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Abstract
The n-way number partitioning problem is a classic problem in combinatorial optimization, with
applications to diverse settings such as fair allocation and machine scheduling. All these problems
are NP-hard, but various approximation algorithms are known. We consider three closely related
kinds of approximations.

The first two variants optimize the partition such that: in the first variant some fixed number s

of items can be split between two or more bins and in the second variant we allow at most a fixed
number t of splittings. The third variant is a decision problem: the largest bin sum must be within
a pre-specified interval, parameterized by a fixed rational number u times the largest item size.

When the number of bins n is unbounded, we show that every variant is strongly NP-complete.
When the number of bins n is fixed, the running time depends on the fixed parameters s, t, u. For
each variant, we give a complete picture of its running time.

For n = 2, the running time is easy to identify. Our main results consider any fixed integer
n ≥ 3. Using a two-way polynomial-time reduction between the first and the third variant, we show
that n-way number-partitioning with s split items can be solved in polynomial time if s ≥ n − 2,
and it is NP-complete otherwise. Also, n-way number-partitioning with t splittings can be solved
in polynomial time if t ≥ n − 1, and it is NP-complete otherwise. Finally, we show that the third
variant can be solved in polynomial time if u ≥ (n − 2)/n, and it is NP-complete otherwise. Our
positive results for the optimization problems consider both min-max and max-min versions.

Using the same reduction, we provide a fully polynomial-time approximation scheme for the case
where the number of split items is lower than n − 2.
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1 Introduction

In the classic setting of the n-way number partitioning problem, the inputs are a list
X = (x1, . . . , xm) of m non-negative integers and a number of bins n, and the required
output is an n-way partition (a partition of the integers into n bins) that attains some
pre-determined objective. In the decision version of the problem, the objective is to decide
whether there exists an n-way partition of X such that every bin sum is exactly equal
to

∑
xi∈X xi/n (we call it a perfect partition). In the min-max optimization version, the

objective is to find an n-way partition of X such that the maximum bin sum is minimized,
while in the max-min optimization version, the goal is to maximize the smallest bin sum.

For each problem of this paper, the problem objective is mentioned first, the fixed
parameters in square brackets, and the problem input in parenthesis. Let us formally define
the min-max version of the n-way number partitioning problem, where n is a fixed parameter:

MinMax-Part[n](X ): Minimize max(b1, . . . , bn), where b1, . . . , bn are sums of bins
in an n-way partition of X .

When n is unbounded, Dec-Part(n,X ) (the decision version of the n-way number partitioning
problem) is known to be strongly NP-hard (it is equivalent to 3-partition) [8]. And for every
fixed n ≥ 2 Dec-Part[n](X ) is known to be NP-hard [9]. In addition, many instances of the
decision version are negative (there is no perfect partition). The latter reasons give us a
good motivation to investigate variants of the n-way number partitioning problem, for which
the running time complexity is better, and the number of positive instances (admitting a
perfect partition) will significantly grow. We present three variants, that relax the initial
problem to solve our concerns. The first two variants allow “divisible” items, bounded by
some natural numbers s and t. We define the decision and the min-max versions as follows:

Dec-SplitItem[n, s](X ): Decide if there exists a partition of X among n bins with
at most s split items, such that max(b1, . . . , bn) ≤ S.
MinMax-SplitItem[n, s](X ): Minimize max(b1, . . . , bn), where b1, . . . , bn are sums
of bins in an n-way partition of X in which at most s items are split.
Dec-Splitting[n, t](X ): Decide if there exists a partition of X among n bins with
at most t splittings, such that max(b1, . . . , bn) ≤ S.
MinMax-Splitting[n, t](X ): Minimize max(b1, . . . , bn), where b1, . . . , bn are sums
of bins in an n-way partition of X in which at most t splittings are allowed.

The number of splittings is at least the number of split items but might be larger. For
example, a single item split into 10 different bins counts as 9 splittings. Note that the
problem definitions do not determine in advance which items will be split, but only bound
their number, or bound the number of splittings. The solver may decide which items to split
after receiving the input.

