden graph by asking
as few distance queries as possible to an oracle. Given two vertices u and v, the oracle returns the
shortest path distance between u and v in the graph.

The length of a tree decomposition is the maximum distance between two vertices contained in
the same bag. The treelength of a graph is defined as the minimum length of a tree decomposition
of this graph. We present an algorithm to reconstruct an n-vertex connected graph G parameterized
by maximum degree ∆ and treelength k in Ok,∆(n log2 n) queries (in expectation). This is the first
algorithm to achieve quasi-linear complexity for this class of graphs. The proof goes through a new
lemma that could give independent insight on graphs of bounded treelength.
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1 Introduction

There has been extensive study on identifying the structure of decentralized networks
[2, 11, 15, 12, 1]. These networks are composed of vertices (representing servers or computers)
and edges (representing direct interconnections). To trace the path through these networks
from one actor to another, tools like traceroute (also known as tracert) were developed.
If the entire route cannot be inferred (e.g. due to privacy concerns), a ping-pong protocol
can be employed in which one node sends a dummy message to the second node, which then
immediately responds with a dummy message back to the first node. This process aims to
infer the distance between the nodes by measuring the time elapsed between the sending of
the first message and the receipt of the second.

A mathematical model for this called the distance query model was introduced [2]. In
this model, only the vertex set V of a hidden graph G = (V, E) is known, and the goal
is to reconstruct the edge set E through distance queries to an oracle. For any pair of
vertices (u, v) ∈ V 2, the oracle provides the shortest path distance between u and v in G.
The algorithm can be adaptive and base its next query on the responses to previous queries.

For a graph class G of connected graphs, an algorithm is said to reconstruct the graphs
in the class if, for every graph G ∈ G, the distance profile obtained is unique to G within G.
We then say the graph has been reconstructed. The query complexity refers to the maximum
number of queries the algorithm executes on an input graph from G. For a randomised
algorithm, the query complexity is determined by the expected number of queries, accounting
for the algorithm’s randomness. Such a randomised algorithm could also be seen as a
probability distribution over decision trees.
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Note that querying the oracle for the distance between every pair of vertices in G would
reconstruct the edge set as E = {{u, v} | d(u, v) = 1}. This approach leads to a trivial upper
bound of |V |2 on the query complexity. Unfortunately, Ω(|V |2) queries may be required to,
for example, distinguish between a clique Kn and Kn minus an edge {u, v}. If the maximum
degree is unbounded, this issue persists even in sparse graphs like trees: it can take Ω(n2)
queries to distinguish n-vertex trees (see also [13]). Therefore, as was also done in earlier
work, we will restrict ourselves to connected n-vertex graphs with maximum degree ∆.

1.1 Previous work
Kannan, Mathieu and Zhou [9, 11] were the first to give a non-trivial upper bound for all
graphs of bounded maximum degree, designing a randomised algorithm using Õ∆(n3/2)
queries in expectation for n-vertex graphs of maximum degree ∆. Here Õ(f(n)) stands for
O(f(n) polylog(n)) and the ∆ subscript denotes that ∆ is considered a parameter and only
influences the multiplicative constant in front of f(n), (e.g here we mean g(∆)n3/2 polylog n

for some function g : N 7→ R.). This is still the best known upper bound in the general
case, while the best lower bound is Ω(∆n log∆ n) [1]. Researchers spent effort investigating
Õ∆(n) algorithms for restricted classes of graphs. Kannan, Mathieu and Zhou [9, 11] proved
that there exists an O∆(n log3 n) randomised algorithm for chordal graphs (graphs without
induced cycle of length at least 4). Since then, their algorithm for chordal graphs has been
improved by Rong, Li, Yang, and Wang [15] to O∆(n log2 n), who also extended the class to
4-chordal graphs (graphs without induced cycle of length at least 5). Recent works introduced
new techniques to design deterministic reconstruction algorithms [1]. They developed a
quasi-linear algorithm for bounded maximum degree k-chordal graphs (without induced
cycle of length at least k + 1 and maximum degree ∆) using O∆,k(n log n) queries. Their
results can be interpreted as a quasi-linear algorithm parameterized by maximum degree and
chordality. In this paper, we are the first to use a parameterized approach to extend on the
techniques of Kannan, Mathieu and Zhou [9, 11], obtaining an algorithm with quasi-linear
query complexity parametrized by even more general parameters.

1.2 Treelength
A graph G has treelength at most ℓ if it admits a tree decomposition such that dG(u, v) ⩽ ℓ

whenever u, v ∈ V (G) share of a bag (see Section 2 for formal definition). We emphasize that
the bags are allowed to induce disconnected subgraphs, and that the “bounded diameter”
constraint is measured within the entire graph. Graphs of treelength 1 are exactly chordal
graphs and it was proved in [10] that k-chordal graphs have treelength at most k. For k > 1,
the class of graphs of treelength at most k covers a larger class of graphs than the class of
k-chordal graphs.

Graphs of bounded treelength avoid long geodesic cycles (i.e. cycles C for which dC(x, y) =
dG(x, y) for all x, y ∈ C) and in fact bounded treelength is equivalent to avoiding long “loaded
geodesic cycles” or being “boundedly quasi-isometric to a tree” (see [4] for formal statements).
When a graph has bounded treewidth (defined in Section 2), then the length of the longest
geodesic cycle is bounded if and only if the connected treewidth is bounded [5]. In a tree
decomposition of connected treewidth at most k, bags induce connected subgraphs of size at
most k + 1, which in particular means that graph distance between vertices sharing a bag
is at most k. So for graphs of bounded treewidth, excluding long geodesic cycles is in fact
equivalent to bounding the treelength of the graph.
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Treelength has been extensively studied from an algorithmic standpoint, particularly
for problems related to shortest path distances. For example, there exist efficient routing
schemes for graphs with bounded treelength [7, 10] and an FPT algorithm for computing
the metric dimension of a graph parameterised by its treelength [3]. Although deciding the
treelength of a given graph is NP-complete, it can still be approximated efficiently [7, 6].

1.3 Our contribution
Building on methods used by Kannan, Mathieu, and Zhou [11, 9] to reconstruct chordal
graphs, we prove the following result.

▶ Theorem 1. There is a randomised algorithm that reconstructs an n-vertex graph of
maximum degree at most ∆ and treelength at most k using O∆,k(n log2 n) distance queries
in expectation.

We now first describe the technique used by Kannan, Mathieu and Zhou [11, 9] for chordal
graphs and then discuss our extension. In their approach, they design a clever subroutine
to compute a small balanced separator S of the graph G using Õ∆(n) queries. With the
knowledge of this separator, it is possible to compute the partition in connected component of
G\S. By using this subroutine recursively, they are able to decompose the graph into smaller
and smaller components until a brute-force search already yields a Õ∆(n) queries algorithm.
They exploit the strong structure of chordal graphs in two ways in this algorithm. First, to
compute a small separator S. They start by only finding a single vertex that lies on many
shortest paths. They then use a specific tree decomposition of chordal graphs, where all bags
are cliques, to argue that the neighbourhood of this vertex is a good separator. Second, they
show that for any connected component C of G \ S the distance between vertices in C are
the same in G[C ∪ S]1 and in G. This property allows to apply their subroutine recursively,
as we can now simulate a distance oracle in G[C ∩ S] by just using the one we have on G.

Theorem 1 shows that we can push the boundaries of such an approach, and proves that
a weaker condition on the tree decomposition is already sufficient. We weaken the “bags are
cliques” condition, satisfied by chordal graphs, to the weaker condition “bags have bounded
diameter”. The bags are not required to be connected: the diameter is measured in terms of
the distance between the vertices in the entire graph.

We provide a brief explanation of our method and highlight the new challenges compared
to the approaches in [11] and [9]. We also start by finding a vertex v that lies on many
shortest paths (with high probability), although we give a new approach for doing so. In
fact, our overall algorithm is more efficient than that of [11, 9] by a (log n)-factor, and this is
the place where we gain this improvement. We then show that for such a vertex v, the set
S = N⩽3k/2[v] of vertices at distance at most 3k/2 is a good separator, for k the treelength
of the input graph. We compute the components of G \ S to check that indeed we found a
good separator and then recursively reconstruct the components until we reach a sufficiently
small vertex set on which a brute-force approach can be applied. It is key to our recursive
approach, and requires non-trivial proofs, that we can add a small boundary set and still
preserve all the relevant distances for a component. This problem is easily avoided in [11, 9]
where separators are cliques, but is more delicate to handle in our case. For this, we amongst
others obtain a structural property of graphs with bounded treelength. This property is
stated in the following lemma, which may be of independent interest.

1 Given a graph G and a set of vertices S ⊆ V (G), we use the notation G[S] to denote the graphs induces
by G on the vertex set S.
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▶ Lemma 2. Let G be a graph of treelength at most k ⩾ 1 and A⊆ V (G). If G[A] is connected
then every shortest path in G between two vertices a, b ∈ A is contained in N⩽3k/2[A].

1.4 Roadmap
In Section 2, we set up our notation and give the relevant definitions. In Section 3, we
give our algorithm to reconstruct bounded treelength graph with a proof of correctness and
complexity. In Section 4 we conclude with some open problems.

2 Preliminaries

In this paper, all graphs are simple, undirected and connected except when stated otherwise.
All logarithms in this paper are base 2, unless mentioned otherwise. For a ⩽ b two integers,
let [a, b] denote the set of all integers x satisfying a ⩽ x ⩽ b. We short-cut [a] = [1, a].

For a graph G and two vertices a, b ∈ V (G), we denote by dG(a, b) the length of a shortest
path between a and b. For G = (V, E), A ⊆ V and i ∈ N, we denote by N⩽i

G [A] = {v ∈ V |
∃a ∈A, dG(v, a) ⩽ i}. We may omit the superscript when i = 1. We write NG(A) = NG[A]\A
and use the shortcuts NG[u], NG(u) for NG[{u}], NG({u}) when u is a single vertex. We may
omit the subscript when the graph is clear from the context.

2.1 Distance queries
We denote by QueryG(u, v) the call to an oracle that answers dG(u, v), the distance between
u and v in a graph G. For A, B two sets of vertices, we denote by QueryG(A, B) the |A| · |B|
calls to an oracle, answering the list of distances dG(a, b) for all a ∈ A and all b ∈ B. We
may abuse notation and write QueryG(u, A) for QueryG({u}, A) and may omit G when
the graph is clear from the context.

For a graph class G of connected graphs, we say an algorithm reconstructs the graphs
in the class if for every graph G ∈ G the distance profile obtained from the queries is not
compatible with any other graph from G. The query complexity is the maximum number of
queries that the algorithm takes on an input graph from G, where the queries are adaptive.
For a randomised algorithm, the query complexity is given by the expected number of queries
(with respect to the randomness in the algorithm).

2.2 Tree decomposition
A tree decomposition of a graph G is a tuple (T, (Bt)t∈V (T )) where T is a tree and Bt is a
subset of V (G) for every t ∈ V (T ), for which the following conditions hold.

For every v ∈ V (G), the set {t ∈ V (T ) | v ∈ Bt} is non-empty and induces a subtree of T .
For every uv ∈ E(G), there exists a t ∈ V (T ) such that {u, v} ⊆ Bt.

This notion was introduced by [14].

2.3 Treelength
The treelength of a graph G (denoted tl(G)) is the minimal integer k for which there exists a
tree decomposition (T, (Bt)t∈V (T )) of G such that d(u, v) ⩽ k for every pair of vertices u, v

that share a bag (i.e. u, v ∈ Bt for some t ∈ V (T )). We refer the reader to [7] for a detailed
overview of the class of bounded treelength graphs.
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2.4 Balanced separators
For β ∈ (0, 1), a β-balanced separator of a graph G = (V, E) for a vertex set A ⊆ V is a set
S of vertices such that the connected components of G[A \ S] are of size at most β|A|.

One nice property of tree decompositions is that they yield 1
2 -balanced separators.

▶ Lemma 3 ([14]). Let G be a graph, A ⊆ V (G) and (T, (Bt)t∈V (T )) a tree decomposition
of G. Then there exists t ∈ V (T ) such that Bt is a 1

2 -balanced separator of A in G.

3 Randomised algorithm for bounded treelength

We give the complete proof of Theorem 1 in this section.

▶ Theorem 1. There is a randomised algorithm that reconstructs an n-vertex graph of
maximum degree at most ∆ and treelength at most k using O∆,k(n log2 n) distance queries
in expectation.

Given a tree decomposition (T, (Bt)t∈V (T )) of a graph G and a set X of vertices of G, we
denote by TX the subtree of T induced by the set of vertices t ∈ V (T ) such that Bt contains
at least one vertex of X. Given v ∈ V (G), we may abuse notation and use Tv as the subtree
T{v}. We first prove the following useful property of graphs of bounded treelength.

▶ Lemma 2. Let G be a graph of treelength at most k ⩾ 1 and A⊆ V (G). If G[A] is connected
then every shortest path in G between two vertices a, b ∈ A is contained in N⩽3k/2[A].

Proof. Consider a tree decomposition (T, (Bt)t∈V (T )) of G such that any two vertices u, v in
the same bag satisfy d(u, v) ⩽ k. If two vertices a, b ∈ A share a bag, then d(a, b) ⩽ k and
the claim holds for this pair.

Otherwise, Ta and Tb are disjoint subtrees of T and we can consider the unique path
P in T between Ta and Tb, with internal nodes taken from V (T ) \ V (Ta) ∪ V (Tb). We also
consider a shortest path Q := {q1, q2, . . . , , qm} between a and b in G with q1 = a, qm = b

and qiqi+1 ∈ E(G) for all i < m. Since A is supposed connected, TA is well-defined and is
a subtree of T . Moreover TA contains both Ta and Tb. Because TA is a tree, it must then
contains P as the unique path between Ta and Tb. Suppose now, towards a contradiction,
that there is some vertex z ∈ Q such that z /∈N⩽3k/2[A]. Note that Tz can not have common
vertices with P because we assumed d(z, A) > k using the previous remark and the fact that
vertices that share a bag are at distance at most k. We can then consider the vertex t ∈ P

such that {t} separates P \ {t} from Tz in T . The shortest path Q must go through Bt twice:
once to go from a to z and once to go from z to b.

Let i < ℓ < j be given such that qi, qj ∈ Bt and qℓ = z. Since Q is a shortest path in G,
d(qi, z) + d(z, qj) = d(qi, qj). Moreover, d(qi, qj) ⩽ k because qi and qj share a bag. By the
pigeonhole principle, we deduce that either d(pi, z) ⩽ k/2 or d(pj , z) ⩽ k/2. Suppose that
d(pi, z) ⩽ k/2. Remember that t ∈ P thus Bt contains an element of A as G[A] is connected.
It follows that d(pi, A) ⩽ k thus d(z, A) ⩽ d(z, pi) + d(pi, A) ⩽ 3k/2, which is a contradiction.
The other case follows by a similar argument. ◀

We now sketch the proof of Theorem 1. The skeleton of the proof is inspired by [9]: we find
a balanced separator S, compute the partition of G \ S into connected components, and
reconstruct each component recursively. In order to find this separator, we use a notion of
betweenness that roughly models the number of shortest paths a vertex is on.
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We prove four claims. The first one ensures that in graphs of bounded treelength, the
betweenness is always at least a constant. Then, the next three claims are building on each
other to form an algorithm that computes the partition of G \ S into connected components
of roughly the same size.

Claim 5 is a randomised procedure for finding a vertex z with high betweenness (using
few queries and with constant success probability).
Claim 6 shows S = N⩽3k/2[z] is a good balanced separator if z has high betweenness.
Claim 7 computes the partition of G \ S into connected components. Note that, once you
computed the partition, you can check if the preceding algorithms have been successful.
If not, we can call again Claim 6 until we are successful, yielding a correct output with a
small number of queries in expectation.

Proof of Theorem 1. Let G be a connected n-vertex graph of maximum degree at most ∆
and let (T, (Bt)t∈V (T )) be a tree decomposition of G such that d(u, v) ⩽ k for all u, v ∈ V (G)
that share a bag in T .

We initialize A = V (G), nA = |A| and Ri = ∅ for i ∈ [1, 3k]. For any j ∈ R+ we abbreviate
R⩽j = ∪i⩽jRi. Lastly, let r = |R⩽3k|. We will maintain throughout the following properties:
1. G[A] is a connected induced subgraph of G.
2. Ri consists of the vertices in G that are at distance exactly i from A.
3. Both A and Ri for all i are known by the algorithm.
In particular, we know which vertices are in sets such as R⩽3k/2 = N⩽3k/2[A] and by Lemma
2 we also obtain the following crucial property.
4. For a, b ∈ A, any shortest path between a and b only uses vertices from A ∪R⩽3k/2.
The main idea of the algorithm is to find a balanced separator S and compute the partition of
G[A \ S] into connected components, then call the algorithm recursively on each components.
As soon as nA has become sufficiently small, we will reconstruct G[A] by “brute-force queries”.

In order to find the separator S, we use the following notion. For G a graph, a subset
A ⊆ V (G) and a vertex v ∈ V (G), the betweenness pG

v (A) is the fraction of pairs of vertices
{a, b} ⊆ A such that v is on some shortest path in G between a and b. We first prove that
there is always some vertex v ∈ A ∪R⩽k (a set known to our algorithm) for which pv(A) is
large.

▷ Claim 4. We have p := max
v∈A∪R⩽k

pG
v (A) ⩾ 1

2(∆k+1) .

Proof. Our original tree decomposition also restricts to a tree decomposition for G[A], so
Lemma 3 shows that there exists a bag B of T such that B is a 1

2 -balanced separator of G[A].
Note that G[A] is connected, so there exists some a ∈ A∩B. As T is a witness of G being of
bounded treelength, the distance between any two vertices of B is at most k. In particular,
B ⊆ N⩽k[a] ⊆ A ∪R⩽k, and |B| ⩽ ∆k + 1 since G has maximum degree ∆. Moreover, since
B is a 1

2 -balanced separator of G[A], for at least half of the pairs {u, v} ⊆ A, the shortest
path between u and v goes through B. Using the pigeonhole principle, there exists a v ∈ B

such that pG
v (A) ⩾ 1

2(∆k+1) . ◁

The next three claims are building on each other to find a balanced separator S. In the
first one, we argue that we can find, using few queries, a vertex with high betweenness.

▷ Claim 5. There is a randomised algorithm that finds z ∈ N⩽3k/2[A] with pG
z (A) ⩾ p/2

with probability at least 2/3 using O(p−1(nA + r) log(nA + r)) distance queries in G.
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Proof. To simplify notation, we omit G and A from pG
v (A) and only write pv. We first

sample uniformly and independently (with replacement) pairs of vertices {ui, vi} ⊆ A for
i ∈ [C log(nA + r)] where C ⩽ 1

2p + 1 is defined later. Then, we ask Query(ui, N⩽3k/2[A])
and Query(vi, N⩽3k/2[A]).

We write

Pi = {x ∈ N⩽3k/2[A] | d(ui, x) + d(x, vi) = d(ui, vi)}

for the set of vertices that are on a shortest path between ui and vi. Note that Lemma 2
implies that Pi contains all vertices of V (G) on a shortest path from ui to vi. From the queries
done above we can compute Pi for all i ∈ [C log(nA + r)]. For each vertex v ∈ N⩽3k/2[A], we
denote by p̃v an estimate of pv defined by p̃v = |{i ∈ [C log(nA +r)] : v ∈ Pi}|/(C log(nA + r)).
The algorithm outputs z such that z = arg maxv∈N⩽3k/2[A] p̃v.

The query complexity of this algorithm is 2C log(nA + r)|N⩽3k/2[A]| = Ok,∆(nA log(nA +
r))

We now justify the correctness of this algorithm and give C. Let y =
arg maxw∈N⩽3k/2[A] pw. We need to show that pz ⩽ py

2 has probability at most 1
3 . Let u be a

vertex chosen uniformly at random among the set of vertices w ∈ N⩽3k/2[A] with pw ⩽ py/2.
A simple union bound implies that it is sufficient to show that P[p̃y ⩽ p̃u] < 1/(3nA + 3r).
Indeed, this implies that the probability that a vertex w with pw ⩽ py/2 is a better candidate
for z than y, is at most 1/3. Note that the elements of {p̃w | w ∈ N⩽3k/2[A]} (and thereby
z) are random variables depending on the pairs of vertices sampled at the start, and that
the elements of {pw | w ∈ N⩽3k/2[A]} are fixed.

We denote by Ai the event {u ∈ Pi} and by Bi the event {y ∈ Pi}. The events (Ai)i are
independent, since each pair {ui, vi} has been sampled uniformly at random and independently.
By definition, P[Ai] = pu ⩽ py/2 and P[Bi] = py. Thus, the random variable Xi defined by
Xi = 1Ai

−1Bi
has expectation E[Xi] ⩽−py/2. Therefore, applying Hoeffding’s inequality [8],

we obtain

P

C log(nA+r)∑
i=1

Xi ⩾ 0

 ⩽ 2 exp(−2(C log(nA + r)py/2)2

4 log(nA + r) ).

By choosing 1
2p + 1 ⩾ C ⩾ 1

2py
= 1

2p such that C log(nA + r) is an integer, we conclude that

P[p̃y ⩽ p̃u] = P

C log(nA+r)∑
i=1

Xi ⩾ 0

 ⩽ 2 exp(−2 log(nA + r)) ⩽ 1/(3nA + 3r)

for nA ⩾ 6. This completes the proof. ◁

Let z be a vertex with high betweenness as in the claim above. We now argue that N3k/2[z]
is an α-balanced separator for some constant α depending only on ∆ and k.

▷ Claim 6. Let α =
√

1− 1
4(∆k+1) . If z ∈ N⩽3k/2[A] satisfies pG

z (A) ⩾ p/2, then S :=
N⩽3k/2[z] is an α-balanced separator for A.

Proof. Suppose towards contradiction that S is not an α-balanced separator. Thus there is a
connected component C of G[V (G)\S] with |C∩A|> αnA. By definition of S, d(z, C) > 3k/2
which implies by Lemma 2 that for any pair of vertices in C, no shortest path between these
two vertices goes through z. In particular, this holds for pairs of vertices in C ∩A. Therefore,

pG
z (A) ⩽ (n2

A − |C ∩A|2)
n2

A

< 1− α2 = 1− (1− 1
4(∆k + 1)) = 1

4(∆k + 1) ⩽ p/2

using Claim 4 for the last step, contradicting our assumption that pG
z (A) ⩾ p/2. ◁
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We apply Claim 5 to find z ∈N⩽3k/2, where pG
z (A) ⩾ p/2 with probability at least 2/3 (using

also Claim 4). We compute S = N⩽3k/2[z] using Ok,∆(nA + r) distance queries; this can
be done since S ⊆ A ∪R⩽3k so the algorithm only needs to consider nA + r vertices when
searching for neighbours.

The set S is an α-balanced separator with probability at least 2/3 by Claim 6. In
particular, the algorithm does not know yet at this point if it is indeed a good separator or
not. It will be able to determine this after computing the partition of G[A\S] into connected
components.

The following claim uses mostly the same algorithm as [9, Alg. 6], and the proof is
analogous. As we are using this algorithm in a slightly different setting, we still give a
complete proof of the lemma.

▷ Claim 7. There is a deterministic algorithm that given a set S ⊆A, computes the partition
of A \S into connected components of G[A \S] using at most nA ·∆(r + |S|) distance queries.

Proof. By assumption, R1 is the set of vertices at distance exactly 1 from A in G. Since
A is connected, it is a connected component of G[V (G) \ R1]. Therefore, the connected
components of G[A \ S] are exactly the connected components of G[V (G) \ (R1 ∪ S)]
containing an element of A. We denote by B the open neighbourhood of S ∪R1 in A, that
is, B = (N [S ∪R1] ∩A) \ (S ∪R1). We use the following algorithm.

We ask Query(A, S ∪ R1) in order to deduce N [S ∪ R1] ∩ A, and then we ask
Query(A, N [S ∪R1] ∩A).
We compute Db = {v ∈ A ∩ S | d(v, b) ⩽ d(v, S ∪ R1)} for b ∈ B, the set of vertices in
A ∩ S which have a shortest path to b that does not visit a vertex of S ∪R1.
Let D = {Ds | s ∈ B}. While there are two distinct elements D1, D2 ∈ D such that
D1 ∩D2 ̸= ∅, merge them in D, that is, update D ← (D \ {D1, D2}) ∪ {D1 ∪D2}. We
output D.

Note that any vertex a ∈ A \ S, is not in S ∪ R1, so will be in Ds for at least one s ∈ B

(possibly s = a) before we do the last step of the algorithm. The last step ensures that the
output is indeed a partition of A.

We first argue that D, as outputted by the algorithm above, is an over-approximation
of the connected component partition of G[A \ S] (that is, for any connected component
C of G[A \ S], there exists D ∈ D such that C ⊆ D). It suffices to prove that for any edge
ab ∈ E(G[A \S]) there exists D ∈ D such that {a, b} ⊆D. Suppose without loss of generality
that d(a, S ∪R1) ⩽ d(b, S ∪R1). Moreover let s ∈ B such that d(a, s) = d(a, S ∪R1)− 1 and
thus a ∈ Ds. Now d(b, s) ⩽ d(a, s) + 1 ⩽ d(b, S ∪R1) thus b ∈ Ds.

We now argue that D is an under-approximation too, by showing that G[D \ S] is
connected for all D ∈ D. We first show this for the initial sets Ds with s ∈ N [S ∪R1] ∩A.
Let s ∈ B. For any v ∈ Ds, by definition, d(v, s) ⩽ d(v, S ∪ R1), thus there is a shortest
path P between v and s not using vertices of S ∪ R1. Moreover s ∈ A and A is separated
from V (G) \A by R1, therefore P is contained in A \ S. This shows that v is in the same
connected component of G[A \ S] as s. To see that G[D] remains connected for all D ∈ D
throughout the algorithm, note that when the algorithm merges two sets D1, D2 ∈ D, they
need to share a vertices, thus if both G[D1] and G[D2] are connected then G[D1 ∪D2] is
also connected.

Remember that |S| ⩽ ∆3k/2 + 1 = Ok,∆(1) and that the bounded degree condition implies
|N [S∪R1]|⩽ ∆ · |S∪R1|. This allow us to conclude that the query complexity is bounded by

|A| · |N [S ∪R1]| ⩽ nA ·∆|S ∪R1| ⩽ nA ·∆(r + |S|). ◀
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We apply the algorithm from Claim 7 with the separator S computed by Claim 6. Knowing
the partition, the algorithm can check if S is indeed α-balanced. If not, the algorithm
repeats Claim 7 and computes a new potential separator. An single iteration succeeds with
probability at least 2/3 and each iteration is independent from the others, so the expected
number of repetitions is 3/2.

We ask Query(S ∪ R⩽3k, A). For each connected component Ã of G[A \ S], we will
reconstruct G[Ã] and then we will describe how to reconstruct G[A]. If |Ã| ⩽ log(n), then
we ask Query(Ã, Ã) to reconstruct G[Ã]. Otherwise, we will place a recursive call on Ã,
after guaranteeing that our desired properties mentioned at the start are again satisfied. By
definition, G[Ã] is connected. So we know property 1 holds when A is replaced by Ã.

To ensure properties 2 and 3 are also satisfied for the recursive call, we reconstruct R̃i,
the set of vertices at distance exactly i from Ã. As S ∪R1 separates Ã from other component
of G[A \ S], for any other connected component D of G[A \ S] and for any v ∈ D, we have:

d(Ã, v) = min
s∈S∪R1

d(Ã, s) + d(s, v).

Therefore we can compute d(Ã, v) from the query results of Query(S ∪ R⩽3k, A) for all
v ∈A∪R⩽3k. This is enough to deduce R̃i for any i ⩽ 3k because Ã⊆A and thus R̃i ⊆A∪Ri.

After we have (recursively) reconstructed G[Ã] for each connected component Ã of
G[A \ S], we reconstruct G[A] by using that we already know all the distance between all
pairs (a, s) with a ∈ A and s ∈ S. In particular, as we already asked Query(S ∪R⩽3k, A)
earlier in the algorithm, we know G[S ∩A] and also how to “glue” the components to this
(namely, by adding edges between vertices at distance 1).

By Claim 6, each recursive call reduces the size of the set A under consideration by a
multiplicative factor of α. Therefore, the recursion depth is bounded by O∆,k(log n) and the
algorithm will terminate.

We argued above that the algorithm correctly reconstructs the graph. It remains to
analyse the query complexity.

We analyse the query complexity via the recursion tree, where we generate a child for a
vertex when it places a recursive call. We can associate to each vertex v of the recursion
tree TR, a subset Av ⊆ V (G) for which the algorithm is trying to reconstruct G[Av]. The
subsets associated to the children of a node v are disjoint, since each corresponds to a
connected component of Av \ Sv for some subset Sv ⊆ V (G) that is an α-balanced separator.
In particular, the subsets associated to the leafs are disjoint.

In a leaf node v, the algorithm performs |Av|2 queries to reconstruct G[Av], where
|Av| ⩽ log(n). If we enumerate the sizes Av for the leafs v of the recursion tree as a1, . . . , aℓ,
then

∑ℓ
i=1 a2

i ⩽ ℓ log(n)2 ⩽ n log(n)2, where we use that we have at most n leafs since the
corresponding subsets are disjoint.

Since there are at most n leafs, and the recursion depth is Ok,∆(log n), there are
Ok,∆(n log n) internal nodes. Let v be an internal node and let nA and r denote the
sizes of the corresponding subsets A = Av and R⩽3k. The algorithm makes the following
queries:

Finding z takes Ok,∆(nA log(nA + r)) queries in Claim 5.
Ok,∆(nAr) queries to compute S from z and to find the connected components of A \ S

in Claim 7. This step and the previous step are repeated a constant number of times (in
expectation).
Ok,∆(nAr) queries to set up the recursive calls to the children of v.

Since each recursive call increases the size of R⩽3k by at most an additive constant smaller
than (∆+1)9k/2 (recall that R̃⩽3k ⊆R⩽3k∪N⩽9k/2[z]), and the recursion depth is Ok,∆(log n),
it follows from an inductive argument that r = Ok,∆(log n). So the number of queries listed
above is Ok,∆(nA log n).

IPEC 2024
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To compute the total query complexity of internal nodes, we use the fact that for two
nodes v and v′ at the same recursion depth we have that Av ∩Av′ = ∅. Therefore, by adding
contribution layer by layer in the recursion tree we get a query complexity of Ok,∆(n log n)
for any fixed layer, and the total number of queries performed sum up to:

n log2 n + Ok,∆(log n)Ok,∆(n log n) = Ok,∆(n log2 n). ◀

We did not try to optimise the dependence in k and ∆ hidden in the Ok,∆ notation
throughout the proof of Theorem 1. Expanding all Ok,∆ notations in the proof implies that
our algorithm uses ∆O(k)n log2 n queries. It would be interesting to reduce this dependence
to a polynomial in ∆ and k.

4 Conclusion

In this paper, we shed further light on what graph structures allow efficient distance query
reconstruction. We expect that the true deterministic and randomised query complexity of
graphs of bounded bounded treelength and bounded maximum degree is Θ(n log n), matching
the lower bound which already holds for trees from [1].

It seems natural that having small balanced separators helps with obtaining a quasi-linear
query complexity. We show this is indeed the case when some additional structure on the
separator is given (namely, vertices being “close”). A possible next step would be to see if
this additional structure can be removed.

▶ Problem 1. Does there exist a randomised algorithm that reconstructs an n-vertex graph
of maximum degree ∆ and treewidth k using Õ∆,k(n) queries in expectation?

Some parts of the algorithm still work, such as checking whether a given set S is a balanced
separator (via Claim 7). When trying to recursively reconstruct one of the components, it
is important to “keep enough information about the distances”. In our algorithm, we can
include the shortest paths between the vertices in the separator; this is the main purpose
of the “boundary sets” Ri and why we carefully chose the domain for z in Claim 5. The
possibility to do this is almost the definition of bounded treelength. Therefore, we believe
that a new approach would be needed to produce a good candidate for a balanced separator
in the general case.

Finally, we remark that it may very well be that techniques building on separators are
needed as part of a potential quasi-linear algorithm for reconstructing graph classes that do
not directly guarantee the existence of such separators. Indeed, there are approaches that
actually do not work well even on trees, yet are good at handling certain graphs without
small balanced separators, and perhaps a combination of both types of methods will be
needed to handle the class of all bounded degree graphs. For example, the approach taken
by [12] is to ask all queries to a randomly selected set of vertices. On some graph classes
(such as random regular graphs, which do not have small balanced separators), this already
forces most of the non-edges with high probability and so the remaining pairs can be queried
directly. But in order to beat the best-known upper bound for general graphs of bounded
degree (of Õ∆(n3/2) from [11]), such an approach cannot be applied directly, even for trees.
Indeed, for a complete binary tree on n vertices, the distances to any set S with at most

1
100
√

n vertices, no matter how cleverly chosen, leave many pairs of distances undetermined.
In fact, there are approximately

√
n vertices at height ⌊ 1

2 log n⌋ in this tree, and S will miss
the “trees below” most of those

√
n vertices entirely. This means that there are still Ω(n3/2)

pairs u, v that form a non-edge, yet have the same distance to all vertices in S. This means
that even for the class of all bounded degree graphs, there may need to be a part of the
algorithm which exploits the structure of “nice” separators, when they exist.
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Abstract
In this paper we show that the d-Component Order Connectivity (d-COC) problem paramet-
erized by the distance to subdivided comb graphs (dist-to-subdivided-combs) does not admit a
polynomial kernel, unless NP ⊆ coNP/poly.

The d-COC problem is a generalization of the classical Vertex Cover problem. An instance of
the d-COC problem consists of an undirected graph G and a positive integer k, and the question
is whether there exists a set S ⊆ V (G) of size at most k, such that each connected component of
G − S contains at most d vertices. When d = 1, d-COC is the Vertex Cover problem.

Vertex Cover is a ubiquitous problem in parameterized complexity, and it admits a kernel
with O(k2) edges and O(k) vertices, which is tight [Dell & van Melkebeek, JACM 2014]. Our result
is inspired by the work of Jansen & Bodlaender [TOCS 2013], who gave the first polynomial kernel
for Vertex Cover where the parameter is provably smaller or equal to the standard parameter,
solution size k. They used fvs, the feedback vertex set number, as the parameter. In this work,
we show that unlike most other existing results or techniques for kernelization of Vertex Cover
that generalize to d-COC, this is not the case when dist-to-subdivided-combs, which is at least
as large as fvs, is the parameter.

Our lower bound is achieved in two stages. In the first stage we extend the result of Hols,
Kratsch & Pieterse [SIDMA 2022] where they show that if a graph family C, which is closed under
taking disjoint unions, has unbounded “blocking set” size, then Vertex Cover does not admit a
polynomial kernel parameterized by the size of a vertex modulator to C, unless NP ⊆ coNP/poly.
We show that a similar sufficient condition for proving the non-existence of polynomial kernels also
holds for d-COC. In the second stage, we show that when C is the family of subdivided comb graphs,
contrary to Vertex Cover, where the size of minimal blocking sets of graphs in C is at most two
[Jansen & Bodlaender, STACS 2011], the size of minimal blocking sets of graphs in C for the d-COC
problem can be arbitrarily large. This yields the desired lower bound. In addition to this we also
show that when C is a class of paths, then it still has blocking sets of size at most two for d-COC,
indicating that polynomial kernels might be achievable when the parameter is the size of a vertex
modulator to the class of disjoint unions of paths (linear forests).
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1 Introduction

In this work we explore kernelization with respect to structural parameterizations for a
well-studied generalization of the ubiquitous Vertex Cover problem. In the Vertex
Cover problem the input is an undirected graph G and the goal is to find a minimum
set of vertices of G, say S, such that G − S has no edges, or equivalently, every connected
component of G contains only a single vertex. Vertex Cover has garnered a lot of attention
since the advent of parameterized complexity [17, 36, 6, 10, 19, 7, 13, 39, 33, 35, 28, 1, 2, 9,
16, 37, 38, 40, 8, 24, 20, 5, 26, 4] and has resulted in the inception of new tools and ideas
that have proved useful for several other problems as well [6, 10, 19, 7, 31, 32].

Component Order Connectivity. One of the problems that has been at the receiving end
of applications and generalizations of the tools developed for Vertex Cover (especially in
the context of parameterized algorithms and kernelization), is the d-Component Order
Connectivity (d-COC) problem. In this problem, d is a fixed integer, the input is an
undirected graph and the goal is to find a minimum set of vertices whose deletion results
in a graph in which every connected component has at most d vertices. Note that 1-COC
is precisely the Vertex Cover problem.1 Vertex Cover parameterized by the solution
size k admits a kernel with O(k2) edges and O(k) vertices, which is tight [14]. Starting
from the Buss kernelization [6], all the way up to crown decomposition based rules [10, 19]
or the (Weighted) Expansion Lemma [32], and the LP-based reduction rules using the
Nemhauser-Trotter theorem [7, 31, 32]; all these techniques for getting a polynomial kernel
for Vertex Cover parameterized by the solution size extend beautifully to the d-COC
problem parameterized by the solution size [18, 32, 41, 21].

Amidst the kernelization results for Vertex Cover parameterized by the solution
size, Jansen and Bodlaender [28] initiated the study of kernelization for Vertex Cover
with a refined parameter, that is at most as large as the solution size. In particular, they
studied the size of a minimum feedback vertex set of the graph, denoted by fvs, as the
parameter, and proved that the problem admits a polynomial kernel. Observe that fvs could
potentially be much smaller than the size of a minimum vertex cover. The work by Jansen
and Bodlaender [28] led to several new and interesting insights about the problem. A next
natural question is: can the result of Jansen and Bodlaender [28] be extended to the d-COC
problem? In work that is independent of ours, this relevant question was negatively answered
by Donkers and Jansen [15], unless NP ⊆ coNP/poly, no polynomial kernel exists for d-COC
parameterized by fvs, for all d ≥ 2. We study the problem with a parameter that is at least
as large as fvs, the distance to subdivided comb graphs (dist-to-subdivided-combs). We
prove that for all integers d ≥ 2, even when parameterizing by the distance to subdivided
comb graphs, d-COC does not admit a polynomial kernel, unless NP ⊆ coNP/poly. Note
that, while our result is not explicitly stated as a result in [15], it may be possible to also
obtain it from their proofs with some careful considerations.

For completeness, we also remark that Courcelle’s theorem (see for example [12, Sec-
tion 7.4] or [11]) can be used to show that the problem is FPT, even when parameterizing
by fvs. Besides our work and the work by Donkers and Jansen [15] there are some other
publications that study d-COC kernelization with structural parameters. For instance,
Bhyravarapu et al. [3] parameterize the problem by the size of a set that is a solution to the
c-COC problem, where c ≥ d, and Jansen and Pieterse [29] study a generalization of the
problem parameterized by the size of a treedepth-η modulator.

1 Note that other than being a generalization of Vertex Cover, d-COC is an interesting problem in its
own right. See [23].
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1.1 Our results and methods
As mentioned above, we show that d-COC does not admit a polynomial kernel parameterized
by the distance to subdivided comb graphs. A comb graph is a graph that consists of a central
path and for each vertex of this central path, there is a unique pendant vertex adjacent
to it. A subdivided comb graph is obtained from a comb graph by repeatedly subdividing
edges. The distance to subdivided comb graphs is the smallest integer k such that there is
a vertex set of size k whose deletion results in a disjoint union of subdivided comb graphs.
Therefore, distance to subdivided comb graphs is at least as large as fvs. The hairlength of
a subdivided comb graph is the maximum number of vertices of any path attached to the
central path minimized over all possible choices for the central path.

▶ Theorem 1. For any integer d ≥ 2, d-Component Order Connectivity does not
admit a polynomial compression when the parameter is distance to subdivided comb graphs,
unless NP ⊆ coNP/poly.

Note that showing the non-existence of a polynomial compression is stronger than showing
the non-existence of a polynomial kernel (see Section 2).

We prove Theorem 1 by generalizing the notion of blocking sets, which was formally
introduced by Hols, Kratsch & Pieterse [26] for the Vertex Cover problem,2 to d-COC. A
blocking set of a graph G, for Vertex Cover, is a subset Y of the vertices of G, such that no
minimum vertex cover contains Y . Hence, a blocking set “blocks” itself from being extended
into an optimal solution. Of special relevance are minimal blocking sets, which are blocking
sets such that no strict subset of them is a blocking set. This concept of (minimal) blocking
sets can be generalized to d-COC for any integer d ≥ 2 in the natural way. Concretely,
define a d-blocking set of G as a subset Y of the vertices of G such that there is no minimum
solution of d-COC that contains Y .

One of the key results by Hols et al. [26] gives a sufficient condition for proving kernelization
lower bounds for structural parameterizations for Vertex Cover. They show that if a
graph class C, which is closed under taking the disjoint union, contains a graph with a
minimal blocking set of size α, then no kernel of size O(|X|α−ε) can exist for all ε > 0, when
parameterizing by the size of a smallest vertex modulator X to C, unless NP ⊆ coNP/poly.
Hence, when the size of minimal blocking sets of graphs in C is unbounded, then one can
rule out a polynomial kernel altogether parameterized by |X|.

We extend this result by Hols et al. [26] to the d-COC problem, showing that a similar
property, with minimal d-blocking sets, holds for d-COC, for all integers d ≥ 1 (Theorem 4).
We later show that even though the same condition implies kernelization lower bounds for
both Vertex Cover and d-COC, the family of forests behaves differently for Vertex
Cover and d-COC: no forest has a minimal 1-blocking set of size more than two (implicitly
proved in [27], the conference version of [28]), whereas there are forests (in fact subdivided
comb graphs) with arbitrarily large minimal d-blocking sets for every d ≥ 2 (Lemma 5).

For the first part (as stated above), we provide a linear parameter transformation from
the α-Hitting Set problem, which is the classical Hitting Set problem in which every set
that needs to be hit has cardinality exactly α, and the size of the universe U is the parameter.
For this problem, it is known that no polynomial compression with size O(|U|α−ε) exists for
all ε > 0 and all integers α ≥ 2, unless NP ⊆ coNP/poly [14, Theorem 2].

2 The notion of blocking sets had (implicitly) appeared in a lot of other kernelization results for Vertex
Cover like [28, 30, 22, 34, 5, 3].

IPEC 2024



21:4 COC Admits No Polynomial Kernel Parameterized by Distance to Subdivided Combs

In the parameter transformation, one creates a “universe vertex” for each element of
the universe of the input α-Hitting Set instance. Then, for each set F that needs to be
hit in the input instance, one creates multiple copies of a graph H of C that has a minimal
d-blocking set of size α. Each such copy is associated with the set F , and, each vertex of the
minimal d-blocking set is associated with a different element of F . Then, each vertex of the
minimal d-blocking set is connected to the universe vertex corresponding to the associated
element. This way, it is ensured that the set of all universe vertices is a modulator to C,
and it has the same size as the universe of the input α-Hitting Set instance. Moreover, if
the bound on the size of the solution is carefully chosen, one can ensure that the d-COC
instance is a yes-instance if and only if the input instances is a yes-instance. The intuition
behind this is that a solution to the input instance can be easily mapped to a small d-COC
solution by choosing the universe vertices of the hitting set, and by extending this selection
to minimum solutions within the copies of H. On the other hand, if there is a small d-COC
solution, it must be the case that the selection within the universe vertices corresponds to
a small hitting set of the input instance. Otherwise, one would necessarily have to put all
vertices of the minimal d-blocking set into the solution for many copies of H, which would
make the solution too large.

To complete the proof of Theorem 1, for all integers N ≥ 1, d ≥ 2, we then define a
blocking set graph TN,d, which is a subdivided comb graph with hairlength at most d + 1,
such that this graph has a minimal d-blocking set of size N . Note that providing graphs
with large d-blocking sets is easy, the difficulty of the construction stems from the fact that
the sets must also be minimal. Combined with the previous result, this proves that when C
is a graph class closed under taking the disjoint union that contains the blocking set graph
TN,d for arbitrarily large N , then d-COC parameterized by the size of a smallest modulator
to C does not have a polynomial compression, unless NP ⊆ coNP/poly.

Contrasting the fact that the class of subdivided comb graphs has minimal d-blocking
sets of unbounded size when d ≥ 2, we show that this is not the case for path graphs. We
show that for paths, any minimal blocking set has size at most two. Hence, there is still hope
for obtaining a polynomial kernel when C only contains disjoint unions of paths.

2 Preliminaries

For n, m ∈ Z, by [n, m] we denote the set {x ∈ Z | n ≤ x ≤ m}. For n, m ∈ Z, k ∈ Z+,
we write {n, n + k, . . . , m} for the set {x ∈ Z | n ≤ x ≤ m, x ≡ n (mod k)}. In particular,
{0, 2, . . . , 0} = {0}.

