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Abstract
Let G = (V, E) be an undirected weighted graph on n = |V | vertices and S ⊆ V be a Steiner set.
Steiner mincut is a well-studied concept, which also provides a generalization to both (s, t)-mincut
(when |S| = 2) and global mincut (when |S| = n). Here, we address the problem of designing a
compact data structure that can efficiently report a Steiner mincut and its capacity after the failure
of any edge in G; such a data structure is known as a Sensitivity Oracle for Steiner mincut.

In the area of minimum cuts, although many Sensitivity Oracles have been designed in unweighted
graphs, however, in weighted graphs, Sensitivity Oracles exist only for (s, t)-mincut [Annals of
Operations Research 1991, NETWORKS 2019, ICALP 2024], which is just a special case of Steiner
mincut. Here, we generalize this result from |S| = 2 to any arbitrary set S ⊆ V , that is, 2 ≤ |S| ≤ n.

We first design an O(n2) space Sensitivity Oracle for Steiner mincut by suitably generalizing the
approach used for (s, t)-mincuts [Annals of Operations Research 1991, NETWORKS 2019]. However,
the main question that arises quite naturally is the following.

Can we design a Sensitivity Oracle for Steiner mincut that breaks the O(n2) bound on space?

In this article, we present the following two results that provide an answer to this question.
1. Sensitivity Oracle: Assuming the capacity of every edge is known,

a. there is an O(n) space data structure that can report the capacity of Steiner mincut in O(1)
time and

b. there is an O(n(n − |S| + 1)) space data structure that can report a Steiner mincut in O(n)
time

after the failure of any edge in G.
2. Lower Bound: We show that any data structure that, after the failure of any edge in G,

can report a Steiner mincut or its capacity must occupy Ω(n2) bits of space in the worst case,
irrespective of the size of the Steiner set.

The lower bound in (2) shows that the assumption in (1) is essential to break the Ω(n2) lower
bound on space. Sensitivity Oracle in (1.b) occupies only subquadratic, that is O(n1+ϵ), space if
|S| = n − nϵ + 1, for every ϵ ∈ [0, 1). For |S| = n − k for any constant k ≥ 0, it occupies only O(n)
space. So, we also present the first Sensitivity Oracle occupying O(n) space for global mincut. In
addition, we are able to match the existing best-known bounds on both space and query time for
(s, t)-mincut [Annals of Operations Research 1991, NETWORKS 2019] in undirected graphs.
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1 Introduction

In the real world, networks (graphs) are often subject to the failure of edges and vertices due
to a variety of factors, such as physical damage, interference, or other disruptions. This can
lead to changes in the solution to several graph problems. While these failures can happen
at any location in the network at any time, they are typically short-lived. Naturally, it
requires us to have compact data structures that can efficiently report the solution to the
given graph problem (without computing from scratch) once any failure has occurred. Such
data structures are known as Sensitivity Oracles for several graph problems. There exist
elegant Sensitivity Oracles for many fundamental graph problems, such as shortest paths
[6, 10], reachability [22, 13], traversals [25, 5], etc.

The minimum cut of a graph is also a fundamental concept of graph theory. Moreover, it
has a variety of practical applications in the real world [1]. Designing Sensitivity Oracles
for various minimum cuts of a graph has been an emerging field of research for the past few
decades [4, 12, 19, 17, 7, 9, 8, 3]. There are two well-known mincuts of a graph. They are
global mincut and (s,t)-mincut. Here, we design the first Sensitivity Oracle for global mincut
in undirected weighted graphs that can handle the failure of any edge. The concept of Steiner
mincut is also well-studied in the area of minimum cuts [18, 16, 19, 8, 14, 21, 23]; moreover,
it has global mincut, as well as (s, t)-mincut, as just a special corner case. In this article, as
our main result, we present the first Sensitivity Oracle for Steiner mincut for handling the
failure of any edge in undirected weighted graphs. Interestingly, our result bridges the gap
between the two extreme scenarios of Steiner mincut while matching their bounds, namely,
(s, t)-mincut [2, 12] and global mincut (designed in this article). In addition, it also provides
the first generalization from unweighted graphs [8, 18, 16, 19] to weighted graphs.

Let G = (V, E) be an undirected graph on n = |V | vertices and m = |E| edges with
non-negative real values assigned as the capacity to edges. We denote the capacity of an
edge e by w(e). Let S ⊆ V be a Steiner set of G such that |S| ≥ 2. A vertex s is called a
Steiner vertex if s ∈ S; otherwise, s is called a nonSteiner vertex.

▶ Definition 1 (Steiner cut). A nonempty set C ⊂ V is said to be a Steiner cut if there is at
least one pair of Steiner vertices s, s′ such that s ∈ C and s′ /∈ C.

For S = V , a Steiner cut is a (global) cut. Similarly, for S = {s, t}, a Steiner cut is an
(s, t)-cut. A cut C is said to separate a pair of vertices u, v if u ∈ C and v ∈ C = V \ C or
vice versa. An edge e = (u, v) is said to contribute to a cut C if C separates endpoints u, v

of e. The capacity of a cut C, denoted by c(C), is the sum of capacities of all contributing
edges of C. A Steiner cut of the least capacity is known as the Steiner mincut, denoted
by S-mincut. Let λS be the capacity of S-mincut. The problem of designing a Sensitivity
Oracle for S-mincut for handling the failure of any edge is defined as follows.

▶ Definition 2 (single edge Sensitivity Oracle for Steiner mincut). For any graph G, a single
edge Sensitivity Oracle for Steiner mincut is a compact data structure that can efficiently
report a Steiner mincut and its capacity after the failure of any edge in G.

For unweighed graphs, there exist single edge Sensitivity Oracles for global mincut [15],
(s, t)-mincut [26, 4], and Steiner mincut [18, 16, 8]. Unfortunately, for weighted graphs, in
the area of minimum cuts, the only existing results are single edge Sensitivity Oracles for
(s, t)-mincut [2, 12, 3]. For undirected weighted graphs, Ausiello et al. [2], exploiting the
Ancestor tree data structure of Cheng and Hu [12], designed the first single edge Sensitivity
Oracle for (s, t)-mincut. Their Sensitivity Oracle occupies O(n2) space. After the failure
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of any edge, it can report an (s, t)-mincut C and its capacity in O(|C|) and O(1) time,
respectively. Recently, Baswana and Bhanja [3] complemented this result by showing that
Ω(n2 log n) bits of space is required in the worst case, irrespective of the query time.

For Steiner mincuts, it follows from the above discussion that the existing Sensitivity
Oracles are either for undirected unweighted graphs or only for a special case, when |S| = 2,
in weighted graphs. Therefore, to provide a generalization of these results to any Steiner set,
the following is an important question to raise.

Does there exist a single edge Sensitivity Oracle for S-mincut in undirected weighted graphs?