Our motivating application for the variants comes from fair division and machine schedul-
ing. For fair division, some m items with market values x1, . . . , xm have to be divided among
n agents. A perfect partition is one in which each partner receives a total value of exactly∑

i xi/n. When the original instance does not admit a perfect partition, we may want to split
one or more items among two or more agents. Or, we can allow some splittings. Divisible
items are widespread in fair division applications – the ownership of one or more items may
be split to attain a perfectly fair partition. However, divisible items may be inconvenient or
expensive. Therefore, the number of split items or splittings should be bounded. The same
is true for machine scheduling, in which agents are considered as machines, and items as jobs.
It is possible for a job to be divided and be processed by two machines simultaneously. The
following examples tackle real-life fair division or machine scheduling problems.
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(1) Consider n = 2 heirs who inherited m = 3 houses and have to divide them fairly. The
house values are X = (100, 200, 400). If all houses are considered discrete, then an equal
division is not possible. If all houses can be split, then an equal division is easy to attain by
giving each heir 50% of every house, but it is inconvenient since it requires all houses to be
jointly managed. A solution often used in practice is to decide in advance that a single house
can be split (or only one splitting is allowed). In this case, after receiving the input, we can
determine that splitting the house with a value of 400 lets us attain a division in which each
heir receives the same value of 350. 1

(2) Consider a food factory with n = 3 identical chopping machines, who has to cut
m = 4 vegetables with processing times X = (10, 7, 5, 5) minutes. Each job is divisible as
one vegetable may be cut in different machines, but splitting a job is inconvenient since
it requires washing more dishes. Without splitting, the minimum total processing time is
10 minutes: (10), (7), (5, 5). By splitting the vegetable with processing time 10 into three
different machines, the processing time is 9 minutes: (7, 2), (5, 4), (5, 4).
The third variant only admits a decision version, parameterized by a rational number u ≥ 0:

Dec-Inter[n, u](X ): Decide if there exists a partition of X into n bins with sums
b1, . . . , bn such that S ≤ max(b1, . . . , bn) ≤ S + u ·M , where S := (

∑
i xi)/n and

M := (maxi xi)/n.
We will also use another definition of this variant, parameterized by a rational number v ≥ 0:

Dec-Inter[n, v](X ): Decide if there exists a partition of X into n bins with sums
b1, . . . , bn such that S ≤ max(b1, . . . , bn) ≤ (1 + v) · S, where S := (

∑
i xi)/n.

Note that when u = vS/M , both definitions are the same. In general, the runtime complexity
of this problem depends on the size of the allowed interval (i.e., the interval [S, S + u ·M ]):
the problem is NP-complete when the interval is “small” and in P when the interval is “large”.
Specifically, when n = 2, the runtime complexity depends on the ratio of the allowed interval
to the bin sum, while when n ≥ 3 it depends on the ratio of the allowed interval to the largest
item. We notice that, if we can solve Inter for any interval length in polynomial-time, then
by binary search we can solve Part in polynomial-time; which is not possible unless P=NP.
So in Inter, we look for the smallest interval for which we can decide in polynomial-time
whether it contains a solution.

As an application example, consider the fair allocation of indivisible items among two
agents. Suppose there is a small amount of money, that can be used to compensate for a
small deviation from equality in the allocation. But if the deviation is too big, the agents
prefer to find another solution. We can check the feasibility using Inter such that the
interval is the amount of money available.

The Inter variant is similar to the Fully Polynomial-Time Approximation Scheme
(FPTAS) definition:

▶ Definition 1. An FPTAS for MinMax-Part[n](X ) is an algorithm that finds, for each
rational ϵ > 0, an n-way partition of X with OPT ≤ max(b1, . . . , bn) ≤ (1 + ϵ) · OPT ,
where OPT is the smallest possible value of max(b1, . . . , bn) in the given instance, in time
O(poly(m, 1/ϵ, log S)).

An FPTAS finds a solution for which the relative deviation from optimality depends on the
optimal integral solution. In contrast, in the Dec-Inter[n, u](X ) problem, we look for a
solution for which the relative deviation from optimality depends on the optimal fractional
solution.

1 Split the house worth 400 such that one heir gets 7/8 of it, and the other gets 1/8 of it plus both the
100 and 200 houses.
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Table 1 Run-time complexity of the n-way number partitioning variants. In SplitItem, s (an
integer) is the number of items the algorithm is allowed to split. In Splitting, t (an integer) is the
number of splittings the algorithm is allowed to make. In Inter, u (a rational number) is the ratio
between the allowed interval length and M .

Problem Objective Num of bins Bound Run-time complexity
Part Dec Unbounded s = t Strongly NP-hard [[8]]

Constant n = u = 0 NP-complete [[9]]
SplitItem Dec Unbounded s (any) Strongly NP-hard [[4]Corollary 19]

Constant n ≥ 3 s < n − 2 NP-complete [Theorem 14]
MinMax s ≥ n − 2 O(poly(m, log S)) [Theorem 16]
MaxMin s ≥ n − 2 O(poly(m, log S)) [[4]Theorem 22]
All Constant n ≥ 2 s ≥ n − 1 O(m + n) [cut-the-line]

Splitting Dec Unbounded t (any) Strongly NP-hard [[4]Theorem 20]
Constant n t < n − 1 NP-complete [Theorem 17]

All t ≥ n − 1 O(m + n) [cut-the-line]
Inter Dec Unbounded u (any) Strongly NP-hard [[4]Theorem 17]