Graphs. A graph G is a pair (V, E), where V is a set and E ⊆
(

V
2
)
. For a graph G, we

also refer to the vertex set of G as V (G) and the edge set of G as E(G). In this work all
considered graphs are finite, undirected, and contain no multi-edges or self-loops. For a graph
G and v ∈ V (G), the (open) neighbourhood of v is defined as NG(v) := {u | vu ∈ E(G)}.
We may omit the subscript G if the used graph is clear from the context. Graph H is a
subgraph of graph G if and only if V (H) ⊆ V (G) and E(H) ⊆ E(G). For a graph G and
vertex set X ⊆ V (G), G[X] denotes the graph induced by X, that is, G[X] = H, where H

is the subgraph of G with V (H) = X and E(H) = {uv | uv ∈ E(G), u ∈ X, v ∈ X}. For
graph G and X ⊆ V (G), we write G − X for the graph G[V (G) \ X]. Given a graph G

and edge uv ∈ E(G), the operation of subdividing edge uv results in the graph G′ with
V (G′) = V (G) ∪ {w} and E(G′) = (E(G) \ {uv}) ∪ {uw, wv}, where w is a new vertex not
in V (G).
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Kernelization and compression. A parameterized problem Q is a subset of Σ∗ × N for a
finite alphabet Σ. An instance (I, k) ∈ Σ∗ × N of problem Q is a yes-instance if (I, k) ∈ Q,
and a no-instance otherwise. The value k of instance (I, k) is the parameter of the instance.
A kernelization algorithm takes an instance (I, k) of a parameterized problem Q as input, and
outputs an equivalent instance (I ′, k′) of Q such that |I ′| + k′ ≤ f(k) for some computable
function f . The runtime of the algorithm must be polynomial in |I| + k. Such an algorithm
is often simply called a kernel, and a polynomial kernel if f is a polynomial function. A
polynomial compression is defined similarly to kernelization, except that the output instance
I ′ may be of a different unparameterized problem P . Note that if a problem has a polynomial
kernel, it also has a polynomial compression, and hence, ruling out polynomial compressions
also rules out polynomial kernels. We refer to the textbooks [12, 21] for more details on these
concepts.

Kernelization lower bounds. In this paper, we use a well-established technique for obtaining
kernelization lower bounds. It resembles classical reductions, and is fittingly called linear
parameter transformation (see [25]).

▶ Definition 2 (linear parameter transformation). Let P and Q be parameterized problems. A
linear parameter transformation is an algorithm that transforms an instance (I, k) of P into
an equivalent instance (I ′, k′) of Q in time polynomial in |I| + k, such that k′ ∈ O(k).

When Q has a polynomial compression of size O(pα) for parameter p, and there is linear
parameter transformation from P with parameter k to Q with parameter p, then by using
the transformation, one obtains a polynomial compression for P of size O(kα). Hence, if we
know that P does not have a polynomial compression of size O(kα), then neither can Q of
size O(pα).

3 Large minimal blocking sets as bottlenecks for polynomial kernels
for d-COC

In this section, we extend the sufficient condition for proving kernelization lower bounds
for Vertex Cover given by Hols et al. [26], to the d-COC problem. Concretely, we will
define the notion of minimal blocking sets for d-COC, and we will show that no graph class,
that is closed under taking disjoint unions and has blocking sets of unbounded size, admits
a polynomial compression, unless NP ⊆ coNP/poly. We begin by stating the definition of
blocking sets [26, Definition 2.3] for d-COC. For a graph G, we call S ⊆ V (G) a d-coc set of
G if every connected component of G − S has at most d vertices.

▶ Definition 3 (Blocking sets). Let G be a graph and d be a positive integer. A set Y ⊆ V (G)
is a d-blocking set if Y is not a subset of any minimum d-coc set of G. A d-blocking set Y

is a minimal d-blocking set if no set Y ′ ⊊ Y is a d-blocking set. That is, for every y ∈ Y ,
there exists a minimum d-coc set of G that contains Y \ {y}.

Given a graph class C and a graph G, a (vertex) modulator to C is a set X ⊆ V (G) such
that G − X is in C. Hols et al. [26, Theorem 1.1] show that if C is a graph class that is closed
under taking disjoint unions, and C contains a graph with a minimal 1-blocking set of size
α, then, Vertex Cover parameterized by the size of a vertex modulator X to C does not
have a kernel of size O(|X|α−ε) for all ε > 0, unless NP ⊆ coNP/poly. This powerful theorem
allows one to derive kernelization lower bounds for various structural parameterizations in a
convenient way.
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We now extend the above result to the d-COC problem. The proof we present is inspired
by that of Hols et al. [26, Theorem 1.1]. We mention the key difference between our reduction
and the reduction by Hols et al. after presenting our reduction.

The proof is done via a linear parameter transformation from α-Hitting Set paramet-
erized by the universe size, which is the problem defined below, to the d-COC problem
parameterized by the size of a vertex modulator to a graph class C that is closed under taking
the disjoint union and that contains a graph with a minimal d-blocking set of size α ≥ 2.
The α-Hitting Set problem is the same as the classical Hitting Set problem, except that
every set that needs to be hit has cardinality exactly α, and that the parameter is the size of
the universe.

α-Hitting Set
Input: Universe U , family of subsets F ⊆ 2U such that |F | = α for all F ∈ F , integer
k ≥ 0
Parameter: |U|
Question: Is there a set H ⊆ U such that, for all F ∈ F , H ∩ F ̸= ∅ and |H| ≤ k?

A lower bound for α-Hitting Set given by Dell and van Melkebeek [14, Theorem 2]
shows that there is no polynomial compression of size O(|U|α−ε) for α-Hitting Set when
α ≥ 2, for any ε > 0, unless NP ⊆ coNP/poly. We denote the problem d-COC where the
parameter is the size of a modulator to C, for some graph class C, as d-COC/dist-to-C.
Note that we assume that a modulator to C is given together with the input.

▶ Theorem 4. Let C be a class of graphs that is closed under disjoint union, and d be a
positive integer. If there is a graph in C with a minimal d-blocking set of cardinality α ≥ 2,
then there exists no polynomial compression for d-COC/dist-to-C of size O(|X|α−ε), where
X is the modulator to C provided with the input, for all ε > 0, unless NP ⊆ coNP/poly.

Proof. Assume that there exists a graph H in C such that H has a minimal d-blocking set of
size α ≥ 2. Moreover, let OPT denote the size of a minimum d-coc set of H. We prove the
polynomial compression lower bound by a linear parameter transformation from α-Hitting
Set. Let (U , F , k) be the input instance of α-Hitting Set. If k ≥ |U|, we have a trivial
yes-instance at our hand, and we output a constant size yes-instance of d-COC/dist-to-C.
Otherwise, we will output a graph G and a positive integer k′ such that G has a d-coc set of
size at most k′ if and only if the input instance of α-Hitting Set is a yes-instance.

The creation of the graph G is covered next. For each F ∈ F , add k +α · (d−1)+1 copies
of the graph H to G, and denote these copies as H1

F , . . . , H
k+α·(d−1)+1
F . Since each copy of

H has at least one minimal d-blocking set of size α, for graph Hi
F denote an arbitrary such

d-blocking set as Bi
F . Next, add a vertex vu to the graph for each u ∈ U . These vertices are

called the universe vertices, and we denote all of them as VU , that is, VU := {vu | u ∈ U}.
We also define VF := {vu | u ∈ F} for all F ∈ F .

Now, select an arbitrary bijective function fF,i : VF → Bi
F for all F ∈ F and i ∈

[1, k + α · (d − 1) + 1]. Next, add an edge between vertex vu and vertex fF,i(vu) for all F ∈ F ,
u ∈ F and i ∈ [1, k + α · (d − 1) + 1]. In other words, we associate each vertex of d-blocking
set Bi

F with a different universe vertex corresponding to an element in F , and add an edge
between the associated vertices. This concludes the construction of the graph G.

Observe that G − VU is a disjoint union of graphs of C, and as C is closed under taking
the disjoint union, VU is a modulator to C. Our output instance of d-COC/dist-to-C is
then (G, k′, VU ), where k′ := k + (k + α · (d − 1) + 1) · |F| · OPT.

First, note that the parameter did not change as |VU | = |U|. Next, we show that the two
instances are also equivalent.
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▷ Claim. If (U , F , k) is a yes-instance of α-Hitting Set, then (G, k′, VU ) is a yes-instance
of d-COC/dist-to-C.

Proof. Let X ⊆ U be a set such that |X| ≤ k and the intersection of X and each set of F is
non-empty.

We construct a solution S for the d-COC/dist-to-C instance (G, k′, VU ) as follows.
First, we construct a subset S′ of the solution. For each u ∈ X, put universe vertex vu in the
set S′, for each u ∈ U \ X, put all vertices in NG(vu) in the set S′. Begin with an empty set
S. Then, for each F ∈ F and i ∈ [1, k + α · (d − 1) + 1], add a minimum cardinality d-coc
set of the graph Hi

F − S′ to S. Finally, also add the vertices of S′ to S.
The set S contains at most k vertices of VU . Moreover, S is a d-coc set, as each vertex of

VU is either in S or all its neighbours are in S, and moreover, we choose vertices corresponding
to a solution within each copy of H . All that remains is arguing that for an arbitrary F ∈ F
and i ∈ [1, k + α · (d − 1) + 1], S selects at most OPT vertices of Hi

F . By the fact that X ∩ F

is non-empty, we see that S′ ∩ V (Hi
F ) ⊊ Bi

F . Moreover, the graph Hi
F − S′ is not connected

to any vertex of VU , nor of another copy of the graph H. By the fact that Bi
F is a minimal

d-blocking set, and that S′ does not contain all vertices of it, we see that S selects OPT
vertices of Hi

F . Hence, |S| ≤ k + (k + α · (d − 1) + 1) · |F| · OPT = k′, and we indeed have a
yes-instance of d-COC/dist-to-C. ◁

▷ Claim. If (G, k′, VU ) is a yes-instance of d-COC/dist-to-C, then (U , F , k) is a yes-
instance of α-Hitting Set.

Proof. Let S be a d-coc set of G of size at most k′. Define X := {u ∈ U | vu ∈ VU ∩ S}, that
is, X is a subset of the universe corresponding to the universe vertices selected by S. Next,
we show that X has a non-empty intersection with all F ∈ F , and |X| ≤ k.

For the size-bound, we know that any d-coc set of G must select at least OPT vertices of
each copy of the graph H . Since there are exactly (k + α · (d − 1) + 1) · |F| copies of H in G,
at most k budget is left for the selection of vertices of VU .

Now, assume that for some F ∈ F , we have F ∩ X = ∅. Consider an arbitrary u ∈ F . We
know that vertex vu is not in S. However, vu is adjacent to exactly one vertex of graph Hi

F

for all i ∈ [1, k + α · (d − 1) + 1]. Given that vu cannot be in a connected component of size
more than d in G − S, we know that for at most d − 1 graphs of H1

F , . . . , H
k+α·(d−1)+1
F it can

be the case that the neighbour of vu in the graph is not in S. Now, since this is true for all α

vertices in VF , we see that overall, for at most α · (d − 1) of the graphs H1
F , . . . , H

k+α·(d−1)+1
F

their respective minimal d-blocking set is not fully contained in S. Hence, there are at least
k + 1 copies of H for which a d-blocking set is contained in S. This in turn implies that the
solution S selects at least OPT + 1 vertices of k + 1 copies of H, and we know that at least
OPT vertices of any other copy must be selected. We see that the size of S is now at least
(k + α · (d − 1) + 1) · |F| · OPT + k + 1, which contradicts the upper bound on the size of S.

◁

By the claims above, the input and output instances are equivalent. Moreover, the
parameter did not change, and the runtime of the reduction is polynomial in the input size.
Hence, it is a linear parameter transformation, and the lower bound of α-Hitting Set is
transferred to d-COC/dist-to-C. ◀

It should be noted that the main difference between our construction and the one by
Hols et al. [26] is that we use more copies of the graph H to account for the fact that d is no
longer fixed to be 1, like it was for the Vertex Cover problem.
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4 Subdivided comb graphs with arbitrarily large minimal d-blocking
sets

In this section we prove our main result Theorem 1, that is, we study the d-COC problem
when the parameter is the distance to subdivided comb graphs. We denote this problem by
d-COC/dist-to-subdivided-combs. We define the d-COC/dist-to-subdivided-combs
problem formally below, and restate Theorem 1.

d-COC/dist-to-subdivided-combs
Input: Graph G, M ⊆ V (G) such that G − M is a disjoint union of subdivided comb
graphs, integer k ≥ 0
Parameter: |M |
Question: Does there exist a d-coc set S of G of size at most k?

▶ Theorem 1. For any integer d ≥ 2, d-Component Order Connectivity does not
admit a polynomial compression when the parameter is distance to subdivided comb graphs,
unless NP ⊆ coNP/poly.

The proof of Theorem 1 is obtained by showing that the class of disjoint unions of
subdivided comb graphs has unbounded minimal d-blocking set size for all integers d ≥ 2,
and hence, by Theorem 4, no polynomial compression exists for this problem. Formally, we
prove Lemma 5, that together with Theorem 4 proves Theorem 1.

▶ Lemma 5. For any integers N ≥ 1 and d ≥ 2, if C contains all subdivided comb graphs
with hairlength at most d + 1, then there exists a graph in C that has a minimal d-blocking
set of size N .

The rest of the section is devoted to the proof of Lemma 5.

The blocking set graph. For all integers N ≥ 1, d ≥ 2, we define a subdivided comb graph
TN,d with hairlength at most d + 1, which (as we will show) has a minimal d-blocking set of
size N . We call these graphs blocking set graphs.

▶ Definition 6 (blocking set graph TN,d). For any integers N ≥ 1, d ≥ 2 we define TN,d to be
the graph constructed as follows.

It contains a path P := p0, p1, . . . , p(2N+1)·d of length (2N + 1) · d + 1 which is called the
spine.
For each i ∈ {0, 2, . . . , 2N − 2}, there is a path Qi·d+1 := q1

i·d+1, q2
i·d+1, . . . , qd+1

i·d+1, called
the (i · d + 1)-th leg. The vertices q1

i·d+1 and q2
i·d+1 are called the first and second vertex

of the (i · d + 1)-th leg, respectively. Note that there are N legs in TN,d.
For each i ∈ {0, 2, . . . , 2N − 2}, add an edge between q1

i·d+1 and pi·d+1, that is between
the first vertex of the (i · d + 1)-th leg and the vertex of the spine with index i · d + 1.
For each i ∈ {1, 3, . . . , 2N − 1}, add a pendant vertex p′

i·d to the vertex pi·d.
For each i ∈ {2, 4, . . . , 2N}, add a pendant vertex p′

i·d−1 to the vertex pi·d−1.

Refer to Figure 1 for a sketch of the graph TN,d. Observe that TN,d is a subdivided comb
graph with hairlength at most d + 1. Next, we analyse some important properties of these
graphs.
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Figure 1 A depiction of the graph TN,d when N = 2. The green dashed rectangles mark 3N

vertex-disjoint connected subgraphs containing d + 1 vertices each as in Lemma 7. The vertices in
YN,d, as in Definition 9, are drawn as red double circles.

Lower bound on the size of d-coc sets of TN,d. We begin by proving a lower bound on
the size of d-coc sets of TN,d by providing a set of vertex-disjoint connected subgraphs of
TN,d, each containing d + 1 vertices.

▶ Lemma 7. Fix any integers N ≥ 1, d ≥ 2, and define
A := {TN,d[Z] | Z = {q1

i·d+1, . . . , qd+1
i·d+1}, i ∈ {0, 2 . . . , 2N − 2}},

B := {TN,d[Z] | Z = {pi·d+1, . . . , p(i+1)·d, p′
(i+1)·d}, i ∈ {0, 2 . . . , 2N − 2}}, and

C := {TN,d[Z] | Z = {pi·d+1, . . . , p(i+1)·d, p′
(i+1)·d−1}, i ∈ {1, 3 . . . , 2N − 1}}.

Then, D := A ∪ B ∪ C is a collection of 3N vertex-disjoint connected subgraphs of TN,d, each
containing d + 1 vertices.

Proof. This directly follows from the description of TN,d in Definition 6. The described
subgraphs are marked in Figure 1 for the case N = 2. ◀

As any d-coc set of TN,d must contain at least one vertex of each graph of D we obtain
the following lower bound.

▶ Corollary 8. For any integers N ≥ 1, d ≥ 2, any d-coc set S of TN,d fulfils |S| ≥ 3N .

Next, for each considered graph TN,d, we define a set YN,d, which we will eventually prove
to be a minimal d-blocking set.

▶ Definition 9. Let N, d be integers with d ≥ 2 and N ≥ 1. Then, we define the vertex set
YN,d ⊆ V (TN,d) as YN,d := {q2

i·d+1 | i ∈ {0, 2, . . . , 2N − 2}}, that is, YN,d is the set consisting
of the second vertices of all legs of TN,d.

The vertices in the set YN,d are marked in Figure 1 for the case N = 2.

No minimum solution contains all of YN,d. Next, we prove that any d-coc set of TN,d that
contains all vertices of YN,d has size at least 3N + 1. As we will later see that a minimum
solution has size exactly 3N , this will end up proving that YN,d is a d-blocking set.

▶ Lemma 10. For any integers N ≥ 1, d ≥ 2 consider the blocking set graph TN,d. Then,
any d-coc set S of TN,d such that YN,d ⊆ S has cardinality at least 3N + 1.

IPEC 2024



21:10 COC Admits No Polynomial Kernel Parameterized by Distance to Subdivided Combs

p0 p1 . . . pd−1 pd

p′d

q11

q31

..
.

qd+1
1

pd+1

..
.

p2d−1p′2d−1

p2d

p2d+1 . . . p3d−1 p3d

p′3d

q12d+1

q32d+1

..
.

qd+1
2d+1

p3d+1

..
.

p4d−1p′4d−1

p4d

p4d+1

..
.

p5d

Figure 2 A depiction of the graph T ′ = TN,d − YN,d, as in the proof of Lemma 10, when N = 2.
The green dashed rectangles indicate the subgraphs of T ′ that lead to the lower bound of 2N + 1.

Proof. Let N ≥ 1, d ≥ 2 be integers and set T := TN,d and Y := YN,d. We prove that any
d-coc set that contains all vertices of Y has size at least 3N + 1.

Set T ′ := T − Y . We prove the lower bound on the size of S by providing 2N + 1 vertex
disjoint connected subgraphs of T ′ of size d + 1 each. We define

Ci :=


{pi·d, . . . , p(i+1)·d−1, q1

i·d+1} if i ∈ {0, 2, . . . , 2N − 2},

{pi·d, . . . , p(i+1)·d−1, p′
i·d} if i ∈ {1, 3, . . . , 2N − 1},

{p2N ·d, . . . , p(2N+1)·d} if i = 2N,

and Gi := T ′[Ci], for all i ∈ [0, 2N ]. Figure 2 depicts these subgraphs for the case N = 2.
Observe that Ci ∩ Cj = ∅ for i, j ∈ [0, 2N ], i ̸= j, and that Gi is a connected graph for all
i ∈ [0, 2N ]. Furthermore, |Ci| = d + 1 for all i ∈ [0, 2N ], proving that any d-coc set of T ′

has size at least 2N + 1. Together with the fact that |Y | = N , this shows that any d-coc set
S of T such that Y ⊆ S fulfils |S| ≥ 3N + 1. ◀

How much of YN,d can be in a minimum solution? Now, we show that even though
selecting vertices of YN,d is intuitively bad for the solution size, for each strict subset Y ′ of
YN,d there is a d-coc set of TN,d of size 3N that contains all vertices of Y ′. This shows that
a minimum d-coc set of TN,d has size exactly 3N (when combined with Corollary 8), and
moreover, that YN,d is a minimal d-blocking set when considering Lemma 10.

▶ Lemma 11. For any integers N ≥ 1, d ≥ 2 consider the blocking set graph TN,d. For any
Y ′ ⊊ YN,d, there exists a d-coc set S of TN,d − Y ′ such that |S| = 3N − |Y ′|.

Proof. Let N ≥ 1, d ≥ 2 be integers, set T := TN,d, and let P be the spine of T , and
Y := YN,d. Let Y ′ be an arbitrary strict subset of Y , that is Y ′ ⊊ Y .

We show that there exists a d-coc set S of T ′ := T − Y ′ of size 3N − |Y ′|. Set

I := {i · d + 1 | q2
i·d+1 ̸∈ Y ′, i ∈ {0, 2, . . . 2N − 2}} and t := min(I).

That is, I is the set of subscript indices of the legs for which the second vertex of the leg is
not in Y ′, and t the minimum element of the index set I. Since Y ≠ Y ′, set I is non-empty.
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Figure 3 A depiction of TN,d − Y ′ when N = 2 and Y ′ = {q2
1}. The vertices drawn as red

double circles form a d-coc set of size 3N − |Y ′|. Note that I, t from the proof of Lemma 11 fulfil
I = {2d + 1} and t = 2d + 1.

We can then construct a d-coc set S of T ′ of size 3N − |Y ′|, by defining

S :={q1
i | i ∈ I} ∪ {pi·d−1 | i ∈ [1, 2N ], i · d < t} ∪ {pi·d | i ∈ [1, 2N ], i · d ≥ t}.

Clearly, |S| = |I| + 2N = 3N − |Y ′|. We depict solution S for the set Y ′ = {q2
1} and the case

N = 2 in Figure 3.
Next, we argue why every connected component of T̂ := TN,d − (Y ′ ∪ S) has size at most

d. In the following, whenever we talk about connected components, we mean connected
components of T̂ . Either the first or second vertex of every leg is in Y ′ ∪ S. Thus, at most
one vertex of any leg can be in a connected component together with vertices of the spine,
and all other vertices of the leg are either in Y ′ ∪ S, or in a connected component of size at
most d together with other vertices of the same leg.

The only remaining concern is that there could be connected components of size more
than d that contain vertices of the spine. Before arguing why that is not the case, we need
to make some further observations.

There are two different types of pendants in the graph TN,d, the pendants of the first
type are {p′

i·d | i ∈ {1, 3, . . . , 2N − 1}}, and the pendants of the second type are the vertices
{p′

i·d−1 | i ∈ {2, 4, . . . , 2N}}. As either the first or the second vertex of each leg is part of Y ′∪S,
we know that the only vertices of the legs that could be in connected components together
with vertices of the spine are the first vertices. Let X := {q1

i·d+1 | i ∈ {0, 2, . . . , 2N − 2}}
be the set of first vertices of the legs of TN,d. The pendants of the first type, pendants
of the second type, and vertices in X are all adjacent to the vertex of the spine that has
the same (subscript) index they have. We additionally have that t = j · d + 1 for some
j ∈ {0, 2, . . . , 2N − 2}, as t is the index of some leg.

Our solution selects either vertex pi·d−1 or vertex pi·d for any i ∈ [1, 2N ]. Moreover,
the vertex p2N ·d is guaranteed to be in S. As an immediate consequence, no connected
component can contain more than d vertices of the spine. We will now show that all pendants
and vertices of X are separated in T̂ . That is, any path in T ′ between two distinct vertices
that are either pendants or in X contains a vertex that is in the set S. We will call such a
path broken up, as it does not exist in T̂ .

IPEC 2024



21:12 COC Admits No Polynomial Kernel Parameterized by Distance to Subdivided Combs

Consider a vertex v with subscript index i that is a pendant of the first type, a pendant
of the second type, or in X. Observe that, when the path from v to the closest pendant
of the first type with an index lower than i, and the path from v to the closest pendant of
the first type with an index higher than i are broken up by vertices of the spine, so are all
other paths from v to (different) pendants of the first type. Analogous properties hold for
pendants of the second type and vertices in X. This limits for which paths we need to show
that they are broken up.

Pendants of the first type. Consider an arbitrary pendant p′
i·d of the first type, where

i ∈ {1, 3, . . . , 2N − 1}. If pi·d ∈ S, the pendant is cut off from the rest of the graph in T̂ .
Otherwise, pi·d−1 ∈ S and i · d < t = j · d + 1. The path from this pendant to any other

pendant of the first type contains at least 2d + 1 vertices of the spine, and is thus broken up
by the solution.

The closest pendant of the second type with a larger index is p′
(i+1)·d−1. Now, we know

that i is in the set {1, 3, . . . , 2N − 1}, whereas j is in the set {0, 2, . . . , 2N − 2}, which yields
i ̸= j. Since we have i · d < j · d + 1, it follows that i < j. This implies (i + 1) · d ≤ j · d,
and we obtain (i + 1) · d < j · d + 1 overall. Hence, we also select vertex p(i+1)·d−1 into the
solution, which isolates the vertex of the second type. The closest pendant of the second
type with a smaller index is p′

(i−1)·d−1.3 We have (i · d) − ((i − 1) · d − 1) = d + 1, and thus,
the path to this vertex contains at least d + 2 vertices of the spine, and is broken up.

Finally, we must argue that also paths to vertices in X are broken up. The closest vertex
of X with a higher index is vertex q1

(i+1)·d+1. As ((i + 1) · d + 1) − (i · d) = d + 1, the path
to this vertex is broken up. The closest vertex of X with a lower index is vertex q1

(i−1)·d+1.
Vertex pi·d−1 ∈ S breaks up the path.

Pendants of the second type. Consider an arbitrary pendant p′
i·d−1 of the second type,

where i ∈ {2, 4, . . . , 2N}. Similarly to before, any path to another pendant of the second
type contains too many vertices of the spine, and is broken up.

We have already argued that all paths between pendants of the second type and pendants
of the first type are broken up.

It remains to argue that also paths to vertices of X are broken up. The closest vertex of
X with a lower index is vertex q1

(i−2)·d+1, which is sufficiently far away. The closest vertex of
X with a higher index is q1

i·d+1. As we select either pi·d or pi·d+1, the path from p′
i·d−1 to

q1
i·d+1 is broken up.

Vertices in X. The only remaining danger is that vertices of X could be too close to each
other, however, a quick glance at the definition yields that the path between two distinct
vertices of X contains at least 2d + 1 vertices of the spine, and is broken up.

Connected components of T̂ . We proceed to argue about the connected components that
mainly consist of vertices of the spine. We select vertices pi·d−1 into the solution as long as
i · d < j · d + 1. The last vertex that is selected due to this process is vertex pj·d−1. We first
consider the connected components of vertices with index j · d − 2 or less. As we select every
d-th vertex of the spine, each considered connected component contains at most d−1 vertices
of the spine. By our arguments about the paths between the different types of additional
vertices, we see each component can contain at most one additional vertex, and hence, it has
size at most d.

3 In this and similar cases we ignore the possibility that the vertex may not exist for the sake of brevity.
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Thus far, we have covered all connected components with vertices of index j · d − 2 or
less. As the spine vertex with index j · d − 1 is selected, the next important vertex is pj·d.
Observe that vertex p(j+1)·d is in S. Hence, vertex pj·d is in the same connected component
as {pj·d, pj·d+1, . . . , p(j+1)·d−1}. As that are already d vertices, it is important that the
connected components contains no further vertices. By definition of the integer t, the first
vertex of the leg with index t is selected, and thus not in a connected component. Moreover,
there exist no pendant vertices that have an index in [j · d, (j + 1) · d − 1]. Another way to see
that no pendant is part of the connected component is the following. We already established
that any path between a vertex in X and a pendant is broken up. As that argument did
not consider whether the vertex in X is itself selected or not, it still holds. Vertex pj·d+1
is part of the connected component and a neighbour of q1

j·d+1. Any path from q1
j·d+1 to a

pendant would necessarily go through vertex pj·d+1, and as any such path is broken up by
the solution, no pendant can be in the same connected component as pj·d+1. It follows that
the connected component is also not too large.

Next, consider connected components that contain vertices with index larger than (j+1)·d,
but lower than 2N · d. We can, similarly to before, observe that we select every d-th vertex,
and hence, any connected component can contain at most d − 1 vertices of the spine. For
the same reason as earlier, no such component can contain two additional vertices, and thus,
they are not too large. Observe that the vertex with the highest index that is part of the
solution is p2N ·d.

Finally, consider connected components that contain vertices with index larger than
2N · d. There are no legs or pendants with an index that high, and hence, there is only a
single connected component that contains the vertices {p2N ·d+1, . . . , p(2N+1)·d}. ◀

Combining the results. Now, we can combine our knowledge about the graph TN,d to prove
that YN,d is a minimal d-blocking set.

▶ Corollary 12. Let N ≥ 1 and d ≥ 2 be integers. Then, the set YN,d is a minimal d-blocking
set of TN,d of cardinality N.

Proof. By Definition 9, the size of YN,d is N. By Corollary 8, each d-coc set of TN,d has size
at least 3N . Then, Lemma 11 shows that a minimum d-coc set of TN,d has size exactly 3N ,
and moreover, that for any Y ′ ⊊ YN,d, there is a minimum d-coc set of TN,d that contains
all vertices of Y ′. Finally, Lemma 10 shows that no d-coc set that takes all of YN,d is of
minimum cardinality, concluding the proof. ◀

Corollary 12 implies Lemma 5.

5 Minimal d-blocking sets of paths have size at most two

In the previous section we have illustrated that the class of subdivided comb graphs contains
graphs with arbitrarily large minimal d-blocking sets, for every integer d ≥ 2. Contrasting
this result, we show that all minimal d-blocking sets of paths have size at most two for every
integer d ≥ 1. This will follow from the lemma we prove next.4

▶ Lemma 13. Let G be a graph and X ⊆ V (G) be a d-blocking set of G for some integer
d ≥ 1. If there exists a subset X ′ ⊆ X such that G1 and G2 are distinct connected components
of G − X ′, V (G1) ∩ X ̸= ∅ and V (G2) ∩ X ̸= ∅, then X is not a minimal d-blocking set.

4 Similar properties for (minimal) 1-blocking sets were shown in [26].
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Proof. Let G be a graph and X, X ′ be sets with the properties described in the statement
of the lemma. Moreover, let G1 be a connected component of G − X ′ that contains a vertex,
say x1 ∈ X, and G2 be a different connected component of G − X ′ that contains a vertex,
say x2 ∈ X.

Towards a contradiction, assume that X is a minimal d-blocking set. Then, there exists
a minimum d-coc set S1 of G that contains all vertices of X \ {x1}, and a minimum d-coc
set S2 of G that contains all vertices of X \ {x2}. Given that x1, x2 /∈ X ′ and X ′ ⊆ X, we
see that X ′ ⊆ S1 and X ′ ⊆ S2. Then, it must be the case that Si selects vertices of Gj

corresponding to a minimum d-coc set of Gj for all i, j ∈ {1, 2}. However, we now see that
the vertex set (S2 \ V (G2)) ∪ (S1 ∩ V (G2)) is a d-coc set of G of minimum size that contains
all vertices of X, contradicting that X is a d-blocking set. ◀

An immediate corollary of this is that we obtain a bound on the size of minimal d-blocking
sets of paths.

▶ Corollary 14. For all integers d ≥ 1, any minimal d-blocking set of a path has cardinality
at most two.

Proof. Let P = v1, v2, . . . , vn be a path, and X ⊆ V (P ) a d-blocking set. If |X| ≥ 3, then
it suffices to set X ′ := {vi}, where vi ∈ X and X contains vertices with higher and lower
subscript index than vi. Then, Lemma 13 shows that X is not a minimal d-blocking set. ◀

For completeness, we remark that there are paths for which all minimal d-blocking sets
have size exactly two. For instance, consider the path on d + 1 vertices. There is no minimal
d-blocking set of size one, however, any two vertices of the graph form a minimal d-blocking
set of size two.

In contrast to the situation we had with the distance to subdivided comb graphs, Theorem 4
cannot be used to exclude polynomial kernels when the parameter is the size of a modulator
to the graph class of linear forests, that is, forests in which every tree is a path. This indicates
that there is still hope for a polynomial kernel in this setting.

6 Conclusion

The d-COC problem is a relevant generalization of Vertex Cover, and hence, efficient
preprocessing algorithms are of high interest. For the Vertex Cover problem, many
kernelization algorithms are known, and usually they can be extended to also work for
d-COC. In this work we show that unlike Vertex Cover, for any integer d ≥ 2, d-COC
does not admit a kernel parameterized by the distance to subdivided comb graphs.

Several related questions gain relevance due to the new kernelization lower bound. Is
a polynomial kernel possible when the parameter is even larger or at least incomparable?
Reasonable possibilities would be the size of sets M such that G − M consists of a disjoint
union of paths, or a disjoint union of a constant number of trees, or a single subdivided comb
graph, or even a single path. Answering these questions would almost certainly require very
different tools from the ones we used in this paper, as the potential source of hardness would
be completely different from the one that we exploited.

An interesting insight of our lower bound proof is that we show that the size of minimal
d-blocking sets of families C still remains a bottleneck for getting polynomial kernels for
d-COC parameterized by the size of a vertex modulator to C. The contrast between Vertex
Cover and d-COC is that for the former, the class C of forests has minimal blocking sets
of size at most two (implicitly proved in [27]), whereas when d ≥ 2, the size of minimal
d-blocking sets is unbounded even for subdivided comb graphs.
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There is a result by Bougeret, Jansen & Sau [4] that complements the sufficient condition
defined by Hols, Kratsch & Pieterse [26]. In particular, Bougeret et al. show that if C
is a minor-closed class, then the Vertex Cover problem admits a polynomial kernel
parameterized by the size of a vertex modulator to C if and only if there is a bound on the
size of minimal blocking sets of graphs in C. An interesting open question is whether we can
obtain such a characterization also for d-COC. As of now, Theorem 4 only shows one side of
this characterization when C is additionally closed under taking the disjoint union. If this
characterization was also possible for d-COC, then Corollary 14 would immediately imply a
polynomial kernel for d-COC parameterized by a vertex modulator to a linear forest.
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Abstract
In this paper we present the first dynamic algorithms for the problem of K-Feedback Arc Set
in Tournaments (K-Fast) and the problem of K-Feedback Vertex Set in Tournaments
(K-Fvst). Our algorithms maintain a dynamic tournament on n vertices altered by redirecting the
arcs, and answer if the tournament admits a feedback arc set (or respectively feedback vertex set) of
size at most K, for some chosen parameter K. For dynamic K-Fast we offer two algorithms. In
the promise model, where we are guaranteed, that the size of the solution does not exceed g(K)
for some computable function g, we give an O(

√
g(K)) update and O(3KK

√
K) query algorithm.

In the general setting without any promise, we offer an O(log2 n) update and O(3KK log2 n) query
time algorithm for dynamic K-Fast. For dynamic K-Fvst we offer an algorithm working in the
promise model, which admits O(g5(K)) update and O(3KK3g(K)) query time.
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1 Introduction and Related Work

In this paper we study feedback set problems in dynamic tournaments. A tournament is a
directed graph where every pair of vertices is connected by exactly one arc. The feedback
arc (resp. vertex) set of a given directed graph is a set of arcs (resp. vertices) whose removal
makes the graph acyclic. The problems we focus on here are the Feedback Arc Set in
Tournaments and the Feedback Vertex Set in Tournaments. In the classical static
setting, these problems are very well known and are defined as follows:

K-Feedback Arc Set in Tournaments (K-Fast): Given a tournament T = (V, E)
and a positive integer K, does there exist a subset FE ⊆ E of at most K arcs whose
removal makes T acyclic.
K-Feedback Vertex Set in Tournaments (K-Fvst): Given a tournament T = (V, E)
and a positive integer K, does there exist a subset FV ⊆ V of at most K vertices whose
removal makes T acyclic.

Both the above problems are flag problems in the area of parameterized complexity and
textbook examples for the branching technique. Feedback arc sets in tournaments have
applications in voting systems and rank aggregation, and are well studied from the combin-
atorial [9, 11, 25] and algorithmic [27, 16, 6, 3, 10, 12] points of view. Unfortunately, the
K-Fast problem is NP-hard [2]. The fastest parameterized algorithm achieves 2O(

√
K)nO(1)

running time [12], where n is the size of the input tournament. In this paper, however, we
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explore a textbook branching algorithm for this problem running in 3KnO(1) time [24]. The
K-Fvst problem also has many interesting applications, for instance in social choice theory
where it is essential to the definition of a certain type of election winners [4]. It is also
NP-hard [26] and has been studied from various angles [19, 20, 13, 22]. The fastest currently
known parameterized algorithm for this problem runs in O(1.6181K + nO(1)) time [19].

Recently, there is a growing interest in studying parameterized problems in a dynamic
setting. In this context, we typically consider an instance I of a problem of interest with an
associated parameter K. The instance is dynamic, i.e., it is updated over time by problem
specific updates, while for simplicity we assume that the problem parameter K does not
change through the entire process. The goal is to provide a data structure, that allows
for efficient updates to I, and upon a query efficiently provides the answer to the problem
in question. The update/query running time may depend in any computable way on the
parameter K, but it should be sublinear in terms of the size of I. The typical update/query
running times in this setting are f(K), f(K)(log n)O(1), or sometimes even f(K)no(1), where
f is some computable function and n is the size of I. Since we allow f to be exponential,
this setting applies to NP-hard problems as long as they are fixed-parameter tractable in the
static setting.

Parameterized dynamic data structures were first systematically investigated by Iwata
and Oka [15], followed by Alman et al. [1]. These works provided data structures with
update times f(K) or f(K) · (log n)O(1) for several classic problems such as Vertex Cover,
Cluster Vertex Deletion, Hitting Set, Feedback Vertex Set, or Longest Path.
Other recent advances include data structures for maintaining various graph decompositions
together with runs of dynamic programming procedures [5, 7, 8, 17, 21] and treatment of
parameterized string problems from the dynamic perspective [23].

Alman et al. in their work [1] study the problem of K-Feedback Vertex Set in
dynamic undirected graphs, where the graph is altered by edge additions and removals
and the goal is to test if the graph has a feedback vertex set of size at most K. For this
problem, Alman et al. propose a dynamic algorithm with 2O(K log K) logO(1) n amortized
update time and O(K) query time. It is worth mentioning, that while the K-Feedback
Vertex Set problem is NP-hard on undirected graphs, the K-Feedback Arc Set problem
is polynomial in this class of graphs and can be efficiently maintained dynamically using
dynamic connectivity algorithms [14]. So an interesting question is whether these two
problems admit efficient dynamic algorithms in the class of directed graphs. In this regard
Alman et al. [1] show lower bounds for the K-Feedback Vertex Set problem, which
extend also to the K-Feedback Arc Set problem. To be more precise, they show that
in this case the dynamic algorithm requires Ω(f(K)mδ) update/query time for some fixed
δ > 0, assuming RO hypothesis(see [1]). Thus, a natural question is whether we can have
more efficient dynamic algorithms at least in tournaments. In this paper we give positive
answers to this question.

Our precise setting is the following. With regard to dynamic K-Fast, the goal is to
design a data structure supporting the following operations:

Initialize(T, n) - initialize the data structure with a given tournament T on n vertices
Reverse(u, v) - reverse an arc in T between two vertices u and v of T

FindFAST() - answer if there is a feedback arc set of size at most K in T .

With regard to dynamic K-Fvst, the goal is to design a data structure supporting the
analogous operations:

Initialize(T, n) - initialize the data structure with a given tournament T on n vertices
Reverse(u, v) - reverse an arc in T between two vertices u and v of T

FindFVST() - answer if there is a feedback vertex set of size at most K in T .
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Table 1 The known results for dynamic K-Feedback Arc Set. and dynamic K-Feedback
Vertex Set for different classes of graphs.

Undirected Graphs Directed Graphs Tournaments

K-Feedback
Arc
Set

logO(1) n update
logO(1) n query [14]

no f(K)mo(1)

algorithm
assuming

RO hypotesis [1]

full model:
O(log2 n) update

O(3KK log2 n) query
promise model:

O(
√

g(K)) update
O(3KK

√
K) query

K-Feedback
Vertex

Set

2O(K log K) logO(1) n

amortized update
O(K) query [1]

no f(K)mo(1)

algorithm
assuming

RO hypothesis [1]

promise model:
O(g5(K)) update

O(3KK3g(K)) query

The above setting is referred to as the full model. A popular restriction of this setting,
introduced in generality by Alman et. al. [1], is called the promise model. The promise model
applied to our setting provides the data structure with a guarantee, that the feedback arc set
(or respectively feedback vertex set) remains of size bounded by g(K) for some computable
function g for the entire process. Some algorithms provided by Alman et al. [1] work only in
this restricted setting.

Our results

For the dynamic K-Fast problem we offer two data structures. In the promise model we
propose an O(

√
g(K)) update and O(3KK

√
K) query data structure which does not need to

know g(K). In the full model, we offer an O(log2 n) update and O(3KK log2 n) query data
structure. For the dynamic K-Fvst problem we offer a data structure which works in the
promise model, with O(g5(K)) update and O(3KK3g(K)) query time. This data structure
does need to know g(K). Our results for dynamic feedback set problems, compared to the
related results of Alman et al. [1] are shown in Table 1. All our running times are worst case
(i.e., not amortized).

As a side result, we propose two dynamic data structures that can efficiently find
triangles (i.e., directed cycles of length three) in dynamic tournaments. The efficiency of
these data structures depends on parameter ADT(T ), which is the maximum number of
arc-disjoint triangles in T . The first data structure admits O(

√
ADT(T )) update time and

O(ADT(T )
√

ADT(T )) query time. The second data structure admits O(log2 n) update time
and O(ADT(T ) log2 n) query time. The data structures do not need to know ADT(T ). We
believe that the triangle detection data structures may be of independent interest.

In the next sections we provide an illustrative overview of our techniques and ideas used
to obtain our results, with the main focus on the dynamic K-Fast problem in the promise
model. The rigorous proofs, as well as details for the dynamic K-Fast problem in the full
model and dynamic K-Fvst problem in the promise model are moved to the full version [28]
due to space limitations.

2 Triangle Detection Data Structures

For both the dynamic K-Fast and the dynamic K-Fvst problem, in order to answer the query
efficiently, our plan is to run the standard (static) branching algorithms (see Algorithm 1
and Algorithm 2 respectively) upon every query. The branching algorithm for K-Fast relies

IPEC 2024
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on the folklore knowledge that the minimum feedback arc set in a tournament is equivalent
to the minimum set of arcs whose reversal makes the tournament acyclic. It is also a folklore
fact that a tournament has a cycle if and only if it has a cycle of length three (that we refer
to as a triangle). These folklore facts together with proofs can be found in [24]. For both
K-Fast and K-Fvst the branching algorithm executes at most 3K recursive calls. In each
recursive call the algorithm finds a triangle in the tournament and tries to reverse each of its
edges (for the K-Fast problem) or remove each of its vertices (for the K-Fvst problem).
Thus, to implement the K-Fast query efficiently in the dynamic setting, we need a data
structure that can quickly find a triangle in a dynamic tournament altered by arc reversals.
For the dynamic K-Fvst problem, the data structure also needs to allow removing a limited
number of vertices.

Hence, the basis for our algorithms are the triangle detection data structures, that might
be of independent interest. The data structures we provide are stated independently of the
feedback set problems. They rely on a different parameter, which is the maximum number
of arc-disjoint triangles in the tournament. Nevertheless, our later results rely on a close
connection between the maximum number of arc-disjoint triangles and the minimum feedback
arc set of a tournament. Throughout the paper, for a given tournament T , we denote by
FAST(T ) the size of the minimum feedback arc set in T , by ADT(T ) the maximum number
of arc-disjoint triangles in T , and by FVST(T ) the size of the minimum feedback vertex set
in T . The following fact holds.

▶ Fact 1. ADT(T ) ≤ FAST(T ) ≤ 6(ADT(T ) + 1).

Proof. It is easy to see that ADT(T ) ≤ FAST(T ), as in each of the ADT(T ) arc-disjoint
triangles one arc must be taken to the feedback arc set of T . The proof of the second
inequality can be found in [18] (Theorem 4). ◀

The triangle detection data structures maintain the dynamic tournament altered by
reversing arcs, and allow queries for a triangle in the maintained tournament. The first data
structure is given by Theorem 2 below. It is later used for dynamic K-Fast in the promise
model.

▶ Theorem 2 (Theorem 15 in Appendix A in [28]). For any integer n ∈ N there exists a data
structure DTP[n], that maintains a dynamically changing tournament T on n vertices1by
supporting the following operations:
1. Initialize(T, n) – initializes the data structure with a given tournament T on n vertices,

in time O(n2)
2. Reverse(v, u) – reverses an arc between vertices v and u in T , in O(

√
ADT(T )) time

3. FindTriangle() – returns a triangle from T or reports that there are no triangles, in
time O(ADT(T )

√
ADT(T ))

We note here that the above data structure does not need to know the value of ADT(T ).
The same holds for the second data structure presented next. The second triangle detection
data structure gets rid of the dependence on the parameter in the update operation. This
later allows us to use it for dynamic K-Fast in the full model at the cost of introducing
factors poly-logarithmic in the size of the tournament.

▶ Theorem 3 (Theorem 16 in Appendix A in [28]). For any integer n ∈ N there exists a data
structure DT[n], that maintains a dynamically changing tournament T on n vertices1 by
supporting the following operations:
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1. Initialize(T, n) – initializes the data structure with a given tournament T on n vertices,
in time O(n2)

2. Reverse(v, u) – reverses an arc between vertices v and u in T , in time O(log2 n)
3. FindTriangle() – returns a triangle from T or reports that there are no triangles, in

time O(ADT(T ) log2 n)

Both data structures are described in detail in Appendix A in [28]. In this overview, we
mainly focus on describing the first data structure DTP[n] of Theorem 2, which also sheds
some light on the data structure DT[n] of Theorem 3, as both data structures are based on
similar main ideas.

In particular, both data structures maintain the same basic information related to the
dynamic tournament T . First and foremost, both data structures maintain n sets called
indegree buckets, which partition the vertices of T according to their indegrees in T . The
indegree bucket DbT [d] stores vertices of indegree d. The indegree buckets alone let us easily
determine if the tournament is acyclic due to the following fact (which can be found for
instance in [10]).