We show that the approach taken by Ausiello et al. [2] can be generalized from S = {s, t} to
any set S ⊆ V . This answers the above-mentioned question in the affirmative and leads to
the following result.

▶ Theorem 3. For any undirected weighted graph G on n = |V | vertices, for every Steiner
set S, there exists an O(n2) space data structure that, after the failure of any edge in G, can
report an S-mincut C and its capacity in O(|C|) time and O(1) time respectively.

The space and query time of the Sensitivity Oracle in Theorem 3 match with the existing
optimal results for (s, t)-mincut [12, 2, 3]. The lower bound of Ω(n2 log n) bits of space in [3]
is only for |S| = 2. To the best of our knowledge, no lower bound is known for any |S| > 2.
Therefore, the main question that we address in this article arises quite naturally as follows.

▶ Question 1. For undirected weighted graphs, does there exist a single edge Sensitivity
Oracle for S-mincut that breaks the quadratic bound on space and still achieves optimal query
time if |S| > 2?

1.1 Our Results
A Sensitivity Oracle in a weighted graph addresses queries in a more generic way [3]. Given
any edge e and any value ∆ satisfying ∆ ≥ 0, the aim is to efficiently report the solution of
a given problem after reducing the capacity of edge e by ∆. In this generic setting, using
the well-known Gomory and Hu Tree data structure [20], we design the first single edge
Sensitivity Oracle for global mincut in weighted graphs that achieves optimal query time.

▶ Theorem 4 (Sensitivity Oracle for Global Mincut). For any undirected weighted graph
G = (V, E) on n = |V | vertices, there is an O(n) space data structure that, given any edge e

in G and any value ∆ satisfying 0 ≤ ∆ ≤ w(e), can report the capacity of global mincut in
O(1) time and a global mincut C in O(|C|) time after reducing the capacity of edge e by ∆.

The result in Theorem 4 matches the bounds on both space and query time with the
best-known single edge Sensitivity Oracles for global mincut in unweighted graphs [15].

Now, in order to bridge the gap between the two extreme scenarios of Steiner set (|S| = n

and |S| = 2) while matching their bounds, we present our main result that breaks the O(n2)
space bound of Theorem 3, and answers Question 1 in the affirmative.

▶ Theorem 5 (Sensitivity Oracle for Steiner Mincut). Let G = (V, E) be an undirected weighted
graph on n = |V | vertices and m = |E| edges. For any Steiner set S of G,
1. there is an O(n) space rooted tree T (G) that, given any edge e ∈ E and any value ∆

satisfying 0 ≤ ∆ ≤ w(e), can report the capacity of S-mincut in O(1) time after reducing
the capacity of edge e by ∆ and
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2. there is an O(n(n− |S|+ 1)) space data structure F(G) that, given any edge e ∈ E and
any value ∆ satisfying 0 ≤ ∆ ≤ w(e), can report an S-mincut C in O(|C|) time after
reducing the capacity of edge e by ∆.

For any ϵ ∈ [0, 1), the space occupied by the single edge Sensitivity Oracle for S-mincut in
Theorem 5(2) is subquadratic, that is O(n1+ϵ), for |S| = n−nϵ + 1. Moreover, it approaches
to O(n) as |S| tends to n. In particular, for |S| = n− k, for any constant k ≥ 0, it occupies
only O(n) space.

Observe that our results in Theorem 5 interestingly match the bounds on both space and
query time for the two extreme scenarios of the Steiner set. On one extreme (|S| = n), it
occupies O(n) space for global mincut. On the other extreme (|S| = 2), it occupies O(n2)
space, which match the best-known existing results for (s, t)-mincut [2, 12, 3]. Finally, the
time taken by our Sensitivity Oracle to answer any query is also worst-case optimal.

We also provide lower bounds on both space and query time of Sensitivity Oracles for
S-mincut. Our first lower bound is for reporting the capacity of S-mincut and our second
lower bound is for reporting an S-mincut.

▶ Theorem 6 (Lower Bound for Reporting Capacity). Let D be any data structure that can
report the capacity of Steiner mincut after the failure of any edge for undirected weighted
graphs on n vertices. Data structure D must occupy Ω(n2 log n) bits of space in the worst
case, irrespective of the query time and the size of the Steiner set.

For reporting the capacity of S-mincut, Theorem 6 provides a generalization of the existing
lower bound on both space and time for (s, t)-mincut by Baswana and Bhanja [3]. However,
for reporting an S-mincut, no lower bound on space or query time for single edge Sensitivity
Oracle was known till date, even for the two extreme scenarios of Steiner set. So, the following
theorem is the first lower bound for reporting an S-mincut after the failure of any edge.

▶ Theorem 7 (Lower Bound for Reporting Cut). Let D be any data structure that can report
a Steiner mincut C in O(|C|) time after the failure of any edge for undirected weighted
graphs on n vertices. Data structure D must occupy Ω(n2) bits of space in the worst case,
irrespective of the size of the Steiner set.

▶ Remark 8. It is assumed in Theorem 5 that the query edge e is present in G and the change
in capacity (that is, ∆) provided with the query is at most w(e). So, the lower bounds of
Ω(n2) bits of space in Theorem 6 and Theorem 7 do not violate the sub-quadratic space data
structures in Theorem 5. Moreover, the assumption in Theorem 5 seems practically justified.
This is because, as discussed in [3], in the real world, the capacity of an edge reduces only if
the edge actually exists in the graph, and furthermore, it can reduce by a value at most the
capacity of the edge.

1.2 Related Works
In the seminal works by Dinitz and Vainshtein [18, 16, 19], they designed an O(min{nλS , m})
space data structure, known as Connectivity Carcass, for storing all S-mincuts of an un-
weighted undirected graph. It can report an S-mincut in O(m) time and its capacity in O(1)
time. Baswana and Pandey [8], using Connectivity Carcass as the foundation, designed an
O(n) space single edge Sensitivity Oracle for S-mincut in undirected unweighted graphs that
also reports an S-mincut in O(n) time. Their result matches the bounds on both space and
time for the existing result on the two extreme scenarios of S-mincut, namely, (s, t)-mincut
[26] and global mincut [15]. The result on S-mincut in [8] also acts as the foundation of
single edge Sensitivity Oracles for all-pairs mincut [8]
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For directed weighted graphs, Baswana and Bhanja [3] presented a single edge Sensitivity
Oracle for (s, t)-mincut that matches both space and query time of the undirected weighted
graph results [12, 2].
Providing a generalization from the two extreme scenarios of the Steiner set (|S| = n

and |S| = 2) is also addressed for various problems, namely, computing Steiner mincut
[18, 19, 14, 21, 23], Steiner connectivity augmentation and splitting-off [11], construction of
a cactus graph for Steiner mincuts [19, 21].