Constant n ≥ 3 u < n − 2 NP-complete [Theorem 11]
Dec u ≥ n − 2 O(poly(m, log S)) [Theorem 10]

Constant n ≥ 2 u ≥ n − 1 O(m + n) [cut-the-line+Thm 13]
n = 2 u > 0 O(poly(m, log S, 1/u)) [Theorem 6]

Contribution

When s, t, u = 0, SplitItem, Splitting and Inter decision versions are equivalent to the
NP-hard Part decision version. In contrast, when s, t ≥ n− 1 the problem is easily solvable
by the following algorithm: put the items on a line, cut the line into n pieces with an equal
total value, and put each piece in a bin. Since n − 1 cuts are made, at most n − 1 items
need to be split. So for n = 2, the runtime complexity of the Dec-SplitItem[n, s](X ) and
Dec-Splitting[n, t](X ) problem is well-understood (assuming P ̸= NP): it is polynomial-
time solvable if and only if s, t ≥ 1. The case for Inter is slightly different since u, v are
rational numbers. We summarize all our results in Table 1.

In Section 4 we show a two-way polynomial-time reduction between problems SplitItem
and Inter. This reduction is the key for many of our results. We use it to handle the
case where the number of split items is smaller than n − 2. First, we design an FPTAS
in [4][Appendix A.3]. Second, we develop a practical (not polynomial-time) algorithm, for
solving MinMax-SplitItem[n, s](X ) for any s ≥ 0. The algorithm can use any practical
algorithm for solving the MinMax-Part[n](X ) problem. The latest helps us in [4][Appendix
A.4] to conduct some experiences to various randomly generated instances and analyze the
effect of s on the quality of the attained solution. The supplement provides complementary
results and technical proof details omitted from the main text.

2 Related Work

In most combinatorial optimization problems, there is a clear distinction between discrete
and continuous variables. E.g., when a problem is modeled by a mixed-integer program,
each variable in the program is determined in advance to be either discrete (must get an
integer value) or continuous (can get any real value). The problems we study belong to a
much smaller class of problems, in which all variables are potentially continuous, but there is
an upper bound on the number of variables that can be non-discrete. We describe some such
problems below.
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Bounded splitting in fair division. The idea of finding fair allocations with a bounded number
of split items originated from [5, 6]. They presented the Adjusted Winner (AW) procedure for
allocating items among two agents with possibly different valuations. AW finds an allocation
that is envy-free (no agent prefers the bundle of another agent), equitable (both agents receive
the same subjective value), and Pareto-optimal (there is no other allocation where some
agent gains and no agent loses), and in addition, at most a single item is split between the
agents. Hence, AW solves a problem that is similar to Dec-SplitItem[n = 2, s = 1](X ) but
more general, since AW allows the agents to have different valuations to the same items.

Most similar to our paper is the recent work of [15]. Their goal is to find an allocation
among n agents with different valuations, which is both fair and fractionally Pareto-optimal
(fPO), a property stronger than Pareto-optimality (there is no other discrete or fractional
allocation where some agent gains and no agent loses). This is a very strong requirement:
when n is fixed, and the valuations are non-degenerate (i.e., for every two agents, no two
items have the same value-ratio), the number of fPO allocations is polynomial in m, and it is
possible to enumerate all such allocations in polynomial time. Based on this observation,
they present an algorithm that finds an allocation with the smallest number of split items,
among all allocations that are fair and fPO. In contrast, in our paper, we do not require fPO,
which may allow allocations with fewer split items or splittings. However, the number of
potential allocations becomes exponential, so enumerating them all is no longer feasible.

Another paper [3] studies the same problems, but, whereas our paper focuses on identical
valuations, they give new results on binary valuations (i.e., each agent values each item as 0
or 1), generalized binary valuations (i.e., each agent values each item as 0 or xi, which can
be considered as the price of the item) and negative results on non-degenerate valuations,
complementing the results given by [15].

Recently, [1, 2] studied an allocation problem where some items are divisible and some are
indivisible. In contrast to our setting, in [1] the distinction between divisible and indivisible
items is given in advance, that is, the algorithm can only divide items that are pre-determined
as divisible. In [2], for each good, some agents may regard it as indivisible, while other
agents may regard the good as divisible. In our setting, only the number of divisible items
(splittings) is given in advance, but the algorithm is free to choose which items to split after
receiving the input.

Splitting in job scheduling. There are several variants of job scheduling problems in which
it is allowed to break jobs apart. They can be broadly classified into preemption and splitting.
In the preemption variants, different parts of a job must be processed at different times.
In the three-field notation, they are denoted by “pmtn” and were first studied by [13]. In
the splitting variants, different parts of a job may be processed simultaneously on different
machines. They are denoted by “split” and were introduced by [18].