▶ Fact 4 (Fact 19 in Appendix A.1 in [28]). A tournament is acyclic if and only if all its
indegree buckets have size one.

By maxDb(T ) we denote the maximum size of an indegree bucket for the maintained tourna-
ment T . It is easy to see, that maxDb(T ) ≤ 2FAST(T ) + 1 ∈ O(ADT(T )), because one arc
reversal can remove at most two vertices from the indegree bucket of maximum size, and we
have to remove all but one to make the tournament acyclic. With a bit more care one can
show the following bound.

▶ Fact 5 (Lemma 25 in Appendix A.1 in [28]). maxDb(T ) ≤ 8
√

ADT(T ) + 1 + 8.

Both data structures also maintain a set Empty of indices of indegree buckets that are empty,
i.e., Empty = {d ∈ {0, . . . , n− 1} : DbT [d] = ∅}. Since each arc reversal can place up to two
vertices in the empty buckets, and since by Fact 4 there are no empty buckets after reversing
the arcs of a minimum feedback arc set, the following bound holds.

▶ Fact 6 (Lemma 27 in Appendix A.1 in [28]). |Empty| ≤ 2FAST(T ) ∈ O(ADT(T ))

Both the indegree buckets and the set Empty are straightforward to maintain in a constant
time per arc reversal, since every arc reversal affects the indegrees of exactly two vertices (see
Lemma 35 in [28] for the details). The data structures also rely on some other information
that is straightforward to maintain, such as adjacency matrix of the tournament and similar
basic structures. These are not crucial enough to be mentioned in this short description, but
they are detailed in Appendix A in [28] instead.

The promise data structure DTP[n] additionally maintains a set Back of back arcs. An
arc uv is called a back arc if dT (u) ≥ dT (v), where dT (x) stands for the indegree of x in T .
The back arcs are another natural obstacle to T being acyclic, as every back arc belongs to
some triangle in T (see Lemma 21 in Appendix A in [28]). Reversing the arcs of a minimum
feedback arc set of T gets rid of all cycles and thus also gets rid of all back arcs in T .

The set Back changes its size by at most O(
√

ADT(T )) upon arc reversal for the following
reason. Consider reversing arc uv. Any arc that after the reversal becomes a back arc or stops
being a back arc has one endpoint in either u or v. The candidates for the other endpoint of

1 All our data structures assume that the vertices of T are indexed with numbers from 0 to n − 1.

IPEC 2024
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such arc have indegrees differing by at most one from dT (u) or dT (v) (see Lemma 31 in [28]
for more details). This gives (by Fact 5) O(

√
ADT(T )) candidate arcs for altering the set

Back. This observation has two important consequences. Firstly, maintaining the set of back
arcs Back takes O(

√
ADT(T )) time per update. Secondly, we get the bound for the size of

the set of back arcs Back.

▶ Fact 7 (Lemma 33 in Appendix A.1 in [28]). |Back| ∈ O(ADT(T )
√

ADT(T ))

Fact 7 follows for the following reason. Reversing FAST(T ) arcs gets rid of all back
arcs, and one arc reversal gets rid of at most O(

√
ADT(T )) back arcs. Thus, |Back| ∈

O(FAST(T )
√

ADT(T )). By Fact 1 the bound of Fact 7 follows.

0 1

Prefix P

vmin

w

u

Tournament T −pref

Figure 1 Tournament T , its prefix P and tournament T −pref. Arcs between all pairs of vertices
are present in T , however some arcs are not drawn for the sake of readability.

We now move on to describing how our data structures detect triangles. To support
this operation, we first define the prefix P of a tournament T as the set of vertices in the
maximum prefix of indegree buckets of size one (see Figure 1 for illustration and Definition
22 in [28] for a more formal definition). The subtournament T [P ] of T induced by its prefix
P is acyclic by Fact 4. Since we cannot find triangles inside the prefix P , we are more
interested in tournament T −pref = T [V (T ) \ P ] which stands for tournament T induced by
all its vertices excluding prefix. Both the prefix P of a tournament T and the remaining
tournament T −pref are illustrated in Figure 1.

The data structures DTP[n] and DT[n] follow the same general approach. In order to find
a triangle, they first search for a vertex vmin of minimum indegree in T −pref (see Figure 1).
One can find the vertex vmin in O(|Empty|) = O(ADT(T )) time by iterating through the set
Empty. Clearly, the indegree buckets whose indices range from 0 to |P | − 1 are not empty, by
the definition of prefix P . Since we want to skip vertices of P , we are interested in the first
index larger than |P | − 1 which is not in Empty. This is the index of the bucket containing
vmin. We have the following bound on dT −pref(vmin), which is the minimum indegree in
T −pref.

▶ Fact 8 (Fact 28 in Appendix A.1 in [28]). dT −pref(vmin) ≤ |Empty|.

Fact 8 follows, because in T −pref all indegree buckets DbT −pref [d] for d < dT −pref(vmin) are
empty. The number of empty indegree buckets of T −pref is the same as the number of empty
indegree buckets of T , because dT −pref(w) = dT (w)− |P | for any vertex w of T −pref.
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Once vmin is located, the data structures find an in-neighbor u of vmin in T −pref. Next, the
data structures find a set W of dT −pref(vmin) in-neighbors of u in T −pref. Since dT −pref(vmin) ≤
dT −pref(u), vertex u has at least dT −pref(vmin) in-neighbors in T −pref. We are bound to find a
triangle uvminw for some w ∈W , because if all the arcs between W and vmin were directed
towards vmin, that would imply that the indegree of vmin in T −pref is more than dT −pref(vmin).
This is illustrated in Figure 1.

Thus, in order to find a triangle, we need an in-neighbour listing method to list l in-
neighbours in T −pref of a given vertex x ∈ T −pref. The method responsible for finding
in-neighbours is different for the two data structures. In the promise data structure DTP[n],
this method (provided in detail in Lemma 40 in [28]) heavily relies on the fact that we can
iterate over the set of back arcs Back. The process of finding in-neighbours by DTP[n] data
structure is illustrated in Figure 2.

x
. . .

Prefix P back arc back arc

Figure 2 In-neighbour listing method in the promise model.

In order to find the in-neighbours of a given vertex x, the DTP[n] data structure iterates
over the indegree buckets of T starting after the prefix. For each d > |P | such that d ≤ dT (x),
we proceed as follows. If DbT [d] is empty, we charge it to |Empty| and move forward. Otherwise
we iterate through vertices w ∈ DbT [d]. If w is an in-neighbour of x, then we add it to the set
of found in-neighbours W , whose size is bounded by parameter l. If w is an out-neighbour
of v, then xw is a back arc and we charge such situation to |Back|. If by the time we reach
d = dT (v) the size of W is not sufficient, we iterate through the set Back to find the remaining
in-neighbours of x. The whole process takes O(|Back| + |Empty| + l) time (see Lemma 40
in [28] for more details). By Fact 6, Fact 7 and Fact 8 we get the desired running time of the
triangle query in the promise model.

The DT[n] data structure takes a different approach to find in-neighbours of a given
vertex, as it does not have access to the set Back. Instead, it uses balanced search trees, what
implies poly logarithmic factors in the update and query times. Due to space limitations, we
defer the description of the DT[n] data structure to Appendix A.4 in [28].

3 Dynamic K-Feedback Arc Set in Tournaments

In this section we use the triangle detection data structures for dynamic K-Fast problem.
We only focus on the main ideas, while the details are presented in Appendix B in [28]. Let
us consider a standard branching algorithm which verifies whether FAST(T ) ≤ K (shown in
Algorithm 1, see [24] for correctness). Algorithm 1 can be implemented using both triangle
detection data structures provided in Section 2.

We first show how to obtain the dynamic K-Fast data structure in the promise model,
where FAST(T ) ≤ g(K) at all times. Then, by Fact 1, also ADT(T ) ≤ g(K). The procedure
FindFAST(K) in Algorithm 1 calls itself recursively at most 3K times, each call employs
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Algorithm 1 Pseudocode for FindFAST(K).

Algorithm : FindFAST(K)
Output : Verify if FAST(T ) ≤ K

1 if T is acyclic then
2 return TRUE ;
3 if K = 0 then
4 return FALSE ;
5 uvw ← FindTriangle();
6 for xy ∈ {uv, vw, wu} do
7 Reverse(x, y) ;
8 if FindFAST(K− 1) then
9 Reverse(y, x);

10 return TRUE ;
11 Reverse(y, x);
12 return FALSE ;

a constant number of updates and queries to a triangle detection data structure. Thus,
directly by Theorem 2, employing the data structure DTP[n] results in a dynamic K-Fast
data structure with O(3Kg(K)

√
g(K)) query time and O(

√
g(K)) update time.

The query time can be improved to O(3KK
√

K) by using procedure FindTriangle(K)
instead of FindTriangle(). The FindTriangle(K) procedure works analogously to the
procedure FindTriangle(), but has an option not to return a triangle once it detects
that ADT(T ) > K. In such case by Fact 1 also FAST(T ) > K, and the recursive call
can safely return that the solution does not exist. This is very helpful, as the procedure
FindTriangle(K) can stop working once any of the bounds on |Empty|, |Back| or maxDb(T )
(given by Fact 5, Fact 6 and Fact 7) that we have in terms of ADT(T ) does not hold in terms
of K. For instance, if maxDb(T ) > 8

√
K + 1+8, then by Fact 5 the method FindTriangle(K)

is allowed to terminate returning that ADT(T ) > K. In this way we obtain a better result
stated below.

▶ Theorem 9 (Theorem 49 in Appendix B in [28]). The dynamic K-Fast problem admits a
data structure with initialization time O(n2), worst-case update time O(

√
g(K)) and worst-

case query time O(3KK
√

K) under the promise that there is a computable function g, such
that the maintained tournament T always has a feedback arc set of size at most g(K).

Moving on from the promise model to the full model, we can employ the data structure
DT[n] of Theorem 3 to implement the FindFAST(K) method given in Algorithm 1. There, we
cannot use FindTriangle() method anymore, as its running time depends on ADT(T ), which
is not bounded as in the promise model. Instead, we again use FindTriangle(K) method,
which again reports ADT(T ) > K if the necessary bounds do not hold in terms of K. Thanks
to that, FindTriangle(K) runs in O(K log2 n) time. If the procedure FindTriangle(K)
fails to find a triangle, we can safely report that no solution exists, as this means that
FAST(T ) ≥ ADT(T ) > K. This way, we arrive at the following result.

▶ Theorem 10 (Theorem 50 in Appendix B in [28]). The dynamic K-Fast problem admits a
data structure with initialization time O(n2), worst-case update time O(log2 n) and worst-case
query time O(3KK log2 n).
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4 Dynamic K-Feedback Vertex Set in Tournaments in the
promise model

In Appendix C in [28] we present the data structure for the dynamic K-Fvst problem in
the promise model. The main idea is the same as for the dynamic K-Fast problem in the
promise model. We want to be able to quickly find a triangle in tournament T and perform
a standard static branching algorithm for K-Fvst, presented in Algorithm 2.

Algorithm 2 Pseudocode for FindFVST(K).

Algorithm : FindFVST(K)
Output : Verify if FVST(T ) ≤ K

1 if T is acyclic then
2 return TRUE ;
3 if K = 0 then
4 return FALSE ;
5 uvw ← FindTriangle();
6 for x ∈ {u, v, w} do
7 Remove(x) ;
8 if FindFVST(K− 1) then
9 Restore(x);

10 return TRUE ;
11 Restore(x);
12 return FALSE ;

The branching algorithm (Algorithm 2) finds a triangle in the tournament, and then
branches recursively with each of the triangle vertices removed. The correctness is again due
to the fact that a tournament is acyclic if and only if it has no triangles. To implement this
algorithm, we not only need a method to find a triangle in the maintained tournament, but we
also need to support vertex removals and restorations. These are significantly more complex
than edge reversals, as they change the indegree of up to (n− 1) vertices. This loss of locality
poses a number of problems, including maintaining indegree buckets, maintaining the set of
empty indegree buckets, or even keeping track of the acyclicity of the tournament. Observe
also, that our parameter is now FVST(T ), which behaves in a different way than FAST(T ).
For instance, our triangle detection data structures rely on the fact, that the number of back
arcs in a tournament T is bounded in terms of FAST(T ). This, unfortunately, stops to be
the case: the number of back arcs can be actually unbounded in terms of FVST(T ). In the
following sections, we describe how our data structure deals with all these issues.

4.1 Vertex Removals and Restorations
We first deal with the problem of removing and restoring vertices. In Appendix C.2 in [28]
we introduce a new data structure called DREM[n, k], which essentially extends the data
structure DTP[n] by the possibility of removing and restoring up to k vertices. This data
structure is covered in detail by Lemma 59 in Appendix C.2 in [28], below we only present
the main ideas.

The data structure DREM[n, k] maintains all the information about the tournament T

that was maintained by DTP[n], with the exception of the set Back of back arcs, whose
maintenance now becomes prohibitively expensive. In addition to that, DREM[n, k] maintains
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Figure 3 Implicit representation of tournament T −F .

the set of removed vertices F and an implicit representation of T −F . Here, T −F stands for
the tournament T with the set F of vertices removed, i.e, T −F = T [V (T ) \F ]. As mentioned
before, we need to be able to quickly decrease/increase indegrees of many vertices, because
removal/restoration of a vertex can pessimistically affect all other vertices. In order to do
so, the DREM[n, k] data structure stores a set of token positions. One token corresponds to
one removed vertex. Each time a vertex is removed, some token is placed at some position
d. The vertices are again partitioned into buckets. A token at position d decreases by one
the indegrees of vertices in all buckets whose indices are at least d. An illustration of the
intended role of tokens can be found in Figure 3.

Ideally, to maintain T −F , we would like to partition the vertices into buckets according to
indegrees in T −F . Due to the presence of tokens this is not feasible. Instead, we introduce a
reduced indegree RDeg[v] of a vertex v, which relates indegree dT −F (v) of a vertex v in T −F

with token positions. To be more precise, let us denote by CTok(d) the number of tokens at
positions smaller or equal than d. The reduced indegree of a vertex v satisfies

▶ Invariant 1. RDeg[v]− CTok(RDeg[v]) = dT −F (v).

This is an invariant of the data structure which guarantees, that the tokens reflect their
intended role. Rather than according to indegrees in T −F , the vertices of T −F are then
partitioned according to their reduced indegrees, and we refer to this partition as reduced
indegree buckets. The reduced indegrees and the partition into reduced indegree buckets
are maintained by DREM[n, k] in order to implicitly maintain tournament T −F . This is
illustrated in Figure 3. Similarly as before, also the set of empty reduced indegree buckets is
maintained.

Apart from T , F , tokens, and the implicit representation of tournament T −F , the
DREM[n, k] data structure stores all k-long back arcs in T . For an arc uv we define its
length with respect to tournament T as lT (uv) = |dT (u) − dT (v)|. An arc is k-long if its
length is at least k, otherwise the arc is k-short. In the DREM[n, k] data structure, every
vertex stores a set LONG(k, v) of k-long back arcs (with regard to T ) adjacent to it.

The vertex removal procedure is illustrated in Figure 4. It is based on a method NewRd(u),
which given any vertex u, recomputes its reduced degree to restore Invariant 1. Given the
set of removed vertices F , a list of token positions, and indegrees in T , one can compute
dT −F (u) and the value RDeg[u] satisfying Invariant 1 in O(|F |) = O(k) time. Due to space
constraints, the details are given in the proof of Lemma 59 in Appendix C.2 in [28].
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RDeg

. . . . . .

Figure 4 Vertex removal/restoration procedure.

In order to remove (or restore) a vertex v, we need to fix the reduced degrees of all affected
vertices in order to satisfy Invariant 1. To accomplish that, we first iterate over vertices
u having their reduced indegrees inside a small interval [l, r] around the reduced indegree
of v, and we fix all these vertices using NewRd(u). The size of the interval is bounded by
r − l ∈ O(k), so this takes time proportional to k2 multiplied by maximum size of a reduced
indegree bucket. Observe that RDeg[v], dT −F (v) and dT (v) differ from each other by at most
O(k). Thus, the interval [l, r] can be chosen in a way that all arcs between v and vertices
with reduced degrees outside of [l, r] are k-long arcs with regard to T (for an illustration
see Figure 4). Thus, for all vertices w such that RDeg[w] < l, whose indegree changes as
a result of v’s removal (or restoration), it holds that vw is a k-long back arc with regard
to T . By iterating through LONG(k, v) we can detect such vertices and fix their reduced
indegrees. On the other hand, for all vertices w such that RDeg[w] > r, their indegree does
decrease by one after v’s removal (or increase after v’s restoration), unless wv is a k-long
back arc with regard to T . Thus, placing a token at position r + 1 fixes the invariant for all
vertices with RDeg[w] > r, with the exception of the endpoints of k-long back arcs whose
other endpoint is v. We can detect these vertices by iterating through LONG(k, v) and fix
their reduced indegrees. To sum up, the runtime of removal/restoration of a vertex v depends
on |LONG(k, v)| and on k2 multiplied by the maximum size of a reduced indegree bucket. In
Subsection 4.3 we show how to bound these parameters in terms of FVST(T ) to guarantee
efficient running times in the promise model.

4.2 Detecting Triangles
Next, using the DREM[n, k] data structure, we need to implement triangle detection in T −F .
To achieve that, we follow ideas from Section 2. Recall, that in order to find a triangle in a
tournament T , we needed a method to find vmin - a vertex of minimum indegree in T −pref

and we needed a method for listing in-neighbours. We showed that this can be done in time
proportional to |Empty| and |Back|. In fact, we did not need to iterate through all back arcs,
but just the ones incident to a vertex whose in-neighbours we seek. We now want to run
these procedures on T −F instead of T . We can access T −F via the reduced indegree buckets
stored by DREM[n, k] data structure. In Appendix C.4 in [28] we carefully show, that the
reduced degree buckets are functionally very close to the indegree buckets of T −F , and we
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can essentially use them instead to find vmin and list in-neighbours with regard to T −F . Still,
we need reasonable bounds in terms of FVST(T ) on |Empty−F | and |Back−F

v |, which are the
number of empty indegree buckets in T −F and the number of back arcs incident to a vertex
v in T −F . We show how to bound these in the next subsections.

4.3 Bounds
We first observe that the maximum size of an indegree bucket in a tournament T satisfies

▶ Fact 11 (Lemma 55 in Appendix C.4 in [28]). maxDb(T ) ≤ 2FVST(T ) + 1.

To see why this holds, consider an indegree bucket DbT [d] of maximum size. Let S =
DbT [d] \ FV , where FV is the feedback vertex set of minimum size. After removal of
FV , each vertex in S lands in a separate indegree bucket. This implies that one of the
vertices in S decreases its indegree by at least |S| − 1 after removing FV . Each vertex
removal decreases indegree of any other vertex by at most one. Thus, |S| − 1 ≤ |FV | and
|DbT [d]| ≤ |S|+ |FV | ≤ 2|FV |+ 1.

Let now maxRDb(T, F ) denote the maximum size of a reduced indegree bucket. We can
relate maxRDb(T, F ) to maxDb(T ) as follows.

▶ Fact 12 (Observation 61 in Appendix C.4 in [28]). maxRDb(T, F ) ≤ maxDb(T )(|F |+ 1)

The reason why Fact 12 holds is as follows. As Figure 3 suggests, any reduced degree bucket is
entirely contained in some indegree bucket with regard to T −F . The vertices of one indegree
bucket in T −F are contained in at most |F | + 1 indegree buckets in T , as any vertex can
decrease its indegree by at most |F | after removing F .

Let LONG(k, X) for X ⊆ V (T ) denote a set of k-long back arcs (with regard to T ) between
the vertices in X. Slightly more elaborate arguments of similar nature as above allow us to
bound |Empty−F | as follows.

▶ Fact 13 (Lemma 67 and Corollary 68 in Appendix C.4 in [28]).

|Empty−F | ≤ FVST(T −F ) · (2(k + |F |) + |LONG(k, V (T −F ))|+ 2FVST(T −F ) + 5) + 4|F |

Given the above bound, our goal is now to bound |LONG(k, V (T −F ))|. As Section 4.1 and
Section 4.2 suggest, we also need to bound |Back−F

v | and |LONG(k, v)| for all v ∈ V (T −F ).
Due to Fact 12 and a close relation between reduced degree buckets and indegree buckets

of T −F , there is a bounded number of (k + |F |)-short arcs in Back−F
v . Since removing

a vertex can decrease the indegree of any other vertex by at most one, the arcs that are
(k + |F |)-long in T −F are k-long in T . Thus, bounding |Back−F

v | for v ∈ T −F boils down to
bounding |LONG(k, v)| for v ∈ V (T −F ).

To sum up, it suffices that we bound |LONG(k, V (T −F ))| and |LONG(k, v)| for all v ∈
V (T −F ). We deal with this in the subsequent section.

4.4 Kernelization Technique
In order to bound |LONG(k, V (T −F ))| and |LONG(k, v)| for v ∈ V (T −F ), we actually reduce
the number of k-long back arcs by removing some vertices from T . To achieve this, we define
a k-long graph GLONG of the tournament T , which is an undirected graph, where vertices are
connected via an edge in GLONG if they are connected via a k-long back arc in the tournament
T . We also define the k-heavy set Heavyk(T ) of the tournament T as the set of vertices
of degree higher than k in GLONG. If FV ⊆ V (T ) is a feedback vertex set in T of size at
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most k, then FV is necessarily a vertex cover in GLONG: there is no other way to get rid of a
k-long back arc from T than to remove its endpoint (see Lemma 64 in [28] for a more formal
argument). Due to standard vertex cover kernelization arguments, Heavyk(T ) ⊆ FV for any
feedback vertex set FV of T with |FV | ≤ k. Moreover, when we remove Heavyk(T ) from
GLONG, at most k|FV | edges remain in GLONG. This simple but crucial observations are covered
by Lemma 64 in [28]. So the idea is to keep the set Heavyk(T ) removed from the tournament,
in order to keep the number of k-long back arcs connecting the remaining vertices small.
Observe also, that if Heavyk(T ) ⊆ F , where F is the set of removed vertices, any vertex
that is left in T −F has at most k adjacent k-long back arcs, what gives the desired bound
on |LONG(k, v)| for v ∈ V (T −F ). We want to emphasize, that the property of an arc being
k-long is considered here with regard to tournament T and it does not depend on F , so we
can maintain GLONG in the form of adjacency lists efficiently.

To implement the above idea, in Appendix C.3 we introduce a wrapper data structure
around the DREM[n, k] called DREMP[n, k]. It allows only one kind of updates, arc reversals,
and keeps the invariant that the k-heavy set of the maintained tournament is removed. This
not only allows us to efficiently implement the methods for finding triangles, but also ensures
fast running times of DREM[n, k] operations in the promise model. The wrapper is defined
in Lemma 66 in [28].

4.5 The Final Data Structure
In order to implement Algorithm 2, we use the DREMP[n, k] data structure for k = g(K),
where K is the problem parameter. The DREMP[n, k] data structure keeps Heavyk(T )
removed from the tournament, i.e., Heavyk(T ) ⊆ F at all times, where F is the set of
currently removed vertices. This provides us with the bounds on |LONG(k, v)| for v ∈ T −F

and |LONG(k, V (T −F ))|, which we need to efficiently find triangles. When we branch on
the vertices of the found triangle, we use the methods of the DREM[n, k] data structure
(internally maintained by DREMP[n, k]), in order to temporarily remove these vertices from
the tournament. This approach leads to the following theorem.

▶ Theorem 14 (Theorem 51 in Appendix C in [28] ). The dynamic K-Fvst problem admits a
data structure with initialization time O(n2), worst-case update time O(g(K)5) and worst-case
query time O(3KK3g(K)) under the promise that there is a computable function g, such that
tournament T always has a feedback vertex set of size at most g(K).
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Abstract
An st-shortest path, or st-path for short, in a graph G is a shortest (induced) path from s to t in G.
Two st-paths are said to be adjacent if they differ on exactly one vertex. A reconfiguration sequence
between two st-paths P and Q is a sequence of adjacent st-paths starting from P and ending at Q.
Deciding whether there exists a reconfiguration sequence between two given st-paths is known to
be PSPACE-complete, even on restricted classes of graphs such as graphs of bounded bandwidth
(hence pathwidth). On the positive side, and rather surprisingly, the problem is polynomial-time
solvable on planar graphs. In this paper, we study the parameterized complexity of the Shortest
Path Reconfiguration (SPR) problem. We show that SPR is W[1]-hard parameterized by k + ℓ,
even when restricted to graphs of bounded (constant) degeneracy; here k denotes the number of
edges on an st-path, and ℓ denotes the length of a reconfiguration sequence from P to Q. We
complement our hardness result by establishing the fixed-parameter tractability of SPR parameterized
by ℓ and restricted to nowhere-dense classes of graphs. Additionally, we establish fixed-parameter
tractability of SPR when parameterized by the treedepth, by the cluster-deletion number, or by the
modular-width of the input graph.
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1 Introduction

Many algorithmic questions can be posed as follows: given the description of a system
state and the description of a state we would “prefer” the system to be in, is it possible to
transform the system from its current state into a more desired one without “breaking” the
system in the process? And if yes, how many steps are needed? Such problems naturally
arise in the fields of mathematical puzzles, operational research, computational geometry [15],
bioinformatics, and quantum computing [10]. These questions received a substantial amount
of attention under the so-called combinatorial reconfiguration framework in the last decade.
We refer the reader to the surveys by van den Heuvel [18], Nishimura [16] and Bousquet et
al. [6] for more background on combinatorial reconfiguration.

© Nicolas Bousquet, Kshitij Gajjar, Abhiruk Lahiri, and Amer E. Mouawad;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Parameterized and Exact Computation (IPEC 2024).
Editors: Édouard Bonnet and Paweł Rzążewski; Article No. 23; pp. 23:1–23:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nicolas.bousquet@cnrs.fr
https://orcid.org/0000-0003-0170-0503
mailto:kshitij@iiit.ac.in
mailto:abhiruk@hhu.de
https://orcid.org/0009-0008-7556-3445
mailto:aa368@aub.edu.lb
https://doi.org/10.4230/LIPIcs.IPEC.2024.23
https://doi.org/10.48550/arXiv.2406.12717
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 Parameterized Shortest Path Reconfiguration

Shortest path reconfiguration. In this work, we focus on the reconfiguration of st-shortest
paths (or st-paths for short) in undirected, unweighted, simple graphs. It is well-known
that one can easily find an st-path in a graph in polynomial time. In order to define the
reconfiguration variant of the problem, we first require a notion of adjacency between st-paths.

As is common in the combinatorial reconfiguration framework, we focus on two models;
the token-jumping model (TJ) and the token-sliding model (TS). We say that two st-paths
are TJ-adjacent if they differ on exactly one vertex, i.e., all the vertices are the same except
at a unique position p. We say that two st-paths P and Q are TS-adjacent if they are
TJ-adjacent and the pth vertex of P and the pth vertex of Q are adjacent. A reconfiguration
sequence from P to Q (if it exists) is a sequence of adjacent shortest paths starting at P and
ending at Q. In the Shortest Path Reconfiguration (SPR) problem, we are given a
graph G, two vertices s and t, two st-paths P and Q of length k each, and the goal is to
decide whether a reconfiguration sequence from P to Q exists. In the Shortest Shortest
Path Reconfiguration (SSPR) problem, we are additionally given an integer ℓ which is
an upper bound on the length of the desired reconfiguration sequence. Reconfiguration of
shortest paths has many applications, e.g., in network design and operational research (we
refer the interested reader to [9] for a detailed discussion around these applications).

Many reconfiguration problems, SPR and SSPR included, naturally lie in the class PSPACE.
Since there are no simple polynomial-time checkable certificates (as reconfiguration sequences
are possibly of exponential length), they are generally not in NP. A decade ago, Bonsma [3]
proved that SPR (under token jumping) is PSPACE-complete. In fact, the problem remains
PSPACE-complete even when restricted to bipartite graphs [3], line graphs [9], and graphs of
bounded bandwidth/pathwidth/treewidth [19]. Several groups studied the complexity of the
problem in other restricted graph classes such as grid graphs [1], claw-free graphs, chordal
graphs [3], and circle graphs [9]. The most notable result has been obtained by Bonsma
who showed that Shortest Path Reconfiguration can be decided in polynomial time
for planar graphs [4]. This result is rather surprising in the reconfiguration setting since
most reconfiguration problems are known to be PSPACE-complete on planar graphs, see
e.g. [13, 14, 5].

Our results. Our focus is on the parameterized complexity of shortest path reconfiguration
problems; which, to the best of our knowledge, has not been studied so far. Other reconfigur-
ation problems have been widely studied from a parameterized perspective in the last decade,
see, e.g., [6] for a survey. A problem is fixed-parameter tractable, FPT for short, on a class C
of graphs with respect to a parameter κ, if there is an algorithm deciding whether a given
input instance with graph G ∈ C admits a solution in time f(κ) · |V (G)|c, for a computable
function f and constant c.

A kernelization algorithm is a polynomial-time algorithm that reduces an input instance
to an equivalent instance of size bounded in the parameter only (independent of the input
size), known as a kernel; we will say that two instances are equivalent if they are both
yes-instances or both no-instances. Every fixed-parameter tractable problem admits a kernel,
however, possibly of exponential or worse size. For efficient algorithms, it is therefore most
desirable to obtain polynomial, or even linear, kernels. The W-hierarchy is a collection
of parameterized complexity classes FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[t], for t ∈ N. The
conjecture FPT ⊊ W[1] can be seen as the analogue of the conjecture that P ⊊ NP. Before
stating our results precisely, let us formally define the problems we are interested in (we
intentionally omit the type of move, i.e., slide or jump, from the definitions, as it will be
clear from context in what follows):
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Shortest Path Reconfiguration (SPR)
Input: A graph G, two vertices s, t, two st-shortest paths P, Q.
Question: Is there a reconfiguration sequence from P to Q?

Shortest Shortest Path Reconfiguration (SSPR)
Input: A graph G, two vertices s, t, two st-shortest paths P, Q, an integer ℓ.
Question: Is there a reconfiguration sequence from P to Q of length at most ℓ?

In parameterized complexity, one is usually interested in two types of parameters: para-
meters related to the size of the solution or parameters related to the structure of the input
graph. For shortest path reconfiguration, there are two parameters related to the size of
the solution which are the length ℓ of a reconfiguration sequence, and the length k of the
shortest st-paths (number of edges on the shortest st-paths) in G. Our first results will focus
on these parameters. We will then discuss some parameters related to the graph structure
such as treedepth and modular width. Our first result is a hardness result. We prove that
the following holds (in both the token jumping and the token sliding models):

▶ Theorem 1. SPR is W[1]-hard parameterized by k, and SSPR is W[1]-hard parameterized
by k + ℓ, in both the token jumping and the token sliding models.

The idea of the proof of Theorem 1 is a reduction from the Multicolored Clique
problem. Let (Vi)i≤k be the vertices of an instance of the Multicolored Clique problem.
Intuitively (the real proof being more technical), we will construct a graph where the length
of the st-paths will be in O(k2), each integer representing a vertex of the set Vi. The goal
would be to transform a path P into a path Q, forcing us to select a vertex in each set. For
every pair i, j, there exists an integer r such that the rth vertex corresponds to a vertex in
Vi and the (r + 1)th vertex corresponds to a vertex in Vj . The key argument of the proof
consists in finding a mechanism to ensure that the vertex selected in each copy of Vi is the
same, which permits us to conclude that the subset of selected vertices is a multicolored
clique of the desired size. One can then naturally wonder if this hardness result can be
pushed further. The answer is yes, and in fact, we prove (in the full version of the paper)
that the problems are hard even restricted to a very simple class of graphs:

▶ Theorem 2. SPR is W[1]-hard parameterized by k, and SSPR is W[1]-hard parameterized
by k + ℓ, even when the inputs are restricted to graphs of constant degeneracy and in both the
token jumping and the token sliding models.

In order to prove that statement we adapt the proof of Theorem 1 to appropriately reduce
the degeneracy of the graph. We then complement these negative results with the following
positive ones.

▶ Theorem 3. SSPR is FPT parameterized by ℓ on nowhere-dense classes of graphs (in both
the token jumping and the token sliding models).

The idea of the proof of Theorem 3 consists in proving that if k is too large compared to
ℓ then there are many positions along the shortest paths that are already occupied by tokens
that never have to move. Using this fact, we then contract parts of the paths in order to
get st-paths of length O(f(ℓ)), for some computable function f . Now, since k is bounded by
some function of ℓ, one can prove that the existence of a reconfiguration sequence of length
ℓ can be verified via model checking a first-order formula ϕ whose size depends only on ℓ.
Combining this observation with the black-box result of [11] that ensures that the model
checking problem can be decided in time O(f(|ϕ|) · |V (G)|) on nowhere-dense graphs, we get
the desired result. We proceed (in the full version of the paper) by considering some of the
most commonly studied structural graph parameters. In particular, we prove the following:

IPEC 2024



23:4 Parameterized Shortest Path Reconfiguration

▶ Theorem 4. SPR and SSPR (in both the token jumping and the token sliding model) are
FPT when parameterized by either the treedepth, the cluster deletion number, or the modular
width of the input graph.

To motivate the study of these parameters, we refer the reader to Figure 1. Recall that
SPR is PSPACE-complete even when restricted to graphs of bounded bandwidth, pathwidth,
treewidth, and cliquewidth [19]. This implies para-PSPACE-hardness on the aforementioned
classes. Hence, our Theorem 4 almost completes the picture for structural parameterizations
of the problems, leaving open the case of feedback vertex set number.

cluster deletion

twin cover

vertex cover

neighbourhood
diversity

modular width

clique width

feedback
vertex set

treewidth

pathwidth

treedepth

bandwidth

Figure 1 The graph parameters studied in this paper. A connection between two parameters
indicates the existence of a function in the one above that lower-bounds the one below.

Further discussions and open problems. As we show in the full version of the paper, it
turns out that when solving the SPR problem parameterized by the feedback vertex set
number of the graph, one can assume that k, the length of st-paths, is bounded linearly in
the parameter. Hence, the following remains an interesting open question:

▶ Problem 1. Is SPR fixed-parameter tractable when parameterized by feedback vertex set
number?

When the feedback vertex set number is bounded, the graph can be seen as a disjoint
union of trees plus a bounded number of additional vertices. One can easily remark that if
vertices of the feedback vertex set are far apart in the st-paths then the structure is very rigid
and very few tokens can move in the graph. However, when vertices of the feedback vertex
set are close to one another (along the st-paths), there might exist some arbitrarily long
paths between two layers in the layered partition of the graph. Here, the layered partition
refers to the partitioning of the vertex set based on distance either from s or from t. Tokens
along these (layer) paths that do not belong to the feedback vertex set are not restricted and
can traverse their corresponding layer path in both directions an unbounded number of times.
In particular, it implies that, if there exists a reconfiguration sequence, that sequence might
be arbitrarily long. So in order to design a reconfiguration sequence (from a kernelization
perspective at least, which is known to be equivalent to fixed-parameter tractability), we
have to find a way to reduce these long structures into structures of bounded length. We
were not able to solve this very special case of the problem.

As far as we know, it also remains an open question whether SPR is in P or is NP-
complete on graphs of constant feedback vertex set number. Note that an XP algorithm
follows immediately from the fact that (after appropriately discarding parts of the input)
the number of st-paths is roughly |V (G)|f , where f denotes the feedback vertex set number.
Regardless, in case of a positive answer to Problem 1, the next natural question is the
following:
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▶ Problem 2. Is SPR fixed-parameter tractable when parameterized by k on graphs of bounded
pathwidth? What about treewidth? How about parameterization by k plus the treewidth?

It is an easy exercise to remark that SPR is PSPACE-complete on graphs of bounded
bandwidth, pathwidth, and treewidth using a simple reduction from H-Word Reconfigur-
ation [19]. When the treewidth is 1, there exists a unique minimum st-path and the problem
is simple. Trees and forests are graphs which are 1-degenerate and every 1-degenerate graph
is a forest, however, the complexity of SPR and SSPR remains open for 2-degenerate graphs.

▶ Problem 3. What is the complexity of SPR and SSPR on 2-degenerate graphs?

Related work. Reconfiguration of paths and other subgraphs has been considered before [7,
12, 8]. For some of these past works, i.e., [7, 12], the paths have fixed length and a “move”
consists of removing a vertex at one end and adding a vertex at the other end, as in certain
“snake-like” games. In contrast, for our work, the two endpoints of the paths are fixed and
the paths are required to be unweighted shortest paths between those endpoints.

Demaine et al. proved in [7] that the problem of reconfiguring (arbitrary) paths via
snake-like moves is PSPACE-complete in general, and polynomial-time solvable for some
restricted graph classes. When not restricted to shortest paths, the problem is quite different,
since the extremities of the paths are not fixed and the goal is not necessarily to reconfigure
shortest paths. In fact, it is proved in [7] that fixed-length path reconfiguration (under the
snake-like moves described above) is fixed-parameter tractable parameterized by the path
length or by the circuit rank, XP parameterized by the feedback vertex set number, and
PSPACE-complete even for graphs of bounded bandwidth [19]. Gupta et al. [12] also show
fixed-parameter tractability parameterized by path length for a different type of snake-like
moves, i.e., paths are considered directed paths and are required to move forwards only.

Reconfiguration problems on graphs of bounded feedback vertex set number and on graphs
of bounded treewidth have already received a considerable amount of attention, and they
are usually not easy to place in FPT (unlike their optimization counterparts, where a simple
branching strategy or dynamic programming algorithm is usually enough to get an FPT
algorithm). For instance, Independent Set Reconfiguration (in the token sliding model)
on graphs of bounded feedback vertex set number is FPT; this fact follows easily from the
multi-component reduction in [2]. However, the question is still open for the reconfiguration
of dominating sets, for instance. The case of bounded treewidth graphs is open for both
Independent Set Reconfiguration and Dominating Set Reconfiguration (in the
sliding model) [6].

2 Hardness results

We start with the case of SPR parameterized by k on general graphs. The same reduction
will imply the hardness of SSPR parameterized by k + ℓ. We describe in the full version of
the paper how to modify the construction to obtain a graph of constant degeneracy1.

Our reduction is from the Regular Multicolored Clique (RMC) problem, which is
known to be NP-complete and W[1]-hard when parameterized by solution size κ [17]. The
problem is defined as follows. We are given a κ-partite graph G = (V, E) such that V is
partitioned into κ independent sets V = V1 ∪· V2 ∪· · · · ∪· Vκ and each partition has size exactly
n, i.e., |V | = κn. We denote the vertices of Vi by vi

1, vi
2, . . . , vi

n. Moreover, every vertex

1 Proofs of statements marked with a star are omitted due to space constraints.
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vi
j ∈ Vi has exactly r neighbors in every set Vi′ , i ≠ i′. In other words, every vertex in G has

degree exactly r(κ − 1). Given an instance (G, κ) of RMC, the goal is to decide if G contains
a clique of size κ, which we call a multicolored clique since it must contain exactly one vertex
from each Vi, i ∈ [κ]. We reduce (G, κ) to an instance (G′, s, t, P, Q) of SPR, where P and Q

are st-paths in G′ of length k = O(κ2).

Properly colored st-paths. Before discussing G′, we start by describing a key gadget of
our construction which is a graph called H. The graph H consists of α = 6κ2 sets of vertices
H1, H2, . . . , Hα such that |Hi| = n for each i ∈ [α]. We group every three consecutive sets
into β = 2κ2 groups R1 = {H1, H2, H3}, R2 = {H4, H5, H6}, R3 = {H7, H8, H9}, . . ., and
Rβ = {Hα−2, Hα−1, Hα}. We call Hi the ith layer of H and Ri the ith group of H; it will
become clear later that a shortest path will select a vertex from each Hi. We also define
a mapping µ : [β] → [κ] such that each Ri is mapped to some Vj , for i ∈ [β] and j ∈ [κ].
In other words, each Ri = {Ha, Hb, Hc} will correspond to taking three copies of some Vj .
We sometimes abuse notation and write µ(Ri) = Vj to denote the image of a set. We also
overload notation and write µ(Hp) = Vj whenever Hp ∈ Ri and µ(Ri) = Vj .

Furthermore, we construct µ in such a way that, for every pair (j, j′), j ̸= j′ and j, j′ ∈ [κ],
there exists at least one integer i < β such that µ(i) = j, µ(i + 1) = j′. In other words, for
every two sets Vj and Vj′ , there must exist two consecutive groups Ri and Ri+1 such that Ri

is mapped to Vj and Ri+1 is mapped to Vj′ . One can easily check that it is indeed possible
to construct such a function µ when β = 2κ2. We define µ as follows:

For each i ∈ [β], Ri is mapped to Vµ(i), where µ(i) =

{
1 + ⌊(i − 1)/2κ⌋ i is odd;
1 + ((i − 2) mod 2κ)/2 i is even.

▶ Observation 5. For each (j, j′) ∈ [κ] × [κ] such that j ̸= j′, there exists an i ∈ [β − 1] such
that µ(i) = j and µ(i + 1) = j′.

We also define a mapping πi : Ri → Vµ(i) (and πi : Hi → Vµ(i)) that maps every vertex of
Ri (Hi) to its corresponding vertex in Vµ(i). We drop the subscript i when clear from context.
We note that each vertex of Vµ(i) appears three times in Ri (once in each layer) and all three
vertices map to the same vertex of Vµ(i). Let us now describe the edge set of H. For every
i ∈ [β], we add a matching between vertices of Hj and Hj+1 and a matching between vertices
of Hj+1 and Hj+2 whenever there exists a group Ri such that Ri = {Hj , Hj+1, Hj+2}. For
every two consecutive groups Ri = {Hj , Hj+1, Hj+2} and Ri+1 = {Hj+3, Hj+4, Hj+5}, we
add in H the edges of G between Hj+2 and Hj+3. That is, we add between consecutive sets
corresponding to different sets of G the edges corresponding to the edges between those two
sets in G. More formally, let a ∈ Hj+2, b ∈ Hj+3, π(a) ∈ Vµ(i), and π(b) ∈ Vµ(i+i). Then,
there is an edge between vertices a and b in H if and only if there is an edge between vertices
π(a) and π(b) in G.

Assume that we create a new graph H ′ consisting of H plus two additional vertices s

and t, where s is connected to all the vertices of H1 and t is connected to all the vertices of
Hα. Note that any st-path in H ′ must contain exactly one vertex from every layer. We say
that an st-path P is properly colored whenever for any a ∈ Hi and b ∈ Hj (on the path) such
that µ(i) = µ(j), we have π(a) = π(b). In other words, whenever two layers of H (containing
vertices of P ) map to the same set of V we must select the same vertices in both. We note
that any st-path P in H ′ can intersect with a group Ri in one of n ways, i.e., the vertices of
P in Ri all map to the same vertex of Vµ(i).

▶ Observation 6 (⋆). H ′ contains a properly colored st-path P (consisting of 6κ2 +2 vertices)
if and only if G contains a multicolored clique of size κ.
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Outline of the reduction. Assume that we add to the graph H ′ two new (internally)
vertex-disjoint st-paths P and Q each containing exactly α + 2 vertices (s and t and one
vertex per layer of H). We add all the edges between the i-th vertex of P and the vertices
in layers i, i − 1, and i + 1 of H (with the assumption that H0 = {s} and Hα+1 = {t}).
Similarly, we add all the edges between the i-th vertex of Q and the vertices in layers i, i − 1,
and i + 1 of H. We denote the resulting graph by H ′ + P + Q.

Consider the instance (H ′ + P + Q, s, t, P, Q) of SPR. If there exists a multicolored clique
in G then there exists a properly colored st-path in H ′ by Observation 6. By the definition
of the edge set, on can easily see that we can transform P into Q by first moving the vertices
of P onto a properly colored st-path in H ′ and then moving all the vertices to Q one by one.
Unfortunately, the converse is not necessarily true since we might not be consistent in the
selection of vertices in H ′, i.e., we might select vertices a ∈ Hi and b ∈ Hj in the path such
that µ(i) = µ(j) and π(a) ̸= π(b) (Hi and Hj belong to different groups).

By considerably complicating the gadgetry, we will prove that we can handle this issue.
To do so, we create a new gadget that will force us to select the same vertex for a fixed value
of the image of µ. We replicate our gadget to enforce the consistency of all the images of µ.
In addition to enforcing consistent selection of vertices, our construction further guarantees
that choices cannot be undone.

Another issue in the simplistic construction of H ′ described above is that we implicitly
assume that we move from P to a path fully contained in H before going to Q. But nothing
prevents an st-path from containing some vertices of P , then some vertices from H, then
some vertices from Q, then more vertices from H, and so on. To avoid this phenomenon, we
shall add what we call buffer space. We formalize all these ideas next.

Buffers and collapses. Most of the time, we will consider matchings and edges between sets
of size n. Given two sets of size n (with an implicit ordering), we define the natural matching
as the matching that matches the vertices in increasing index order (in the natural way). We
will sometimes consider edges between a set A of size n and a set B of size larger than n

with a canonical mapping function to {1, . . . , n}. By abuse of notation, we still denote by
the natural matching the set of edges (that is not a matching anymore) that links the i-th
vertex of A and all the vertices that map to i in B.

We denote by In (Jn) the independent set on n vertices2. We drop the superscript n

when clear from context. We let Iq (J q) denote the graph obtained by taking q copies of In

(Jn) where consecutive copies of In (Jn) are linked with the natural matching. Note that Iq

(J q) consists of exactly n paths on q vertices. We use Ii (resp. Ji) to denote the ith copy of
In (resp. Jn) in Iq (resp. J q).