1.3 Organization of the Article

This article is organized as follows. Section 2 contains the basic preliminaries. We first
construct an O(n2) space single edge Sensitivity Oracle for Steiner mincut in Section 3. In
Section 4, we design an O(n) space single edge Sensitivity Oracle for reporting only the
capacity of Steiner mincut. A linear space single edge Sensitivity Oracle for global mincut
is designed in Section 5. Our main result on the subquadratic space single edge Sensitivity
Oracle for Steiner mincut is developed in Section 6. Finally, we conclude in Section 7. The
proofs of the lower bounds are provided in the full version of this article.

2 Preliminaries

In this section, we define a set of basic notations and properties of cuts. Let G \ {e} denote
the graph obtained from G after the removal of edge e. We now define the concept of crossing
cuts, introduced by Dinitz, Karzanov, and Lomonosov [15].

▶ Definition 9 (crossing cuts). A pair of cuts C and C ′ in G is said to be crossing if each of
the four sets C ∩ C ′, C \ C ′, C ′ \ C, and C ∪ C ′ is nonempty.

The following concept of mincut for an edge and vital edges are to be used crucially in the
construction of our data structure.

▶ Definition 10 (Mincut for an edge). A Steiner cut C is said to be a mincut for an edge e

if e contributes to C and c(C) ≤ c(C ′) for every Steiner cut C ′ in which e contributes.

▶ Definition 11 (Vital Edge). Let e be an edge and C be a mincut for edge e. Edge e is said to
be a vital edge if its removal reduces the capacity of Steiner mincut, that is, c(C)−w(e) < λS.

We now define a special mincut for an edge.

▶ Definition 12 (Nearest mincut for an edge). A mincut C for an edge e = (x, y) ∈ E with
x ∈ C is said to be a nearest mincut for e if there is no mincut C ′ for e such that x ∈ C ′

and C ′ ⊂ C. The set of all nearest mincuts for an edge e is denoted by N(e).

▶ Lemma 13 (Sub-modularity of Cuts (Problem 48(a,b) in [24])). For any two sets A, B ⊂ V ,
1. c(A) + c(B) ≥ c(A ∩B) + c(A ∪B) and
2. c(A) + c(B) ≥ c(A \B) + c(B \A).

▶ Definition 14 (Laminar family of cuts). A set of cuts L is said to form a laminar family if,
for any pair of cuts C1, C2 ∈ L, exactly one of the three is true – C1 ∩ C2 is an empty set,
C1 ⊆ C2, and C2 ⊆ C1.

ISAAC 2024
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A rooted tree TL representing a laminar family L. For any given laminar family L of
cuts in G, we can construct an O(n) space rooted tree TL that stores every cut belonging
to L as follows. Every vertex x of G is mapped to a unique node in TL, denoted by ϕL(x).
Every node µ in TL represents a unique cut C in L as follows. Cut C is the set of vertices
mapped to the subtree rooted at µ (including µ). For any pair of nodes µ and ν in TL, µ is
a child of ν if and only if the cut represented by µ is a maximal proper subset of the cut
represented by ν. The minimal cuts of L are represented by leaf nodes of TL. For any vertex
x in G, let SubTree(x) denote the set of all vertices mapped to the subtree rooted at ϕL(x)
(including ϕL(x)) in TL. This leads to the following lemma.

▶ Lemma 15. For any laminar family L of cuts in G, there exists an O(n) space rooted tree
TL such that a cut C ∈ L if and only if there exists a node µ (except root node) of TL and C

is the set of vertices mapped to the subtree rooted at µ (including node µ).

3 An O(n2) Space Sensitivity Oracle for Steiner Mincut

In this section, we first provide the limitations of the previous results in unweighted graphs.
Later, we design an O(n2) space single edge Sensitivity Oracle for S-mincut.

Limitations of the existing results. For unweighted graphs, the following property is used
crucially to design every existing single edge Sensitivity Oracle.
Property P1: Failure of an edge e reduces the capacity of S-mincut if and only if edge e

contributes to an S-mincut.
Dinitz and Vainshtein [18, 16, 19] designed the following quotient graph, known as the flesh
graph, of G. Flesh graph is obtained by contracting every pair of vertices in G that are
not separated by any S-mincut. The construction ensures that every pair of vertices in
flesh is separated by an S-mincut of G. Every vertex in G is mapped to a unique vertex in
flesh. Therefore, the endpoints of any edge e are mapped to different vertices in flesh if and
only if failure of e reduces capacity of S-mincut. Thus, by Property P1, storing the O(n)
space mapping of vertices of G to the vertices of flesh is sufficient to answer the capacity of
S-mincut in O(1) time after the failure of any edge. In addition, flesh graph can be used to
report an S-mincut after the failure of any edge in G in O(m) time.
Flesh graph is one of the three components of Connectivity Carcass designed by Dinitz
and Vainshtein [18, 16, 19]; the other two components are Skeleton and Projection mapping.
Recently, Baswana and Pandey [8], exploiting the properties of all the three components of
Connectivity Carcass established an ordering among the vertices of flesh graph. By using
Property P1, they showed that this ordering, along with Skeleton and Projection mapping,
can be used to design an O(n) space single edge Sensitivity Oracle for S-mincut in unweighted
graphs. This single edge Sensitivity Oracle can report an S-mincut in O(n) time.

Unfortunately, for weighted graphs, it is easy to observe that multiple edges can exist
that do not contribute to any S-mincut but failure of each of them reduces the capacity
of S-mincut. Hence, in weighted graphs, Property P1 no longer holds. So, the existing
structures are not suitable for handling the failure of weighted edges. It requires us to explore
the structure of mincuts for every edge whose both endpoints belong to the same node of
flesh graph. Moreover, the capacity of mincut for these edges can be quite large compared to
the capacity of S-mincut.
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Sensitivity Oracle for Steiner Mincut: O(n2) Space
We now give a proof of Theorem 3 by designing an O(n2) space single edge Sensitivity Oracle
for S-mincut. Let F be any arbitrary real-valued function defined on cuts. Cheng and
Hu [12] presented the following result. There is an O(n2) space data structure, known as
Ancestor tree, that, given any pair of vertices u and v, reports a cut C of the least capacity
(F -value) separating u, v in O(|C|) time and the capacity of C in O(1) time.

In order to design Ancestor tree for Steiner cuts, similar to (s, t)-mincuts given by Ausiello
et al. [2], we define function F for Steiner cuts as follows.

For a set C ⊂ V , F (C) =
{

c(C), if C is a Steiner cut
∞, otherwise.

(1)

Let e = (x, y) be any failed edge. Ancestor tree can report a cut C of the least capacity
separating x and y in O(|C|) time and its capacity in O(1) time. By Equation 1, C is also a
Steiner cut separating x and y. Therefore, by Definition 10, C is a mincut for edge e. Hence,
the new capacity of S-mincut is either c(C)− w(e) or remains λS if c(C)− w(e) ≥ λS . By
storing the capacities of all edges of G, we can determine whether c(C)− w(e) < λS in O(1)
time. If the capacity of S-mincut reduces, then we can report C in O(|C|) time; otherwise
report an S-mincut Cm in O(|Cm|) time. This completes the proof of Theorem 3.