Various problems have been studied in job scheduling with preemption. The most closely
related to our problem is the generalized multiprocessor scheduling (GMS). It has two variants.
In the first variant, the total number of preemptions is bounded by some fixed integer. In
the second variant, each job j has an associated parameter that bounds the number of times
j can be preempted. In both variants, the goal is to find a schedule that minimizes the
makespan subject to the preemption constraints. For identical machines, [16] prove that with
the bound of n− 2 on the total number of preemptions, the problem is NP-hard, whereas [13]
shows a linear-time algorithm with n− 1 preemptions. In Theorem 17 we prove an analogous
result where the bound is on the total number of splittings.

In all the works we surveyed, there is no global bound on the number of splitting jobs.
As far as we know, bounding the number of splittings or split jobs was not studied before.

ISAAC 2024
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Fractional bin-packing. Another problem, in which splitting was studied, is the classical
bin-packing problem. Bin-packing with fragmented items are first introduced by [12]. They
called the problem fragmentable object bin-packing problem and prove that the problem is
NP-hard. It is later split into two variants. In the first variant called bin-packing with size-
increasing fragmentation (BP-SIF), each item may be fragmented; overhead units are added
to the size of every fragment. In the second variant called bin-packing with size-preserving
fragmentation (BP-SPF) each item has a size and a cost; fragmenting an item increases its
cost but does not change its size. Menakerman and Rom [14] show that BP-SIF and BP-SPF
are NP-hard in the strong sense. Despite the hardness, they present several algorithms and
investigate their performance. Their algorithms use classic algorithms for bin-packing, like
next-fit and first-fit decreasing, as a base for their algorithms.

Finally, the fractional knapsack problem with penalties is recently introduced by [11].
They develop an FPTAS and a dynamic program for the problem, and they show an extensive
computational study comparing the performance of their models.

3 Partition with Interval Target

In this section we analyze the problems Dec-Inter[n, v](X ) and Dec-Inter[n, u](X ).

3.1 The Dec-Inter[n, v](X ) problem
Given an instance of Dec-Inter[n, v](X ), we say that a partition of X is v-feasible if
S ≤ max(b1, . . . , bn) ≤ (1+v) ·S, where b1, . . . , bn are the bin sums and S is the sum of items
divided by n. The Dec-Inter[n, v](X ) problem is to decide whether a v-feasible partition
exists.

▶ Lemma 2. When v ≥ 1, the problem Dec-Inter[n, v](X ) can be decided in linear time by
a greedy algorithm.

The proof is in [4][Appendix B.3]. We focus below on the case v < 1.

▶ Definition 3. Given an instance of Dec-Inter[n, v](X ), a rational number ϵ > 0, and a
partition of X among n bins, an almost-full bin is a bin with sum larger than (1+v) ·S/(1+ϵ).

A known FPTAS for the MinMax-Part[n](X ) problem [17] gives us valuable information
since we can easily verify that if the output of this FPTAS is smaller than (1 + v) · S then in
any n-way partition of X , at least one bin is almost-full. To gain more information on the
instance, we apply an FPTAS for a constrained variant of Part, with a Critical Coordinate.
For an integer n ≥ 2, a list X , and a rational number v > 0, we define the following problem:

MinMax-Part[n, v, i](X )2: Minimize max(b1, . . . , bi−1, bi+1, . . . , bn) subject to bi ≤
(1 + v) · S where b1, . . . , bn are bin sums in an n-way partition of X .

The general technique developed by [17] for converting a dynamic program to an FPTAS can
be used to design an FPTAS for MinMax-Part[n, v, i](X ); we give the details in [4][Appendix
C.1]. We denote by FPTAS(MinMax-Part[n, v, i](X ), ϵ) the largest bin sum in the solution
obtained by the FPTAS.

▶ Lemma 4. For any n ≥ 2, v > 0, ϵ > 0, if, for all i ∈ [n], FPTAS(MinMax-Part[n, v, i](X ),
ϵ) > (1 + v) · S, then in any v-feasible n-way partition of X , at least two bins are almost-full.

2 The critical coordinate is parameterized by i. In this work, we do not use this parameter, but other
results may iterate over every critical coordinate possible.
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Proof. Suppose by contradiction that there exists a v-feasible partition of X with at most
one almost-full bin. Let i be the index of the bin with the largest sum in that partition. Since
bin i has the largest sum, if there is one almost-full bin, it must be bin i. Hence, bins that
are not i are not almost-full, so max(b1, . . . , bi−1, bi+1, . . . , bn) ≤ (1 + v) ·S/(1 + ϵ). Moreover,
bi ≤ (1 + v) · S since the partition is v-feasible. Therefore, FPTAS(MinMax-Part[n, v, i](X ),
ϵ) ≤ (1 + v) · S by the definition of FPTAS. This contradicts the lemma assumption. ◀

Using Theorem 4, we can now derive a complete algorithm for Dec-Inter[n = 2, v](X ).