Let R = R1, R2, . . . , Rγ be a graph where edges are between consecutive sets and there is
a canonical mapping from R1 and Rγ to {1, . . . , n} (in our proof, R will be H or a graph
close to H). We write Γ(p, H, q) = Ip ⊕ H ⊕ J q (or Γ when p, q, H are clear from context)
to denote the graph obtained by taking a copy of Ip, a copy of J q, a copy of H, and then
adding the natural matching between the vertices of Iq and H1 as well as a matching between
the vertices of Hα and J1. If we denote by Ii the sets of Ip and Ji the sets of J q, for
i ∈ [p + α + q], we call Li the i-th layer of Γ(p, H, q), where Li = Ii when i ≤ p, Li = Hi−q

when p < i ≤ p + α, and Li = Ji−(q+α) when i > q + α.

2 These two notations that denote the same graph will permit to simplify the description of the construc-
tions in the rest of the paper.
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Given the graph H (recall that H consists of α = 6κ2 sets of vertices H1, . . . , Hα) and
a vertex hi

j ∈ Hi, we let H(hi
j) denote the graph obtained from H by deleting all but one

vertex from each set Hi′ , where µ(i′) = µ(i); we delete all vertices except for hi′

j ∈ Hi′

(deleting vertices implies the deletion of edges incident on those vertices). That is, we restrict
all the layers of H corresponding to Vµ(i) to a single vertex (the same vertex); we have
π(hi

j) = π(hi′

j ) for all i, i′ with µ(i) = µ(i′). We say that H(hi
j) is a collapse of H on hi

j , or,
equivalently, collapsing H on hi

j results in H(hi
j).

Now, for every i ≤ κ, j ≤ n, we define Γi,j(p, q) as Γ(p, H(hi
j), q). Finally, we let Γi(p, q)

denote the union of the n graphs Γi,j(p, q). We write Γi,j = Γi,j(p, q) whenever p and q are
clear from context. Note that all the Γi,j being disjoint, if we have a path fully included in
one of the Γi,j(p, q) at some point, then all the selected vertices in sets mapping to i by µ are
the same. That is, Γi(p, q) will allow us to verify that for any Hj , H ′

j in the selection gadget
such that µ(j) = µ(j′) = i we always pick vertices a ∈ Hj , b ∈ Hj′ such that π(a) = π(b).

Construction. We are now ready to describe the construction of the instance (G′, s, t, P, Q)
of SPR. We consider the token jumping model (changes required for sliding can be found in
the full version of the paper). We start from an empty graph G′ and add two new vertices s

and t. We let q = 2κ2 and δ = 2q + α = 10κ2. We add two internally vertex-disjoint st-paths
P and Q consisting of δ internal vertices each.

The next step consists of adding Γ⋆ = Γ(q, H, q) to G′ and connecting s to every vertex
in I1 and t to every vertex in Jq. Moreover, we let the ith internal vertex of P , i ≥ 2, be
adjacent to every vertex in layer i − 1 of Γ⋆. We call Γ⋆ the selection gadget. The rest of the
gadgets will be verification and boundary gadgets that allow us to guarantee that properties
similar to those in Observation 6 will hold.

We then create a graph Γ1(q − 1, q + 1) denoted by Γ1 which will be the verification
gadget for i = 1. We deal with the graphs of Γ1 first (and slightly differently than the rest)
as they require special attention given that they exist at the “boundary” of our construction.
Notice that, in G′, all the graphs in Γ1 are “shifted one position to the left with respect
to Γ⋆” (in the sense that the number of independent sets at the left has reduced by one),
see Figure 2 for an illustration. In particular, the graph H of each Γ1,j , j ∈ [n], starts (or
appears) one layer before the graph H in Γ⋆. We now describe the edges between Γ⋆ and any
Γ1,j (in Γ1). Let L denote some layer of Γ1,j (ignoring the last layer) and let L′ be the layer
after L in Γ⋆. If L and L′ correspond to independent sets (not sets of H) they are connected
by the natural matching. Otherwise, we have two cases:

If layer L of Γ1,j corresponds to a set Hp with µ(p) = 1 then we deleted all vertices of L

except for hp
j (collapse). We connect hp

j to its image in L′, which must exists since layer
L′ of Γ⋆ corresponds to a set Hp′ with µ(p) = µ(p′) = 1.
Otherwise, we have the same number of vertices in L and L′ and we add a matching
between the pairs of vertices having the same image in G.

We now add a boundary gadget that will separate all the verification gadgets and allow
us to simplify some of the arguments. Picturing the graph being constructed from top to
bottom with P and Q encircling all of the graph, we assume that Γi,j is drawn before Γi,j+1.
Similarly, we only insert Γi+1,j after inserting all graphs of Γi (see again Figure 2 for an
illustration). After Γ1,n is inserted, we insert another graph (connecting s and t) that we
denote by Γ1,⋆ = Γ(q − 2, H, q + 2) which is called the boundary gadget of Γ1. Note that
Γ1,⋆ is again shifted one position to the left compared to all the graphs in Γ1. We add edges
between layers of Γ1,⋆ and layers of Γ1,j , for each j ∈ [n]. Like before, we let L denote some
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layer of Γ1,⋆ (ignoring the last layer) and let L′ be the layer after L in Γ1,j . If L and L′

correspond to independent sets (not sets of an H) then we connect them via a matching in
the natural way. Otherwise, we have again two cases:

|L| = n, |L′| = 1, and we connect by an edge the unique vertex of L′ to its image in L; or
|L| = |L′| = n (by construction) and we connect the two layers by a matching.

We can now complete the construction as follows. For i ∈ [κ − 1], after Γi,⋆ is inserted
we proceed just like before by assuming that Γi,⋆ now takes the role of the selection gadget
Γ⋆. Formally, for i ∈ [κ − 1] and j ∈ [n] (processing in increasing order), we create a graph
Γi+1,j , where Γi+1,j = Γ(q − (2i+ 1), H(hi+1

j ), q + (2i+ 1)). We connect s to all the first-layer
vertices and t to all the last-layer vertices in the obvious way. Let Γi+1 denote the collection
of the n graphs of the form Γi+1,j . We add edges between Γi,⋆ and graphs in Γi+1 just like
before. Similarly, we then add a new graph Γi+1,⋆ and proceed as described until we reach
Γκ,⋆. We connect all the vertices of a layer of Γκ,⋆ to the vertex of Q on the preceding layer
(see Figure 2). This completes the construction of the SPR instance (G′, s, t, P, Q)3. Note
that |V (P )| = |V (Q)| = 10κ2 + 2.

Safeness of the reduction. Before we dive into the technical details of the proof, let us
give some high-level intuition. Simply put, the purpose of every set of graphs Γi, i ∈ [κ], is
to verify that all the sets/layers of Γ⋆ mapping to the same Vi use the same vertex of Vi.
The trickier part of the proof is in showing that tokens are “well-behaved”.

Figure 2 An example of our reduction in the case of token jumping.

Let us start by proving the easier direction. We assume, without loss of generality, that
all of our gadgets H start with a copy of V1 and end with a copy of Vκ. Moreover no two
consecutive groups of any H map to the same Vi.

3 We note that most of the buffer space “to the right” of the construction is not needed but was added to
favor a symmetric construction.
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▶ Lemma 7. If (G, κ) is a yes-instance of (Regular) Multicolored Clique then there
exists a reconfiguration sequence from P to Q whose length is 20(κ3 + κ2).

Proof. Let {v1
j1

, v2
j2

, . . . , vi
ji

, . . . , vκ
jκ

} denote the vertices of a multicolored clique in G. Let
us exhibit a reconfiguration sequence from P to Q. To do so, let us first give a reconfiguration
sequence from P to a path that contains vertices in Γ⋆ as follows: We move one by one
the tokens of P to Γ⋆ by increasing distance to s (in ascending order). For every layer
i ≤ q, we jump (in order) the token at layer i ≥ 1 in P to vertex vj1 in the ith layer of
Γ⋆ = Γ(q, H, q) as long as i ≤ q + 1 (as H1 maps to V1 by assumption). In other words, we
map all the vertices at the beginning of the path to the copy of vertex v1

j1
. Then, for any

layer q + 1 < i ≤ q + 1 + α, we jump the token at layer i of P to vertex h
µ(i)
jµ(i)

of Γ⋆. For
every i > q + 1 + α, we jump the ith vertex of P to vertex vjκ

(since we assume that H ends
with a set that maps to Vκ). The fact that we maintain an st-path after every token jump
follows from Observation 6 combined with the fact that vertices of P are connected to all
vertices of the preceding layer of Γ⋆.

Once we have reached a properly colored st-path P1 fully contained in Γ⋆ (in exactly 10κ2

steps), we can use a similar strategy to reach a properly colored st-path P2 fully contained
in Γ1,j1 . More formally, we move by increasing order all the tokens of P1 in such a way the
i-th vertex of P2 is a the copy of the (i + 1)-th vertex of P1. Note that it is well-defined
since, for every i such that µ(i) = 1, the vertex hj1 belongs to P2. Observe that during that
transformation the vertices “shift one layer to the left”. We then use a similar transformation
to transform P2 into a path P3 fully contained in Γ1,⋆. We use 20κ2 steps from P1 to P3.

We repeat this procedure for every 2 ≤ i ≤ κ to transform the path in Γi−1,⋆ into a
path in Γi,⋆ in 20κ2 jumps. Then we need an extra 10κ2 steps to go from Γκ,⋆ to Q (using
the converse of the transformation from P to Γ⋆). Hence, the length of the reconfiguration
sequence is exactly 20(κ3 + κ2). ◀

In order to prove the other direction, we first establish some useful properties of our
construction. We let Γ⋆ = Γ0,0 and Γi,⋆ = Γi,n+1. We say Γi,j comes before or above Γi′,j′

whenever i < i′ or i = i′ and j < j′ (we also assume that P appears first and Q appears last,
i.e., P = Γ−1,−1 and Q = Γn+1,n+1). We say that two consecutive internal vertices vp and
vp+1 of an st-path P are siblings if they belong to the same graph Γi,j (that is they belong
to the same row in the representation of Figure 2). Otherwise, we say vp is above (or below)
vp+1 if the graph of vp is above (below) that of vp+1 (that is vp is in the row above or below
vp+1 in the representation of Figure 2).

▶ Lemma 8 (⋆). Let P be a shortest path from s to t in G′. Let vp denote the pth internal
vertex of P . Then:

For every p, vp is a vertex of the pth layer of G′.
For every two consecutive internal vertices of P , vp and vp+1, either vp and vp+1 are
siblings or vp is below vp+1.
For every p, if vp belongs to Γi,j then no vertex vp′ with p′ ≥ p is below vp.
For every p, if vp belongs to Γi,j then vp−1 is either in Γi,j or Γi,n+1 and vp+1 is either
in Γi,j or Γi−1,n+1.

Our next result states that the sequence described in Lemma 7 is best possible.

▶ Lemma 9 (⋆). Any reconfiguration sequence from P to Q requires at least 20(κ3 + κ2)
token moves. Moreover, if there exists a reconfiguration sequence from P to Q then there
exists one of length exactly 20(κ3 + κ2).
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Given Lemma 8 and Lemma 9, it is easy to see that a shortest reconfiguration from
P to Q in G′ must be monotone, i.e., tokens always move towards Q and every path in
the reconfiguration sequence consists of a sequence of vertices (ordered from s to t) whose
distance from Q monotonically increases.

▶ Lemma 10 (⋆). Assume that there exists a reconfiguration sequence σ from P to Q in G′.
For i ∈ [κ], let µ−1(i) = {Hj1 , Hj2 , . . .} denote the H-layers (layers that belong to H) in Γ⋆

that map to Vi. Then:
For every two consecutive sets Hj and Hj+1 in Γ⋆ there exists at least one st-path P ′ in
the sequence σ such that P ′ contains one vertex in both Hj and Hj+1.
If σ is a shortest sequence then the intersection of

⋃
P ′∈σ V (P ′) with

⋃
Hj∈µ−1(i) V (Hj)

includes only vertices that map to the same vertex of Vi. In other words, for any two
vertices w and w′ in W =

⋃
P ′∈σ V (P ′) ∩

⋃
Hj∈µ−1(i) V (Hj), we have π(w) = π(w′).

We now have all the ingredients to finish the proof.

▶ Lemma 11. If (G′, s, t, P, Q) is a yes-instance of Shortest Path Reconfiguration
then (G, κ) is a yes-instance of (Regular) Multicolored Clique.

Proof. Let (G′, s, t, P, Q) be a yes-instance and let σ be a shortest reconfiguration sequence
from P to Q. For i ∈ [κ] and P ′ ∈ σ, let Wi =

⋃
P ′∈σ V (P ′) ∩

⋃
Hj∈µ−1(i) V (Hj). Moreover,

let π(Wi) = {π(w) | w ∈ Wi}. By Lemma 10, we have |π(Wi)| = 1 and we denote the vertex
by vi

ji
. Consider the κ vertices {v1

j1
, . . . , vi

ji
, . . . , vκ

jκ
}. The fact that those vertices must

form a multicolored clique in G again follows from Lemma 10; as every pair must appear
consecutively in two H-layers of Γ⋆ and some path of σ must intersect with both. ◀

▶ Corollary 12 (⋆). SPR is W[1]-hard parameterized by k and SSPR is W[1]-hard paramet-
erized by k + ℓ under both the token jumping and the token sliding model.

3 FPT algorithms

First, we observe that both SPR and SSPR are easily shown to be fixed-parameter tractable
when parameterized by k + ∆(G), where ∆(G) denotes the maximum degree of G; by only
retaining vertices that belong to some shortest st-path one can easily bound the size of
the graph since the i-th layer, consisting of all the vertices at distance exactly i from s,
will contain at most ∆(G)i vertices. In the remainder of this section, we investigate the
complexity of the problem further (and for different parameters) in order to identify the
boundary between tractability and intractability. As a warm-up, let us first prove that the
following holds:

▶ Lemma 13. SSPR is FPT parameterized by k + ℓ on nowhere-dense classes of graphs for
both the sliding and the jumping models.

Proof. The proof easily follows from the fact that FO-model checking is FPT on nowhere
dense classes of graphs [11]. Such an argument has already been used in various proofs for
reconfiguration problems, see e.g., [6].

For every i ≤ k and j ≤ ℓ, let us create a variable xi,j that represents the i-th vertex of
the path at the j-th step of the reconfiguration sequence. Let us prove that we can formulate
the existence of a reconfiguration sequence of length ℓ between P and Q as a FO-formula
on the set of variables xi,j . First we set xi,1 = pi where pi is the i-th vertex of the path P .
Similarly xi,ℓ = qi where qi is the i-th vertex of the path Q. We now need to ensure that at
every step j ≤ ℓ, the set of variables xi,1, . . . , xi,ℓ is a path of G, that is, for every i ≤ k − 1
and every j ≤ ℓ, xi,jxi+1,j is an edge.
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23:12 Parameterized Shortest Path Reconfiguration

We further want to ensure that if one vertex is modified between the j-th path and the
(j + 1)-th path then all the other vertices are the same. That is, for every i, i′ ≤ k and
j ≤ ℓ − 1, we have (xi,j ̸= xi,j+1 ⇒ (xi′,j = xi′,j+1). If we want a reconfiguration sequence
with the token sliding rule, we have to add the following constraint: for every i ≤ k, j ≤ ℓ − 1,
xi,j = xi,j+1 or xi,jxi,j+1 is an edge. Finally, we add the constraints x1,j = s and xk,j = t

for every j ≤ ℓ.
Let us denote by ϕ the resulting formula. Let us prove that there exists a reconfiguration

sequence from P to Q of length at most ℓ if and only if ϕ is satisfiable. If there exists a
reconfiguration sequence P1 = P, . . . , Pr = Q with r ≤ ℓ then we simply have to set xi,j to
be the i-th vertex of Pj and xi,j′ = qi for every j′ ≥ r in order to satisfy all the constraints.

Conversely, assume that there exists an assignment of the variables that satisfies all the
constraints. Let us denote by Pj the set of ordered vertices xi,j for 1 ≤ i ≤ k. Note that, by
hypothesis, Pj is an st-path for every j. Moreover, by definition Pj and Pj+1 differ on at
most one vertex and P1 = P and Pℓ = Q. By removing consecutive paths that are the same
we obtain a reconfiguration sequence from P to Q, which completes the proof. ◀

Let us now generalize the previous result and prove that the following holds:

▶ Theorem 14. SSPR is FPT parameterized by ℓ on nowhere dense classes of graphs for
both the sliding and the jumping models.

Proof. The idea of the proof consists of proving that there exists an equivalent instance
where the distance between s and t is bounded by a function of ℓ. The conclusion then
directly follows from Lemma 13. To do so, we will prove that we can bound (by a function
of ℓ) the set of indices i on which there is a relevant modification on the i-th vertex of the
path at some step of the reconfiguration sequence. We will then prove that we can “forget”
the vertices which are not in these positions by reducing the length of the shortest paths.

Let (G, s, t, P, Q, ℓ) be an instance of SSPR. Let us denote by S the set of positions on
which P and Q differ. Note that if |S| > ℓ then we can immediately return false since more
than ℓ steps are needed to transform P into Q. So we can assume that |S| ≤ ℓ in the rest of
the proof.

▷ Claim 15. If there is a reconfiguration sequence from P to Q of length at most ℓ then
there is a reconfiguration sequence from P to Q that only modifies vertices whose indices are
at distance at most ℓ from an index of S.

Proof. Let R be a reconfiguration sequence from P to Q of length at most ℓ. At each step,
there is exactly one position where a vertex is modified. Let us denote by R that set of
positions where a vertex is modified. We have |R| ≤ ℓ. A component R′ of R is a maximal
subset of R containing consecutive integers. Every component R′ has a minimum and a
maximum value (that might be equal). We say that a component is important if it contains
a vertex of S and useless otherwise.

We claim that if there is a useless component R′, removing from R all the modifications
at position c for every c ∈ R′ leaves a reconfiguration sequence from P to Q. Indeed,
let us denote by R′ the resulting reconfiguration sequence. First note that since R′ is a
useless component, the final shortest path is still Q (we cancel modifications on positions
where P and Q were identical). Assume now, for a contradiction, that at some step of the
reconfiguration sequence in R′, the set of vertices Pi is not a shortest st-path. Let us denote
by u, v the consecutive vertices of Pi that are not adjacent. Since the path is only modified
at positions of indices of R′, either the index of u or v is in R′. Moreover, both of them
are not in R′ since by definition of R′ all the vertices of indices in R′ remain the same all
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along the reconfiguration sequence and the initial set of vertices is indeed a path. So we
can assume by symmetry that the position of u is the index just before the minimum value
of R′ and v is the minimum value of R′. Since the vertex v belongs to all the sets in the
reconfiguration sequence R′, it means that u has been modified. But then u should be added
in the component R′ of v, a contradiction.

Thus, if there is a reconfiguration sequence from P to Q of length ℓ, there is one with
no useless component. But the width of a component is at most ℓ since only ℓ vertices are
modified in a reconfiguration sequence. So if there is a reconfiguration sequence, there is one
that only moves tokens on vertices whose indices are at distance at most ℓ from an index of
S, as claimed. ◁

Let X(i, s) be the set of vertices at distance exactly i from s in G. Let IS be the set of
indices at distance at most ℓ from an index of S. Note that IS has size at most 2ℓ · |S|. An
empty interval for IS is an interval maximal by inclusion in {0, . . . , d(s, t)} \ IS . Note that
IS has at most |S| empty intervals. We create the graph G′ from G as follows:

G′ contains s, t and, for every i ∈ IS , G′ contains all the vertices of X(i, s).
For all the integers i /∈ IS but at distance one from an integer of IS , G′ contains the
vertex at position i in P (and Q).
There is an edge between x and y if xy is an edge of G, or if x, y are the unique two
vertices of G whose positions are in the same empty interval for IS

4.
Let us denote by P ′ and Q′ in G′ the set P ∩ V (G′) and Q ∩ V (G′). One can easily remark
that P ′ and Q′ are shortest st-paths in G′.

▷ Claim 16. There is a reconfiguration sequence from P to Q in G if and only if there is a
reconfiguration sequence from P ′ to Q′ in G′.

Proof. The proof follows from the fact that we can assume that a transformation from P

to Q of length at most ℓ in G only modifies vertices whose indices are at distance at most
ℓ from an index of S. All those vertices are in G′ and all the vertices of G′ that contain
non-movable tokens are unique at their corresponding distance from s (hence cannot move
in G′). ◁

One can remark that the distance between s and t in G′ is at most 4ℓ2. So by Lemma 13,
we can decide in FPT-time in ℓ if there is a reconfiguration sequence from P ′ to Q′ in G′,
which completes the proof. ◀
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Abstract
Roman domination formalizes a military strategy going back to Constantine the Great. Here, armies
are placed in different regions. A region is secured if there is at least one army in this region or
there are two armies in one neighbored region. This simple strategy can be easily translated into
a graph-theoretic question. The placement of armies is described by a function which maps each
vertex to 0, 1 or 2. Such a function is called Roman dominating if each vertex with value 0 has a
neighbor with value 2.

Roman domination is one of few examples where the related (so-called) extension problem is
polynomial-time solvable even if the original decision problem is NP-complete. This is interesting as
it allows to establish polynomial-delay enumeration algorithms for listing minimal Roman dominating
functions, while it is open for more than four decades if all minimal dominating sets of a graph
or (equivalently) if all hitting sets of a hypergraph can be enumerated with polynomial delay, or
even in output-polynomial time. To find the reason why this is the case, we combine the idea of
hitting set with the idea of Roman domination. We hence obtain and study a new problem, called
Roman Hitting Function, generalizing Roman Domination towards hypergraphs. This allows
us to delineate the frontier of polynomial-delay enumerability.

Our main focus is on the extension version of this problem, as this was the key problem when
coping with Roman domination functions. While doing this, we find some conditions under which
the Extension Roman Hitting Function problem is NP-complete. We then use parameterized
complexity as a tool to get a better understanding of why Extension Roman Hitting Func-
tion behaves in this way. From an alternative perspective, we can say that we use the idea of
parameterization to study the question what makes certain enumeration problems that difficult.

Also, we discuss another generalization of Extension Roman Domination, where both a lower
and an upper bound on the sought minimal Roman domination function is provided. The additional
upper bound makes the problem hard (again), and the applied parameterized complexity analysis
(only) provides hardness results.

Also from the viewpoint of Parameterized Complexity, the studies on extension problems are
quite interesting as they provide more and more examples of parameterized problems complete for
W[3], a complexity class with only very few natural members known five years ago.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Parameterized complexity and exact algorithms

Keywords and phrases enumeration problems, polynomial delay, domination problems, hitting set,
Roman domination

Digital Object Identifier 10.4230/LIPIcs.IPEC.2024.24

1 Introduction

For more than four decades, the question if all minimal hitting sets can be enumerated
with polynomial delay is an open question. This Transversal Hypergraph Problem is
equivalent to the question if all minimal dominating sets can be enumerated with polynomial
delay. From the point of view of applications, it is quite important to find an affirmative
answer: no user likes to wait “forever” to see the next solution, or to get to know that no
further solution exist. In order to explore this question, the problem of enumerating minimal
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24:2 Roman Hitting Functions

dominating sets has been investigated in many special graph classes. Several graph classes
have been identified where this enumeration problem can be solved with polynomial delay. In
this paper, we approach this problem from a different side. Namely, in [4] it was shown that
all minimal Roman dominating functions1 can be enumerated with polynomial delay. This
was a rather surprising finding as in most other complexity aspects, Roman Domination and
Dominating Set behave quite the same. More specifically, to mention some of these results:

Roman Domination is NP-complete, even on special graph classes; see [20, 35].
Minimum Roman Domination can be approximated up to a logarithmic factor but not
any better, unless P = NP, confer [1, 35, 34].
Roman Domination under standard parameterization (by an upper-bound k on the
number of armies) is complete for W[2]; see [22]. However, the dual parameterization
puts Roman Domination in FPT; see [2, 6, 7].

So, we take this as a basis and try to generalize Roman Domination towards Hitting Set
to understand when or where the polynomial delay feature disappears. In passing, we also
generalize the enumeration results from [4] considerably. As we will explain in the following,
we introduce a generalizations of Roman Domination towards hypergraphs; we can describe
the tractability frontier (with respect to polynomial delay) quite accurately. This also adds
to the understanding what lets the Roman variation of domination behave that differently
from the classical setting when it comes to enumeration.

Apart from quite a number of combinatorial (graph-theoretic) results that have been
obtained for Roman domination, nicely surveyed in a 45-page chapter of [27], the decision
problem Roman Domination has been studied from various aspects. Even though Roman
Domination and Dominating Set behave the same in terms of complexity in a variety of
settings this parallelism unexpectedly breaks down for two (mutually related) tasks:

Can we enumerate all minimal solutions of a given instance with polynomial delay?
Can we decide, given a certain part of the solution, if there exists a minimal solution that
extends the given pre-solution?

The first type of question is also known as an output-sensitive enumeration problem. Even
the less demanding task to enumerate all minimal dominating sets in output-polynomial time
is open. The corresponding enumeration question for Roman dominating functions can be
solved with polynomial delay, as proven in [4] and used in [3]. This result is based on another
result giving a polynomial-time algorithm for the extension problem(s) as described in the
second item. The idea is to call an extension test before diving further into branching. This
strategy is well-established in the area of enumeration algorithms, dating back to Read and
Tarjan [36], but few concrete examples are known; we only refer to the discussion in [33, 37].
This makes Extension Roman Domination one of few examples where the extension
problem is polynomial-time solvable, while the original problem is NP-complete. For more
details on extension problems, we refer to the survey [13].

The simple scientific question that we want to investigate in this paper is “why”: What
causes Roman domination to be feasible with respect to enumeration and extension? To find
out why Extension Roman Domination (Ext RD for short) behaves in this peculiar way
and what can be seen as a difference to Extension Dominating Set (Ext DS for short),
we are going to generalize the concept of Roman domination and try to find the borderline of
tractability. By this, we refer to the question if minimal hitting sets can be enumerated with
polynomial delay. This so-called Transversal Hypergraph Problem [21] is open for
four decades. It is quite important, as it appears in may application areas, and in particular

1 These technical notions will be defined below.



H. Fernau and K. Mann 24:3

in databases, there are quite a number of interesting equivalent problems, or problems that
are shown to be transversal-hard, as called in [25]; we only mention two recent references and
refer to the papers cited therein: [9, 10]. This question is equivalent to several enumeration
problems in logic, database theory and also to enumerating minimal dominating sets in graphs,
see [17, 21, 24, 29]. Our paper can be read as trying to understand which kind of problems are
transversal-hard, and furthermore, to describe situations when polynomial-delay enumeration
algorithms exist. Previous research on enumeration algorithms for minimal dominating sets
often tried to look into special graph classes where polynomial-delay enumeration could be
exhibited, or not; cf. [28, 29] as examples. This approach can be seen as specializing a known
(transversal-hard) enumeration problem by studying special graph classes. Our approach
is different as we come from a domination-type problem with a known polynomial-delay
enumeration algorithm for general graphs and we try to stretch this result by generalization
to understand when this enumeration task becomes transversal-hard.

It is well-known that Hitting Set (HS for short) can be viewed as a generalization
of Dominating Set (DS for short) by modelling a graph by the closed-neighborhood
hypergraph. One of the main differences between Dominating Set (in graphs) and Hitting
Set is that in the second setting, there is a clear distinction between the objects that can
dominate (the vertices of the hypergraph) and the objects that should be dominated (which
are the hyperedges, i.e., sets of vertices). Although HS and Roman Domination are
both established concepts that generalize DS, it seems that there is no combination of
both concepts published in the literature. Actually, trying to define such a combination
comes with some problems. If we want a HS instance to represent a DS instance by the
closed-neighborhood hypergraph, the vertex set of the given graph is the vertex set of
the hypergraph, and the set of all closed neighborhoods is the (hyper)edge set. Ignoring
twins, this implies a bijection between the universe and the (hyper)edge set. But in general
hypergraphs, the number of hyperedges and the number of elements in the universe are
independent. Therefore, we have to think about how to interpret the “value one setting” such
that it is related to the definition of Roman Domination where exactly one army is put
on a certain vertex. We suggest modelling this effect in hypergraphs based on the following
idea: If a vertex has the value 1 under a Roman dominating function, then it hits only its
“own” closed-neighborhood hyperedge. In general hypergraphs, we have to explicitly express
how a vertex “owns” a hyperedge. Hence, we need a function, called correspondence, which
maps a vertex to an incident hyperedge, such that this hyperedge is dominated if the vertex
has the value 1. This hypergraph problem is defined more formally in the next section.

2 Definitions and Notation

Throughout this paper, we will freely use standard notions from complexity theory without
defining them here. This includes notions from parameterized complexity, concerning FPT and
the further lower levels of the W-hierarchy up to W[3], as described in textbooks like [23, 19].

Let N denote the set of all nonnegative integers (including 0). For n ∈ N, we will use the
notation [n] := {1, . . . , n}. For a finite set A and some n ∈ N with n ≤ |A|, the cardinality
of A,

(
A
n

)
denotes the set of all subsets of A of cardinality n, while 2A denotes the power

set of A. For two sets A, B, BA denotes the set of all mappings f : A → B. If C ⊆ A, then
f(C) = {f(x) | x ∈ C} ⊆ B. We denote by χC ∈ {0, 1}A the characteristic function, where
χC(x) = 1 holds iff x ∈ C. For two functions f, g ∈ NA, we write f ≤ g iff f(a) ≤ g(a) holds
for all a ∈ A. Further, we define the weight of f by ω (f) =

∑
a∈A f(a).

IPEC 2024
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We focus on not necessarily simple hypergraphs H =
(

X, Ŝ = (si)i∈I

)
with a finite

universe X, also called vertex set, and a finite index set I, where for each i ∈ I, si ⊆ X

is a hyperedge2. With the set S we denote the set which includes all hyperedges of the
family Ŝ, i.e., S = {si | i ∈ I}. Note that the same hyperedge may appear multiple times in
the family Ŝ. If this is forbidden, we speak of a simple hypergraph. For all x ∈ X, define
S(x) = {si ∈ S | x ∈ si} as the set of hyperedges that is hit by the vertex x, hence defining
a function S : X → 2S . A set D ⊆ X is a hitting set (hs for short) iff S(D) = S, where
S(D) =

⋃
x∈D S(x). Similarly, define I : X → 2I by I(x) = {i ∈ I | x ∈ si}, extending to

A ⊆ X by I(A) =
⋃

x∈A I(x). We call τ : X → I a correspondence if x ∈ sτ(x) for all x ∈ X

or if, in other words, τ(x) ∈ I(x) for all x ∈ X.
Consider a (simple undirected) graph G = (V, E) as a hypergraph G = (V, Ê), where each

hyperedge contains exactly two elements. Now, we call the hyperedges just edges. Talking
about simple graphs, we can consider E as the index set. For each vertex v ∈ V , define its
neighborhood as N(v) = {u | {v, u} ∈ E} and the closed neighborhood as N [v] = {v} ∪ N(v).
For vertex sets U ⊆ V , we use N [U ] =

⋃
v∈U N [v] for the closed neighborhood of U . A

dominating set (ds for short) of a graph G = (V, E) is a set D ⊆ V such that N [D] = V . A
function f : V → {0, 1, 2} is a Roman dominating function (Rdf for short) iff, for each vertex
v ∈ V with f(v) = 0, there exists a u ∈ N(v) with f(u) = 2. A Rdf f is minimal if for each
Rdf g with g ≤ f , f = g holds, leading to the following problem.

Problem name: Roman Domination (RD)
Given: A graph G = (V, E) and k ∈ N
Question: Is there a Rdf f with ω (f) ≤ k?

Problem name: Extension Roman Domination (Ext RD)
Given: A graph G = (V, E) and a function f : V → {0, 1, 2}
Question: Is there a minimal rdf g for G with f ≤ g?

Somewhat surprisingly, the extension problem in the second box was proven to be
polynomial-time solvable in [4]. This implies that minimal Rdf can be enumerated with
polynomial delay. The basis of this algorithm is a combinatorial characterization of minimal
Rdfs. To be able to formulate the combinatorial characterization of minimal Rdf, we need a
further notion. For D ⊆ V and v ∈ D, define the private neighborhood of v ∈ V with respect
to D as PG,D (v) := N [v] \ N [D \ {v}] whose elements are the private neighbors of v.

▶ Theorem 2.1 ([4]). Let G = (V, E) be a graph and f : V → {0, 1, 2} be a function.
Abbreviate G′ := G

[
f−1(0) ∪ f−1(2)

]
. Then, f is a minimal Rdf iff we find:

1. N
[
f−1(2)

]
∩ f−1(1) = ∅,

2. ∀v ∈ f−1(2) : PG′,f−1(2) (v) ⊈ {v}, also called privacy condition, and
3. f−1(2) is a minimal ds of G′.

In order to explore why these results were possible, we generalize these notions and
problems for hypergraphs in two ways, with a clear focus on the second possibility.

The first one is probably the most natural one, formed in analogy to the notion of a ds
in a (simple) hypergraph; see [5]. Let H = (V, E) be a (simple) hypergraph, i.e., E ⊆ 2V .
Then, f : V → {0, 1, 2} is a Rdf if, for all v ∈ V with f(v) = 0, there is a vertex u ∈ V with
f(u) = 2 that is a neighbor of v, i.e., it shares an edge with v, which means, more formally,

2 For our proofs, we found this index notation more convenient than a multiset notation.
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that there exists some e ∈ E with {u, v} ⊆ e. However, as we show next, we can transfer all
interesting properties of Roman domination from the graph case to the hypergraph setting
by using the same reduction: if G = (V, E) is a simple hypergraph, we can construct a graph
G′ = (V, E′) by setting {x, y} ∈ E′ iff there is a hyperedge e ∈ E with {x, y} ⊆ e. This
construction is also known as the Gaifman graph of G. Then, f : V → {0, 1, 2} is a Rdf of
the hypergraph G iff f is a Rdf of the graph G′. Conversely, we just have to interpret a
given graph as a simple hypergraph.

Therefore, we propose a further generalization of Roman domination towards hypergraphs
that allow us to study why Roman domination shows such a peculiar behavior when it comes
to its extension version, as well as concerning enumerating minimal Rdfs:

Let H = (X, Ŝ = (si)i∈I) be a hypergraph and τ : X → I be a correspondence. We call
a function f : X → {0, 1, 2} a Roman hitting function (Rhf for short) if, for each i ∈ I, there
is an x ∈ si with f(x) = 2 or if there exists an x ∈ X with τ(x) = i and f(x) = 1. In these
scenarios, we say that x hits i or si. For a function f : X → {0, 1, 2}, we define the partition
P (f) = {f−1(0), f−1(1), f−1(2)}. We now define two decision problems related to Rhf.

Problem name: Roman Hitting Function, or RHF for short
Given: A finite set X, a hyperedge family Ŝ = (si)i∈I , forming the hypergraph (X, Ŝ),
a correspondence τ : X → I, and k ∈ N
Question: Is there a Rhf f with ω (f) ≤ k?

Problem name: Extension Roman Hitting Function, or Ext RHF for short
Given: A finite set X, a hyperedge family Ŝ = (si)i∈I , forming the hypergraph (X, Ŝ),
a correspondence τ : X → I, and f : X → {0, 1, 2}
Question: Is there a minimal Rhf g with f ≤ g?

To understand in which way this setting generalizes RD, recall that there are alternative
ways to specify a graph as a hypergraph; namely, the closed-neighborhood hypergraph Gnb

associated to a graph G = (V, E) can be described as Gnb = (V, (N [v])v∈V ). Clearly, D ⊆ V

is a ds iff D is a hs of Gnb. As v ∈ N [v], the identity can be viewed as a correspondence. In
this interpretation, f : V → {0, 1, 2} is a Rdf of G iff it is a Rhf of Gnb.

Organization of the Paper and Main Results. In Section 3, we will prove that our
optimization problem is NP-complete and, more interestingly, k-RHF is W[2]-complete.
Then, we turn our attention to the extension problem. Recall that the algorithmic results in
the case of Roman domination were based on some basic combinatorial insights. Following
this logic, first we show in Section 4 a combinatorial characterization of minimal Rhf that we
can make use of in Section 5 where we prove that Ext RHF with surjective correspondences
can be solved in polynomial time. In Section 6, we return to Roman domination and consider
a variant of the extension problem where we give both lower and upper bound conditions
to the minimal Rdf that we are looking for. In contrast to the original problem (that only
provides a lower bound), this two-sided extension problem turns out to be NP-complete as
we show. Furthermore, we identify two natural parameters under which bounded-Ext RD
is W[3]-complete. In Section 7, we further discuss different parameterization of Ext RHF.
Again, we obtain some parameterizations for Ext RHF where the problem is W[3]-complete.
To save space, we will mark theorems with (∗) if the proof is in the long version of the paper.

IPEC 2024
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3 The Optimization Problem RHF

In this section, we will discuss the (parameterized) complexity of the optimization problem
RHF. The probably most natural parameterization for the problem is by an upper bound k

on the weight of the Rhf. For our results, we will use the W[2]-completeness of RD (with k

as parameter) shown in [22]. The hardness follows, as Rdf can be interpreted as Rhf. For
the membership, we construct a split graph, where the clique represents the elements of the
universe and the independent set form the hyperedges. Here, the hyperedges are added twice
to the independent set if the inverse image of the hyperedge with respect to τ is empty. In
this way, it is better to put a neighbor to 2 than to put these two vertices to 1.

▶ Theorem 3.1. (∗) RHF is NP-complete. k-RHF is W[2]-complete.

The fact that RD is NP-complete even on split graphs was mentioned repeatedly in the
literature, for instance, in [16, 30], but to the best of our knowledge, no proof of this fact has
been published. We will provide a strengthened assertion in the following. Recall that two
vertices u, v in a graph are called true twins if N [u] = N [v].

▶ Lemma 3.2. (∗) RD is NP-complete even on true-twin-free split graphs. Likewise, k-RD
is W[2]-complete on true-twin-free split graphs.

The hardness part of the proof of Theorem 3.1 (implicitly) uses the fact that the family
of hyperedges could include a hyperedge multiple times as there could be twins (vertices
with the same closed neighborhoods) in the original graph. Consider a complete graph
Kn = ([n], En) with n ≥ 2 vertices. Since the closed neighborhoods are always equal to [n],
if we would use a normal set for the hyperedges instead of a family of hyperedges, then
the best solution would be χ{v} for any vertex v. This would even not be a Rdf. Namely,
minimal Rdf would be of the form 2 · χ{v} for any vertex v, or they would be constant 1.
Nevertheless, the following holds, revisiting Lemma 3.2.

▶ Corollary 3.3. RHF is NP-complete even on simple hypergraphs. Furthermore, k-RHF is
W[2]-complete.

The NP-completeness of the optimization problem also motivates our analysis of the
extension problem; it could help speed up an exact branching algorithm for solving this
decision problem. In the long version, we also consider approximation complexity for RHF.

4 Combinatorial Properties of Minimal Rhf

In this section, we will prove combinatorial properties of minimal Rhf. This will help us
analyze the complexity of Ext RHF.

▶ Theorem 4.1. Let X be a vertex set, Ŝ = (si)i∈I be a hyperedge family and τ : X → I

be a correspondence. Then, a function f : X → {0, 1, 2} is a minimal Rhf iff the following
constraint items hold:
0. ∀x, y ∈ f−1(1) : x ̸= y ⇒ τ(x) ̸= τ(y),
1. ∀x ∈ f−1(1) : sτ(x) ∩ f−1(2) = ∅,
2. ∀x ∈ f−1(2) ∃i ∈ I \ {τ(x)} : si ∩ f−1(2) = {x}, and
3. f−1(2) is a minimal hs on {si ∈ S | i ∈ I, τ−1(i) ∩ f−1(1) = ∅}.

Proof. Let f be a minimal Rhf on X, Ŝ and τ . Assume there are x, y ∈ f−1(1) with x ̸= y

but τ(x) = τ(y) = i. Define f̃ = f −χ{y}. Trivially, f̃ ≤ f and f̃ ̸= f . Since f−1(2) = f̃−1(2)
and τ(f̃−1(1)) = τ(f−1(1) \ {y}) = τ(f−1(1)) hold, f̃ is a Rhf. Thus, f is not minimal,
which is a contradiction.
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Now assume there is an x ∈ f−1(1) with sτ(x) ∩f−1(2) ̸= ∅. Define f̃ = f −χ{x}. Trivially,
f̃ ≤ f , f ̸= f̃ and f−1(2) = f̃−1(2). Hence, sτ(x) ∈ S(f̃−1(2)). Since si ,for i ∈ I \ {τ(x)}, is
hit by f̃ in the same way as by f , f̃ is a Rhf. This contradicts the minimality of f .

Assume f−1(2) is not a minimal hs on S′. If there is an s ∈ S′ that is not hit by
f−1(2), then f is no Rhf, contradicting our assumption. Hence, we can assume f−1(2) is not
minimal. More explicitly we assume there is an x ∈ f−1(2) such that for each i ∈ I \ {τ(x)},
si ∩ f−1(2) ̸= {x}. Then there is an x ∈ f−1(2) with, for each s ∈ S′(x) \ {τ(x)}, there
exists a y ∈

(
f−1(2) \ {x}

)
∩ s. Define f̃ = f − χ{x}. Let i ∈ I. As τ(f−1(1)) ∪ {τ(x)} =

τ(f̃−1(1)) holds by definition, we only need to consider i ∈ I \ (τ(f−1(1)) ∪ τ(x)). For i with
si ∈ S(f−1(2)) \ S(x), trivially si ∩ f̃−1(2) ̸= ∅. If si ∈ S(x) \ {τ(x)}, as we mentioned before,
there is a y ∈

(
f−1(2) \ {x}

)
∩ si = f̃−1(2) ∩ si. Thus, f̃ is a Rhf and f is not minimal,

contradicting our assumption. Hence, the four conditions hold.
For the if-part assume f fulfills the constraints. By Constraint 3, for all i ∈ I, either

si ∩ f−1(2) ̸= ∅, or there is an x ∈ f−1(1) with τ(x) = i. Hence, f is a Rhf. Let g : X →
{0, 1, 2} be a minimal Rhf with g ≤ f . Thus, g−1(2) ⊆ f−1(2) and S(g−1(2)) ⊆ S(f−1(2))
hold. Furthermore, g−1(1) ⊆ f−1(1) ∪f−1(2). Since for each x ∈ X, {sτ(x)} ⊆ S(x), for each
i ∈ τ(g−1(1)), i ∈ τ(f−1(1)) or si ∈ S(f−1(2)). Let x ∈ X be an element with g(x) < f(x).
Case 1: g(x) = 0 < 2 = f(x). This implies that, for each i ∈ I(x), there exists a y ∈ si with

2 = g(y) ≤ f(y) = 2 or y ∈ τ−1(i) ∩ g−1(1) ⊂ τ−1(i) ∩ (f−1(1) ∪ f−1(2)). This either
contradicts Constraint 1 or Constraint 2.

Case 2: g(x) = 1 < 2 = f(x). This case works analogously, somehow simpler. We only need
to exclude i = τ(x).

Case 3: f(x) = 1. This implies g(x) = 0. Since g is a Rhf, either sτ(x) ∩ g−1(2) is not empty
or there exists a y ∈ g−1(1) with τ(x) = τ(y).

Case 3.1: τ(x) ∩ g−1(2) ̸= ∅. As g−1(2) ⊆ f−1(2), this contradicts Constraint 1.
Case 3.2: There is a y ∈ g−1(1) with τ(x) = τ(y). Thus, either there is a y ∈ f−1(1) \

{x} with τ(x) = τ(y) (this contradicts Constraint 0) or f(y) = 2 (this contradicts
Constraint 1).

Thus, g = f holds. Therefore, f is minimal. ◀

▶ Remark 4.2. One can compare Theorem 4.1 with Theorem 2.1. For a graph G = (V, E),
let Gnb = (V, (N [v])v∈V ) be the closed-neighborhood hypergraph. Here, for each f : V →
{0, 1, 2} and i ∈ {1, 2, 3}, f fulfills Constraint i of Theorem 4.1 with respect to Gnb iff f

fulfills Constraint i of Theorem 2.1 with respect to G.
We call a f : X → {0, 1, 2} extensible on the hypergraph H = (X, Ŝ) with correspon-

dence τ if there is a minimal Rhf g with f ≤ g. The following two results are basically
implied by Theorem 4.1.

▶ Lemma 4.3. (∗) Let H = (X, Ŝ = (si)i∈I) be a hypergraph with correspondence τ and
f : X → {0, 1, 2} be a function with x ∈ f−1(2), y ∈ f−1(1) and x ∈ sτ(y). Then, f is
extensible iff f + χ{y} is extensible.

▶ Lemma 4.4. (∗) Let H = (X, Ŝ = (si)i∈I) be a hypergraph with correspondence τ and
f : X → {0, 1, 2} be a function with x, y ∈ f−1(1), x ̸= y and τ(x) = τ(y). Then, f is
extensible iff f + χ{x,y} is extensible.