4 A Sensitivity Oracle for Reporting Capacity of Steiner Mincut

In this section, we address the problem of reporting the capacity of S-mincut after reducing
the capacity of an edge e ∈ E by a value ∆ satisfying 0 ≤ ∆ ≤ w(e). We denote this
query by cap(e, ∆). Observe that a trivial data structure for answering query cap occupies
O(m) space if we store the capacity of mincut for each vital edge in G. For |S| = 2 in
directed weighted graphs, Baswana and Bhanja [3] designed an O(n) space data structure
that implicitly stores all vital edges for (s, t)-mincut and the capacity of their mincuts. We
extend their approach from vital edges to any set of edges in undirected weighted graphs
in order to establish the following. For any Steiner set S, with 2 ≤ |S| ≤ n, there exists an
O(n) space data structure that can answer query cap in O(1) time.

Let E ⊆ E and V (E) denote the smallest set of vertices such that, for each edge (u, v) ∈ E ,
both u and v belongs to V (E). We first design an O(|V (E)|) space rooted full binary tree for
answering query cap for all edges in E . In Section 6, this construction also helps in designing
a compact structure for reporting mincuts for a special subset of edges. Later in this section,
we show an extension to O(n) space rooted full binary tree for answering query cap for all
edges in E.

Let C(e) denote a mincut for an edge e. Note that C(e) is a Steiner cut as well
(Definition 10). We say that an edge e belongs to a set U ⊂ V if both endpoints of e belong
to U . Suppose C(e) is a mincut for an edge e belonging to V (E) such that, for every other
edge e′ ∈ V (E), c(C(e)) ≤ c(C(e′)). Let e′ be an edge from V (E). If e′ contributes to C(e),
it follows from the selection of edge e that C(e) is a Steiner cut of the least capacity to
which e′ contributes. Hence, C(e) is a mincut for edge e′ as well. This ensures that C(e)
partitions the set of all edges belonging to V (E) into three sets – edges of V (E) belonging to
C(e) ∩ V (E), edges of V (E) belonging to C(e) ∩ V (E), and edges of V (E) that contribute
to C(e). This leads to a recursive procedure (Algorithm 1) for the construction of a tree T .
Each internal node µ of tree T has three fields – (i) µ.cap stores the capacity of mincut for
the selected edge at µ, (ii) µ.left points to the left child of µ, and (iii) µ.right points to
the right child of µ. Each vertex u ∈ V (E) is mapped to a leaf node of T , denoted by L(u).
We invoke Algorithm 1 with U = V (E).

ISAAC 2024
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Algorithm 1 Construction of Tree T .

1: procedure SteinerTreeConstruction(U)
2: Create a node ν;
3: For any set U ⊆ V , let E(U) denote the edges whose both endpoints belong to U ;
4: if there is no edge in E(U) then
5: for each vertex x ∈ U do L(x)← ν;
6: end for
7: else
8: Select an edge e ∈ E(U) such that c(C(e)) ≤ c(C(e′)), ∀ edge e′ ∈ E(U);
9: Assign ν.cap← c(C(e));

10: ν.left← SteinerTreeConstruction(U ∩ C(e));
11: ν.right← SteinerTreeConstruction(U ∩ C(e));
12: end if
13: return ν;
14: end procedure

Observe that tree T resulting from Algorithm 1 is a full binary tree. There are O(|V (E)|)
leaf nodes. So, the space occupied by the tree is O(|V (E)|).

Answering Query cap(e = (x, y), ∆). Suppose edge e belongs to E . Let µ be the lowest
common ancestor (lca) of L(x) and L(y) in T . It follows from the construction of tree
T that field µ.cap at node µ in T stores the capacity of mincut for edge e. Therefore, if
µ.cap − ∆ < λS , then we report µ.cap as the new capacity of S-mincut; otherwise, the
capacity of S-mincut does not change. It leads to the following lemma.

▶ Lemma 16. Let G = (V, E) be an undirected weighted graph on n = |V | vertices. For any
Steiner set S ⊆ V and a set of edges E ⊆ E, there is an O(|V (E)|) space full binary tree TE
that, given any edge e ∈ E and any value ∆ satisfying 0 ≤ ∆ ≤ w(e), can report the capacity
of S-mincut in O(1) time after reducing the capacity of edge e by ∆.

We now answer query cap(e, ∆) where edge e ∈ E. Observe that edge e in query cap can
be either a vital or a nonvital edge. In order to determine whether an edge is vital or not,
we design a full binary tree TE by invoking Algorithm 1 with U = V since E = E. Let us
denote the tree by T (G). By Lemma 16, the size of tree T (G) is O(n). It is now easy to
observe that an edge e is a vital edge in graph G if and only if the capacity of the Steiner
mincut in graph G \ {e} is µ.cap− w(e) < λS , where node µ is the lca(L(x),L(y)). This
leads to the following lemma.

▶ Lemma 17. Let G = (V, E) be an undirected weighted graph on n = |V | vertices. For any
Steiner set S ⊆ V , there is an O(n) space full binary tree T (G) that, given any edge e ∈ E

and any value ∆ satisfying 0 ≤ ∆ ≤ w(e), can report the capacity of S-mincut in O(1) time
after reducing the capacity of edge e by ∆.

Lemma 17 completes the proof of Theorem 5(1).

▶ Remark 18. Ancestor tree of Cheng and Hu [12] can also be used to design an O(n) space
data structure for answering query cap in O(1) time. However, Ancestor tree alone does not
seem sufficient to establish Lemma 16, which is used crucially to achieve the subquadratic
space single edge Sensitivity Oracle for S-mincut stated in Theorem 5.
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5 An O(n) Space Sensitivity Oracle for Global Mincut

The well-known (s, t)-mincut is one extreme scenario of S-mincut when |S| = 2. In weighted
graphs, designing a single edge Sensitivity Oracle for (s, t)-mincut has been addressed quite
extensively [2, 12, 3]. Moreover, each of them occupies O(n2) space. However, to this day, no
nontrivial single edge Sensitivity Oracle exists for global mincut, which is the other extreme
scenario of S-mincut when |S| = n. We now present the first single edge Sensitivity Oracle
for global mincut that occupies only O(n) space and achieves optimal query time.

Let λV be the capacity of global mincut. Given any edge e, we want to determine the
capacity of mincut for edge e for Steiner set S = V . Observe that, for S = V , every cut in
the graph is a Steiner cut (or global cut). Exploiting this insight, we can state the following
interesting relation between global mincut and all-pairs mincuts (or (u, v)-mincut, for every
u, v ∈ V ).