Algorithm 1 Dec-Inter[n = 2, v](X ).

1: b2 ←− FPTAS(MinMax-Part[n = 2, v, i](X ), ϵ = v/2).
2: If b2 ≤ (1 + v) · S, return “yes”.
3: Else, return “no”.

▶ Theorem 5. For any rational v > 0, Algorithm 1 solves the Dec-Inter[n = 2, v](X )
problem in time O(poly(m, log S, 1/v)), where m is the number of items in X and S =
(
∑

i xi)/n is the perfect bin sum.

Proof. The run-time of Algorithm 1 is dominated by the run-time of the FPTAS for
MinMax-Part[n = 2, v, i](X ), which is O(poly(m, log S, 1/ϵ)) = O(poly(m, log S, 1/v)) (we
show in [4][Appendix C.3.1] that the exact run-time is O( m

v log S)). It remains to prove that
Algorithm 1 indeed solves Dec-Inter[n = 2, v](X ) correctly.

If b2, the returned bin sum of FPTAS(MinMax-Part[n = 2, v, i](X ), ϵ = v/2), is at most
(1 + v) · S, then the partition found by the FPTAS is v-feasible, so Algorithm 1 answers “yes”
correctly. Otherwise, by Theorem 4, in any v-feasible partition of X into two bins, both bins
are almost-full. This means that, in any v-feasible partition, both bin sums b1 and b2 are
larger than (1 + v) ·S/(1 + ϵ), which is larger than S since ϵ = v/2. So b1 + b2 > 2S. But this
is impossible since the sum of the items is 2S by assumption. Hence, no v-feasible partition
exists, and Algorithm 1 answers “no” correctly. 3 ◀

▶ Corollary 6. For any rational u > 0, Algorithm 1 solves the Dec-Inter[n = 2, u](X )
problem in time O(poly(m, log S, 1/u)).

Proof. For any rational u > 0, let v := uM/S, that is v > 0. Algorithm 1 solves the
Dec-Inter[n = 2, v = uM/S](X ) problem in time O(poly(m, log S, S/uM))), where m is
the number of items in X and S = (

∑
i xi)/n is the perfect bin sum. Since S ≤ mM , the

algorithm runs in time O(poly(m, log S, 1/u)) for any u > 0. ◀

▶ Remark 7. The reader may wonder why we cannot use a similar algorithm for n ≥ 3. For
example, we could have considered a variant of MinMax-Part[n, v, i](X ) with two critical
coordinates:

Minimize max(b3, . . . , bn) subject to b1 ≤ (1 + v) · S and b2 ≤ (1 + v) · S, where
b1, b2, b3, . . . , bn are bin sums in an n-way partition of X .

3 Instead of an FTPAS for MinMax-Part[n = 2, v, i](X ), we could use an FTPAS for the Subset Sum
problem [10], using the same arguments. The critical coordinate is not needed in the Subset Sum FPTAS,
since the output is always smaller than the target. We prefer to use the FTPAS for MinMax-Part[n =
2, v, i](X ), since it is based on the general technique of [17], that we use later for solving other problems.

ISAAC 2024
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If the FPTAS for this problem does not find a v-feasible partition, then any v-feasible partition
must have at least three almost-full bins. Since not all bins can be almost-full, one could
have concluded that there is no v-feasible partition into n = 3 bins.

Unfortunately, the problem with two critical coordinates probably does not have an
FPTAS even for n = 3, since it is equivalent to the Multiple Subset Sum problem, which does
not have an FPTAS unless P=NP [7]. In the next subsection we handle the case n ≥ 3 in a
different way.

3.2 Dec-Inter[n, u](X ): an algorithm for n ≥ 3 and u ≥ n − 2
The case when u ≥ n− 1 is solved by the cut-the-line algorithm combined with Theorem 13.
Here, we prove a more general case where u ≥ n−2. Given an instance of Dec-Inter[n, u](X ),
where the sum of the items is n · S and the largest item is n ·M , where S, M ∈ Q, we say
that a partition of X is u-possible if S ≤ max(b1, . . . , bn) ≤ S + u ·M , where b1, . . . , bn are
the bin sums. The Dec-Inter[n, u](X ) problem is to decide whether a u-possible partition
exists. Given an instance of Dec-Inter[n, u](X ), we let v := uM/S, so that a partition is
u-possible if and only if it is v-feasible.

The algorithm starts by running FPTAS(MinMax-Part[n, v, i](X ), ϵ = v/(4m2)). If the
FPTAS find a v-feasible partition, we return “yes”. Otherwise, by Theorem 4, any v-feasible
partition must have at least two almost-full bins.