▶ Theorem 4.5. Let H = (X, Ŝ = (si)i∈I) be a hypergraph with correspondence τ , τ : X → I.
Let f : X → {0, 1, 2} be a function such that x ̸= y implies τ(x) ̸= τ(y) for each x, y ∈ f−1(1).
Then, f is extensible iff there exist a set R2 with f−1(2) ⊆ R2 ⊆ f−1(1) ∪ f−1(2) and a
mapping ρ : R2 → I, satisfying the following constraints.
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1. ∀x ∈ R2 : ρ(x) ̸= τ(x).
2. ∀x ∈ R2 : sρ(x) ∩ R2 = {x}.
3. ∀x ∈ f−1(1) \ R2 : sτ(x) ∩ R2 = ∅.
4. ∀i ∈ I such that τ−1(i) = ∅ :

si ⊆
(⋃

x∈f−1(1)\R2
sτ(x)

)
∪
(⋃

x∈R2
sρ(x)

)
=⇒ si ∩ R2 ̸= ∅.

Proof. Define I ′ := {i ∈ I | τ−1(i) = ∅}. First, we assume that f is extensible. Let
g : X → {0, 1, 2} be a minimal Rhf with f ≤ g. By Constraint item 3 of Theorem 4.1,
g−1(2) is a minimal hs on {si ∈ S | i ∈ I, τ−1(i) ∩ f−1(1) = ∅} (∗). With Theorem 4.1,
Constraint 2, this implies that, for each x ∈ g−1(2), there exists an ρ(x) ∈ I \ {τ(x)} such
that sρ(x) ∩ g−1(2) = {x}. Define R2 = (f−1(1) ∪ f−1(2)) ∩ g−1(2). Clearly, f−1(2) ⊆ R2 ⊆
f−1(1)∪f−1(2). We have to check the four constraints claimed for R2. The first two are even
true in a slightly more general fashion by (∗). If there would exist a y ∈ f−1(1) \ R2 ⊆ g−1(1)
with ∅ ≠ sτ(y) ∩ R2 ⊆ sτ(y) ∩ g−1(2), then this would contradict Theorem 4.1, Constraint 2,
showing the third constraint of this theorem. We now turn to the fourth and last constraint.
Let i ∈ I ′. Since τ−1(i) = ∅, there has to be a y ∈ g−1(2) ∩ si. If y ∈ R2, then the constraint
is satisfied. Hence, we can assume that y ∈ g−1(2) \ R2 = g−1(2) ∩ f−1(0). Consider
x ∈ f−1(1) \ R2. As f ≤ g and x /∈ R2, we have g(x) = 1. By Constraint 1 of Theorem 4.1,
y /∈ sτ(x). If si ⊆

(⋃
x∈f−1(1)\R2

sτ(x)

)
∪
(⋃

x∈R2
sρ(x)

)
and si ∩R2 = ∅ hold, then this would

contradict sρ(x) ∩ R2 = {x}. Therefore, all the constraints hold.
Let now f , R2 and ρ : R2 → I fulfill the constraints of this theorem. For this part of the

proof we will define a hypergraph H ′ that includes each edge where τ(X) does not include
its index and the edge is not hit, yet. We will show that there is a minimal hs D on H ′

which does not include any vertex of sρ(x) for x ∈ R2 or sτ(x) for f−1(1) \ R2. R2 ∪ D will
describe the set of vertices with value 2. We will hit the remaining vertices by assigning the
value 1 to some vertices. Therefore, we define the hypergraph H ′ = (X ′, (s′

i)i∈I′′) with

I ′′ := I ′ ∩ {i ∈ I | si ∩ R2 = ∅} ,

X ′ :=
( ⋃

i∈I′′

si

)
\

 ⋃
x∈f−1(1)\R2

sτ(x)

 ∪

( ⋃
x∈R2

sρ(x)

)
and s′

i := si ∩ X ′. If s′
i is empty for an i ∈ I ′′, then there would not exist any hs on H ′.

Therefore, we need to ensure that such an index does not exist. Let i ∈ I ′′. Hence, τ−1(i) = ∅
and si ∩ R2 = ∅. The contraposition of the implication of Constraint 4 implies

si ⊈

 ⋃
x∈f−1(1)\R2

sτ(x)

 ∪

( ⋃
x∈R2

sρ(x)

)
.

Hence, s′
i ̸= ∅ for each i ∈ I ′′. Thus, there is a minimal hs D on H ′. The construction of H ′

and D implies that τ−1(i) ̸= ∅ for each i ∈ I \ I(R2 ∪ D). For each i ∈ I \ I(R2 ∪ D), xi will
describe an arbitrary vertex in τ−1(i), unless there exists an xi ∈

(
f−1(1) \ R2

)
∩ τ−1(i) (by

assumption on f , there is at most one such element). In this case, we choose this xi.
Define g : X → {0, 1, 2} with g−1(1) = {xi | i ∈ I \ I(R2 ∪ D)} and g−1(2) = D ∪ R2. We

will now use Theorem 4.1 to show that g is a minimal Rhf. By the construction of g−1(1),
Constraints 0 and 1 of Theorem 4.1, are fulfilled. Since g−1(1) hits each edge in I \ I(D ∪ R2),
each hyperedge in {si | i ∈ I, τ−1(i) ∩ g−1(1) = ∅} is hit by g−1(2). As D is minimal and
D ∩

(
∪x∈R2sρ(x)

)
= ∅, Constraint 2 implies that is D ∪ R2 also a minimal hs on I(D ∪ R2).

The remaining constraint of Theorem 4.1 follows by the first two constraints of f together
with definition of H ′ and D as H ′ only contains hyperedges s′

i where τ−1(i) = ∅. ◀
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We will use Lemma 4.4 and Theorem 4.5 to show a W[3]-membership.
▶ Remark 4.6. Theorem 4.5 already gives an idea why Ext RHF with surjective correspon-
dence (and therefore also Ext RD) runs in polynomial time. Let H = (X, (si)i∈I) be a
hypergraph and f : X → {0, 1, 2} be a function with the surjective correspondence τ . Hence,
we can disregard Constraint 4, as τ−1(i) ̸= ∅ for each i ∈ I. Then, we could use Lemmata 4.3
and 4.4. We set R2 := f−1(2). By Constraint 3, we have to add each x ∈ f−1(1) with
sτ(x) ∩ R2 ̸= ∅ to R2. Now we can check if for each x ∈ R2 there is a ix ∈ I that fulfills
Constraints 1 and 2. This will be our strategy in the next section.

5 Ext RHF with Surjective Correspondence and Ext RD

In this section, we present a polynomial-time algorithm for Ext RHF instances with a
surjective correspondence function τ . At the end of this section, we explain how this algorithm
can be viewed as a natural generalization of Ext RD that was studied before in [4].

Algorithm 1 ExtRHF Algorithm.

1: procedure ExtRHF Solver(X, Ŝ, τ, f)
Input: set X, Ŝ := (si)i∈I , τ correspondence function, f : X → {0, 1, 2} with {i ∈ I |
τ−1(i) = ∅} ⊆ I

(
f−1(2)

)
.

Output: Is there a minimal Rhf g with f ≤ g?
2: M2 := f−1(2), M1 := f−1(1)
3: for x ∈ M1 do
4: for y ∈ M1 \ {x} do
5: if τ(x) = τ(y) then
6: Add x, y to M2 and delete them in M1.
7: Continue with the next x.
8: M := M2 { All x ∈ g−1(2) are considered in the following. }
9: while M ̸= ∅ do

10: Choose x ∈ M .
11: for y ∈ τ−1(I (x)) do
12: if y ∈ M1 then Add y to M2 and M . Delete y in M1.
13: Delete x from M .
14: for x ∈ M2 do
15: if I (x) \ I (M2 \ {x}) ⊆ {τ(x)} then Return no
16: for i ∈ I \ (I (M2) ∪ τ(M1)) do
17: Add one arbitrary element x ∈ τ−1(i) to M1.
18: Return yes { g−1(0) = X \ (M1 ∪ M2) , g−1(1) = M1, g−1(2) = M2 }

▶ Theorem 5.1. (∗) Algorithm 1 solves Ext RHF for instances (X, Ŝ, τ, f) satisfying
{i ∈ I | τ−1(i) = ∅} ⊆ I

(
f−1(2)

)
in polynomial time.

A special case of this theorem entails: Ext RHF with surjective τ is polynomial-time solvable.
In the long version, we discuss the connections between Algorithm 1 and Algorithm 1 in [4].

6 Bounded Extension Roman Domination

In this section, we will discuss a two-sided bounded version of Extension Roman Domina-
tion which was also suggested by a colleague of ours.
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{xj,u | u ∈ si,p ∩ tj} =

wj

yj

ai

bi ci

...

Figure 1 Construction for Theorem 6.1, for i ∈ [k], p ∈ [ℓi] and [j ∈ ℓT ].

Problem name: Bounded Extension Roman Domination (bounded-Ext RD)
Given: A graph G = (V, E) and functions f, h : V → {0, 1, 2}.

Question: Is there a minimal Rdf g : V → {0, 1, 2} with f ≤ g ≤ h?

We show in Corollary 6.4 that bounded-Ext RD is NP-complete. Thus, we look for
FPT-algorithms. One natural parameterization for this problem could be ω (2 − h), because
for 2 − h = 0, we are back to Ext RD as a special case, which is known to be solvable in
polynomial time. Hence, this parameterization can be viewed as a “distance-from-triviality”
parameter [26]. However, as we will prove in Theorem 6.1, this parameterization strategy fails.
We employ the well-known W[3]-completeness of Multicolored Independent Family
(MultIndFam), parameterized by k, in the reduction presented in the proof of Theorem 6.1.

Problem name: Multicolored Independent Family (MultIndFam)
Given: A (k + 1)-tuple (S1, . . . , Sk, T ) of subsets of 2U on the common universe U , i.e.,
(U, S1), . . . , (U, Sk), (U, T ) are k + 1 many simple hypergraphs.
Question: Are there hyperedges s1 ∈ S1, . . . , sk ∈ Sk such that no t ∈ T is a subset of⋃k

i=1 si ⊆ U?

In that theorem, we actually discuss a slightly different parameterization, namely
κh−1(0)(G, f, h) := |h−1(0)|.

▶ Theorem 6.1. κh−1(0)-bounded-Ext RD is W[3]-hard even on bipartite graphs.

Proof. Let k ∈ N and (S1, . . . , Sk, T ) be a (k + 1)-tuple of subsets of 2U with a common
universe U . To simplify the notation, let T = {t1, . . . , tℓT

} and Si = {si,1, . . . si,ℓi} for i ∈ [k].
Define Xj := {xj,u | u ∈ tj} for j ∈ [ℓT ], Yi := {yi,1, . . . , yi,ℓi

} and G = (V, E) with

V :=
(

k⋃
i=1

{ai, bi, ci} ∪ Yi

)
∪

 ℓT⋃
j=1

{wj} ∪ Xj

 ,

E := {{ai, yi,p}, {bi, yi,p}, {bi, ci} | i ∈ [k], p ∈ [ℓi]} ∪ {{wj , xj,u} | j ∈ [ℓT ], u ∈ tj}
∪ {{yi,p, xj,u} | i ∈ [k], p ∈ [ℓi], j ∈ [ℓT ], u ∈ si,p ∩ tj} .

Clearly, G is bipartite, as V = A ∪ B decomposes V into two disjoint independent sets, with
A =

(⋃k
i=1{ai, bi}

)
∪
(⋃ℓT

j=1 Xj

)
and B =

(⋃k
i=1{ci} ∪ Yi

)
∪
(⋃ℓT

j=1{wj}
)

. Furthermore, we
need the maps f, h ∈ {0, 1, 2}V with f = 2χ{w1,...,wℓT

}∪{b1,...,bk} and h = 2(1 − χ{a1,...,ak}).

▷ Claim 6.2. (∗) S1, . . . , Sk, T is a yes-instance of the MultIndFam problem iff there exists
a minimal Rdf g on G with f ≤ g ≤ h.

Since k = |{a1, . . . , ak}| = |h−1(0)|, this is an FPT-reduction. ◀
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Since h maps no vertex to 1 in the reduction presented in the proof of Theorem 6.1,
bounded-Ext RD is W[3]-hard, parameterized by κ2−h(G, f, h) :=

∑
v∈V (2 − h(v)). Namely,

in the construction of Theorem 6.1, κ2−h(G, f, h) = 2 · κ|h−1(0)|(G, f, h).
Another parameterization could be ω (f): If ω (f) = 0, there is a minimal Rdf g : V →

{0, 1, 2} with f ≤ g ≤ h iff h is a Rdf (this can be checked in polynomial time). If there is
such a g, then h is also a Rdf. If h is a Rdf, then we can decrease the value of the vertices
until we can no longer decrease the value of any vertices without losing the Rdf property. To
understand the complexity of this parameter, we need the following extension version of HS.

Problem name: Extension Hitting Set (Ext HS)
Given: A simple hypergraph H = (X, S), S ⊆ 2X , and a set U ⊆ X.
Question: Is there a minimal hs T ⊆ X with U ⊆ T?

In [8], it was proven that Ext HS is W[3]-complete when parameterized by |U |. We use this
result in the proof of the following theorem.

▶ Theorem 6.3. (∗) ω(f)-bounded-Ext RD is W[3]-hard on split graphs.

Since the reductions in this section are polynomial-time reductions and since membership
in NP is easily seen using guess-and-check, we can conclude:

▶ Corollary 6.4. bounded-Ext RD is NP-complete even on split graphs or bipartite graphs.

We will make use of the W[3]-hardness in the next section, when we turn to discuss the
complexity of Ext RHF. The reductions provided there will also show that bounded-Ext
RD is W[3]-complete for some parameterizations.

Finally, let us mention that, in any given bounded-Ext RD instance (G, f, h), we can
always assume (1) f ≤ h and, moreover, (2) h(v) = 0 implies h(u) = 2 for some u ∈ N(v).
Otherwise, there cannot exist a Rdf g with f ≤ g ≤ h. Both conditions are easy to check.

7 Complexity of Ext RHF

In this section, we will show that there are instances of Ext RHF which are W[3]-complete,
considering their different parameterizations. For the W[3]-membership, we make again use
of MultIndFam, as there is no further W[3]-complete problems that we find suitable for a
reduction. Unfortunately, this reduction is quite technical.

▶ Theorem 7.1. ω (f)-Ext RHF is in W[3].

Proof. Let H = (X, Ŝ = (si)i∈I) be a hypergraph with correspondence τ : X → I and let
f : X → {0, 1, 2} be some function, comprising an instance of ω (f)-Ext RHF. (∗) We can
assume that there are not two elements x, y ∈ X such that f(x) = f(y) = 1 with τ(x) = τ(y)
or f(x) = 2, f(y) = 1 with x ∈ sτ(y). Otherwise, we could use Corollaries 4.3 and 4.4.

We will construct an equivalent MultIndFam instance next. We define its universe as
U := X ∪ {ri,x, x′ | x ∈ f−1({1, 2}), i ∈ I} ∪ {τx | x ∈ f−1(1)} . For the construction of the
hypergraphs, we need to define some additional (auxiliary) sets:

For x ∈ f−1({1, 2}), i ∈ I(x) abbreviate s̃x,i := si ∪ {ri,x, x′}.
Define ti := si ∪ {τx | x ∈ f−1(1) ∩ si} for i ∈ I with ∅ = τ−1(i) = si ∩ f−1(2).
For each x ∈ f−1(2), let Sx := {s̃x,i | τ(x) ̸= i} and
for each x ∈ f−1(1), let Sx := {sτ(x) ∪ {τx}} ∪ {s̃x,i | τ(x) ̸= i}.
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Furthermore, we need the target set T = T ′ ∪ T ′′, where

T ′ := { ti | i ∈ I ∧ τ−1(i) = ∅ ∧ si ∩ f−1(2) = ∅ } and
T ′′ :=

{
{ri,x, y′} | i ∈ I ∧ {x, y} ⊆ (si ∩ f−1({1, 2})) ∧ x ̸= y

}
∪
{

{τx, y′} | x ∈ g−1(1) ∧ y ∈ sτ(x) ∧ x ̸= y
}

.

Now we will explain the idea of each element. It is important to keep in mind that we
want to use Theorem 4.5: If x′ is in a chosen hyperedge, then we assign the value 2 to x in
the minimal Rhf. The element ri,x gives us information about the mapping ρ. ri,x is in one
of the chosen edges iff ρ(x) = i holds. Therefore, the sets {ri,x, y′} verify the Constraint 2
of Theorem 4.5. τx will only be in a set we chose if we assign the value 1 to x. Hence,
Constraint 3 will be checked by the sets {τx, y}. The sets in T ′ correspond to the sets which
we consider in Constraint 4. This is also the reason why τx is in included in ti. Since there
exists a τx, f(x) = 1. If x ∈ R2, si ∩ R2 ̸= ∅. In the MultIndFam instance, this corresponds
to: τx will not be in our sets, which implies that ti will not be covered completely.

▷ Claim 7.2. (∗) (H, τ, f) is a yes-instance of Ext RHF iff (U, (Sx)x∈f−1({1,2}), T ) is a
yes-instance of MultIndFam.

As |U | ≤ |X| · (|I| + 4), |T | ≤ |I| + |X|2 · (|I| + 1) and |Sx| ≤ |I|, the MultIndFam can be
constructed in polynomial time. Furthermore, the parameter of the constructed instance of
MultIndFam is |f−1(1) ∪ f−1(2)| ≤ ω (f). Hence, Ext RHF belongs to W[3]. ◀

As mentioned in the previous proof, the described reduction is also a polynomial-time
reduction. Hence, Ext RHF is a member of NP, but this is also observed by the guess-and-
check characterization of NP. For the hardness results, we will use bounded-Ext RD.

▶ Theorem 7.3. ω (f)-Ext RHF is W[3]-hard even if the correspondence function is injective.
Furthermore, ω (f)-bounded-Ext RD is W[3]-complete.

Proof. We will make use of Theorem 6.3, reducing from bounded-Ext RD. Let (G, f, h)
be a instance of the bounded-Ext RD, with G = (V, E). We can assume (1) f ≤ h and,
moreover, (2) h(v) = 0 implies h(u) = 2 for some u ∈ N(v). We parameterize by ω (f).
For v ∈ X := V \ h−1(0), define Tv :=

(
N(v) \ h−1({0, 1})

)
∪ {v}, and for v ∈ h−1(0),

define Tv :=
(
N(v) \ h−1({0, 1})

)
. Further, we set Ŝ := (Tv)v∈V and we define τ as the

correspondence satisfying τ(v) = v and we let f : X → {0, 1, 2}, v 7→ f(v), i.e., f = f |X .
Let H = (X, Ŝ). Then, (H, τ, f) describes an instance of Ext RHF. The parameter is
ω
(
f
)

for this instance. As f ≤ h, h(v) = 0 implies f(v) = 0. Thus, ω (f) = ω
(
f
)
, so that

the parameter value does not change when moving from the bounded-Ext RD instance
to the ω (f)-Ext RHF instance. Clearly, the described construction can be carried out in
polynomial time. Trivially, τ is injective. What remains to be shown is the following claim.

▷ Claim 7.4. (∗) (G, f, h) is a yes-instance of bounded-Ext RD iff (H, τ, f) is a yes-instance
of Ext RHF. ◀

As this is also a polynomial-time reduction, it implies following corollary.

▶ Corollary 7.5. Ext RHF is NP-complete.

We know that Ext RHF is polynomial-time solvable if the correspondence function is
surjective. This leads to the question if κ1(I) = |{i ∈ I|τ−1(i) = ∅}| is a good parameter
for this problem for each instance I = (H, τ, f) with H = (V, (si)i∈I), τ : V → I, f : V →
{0, 1, 2}, somehow measuring the distance from triviality again. In other words, we try to
use parameterized complexity to study the phenomenon that classical function properties as
surjectivity seem to be crucial for finding polynomial-time algorithms for Ext RHF.

▶ Theorem 7.6. (∗) κ1-Ext RHF is W[3]-complete.
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In the long version, we consider an explicit XP-algorithm for κ1-Ext RHF; membership
in XP already follows from Theorem 7.6. We are discussing other parameterizations that
either lead to para-NP-hardness results (Theorem 7.7) or to FPT-results (Theorem 7.9).
▶ Theorem 7.7. (∗) κζ-Ext RHF is para-NP-hard for each parameterization described by
ζ ∈ {|f−1(0)|, |f−1(1)|, |f−1(2)|, |f−1({0, 2})|}.
We can use one of the reductions of Theorem 7.7 to prove transversal-hardness.
▶ Theorem 7.8. (∗) If there would be a algorithm to enumerate all minimal Rhf of an
instance (H, τ ) with polynomial delay, then there is an algorithm that enumerates all minimal
hitting sets of a hypergraph H ′ with polynomial delay.
▶ Theorem 7.9. κζ-Ext RHF ∈ FPT for ζ ∈ {ω (2 − f) , |f−1({0, 1})|}.
Proof (Sketch). Let (H = (X, Ŝ), τ, f) be an instance. The idea is to walk through all
functions g : X → {0, 1, 2} with f ≤ g and test if g is a minimal Rhf. This runs in FPT-time.
Furthermore, we can check in polynomial time if a function is a minimal Rhf (by modifying
Algorithm 1). Hence, there are 2ω(2−f(x)) or 3|f−1({0,1})| many possibilities for g. ◀

8 Conclusions

We have generalized the notion of Roman domination towards hypergraphs by introducing the
definition of Rhf. We have proven that all minimal Rhf can be enumerated with polynomial
delay if the correspondence function is surjective. This can be seen as a technical answer to
our question what causes Roman domination to behave different from classical domination
with respect to polynomial-delay enumerability. When the correspondence is not surjective,
RHF rather behaves like DS; in particular, its extension problem is W[3]-complete when
parameterized by the given pre-solution’s weight, and we observe that it is transversal-hard
to enumerate all minimal Rhf.

The main open problems in the context of this paper are the following ones:
How tight is transversal hardness linked to the NP-hardness of a related extension
problem? In the line of the studies in this paper, these links were pretty tight. But in
general, only one direction is clear: if extensibility can be decided in polynomial time,
then enumeration is possible with polynomial delay.For a even more general discussion
in this direction, cf. [12, 17, 32, 37]. Also, in [31] graph problems related to Roman
domination were studied and there, both polynomial-delay enumeration was shown and
NP-hardness of the corresponding extension problem.
We also do not know if the polynomial-delay enumerability questions that we discussed
are really equivalent to the polynomial-delay enumerability of minimal hitting sets.
We mentioned in the introduction that RD is in FPT, when parameterized in a dual way,
meaning, in this case, by n − k, where n is the number of vertices of the graph and k is
an upper-bound on the weight of the Rdf. It might be interesting to have similar results
for the two generalizations of Roman domination introduced in this paper. However, now
it is not very clear what the “dual” of the ω (f)-parameterization should be.
We are currently looking for non-trivial graph-classes where bounded-Ext RD is solvable

in polynomial time, hence looking onto another tractability frontier.
Notice that up to quite recently, only a handful of (natural) problems have been known to

be complete for W[3]. Even today, apart from the extension problems and their relatives that
we mentioned throughout this paper, we only know of the problems shown in [11, 14, 15].
Seeing more and more problems these days that are complete for W[3] adds new interest
to W[3]. It might be time to attack the 25-years-old open question if W[3] = W∗[3], see [18].
According to [15], the current status is: W[3] ⊆ W∗[3] ⊆ W[4].
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Abstract
A matching cut of a graph is a partition of its vertex set in two such that no vertex has more
than one neighbor across the cut. The Matching Cut problem asks if a graph has a matching cut.
This problem, and its generalization d-cut, has drawn considerable attention of the algorithms
and complexity community in the last decade, becoming a canonical example for parameterized
enumeration algorithms and kernelization. In this paper, we introduce and study a generalization of
Matching Cut, which we have named Matching Multicut: can we partition the vertex set of a graph
in at least ℓ parts such that no vertex has more than one neighbor outside its part? We investigate
this question in several settings. We start by showing that, contrary to Matching Cut, it is NP-hard
on cubic graphs but that, when ℓ is a parameter, it admits a quasi-linear kernel. We also show an
O(ℓ n

2 ) time exact exponential algorithm for general graphs and a 2O(t log t)nO(1) time algorithm for
graphs of treewidth at most t. We then turn our attention to parameterized enumeration aspects of
matching multicuts. First, we generalize the quadratic kernel of Golovach et. al for Enum Matching
Cut parameterized by vertex cover, then use it to design a quadratic kernel for Enum Matching
(Multi)cut parameterized by vertex-deletion distance to co-cluster. Our final contributions are on
the vertex-deletion distance to cluster parameterization, where we show an FPT-delay algorithm for
Enum Matching Multicut but that no polynomial kernel exists unless NP ⊆ coNP/poly; we highlight
that we have no such lower bound for Enum Matching Cut and consider it our main open question.
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1 Introduction

A matching M in a graph G is a subset of the edges of G such that no vertex is the endpoint
of more than one edge in M . Matchings are one of the most fundamental concepts in graph
theory, with whole books dedicated to them [33,34]. A cut of a graph G is a partition of its
vertex set into two non-empty sets and we say that the set of edges between them is an edge
cut. A matching cut is a edge cut that is also a matching. Not all graphs admit a matching
cut, and graphs admitting such kind of cuts were first considered by Graham [28], who called
them decomposable graphs, to solve a problem in number theory. Other applications include
fault-tolerant networks [20], multiplexing networks [1] and graph drawing [41]. The problem
of recognizing graphs that do admit a matching cut, called Matching Cut, was studied
by Chvátal [13], who proved that the problem is NP-complete even restricted to graphs of
maximum degree four, while polynomial-time solvable in graphs of maximum degree three.
The problem was reintroduced under the current terminology in [41] and, since then, it has
been attracting much attention of the algorithms community. It has also been shown to
remain NP-complete for several graph classes such as bipartite graphs of bounded degree [42],
planar graphs of bounded degree or bounded girth [8] and Pt-free graphs (for large enough
t) [21]. On the positive side, tractable cases include H-free graphs, i.e. graphs without an
induced subgraph isomorphic to H, for some H, including P6, the path on 6 vertices [36].
For a more comprehensive overview and recent developments, we refer to [12,38].

Matching Cut has also been studied from the parameterized perspective, with the
minimum number of edges crossing the cut k being used as the natural parameter for this
problem. The first parameterized algorithm for k was given by Marx et al. in [39]; they
tackled the Stable Cutset problem using the treewidth reduction machinery and Courcelle’s
theorem, which yielded a very large dependency on k. We remark that Matching Cut on G

is equivalent to finding a separator that is an independent set in the line graph of G. Using
the compact tree decomposition framework of Cygan et al. [16], Aravind and Saxena [4]
developed a 2O(k log k)nO(1) time algorithm for Matching Cut. Komusiewicz et al. [31]
presented a quadratic kernel for the vertex-deletion distance to cluster parameterization,
as well as single exponential time FPT algorithms for this parameterization and for vertex-
deletion distance to co-cluster; on the other hand, they gave a kernelization lower bound for
the combined parameterization of treewidth plus the number of edges in the cut. Aravind et
al. [3] presented FPT algorithms for neighborhood diversity, twin-cover and treewidth for
Matching Cut; the latter had its running time improved by Gomes and Sau in [26].

One area in which matching cuts have drawn particular attention is in parameterized
enumeration. Under this framework, our goal is to list all feasible solutions to a problem,
e.g. all matching cuts of an input graph. Parameterized algorithms that do so are classified
in two families: TotalFPT – where all solutions can be listed in FPT time – and DelayFPT –
where the delay between outputting two solutions, i.e. the time between these outputs, is
at most FPT. Based on the foundational work of Creignou et al. [14], Golovach et al. [25]
defined the kernelization analogues of TotalFPT and DelayFPT. Also in [25], the authors
developed several enumeration and kernelization algorithms for Enum Matching Cut
under the vertex cover, neighborhood diversity, modular width, and clique partition number
parameterizations. They also studied the enumeration of minimal and maximal matching
cuts in the form of the Enum Minimal MC and Enum Maximal MC problems under
some of the aforementioned parameterizations.

Similar problems to Matching Cut, as well as minimization and maximization ques-
tions [37], have also been considered. Their hardness follow directly from the problem
definition. Another related problem, Perfect Matching Cut, asks for the existence of a
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perfect matching that is also a matching cut. Although its hardness does not follow directly
from Matching Cut the problem is also NP-complete [30]. The recent survey by Le et
al. [32] revisit and compare results on these variations. Some problems, however, can be
seen as direct generalizations of Matching Cut. In the d-Cut problem, the goal is to
partition the vertex set into two sets such that each vertex has at most d neighbors in the
opposite set of the partition. Introduced in [26], d-Cut has been shown to be NP-complete
for (2d + 2)-regular graphs and it has been shown to admit FPT algorithms under several
parameters such as the maximum number of edges crossing the cut [4], treewidth, vertex-
deletion distance to cluster, and vertex-deletion distance to co-cluster. When d = 1 the
problem is exactly Matching Cut. However, many cases that are tractable for d = 1 have
been shown to become hard for d-Cut [35]. The other related problem arises in the context
of graph convexity. To our purposes, a convexity is a family C of subsets of a finite ground
set X such that X, ∅ ∈ C and C is closed for intersection. Many graph convexities have been
considered in the literature [2, 11,17,29], most of them motivated by families of paths. In
this context, a subset S of vertices is convex if all paths of a given type between vertices of S

contain only vertices of S. The most well-studied paths in the literature are shortest paths,
induced paths and P3, the paths on three vertices. One of the problems studied in the graph
convexity setting is the partition of the vertex set of a graph into convex sets. Note that, in
the P3-convexity, this is equivalent to partition vertices in such a way that two vertices in a
set S have no common neighbor outside S. Hence, partitioning into two P3-convex sets is
equivalent to Matching Cut. The more general case has also been considered in [10,27].

Our contributions. In this work we introduce the Matching Multicut problem, a novel
generalization of Matching Cut. A matching multicut on ℓ parts of a graph G is a partition
of its vertex set in {A1, . . . , Aℓ} such that each vertex in Ai has at most one neighbor outside
of Ai. Note that this is quite different from a partition into P3-convex sets; in the latter, a
vertex v ∈ Ai may have one neighbor in each other Aj , while in the former, v may have one
neighbor in

⋃
j ̸=i Aj . Formally, we study the following problem:

Matching Multicut
Instance: A graph G and an integer ℓ.
Question: Does G admit a matching multicut on at least ℓ parts?

We explore the complexity landscape of Matching Multicut under several settings
that were previously considered for Matching Cut. Since the case ℓ = 2 is exactly
Matching Cut, the problem is trivially NP-hard. It is also trivially paraNP-hard for the
natural parameter ℓ. We study its complexity for cubic graphs, exact exponential algorithms,
structural parameterizations as well parameterized enumeration questions.

Contrary to the classic result of Chvátal showing the polynomial-time solvability of
Matching Cut [13] for cubic graphs, we show that Matching Multicut is NP-hard even
restricted to those graphs. On the other hand, the problem becomes fixed parameter tractable
when parameterized by ℓ. Indeed, we show that the problem admits a quasi-linear kernel
under this parameterization for subcubic graphs. We also show that the problem is FPT
parameterized by treewidth. From the definition of the problem, there is a trivial ℓnnO(1) time
algorithm for Matching Multicut by just enumerating all possible (ordered) partitions of
V (G). We improve this by showing that the problem can be solved in αn

ℓ nO(1) time, with
αℓ ≤

√
ℓ for a graph on n vertices. Finally, we turn our attention to the enumeration of

matching multicuts in the form of the Enum Matching Multicut problem.
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Enum Matching Multicut
Instance: A graph G and an integer ℓ.
Enumerate: All matching multicuts of G on at least ℓ parts

Our first results in this direction are a polynomial-delay enumeration (PDE) kernel under
vertex cover and a PDE kernel under vertex-deletion distance to co-cluster. Afterwards, we
present a DelayFPT algorithm for enumerating matching multicuts of a graph parameterized
by the vertex-deletion distance to cluster. For our final result, we show that, although Enum
Matching Multicut is in DelayFPT for the vertex-deletion distance to cluster parameter,
Matching Multicut does not admit a polynomial kernel under the joint parameterization
of distance to cluster, maximum cluster size and the number of parts of the cut, unless
NP ⊆ coNP/poly. To prove this result, we show that Set Packing has no polynomial kernel
parameterized by the size of the ground set, which could be of independent interest. To the
best of our knowledge, although expected, this result has not been explicitly stated before.

1.1 Preliminaries
We denote {1, 2, . . . , n} by [n]. We say that a monotonically non-decreasing function f is
quasi-linear if f(n) ∈ O(n logc n) for some constant c. We use standard graph-theoretic
notation, and we consider simple undirected graphs without loops or multiple edges; see [6]
for any undefined terminology. When the graph is clear from the context, the degree (that is,
the number of neighbors) of a vertex v is denoted by deg(v), and the number of neighbors
of a vertex v in a set A ⊆ V (G) and its neighborhood in it are denoted by degA(v) and
NA(v); we also define N(S) =

⋃
v∈S N(v) \ S. The minimum degree and the maximum

degree of a graph G are denoted by δ(G) and ∆(G), respectively. We say that G is cubic if
deg(v) = 3 for all v ∈ V (G) and that G is subcubic if deg(v) ≤ 3. A matching M of G is a
subset of edges of G such that no vertex of G is incident to more than one edge in M ; for
simplicity, we define V (M) =

⋃
uv∈M {u, v} and refer to it as the set of M -saturated vertices.

The subgraph of G induced by X is defined as G[X] = (X, {uv ∈ E(G) | u, v ∈ X}). The
vertex-deletion distance to G is the size of a minimum cardinality set U ⊆ V (G) such that
G \ U = G[V (G) \ U ] belongs to class G; in this case, U is called the G-modulator. A graph
G is a cluster graph if each connected component is a clique; G is a co-cluster graph if its
complement is a cluster graph. A vertex cover of G is a set of vertices incident to every edge
of G. A tree decomposition (T, {Xt}t∈V (T )) of a connected graph G is such that T is a tree,
Xt ⊆ V (G) for all t and: (i) for every uv ∈ E(G) there is some t ∈ T where u, v ∈ Xt and
(ii) the nodes of T that contain v ∈ V (G) form a subtree of T , for every v. The sets Xt are
called the bags of the decomposition, the width of the decomposition is maxt∈V (T ) Xt − 1.
The treewidth of G is the size of a tree decomposition of G of minimum width. For more on
treewidth and, in particular, nice tree decompositions, we refer the reader to [15].

We refer the reader to [15, 18] for basic background on parameterized complexity, and we
recall here only some basic definitions. A parameterized problem is a tuple (L, κ) where L ⊆ Σ∗

is a language and κ : Σ∗ 7→ N is a parameterization. For an instance I = (x, k) ∈ Σ∗ × N, k

is called the parameter. A parameterized problem is fixed-parameter tractable FPT if there
exists an algorithm A, a computable function f , and a constant c such that given an instance
I = (x, k), A (called an FPT algorithm) correctly decides whether I ∈ L in time bounded
by f(k) · |I|c. A fundamental concept in parameterized complexity is that of kernelization;
see [23] for a recent book on the topic. A kernelization algorithm, or just kernel, for a
parameterized problem Π takes an instance (x, k) of the problem and, in time polynomial
in |x| + k, outputs an instance (x′, k′) such that |x′|, k′ ⩽ g(k) for some function g, and
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(x, k) ∈ Π if and only if (x′, k′) ∈ Π. The function g is called the size of the kernel. A
kernel is called polynomial (resp. quadratic, linear) if the function g(k) is a polynomial (resp.
quadratic, linear) function in k.

In terms of parameterized enumeration, we refer the reader to [14, 25] for a more compre-
hensive overview than what we give below. A parameterized enumeration problem is a triple
(L, Sol, κ) where L ⊆ Σ∗ is a language, Sol : Σ+ 7→ 2Σ∗ is the set of all viable solutions and
κ : Σ∗ 7→ N is a parameterization. An instance to a parameterized enumeration problem is a
pair (x, k) where k = κ(x) and the goal is to produce Sol(x). We say that an algorithm A
that takes (x, k) as input is a TotalFPT algorithm if it outputs Sol(x) in FPT time. Naturally,
several problems won’t have Sol(x) of FPT size. In this case, the best we can hope for is
that the delay to outputting a new solution is FPT. If not only this is the case but also: (i)
the time to the first solution, and (ii) the time from the final solution to the halting of the
algorithm are also in FPT, then we say that the algorithm is a DelayFPT algorithm. Very
recently, Golovach et al. [25] gave kernelization analogues to TotalFPT and DelayFPT, which
they called fully-polynomial enumeration kernel (FPE) and polynomial-delay enumeration
kernel (PDE), respectively. Formally, an FPE kernel is a pair of algorithms A, A′ called the
compressor1 and lifting algorithms, respectively, where:

Given (x, k), A outputs (x′, k′) with |x′|, k′ ≤ g(k) in time poly(|x| + k) for some comput-
able g.
For each s ∈ Sol(x′), A′ computes a set Ss in time poly(|x| + |x′| + k + k′) such that
{Ss | s ∈ Sol(x′)} is a partition of Sol(x).

For PDE kernels, we replace the polynomial (total) time condition of A′ with polynomial
delay on |x| + |x′| + k + k′.

2 (Sub)Cubic graphs

A result of Chvátal [13] from the 1980s shows that Matching Cut is polynomial-time
solvable for subcubic graphs. Later, Moshi [40] showed that every connected subcubic graph
on at least eight vertices has a matching cut. When dealing with Matching Multicut, the
situation is not as simple. We first show that, if the number of components ℓ is part of the
input, then Matching Multicut is NP-hard. However, we are able to prove a Moshi-like
result, and show that, if ℓ is a parameter, then the problem admits a quasi-linear kernel.

2.1 NP-hardness
First, let us show a lemma and some helpful definitions for our construction.

▶ Definition 1. A graph G is indivisible if and only if G has no matching cut. A set of
vertices X ⊆ V (G) is said to be indivisible if the subgraph of G induced by X is indivisible.

We remark that the above definition is a conservative notion of togetherness; i.e. we
do not require that X is together in every matching cut of G, we require it to be together
regardless of the remainder of the graph that contains it.

▶ Definition 2. Let X ⊂ V (G) induce a connected subgraph of G with exactly one u ∈ X

such that N(u) \ X ̸= ∅. If |N(u) \ X| = 1 we say G[X] is a pendant subgraph of G and that
X induces a pendant subgraph of G.

1 This was named the kernelization algorithm in [25], but we reserve this term to the pair A, A′ itself.
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▶ Lemma 3. Let I = {H1, . . . , Hk} be a set of maximal indivisible pendant subgraphs of G.
Let v1, . . . , vk be pairwise distinct vertices so that N(Hi) = {vi}. If (G, ℓ) is a yes-instance
for some ℓ > k, then there exists a matching multicut P = {P1, . . . , Pℓ} with Pi = V (Hi) for
1 ≤ i ≤ k.

Construction. To construct our instance (H, ℓ) of Matching Multicut, we will reduce
from an instance (G, k) of Independent Set on cubic graphs, which is a well known
NP-complete problem [24]. First, for each u ∈ V (G), create a K3 in H, label it as Bu, and
let B =

⋃
u∈V (G) Bu. Suppose that E(G) has been arbitrarily ordered as {e1, . . . , em}. For

each edge in order, we add the gadget in Figure 1. The vertices in Bu and Bv are connected
in such a way no vertex has more than three neighbors.

f ′
i

fi

ni

Bu

Bv

pi

Figure 1 Edge gadget for edge ei = uv. Thick edges are assumed to be in any solution to
Matching Multicut.

To connect our edge edges, we add an edge between ni and pi+1 for every i ∈ [m − 1]
and between nm and p1. With this the subgraph of H induced by the ni’s and pi’is a cycle
on 2m vertices. Finally, we set ℓ = 2m + k + 1. Intuitively, the pendant vertices force that
the entire cycle and the vertices between the triangles are contained in a single part of the
multicut; as such, picking a triangle invalidates picking any other triangle at distance two.

▶ Lemma 4. (H, 2|E(G)| + k + 1) is a YES-instance of Matching Multicut if and only if
G has an independent set of size at least k. Moreover, Matching Multicut is NP-complete
in subcubic graphs.

We can show in a very similar manner that Matching Multicut is NP-hard for cubic
graphs. To do this, we replace the pendant vertices of H with the indivisible graph in
Figure 2. The remainder of the argument follows as in the proof of the previous theorem.

v1 v2

v3
v4

v5

Figure 2 Indivisible pendant subgraph.

▶ Corollary 5. Matching Multicut is NP-complete in cubic graphs.

2.2 Quasi-linear kernel
We now present a quasi-linear kernel for the Matching Multicut problem in the case
where the number of partitions ℓ is a parameter. In order to construct the kernel, we extend
Moshi’s result [40] and show the following theorem.
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▶ Theorem 6. Let G be a connected graph with ∆(G) ≤ 3. If |V (G)| = Ω(ℓ log2 ℓ), then G

has a matching multicut that partitions the graph into ℓ parts.

The key for proving Theorem 6 is to find a sufficiently large collection of vertex-disjoint
cycles and construct a partition using some of them. In order to find these cycles, we first
need to deal with vertices of degree at most 2.

▶ Lemma 7. Let G be a connected subcubic graph, and let V1 denote the vertices of G with
degree 1. If |V1| ≥ 3ℓ, then G has a matching multicut that partitions the graph into ℓ parts.

Proof. Construct a matching M by greedily choosing edges that contain a vertex from V1.
Because ∆(G) ≤ 3, |M | ≥ 1

3 |V1| ≥ ℓ. Moreover, G − M contains at least |M | components
with an isolated vertex. ◀

▶ Lemma 8. Let G be a connected subcubic graph with |V (G)| = Ω(ℓ), and let V2 denote
the vertices of G with degree 2. If |V2| ≥ 9

10 |V (G)|, then G has a matching multicut that
partitions the graph into ℓ parts.

Assume that G is a subcubic graph that does not satisfy the degree conditions of Lemmas
7 and 8. That is, G does not have many degree-1 vertices nor a large proportion of degree-2
vertices. Our strategy to find a matching multicut for G involves using disjoint cycles. The
intuition here is that if a cycle C is entirely contained within a part of a partition of G, each
vertex v ∈ C will have at most one edge crossing the partition. Therefore, cycles are a good
starting point for partitioning the matching multicut. However, first we need to find disjoint
cycles. For this purpose, we utilize a theorem due to Simonovits [43], which is a precise
version of the well-known Erdős–Pósa theorem [19] in the context of subcubic graphs.

▶ Theorem 9 (Simonovits ’67). Let G be a connected graph with δ(G) ≥ 2. Let V≥3 be the
set of vertices of G with degree at least 3. Then, G has at least |V≥3|/(4 log |V≥3|) vertex
disjoint cycles.

It is worth mentioning that there exists an algorithmic approximation of Theorem 9 due
to Brandstädt and Voss [9]. Therefore, all the theorems presented in this subsection are
constructive and can be used to find a matching multicut of a subcubic graph.

Before moving to the main theorem of this subsection, we make some observations about
the neighborhood of subcubic graphs. Let N(v) be the set of vertices of G adjacent to
v, and let N [v] = N(v) ∪ {v}. More generally, let N(S) be the set of vertices of G − S

that are adjacent to some vertex in S, and let N [S] = N(S) ∪ S. We call N(S) the open
neighborhood and N [S] the closed neighborhood. We denote by N2[S] := N [N [S]] the closed
square neighborhood. Notice that for subcubic graphs, |N2[S]| ≤ 10|S|.

Proof of Theorem 6. Let G be a graph satisfying the conditions of Theorem 6. Let V1(G),
V2(G), and V3(G) be the subsets of vertices of G with degrees 1, 2, and 3, respectively. If
G satisfies the conditions of Lemmas 7 or 8, we are done. Now we can safely assume that
|V1(G)| < 3ℓ and |V2(G)| < 9

10 |V (G)|.
Let G′ be the graph obtained from G after recursively removing degree 1 vertices. Notice

that each time a degree 1 vertex is removed, a vertex moves from V2 to V1 or from V3 to V2. In
both cases, the difference |V3|−|V1| remains invariant; therefore, |V3(G′)| ≥ |V3(G)|−|V1(G)|.
Notice that any matching multicut of G′ is also a matching multicut of G. Assume again
that G′ does not satisfy Lemma 8; in particular, this implies that |V3(G)| ≥ |V (G)|/10.

IPEC 2024



25:8 Matching (Multi)Cut: Algorithms, Complexity, and Enumeration

Now, G′ satisfies the conditions of Theorem 9. Let {C1, . . . , Ck} be a collection of
k = |V3(G′)|/(4 log |V3(G′)|) = Ω(ℓ log ℓ) vertex-disjoint sets such that G[Ci] is a cycle. By
giving a lower bound for the value of k, we also give a lower bound for |V (G)|. Later in the
proof, we will need k such that k2 ≥ cℓ|V (G′)|, but notice that there always exists a constant
c′ > c such that if |V (G)| ≥ c′ℓ log2 ℓ, the lower bound on k2 is satisfied.

For each set of vertices Ci, if there is v ∈ V (G′) \ Ci with |N(v) ∩ Ci| ≥ 2, add v to Ci,
that is, Ci := Ci ∪ {v}. Notice that with this process, every vertex inside Ci has at least two
neighbors inside Ci, therefore, E(Ci, V (G′) \ Ci) forms a matching cut.