▶ Lemma 19. For an edge (u, v), C is a cut of the least capacity that separates u, v if and
only if C is a mincut for edge (u, v).

Gomory and Hu [20] designed the following tree data structure for all-pairs mincuts, which
is widely known as Gomory Hu Tree.

▶ Theorem 20 (Gomory Hu Tree [20]). For any undirected weighted graph G = (V, E)
on n = |V | vertices, there is an O(n) space undirected weighted tree TGH on vertex set V

that satisfies the following property. Let u, v be any pair of vertices in G. A cut of the
least capacity separating u, v in TGH is also a cut of the least capacity separating u, v in G.
Moreover, TGH can report a cut C of the least capacity separating u, v in O(|C|) time and
its capacity in O(1) time.

Let TGH be a Gomory Hu Tree of G. By Theorem 20, for every pair of vertices u, v in
G, TGH stores a cut of the least capacity separating u, v. By Lemma 19, it follows that, for
S = V , TGH stores a mincut for every edge in G. Hence, it acts as a single edge Sensitivity
Oracle for global mincut and can report a mincut C for any given edge e in O(|C|) time and
its capacity in O(1) time. Therefore, after reducing w(e) by a value ∆, if c(C)−∆ < λV , we
can report a global mincut and its capacity optimally using O(n) space. This establishes the
results in Theorem 4.

Now, for both extreme scenarios of Steiner mincuts, we have a single edge Sensitivity
Oracle. Interestingly, the Sensitivity Oracle for global mincut achieves better than quadratic
space. The question that arises is how to generalize these results to any Steiner set.

6 A Sensitivity Oracle for Steiner Mincut: Breaking Quadratic Bound

In this section, we address the problem of reporting an S-mincut after reducing the capacity
of any given edge e ∈ E by any given value ∆ satisfying 0 < ∆ ≤ w(e). We denote this
query by cut(e, ∆). Our objective is to design a data structure that breaks O(n2) bound
on space for efficiently answering query cut. A simple data structure can be designed by
augmenting tree T (G) in Theorem 5(1) as follows. For each internal node µ of tree T (G),
Algorithm 1 selects an edge e in Step 7 and stores the capacity of mincut C(e) for edge e in
µ.cap. Observe that if we augment node µ with C(e), then it helps in answering query cut
as well. However, the augmented tree occupies O(n2) space, which defeats our objective.
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For global mincut (S = V ), observe that Gomory Hu Tree essentially acts as a data
structure that stores at least one mincut for every edge quite compactly. To design a more
compact data structure for answering query cut for S-mincut compared to Theorem 3, we
take an approach of designing a data structure that can compactly store at least one mincut
for every edge.

We begin by a classification of all edges of graph G. This classification not only helps in
combining the approaches taken for (s, t)-mincut and global mincut but also provides a way
to design a compact data structure for efficiently answering query cut for any Steiner set S.

A Classification of All Edges. An edge e1 in G belongs to
Type-1 if both endpoints of e1 belong to V \ S.
Type-2 if both endpoints of e1 belong to S.
Type-3 if exactly one endpoint of e1 belongs to S.

Given any edge e1, we can classify e1 into one of the above-mentioned three types in O(1)
time using sets V and S. We can take care of edges from Type-1 by extending an approach
for (s, t)-mincut given by Baswana and Bhanja [3]. Similarly, we can handle edges from
Type-2 by extending the approach used for global mincut (Theorem 4). However, the main
challenge arises in designing a data structure for compactly storing a mincut for all edges
from Type-3. We now design a compact data structure for efficiently answering query cut
for each type of edges separately.

6.1 An O((n − |S|)n) Space Data Structure for All Edges from Type-1
We aim to design a data structure for answering query cut for all edges from Type-1. Each
edge from Type-1 has both endpoints in set V \S. The number of vertices in V \S is n− |S|.
Therefore, trivially storing a mincut for every edge would occupy O((n−|S|)2n) space, which
is O(n3) for |S| = k for any constant k ≥ 2. Exploiting the fact that the number of distinct
endpoints of all edges from Type-1 is at most n− |S|, we design an O(n(n− |S|)) space data
structure for all edges from Type-1 using Algorithm 1 and Lemma 16 as follows.

Let E1 be the set of all edges from Type-1. It follows from Lemma 16 that, using
Algorithm 1, it is possible to design a rooted full binary tree TE1 occupying O(n− |S|) space
for answering query cap(e, ∆) when edge e is from Type-1. We augment each internal node
µ of TE1 with a mincut for the edge selected by Algorithm 1 (in Step 7) while processing
node µ. The resulting structure occupies O((n− |S|)n) space and acts as a data structure
for answering query cut for all edges from Type-1. Hence the following lemma holds.

▶ Lemma 21 (Sensitivity Oracle for Type-1 Edges). For any Steiner set S ⊆ V , there is
an O((n − |S|)n) space data structure that, given any edge e from Type-1 and any value
∆ satisfying 0 ≤ ∆ ≤ w(e), can report an S-mincut C in O(|C|) time after reducing the
capacity of edge e by ∆.

6.2 An O(n) Space Data Structure for All Edges from Type-2
In this section, we design a data structure for answering query cut for all edges from Type-2.
For each edge from Type-2, both endpoints are Steiner vertices. So, the number of distinct
endpoints of edges from Type-2 can be at most |S|. Trivially, storing a mincut for every edge
from Type-2 would occupy O(|S|2n) space, which is O(n3) if |S| = O(n). In a similar way as
designing TE1 for all edges from Type-1 (Lemma 21), by using Lemma 16 and Algorithm 1,
it is possible to design an O(|S|n) space data structure for answering query cut for all edges
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from Type-2. Unfortunately, it defeats our objective because, for |S| = n or global mincuts,
it occupies O(n2) space. Interestingly, by exploiting the fact that both the endpoints of every
edge from Type-2 are Steiner vertices, we are able to show that a Gomory Hu Tree of
graph G is sufficient for answering query cut for all edges from Type-2.

▶ Lemma 22. Let TGH be a Gomory Hu Tree of G. Then, for any edge e = (u, v) from
Type-2, a cut of the least capacity separating u and v in TGH is a mincut for edge e in G.

Proof. Let TGH be a Gomory Hu Tree of G. By Theorem 20, TGH stores a cut of the least
capacity separating every pair of vertices in G. Let (u, v) be any edge from Type-2. Suppose
C is a cut of the least capacity separating u and v in TGH . So, edge (u, v) is contributing to
C in G. By definition of Type-2 edges, both u and v are Steiner vertices. Therefore, C is a
Steiner cut of G in which edge (u, v) is contributing. It follows from Theorem 20 that C is
also a cut of the least capacity in G that separates u and v. So, C is also a Steiner cut of the
least capacity in which edge (u, v) is contributing in G. Hence, C is a mincut for (u, v). ◀

Let e = (u, v) be any edge from Type-2 and TGH be a Gomory Hu Tree of G. By Theorem
20, TGH can report in O(|C|) time a cut C of the least capacity in TGH that separates u and
v. By Lemma 22, C is a mincut for edge e in G. This establishes the following lemma.