We take a detour from the algorithm and prove some existential results about partitions
with two or more almost-full bins. We assume that there are more items than bins, that is,
m > n. This assumption is because if m ≤ n, one can compute all the combinations using
brute force (note that the running time is polynomial since 2m ≤ 2n = O(1) since n is a
fixed parameter).

3.2.1 Structure of partitions with two or more almost-full bins
We distinguish between big, medium, and small items defined as follows. A small item
is an item with length smaller than 2ϵnS; a big item is an item with length greater than
( v

n−2 − 2ϵ)nS. All other items are called medium items. Our main structural Lemma is the
following.

▶ Lemma 8. Suppose that u ≥ n−2, v = uM/S < 1, ϵ = v/4m2 and the following properties
hold.

(1) There is no v-feasible partition with at most 1 almost-full bin;
(2) There is a v-feasible partition with at least 2 almost-full bins.

Then, there is a v-feasible partition with the following properties.
(a) Exactly two bins (w.l.o.g. bins 1 and 2) are almost-full.
(b) The sum of every not-almost-full bin i ∈ {3, . . . , n} satisfies(

1− 2
n− 2v − 2ϵ

)
· S ≤ bi ≤

(
1− 2

n− 2v + (n− 1)2ϵ

)
· S.

(c) Every item in an almost-full bin is a big-item.
(d) Every item in a not-almost-full bin is either a small-item, or a big-item larger or equal

to every item in bins 1,2.
(e) There are no medium-items at all.
(f) Every not-almost-full bin contains the same number of big-items, say ℓ, where ℓ is an

integer (it may contain, in addition, any number of small-items).
(g) Every almost-full bin contains ℓ + 1 big-items (and no small-items).
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As an example of this situation, consider an instance with 7 items, all of which have
size 1, with n = 5 and u = 3. Then, there is a u-possible partition with two almost-
full bins: (1, 1), (1, 1), (1), (1), (1), and no u-possible partition with 1 or 0 almost-full bins.
See [4][Appendix B.4.1] for details. A full proof ([4][Appendix B.4.2]) of the Lemma appears
in the appendix, here we provide a sketch proof.

Proof Sketch. We start with an arbitrary v-feasible partition with some r ≥ 2 almost-full
bins 1, . . . , r, and convert it using a sequence of transformations to another v-feasible partition
satisfying properties (a)–(g), as explained below. Note that the transformations are not part
of our algorithm and are only used to prove the lemma. First, we note that there must be
at least one bin that is not almost-full, since the sum of an almost-full bin is larger than S

whereas the sum of all n bins is n · S.
For (a), if there are r ≥ 3 almost-full bins, we move any item from one of the almost-full

bins 3, . . . , r to some not-almost-full bin. We prove that, as long as r ≥ 3, the target bin
remains not-almost-full. This transformation is repeated until r = 2 and only bins 1 and 2
remain almost-full.

For (b), for the lower bound, if there is i ∈ {3, . . . , n} for which bi is smaller than
the lower bound, we move an item from bins 1, 2 to bin i. We prove that bin i remains
not-almost-full, so by assumption (1), bins 1, 2 must remain almost-full. We repeat until bi

satisfies the lower bound. Once all bins satisfy the lower bound, we prove that the upper
bound is satisfied too.

For (c), if bin 1 or 2 contains an item that is not big, we move it to some bin i ∈ {3, . . . , n}.
We prove that bin i remains not-almost-full, so by assumption (1), bins 1, 2 must remain
almost-full. We repeat until bins 1 and 2 contain only big-items.

For (d), if some bin i ∈ {3, . . . , n} contains an item bigger than 2nSϵ and smaller than
any item in bin 1 or bin 2, we exchange it with an item from bin 1 or 2. We prove that, after
the exchange, bi remains not-almost-full, so bins 1, 2 must remain almost-full. We repeat
until bins 1,2 contain only the smallest big-items. Note that transformations (b), (c), (d)
increase the sum in the not-almost-full bins 3, . . . , n, so the process must end.

For (e), it follows logically from properties (d) and (c): if bins 1,2 contain only big items
and the other bins contain only big and small items, then the instance cannot contain any
medium items (that are neither big nor small). For clarity and verification, we provide a
stand-alone proof.

For (f), we use the fact that the difference between two not-almost-full bins is at most
2nSϵ by property (b), and show that it is too small to allow a difference of a whole big-item.