We construct the matching multicut greedily. Let M := ∅ be the initial matching multicut
and let S := ∅ be a collection of marked vertices. Assume that the sets Ci are ordered by
size with |C1| ≤ · · · ≤ |Ck|. Let Ci be a set in the first half of this ordering with no vertex
marked, i.e., Ci ∩ S = ∅. Add the edges with exactly one endpoint in Ci to M and mark
N2[Ci], that is, M := M ∪ E(Ci, V (G′) \ Ci) and S := S ∪ N2[Ci]. If no such Ci exists in
the first half of the ordering, stop the process. We claim that in the end, M is indeed a
matching multicut.

▶ Lemma 10. If M is a set of edges constructed as above, then M is a matching multicut
that divides G′ into at least ℓ parts.

It is easy to see that M is indeed a matching. Assuming otherwise, then there is a vertex
v with two edges from M containing v. By previous observations, v must not belong to any
set Ci whose border was added to M , thus v ∈ V (G′) \ (C1 ∪ · · · ∪ Ck). If |N(v) ∩ Ci| ≥ 2, v

would already have been added to Ci, so this cannot be the case. Hence, there are distinct
sets Ci and Cj chosen in the algorithm with |N(v) ∩ Ci|, |N(v) ∩ Cj | ≥ 1. Assume that Ci

was chosen before Cj . As v is adjacent to a vertex of Ci and a vertex of Cj , there is a vertex
of Cj in N2[Ci], which means that this vertex should have been marked, implying that this
situation also cannot happen. We conclude that there is no vertex v with two edges from M

containing v.
Now, we just need to check that during the process at least ℓ sets Ci were chosen so that

the edges E(Ci, V (G′) \ Ci) were added to M . If this does not occur, we have that the size
of the marked vertices |S| is bounded:

|S| ≤ (ℓ − 1) max
i≤k/2

{|N2[Ci]|} ≤ 10(ℓ − 1)|Ck/2| ≤ 10(ℓ − 1) |V (G)|
k/2 <

k

2

In the first inequality, we are assuming the worst case where we have always added the largest
squared neighbourhood. The second inequality follows from our previous bound on the size
of this squared closed neighbourhood. The third inequality holds because the average size of
the k/2 largest sets Ci is 2|V (G)|/k, and the set Ck/2 has a size below this average. The last
inequality follows from our lower bound on k. This concludes the proof by showing that M

indeed divides G′ into at least ℓ components, so it is a matching multicut. ◀

Notice that in the proof, we choose |V (G)| in order to establish a lower bound on k2. We
do not explicitly specify the choice of the constant c′ such that |V (G)| ≥ c′ℓ log2 ℓ. However,
through a simple computation, it can be shown that c′ = 106 is sufficient. We have not
attempted to minimize the constants, but we believe that the value of c′ can be reduced.

It follows from Theorem 6 that if we want to ask for a matching multicut that divides an
n-vertex subcubic graph into ℓ = O(n/ log2 n) parts, the answer is trivially yes. On the other
hand, Theorem 4 provides a construction of a subcubic graph and shows that it is NP-hard
to determine if this graph has a matching multicut that divides it into Θ(n) parts. We leave
it as an open question if it is possible to improve the asymptotic bound given by Theorem 6.
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3 Exact Exponential Algorithm

We now turn our attention to developing an exact exponential algorithm through a similar
approach used in [31]. For more on this type of algorithm and its associated terminology, we
refer the reader to [22]. Our algorithm consists of four stopping rules, seven reduction and
nine branching rules. At every step of the algorithm we have the sets {A1, . . . , Aℓ, F} such
that φ = {A1, . . . , Aℓ} (unless any stopping rule is applicable) is a matching ℓ-multicut of
the vertices of V (G) \ F . We set the size of the instance as the size of the set F , that is, how
many free vertices are not assigned to any part yet. For simplicity, we assume that δ(G) ≥ 2.
The arguments we use work with slight modifications to graphs of minimum degree one, but
they would unnecessarily complicate the description of the algorithm.

Intuitively, stopping rules are applicable whenever a bad decision has been made by the
branching algorithm and we must prune that branch. Reduction rules, on the other hand,
are useful for cleaning up an instance after a branching step has been performed. Finally,
our branching rules attempt to reduce the size of F as much as possible for each possibility.
We follow the configurations given by Figure 3, and always branch on vertex v1. The main
culprit behind our complexity is rule B8, which gives us a branching vector of the form
{1} × {3}ℓ−1 and branching factor 3

√
ℓ ≤ αℓ ≤

√
ℓ which, for ℓ >> 2, will be our worst factor.

v1Aiv2 v3

v4(B1)

v1Aiv2 Aj

v4(B2)

v1v2 Ai

Aj(B3)

v1
v4

v2Aiv′
2

v3Ajv′
3

(B4)

v1
Aj

v2Aiv′
2

v3Aiv′
3

(B5)

v1

v2Aiv′
2

v3Aiv′
3

v4 Aj v′
4

v5 Aj v′
5

(B6)

v1
v4

v2Aiv′
2

v3Aiv′
3

(B4’)

v1Ai Aj

v2 v3
(B7)

v1Ai v3

v2 Aj

(B8)

Figure 3 Branching configurations for Matching Multicut.

▶ Theorem 11. Matching Multicut can be solved in αn
ℓ nO(1) time for a graph on n

vertices, where αℓ ≤
√

ℓ.

4 FPT Algorithm by Treewidth

Let (T, {Xt}t∈V (T )) be a nice tree decomposition of a graph G with n vertices, with T

corresponding to the tree of the nice tree decomposition and Xt being the bag corresponding
to vertex t. Suppose T is rooted at a vertex root, that Xroot = ∅. Let Vt be the union of all
the bags present in the subtree rooted at t. Finally, define Gt = G[Vt].

Our goal is to have c[t, P, Ext] = ℓ if and only if ℓ is the maximum integer such that
(Gt, ℓ) is a YES instance of Matching Multicut that respects P and Ext, which we now
formally define. First, P is a function P : Xt 7→ Xt with P(v) corresponding to the vertex
in Xt with the smallest label that is present in the same set as v in the partition. In other
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words, P is responsible for representing which partition of Vt we have assigned each vertex
of Xt to. Note that P(v) ≤ v. Finally, Ext : Xt −→ {0, 1} is a function that signals whether
each vertex in Xt has a neighbor in a different set in the partition. We denote by P|v the
restriction of P to Xt \ {v}. Note that we can easily update each value in P|v to account for
the missing vertex: we pick the minimum element in P−1(v) \ {v} and set it as the new root
of the component previously identified by v.

▶ Theorem 12. If given a nice tree decomposition of width k of the n-vertex graph G, there
exists an algorithm that solves Matching MultiCut in 2k log kn time.

5 Matching Multicut Enumeration

5.1 Vertex Cover
In this section, we consider the parameterization of the matching multicut problem by the
vertex cover number τ(G) of the input graph. This parameterization of Enum Matching
Cut was previously studied in [25]. We show that the enumeration kernel constructed by the
authors of [25] is also an enumeration kernel for Enum Matching Multicut. We assume
that the vertex cover X of size k ≤ 2τ(G) is given together with the input graph.

We describe the kernel constructed in [25]. Assume for simplicity that G contains no
isolated vertices. Let I = V (G) \ X. Recall that I is an independent set. Denote by I1
and I≥2 the subsets of vertices of I with degree 1 and at least 2, respectively. We use the
following marking procedure to label some vertices of I.

(i) For every x ∈ X, mark an arbitrary vertex of N(x) ∩ I1 (if it exists).
(ii) For every two distinct vertices x, y ∈ X, select an arbitrary set of min{3, |N(x)∩N(y)∩

I≥2|} vertices in I≥2 adjacent to both x and y, and mark them for the pair {x, y}.

Denote by Z the set of marked vertices of I. Define H = G[X ∪ Z]. Notice that
|V (H)| ≤ 2|X| + 3

(|X|
2

)
= O

(
k2)

. This completes the description of the basic compression
algorithm that returns H. The key property of H is that it keeps all matching cuts of
G′ = G − I1, including all matching multicuts of G′. Formally, we define H ′ = H − I1. At
this point, we can observe that the matching multicuts of H ′ and G′ are in a one-to-one
correspondence. With a few more technical details, we can prove Theorem 13.

▶ Theorem 13. Enum Matching Multicut admits a polynomial-delay enumeration kernel
with O

(
k2)

vertices when parameterized by the vertex cover number k of the input graph.

By Theorem 13, we have that matching multicuts can be listed with delay kO(k2) · nO(1).
We believe that this running time can be improved and the dependence on the vertex cover
number can be made single exponential.

5.2 Distance to Co-cluster
A 3-approximation for this parameter can easily computed in polynomial time: for every
induced P3, add all three of its vertices to the modulator. As such we assume that, along with
(G, ℓ), we are given a set S of size k ≤ 3dcc(G) so that G \ S is a co-cluster graph. We break
down our analysis in three cases: if G \ S has at least three parts, two large parts, or neither
of the previous two. For the first two, we essentially have that G \ S is indivisible, while for
the last one we may simply invoke the algorithm for the vertex cover parameterization.

▶ Theorem 14. Enum Matching Multicut admits a polynomial-delay enumeration kernel
with O

(
k2)

vertices when parameterized by the distance to co-cluster k of the input graph.
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5.3 Distance to Cluster
In this section, we present a DelayFPT enumeration algorithm for Enum Matching Multi-
cut, parameterized by the vertex-deletion distance to cluster. We base our result on the
quadratic kernel for Matching Cut given in [31]. The authors apply several reduction
rules until they reach a kernel of size dc(G)O(1). We use a subset of these rules as a starting
point for our enumeration algorithm, then expand them a more careful analysis and needed
technicalities for an enumeration algorithm. Formally, we prove the following theorem.

▶ Theorem 15. There is an algorithm for Enum Matching Multicut on n-vertex graphs
with distance to cluster dc(G) ≤ t of delay 2O(t3 log t) + nO(1).

Our strategy to enumerate all possible matching multicuts can be divided into 5 steps:
1. We apply reduction rules, similar to the kernel given in [31], spending poly(|G|) time.
2. We enumerate all possible matching multicuts of a smaller instance of size O(t3). This

step takes a total time of 2O(t3 log t).
3. Given a matching multicut generated in step 2, we create an instance of Enum Set

Packing, where the ground set has size t and the number of sets is potentially 2t. All
solutions are enumerated in total time 2O(t2), and then each solution is extended to form
a matching multicut.

4. Given a matching multicut from step 3, we increase the number of partitions by considering
clusters of size 2 with only one edge to U . Now, we guarantee that we have at least ℓ

partitions. As the number of matching multicuts with at least ℓ parts can be unbounded
by ℓ, we worry about the delay of the enumeration and no longer with its total time.

5. We enumerate equivalent solutions for the original instance.

6 Kernelization lower bound for distance to cluster

Since we do have a DelayFPT algorithm for the vertex-deletion distance to cluster paramet-
erization, it is natural to ask whether we can build a PDE kernel of polynomial size. In
this section, we show this in the negative by presenting an exponential lower bound for
Matching Multicut under this parameterization.

To obtain our result, we first show a kernelization lower bound for Set Packing. In this
problem, we are given a ground set X, a family F ⊆ 2X , and an integer k, and are asked
to find F ′ ⊆ F of size at least k such that for any A, B ∈ F ′ it holds that A ∩ B = ∅. In
particular, we prove Theorem 16.

▶ Theorem 16. Set Packing has no polynomial kernel when parameterized by |X| unless
NP ⊆ coNP/poly.

Our proof is based on an OR-cross-composition [5] from Set Packing onto itself under
the desired parameterization. To this end, we denote our input collection of Set Packing
instances by {(Y1, E1, r1), . . . , (Yt, Et, rt)}. Moreover, we can assume that Yi = {y1, . . . , yn}
and ri = r for all i ∈ [t] and, w.l.o.g, that t = 2τ for some τ > 0; the latter can be easily
achieved by copying any one instance 2τ − t times and adding it to the input collection,
which at most doubles this set if τ is the minimum integer such that 2τ ≥ t.

Construction. We construct our (X, F , k) Set Packing instance as follows. Our set X is
partitioned into the set of input elements Y , index elements S = {s0, s1, . . . , sr}, and a set
of bits {bi,j , bi,j | i ∈ [τ ], j ∈ [r]}. We define bitsj(a) to be the set where bi,j ∈ bitsj(a) if and
only if the i-th bit in the binary representation of a is 1, otherwise we have that bi,j ∈ bitsj(a).
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The family F is partitioned in selector sets, identified as T = {T1, . . . , Tt}, and packing
sets P. Each Ta is defined as Ta = {s0} ∪

⋃
j∈r bitsj(a), where a is the (positive) bitwise

complement of a, i.e. a+a = 2τ −1. As to our packing sets, for each input instance (Y, Ea, r),
each Ci ∈ Ea, and each j ∈ [r], we add to P the set Ca,i,j = Ci ∪ bitsj(a) ∪ {sj}. Finally, we
set k = r + 1. Intuitively, packing Ta ∈ T corresponds to solving instance (Y, Ea, r) and, since
every Ta has s0, only one of them can be picked. The way that our bits sets were distributed,
picking Ta automatically excludes all elements in P corresponding to sets present in another
instance (Y, Ec, r). Finally, index elements S are used to ensure that at least one instance set
is packed. The next observation follows immediately from the construction of our instance.

▶ Observation 17. Instance (X, F , k) is such that |X| ≤ |Y | + (r + 1)(1 + log t) and
|C| ≤ 1 + r log t for all C ∈ F .

The proof of our main result, Theorem 18, follows from a simple polynomial parameter
transformation from Set Packing parameterized by the size of the ground set.

▶ Theorem 18. When parameterized by the vertex-deletion distance to cluster, size of the
maximum clique, and the number of parts of the cut, Matching Multicut does not admit
a polynomial kernel unless NP ⊆ coNP/poly.

7 Final Remarks

In this paper, we introduced and studied the Matching Multicut problem, a generalization
of the well known Matching Cut problem, where we want to partition a graph G into at
least ℓ parts so that no vertex has more than one neighbor outside of its own part. Specifically,
we proved that the problem is NP-hard on subcubic graphs, but admits a quasi-linear kernel
when parameterized by ℓ on this graph class. We also showed an ℓ

n
2 nO(1) exact exponential

algorithm based on branching for general graphs. In terms of parameterized complexity,
aside from our aforementioned kernel, we give a 2O(t log t)nO(1) time algorithm for graphs of
treewidth at most t. Then, we move on to enumeration aspects, presenting polynomial-delay
enumeration kernels for the vertex cover and distance to co-cluster parameterizations, the
latter of which was an open problem for Enum Matching Cut. Finally, we give a DelayFPT
algorithm for the distance to cluster parameterization, and show that no polynomial-sized
PDE kernel exists unless NP ⊆ coNP/poly. This last result is obtained by showing that Set
Packing has no polynomial kernel parameterized by the cardinality of the ground set.

For future work, we are interested in further exploring all aspects of this problem, such
as graph classes and other structural parameterizations. As with Matching Cut, it seems
interesting to study optimization and perfect variations of this problem, which may yield
significant differences in complexity to Matching Multicut. While Maximum Matching
Multicut is NP-hard as Perfect Matching Cut is NP-hard on 3-connected cubic planar
bipartite graphs [7], the proof does not help in terms of W[1]-hardness. We believe that it in
fact is W[1]-hard parameterized by ℓ + number of edges in the cut even on cubic graphs.

Our other questions of interest are mostly in the enumeration realm. In particular,
we have no idea if it is possible to enumerate matching cuts on (sub)cubic graphs, and
we consider it one of the main open problems in the matching cut literature. Finally, we
are interested in understanding how to rule out the existence of TotalFPT and DelayFPT
algorithms for a given problem and, ultimately, how to differentiate between problems that
admit FPE and PDE kernels of polynomial size and those that do not.
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Abstract
This article is a report by the challenge organizers on the 9th Parameterized Algorithms and
Computational Experiments Challenge (PACE 2024). As was common in previous iterations of
the competition, this year’s iteration implemented an exact and heuristic track for a parameterized
problem that has gained attention in the theory community. This year’s challenge is about the One-
Sided Crossing Minimization Problem (OSCM). In the exact track, the competition participants
were asked to develop an exact algorithm that can solve as many instances as possible from a
benchmark set of 100 instances – with a time limit of 30 minutes per instance. In the heuristic track,
the task must be accomplished within 5 minutes, however, the result in this track is not required
to be optimal. New this year is the parameterized track, which has the same rules as the exact
track, but instances are guaranteed to have small cutwidth. As in previous iterations, the organizers
handed out awards to the best solutions in all tracks and to the best student submissions.
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1 Introduction: History and Timeline of PACE

The Parameterized Algorithms and Computational Experiments Challenge (PACE) was
conceived in Fall 2015 to deepen the relationship between parameterized algorithms and
practice. The declared mission of the PACE challenge is to

bridge the divide between the theory of algorithm design and analysis, and the practice
of algorithm engineering,
inspire new theoretical developments,
investigate in how far theoretical algorithms from parameterized complexity and related
fields are competitive in practice,
produce universally accessible libraries of implementations and repositories of benchmark
instances,
encourage the dissemination of these findings in scientific papers.
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Previous iterations of the PACE challenge addressed a variety of graph optimization problems.
Specifically, the previous iterations considered

PACE 2016 Treewidth and Undirected-Feedback-Vertex-Set [6];
PACE 2017 Treewidth and Minimum Fill-In [7];
PACE 2018 Steiner Tree [5];
PACE 2019 Vertex-Cover and Hypertreewidth [13];
PACE 2020 Treedepth [28];
PACE 2021 Cluster-Editing [25];
PACE 2022 Directed-Feedback-Vertex-Set [18];
PACE 2023 Twinwidth [3] .

Several of the previous iterations also contained more specialized tracks. Starting with
the first iteration of PACE, many participants from all over the world were interested in the
challenge and quickly established PACE as a highly competitive challenge. The competition
attracted a record number of 112 participants this year, resulting in 75 submissions; see
Figure 1.

25
50
75

100

2016 2017 2018 2019 2020 2021 2022 2023 2024

Number of Participants

Number of Distinct Submissions

Figure 1 Overview of the number of participants and distinct submissions of the PACE challenge
over the years. Teams submitting multiple times and to multiple tracks are counted multiple times.

Papers inspired by concrete implementations created in the context of the PACE challenge
were published in prestigious conferences such as ACDA, ALENEX, ESA (Track B), SEA,
and WADS. The instances provided by PACE have also often been used to showcase further
algorithmic improvements by being used as an established benchmark, ranging also to other
competitions such as the famous SAT competition [2].

This report contains the relevant information on the ninth PACE challenge. The problem
chosen was One-Sided Crossing Minimization, an important classical graph drawing
problem with applications in hierarchical graph drawing, e.g., in the Sugiyama framework [37].
The challenge featured three tracks: an exact track, a heuristic track and a parameterized
track. In the exact track, the task was to find an optimal solution of a given instance within
30 minutes and a memory limit of 8 GB. The instances in the exact track were guaranteed to
have a low number of crossings relative to the instance size. In the heuristic track the number
of crossings could be very large and the task was to compute a valid (but not necessarily
optimal) solution with as few crossings as possible within a time limit of 5 minutes and
a memory limit of 8 GB. The parameterized track used the same rules as the exact track
(compute an optimal solution within 30 minutes using 8GB). However here the number of
crossings was not guaranteed to be small and instead the cutwidth of the given instances
was low. Additionally a witness for this low cutwidth was provided for every instance.
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The timeline of the challenge started with the announcement in September 2023. Details
about the input and output format were provided in November 2023 together with a tiny
test set to allow the participants to start with the challenge. In addition, a small visualizer
was provided, which can be used to view instances and solutions. Alongside we provided
(via pip and source download) a verifier, which could be used to verify a given solution using
a set of crossing counting algorithms. The concrete ranking methods for both tracks were
published in December 2023. At the same time we provided a JUnit-like auto-tester, which
runs a solver against a given set of instances and compares the output to provided (optimal)
solutions. In early February 2024 the public instances and details about the benchmark set
were published. Additionally a Github repository was made available with the intention
that participants could add their own created test instances to make them available to all
participating teams. The public leaderboard on the optil.io platform was opened in April
2024 and frozen on May 20th 2024. This allowed the participants to test their solvers on
the public instances and provided a provisional ranking. The final version of the submission
for the solver code was due on the ninth of June 2024 and the descriptions of the solvers
had to be submitted until June 23. Afterwards, the submissions were evaluated on the
private instances, which were similar in structure to the public instances but unknown to the
participants. The results of this evaluation were announced in July 2024 (a correction of
the ranking was issued on the ninth of August 2024), and the award ceremony took place
during the International Symposium on Parameterized and Exact Computation (IPEC) 2024
at Royal Holloway University of London in Egham. The complete timeline can be found in
Figure 2.
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Figure 2 Timeline of the PACE challenge in 2024 (the diagram ranges from September 2023 to
September 2024). The next iteration of the PACE challenge for 2025 was announced during the
award ceremony.

2 The Challenge Problem: One-Sided Crossing Minimization

This year’s challenge was about the problem One-Sided Crossing Minimization (OSCM).
This problem involves arranging the nodes of a bipartite graph on two layers (typically
horizontal), with one of the layers fixed, aiming to minimize the number of edge crossings.
More formally:

IPEC 2024
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One-Sided Crossing Minimization (OSCM)
Input: A bipartite graph G = ((A∪̇B), E), and a linear order of A.
Output: A linear order of B.
Measure: The number of edge crossings in a straight-line drawing of G with A and B

on two parallel lines, following their linear order.

OSCM is one of the basic building blocks used for drawing hierarchical graphs [37].
While easy to state it turns out that the problem is difficult to solve efficiently. As many
graph drawing problems OSCM is well known to be NP-hard [14], even for star forests of
degree 4 [32] and for trees [9]. Obtaining exact solutions in practice is commonly done using
SAT or ILP formulations of the problem [23].

Turning to other exact algorithms, the problem can be solved in FPT time using the
number of crossings as the parameter. Dujmovic and Whitesides [11] gave the first algorithm
in 2004. Subsequent research [12, 26] pushed the running time down to O(k2

√
2k + n), where

the exponent
√

2k is asymptotically optimal assuming the exponential time hypothesis.
Aside from exact solutions, OSCM does admit a constant-factor approximation [15]. More

importantly for practical considerations though, OSCM admits good heuristics. Two of the
best-known ones are the barycenter and the median heuristic. As the names suggest, in the
former each vertex is placed in the barycenter of its neighbors and in the latter in the median
position of its neighbors. These very simple heuristics even come with some theoretical
guarantees. For example, the barycenter heuristic yields a O(

√
n) approximation [31].

For an extended overview, see Chapter 13.5 of the Handbook of Graph Drawing [22].
In the parameterized track, all instances have small cutwidth. Given a graph G = (V, E)

and a linear ordering π on V , the cutwidth of (G, π) is the maximum number of edges that
cross any partitioning of V into earlier and later subsets of π, that is, max1≤i<|V | |{(u, v) ∈
E | π(u) ≤ i < π(v). The cutwidth of G is the minimum cutwidth over all possible linear
orderings of V .

The cutwidth of a graph can be computed in FPT time using the cutwidth as the
parameter. In particular, there is an 2O(k2)n-time algorithm to compute the cutwidth k

if a graph [17]. There is a connection between cutwidth and the general crossing number
of graphs: Any graph G = (V, E) with cutwidth k requires at least k2

1176 −
∑

v∈V

(
deg(v)

4

)2

crossings in any drawing [8].
Since OSCM is NP-hard even for star forests of degree 4 [32], which have cutwidth 2, it is

paraNP-hard if parameterized by the cutwidth. However, in the input to OSCM, the order
of A is fixed, and the instances of the NP-hardness proof come with orders of A that do not
admit a constant cutwidth, that is, there is no linear order on the vertices of the constructed
graphs where the order of A is the same as in the input and the cutwidth is constant. Hence,
we are interested in studying OSCM for graphs where the cutwidth remains small even if the
order of A has to remain the same as in the input.

3 The Setup of PACE 2024

As already mentioned before, this year’s challenge featured three tracks. The exact and
parameterized track both required the computation of an optimal solution and gave different
guarantees about the structure of the input instances. In the heuristic track, no guarantees
were made about the structure of the instances and participants were tasked with computing
the best (but not necessarily optimal) layout they can find within a more limited time frame.
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3.1 The Exact Track
The task of this track was to compute an optimal solution of OSCM for 200 graphs, 100
of which were public and 100 of which were not known by the participants and were only
presented to the solver during the evaluation in a compartmentalized judge system. For
each of the graphs, the solver had a time limit of 30 minutes and a memory limit of 8 GB
to output a solution. All instances were guaranteed to have a “not too large” number of
crossings in an optimal solution (detailed information about this can be found in Section 3.5).

The organizers of the competition encouraged submissions that implement provably
optimal algorithms, however, this was not a formal requirement. The exact rule stated on
the website was

Submissions should be based on provably optimal algorithms, however, this is not a formal
requirement. Submissions that output an incorrect solution or a solution that is known to be
non-optimal will be disqualified. Besides dedicated algorithms, we also encourage submissions
based on other paradigms such as SAT, MaxSAT, or ILPs.

The requirement of outputting optimal solutions extends to instances that were not
included in the set of the 200 evaluation instances. In the exact track 7 solvers were
disqualified, 5 on the basis of outputting wrong answers for one or more of the 200 evaluation
instances and 2 due to subsequently found counterexample instances.

Submissions of this track were ranked by the number of solved instances. In case of a tie,
the winner was determined by the total time spent on the solved instances. In particular,
there was no need to abort a “hopeless” run early.

3.2 The Heuristic Track
In this track, the solvers were tasked with computing a good solution quickly. The solvers
were run on each instance for 5 minutes and received the Unix signal sigterm afterwards.
When receiving this signal, the solver had to output a valid layout in the defined solution
format immediately to the standard output and terminate. If the program did not halt in a
reasonable time after receiving the signal, it was stopped via sigkill and the instance was
counted as time limited exceeded. The memory limit for this track was 8 GB as well. For
this track, solutions did not have to be optimal.

Submissions were ranked by the sum over all instances of

# crossings in solver layout
smallest # crossings known to the PC .

Note that the “smallest number of crossings in any layout known to the PC” may not be
optimal, i. e., may be larger than the number of crossings in an optimal solution.

3.3 The Parameterized Track
This track had the same rules as the Exact Track. However, the instances here could require
a large number of crossings, but they had small cutwidth: there is an ordering of the vertices
of the graph such that every cut obtained by partitioning the vertices into earlier and later
subsets of the ordering is crossed by at most “a small number” of edges. Such an ordering
was provided in the input. Note that in this ordering the vertices of A and B were generally
interleaved, but the order of the vertices of A (the fixed side) was the same as in the problem
instance.

IPEC 2024
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3.4 Internal Solver
One of the most challenging aspects of creating the benchmark set was to strike a balance
between sufficiently difficult instances and the need to solve them to optimality in order to
judge the exact and parameterized track. The organizers used an ILP solver to answer this
question. This solver was implemented based on the formulation of Jünger and Mutzel [23].

Specifically, let A and B be the two partite sets of the given bipartite graph. For every
pair of vertices vi, vj ∈ B we create a binary variable ti,j , which should be true if and only if
vi appears before vj in the final order of B. Since this order is linear it is of course transitive.
This can be enforced by adding for every i < j < k the inequalities 0 ≤ ti,j + tj,k − ti,k ≤ 1,
i.e., transitivity constraints. The number of crossings between the edges incident to vi and
the edges incident to vj is only dependent on the relative order of vi and vj and can easily
be precomputed. Let ci,j (cj,i) be this number if vi appears before (after) vj in the final
order of B. Then we simply minimize

∑
i<j (ci,jti,j + cj,i(1 − ti,j)).

Since the number of transitivity constraints can grow quite large, the internal solver of the
organizers added them on demand using callbacks whenever a solver found a new solution.
The solver was initialized without any transitivity constraints. If a new solution is found,
the binary variables are used to define a directed graph on all vertices of B, i.e., an edge is
added from vi to vj if ti,j is true otherwise the edge in the opposite direction is added. If
this graph contains any cycles, we obtain all chordless cycles (which are necessarily triangles)
and add the transitivity constraint for the three involved vertices.

3.5 Benchmark Set
The fourth aim of the PACE challenge was to produce universally accessible libraries of
implementations and repositories of benchmark instances. While the first part of this aim was
exactly what we expected from the participants, it was the duty of the program committee
to produce the benchmark instances. The properties of the benchmark instances we strived
were that
1. the benchmark instances should be heterogeneous,
2. they vary in size and difficulty and
3. it remains a challenging benchmark after the challenge.

The reason for the first criterion was that we wanted to evaluate the overall performance
of the approaches developed by the participants (and not the performance on, say, a specific
graph class). The goal of the second criterion was to make the challenge interesting and fun.
We wanted a benchmark set in which every participant can solve at least a few instances,
which should especially encourage student teams to participate as well. The medium instances
were the ones that were meant to distinguish the quality of the various solvers, and the hard
instances ensured that the tracks which require optimal solutions could be judged based on
the number of solved instances. Moreover, we wanted to create a test set which contained
instances hard enough to remain interesting after the challenge, instead of one that is simply
“solved” after the competition. We expected that these hard instances are barely solvable
by solvers developed in the time span of the competition and, thus, leave room for further
research.

We created generators for several graph classes, including uniform random (planar)
graphs, cycles, paths, complete bipartite graphs, stars, matchings, trees, lobsters, (double-
)caterpillars, grids, quadrangulations, (partial) k-trees, wheels, disk intersection graphs,
interval bigraphs, (circular) ladders, hypercubes, co-graphs, intersection graphs, bipartite
permutation graphs, and graphs with small vertex cover / cutwidth / neighborhood diversity.
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(a) Distribution of #vertices in the exact bench-
mark set.

(b) Distribution of edge density in the exact bench-
mark set.

(c) Distribution of crossing density in the exact
benchmark set.

(d) Distribution of #vertices in the parameterized
benchmark set.
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(e) Number of instances by cutwidth in the para-
meterized benchmark set.

(f) Distribution of crossing density in the paramet-
erized benchmark set.

(g) Distribution of #vertices in the heuristic bench-
mark set (log scale).

(h) Distribution of edge density in the heuristic
benchmark set.

Figure 3 Details about the benchmark sets in the three tracks.
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We also included (variations of) known examples from the literature that common heuristics
perform badly on. To further increase variety, we also added options to randomly permute
one or both bipartitions and to glue instances together. Many generators are based on
Networkx [21]. The code can be found online1.

To find a good balance in the difficulty of the benchmark, we created about 15,000
instances of various sizes from each of these graph classes and tried to solve them with our
solver. For the exact and parameterized track, we only selected instances for which we knew
the optimum solution.

For the exact track, we decided to use between 5 and 15 instances from each graph class.
We used 60 instances that our solver could solve within 10 minutes, 50 instances that it
could solve in under 20 minutes, 40 instances that it could solve in under 30 minutes, and
50 instances that required more time. While general instances can require Ω(m2) ∈ Ω(n4)
crossings, we selected instances where the crossing density (i.e., the number of crossings
required divided by the number of vertices) does not get too large; see Figure 3c. The graphs
had between 560 and 20,000 vertices (with one exception that has 32,691 vertices) and edge
density between 0.2 and 2.5; see Figures 3a and 3b.

For the heuristic track, we used similar instances, but made them much larger; see
Figures 3g and 3h. The graphs had up to 262,124 vertices and 1,114,112 edges.

For the parameterized track, we also used only instances for which we knew the optimum
solution. We generated instances with bounded cutwidth by two random sampling approaches.
All but two instances had cutwidth at most 50; see Figure 3e. The graphs had between 1552
and 13,674 vertices and required between 0.08n and 123.78n crossings.

3.6 Available Tools

Mini Test Set

As a first set of instances and to get development for the participants off the ground, we
provided a set of mini test instances2. We also provided the solutions to these test instances3.
An impression of these instances can be seen in Figure 4.

Verifier

We provided a Python-based tool to verify a solution and test a given solver against a set of
tests. This verifier was provided as a python package on the website4 and was continuously
updated throughout the challenge. To verify a produced solution two main algorithms were
available. The first one was a simple, inefficient, but surely correct implementation that just
tested for every pair of edges whether they cross. The second method and usually the default
option, was an algorithm based on so-called segment trees. For comfort the verifier could not
only be run on a single solution to verify it, but instead could be provided with a folder of
test instances and a solver. Each instance was then solved using the provided solver and the
resulting solution checked. By default the test instances used in this verifier mode were the
tiny test set described above.

1 https://pacechallenge.org/2024/instance_generator.py
2 https://pacechallenge.org/2024/tiny_test_set.zip
3 https://pacechallenge.org/2024/tiny_test_set-sol.zip
4 https://pacechallenge.org/2024/verifier/

https://pacechallenge.org/2024/instance_generator.py
https://pacechallenge.org/2024/tiny_test_set.zip
https://pacechallenge.org/2024/tiny_test_set-sol.zip
https://pacechallenge.org/2024/verifier/


P. Kindermann, F. Klute, and S. Terziadis 26:9

(a) Tree (n = 16).

A

B

(b) Input order.

A

B

(c) Optimal solution.

(d) Path (n = 9).

A

B

(e) Input order.

A

B

(f) Optimal solution.

Figure 4 Two example instances from the mini test set given with a force directed layout to
illustrate the structure as well as the input order and the optimal 2-layered layout. The partite
set, whose order is fixed (A) is drawn in black, the vertices of the permutable set (B) are drawn in
unique colors.

Visualizer

We also provided a visualizer tool to the participants.5 This tool displayed a given graph
and solution in a graphical interface. For small and medium size instances this allowed the
participants to get a graphical idea of their solutions and was hopefully helpful in finding
potential improvements of their algorithms. The images in Figure 4 were created using this
visualizer.

4 Participants and Results

There were 25, 32 and 17 distinct submissions to the exact, heuristic and parameterized
track, respectively. Hence, in total there were 40 distinct teams with a total number of 112
participants representing four continents and 21 countries, which made this the largest PACE
challenge yet. The results are listed below.

4.1 Ranking of the Exact Track
The ranking for the exact track is listed subsequently; We list the number of solved instances
from the 100 private instances plus the 100 public instances as well as the total computation
time used for the solved instances. Submissions marked with an “�” icon are student
submissions after the following rules

A student is someone who is not and has not been enrolled in a PhD program before the
submission deadline. A submission is eligible for a Student Submission Award if either
all its authors are students, or besides student co-author(s) there is one non-student co-
author that confirms, at the moment of submission, that a clear majority of conceptual and
implementation work was done by the student co-author(s).

5 https://pacechallenge.org/2024/visualizer/
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The first five valid student submissions were eligible for a Student Submission Award;
there were three such submissions, which received this award.

Rank 1 mppeg solved 199 instances in 5682.93 seconds. Link §

Authors Michael Jünger, Paul Jünger, Petra Mutzel and Gerhard Reinelt
Affiliation University of Cologne, University of Bonn and Heidelberg University

Rank 2 uzl solved 195 instances in 7692.89 seconds. Link §

Authors Max Bannach, Florian Chudigiewitsch, Kim-Manuel Klein and Marcel
Wienöbst

Affiliation European Space Agency and Institute for Theoretical Computer Science,
University of Lübeck

Rank 3 CRGone solved 192 instances in 15520.39 seconds. Link §

Authors Alexander Dobler
Affiliation Technische Universität Wien

Rank 4 Guilucand solved 187 instances in 9358.96 seconds. Link §

Authors Andrea Cracco
Affiliation Universitá degli Studi di Verona

Rank 5 crossy (�) solved 180 instances in 19099.31 seconds. Link §

Authors Tobias Röhr and Kirill Simonov
Affiliation Hasso Plattner Institute, University of Potsdam

Rank 6 weberknecht solved 164 instances in 21408.17 seconds. Link §

Authors Johannes Rauch
Affiliation Institute of Optimization and Operations Research, Ulm University

Rank 7 LUNCH solved 157 instances in 10425.52 seconds. Link §

Authors Kenneth Langedal, Matthias Bentert, Thorgal Blanco and Pål Grønås Drange
Affiliation University of Bergen

Rank 8 Arcee (�) solved 152 instances in 11189.13 seconds. Link §

Authors Kimon Boehmer, Lukas Lee George, Fanny Hauser and Jesse Palarus
Affiliation Université Paris-Saclay, Technical University Berlin

Rank 9 lcs solved 136 instances in 1186.94 seconds. Link §

Authors Mohamed Mahmoud Abdelwahab, Faisal N. Abu-Khzam and Lucas Isenmann
Affiliation Lebanese American University

Rank 10 sherby solved 135 instances in 1683.19 seconds. Link §

Authors Manuel Lafond, Alitzel López Sánchez and Bertrand Marchand
Affiliation Department of Computer Science, University of Sherbrooke

Rank 11 U_OCM solved 121 instances in 7907.2 seconds. Link «

Authors Mert Biyikli, Kathrin Hanauer, Sophia Heck, Lukas Krumpeck, Lara Ost,
Tobias Prisching, Ole Schlüter, Matej Vedak and Maximilian Vötsch

Affiliation Faculty of Computer Science, University of Vienna and Faculty of Physics,
University of Vienna

Rank 12 roundabout solved 109 instances in 564.63 seconds. Link #

Authors Emmanuel Arrighi and Petra Wolf
Affiliation EnsL, Univ Lyon, UCBL, CNRS, Inria in Lyon and LaBRI, CNRS, Université

de Bordeaux
Rank 13 HWoydt solved 75 instances in 12.75 seconds. Link §

Authors Henning Martin Woydt
Affiliation Heidelberg University

https://github.com/pauljngr/PACE2024
https://github.com/mwien/pingpong
https://github.com/Doblalex/CRGone
https://github.com/Guilucand/pace2024-challenge
https://github.com/roehrt/crossy
https://github.com/johannesrauch/PACE-2024
https://github.com/KennethLangedal/PACE2024-UiB/tree/main
https://github.com/lucidLuckylee/pace_2024
https://github.com/lucas-test/pace24-ocm/tree/final
https://github.com/bmarchand/sherby-pace-2024
https://gitlab.com/vietaa/pace/u_ocm
https://bitbucket.org/arrighi/roundabout/src/main/
https://github.com/HenningWoydt/PACE2024Exact
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Rank 14 GOAT solved 74 instances in 725.36 seconds. Link «

Authors Patrik Drbal, Michal Dvořák, Dušan Knop, Jozef Koleda, Jan Pokorný and
Ondřej Suchý

Affiliation Czech Technical University in Prague

Rank 15 trex-ufmg-ilp solved 41 instances in 3918.34 seconds. Link §

Authors Luis Henrique Gomes Higino, Kaio Henrique Masse Vieira, Alan Prado, Guil-
herme de Castro Mendes Gomes, Laila Melo Vaz Lopes, Gabriel Ubiratan Barreto
Pereira de Oliveira, Gabriel Lucas Costa Martins, Heitor Gonçalves Leite, Matheus
Torres Prates, Gabriel Vieira and Vinicius Fernandes dos Santos

Affiliation Departamento de Ciência da Computação, Universidade Federal de Minas
Gerais

Rank 16 studentgroupfuberlin (�) solved 28 instances in 12844.18 seconds. Link «

Authors Garvin Konopka, Colin Alexander Voigt and Joshua Alexander Hanheiser
Affiliation Freie Universität Berlin

The details of the remaining 9 teams, which were either disqualified or did not solve any
instance correctly, can be found on the PACE website. Submission mjdv solved 157 instances
in 5000.98 seconds, but was disqualified due to suboptimal output on one instance due to a
bug in their code.

4.2 Methods used by the Winners of the Exact Track

The Exact Track winner mppeg [24] reformulate the problem of the challenge into a
linear ordering problem, which they solve using a branch & cut approach [19, 20]. Their
method formulates the problem as an integer linear program, which uses binary variables
to indicate the order of any ordered pair of vertices. Transitivity constraints enforce that
there are no cycles in the ordering implied by a valid solution to the program. In the original
formulation, preventing cycles of length three is sufficient, however the approach of mppeg
utilizes multiple methods to speed up their approach, by reducing the size of the ILP. As a
result additional cycles have to be prevented via constraint. The speed-up methods include
among others the decomposition of instances into connected components and fixing any
relative order between vertices. For instances where it is feasible, they additionally compute
an initial solution using the “Kernigham-Lin 2” heuristic [35].

The runner-up uzl [4] observed that the ILP formulation is equivalent to the Weighted
Feedback Arc Set problem, which can also be expressed as a Hitting Set problem, where
all cycles are sets. This team’s approach is based on existing formulations for Weighted
Feedback Arc Set [1, 19]. Initially only some cycle constraints are added. After finding a
solution to a relaxation of their model, a heuristic is used to identify new cycle constraints
until all cycles are removed.

The third-place CRGone [10] again uses an ILP formulation after employing some
reduction rules to decrease the instance size. This is, e.g., done by contracting vertices with
the same neighborhood or (similar to the winning team) fixing ordering variables, if one of
the two relative orders creates no crossings. The model is initialized without any transitivity
constraints between binary variables, which are separated in a predefined order, preferring
constraints for vertices whose neighbors do not interleave.
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4.3 Ranking of the Heuristic Track
The ranking for the heuristic track is listed subsequently; We list the score for the 100 private
instances plus the 100 public instances, computed as described above, as well as the total
computation time. The larger the score, the better. Submissions marked with an “�” icon
are student submissions (using the same rules as above) of which the top five obtained a
Student Submission Award.