▶ Lemma 23 (Sensitivity Oracle for Type-2 Edges). For any Steiner set S ⊆ V , there is an
O(n) space data structure that, given any edge e from Type-2 and any value ∆ satisfying
0 ≤ ∆ ≤ w(e), can report an S-mincut C in O(|C|) time after reducing the capacity of edge
e by ∆.

For global mincut or S = V , both endpoints of every edge are Steiner vertices. Therefore,
Theorem 4 can also be seen as a corollary of Lemma 23.

6.3 An O((n − |S|)n) Space Data Structure for All Edges from Type-3
The objective is to design a data structure for answering query cut for all edges from Type-3.
Observe that the size of the smallest set of vertices that contains all the endpoints of all edges
from Type-3 can be Ω(n). Therefore, using Lemma 16 and Algorithm 1, we can have an O(n2)
space data structure, which is no way better than the trivial data structure for answering
query cut (Theorem 3). Now, each edge from Type-3 has exactly one nonSteiner endpoint.
So, unlike edges from Type-2, Lemma 22 no longer holds for edges from Type-3. This shows
the limitations of the approaches taken so far in designing a data structure for answering
query cut. Trivially storing a mincut for every edge from Type-3 requires O((n− |S|)n|S|)
space. For |S| = n

k , any constant k ≥ 2, it occupies O(n3) space. Interestingly, we present
a data structure occupying only O((n− |S|)n) space for answering query cut for all edges
from Type-3.

For any edge e1 = (x, u) from Type-3 with x ∈ S, without loss of generality, we assume
that any mincut C for edge e1 contains the Steiner vertex x, otherwise consider C. Note
that the set of global mincuts and (s, t)-mincuts are closed under both intersection and
union. This property was crucially exploited in designing a compact structure for storing
them [15, 26]. To design a compact structure for storing a mincut for every edge from Type-3,
we also explore the relation between a pair of mincuts for edges from Type-3. Let A and B

be mincuts for edges e1 and e2 from Type-3, respectively. Unfortunately, it turns out that if
A crosses B, then it is quite possible that neither A ∩B nor A ∪B is a mincut for e1 or e2
even if both are Steiner cuts (refer to Figure 1(i)). This shows that mincuts for edges from
Type-3 are not closed under intersection or union. To overcome this hurdle, we first present
a partitioning of the set of edges from Type-3 based on the nonSteiner vertices as follows.
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Figure 1 Yellow vertices are Steiner vertices. A mincut for an edge is represented by the same
color. (i) Mincuts A, B are for edges e1 = (s1, a) and e2 = (s2, b). Observe that A ∩ B and A ∪ B

are Steiner cuts but not mincuts for edges e1, e2. Moreover, cuts A \ B and B \ A, in which edges e1

and e2 are contributing, are not even Steiner cuts. (ii) Edges e1 and e2 are vital and from Type-3(u).
Mincuts A and B for edges e1 and e2 are crossing, but A ∩ B and A ∪ B are not Steiner cuts. (iii)
Edge (s, u) is from Type-3 and N((s, u)) = {A, B}.

Let V ′ ⊆ V \ S be the smallest set of nonSteiner vertices such that every edge from
Type-3 has endpoint in V ′. Let u be any vertex from V ′. Let Type-3(u) be the set that
contains all edges from Type-3 having u as one of the two endpoints. We aim to design an
O(n) space data structure that can report a mincut for each edge from Type-3(u). This is
because storing an O(n) space data structure for every nonSteiner vertex of G would lead to
an O((n− |S|)n) space data structure.

In order to design an O(n) space data structure for edges from Type-3(u), we consider
the set of nearest mincuts (Definition 12) for edges from Type-3(u). The following lemma
provides a strong reason behind the use of nearest mincuts for edges from Type-3(u).

▶ Lemma 24 (Disjoint Property). Let C ∈ N(e1) and C ′ ∈ N(e2) such that e1 = (x, u),
e2 = (x′, u) are edges from Type-3(u). Then, x′ /∈ C and x /∈ C ′ if and only if C ∩ C ′ = ∅.

Proof. Suppose x′ /∈ C and x /∈ C ′. Assume to the contrary that C ∩ C ′ ̸= ∅. Observe that
x ∈ C \C ′ and x′ ∈ C ′\C. As a result, C \C ′ as well as C ′\C is a Steiner cut. It is given that
C is the nearest mincut for edge (x, u) and x ∈ C \ C ′. This implies that c(C \ C ′) > c(C).
It follows from sub-modularity of cuts (Lemma 13(2)) that c(C ′ \ C) < c(C ′). Therefore, we
get a Steiner cut C ′ \ C of capacity strictly less than c(C ′) and edge (x′, u) is a contributing
edge of Steiner cut C ′ \ C, a contradiction.

The proof of the converse part is immediate. ◀

Let e1 = (x, u) and e2 = (x′, u) be any pair of edges from Type-3(u). Let C be a nearest
mincut for e1 and C ′ be a nearest mincut for e2. Lemma 24 essentially states that if e2
contributes to C ′ \ C and e1 contributes to C \ C ′, then C must not cross C ′. Now, the
problem arises when one of the two edges e1, e2 is contributing to a nearest mincut for
the other edge. Firstly, there might exist multiple nearest mincuts for an edge (refer to
Figure 1(iii)). It seems quite possible that an edge, say e2, is contributing to one nearest
mincut for e1 and is not contributing to another nearest mincut for e1. Secondly, the union
of a pair of nearest mincuts for an edge e1 from Type-3(u) might not even be a Steiner cut
if they cross (refer to Figure 1(iii)). Hence, the union of them can have a capacity strictly
less than the capacity of mincut for e. So, it seems that the nearest mincuts for edges from
Type-3(u) appear quite arbitrarily. It might not be possible to have an O(n) space structure
for storing them. Interestingly, we are able to circumvent all the above challenges as follows.
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Figure 2 Illustration of the proof of Lemma 25. (i) There is a Steiner vertex z in C1 ∪ C2. The
red dashed cut shows cut C1 ∪ C2 and the blue dashed cut (blue region) shows cut C1 ∩ C2. (ii)
There is a Steiner vertex z in C2 \ C1. Blue dashed cut (blue region) is C1 \ C2. Similarly, red
dashed cut (light green region) is C2 \ C1.

Observe that we are interested in only those edges from Type-3(u) whose failure reduces
S-mincut. They are the set of all vital edges that belong to Type-3(u), denoted by VitType-
3(u). By exploiting vitality of edges from VitType-3(u), we establish the following crucial
result for any pair of crossing mincuts for edges from VitType-3(u). Interestingly, this result
holds even if the union of a pair of mincuts for a pair of edges from VitType-3(u) is not
always a Steiner cut (refer to Figure 1(ii)).