For (g), because by (d) bins 1 and 2 contain the smallest big-items, whereas their sum
is larger than bins 3, . . . , n, they must contain at least ℓ + 1 big-items. We prove that,
if they contain ℓ + 2 big-items, then their sum is larger than (1 + v)S, which contradicts
v-feasibility. ◀

Properties (f) and (g) imply:

▶ Corollary 9. Suppose that u ≥ n− 2, v = uM/S and ϵ = v/4m2. Let B ⊆ X be the set of
big items in X . If there is a v-feasible partition with at least two almost-full bins, and no
v-feasible partition with at most one almost-full bin, then |B| = nℓ + 2 for ℓ ∈ N.
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3.2.2 Back to the algorithm
We have left the algorithm at the point when FPTAS(MinMax-Part[n = 2, v, i](X ), ϵ =
v/4m2) > (1 + v) · S that is the FPTAS did not return a v-feasible partition. Theorem 4
implies that if a v-feasible partition exists, then there exists a v-feasible partition satisfying
all properties of Theorem 8 and Theorem 9. We can find such a partition (if it exists) in two
steps:

For bins 1, 2: Find a v-feasible partition of the 2ℓ + 2 smallest items in B into two bins
with ℓ + 1 items in each bin.
For bins 3, . . . , n: Find a v-feasible partition of the remaining items in X into n − 2
bins.

For bins 3, . . . , n, we use the FPTAS for the problem MinMax-Part[n = n − 2](X ). If it
returns a v-feasible partition, we are done. Otherwise, by FPTAS definition, every partition
into (n − 2) bins must have at least one almost-full bin. But by Theorem 8(a), all bins
3, . . . , n are not almost-full which is a contradiction. Therefore, if the FPTAS does not find a
v-feasible partition, we answer “no”. Bins 1 and 2 require a more complicated algorithm that
is explained in [4][Appendix B.2]. We are now ready to present the complete algorithm for
Dec-Inter[n, u](X ), presented in Algorithm 2.

Algorithm 2 Dec-Inter[n, u](X ) (complete algorithm).

1: v ←− uM/S and ϵ←− v/(4m2).
2: If FPTAS(MinMax-Part[n, v, i](X ), ϵ) ≤ (1 + v) · S, return “yes”.
3: B ←−

{
xi ∈ X | xi > nS( v

n−2 − 2ϵ)
}

▷ big items

4: If |B| is not of the form nℓ + 2 for some integer ℓ, return “no”.
5: B1:2 ←− the 2ℓ + 2 smallest items in B. ▷ break ties arbitrarily

6: B3..n ←− X \B1:2. ▷ big and small items

7: b3 ←− FPTAS(MinMax-Part[n = n− 2](B3..n), ϵ) ▷ Computes an approximately-optimal

(n − 2)−way partition of B3..n and returns the maximum bin sum in the partition.

8: If b3 > (1 + v)S, return “no”. ▷ The FTPAS did not find a v-feasible partition.

9: B1:2 ←− {nM1:2 − x | x ∈ B1:2} and v ←− (S + vS − S1:2)/S1:2.

10: Look for a v-feasible partition of B1:2 into two subsets of ℓ + 1 items (see [4][Appendix
B.2]).

11: If a v-feasible partition is found, return “yes”. Else, return “no”.

▶ Theorem 10. For any fixed integer n ≥ 3 and rational number u ≥ n− 2, Algorithm 2
solves Dec-Inter[n, u](X ) in O(poly(m, log S)) time, where m is the number of items in X ,
and S is the average bin size.

Proof. If Algorithm 2 answers “yes”, then clearly a v-feasible partition exists. To complete
the correctness proof, we have to show that the opposite is true as well.

Suppose there exists a v-feasible partition. If the partition has at most one almost-full
bin, then by Theorem 4, it is found by the FPTAS in step 2. Otherwise, the partition
must have at least two almost-full bins, and there exists a v-feasible partition satisfying the
properties of Theorem 8. By Theorem 9, the algorithm does not return “no” in step 4. By
properties (a) and (b), there exists a partition of B3..n into n − 2 bins 3, . . . , n which are
not almost-full. By definition, the FPTAS in step 7 finds a partition with max(b3, . . . , bn) ≤
(1 + v)S. The final steps, regarding the partition of B1:2, are justified by the discussion
at [4][Appendix B.2]. The complete running time O(poly(m, log S)) of Algorithm 2 is
justified by the running time of the FPTAS for FPTAS(MinMax-Part[n = 2, v, i](X ), ϵ)
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and for FPTAS(MinMax-Part[n = n − 2](B3..n), ϵ). Note that 1/v is polynomial in m

since 1/v = S/uM ≤ mM/uM = m/u = O(m) since u is fixed. The exact running time,
O(m4 log S), is detailed in [4][Appendix C.3.2]. ◀

3.3 Hardness for n ≥ 3 bins and u < n − 2
The following theorem complements the previous subsection.

▶ Theorem 11. Given a fixed integer n ≥ 3 and a positive rational number u < n− 2, the
problem Dec-Inter[n, u](X ) is NP-complete.