Rank 1 CIMAT_Team got a score of 199.99996 in 59236.67 seconds. Link §

Authors Carlos Segura, Lázaro Lugo, Gara Miranda and Edison David Serrano Cárdenas
Affiliation Area de Computación, Centro de Investigación en Matemáticas (CIMAT) in

Mexico, Departamento de Ingeniería Informática y de Sistemas, Universidad de La
Laguna and Area de Matemáticas Aplicadas, Centro de Investigación en Matemáticas
(CIMAT) in Mexico

Rank 2 LUNCH got a score of 199.99994 in 80545.43 seconds. Link §

Authors Kenneth Langedal, Matthias Bentert, Thorgal Blanco and Pål Grønås Drange
Affiliation University of Bergen

Rank 3 Martin_J_Geiger got a score of 199.99983 in 41662.87 seconds. Link §

Authors Martin Josef Geiger
Affiliation University of the Federal Armed Forces Hamburg

Rank 4 Arcee � got a score of 199.9998 in 38339.44 seconds. Link §

Authors Kimon Boehmer, Lukas Lee George, Fanny Hauser and Jesse Palarus
Affiliation Université Paris-Saclay, Technical University Berlin

Rank 5 guilhermefonseca got a score of 199.99978 in 26336.25 seconds. Link §

Authors Guilherme D. da Fonseca
Affiliation LIS, Aix-Marseille Université

Rank 6 Bob got a score of 199.99978 in 27380.75 seconds. Link §

Authors Sergey Pupyrev
Affiliation Menlo Park

Rank 7 uzl got a score of 199.9996 in 80644.98 seconds. Link §

Authors Max Bannach, Florian Chudigiewitsch, Kim-Manuel Klein and Marcel
Wienöbst

Affiliation European Space Agency and Institute for Theoretical Computer Science,
University of Lübeck

Rank 8 slimmer got a score of 199.99865 in 54761.13 seconds. Link §

Authors Steffen Limmer and Nils Einecke
Affiliation Honda Research Institute Europe GmbH

Rank 9 UAIC_OCM � got a score of 199.99735 in 56047.38 seconds. Link §

Authors Andrei Arhire, Eugen Croitoru, Matei Chiriac and Alex Dumitrescu
Affiliation Alexandru Ioan Cuza University of Ias, i

Rank 10 axs � got a score of 199.99037 in 59409.74 seconds. Link §

Authors Chenghao Zhu, Yi Zhou and Bo Peng
Affiliation University of Electronic Science and Technology of China and Southwestern

University of Finance and Economics Chengdu
Rank 11 weberknecht got a score of 199.97621 in 6187.64 seconds. Link §

Authors Johannes Rauch
Affiliation Institute of Optimization and Operations Research, Ulm University

https://github.com/carlossegurag/PaceChallenge24
https://github.com/KennethLangedal/PACE2024-UiB/tree/main
https://github.com/MartinJGeiger/pace-2024
https://github.com/lucidLuckylee/pace_2024
https://github.com/gfonsecabr/shadoks-PACE2024
https://github.com/spupyrev/pace2024-bob
https://github.com/mwien/sisyphus
https://github.com/AndreiiArhire/PACE2024
https://github.com/axs7385/pace2024
https://github.com/johannesrauch/PACE-2024
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Rank 12 tlopez � got a score of 199.93344 in 80556.06 seconds. Link §

Authors Toan Lopez and Florian Sikora
Affiliation Student of Université Paris Dauphine

Rank 13 KongQi � got a score of 199.66556 in 38664.61 seconds. Link §

Authors Qi Kong, Zhouxing Su and Zhipeng Lü
Affiliation Huazhong University of Science and Technology

Rank 14 heiCross � got a score of 199.46119 in 80480.59 seconds. Link §

Authors Adil Chhabra, Marlon Dittes, Alvaro Garmendia, Ernestine Großmann, Tomer
Haham, Shai Peretz, Henrik Reinstädtler, Antonie Wagner and Henning Woydt

Affiliation University of Heidelberg
Rank 15 LOPP � got a score of 198.93312 in 80720.08 seconds. Link §

Authors Arijeet Pramanik, Rishabh Dev, Vimal Narassimmane and Srinibas Swain
Affiliation Department of Computer Science and Engineering, IIIT Guwahati

Rank 16 GAON � got a score of 198.88211 in 80720.77 seconds. Link §

Authors Rishabh Dev, Arijeet Pramanik, Vimal Narassimmane and Srinibas Swain
Affiliation Department of Computer Science and Engineering, IIIT Guwahati

Rank 17 ericweidner � got a score of 198.79449 in 4961.61 seconds. Link §

Authors Carolin Rehs and Eric Weidner
Affiliation Technical University of Dortmund

Rank 18 KUL-TW got a score of 198.56896 in 19684.34 seconds. Link §

Authors Tony Wauters and Fabien Nießen
Affiliation NUMA, Department of Computer Science, KU Leuven

Rank 19 DRIP � got a score of 198.30131 in 80720.22 seconds. Link §

Authors Unknown – no solver description submitted
Affiliation Unknown – no solver description submitted

Rank 20 lmsrusso got a score of 198.19412 in 77464.5 seconds. Link §

Authors Luís M. S. Russo
Affiliation INESC-ID and Department of Computer Science and Engineering, Instituto

Superior Técnico, Universidade de Lisboa
Rank 21 GOAT got a score of 196.02268 in 235.44 seconds. Link «

Authors Patrik Drbal, Michal Dvořák, Dušan Knop, Jozef Koleda, Jan Pokorný and
Ondřej Suchý

Affiliation Czech Technical University in Prague
Rank 22 NV_OCM got a score of 194.69549 in 5519.86 seconds. Link §

Authors André Nusser and Juliette Vlieghe
Affiliation CNRS, Inria Center at Université Côte d’Azur and Technical University of

Denmark
Rank 23 HCPS42 got a score of 192.17673 in 2172.91 seconds. Link §

Authors Temirkhan Zimanov
Affiliation Higher School of Economics

Rank 24 asdf got a score of 188.77488 in 27596.93 seconds. Link §

Authors Unknown – no solver description submitted
Affiliation Unknown – no solver description submitted

Rank 25 simonhol got a score of 181.14588 in 4036.8 seconds. Link «

Authors Simon Hol
Affiliation Utrecht University
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https://github.com/toanlpz/PACE2024-TLPZ
https://github.com/Little-Eye/pace-2024.git
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https://github.com/devrishabh28/ocm
https://github.com/ericweidner/heuristic-track-pace-2024
https://github.com/TonyWauters/KUL-TW-pace2024
https://github.com/devrishabh28/one-sided-cr-min
https://github.com/LuisRusso/pace2024-Heuristic
https://gitlab.fit.cvut.cz/pace-challenge/2024/goat/heuristic
https://github.com/JulietteVl/crossing-minimization
https://github.com/HCPS42/PACE2024
https://github.com/yo9299/pace-2024/releases/tag/v1.0.0
https://git.science.uu.nl/s.hol/pace2024-heuristic-submission
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Rank 26 U_OCM got a score of 181.05501 in 80636.53 seconds. Link «

Authors Mert Biyikli, Kathrin Hanauer, Sophia Heck, Lukas Krumpeck, Lara Ost,
Tobias Prisching, Ole Schlüter, Matej Vedak and Maximilian Vötsch

Affiliation Faculty of Computer Science, University of Vienna and Faculty of Physics,
University of Vienna

Rank 27 iiitg got a score of 180.18229 in 480.38 seconds. Link §

Authors Sahaj Gupta, Swati Nanda Gupta, Sampriti Patel and Srinibas Swain
Affiliation Department of Computer Science and Engineering, IIIT Guwahati

Rank 28 Guilucand got a score of 172.30134 in 16750.69 seconds. Link §

Authors Andrea Cracco
Affiliation Universitá degli Studi di Verona

Rank 29 DumbAndDumber got a score of 165.28777 in 1904.8 seconds. Link §

Authors Kristoffer Sandvang and Mateusz Filipowski
Affiliation Student at the University of Copenhagen

Rank 30 roundabout got a score of 163.44052 in 32077.4 seconds. Link #

Authors Emmanuel Arrighi and Petra Wolf
Affiliation EnsL, Université Lyon, UCBL, CNRS, Inria in Lyon and LaBRI, CNRS,

Université de Bordeaux
Rank 31 oscmpp got a score of 112.20293 in 54079.36 seconds. Link §

Authors Sahaj Gupta, Swati Nanda Gupta, Sampriti Patel and Srinibas Swain
Affiliation Department of Computer Science and Engineering, IIIT Guwahati

Rank 32 WINTER got a score of 109.28239 in 57113.3 seconds. Link §

Authors Sahaj Gupta, Swati Nanda Gupta, Sampriti Patel and Srinibas Swain
Affiliation Department of Computer Science and Engineering, IIIT Guwahati

4.4 Methods used by the Winners of the Heuristic Track
The Parameterized Track winner CIMAT_Team [36] used a first generation memetic
algorithm with explicit diversity management. They initially generated a population of
random solutions. They used iterated local search to improve these solutions. Their approach
applied cycle-based crossover and applied a Best-Non-Penalized survivor selection strategy,
which adjusts over time to favor exploration early and exploitation later, thereby promoting
diversity. For larger instances, their method shifted to a more direct application of iterated
local search. They used a greedy initialization strategy based on scoring vertices to manage
complexity and memory efficiently.

Similar to team uzl in the exact track, the runner-up LUNCH [29] reduced OSCM to
the Weighted Feedback Arc Set problem. They observed that edges between strongly
connected components can be deleted as they are not part of any cycles, and that strongly
connected components can be solved independently. They proved that several edges can
be ignored and thus managed to create sparser instances that are sufficient to quickly find
strongly connected components. They used a dynamic program [30] to solve components of
at most 20 vertices optimally. For larger components, they first used greedy improvements,
then an adjusted cutting technique by Park and Akers [34].

The third-place Martin_J_Geiger [16] used iterated local search and variable neigh-
borhood search to find good solutions. They first applied the reduction rules by Dujmović et
al. [12] and then used the barycenter heuristic to find an initial solution. They iteratively
improved the solution with small improving moves until they reached a local optimum; to

https://gitlab.com/vietaa/pace/u_ocm
https://github.com/sampritip/TEAM-iiitg-heuristics/tree/v1.0.0
https://github.com/Guilucand/pace2024-challenge
https://github.com/KristofferSandvang/PACE2024
https://bitbucket.org/arrighi/roundabout/src/main/
https://github.com/sampritip/TEAM-IIITG-v3/tree/v1.0.0
https://github.com/sampritip/TEAM-IIITG-v2/tree/v1.0.0
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this end, they either moved a single node or a block of up to 5 subsequent nodes to different
positions. To escape local optima, they reversed a subset of up to 20% of the permutation
and continued their search from there.

4.5 Ranking of the Parameterized Track
The ranking for the parameterized track is listed subsequently; We list the number of solved
instances from the 100 private instances plus the 100 public instances as well as the total
computation time. Three teams were disqualified because instances were found for which
their solver did return a suboptimal solution. Submissions marked with an “�” icon are
student submissions after the same rules as above. There were two such submissions, which
received the Student Submission Award.

Rank 1 LUNCH solved 200 instances in 5.15 seconds. Link §

Authors Kenneth Langedal, Matthias Bentert, Thorgal Blanco and Pål Grønås Drange
Affiliation University of Bergen

Rank 1 mjdv solved 200 instances in 10.37 seconds. Link §

Authors Ragnar Groot Koerkamp and Mees de Vries
Affiliation ETH Zurich and Unaffiliated in The Netherlands

Rank 3 mppeg solved 200 instances in 25.22 seconds. Link §

Authors Michael Jünger, Paul Jünger, Petra Mutzel and Gerhard Reinelt
Affiliation University of Cologne, University of Bonn and Heidelberg University

Rank 4 Arcee (�) solved 200 instances in 28.54 seconds. Link §

Authors Kimon Boehmer, Lukas Lee George, Fanny Hauser and Jesse Palarus
Affiliation Université Paris-Saclay, Technical University Berlin

Rank 5 crossy (�) solved 200 instances in 34.98 seconds. Link §

Authors Tobias Röhr and Kirill Simonov
Affiliation Hasso Plattner Institute, University of Potsdam

Rank 6 uzl solved 200 instances in 60.49 seconds. Link §

Authors Max Bannach, Florian Chudigiewitsch, Kim-Manuel Klein and Marcel
Wienöbst

Affiliation European Space Agency and Institute for Theoretical Computer Science,
University of Lübeck

Rank 7 roundabout solved 200 instances in 121.23 seconds. Link #

Authors Emmanuel Arrighi and Petra Wolf
Affiliation EnsL, Université Lyon, UCBL, CNRS, Inria in Lyon and LaBRI, CNRS,

Université de Bordeaux
Rank 8 CRGone solved 200 instances in 125.07 seconds. Link §

Authors Alexander Dobler
Affiliation Technische Universität Wien

Rank 9 Guilucand solved 200 instances in 162.07 seconds. Link §

Authors Andrea Cracco
Affiliation Universitá degli Studi di Verona

Rank 10 weberknecht solved 200 instances in 287.41 seconds. Link §

Authors Johannes Rauch
Affiliation Institute of Optimization and Operations Research, Ulm University

Rank 11 sherby solved 199 instances in 20.84 seconds. Link §

Authors Manuel Lafond, Alitzel López Sánchez and Bertrand Marchand
Affiliation Department of Computer Science, University of Sherbrooke
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Rank 12 trex-ufmg solved 198 instances in 14848 seconds. Link §

Authors Luis Henrique Gomes Higino, Kaio Henrique Masse Vieira, Alan Prado, Guil-
herme de Castro Mendes Gomes, Laila Melo Vaz Lopes, Gabriel Ubiratan Barreto
Pereira de Oliveira, Gabriel Lucas Costa Martins, Heitor Gonçalves Leite, Matheus
Torres Prates, Gabriel Vieira and Vinicius Fernandes dos Santos

Affiliation Departamento de Ciência da Computação, Universidade Federal de Minas
Gerais

Rank 13 narekb95 solved 163 instances in 13082.35 seconds. Link §

Authors Narek Bojikian
Affiliation Humboldt University of Berlin

4.6 Methods used by the Winners of the Parameterized Track
The Parameterized Track winner LUNCH [29] started with the same approach as in
their second place submission to the heuristic track. After running the heuristic for each large
component to get an upper bound, they solved a MaxSAT instance to optimally eliminate
all cycles of length at most 4. If this led to an acyclic instances or to a solution that had the
same cost as the upper bound, the algorithm terminated. Otherwise, they removed these
edges, found new cycles with a DFS traversal, and repeated the previous steps.

The runner-up mjdv [27] did not rely on ILP or SAT formulations and instead used a
branch-and-bound algorithm. They generalized reduction rules from Dujmović et al. [12] to
find pairs of vertices in B where one must lie to the left of the other in any optimal solution,
or pairs that are placed directly next to each other in some optimal solution. They also
generalized a reduction rule to find a vertex that lies at the leftmost position in some optimal
solution. As a lower bound, they calculated for each pair of vertices in B the minimum
number of crossings required between their incident edges in any drawing [11, 15]. They
then fixed vertices in the solution from left to right, keeping track of the number of crossings
involved with the fixed vertices. It uses the reduction rules explained above to fix pairs of
vertices and find the next vertex to add to the prefix, which is then inserted at the optimal
position. Caching previously found lower bounds speeds up the process.

The third-place mppeg [24] used the same solver as in the exact track.

5 PACE Organization

The program committee of PACE 2024 consisted of Philipp Kindermann (Universität Trier,
chair), Fabian Klute (UPC Barcelona) and Soeren Terziadis (Eindhoven University of
Technology). During the competition, the members of the steering committee were:

(since 2023) Max Bannach (European Space Agency)
(since 2023) Sebastian Berndt (Universität zu Lübeck)
(since 2016) Holger Dell (Goethe University Frankfurt and IT University of Copenhagen)
(since 2016) Bart M. P. Jansen (chair) (Eindhoven University of Technology)
(since 2020) Lukasz Kowalik (University of Warsaw)
(since 2021) André Nichterlein (Technical University of Berlin)
(since 2022) Christian Schulz (Universität Heidelberg)
(since 2020) Manuel Sorge (Technische Universität Wien)

The Program Committee of PACE 2025 will be chaired by Sebastian Siebertz und Mario
Grobler (both University of Bremen).

https://github.com/heittpr/pace2024
https://github.com/narekb95/ocr-ctw
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6 Conclusion, Reflection and Future Editions of PACE

We thank all the participants for their impressive work, vital contributions, and patience
in case of technical issues. The organizers especially thank the participants who presented
their work at IPEC 2024 in the poster session or during the award ceremony. We are pleased
about the large number of diverse participants and hope the PACE challenge will continue
to build bridges between theory and practice. We welcome anyone interested to add their
name to the mailing list on the PACE website to receive updates and join the discussion.

The Good – What went well

OSCM was a good choice as the problem for the competition: the problem is simple to
understand, requires no background knowledge, and the solutions are easy to verify. We
used a Zulip server for direct communication with and between the participants. This
server was very active, it made it much easier for us to communicate updates with the
participants, and gave them the opportunity to discuss issues and help each other. We had a
very large number of participants, much more than in the previous years. While many of
the approaches were similar in nature, each team found different tricks to reduce instance
sizes or to overcome obstacles. The poster exhibition during IPEC where the winning teams
shared the knowledge they obtained about the problem during the contest was well attended
and sparked several hours worth of discussion. Overall, there was a very friendly and helpful
atmosphere between contestants. The exact and heuristic tracks were very successful with
many different submissions. The participants were also very quick in finding any technical
mistakes that the program committee had made in the provided tools and instances.

The Bad – What could we have done better

Since we guaranteed the exact instances to have not too large crossing numbers, we could
only use instances for the benchmark sets where we knew the optimum solution. But since
our internal solver turned out to be very slow compared to the submissions we received, this
limited the difficulty for the instances we could provide. For example, our solver needed in
total 567 hours to solve the 200 instances of the whole parameterized benchmark set, while
the best submission could solve all of them in merely 5 seconds. In the future, we suggest
that there should also be graphs where the optimum solution is unknown, even if that means
that one cannot give guarantees on the solution. It might make sense to follow the example
of the SAT competition, where each participating team also has to submit a small number of
interesting benchmark instances that are then added to the evaluation set.

Because of our slow solver, we severely overestimated the difficulty of the parameterized
benchmark set. Hence, the parameterized track was more akin to an algorithm engineering
competition where the participants were fighting to scrape off milliseconds from their running
times instead of figuring out how to solve larger instances. To the best of our knowledge, no
submission in this track even used the property that the graphs have small cutwidth. Overall,
the parameterized track did not work out well this time and should be strongly revised before
running it again; there should at least be much larger graphs, larger parameters and/or less
allowed computation time.

The public repository that we set up for the community to share interesting instances
with each other was unused – there have been no pushs except by the program committee.
After the final evaluation and publishing the private benchmark sets, one participant found
that 5 of the instances had multi-edges. All input graphs were supposed to be simple; this

IPEC 2024
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was due to a bug in our graph generators. We had to fix these instances, rerun all solvers on
the fixed versions and change the ranking after publishing the results, which was unfortunate
for teams that dropped in the rankings.

The Ugly – What did we struggle with

We struggled a bit with the tight timeline, as we underestimated the huge computation times
required to find solutions for the benchmark sets. We had access to a 92-core server that
was running non-stop for 4 months. It was very tough for us to predict how hard instances
are and to find interesting instances that fit all constraints to make them interesting: for
example, they should have not too few edges, not require too many crossings, and common
heuristics should not immediately find optimum solutions. Many of these could only be
checked after finding their optimum solution. Thus, we had to create a huge number of
potential instances, many of which turned out to be unusable.

The servers by Optil.io were overloaded by the many submissions. During the last few
days, participants had to wait for many hours until they received a result from their submitted
solvers. This also had the effect that the running times varied a lot; submitting the same
solver twice could lead to completely different timing results. Unfortunately, we could not
find an alternative, as the required server load is too large for non-commercial options. Hence,
we had to evaluate all solvers on our own server after the submission deadline. This also took
a long time: to ensure that each run receives the exact same resources, we could only solve
20 instances in parallel, each of which could take a bit more than 30 minutes, so we needed
up to 5 hours computation for each each of the 75 submissions. While some solvers were easy
to compile and run, others required more time: 15 solvers did not immediately compile or
run without major issues and required help from the teams. To reduce the workload for the
program committee in the future, on option would be to let the participants submit docker
images that should remove these issues.

Finally, one large point of discussion were the rules for the exact track, in particular
that it was not a formal requirement that submissions have to be based on provably optimal
algorithms. The reason for this non-requirement was to encourage new techniques even
without finding a theoretical proof for them. However, this lead to two submissions that were
based on heuristic solvers that just happened to solve also all instance of the exact benchmark
set optimally. The submissions were disqualified due to subsequently found counterexample
instances. For the future, these rules should be revised; either there should be more strict
requirements or the community should get the option to review submitted solvers and find
counterexamples before the rankings are published.

PACE 2025

We look forward to the next edition, which will focus on Dominating Set and Hitting
Set and will be chaired by Sebastian Siebertz and Mario Grobler. Detailed information will
be posted on the website of the competition at pacechallenge.org.
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1 Method

We apply the approach to the one-sided crossing minimization problem presented in [10]. This
article is surveyed by Patrick Healy and Nikola S. Nikolov in Chapter 13.5 of the Handbook
of Graph Drawing and Visualization [7] that is recommended on the PACE 2024 web page [13].
The method consists of a transformation of a one-sided crossing minimization instance to an
instance of the linear ordering problem that is solved by branch&cut as introduced in [4]
and [5]. We also use problem decomposition and reduction techniques as well as a heuristic
for finding a good initial solution. With the required brevity, we give a rough sketch of the
major details.

The instances of the PACE 2024 challenge problem consist of a bipartite graph G =
(T ∪̇B, E) and a fixed linear ordering πT = ⟨t1, t2, . . . , tm⟩ of T (“the top nodes”). In
the exact track and the parameterized track, the task is to find a linear ordering πB of
B = {b1, b2, . . . , bn} (“the bottom nodes”) such that the number of edge crossings in a
straight-line drawing of G with T and B on two parallel lines, following their linear orderings,
is provably minimum. The NP-hardness of this task has been shown in [2].
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For a linear ordering πB of B let

xij =
{

1 if bi appears before bj in πB ,
0 otherwise.

For i, j ∈ {1, 2, . . . , n} let cii = 0, and for i ̸= j let cij denote the number of crossings between
the edges incident to bi with the edges incident to bj if bi appears before bj in πB . Then the
number of crossings induced by πB is

cr(πB) =
n∑

i=1

n∑
j=1

cijxij .

Since for any pair bi ̸= bj in B we have xji = 1 − xij , we can reduce the number of variables
to

(
n
2
)

and obtain

cr(πB) =
n−1∑
i=1

n∑
j=i+1

cijxij + cji(1 − xij) =
n−1∑
i=1

n∑
j=i+1

(cij − cji)xij +
n−1∑
i=1

n∑
j=i+1

cji.

For aij = cij −cji we solve the linear ordering problem as the following binary linear program,
based on the complete digraph D with node set B.

(LO) minimize
n−1∑
i=1

n∑
j=i+1

aijxij

subject to
∑

(bi,bj)∈C:
i<j

xij +
∑

(bi,bj)∈C:
i>j

(1 − xji) ≤ |C| − 1 for all dicycles C in D

0 ≤ xij ≤ 1 for 1 ≤ i < j ≤ n

xij integral for 1 ≤ i < j ≤ n.

If z is the optimum value of (LO), z +
∑n−1

i=1
∑n

j=i+1 cji is the minimum number of crossings.
Notice that the classical linear ordering formulation [4, 5] uses constraints for cycles of length
three only. However, in our approach we also need longer cycles, since we remove some
of the arcs as we shall describe in Section 2. The constraints of (LO) guarantee that the
solutions correspond precisely to all permutations πB of B. Furthermore, it can be shown
that for complete digraphs the “3-cycle constraints” are necessary in any minimal description
of the feasible solutions by linear inequalities, if the integrality conditions are dropped. The
NP-hardness of the problem makes it unlikely that such a complete linear description can be
found. Further classes of inequalities with a number of members exponential in n that must
be present in a complete linear description of the feasible set, are known, and some of them
can be exploited algorithmically. Indeed, small Möbius-ladder constraints, the one shown in
Figure 3 of [4], as well as the same in which all arcs are reversed, have been found useful in
this crossing minimization context.

2 Algorithm and Implementation

When the integrality conditions in (LO) are dropped, we obtain a linear programming
relaxation of (LO) which has been proven very useful in practical applications. The structure
of our branch&cut algorithm oscm (“one-sided crossing minimization”) is similar to the
one proposed in [4]. The algorithm starts with the trivial constraints 0 ≤ xij ≤ 1 that are
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handled implicitly by the linear programming solver, iteratively adds violated cycle and
Möbius-ladder constraints, and deletes nonbinding constraints after a linear program has
been solved, until the relaxation is solved. This requires a separation algorithm that, given
the solution of some relaxation, is able to determine a violated inequality called cutting plane.
If the optimum solution of the relaxation is integral, the algorithm stops, otherwise it is
applied recursively to two subproblems in one of which a fractional xij is set to 1 and in
the other set to 0. Thus, in the end, an optimum solution is found as the solution of some
relaxation, along with a proof of optimality.

oscm makes use of the following observations, some of which stem from the literature
in fixed-parameter algorithms for one-sided crossing minimization. Lemma 1 allows us to
decompose the given instance. Within the components, we can fix and eliminate variables
from (LO) by Lemma 2, and we can exclude variables xij with aij = 0 from (LO) by
Lemma 3.

▶ Lemma 1 (Decomposition). For each node v ∈ B, we define the open interval Iv =]lv, rv[,
where lv is the position of the leftmost and rv the position of the rightmost neighbor of v in
πT . The union of the intervals Iv induces a partition B1, B2, . . . , Bk of B such that every
IBi

=
⋃

v∈Bi
Iv, i = 1, . . . , k, is an interval, and for any pair Bi, Bj the intervals IBi

and
IBj

are disjoint. In every optimum πB all the nodes of Bi appear before those of Bj if IBi
is

to the left of IBj
.

Indeed, 51 of the 100 exact-public instances have between 2 and 154 components.

▶ Lemma 2 (Variable fixing [1]). If for any pair of nodes bi, bj ∈ B, we have cij = 0 and
cji > 0, then every optimal solution of (LO) satisfies xij = 1, if i < j, and xji = 0, if i > j.

▶ Lemma 3 (Arbitrary ordering). Let π
(p)
B be a partial ordering induced by the variables xij

with aij ̸= 0, then there exist values xij ∈ {0, 1} for aij = 0 defining a total ordering πB of B

with no effect to the objective function value. This assignment can be found by topologically
sorting B with respect to π

(p)
B .

This setup has the advantage that (sometimes considerably) smaller linear programs need
to be solved, but, on the other hand, separation becomes more involved. In order to obtain
an optimal partial ordering π

(p)
B of B using the variables left in (LO), we need to include

cycle constraints for larger cycles as already mentioned in Section 1.
For computational efficiency, oscm has a hierarchy of separation procedures. The first for

3-dicycles is based on depth first search. The second for dicycles of length at least 4 with
integral weights is also based on depth first search. Violated dicycles are shortened via breadth
first search, restricted to the cycle nodes, starting from back arcs of the preceding depth
first search. The third applies shortest path techniques for separation of cycles containing
fractional arcs as described for the related acyclic subdigraph problem in section 5 of [6].
First, the above separation procedures are applied on the graph containing only the arcs
present in (LO). If all of the above do not find any violated inequalities, oscm extends the
search to the fixed arcs. After separation, the linear program is resolved using the dual
simplex method providing the same or a better lower bound on the minimum number of
crossings. If the progress compared to the previous bound is small for a sequence of such
lower bounds, oscm applies a heuristic for finding violated Möbius ladder inequalities, and if
this does not lead to a significant improvement, the branch&cut phase is started.

Whenever a linear program has been solved, it is checked by topological sorting if the
solution is the characteristic vector of a linear ordering. If not, a relaxed topological sorting
procedure is applied in the pursuit of finding a better incumbent solution that provides an
upper bound for the minimum number of crossings. oscm stops when the (integral) upper
bound and the (possibly fractional) lower bound differ by less than 1, proving optimality.

IPEC 2024
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For small instances, oscm applies a variant of the heuristic “Kernighan-Lin 2” of [12] for
finding a decent initial solution before the optimization starts.

3 Performance

Our program oscm, published in [9] and [8], consists of roughly 3500 lines of C/C++ code.
It makes use of the coin-or [11] Cbc library, version 2.10.7 [3].

We submitted oscm both to the exact track and the parameterized track of PACE 2024.
In the official ranking, oscm received the first place in the exact track with 199 of the 200
instances instances solved in about 5682 seconds, and the third place in the paramaterized
track with all 200 instances solved in about 25 seconds.
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Abstract
This document contains a short description of our solver pingpong for the one-sided crossing
minimization problem that we submitted to the exact and parameterized track of the PACE
challenge 2024. The solver is based on the well-known reduction to the weighted directed feedback
arc set problem. This problem is tackled by an implicit hitting set formulation using an integer
linear programming solver. Adding hitting set constraints is done iteratively by computing heuristic
solutions to the current formulation and finding cycles that are not yet “hit.” The procedure
terminates if the exact hitting set solution covers all cycles. Thus, optimality of our solver is
guaranteed.
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1 Introduction

One-sided crossing minimization is a fundamental problem in graph drawing. For a given
bipartite graph G = (V1 ∪ V2, E) and a linear ordering τ of V1, the goal is to find a linear
ordering π of V2 that minimizes the number of crossings, i.e., tuples ({u1, u2}, {v1, v2}) ∈ E2

such that τ−1(u1) < τ−1(v1) and π−1(u2) > π−1(v2), with τ−1(x) and π−1(x) being the
position of vertex x in the respective ordering. Vice versa π(i) and τ(i) denote the vertex at
position i in π and τ , respectively.

The objective can be formulated concisely using the notion of crossing numbers: If cuv is
the number of crossings of edges incident to u or v given that u is ordered to the left of v,
the goal is to find a linear ordering π that minimizes

|V2|∑
i=1

|V2|∑
j=i+1

cπ(i)π(j).

1 Corresponding author

© Max Bannach, Florian Chudigiewitsch, Kim-Manuel Klein, and Marcel Wienöbst;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Parameterized and Exact Computation (IPEC 2024).
Editors: Édouard Bonnet and Paweł Rzążewski; Article No. 28; pp. 28:1–28:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:max.bannach@esa.int
https://orcid.org/0000-0002-6475-5512
mailto:florian.chudigiewitsch@uni-luebeck.de
https://orcid.org/0000-0003-3237-1650
mailto:kimmanuel.klein@uni-luebeck.de
https://orcid.org/0000-0002-0188-9492
mailto:m.wienoebst@uni-luebeck.de
https://orcid.org/0000-0003-0378-697X
https://doi.org/10.4230/LIPIcs.IPEC.2024.28
https://github.com/mwien/pingpong
https://github.com/mwien/pingpong-light
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


28:2 UzL Exact Solver for One-Sided Crossing Minimization

In any linear ordering, either u comes before v or the other way around and, hence, it
suffices to consider the difference cuv − cvu. A sensible objective function is thus:

min
π

|V2|∑
i=1

|V2|∑
j=i+1

max(cπ(i)π(j) − cπ(j)π(i), 0)

This formulation is well-known to be identical to the weighted directed feedback arc set
problem with arc u → v having weight cvu − cuv if this weight is positive. To solve this
instance, it is obvious that each strongly connected component can be considered separately.
These insight already renders a considerable amount of instance trivially solvable.

2 Implicit Hitting Set Formulation of Feedback Arc Set

The feedback arc set problem (fas) can be expressed as an instance of the hitting set problem:
Add a set per cycle containing all its edges. Clearly, such a formulation in its explicit form is
infeasible with the number of cycles growing exponentially in the size of the fas instance.

A better approach is to start with a small set of cycles and iteratively add more constraints.
This approach is known as the implicit hitting set algorithm [3] and, in the context of integer
programming, also referred to as lazy constraint generation or row generation. In its simplest
form (which can be refined in many ways), such an iterative procedure could look like the
following for fas:
1. Initialize the set of cycle constraints C in some way.
2. Repeatedly,

a. find the optimal solution of the hitting set instance C and
b. check if this solution is an fas. If this is the case, then terminate and output the

solution. If not, then add cycles to C that are not “hit” by the current solution.

The procedure terminates only when the optimal hitting set solution contains an edge
per cycle in the fas instance, guaranteeing correctness. Importantly, the algorithm often
terminates before all cycles of G were added, thus making it more practical than the naive
explicit formulation mentioned above.

An implementation of this general method for solving fas has recently been described
in [1] and was discussed earlier in the form of a branch-and-cut algorithm in [5]. In both
cases, integer programming is used to find the optimal solution to the hitting set instance.
Denoting the number of vertices in the FAS instance by n, the number of edges by m and
having a variable xi per edge with weight wi as given in the FAS instance, one obtains

min
x

m∑
i=1

wixi

s.t.
∑

xi∈Cj

xi ≥ 1, for each j = 1, 2, . . . , |C|

xi ∈ {0, 1} for all i ∈ {1, . . . , n},

where the hitting set constraints are added lazily until there are no more violations.
We note that the same constraints could also be expressed with a MaxSAT formulation.

However, early benchmarks showed that MaxSAT solvers perform significantly worse for
the instances in this challenge obtained through the reduction from the one-sided crossing
minimization. Hence, we abandoned this approach and focused on the ILP formulation.
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3 Description of Our Approach

We follow the general method described above closely. In this section, we provide more
details regarding our concrete implementation.

We solely used cycles of length three as the initial set of cycles C for most of the challenge
and this approach is still used for larger instances (where a subset of all 3-cycles is randomly
selected). Shortly before the submission deadline, we switched to a more involved generation
procedure for the other instances, in which we first run our heuristic solver [2] to find a good
initial feedback arc set and generate cycles based on it (see more details below on how new
cycles are generated). The improvements here are, however, minor even in cases when the
heuristic can already identify the optimal solution.2

Generally, cycles are added based on utilizing a (not necessarily optimal) solution of the
current hitting set formulation. For this, we consider the subgraph obtained by removing all
edges in this solution set. In the resulting subgraph, an fas is found by a heuristic, which
builds the topological order greedily from left to right,3 and for each edge u → v in this fas,
new cycles are generated by finding short paths from v to u using a breadth-first search. Our
implementation of the approach from the previous section can be described as follows:
1. Initialize the set of cycle constraints C.
2. Find a hitting set based on a degree-based heuristic and add cycles constraints as described

above. If a non-empty set of cycles is added, repeat this step.
3. Find a hitting set based on a rounded lp solution and add cycle constraints as described

above. If a non-empty set of cycles is added, repeat this step.
4. If the objective value of the rounded lp solution and the fractional lp solution differ by

less than one, the found hitting set is optimal. In this case, output the fas and terminate.
5. Try to add violated cycle constraints based on the fractional lp solution. If a non-empty

set of cycles is added, go to step 2.
6. Find a hitting set by solving the ilp optimally. If this set is not an fas, add further

constraints as described above and go to step 2. Else output the fas and terminate.

So, instead of directly starting an exact solver on the given hitting set instance, we
first use heuristics for the purpose of adding new cycle constraints. Due to this interplay
between the heuristics for hitting set and the ones for fas that are combined to generate
cycle constraints, we name our solver pingpong.

As hitting set heuristics we use, on the one hand, a simple degree-based heuristic (which
has the advantage of being extremely fast) and, on the other hand, a relaxed version of the
lp without the integrality constraint enforced (i.e., having 0 ≤ xi ≤ 1). For cycle generation,
we round the solution and further improve it iteratively by a simulated annealing scheme.
Further constraints are added this way as long as the heuristic solution does not cover all
cycles, i.e., is not a valid fas. Our goal is to start the ilp solver only a few times – or not at
all if the rounded lp solution matches the objective value of the fractional lp solution.

Once this subgraph is acyclic, we try to add further cycles based on the fractional lp
solution. We do this only once as this procedure, which is based on Dijkstra’s algorithm [4]
to find violated lp constraints, has significantly larger computational cost compared to the

2 Interestingly, our heuristic solver finds optimal solutions quickly even for some of the instances our
exact solver fails to solve within the 30 minute time limit. This shows that proving the lower bound is
the main problem for these inputs.

3 The next vertex to place in the ordering is chosen such that the sum of violated edge weights is
minimized.
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BFS cycle generation procedure. If it adds no further cycles, the integer program is started
and solved optimally. In the same way as before, the solution of the integer program is used
to add further cycles, unless it already hits every cycle – in this case we found the optimum
and terminate.

We used the HiGHS ILP solver [6] without any further tuning. As this solver does not
yet offer lazy constraint generation, we restarted the solver for any new hitting set instance.
In the future, it would be interesting to analyze how much gains could be made when
implementing a lazy constraint callback.

Our algorithm manages to solve 195 of the 200 total instances in the exact track. Due to
randomness in the cycle generation procedure the run-time can fluctuate for some instances.
For the parameterized track, we submitted a simplified version of our solver, which gives
slightly better performance on smaller and easier instances. For example, it does not use
the degree heuristic for hitting set and the initial cycles are simply all cycles of length 3.
The solver does not make use of the given cutwidth ordering – still, it solves all instances in
about a minute total.
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1 Introduction

One-sided crossing minimization (OSCM) is a problem from layered graph drawing and was
first introduced by Sugiyama et al. [11]. The input is a bipartite graph G = (Vt∪̇Vb, E),
E ⊆ Vt × Vb, with a fixed order πt of Vt. The question is to find an ordering πb of Vb, that
minimizes the number of edge crossings when G is drawn straight-line such that Vt and
Vb are drawn on two respective horizontal lines ℓt and ℓb ordered according to πt and πb,
respectively. It is a purely combinatorial problem as two edges (a, b), (c, d) ∈ Vt × Vb cross if
and only if

a ≺πt
c and d ≺πb

b, or
c ≺πt a and b ≺πb

d

where x ≺π y means that x comes before y in the order π. The problem is NP-hard [4],
heuristics [11, 4], and fixed-parameter algorithms with the natural parameter [3, 2, 8] are
available. It has also been extensively studied with regard to integer linear programming [7].

In Section 2 we give some definitions and in Section 3 we describe our solver.

2 Definitions and Problem Insights

We assume that the input graph is a multigraph as some of our modifications introduce
multiedges. For a set X, let

(
X
i

)
be all the subsets of X of size i. For a vertex u, let N(u) be its

adjacent vertices, and let E(u) be its incident edges. Given u ∈ Vb, we define s(u) as the open
interval (a, b) where a is the minimum index of a neighbour of u in πt, and b is the maximum
index. For u, v ∈ Vb (u ̸= v), let c(u, v) be the number of crossings between edge pairs in the
set E(u)×E(v) when u is placed before v in πb. We have that

∑
{u,v}∈(Vb

2 ) min(c(u, v), c(v, u))
is a lower bound for the number of crossings and

∑
{u,v}∈(Vb

2 ) max(c(u, v), c(v, u)) is an upper
bound. We define cr(u, v) = c(u, v) − min(c(u, v), c(v, u)).
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For an instance G of OSCM let Gd be the directed multi-graph with Vb as vertex set
such that for {u, v} ∈

(
Vb

2
)
, there are c(u, v) arcs from v to u and there are c(v, u) arcs from

u to v. It is known that OSCM is equivalent to finding a minimum feedback arc set in Gd; a
topological order of Gd after removal of the minimum feedback arc set of size k corresponds
to an order of πb with k crossings.

3 Solver description

We describe now our solver. It starts applying several reduction rules and decomposition rules
which split the instance into multiple smaller instances. Then an integer linear programming
formulation is applied that was optimized for sparse graphs.

3.1 Reduction rules
Here, we describe reduction and decomposition rules and how they were implemented and
applied. The first rule is applied during preprocessing and is due to twins in Vb, which can
be contracted.

▶ Reduction Rule 1. Let X ⊆ Vb maximal such that |X| > 1 and ∀u, v ∈ X : N(u) = N(v).
Contract X into a single vertex that has multiedges of multiplicity |X|.

We find such sets X using a trie. The values c(u, v) for the reduced instance are only
computed afterward. The next is due to the formulation as feedback arc set problem.

▶ Decomposition Rule 2 ([9]). Let T = (G1, G2, . . . , Gp) be a topological order of the strongly
connected components of Gd. Then split the instance into G1, G2, . . . , Gp, whose individual
solutions are then concatenated according to the topological order.

We also implemented decomposition rules based on biconnected components of Gd [10], which
almost never applied to the input instances, so it was not included in the final submission.

The next reduction rule fixes the relative order of pairs of vertices in Vb.

▶ Reduction Rule 3 ([3]). If there exist u, v ∈ Vb with c(u, v) = 0, fix u ≺π2 v.

The last reduction rule is more complicated and is related to modular decompositions of
two-structures [6].

▶ Decomposition Rule 4. Let X ⊊ Vb, |X| > 1, such that

∀u, v ∈ X∀w ∈ Vb \ X : cr(u, w) = cr(v, w) ∧ cr(w, u) = cr(w, v).

Then compute an optimal order π1 of X for G[Vt ∪ X]. Let Gc be the graph obtained from
G by contracting X into a single vertex x. Compute an optimal order π2 of (Vb \ X) ∪ {x}
in the reduced instance Gc. By replacing in π2 the contracted vertex x by π1, we obtain an
optimal solution.

The sets X above not containing a randomly chosen y ∈ Vb are computed using a partition
refinement algorithm as described in [6]. The above decomposition rules are applied recursively
with decreasing priority, i.e., Decomposition Rule 2 has the highest priority, Reduction Rule 3
is only applied afterward to the decomposed parts, Decomposition Rule 4 has the lowest
priority. We also implemented the reduction rules, which fix relative orders of vertex-pairs
based on 2/1-structures from [2] with the same priority as Reduction Rule 3.
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3.2 Integer linear program

If no decomposition and reduction rules are applicable, we employ an integer linear program.
The formulation is as in [7]. Assume a total order < on Vb. For each pair u, v ∈ Vb, u < v

we have a binary ordering variable xu,v which is 1 if and only if u ≺πb
v. The formulation is

as follows.

min
∑

u,v∈Vb,u<v

(c(v, u) + xu,v(c(u, v) − c(v, u))) (ILP)

0 ≤ xu,v + xv,w − xu,w ≤ 1 u, v, w ∈ Vb, u < v < w (TRANS)
xu,v ∈ {0, 1} u, v ∈ Vb, u < v (BIN)

Adaptations. Due to Reduction Rule 3 and the reduction rules from [2] we know the relative
order of specific pairs of vertices from Vb. This means that for some ordering variables xu,v

we already know that they are 1 or 0. We remove those variables from the model and replace
them by the corresponding constant in the above model. Resulting constraints which are
satisfied regardless of variable assignment are removed.

Next, the (TRANS)-constraints are separated using a branch and cut approach. This
involves first categorizing the (TRANS) constraints based on the values of s(u), s(v), s(w)
for the vertices u, v, w in each constraint.

If s(u) ∩ s(v) ∩ s(w) ̸= ∅, then it is a type-1 constraint.

If a constraint is type-1 and additionally, there are two pairs x, y and p, q among the
triple u, v, w such that c(x, y) ̸= c(y, x) and c(p, q) ̸= c(q, p), then it is weak-type-1.

If a constraint is not type-1, it is a type-2 constraint.
The idea is that type-1 constraints can be enumerated quickly without storing them by
using a sweep-line over the sorted interval borders of s(u) for all u ∈ Vb. We enumerate
type-2 constraints by saving for each vertex u ∈ Vb the set S(u) of vertices v ∈ Vb with
s(u) ∩ s(v) ̸= ∅. Then the type-2 constraints (which stay after applying reduction rules) can
be found by enumerating pairs in S(u) for each u ∈ Vb. The solver is initialized without
any (TRANS)-constraints. First, only violated weak-type-1 constraints are separated. Once,
there is a separation round where no violated weak-type-1 constraint can be separated, type-1
constraints are separated from now on. Lastly, type-2 constraints are only separated in a
separation round if there are no type-1 constraints that can be separated.

Lastly, we implemented a heuristic that exploits fractional solutions. To this end, we start
with a feasible solution π̂b conforming to the reduction rules. Then we compute values p(u)
for all u ∈ Vb: for each ordering variable xu,v let yu,v be the rounded value in the fractional
solution. We add 1 to p(v) if yu,v = 1, otherwise, we add 1 to p(u). Lastly, for all u ∈ Vb we
add to p(u) the number of v ∈ Vb that are fixed before u according to the reduction rules.
The heuristic computes an ordering starting with π̂b and swapping two adjacent vertices u, v

in π̂b (u before v) where p(u) > p(v) and u does not have to be before v according to the
reduction rules. This is implemented in a bubble-sort-like algorithm. The worst-case runtime
is equal to the number of ordering variable in the reduced model.

The above is implemented in C++17 using SCIP version 9 [1] with Soplex version 7 [5].
Parameters are chosen such that the solver remains in the root of the branch and bound tree
as long as possible.
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Abstract
We describe Crossy, an exact solver for One-sided Crossing Minimization (OSCM) that ranked 5th
in the Parameterized Algorithms and Computational Experiments (PACE) Challenge 2024 (Exact
and Parameterized Track). Crossy applies a series of reductions and subsequently transforms the
input into an instance of Weighted Directed Feedback Arc Set (WDFAS), which is then formulated
in incremental MaxSAT. We use the recently introduced concept of User Propagators for CDCL
SAT solvers in order to dynamically add cycle constraints.
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1 Preliminaries

Given a bipartite graph G = (A, B, E) and a linear ordering on the vertices of A, the
One-sided Crossing Minimization problem asks for a linear ordering ≺ on the vertices of B

that minimizes the number of crossings of a straight-line drawing when placing the vertices
in A and B on two parallel lines in the respective order. To enable some of our reduction
rules, it is convenient to relax the problem and allow the input to be a multigraph.

For u, v ∈ B, define c(u, v) to be the number of crossings between the edges incident to
u and v when u ≺ v. Moreover, we call u ≺ v the natural order of u and v if and only if
c(u, v) < c(v, u). Since in any solution either u ≺ v or v ≺ u, we get a simple lower bound
on the number of crossings:

∑
u,v∈B min(c(u, v), c(v, u)).

The penalty graph of an OSCM-instance is a directed graph on the vertices of B. In
order to penalize pairs of vertices that do not appear in their natural order, we add an arc
u → v carrying weight c(u, v) − c(v, u) for any pair u, v ∈ B with c(u, v) > c(v, u). Note that
the weight of a Minimum Weight Feedback Arc Set in the penalty graph equals the minimum
number of crossings in the corresponding OSCM-instance above its lower bound [8].

We say that we commit u ≺ v if we only look for solutions where u appears before v. To
model this knowledge in the penalty graph, we insert an arc u → v with infinite weight in
this case.
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X1 X3 X5 X7 X9

u v

X0 X2 X4 X6 X8 X10

S

Figure 1 A configuration with u ≺ v. S is the set of vertices between u and v. The sets Xi

partition the neighborhood of S. The figure is adapted from [3].

2 Reduction rules

After merging twins in B and removing isolated vertices, we apply two sets of reduction rules:
one specific to OSCM and the other consisting of general-purpose rules for the Weighted
Directed Feedback Arc Set problem.

2.1 Rules for OSCM
We utilize two well-known rules for OSCM that we call Planar Ordering and Transitivity, and
introduce a new rule, Dominance.

Planar Ordering If there is a pair of vertices u, v ∈ B such that c(u, v) = 0, commit u ≺ v.
Transitivity If u ≺ v and v ≺ w, commit u ≺ w.
The Planar Ordering reduction rule is due to Dujmovic and Whitesides [4]; see their work for
the proof of correctness. The Transitivity rule is straightforward.

Before we formally define Dominance, consider the following argument showing that the
natural order u ≺ v is optimal, in a certain case. Assume by contradiction that u ≺ v is not
optimal, and consider an optimal ordering where v appears before u instead. Let S be the
set of vertices between v and u in this ordering, i.e., S = {w ∈ B | v ≺ w ≺ u}.

In order for u ≺ v not to be optimal, the number of crossings caused by v ≺ S ≺ u must
be strictly less than the number of crossings caused by all configurations with u ≺ v, namely:
u ≺ S ≺ v, u ≺ v ≺ S, and S ≺ u ≺ v. If we can derive a contradiction for each possible set
S, we have proven that u ≺ v is optimal and are able to commit u ≺ v.

Inspired by the tabular analysis technique of Dujmovic, Fernau and Kaufmann [3], let
us categorize the neighbors of S into disjoint sets based on their relative position to the
neighbors of u and v, so that the neighbors in the same set are effectively indistinguishable
with respect to the condition above (see Figure 1).

By introducing variables describing the cardinality of those sets, we can express the
number of crossings for each configuration as a linear combination of these variables. Let
L(x, y, z) denote this linear combination for some configuration x ≺ y ≺ z. Now we can
derive a system of linear inequalities that must hold for u ≺ v not to be optimal:

L(v, S, u) < L(S, u, v)
L(v, S, u) < L(u, S, v)
L(v, S, u) < L(u, v, S).