▶ Lemma 25 (Property of Intersection). Let C1 and C2 be mincuts for edges e1 =
(x1, u) and e2 = (x2, u) from VitType-3(u) respectively. Steiner vertex x2 is present in C1 if
and only if C1 ∩ C2 is a mincut for edge e2.

Proof. Suppose Steiner vertex x2 is present in C1. Since u is a common endpoint of both
edges e1, e2, we have u /∈ C1 ∪ C2. C1 is a mincut for edge e1, so, x1 ∈ C1. Now, there are
two possibilities – either (1) x1 /∈ C2 or (2) x1 ∈ C2. We now establish each case separately.

Case 1. Suppose x1 /∈ C2, in other words, x1 ∈ C1 \C2. It implies that C1 \C2 is nonempty.
Observe that C2 is not a subset of C1; otherwise, C1 ∩ C2 = C2 is a mincut for e2 and
the lemma holds. So, C2 \ C1 is also nonempty. Let c(C1) = λ1 and c(C2) = λ2. Since
x2 ∈ C1 ∩ C2, edge e2 is contributing to C1. Therefore, c(C2) ≤ c(C1); otherwise, C2 is not
a mincut for edge e2. Since C1 is a Steiner cut, there must be a Steiner vertex z such that
z /∈ C1. Based on the position of z with respect to cut C2, observe that z appears either
(1.1) in C1 ∪ C2 or (1.2) in C2 \ C1 (refer to Figure 2).

Case 1.1. Suppose z ∈ C1 ∪ C2 (refer to Figure 2(i)). Observe that C1 ∪ C2 is a Steiner
cut in which edge e1 is contributing. So, the capacity of C1 ∪ C2 has to be at least λ1. By
sub-modularity of cuts (Lemma 13(1)), c(C1 ∩ C2) + c(C1 ∪ C2) ≤ λ1 + λ2. It follows that
c(C1 ∩ C2) ≤ λ2. Since C1 ∩ C2 is a Steiner cut in which edge e2 is contributing, therefore,
the capacity of C1 ∩ C2 is exactly λ2. Hence C1 ∩ C2 is a mincut for edge e2.

Case 1.2. We show that this case does not arise. Assume to the contrary that z ∈ C2 \ C1
(refer to Figure 2(ii)). Here, we crucially exploit the fact that edge e2 is a vital edge from
Type-3(u). Let us now consider graph G\{e2}. Since, in graph G, edge e2 is a vital edge and
c(C2) ≤ c(C1), therefore, in graph G \ {e2}, the capacity of S-mincut is λ2−w(e2) and C2 is
an S-mincut. In G, edge e2 is also a contributing edge of C1. Therefore, the capacity of C1
in G \ {e2} is λ1 − w(e2). Without causing any ambiguity, let us denote the capacity of any
cut A in G \ {e2} by c(A). By sub-modularity of cuts (Lemma 13(2)), in graph G \ {e2}, we
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have c(C1 \ C2) + c(C2 \ C1) ≤ λ1 + λ2 − 2w(e2). Recall that x1 ∈ C1 \ C2 and z ∈ C2 \ C1.
So, both C1 \ C2 and C2 \ C1 are Steiner cuts in graph G \ {e2}. Therefore, the capacity of
C2 \ C1 is at least λ2 − w(e2). It follows that the capacity of C1 \ C2 in G \ {e2} is at most
λ1−w(e2). We now obtain graph G by adding edge e2 to graph G \ {e2}. Observe that edge
e2 does not contribute to Steiner cut C1 \C2. Therefore, the capacity of cut C1 \C2 remains
the same in graph G, which is at most λ1 − w(e2). Since e2 is a vital edge, so, w(e2) > 0.
This implies that we have λ1 − w(e2) < λ1. Therefore, for cut C1 \ C2 in G, C1 \ C2 is a
Steiner cut and has a capacity that is strictly less than λ1. Moreover, edge e1 is contributing
to C1 \ C2. So, C1 is not a mincut for edge e1, a contradiction.

Case 2. In this case, we have x1 ∈ C2. Since C1 and C2 both are Steiner cuts, observe that
either (2.1) there is at least one Steiner vertex z in C1 ∪ C2 or (2.2) there exists a pair of
Steiner vertices z1, z2 such that z1 ∈ C1 \ C2 and z2 ∈ C2 \ C1. The proof of case (2.1) is
along similar lines to the proof of case (1.1). So, let us consider case (2.2). Edges e1 and e2
are contributing to both C1 and C2. It implies that c(C1) = c(C2). Let c(C1) (or c(C2)) be λ.
Let us consider graph G\{e2}. Since e2 is a vital edge, the capacity of S-mincut is λ−w(e2).
The capacity of cuts C1 and C2 in G \ {e2} is λ−w(e2) since e2 contributes to both of them.
Without causing any ambiguity, let us denote the capacity of any cut A in G \ {e2} by c(A).
By sub-modularity of cuts (Lemma 13(2)), c(C1 \ C2) + c(C2 \ C1) ≤ 2λ− 2w(e2). Now, it
is given that z1 ∈ C1 \ C2 and z2 ∈ C2 \ C1. Therefore, in G \ {e2}, C1 \ C2 and C2 \ C1
are Steiner cuts. It follows that c(C1 \ C2), as well as c(C2 \ C1), is exactly λ− w(e2). Let
us obtain graph G from G \ {e2}. Observe that e2 contributes neither to C1 \ C2 nor to
C2 \ C1. Therefore, the capacity of cuts C1 \ C2 and C2 \ C1 remains the same in G, which
is λ− w(e2). Since e2 is vital, w(e2) > 0. So, λ− w(e2) < λS < λ, where λS is the capacity
of S-mincut in G. Hence, we have a Steiner cut of capacity strictly smaller than S-mincut, a
contradiction.

We now prove the converse part. Suppose C1 ∩ C2 is a mincut for edge e2. Since x2 is
a Steiner vertex, by Definition 10, x2 is in C1 ∩ C2. Since C1 ∩ C2 ⊆ C1, x2 is in C1. This
completes the proof. ◀

For any pair of nonSteiner vertices a, b ∈ V ′, it turns out that Lemma 25 does not necessarily
hold as follows. As shown in Figure 1(i), s2 is present in nearest mincut A of edge (s1, a)
but nearest mincut B for edge (s2, b) crosses A.

Recall that our objective is to design an O(n) space structure for storing a mincut for
every edge from VitType-3(u). By Lemma 24, the set of nearest mincuts for all edges from
VitType-3(u) satisfies Disjoint property. By exploiting Lemma 25, we now establish two
interesting properties satisfied by the nearest mincuts for all edges from VitType-3(u) –
Uniqueness Property (Lemma 26) and Subset Property (Lemma 27). These properties
help in designing an O(n) space data structure for storing them. We first establish the
uniqueness property in the following lemma.

▶ Lemma 26 (Uniqueness Property). For any edge e = (x, u) from VitType-3(u), the
nearest mincut for edge e is unique.

Proof. Suppose C1 and C2 are a pair of distinct nearest mincuts for edge e. It follows from
Lemma 25 that C = C1 ∩C2 is a mincut for edge e. So, C is a proper subset of both C1 and
C2, which contradicts that C1 and C2 are nearest mincuts for edge e. ◀

Although the nearest mincut for each edge from VitType-3(u) is unique (Lemma 26), the
Uniqueness Property alone can only guarantee a data structure occupying O(n|S|) space
for all edges from VitType-3(u). To achieve a better space, we now explore the relation
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between the nearest mincuts for a pair of edges from VitType-3(u). Since nearest mincut
for an edge from VitType-3(u) is unique (Lemma 26), without causing any ambiguity, we
consider N(e) to denote the unique nearest mincut for an edge e from VitType-3(u).

Let e1 = (x1, u) and e2 = (x2, u) be a pair of edges from VitType-3(u). If neither
x1 ∈ N(e2) nor x2 ∈ N(e1), then, by Lemma 24, N(e1) is disjoint from N(e2). The other
cases are when x1 ∈ N(e2) or x2 ∈ N(e1). We exploit Lemma 25 to establish the following
property. This property states that N(e1) is either identical to N(e2) or one of {N(e1),
N(e2)} contains the other.

▶ Lemma 27 (Subset Property). Let (x, u) and (x′, u) be a pair of edges from VitType-
3(u). Then, x′ ∈ N((x, u)) if and only if N((x′, u)) ⊆ N((x, u)).

Proof. Let C = N((x, u)) and C ′ = N((x′, u)). Let us assume to the contrary that C ′ ⊈ C.
It is given that x′ ∈ C. Therefore, by Lemma 25, C ∩ C ′ is also a mincut for edge (x′, u).
This contradicts that C ′ is a nearest mincut for edge (x′, u).

Since N((x′, u)) ⊆ N((x, u)) and (x′, u) is a contributing edge of N((x′, u)) with x′ ∈
N((x′, u)), therefore, x′ also belong to N((x, u)). This completes the proof. ◀

Let (x1, u) and (x2, u) be edges from VitType-3(u), where x1, x2 ∈ S. Let C1 and C2 be
nearest mincuts for edges (x1, u) and (x2, u), respectively. It follows from Lemma 27 and
Lemma 24 that there are three possibilities for C1 and C2 – C1 is the same as C2, one of C1
and C2 is a proper subset of the other, and C1 is disjoint from C2. Therefore, for any vertex
u ∈ V ′, the set containing the nearest mincuts for every edge from VitType-3(u) forms a
Laminar family L(u) (Definition 14) on set V . This inference, along with Lemma 15, leads
to the following result.

▶ Lemma 28. There is an O(n) space tree TL(u) that satisfies the following property. For
each edge (x, u) from VitType-3(u) with x ∈ S, SubTree(x) of tree TL(u) is the nearest
mincut for edge (x, u).

Data Structure F3 for all vital edges from Type-3. For each nonSteiner vertex u ∈ V ′,
we construct a tree TL(u) based on the laminar family L(u) consisting of the nearest mincuts
for all edges from VitType-3(u). Since V ′ contains nonSteiner vertices of G only, there can
be at most n− |S| vertices in V ′. Therefore, by Lemma 28, the overall space occupied by
the data structure is O(n(n− |S|)).

Reporting a mincut for a vital edge from Type-3 using F3. Given any vital edge e = (x, u)
from Type-3, where x ∈ S and u ∈ V \ S, by following Lemma 28, we report the set of
vertices stored in SubTree(x) of tree TL(u) as the nearest mincut for edge (x, u).

Note that given any edge e from Type-3 and any value ∆ satisfying 0 ≤ ∆ ≤ w(e), by
using the data structure of Lemma 17, we can determine in O(1) time whether the capacity of
S-mincut reduces after reducing w(e) by ∆. This leads to the following lemma for answering
query cut for all edges from Type-3.

▶ Lemma 29 (Sensitivity Oracle for Type-3 Edges). For any Steiner set S ⊆ V , there is
an O((n − |S|)n) space data structure that, given any edge e from Type-3 and any value
∆ satisfying 0 ≤ ∆ ≤ w(e), can report an S-mincut C in O(|C|) time after reducing the
capacity of edge e by ∆.
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Algorithm 2 Answering Query cut.

1: procedure cut(e = (x, y), ∆)
2: Let C be a Steiner mincut of G;
3: Assign mincut← C;
4: type← the type of edge e determined using the endpoints {x, y};
5: if type == 1 then
6: Assign mincut← a mincut for edge e using data structure of Lemma 21;
7: else if type == 2 then
8: Assign mincut← a mincut for edge e using data structure of Lemma 23;
9: else if type == 3 then

10: Verify using the data structure in Lemma 17 whether e is vital;
11: if e is a vital edge then
12: Assign mincut← a mincut for edge e using data structure of Lemma 29;
13: else
14: do nothing;
15: end if
16: end if
17: return mincut;
18: end procedure

Lemma 21, Lemma 23, and Lemma 29 complete the proof of Theorem 5(2).
The pseudo-code for answering query cut is provided in Algorithm 2. Algorithm 2 is

invoked with the failed edge e and the change in capacity ∆ of edge e satisfying 0 ≤ ∆ ≤ w(e).
In Step 10 of Algorithm 2, the change in capacity (∆) is required to determine if edge e is
a vital edge. Otherwise, Algorithm 2 fails to report the valid S-mincut after reducing the
capacity of edge e.

7 Conclusion

We have designed the first Sensitivity Oracle for Steiner mincuts in weighted graphs. It also
includes the first Sensitivity Oracle for global mincut in weighted graphs. Interestingly, our
Sensitivity Oracle occupies space subquadratic in n when |S| approaches n and also achieves
optimal query time. On the other hand, it matches the bounds on both space and query
time with the existing best-known results for (s, t)-mincut [12, 2].

Our quadratic space single edge Sensitivity Oracle does not assume that the capacity of
the failed edge is known. We have also complemented this result with matching lower bounds.
Now, it would be great to see whether there is any single edge Sensitivity Oracle for Steiner
mincut that occupies only O(n) space assuming the capacity of the failed edge is known.

Finally, our obtained structure that breaks the quadratic bound is quite simple as it is a
forest of O(n− |S|) trees. We strongly believe that our techniques and structures will be
quite useful for addressing several problems in the future, including the problem of designing
a Sensitivity Oracle for S-mincut that can handle failure of multiple edges.
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