Additionally, each variable can also be bounded by the number of edges outgoing from
each partition. Finally, we can use an LP solver to check the feasibility of this system of
inequalities, leading us to the following rule:

Dominance If there is a pair of vertices u, v ∈ B such that the LP derived from the above
analysis is infeasible, commit u ≺ v.

Thus, the Planar Ordering rule is a special case of the Dominance rule.
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Although Dominance runs in polynomial time, it is computationally expensive as it
requires solving a linear program for each vertex pair. To mitigate this, we use a weaker rule
that removes upper bound constraints and checks only pairwise inequality feasibility.

This can be done in linear time, resulting in O(|B| · |E|) for all OSCM-reductions.

2.2 Rules for WDFAS
Crossy proceeds to apply very general rules for the Weighted Directed Feedback Arc Set
problem on the penalty graph.

Strongly Connected Components Find a solution for each strongly connected component,
then combine the orderings following a topological ordering of the condensation graph.

Minimum Cut For each arc u → v, commit u ≺ v, if the weighted minimum cut separating
v from u does not exceed the weight of u → v.

Although the Minimum Cut rule can commit some pairs, our experiments show that the
additional computational cost is not justified. We therefore disable it in our implementation,
resulting in the overall running time of O(|B| · |E|) for all preprocessing steps.

3 Incremental MaxSAT formulation

Building on the work of the winning team of the PACE Challenge 2022 [6], we formulate the
Weighted Directed Feedback Arc Set problem as incremental MaxSAT problem, aiming to
hit all cycles in the penalty graph.

3.1 Encoding
For each arc u → v in the penalty graph, we introduce a variable xu→v representing the arc’s
inclusion in the solution. Each variable is assigned the negated weight of its corresponding
arc. If an arc has infinite weight, the variable is set to false. To encode a cycle constraint,
we add a disjunction of the variables corresponding to the arcs in that cycle.

Crossy starts by adding short cycles of length at most 4 to the MaxSAT instance explicitly.
All longer cycles are added dynamically later by the user propagator.

3.2 User Propagator
We modify UWrMaxSAT [7] to allow us to connect a user propagator to its underlying SAT
solver, CaDiCal [1]. The recently introduced IPASIR-UP interface [5] enables us to connect
user-defined propagators to CaDiCal without modifying the solver itself.

Our user propagator employs the concept of Cycle Propagation as introduced by Kiesel
and Schidler [6]. Assigning a negative literal xu→v indicates that the arc u → v is not
included in the solution and, therefore, remains in the graph. Following the SAT solver’s
decision, our user propagator detects if the current assignment would close a cycle. If a cycle
is detected, we add the corresponding cycle constraint to our MaxSAT instance, effectively
pruning the current branch.

We tackle incremental cycle detection with rollbacks by eagerly maintaining the depth of
each vertex. Upon each arc insertion, we recursively update the depths of affected vertices
and check for any newly formed cycles.

As many arcs have infinite weight and thus always remain in the graph, we first compute
the transitive reduction of this subgraph to reduce the workload for our cycle detection.
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4 Discussion

While its performance secured Crossy the 5th place in PACE 2024, there are some challenges
that arise due to its MaxSAT-based cycle-hitting formulation.

The penalty graph of an OSCM instance is known to be very dense, and our cycle-hitting
formulation can result in a large, potentially exponential, number of constraints, even with
the use of a user propagator. An alternative approach, employed by the top 3 teams, uses
transitivity constraints for each triplet of vertices in B, which appears to perform better.

Moreover, OSCM allows for the application of various effective primal heuristics that can
enhance ILP-based approaches but are not applicable to MaxSAT-based solvers like Crossy.

Finally, the performance of UWrMaxSAT in MaxSAT competitions benefits from running
SCIP [2] beforehand. This dependency poses a significant drawback for Crossy, as SCIP
cannot take advantage of the user propagator.
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Abstract
This document describes MAEDM-OCM, a first generation memetic algorithm for the one-sided
crossing minimization problem (OCM), which obtained the first position at the heuristic track of the
Parameterized Algorithms and Computational Experiments Challenge 2024. In this variant of OCM,
given a bipartite graph with vertices V = A ∪ B, only the nodes of the layer B can be moved. The
main features of MAEDM-OCM are the following: the diversity is managed explicitly through the
Best-Non-Penalized (BNP) survivor strategy, the intensification is based on Iterated Local Search
(ILS), and the cycle crossover is applied. Regarding the intensification step, the neighborhood is
based on shifts and only a subset of the neighbors in the local search are explored. The use of
the BNP replacement was key to attain a robust optimizer. It was also important to incorporate
low-level optimizations to efficiently calculate the number of crossings and to reduce the requirements
of memory. In the case of the longest instances (|B| > 17000) the memetic approach is not applicable
with the time constraints established in the challenge. In such cases, ILS is applied. The optimizer
is not always applied to the original graph. In particular, twin nodes in B are grouped in a single
node.
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1 Preliminaries

The One-sided Crossing Minimization problem (OCM) involves arranging the nodes of a
bipartite graph in two layers, so that the crossing of edges is minimized when a straight-line
drawing is performed. In the Parameterized Algorithms and Computational Experiments
(PACE) Challenge, the vertices associated to each of the layers (A and B) as well as the
order of the vertices in A are given. Thus, the problem seeks an order of B so as to minimize
the number of crossings. Since any order of the nodes in B is valid, a natural encoding is a
permutation of the vertices in B, which has been the encoding selected for our method.
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Algorithm 1 Memetic Algorithm with Explicit Diversity Management for OCM.

Require: InitFactor , N (size of population), Stopping criterion Phase 1 (time1), Global
Stopping criterion (time2)

1: Initialization: Generate an initial population P0 with N individuals. Assign i = 0.
2: Iterated Local Search: Apply Iterated Local Search to every individual in P0.
3: Diversity Initialization: Calculate the initial desired minimum distance (D0) as the

mean distance among individuals in P0 multiplied by InitFactor.
4: while the execution time of Phase 1 (time1) has not been reached do
5: Mating Selection: Perform binary tournament selection on Pi in order to fill the

mating pool with N parents.
6: Variation: Apply the cycle-based crossover (CX) in the mating pool to create the

set Oi with N offspring.
7: Iterated Local Search: Apply Iterated Local Search to every individual in Oi.
8: Survivor Selection: Apply Best-Non Penalized survivor selection strategy (BNP)

to create Pi+1 by considering Pi and Oi as input.
9: i = i + 1

10: end while
11: Iterated Local Search: Apply Iterated Local Search to the best evaluated permutation

so far, until time2 is exhausted
12: Return best evaluated permutation.

Regarding the solving strategies, Memetic Algorithms (MAs) are one of the most effective
solvers for NP-hard problems. In fact, in several problems where solutions are encoded as
permutations, MAs are the leading methods. This is the case of the Job-Shop Scheduling
Problem [1] and the Linear Ordering Problem [3], among others. In these cases, the explicit
management of diversity was key to develop robust methods that are able to reach high-
quality solutions with a high probability. Thus, our team decided to adapt some of the
principles that were successful in those problems to the OCM.

2 MAEDM-OCM: a first generation memetic algorithm for the
one-sided crossing minimization problem

The Memetic Algorithm with Explicit Diversity Management for the One-sided Crossing
Minimization problem (MAEDM-OCM) is a first-generation MA. MAEDM-OCM applies a
set of operators that have already proven to be effective for permutation encoding. Given that
short-term executions are performed, a first-generation MA is applied. Thus, a population-
based approach is combined with a non-adaptive intensification scheme which in this case is
Iterated Local Search (ILS). Algorithm 1 shows the general working operation of our proposal.
Differently to most MAs, the method is divided in two phases. In the first phase (lines
1-10) a traditional MA is considered. In the second phase (line 11), ILS is applied to the
best solution found so far. The reason to incorporate this second phase is that for medium
and large instances, the stopping criterion used in the challenge is not enough to evolve a
large number of generations. Thus, there might be opportunity for further improvements by
applying ILS. In spite of this additional change, the most important decisions that affect the
performance of MAEDM-OCM are related to the specific components that were used in the
first phase. In the following, the working operation of each component of the first phase is
described.
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Our approach starts by initializing a population with N individuals, where each per-
mutation is equiprobable (Line 1). Then, each solution is improved with ILS (Line 2). ILS
uses a first-improvement stochastic hill-climber that considers the shift neighborhood [2].
This neighborhood is selected because it can be explored efficiently by storing the crossing
number matrix. Neighbors are generated by moving a vertex in the given permutation to
an alternative position and shifting all the vertices in the intermediate positions. However,
not all the moves are taken into account. Each number is moved to the left and right until
its worsening is larger than a threshold value or until it reaches the first or last position.
Then, the best move is accepted. The worsening threshold is equal to the median value
of the crossing number matrix multiplied by cuttingMult, which is a parameter of the
optimizer. Regarding the perturbations performed by ILS, three different alternatives were
used equiprobably: swap a set of SwapSize pairs of positions, do a random shuffle of a block
with size permBlock or move a block with a size that is selected randomly between 1 and 10
to a random position of the permutation.

An important feature of our approach is that it considers diversity explicitly. This is done
with the replacement strategy, which works by setting a minimum desired distance that is
updated during the run. Similarly to [1], the distances that appear in the initial population
are used to set the initial desired distance (D0) (Line 3). In particular, D0 is calculated as the
mean distance among all the individuals in the initial population multiplied by InitFactor,
which is a parameter of MAEDM-OCM. In order to calculate D0, the Spearman’s footrule
distance [4] is employed.

MAEDM-OCM evolves a set of generations until a given stopping criterion is reached
(Lines 4-10). At each generation, a set of N parents is selected using binary tournaments
(Line 5). Then, the cycle-based crossover is applied (Line 6), and ILS is used to intensify
(Line 7). Finally, the diversity-aware replacement strategy called BNP is applied (Line 8).
BNP is an elitist survivor selection strategy that avoids the survival of too close solutions.
The meaning of too close is defined dynamically. At the initial stages it forces larger distances
between solutions with the aim of promoting exploration, whereas at the final stages closer
solutions are accepted with the aim of promoting exploitation. The details are given in [1].

2.1 Other Improvements and Treatment of Large Instances
There were several low-level optimizations that were important to the efficiency:

The performance of the local search was improved by storing the crossing number matrix
and an improvement matrix that contains the gain of swapping two consecutive nodes of
a solution.
The crossing number matrix is calculated efficiently by using data structures such as
balanced search trees or the two-pointer technique, depending on the size of the instance.
The data types for storing the matrices is adapted depending on the requirements of the
instance.
Twin vertices in B are grouped for creating a shorter graph with parallel edges that can
be used to solve the original problem with a reduced search space.

In spite of the efforts for efficiency, the stopping time established for the challenge was not
large-enough for using the two phases of MAEDM-OCM in the longest instances. In instances
with |B| > 17000, only the second phase is used, i.e. it directly applies ILS. Moreover, in this
case the solution is not created randomly. Instead, for each edge (ai, bi) an score is assigned
which is equal to the amount of existing edges with its A-endpoint lower than ai and its
B-endpoint different to bi. Then, each vertex of B is assigned an score equal to the mean of
its adjacent edges. The initial solution greedily sorts the vertices in B by increasing score.
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1 Problem description and some reflections

1.1 The problem
In the one-sided crossing minimization problem, a graph G = (V, E) is given, which consists
of a vertex set V and an edge set E. G is bipartite as there is a partition of V into two
disjoint subsets V1, V2 (hence, V = V1 ∪ V2, V1 ∩ V2 = ∅, and E ⊆ V1 × V2). We now assume
that the nodes of V1 are arranged in a linear order and placed in one layer, while the ones of
V2 appear in another layer parallel to the first one. Therefore, edges between V1 and V2 may
cross, depending on the sequence of nodes in V1, V2. In it’s one-sided variation, the crossing
minimization problem lies in arranging (ordering) the nodes in V2 – while assuming a fixed
linear order <1 of V1 – such that the total number of edge crossings is minimal.

Several applications for this problem can be found in the literature, with graph drawing
as a prominent example [3].

1.2 A lower bound and a corollary
It follows that the solution to the problem can be characterized as finding a (cost-minimal)
linear order <2 for V2. In any such order, two nodes a, b ∈ V2 can appear either ordered
a < b or b < a, and the crossings count cab or (XOR) cba are part of the optimal value. A
trivial lower bound is obtained by considering all distinct pairs a, b ∈ V2, and computing the
sum over all min{cab, cba}-values.

Concept 1. Based on this lower bound computation, we can construct a digraph on V2,
introducing arcs (a, b) iff cab < cba, and arcs (b, a) iff cba < cab. In some ideal cases,
this digraph is acyclical, and an optimal ordering <2 is quickly computed based on this
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preliminary input. Unfortunately, acyclicity is not always present. It follows that, in
those cases, any linear order <2 breaks at least one (often: some, several) cycles, and the
problem can be reformulated as finding a minimal-cost cycle-breaking of the constructed
digraph. Part of the process now becomes identifying the elementary circuits of the
digraph, e. g. by means of [4], and breaking them in an optimal manner. In our experience,
if G becomes “large”, this process becomes computationally difficult.

Concept 2. Alternative approaches directly construct and manipulate the linear order <2 by
considering a permutation of the nodes in V2, and hence implicitly break existing cycles
by forcing transitivity over all binary relations of a, b ∈ V2. In such a permutation, the
order of nodes in V2 is considered from “left” to “right”, identical to the order of the
node-IDs in the permutation.
As the transition from the digraph into the permutation is a mapping from a higher into
a lower dimensional space (i. e., a lossy compression), such approaches are more direct
but fail to enumerate the cycles in a structured manner.

2 Submitted algorithm

Our approach is primarily based on the principles of Variable Neighborhood Search [2] and
Iterated Local Search [5]. In the spirit of the classification above, we follow Concept 2, and
consider permutations of nodes of V2.

The basic idea of Iterated Local Search is as follows. First, and starting from an initial
solution, we run into a local optimum (and in our case, we apply Variable Neighborhood
Search, i. e., a set of different neighborhoods, to find a best-possible one). Second, a
“perturbation”-/ “shaking”-move is applied, trying to escape the local optimum. Finally,
search continues from here, and the process is repeated until a termination criterion is reached
(which is in most cases – and here – a maximum running time).

Obviously, keeping an elite solution makes sense and is incorporated in our concept, also.

2.1 Preprocessing and reductions
Reducing the size of the instance is beneficial. First, we exclude isolated nodes in V2, i. e.,
nodes that have no edges. Then, and excluding the very large instances, all cab-values are
pre-computed. On this basis, the reduction rules RR1 and RR2, as given in [1], are applied.
Applying those reduction rules is beneficial for most data sets, as we find partial orders on
the set V2, and therefore can tell whether some nodes must precede others in the optimal
solution.

If possible, V2 is further broken down into linearly ordered, disjoint subsets, such that
the nodes of each subset must precede the ones of the following subset in the permutation,
etc. Each subset can then be treated as an independent sub-problem, and the search process
is consequently accelerated. The main idea is to iterate through the nodes of the ordered set
V1, starting with the first (leftmost) node and checking the incident edges for overlaps with
edges of succeeding nodes (on the right of the currently considered one). This partitioning
can be computed in O(|V1| + |E|), and is therefore feasible in cases in which pre-computing
the crossings-matrix is computationally too expensive.

2.2 Initial permutation of V2

The starting solution stems from the barycenter-heuristic [6]. In this approach, the average
positions of adjacent nodes of each node in V2 are computed, and the nodes are subsequently
sorted in non-decreasing order of those values.
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Starting with this heuristics is important, as the challenge organizers have published some
instances for which this approach yields the optimal solution. In those cases, our program
terminates early. In the Heuristics-Track of the competition, this applies to 12 of the 100
instances.

2.3 Intensification: Improvement moves
We exhaustively search for improving moves until a local optimum is reached. The following
neighborhoods are employed.

First and foremost, the single node move tries to remove a node from it’s current position
and re-insert in some other place in the permutation. Re-insertion positions are considered
to the “left” and to the “right”, starting with close reinsertions and working the way up
to ones further away.
Besides, block moves try to move entire blocks of subsequent nodes. The size of the blocks
range from 2 to 5 nodes. Our experiments indicate that block moves contribute to the
performance of the algorithm only a little – but still they do.

Improving moves are always accepted, and moves that do not change the quality of the
current solution are considered with a certain probability in order to diversify the search.

2.4 Speed-ups
Several truncation-techniques are implemented in order to speed-up the search. Obviously,
moves that contradict the order given by the reduction rules RR1 and RR2 are omitted. Also,
when moving a node (or a block), movements are stopped once their cumulative change in
the objective function value exceeds a certain threshold: In those cases, we do not hope for
an improvement to show up when trying to move the node even further.

For the larger instances, i. e. the ones in which computing the crossings matrix is considered
to be computationally too expensive, we truncate the movements further by introducing a
maximum range (change of positions) for shifting nodes in the permutation. This is important
as the algorithm otherwise spends too much time re-inserting a give node before moving on
to the next node.

2.5 Diversification: Perturbation move
Once a local optimum is reached, a subset of the permutation is reversed and search continues
from here. We allow for a maximum of 20% of the permutation to be reversed. Based on our
experiments, this value presents a good compromise between diversifying and intensifying
the search.

2.6 Parameter tuning
Finding good values to the guiding parameters is not to be neglected. In fact, more than
24,000 runs have been conducted to find an appropriate setting, i. e., a single, identical setting
for all test instances.

In this process, it has been verified that reversing up to 20% of the nodes the permutation
in the diversification move is a good choice. Bigger percentages work, too, but diversify the
search more and hence require relatively more computing time in order to find excellent
results.
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Also, nodes and blocks of nodes in V2 are shifted at most ±3900 positions to either
“left” or “right”. Again, other values work also, but this number appears to be around the
sweet-spot for the available instances.

3 Overall ranking and some insights

Despite being a relatively comprehensive approach, our concept ranked third in this very
competitive challenge (the Heuristics-Track of PACE 2024). We attribute this to the rather
well-done implementation, along with some clever speed-up techniques as outlined above.

Even more successful approaches (Memetic Algorithms) make use of an archive of local
optima. Such concepts have not been used by us here, but given the direct comparison to
the top-ranked team, such a algorithmic design element would have been beneficial, indeed.

4 Source-code

The source-code of our contribution has been published under the Creative Commons
Attribution 4.0 International Public License and made available under https://doi.org/
10.5281/zenodo.11465516.
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1 Introduction

In the Parameterized Algorithms and Computational Experiments (PACE) Challenge of
2024, the problem of interest was One-Sided Crossing Minimization (OCM). In this
problem, we are given a bipartite graph with vertex partitions A and B which are drawn
horizontally and in parallel. A comes with a fixed linear order and is thus called the set of
fixed vertices, while the ordering of the vertices in B is unknown (we call these vertices free).
The goal is to find an ordering of the vertices in B that minimizes the total number of edge
crossings when all edges are drawn with straight lines. Usually, exact and heuristic solvers for
OCM will first require the computation of the so-called crossing matrix or crossing numbers
[4, 6, 7, 11]. An entry cuv with u, v ∈ B denotes the number of edge crossings between edges
incident to u and edges incident to v, when u appears before v in the ordering. The penalty
graph of our OCM instance is a directed graph (B, E) where E := {(u, v) ∈ B2 | cuv < cvu}
with edge weights w((u, v)) = cvu − cuv. Sugiyama et al. [15] observed a connection between
OCM and the Feedback Arc Set of the penalty graph: An optimal ordering of the vertices in
B for OCM is equal to a topological ordering when an optimal Feedback Arc Set is removed
from the penalty graph. In the following, we consider OCM instances and graphs to be large
if the solver opts not to generate and store their crossing matrix and penalty graph due
to memory limitations. In our submitted solver all instances with more than 10, 000 free
vertices are considered large.
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X Y Z

(a) Strongly connected components of a penalty
graph.

1 2 3 4

5 7 9 6 8 10

A:

B:

(b) OCM instance splittable by partitioning the
set of free vertices into {{5, 7, 9}, {6, 8, 10}}.

Figure 1 Graph splitting approaches.

2 Data Reduction Rules

The following methods are employed in the heuristic, exact and parameterized track. Before
applying data reduction rules we try to split the OCM instance into several smaller instances.
We can solve each strongly connected component of the instance’s penalty graph individually
and concatenate their solutions in the topological order of the penalty graph’s strongly
connected components (visualized in Figure 1a).

If the graph is large, then the above approach is infeasible. Instead, we try to split the
graph by partitioning the free vertices B into non-empty subsets B = {B1, B2, . . . Bk} such
that there are no vertices u, v, w ∈ A with u before v before w in the fixed order of A and sets
Bi, Bj ∈ B with u, w ∈ N(Bi) and v ∈ N(Bj). In other words the neighborhood intervals of
the elements of B do not overlap in the set of fixed vertices. We can split a graph into the
induced subgraphs of each partition element and potentially further split these subgraphs
with the aforementioned splitting approach. An example OCM instance that can be split via
partitioning is Figure 1b.

Additionally, we apply data reductions proposed by Dujmovic et al. [4]. In particular
their rules RR1, RR2, RRLO1 in unmodified form and a modified version of their RRlarge rule
that accounts not only for an upper bound but also for the trivial lower bound described by
Nagamochi [12].

3 Heuristic Track

We use different approaches to find a heuristic solution depending on the size of the graph.
For small and medium-sized graphs, the repeated application of our methods leads to better
results, but on large graphs, even a single application may stress the resource limit. The
first step in our heuristic for small to medium graphs is to compute an initial order with the
median heuristic which was introduced by Eades and Wormald [5].

Local Search

Sifting. To improve an order, we use sifting, which was first introduced by Rudell [14]. One
vertex is taken at a time and placed at the position in the order which minimizes the total
number of crossings. We do this exhaustively for all free vertices of the graph, but choose
the sequence in which we sift the vertices randomly. After applying sifting on the order
computed by the median heuristic, we apply it on random orders and store the order with
the fewest crossings.
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Swapping. To escape local optima, we use force swapping if no better solution was found
for 592 iterations1 of using a random order with sifting. Force swapping is done by choosing
two vertices and swapping their positions in the order. Then, we use sifting to improve the
order while requiring that the relative position of the two vertices remains unchanged. We
iterate through all vertices in a random order, swapping each vertex with its immediate right
neighbor within the current best ordering. Subsequently, we increment the distance from the
swapped vertices in each iteration by 9 until the distance is greater than 90.

Large Graphs

For large graphs, we first compute an order with the median heuristic and try to improve it
by swapping neighboring vertices in the order until 10% of the available time is used. We
repeat the same with the barycenter heuristic [15]. Then, we use a variation of sifting to
improve the best order found so far. Instead of checking all possible positions for each vertex
in the order, we skip the vertex if the total number of crossings increases by 20,000 or more.
We sift the vertices until the time limit is reached.

4 Exact Track & Parameterized Track

For the exact solver we mainly use the idea described in the introduction to translate our
OCM to an FAS instance. Our approach for solving the FAS instance is based on an algorithm
by Grötschel et al. [1]. The idea is to solve the FAS problem iteratively, by only looking at a
subset C of all cycles from the input graph G and add cycles until one can guarantee that
the solution, when only looking at the cycles C, is also optimal for the initial graph.

ILP. To now solve a partial instance of feedback arc set with the cycles C, we use the
following ILP formulation, which was widely used to solve FAS [1, 8, 13]:

min
∑
e∈E

w(e) · ye

s.t. ye ∈ {0, 1} for all e ∈ E∑
e∈C

ye ≥ 1 for all C ∈ C

Where we have a variable ye for each e ∈ E, which is 1 if and only if the edge e is part of an
FAS. As a solver we use SCIP v9.0 [3] and together with row generation and a warm startup
so it can use results from the previous iteration, when solving the next iteration with more
cycles.

Branching. For graphs where the upper bound is smaller then 10, we use a branch & bound
algorithm to solve FAS. The algorithm branches on the edges of a cycle, uses a meta-heuristic
by Lan et al. [9] as upper bound and a packing lower bound of the cycles.

The main reason for the use of the branching comes into play for the parameterized track.
Here, our graphs decompose into a lot of small components using the splitting described in
Section 2. When we then used SCIP to solve FAS, there was a large overhead in calling the
ILP compared to the time the ILP needed to solve the instance.

1 The exact values were found with SMAC3 using a subset of the public instances for training [10]
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Abstract
The 2024 PACE challenge is on One-Sided Crossing Minimization: Given a bipartite graph with
one fixed and one free layer, compute an ordering of the vertices in the free layer that minimizes
the number of edge crossings in a straight-line drawing of the graph. Here, we briefly describe our
exact, parameterized, and heuristic submissions. The main contribution is an efficient reduction to a
weighted version of Directed Feedback Arc Set, allowing us to detect subproblems that can be
solved independently.
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1 Introduction

Let G = ((A ⊎ B), E) be an undirected bipartite graph with vertex partition (A, B). In
One-Sided Crossing Minimization (OCM), an ordering τ of A is given and the task is to
compute an ordering π for B that minimizes the edge crossings in a straight-line drawing
of G. The number of edge crossings for a linear ordering of B can be computed by comparing
pairs of vertices in B separately. Let cu,v denote the number of edge crossings between u

and v when u is placed before v. The cost of an ordering π of B is
∑

u,v∈B|π(u)<π(v) cu,v. We
will denote by ℓu and ru the leftmost and rightmost neighbors of u with respect to τ in A.

2 Preprocessing

The first step of both our exact and heuristic solvers is to reduce OCM to the weighted
version of Directed Feedback Arc Set (DFAS). The instance for the latter problem will
contain a vertex v′ for each vertex v ∈ B. For each pair u, v of vertices in B, compute cu,v

and cv,u. Add a directed arc (u′, v′) of weight cv,u − cu,v if cu,v ≤ cv,u. Otherwise, add the
arc (v′, u′) with weight cu,v − cv,u. Assume without loss of generality that cu,v < cv,u. Then,
if we place u′ before v′ (which corresponds to placing u before v), then we pay cu,v, and if we
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sparse

dense
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b1 b2

b3

7
1

1

1

1
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b1 b2

b3

7
1

1

1

1
1

20 crossings

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

b2 b3 b0 b1

19 crossings

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

b1 b3 b0 b2

Input

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

b0 b1 b2 b3

Figure 1 Example showing how an optimal solution to a sparse component can be suboptimal.
The two DFAS instances in the middle have optimal solutions shown by red edges. When lifting the
solution back to the OCM problem, the sparse component places b1 and b2 in the wrong order.

place u′ after v′, then cv,u = cu,v + (cv,u − cu,v). Since we are only interested in minimizing
the number of crossings and the difference between these two options is preserved, we get an
equivalent instance of Directed Feedback Arc Set.

One very effective reduction in the constructed DFAS instance is that edges between
strongly connected components can be deleted since these edges are not part of any cycles.
Furthermore, strongly connected components can be solved independently. We initially
construct a sparse instance to speed up the search for strongly connected components. Two
types of edges will be ignored at this stage: (1) edges (u′, v′) where cu,v = 0 and (2) edges
(u′, v′) where cu,v = cv,u. The construction of this sparse instance works as follows:

1: π ← {ℓu0 ≤ ℓu1 ... ≤ ℓu|B|−1}
2: for i = 0, . . . , |B| − 1 do
3: for j = i + 1, . . . , |B| − 1 do
4: u← π[i], v ← π[j]
5: if ru ≤ ℓv then
6: break ▷ all remaining pairs have cu,v ̸= 0 and cv,u ̸= 0
7: if cuv < cvu then
8: Add edge (u′, v′) with weight cvu − cuv

9: if cuv > cvu then
10: Add edge (v′, u′) with weight cuv − cvu

The break statement on lines 5 and 6 (highlighted in red) is what makes this procedure
worthwhile. When we first encounter a pair of vertices that have cu,v = 0, we know that every
remaining u, v pair in the inner most loop must also have cu,v = 0, since ℓv is increasing.
This improvement had large effects on many of the test instances. We will show next that
looking for strongly connected components in this graph is safe. However, such edges within
a strongly connected component cannot be ignored as the example in Figure 1 shows.

We proceed by showing that ignoring edges between different strongly connected com-
ponents in the described graph G′ is safe. To this end, we consider three types of arcs
(represented by colors). We color an arc (u′, v′) as follows. If cu,v = 0, then we color the arc
red. If cu,v = cv,u, then we color the arc green. All other arcs (those that we do not ignore)
are blue. We will repeatedly make use of the following lemma.

▶ Lemma 1. If (u′, v′) is a red arc and (v′, w′) is a blue arc, then (w′, u′) cannot be a green
or blue arc. The same holds if (u′, v′) is blue and (v′, w′) is red.
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Proof. We will only show the statement for (u′, v′) being red as the other case is symmetric.
Assume towards a contradiction that (w′, u′) is a green or blue edge. Note that (u′, v′)
being red implies that ℓv > ru. Let L, R ⊆ A be the set of neighbors of w to the left/right
of ru, that is, a ∈ A belongs to L if τ(a) < τ(ru) and a belongs to R if τ(a) > τ(ru). Note
that cw,u ≥ |N(u)| · |R|. Since (w′, u′) is green or blue, it holds that cu,w ≥ cw,u ≥ |N(u)| · |R|.
This implies that |L| ≥ |R|. However, since ℓv > ru, this implies also that cv,w ≥ |L|·|N(v)| ≥
|R| · |N(v)|cw,v ≥ cw,v which contradicts the fact that (v′, w′) is a blue arc. ◀

We need to show that there is no directed cycle consisting of arcs with positive weights
that contains a red or green arc (u′, v′) where u′ and v′ belong to different strongly connected
components in the graph induced by all blue arcs. Note that since all green arcs have weight 0,
they can never be part of such a cycle. So assume towards a contradiction that there exists a
directed cycle C that contains a red arc (u′, v′) where u′ and v′ belong to different strongly
connected components in the graph induced by all blue arcs and all arcs in C are red or blue.
We assume without loss of generality that C is the shortest (in terms of number of vertices)
such cycle. Let C = (v′ = w′

0, w′
1, . . . , w′

c = u′). Note that by definition (w′
i, w′

i+1) exists and
is either a blue or a red arc. Note that if any red or blue arc (w′

i, w′
j) with i < j − 1 exists,

then this is a shortcut and contradicts the fact that C is a shortest cycle. Moreover, any red
arc (w′

i, w′
j) with i > j (other than i = c and j = 0) would also imply a shorter cycle than C.

Next, assume that some arc (w′
i, w′

i+1) is red. Now any blue arc (w′
j , w′

k) with j > i

and k ≤ i would contradict the fact that C is a shortest cycle. Hence, all such arcs are
green. Now consider the arc (w′

i−1, w′
i) (where w′

i−1 = u′ if i = 0). If this arc is red,
then rwi−1 ≤ ℓwi

≤ rwi
≤ ℓwi+1 , showing that (w′

i−1, w′
i+1) is a red arc, a contradiction.

Hence, the arc is blue (and w′
i−1 ̸= u′). However, now (w′

i−1, w′
i) is blue, (w′

i, w′
i+1) is blue,

and (w′
i+1, w′

i−1) is green as i + 1 > i and i − 1 ≤ i shows that the arc cannot be blue
and it can also not be red as shown above. This contradicts Lemma 1 and shows that all
arcs (w′

i, w′
i+1) are blue.

To conclude the argument that C cannot exist, consider the pair {u′, w′
1}. By Lemma 1,

there cannot be a green arc between the two. We now consider two cases, c = 2 (that is, C

consist of u′, v′, and w′
1) or c > 2. If c = 2, then (w′

1, u′) is a blue arc and this contradicts
Lemma 1. If c > 2, then there cannot be an arc (w′

1, u′) as this would contradict the fact
that C is a shortest cycle. Hence, in this case (u′, w′) is a blue arc (it cannot be red arc as
this would mean that we could exclude v′ from C to get a shorter cycle through a red arc).
Hence, w′

1 and u′ (and in fact all w′
i other than v′) belong to the same strongly connected

component in G′. Now consider any vertex w′
i with i /∈ {0, 1, c}. As shown above, the

arc (v′, w′
i) is not red or blue. Hence, the arc (w′

i, v′) is red, blue, or green. It cannot be
red as this would result in a shorter cycle than C through this arc. It can also not be blue
as this would mean that v′ is in the same strongly connected component in G′ as w′

i (and
therefore as u′). Thus, all such edges are green but this means that the edge (v′, w′

c−1) is
green, a final contradiction to Lemma 1.

3 Tiny components

We use a dynamic-programming algorithm to solve tiny components quickly when the number
of vertices is at most twenty. It could also be used to solve larger components, but our
dedicated exact solver will solve larger instances faster. The algorithm is based on the
dynamic-programming algorithm for DFAS by Lawler [2] and can simply be described by
the recurrence

dp(∅) = 0 | dp(S) = min
u∈S

dp(S \ {u}) + deg(u, S)

where deg(u, S) is the number of edges going from u to S.

IPEC 2024
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4 Heuristic

Our heuristic mainly relies on the cutting technique introduced by Park and Akers [3].
Instead of explicitly breaking cycles, consider the DFAS problem as finding an ordering of
the vertices that minimizes the number of edges going from right to left. Now, the cutting
technique used by Park and Akers searches every continuous subgraph in the current ordering,
and any cut within each subgraph. If, at any time, the number of edges going backward
across the cut is larger than the number of edges going forward across the cut, we swap the
vertices before and after the cut. While this procedure seems like it would take O(n4) time,
it can be done in O(n3) time using a cut matrix [3]. To speed up the computation further,
we also limit the distance the cut can be from any side of the subgraph.

In several instances, the cutting idea is still too slow, so we only use it after cheaper
greedy improvements fail to make progress. We randomize the current solution to escape
local minimums by swapping 1–3 random pairs of vertices while always returning to the best
solution if the next local minimum was worse. In very few cases, the graphs are so large that
reducing to DFAS is impossible without exceeding the memory or time limits. In these cases,
we only use greedy improvements while repeatedly computing cu,v when needed.

5 Exact

We first run our heuristic for each large component to get an upper bound on the DFAS
solution. Then, our exact method starts by enumerating all short cycles in the graph (cycles
with at most four vertices). Then, create a MaxSAT instance where each cycle is a hard
constraint requiring at least one of the edges in the cycle to be picked. Every edge also has its
own soft constraint with the weight of the edge. We then solve this MaxSAT instance using
the solver UWrMaxSat [4]. There are now two termination conditions: (1) after removing
the edges from the MaxSAT solution, the resulting graph is acyclic, and (2) the cost of the
MaxSAT solution is equal to our upper bound. In both cases, we have an optimal solution.
In the first, the edges removed in our MaxSAT instance also make an optimal solution to
the DFAS problem. In the second case, we know our upper-bound solution was optimal.
Otherwise, the solver proceeds by temporarily removing the edges in the latest solution from
the MaxSAT instance. Since this graph is not acyclic, we can find new cycles using a depth
first search. We add these cycles to our MaxSAT instance and repeat until we hit one of
the two termination conditions mentioned above.
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Abstract
Given a bipartite graph (A, B), the one-sided crossing minimization (OCM) problem is to find an
ordering of the vertices of B that minimizes the number of edge crossings when drawn in the plane.

We introduce the novel strongly fixed, practically fixed, and practically glued reductions that
maximally generalize some existing reductions. We apply these in our exact solver OCMu64, that
directly uses branch-and-bound on the ordering of the vertices of B and does not depend on ILP or
SAT solvers.
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1 Introduction

The 2024 edition of PACE, an annual optimization challenge, considers the one-sided crossing
minimization problem, defined as follows. Given is a bipartite graph (A, B) that is drawn in
the plane at points (i, 0) and (j, 1) for components A and B respectively. The ordering of A

is fixed, and the goal is the find an ordering of B that minimizes the number of crossings
when edges are drawn as straight lines. We introduce some new reductions and give an
overview of our algorithm. Proofs are brief or omitted due to lack of space.

2 Definitions

We use < to compare vertices in A in their fixed ordering. We generalize to weighted graphs
for the proof of Lemma 3: a node u ∈ B is taken to be a function u : A → R≥0, where weight 0
represents an absent edge. Write N(u) = supp(u) ⊆ A for the set of neighbors of u. We write
Wu =

∑
a∈A u(a) for the total weight of u, and set ū = u/Wu. We think of ū as a probability

distribution, and also consider the cumulative distribution function Fū(b) =
∑

a≤b ū(a). We
write c(u, v) =

∑
(a,b)∈A2 u(a)v(b)[a > b]; in the unweighted case, this is the crossing number,

the number of crossings between edges incident to u and v when u is drawn before v. For
X, Y ⊆ B we set c(X, Y ) =

∑
x∈X

∑
y∈Y c(x, y) for the cost of ordering all vertices of X

before all vertices of Y . More generally, c(X, Y, Z) = c(X, Y ) + c(X, Z) + c(Y, Z). We also
consider the reduced cost r(X, Y ) = c(X, Y ) − c(Y, X), which is negative when X is better
before Y and positive when X is better after Y .

We write u ≺ v when u must come before v in all minimal solutions, and say that (u, v)
is a fixed pair.
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(a) An instance of Observation 1. (b) Examples of blocking sets (Lemma 7), preventing u ≺ v.

(c) Examples of strongly fixed pairs (Definition 2).

Figure 1 Various examples of u, v ∈ B, whose neighbors neighbours in A (on the dashed line)
have fixed positions.

3 Methods

3.1 Reductions
Fixed pairs. To reduce the search space of all possible orderings of B, it is crucial to
automatically find as many fixed pairs in B as possible. Ideally, one would be able to
determine whether u ≺ v by inspecting only u, v. For example, the following result, shown
in Figure 1a is well known [2, Lemma 1], [1, RR1].

▶ Observation 1. Let u, v ∈ B. When max N(u) ≤ min N(v) and ū ̸= v̄, then u ≺ v.

We give a much stronger version of Observation 1, with some examples in Figure 1c.
In fact, Lemma 3 is the strongest generalization possible when only considering u and v

themselves, without further inspection of A or the other elements of B (see Remark 6). This
also generalizes RR3 of [1].

▶ Definition 2 (Strongly fixed pair). We call u, v ∈ B a strongly fixed pair if for every b ∈ A

we have Fū(b) ≥ Fv̄(b), and at least one of these inequalities is strict. Note that this implies
r(u, v) < 0.

▶ Lemma 3. When u, v is a strongly fixed pair, then for any w : A → R≥0 we have

r(w, v̄) ≤ r(w, ū).

Proof. Consider the least element a0 ∈ A such that ū(a0) ̸= v̄(a0). We must have ū(a0) >

v̄(a0). Now consider the transformation of ū which “moves” δ := ū(a0) − v̄(a0) of weight
from a0 to its successor a1 ∈ A, and call this transformed function ū′. Then

r(w, ū′) = r(w, ū) − δw(a0) − δw(a1) ≤ r(w, ū).

Since v̄ is obtained from ū by a sequence of such transformations, the inequality follows. ◀

▶ Lemma 4. If (u, v) is strongly fixed, then u ≺ v.

Proof. Suppose towards a contradiction that v < x0 < · · · < xk < u is part of an optimal
solution. Write X =

∑
i xi for the combined function. Then by assumption r(X, u) ≤ 0, and

therefore r(X, v) = Wvr(X, v̄) ≤ Wvr(X, ū) = Wv/Wu · r(X, u) ≤ 0. But then c(X, u, v) <

c(X, v, u) ≤ c(v, X, u), which contradicts (v, X, u) being optimal. ◀
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▶ Remark 5. Consider u ̸= v from the original, unweighted problem, taking only values 0, 1.
Let n = |N(u)|, m = |N(v)|, and consider both as ordered lists. Then u, v are strongly fixed
if and only if for all 0 ≤ i < n, N(u)i ≤ N(v)⌊i·m/n⌋ and at least one of the inequalities is
strict, which is how we check in practice whether u, v is strongly fixed.
▶ Remark 6. Suppose that u, v with ū ≠ v̄ are not strongly fixed, and let b ∈ A be such
that Fū(b) < Fv̄(b). We would like to construct a node X ∈ B such that c(v, X, u) <

min(c(X, u, v), c(u, v, X)), so that v ≺ u. Suppose that there are nodes l, m, r ∈ A, with m

sitting between b and its successor in A, and l < (supp(u) ∪ supp(v)) < r (see Figure 1b).
Then let X be connected to l, m, r. By choosing the weights of X appropriately, we can let
both r(X, v) = Wvr(X, v̄) and r(u, X) = Wur(ū, X) grow arbitrarily large. Since we can
scale up the weights of X, it suffices to make r(X, v̄) and r(ū, X) simultaneously positive.

Now r(X, v̄) = (2Fv̄(b) − 1)X(m) + (X(r) − X(l)), and r(ū, X) = (1 − 2Fū(b))X(m) −
(X(r) − X(l)). By choosing the weights X(r), X(l) appropriately, we can make these two
values equal, so it suffices if their average is positive, and indeed

(r(X, v̄) + r(ū, X))/2 = X(m)(Fv̄(b) − Fū(b)) > 0.

This implies c(v, X, u) < min(c(X, u, v), c(u, v, X)), and thus demonstrates that if one wants
to show that u ≺ v, when u, v are not strongly fixed, one must consider features of the graph
other than u, v and their neighbours. In other words, Lemma 3 is optimal. Note that this
remark also applies in the unweighted case, by taking l, m, r to be sets of nodes rather than
single nodes with weighted edges.

Although such a node X may exist in theory, it does not have to exist in the actual set
B, motivating the following definition that generalizes RRLO2 of [1].

▶ Lemma 7. Suppose r(u, v) < 0. A blocking set X ⊆ B − {u, v} is a set such that
c(v, X, u) ≤ min(c(v, u, X), (X, v, u)). If there is no blocking set for (u, v), we call it a
practically fixed pair, and u ≺ v.

In practice, such a blocking set X can be found, if one exists, using a knapsack-like
algorithm: for each x ∈ B − {u, v}, add a point Px = (r(v, x), r(x, u)), and search for a
subset summing to ≤ (r(u, v), r(u, v)). Figure 1b shows some examples.

Note that we do not require (v, X, u) to be a true local minimum, since we do not consider
interactions between vertices in X, as that would make ruling out the existence of such sets
much harder.
▶ Remark 8 (Weak variants). It is also possible to consider weak variants of the above lemmas
that only imply that u < v in some optimal solution. This requires careful handling of cycles
like u ⪯ v ⪯ w ⪯ u.

Gluing. We now turn our attention to gluing, i.e., proving that two vertices u and v always
go right next to each other, and we can treat them as a single vertex. First, let us see that
we cannot get a “strong gluing” result analogous to Lemma 4.
▶ Remark 9. When N(u) = N(v) in the unweighted case, or more generally ū = v̄, we can
glue u and v. Otherwise when r(u, v) ≤ 0, there is an X : A → R≥0 such that (u, X, v) is
strictly better than (u, v, X) and (X, u, v).

▶ Lemma 10 (Practical gluing). Let u and v satisfy r(u, v) ≤ 0. A non-empty subset
X ⊆ B − {u, v} is blocking when c(u, X, v) ≤ min(c(u, v, X), c(X, u, v)). If there is no
blocking set, then we can glue u, v.

IPEC 2024
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Again such sets X can be found or proven to not exist using a knapsack algorithm: add
points Px = (r(u, x), r(x, v)) and search for a non-empty set summing to ≤ (0, 0).

Let us also mention this gluing-like reduction: gluing to the front, implied by [1, RRL01].

▶ Lemma 11 (Greedy). When r(u, x) ≤ 0 for all x ∈ B, there is a solution that starts with u.

▶ Remark 12 (Tail variants). Our branch-and-bound method fixes vertices of the solution
from left to right. Thus, at each step Lemmas 7 and 10 can be applied to just the tail.

3.2 Branch-and-bound
Our solver OCMu64 is based on a standard branch-and-bound on the ordering of the solution.
We start with fixed prefix P = () and tail T = B, and in each step we try (a subset of) all
vertices in T as the next vertex appended to P . In a preprocessing step we compute the
trivial lower bound S0 =

∑
u,v min(c(u, v), c(v, u)) [5, Lemma 4][2, Fact 3] on the score. We

keep track of the score SP of the prefix and SP T = c(P, T ) of prefix-tail intersections, and
abort when this score goes above the best solution found so far. The excess of a tail is its
optimal score minus the trivial lower bound. We do a number of optimizations.

Graph simplification We drop degree-0 vertices, merge identical vertices, and split the graph
into independent components [2, Corollary 2] when possible. We find an initial solution
using the median heuristic [3, 5] and a local search that tries to move slices and optimally
insert them [8, 4], and re-label all nodes accordingly to make memory accesses more
efficient.

Fixed pairs We find all strongly fixed pairs and store them. For the exact track we also find
practically fixed pairs. Instances for the parameterized track are simple enough that the
overhead was not worth it. Also for each tail we search for new “tail-local” practically
fixed pairs. In each state, we only try vertices u ∈ T not fixed by another v ∈ T .

Gluing We use the greedy strategy of Lemma 11. Our implementation of Lemma 10 contained
a bug, so we did not use this. (Also benefits seemed limited.)

Tail cache In each step, we search for the longest suffix of T that was seen before, and reuse
(the lower bound on) its excess. We also cache the tail-local practically fixed pairs.

Optimal insert Instead of simply appending u to P , we insert it in the optimal position.
Note that the implementation is tricky because it interacts in complicated ways with the
caching of results for each tail.
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