Proof. Given an n-way partition of m items, summing the sizes of all elements in each bin
allows us to check whether the partition is u-possible in linear time. So, the problem is in NP.
To prove that Dec-Inter[n, u](X ) is NP-Hard, we reduce from the equal-cardinality partition
problem, proved to be NP-hard in [9]: given a list with an even number of integers, decide if
they can be partitioned into two subsets with the same sum and the same cardinality.

Given an instance X1 of equal-cardinality partition, denote the number of items in X1 by
2m′. Define M to be the sum of numbers in X1 divided by 2n(1− u

n−2 ), so that the sum of
items in X1 is 2n(1− u

n−2 )M (where n and u are the parameters in the theorem statement).
We can assume w.l.o.g. that all items in X1 are at most n(1− u

n−2 )M , since if some item is
larger than half of the sum, the answer is necessarily “no”.

Construct an instance X2 of the equal-cardinality partition problem by replacing each
item x in X1 by nM − x. So X2 contains 2m′ items between n( u

n−2 )M and nM . Their sum,
which we denote by 2S′, satisfies 2S′ = 2m′ ·nM−2n

(
1− u

n−2

)
M = 2n

(
m′ − 1 + u

n−2

)
M.

Clearly, X1 has an equal-sum equal-cardinality partition (with bin sums n
(

1− u
n−2

)
M) iff

X2 has an equal-sum equal-cardinality partition (with bin sums S′ = n
(

m′ − 1 + u
n−2

)
M).

Construct an instance (X3, u) of Dec-Inter[n, u](X ) by adding (n− 2)(m′ − 1) items of
size nM . Note that nM is indeed the largest item size in X3. Denote the sum of item sizes
in X3 by nS. Then

nS = 2S′ + (n− 2)(m′ − 1) · nM = n

(
2(m′ − 1) + 2u

n− 2 + (n− 2)(m′ − 1)
)
·M

= n

(
n(m′ − 1) + 2u

n− 2

)
M ;

S + uM =
(

n(m′ − 1) + 2u

n− 2 + u

)
M =

(
n(m′ − 1) + nu

n− 2

)
M = S′,

so a partition of X3 is u-possible if and only if the sum of each of the n bins in the partition
is at most S + uM = S′.

We now prove that if X2 has an equal-sum equal-cardinality partition, then the instance
(X3, u) has a u-possible partition, and vice versa. If X2 has an equal-sum partition, then the
items of X2 can be partitioned into two bins of sum S′, and the additional (n− 2)(m′ − 1)
items can be divided into n− 2 bins of m′ − 1 items each. The sum of these items is

(m′ − 1) · nM = n(m′ − 1)M = S − 2
n− 2uM < S + uM = S′, (1)

so the resulting partition is a u-possible partition of X3. Conversely, suppose X3 has a
u-possible partition. Let us analyze its structure.
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Since the partition is u-possible, the sum of every two bins is at most 2(S + uM). So the
sum of every n − 2 bins is at least nS − 2(S + uM) = (n − 2)S − 2uM . Since the largest
(n− 2)(m′ − 1) items in X3 sum up to exactly (n− 2)S − 2uM by (1), every n− 2 bins must
contain at least (n − 2)(m′ − 1) items. Since X3 has (n − 2)(m′ − 1) + 2m′ items overall,
n− 2 bins must contain exactly (n− 2)(m′ − 1) items, such that each item size must be nM ,
and their sum must be (n − 2)S − 2uM . The other two bins contain together 2m′ items
with a sum of 2(S + uM), so each of these bins must have a sum of exactly S + uM . Since
(m′− 1) ·nM < S + uM by (1), each of these two bins must contain exactly m′ items. These
latter two bins are an equal-sum equal-cardinality partition for X2. This construction is done
in polynomial time, completing the reduction. ◀

4 Partition with Split Items

We now deal with the problem SplitItem. We redefine the Dec-SplitItem[n, s](X ) problem.
For a fixed number n ≥ 2 of bins, given a list X , the number of split items s ∈ {0, . . . , m}
and a rational number v ≥ 0, define:

Dec-SplitItem[n, s, v](X ): Decide if there exists a partition of X among n bins
with at most s split items, such that max(b1, . . . , bn) ≤ (1 + v)S.

The special case v = 0 corresponds to the Dec-SplitItem[n, s](X ) problem. The following
Lemma shows that, w.l.o.g., we can consider only the longest items for splitting.

▶ Lemma 12. For every partition with s ∈ N split items and bin sums b1, . . . , bn, there exists
a partition with the same bin sums b1, . . . , bn in which only the s largest items are split.

Proof. Consider a partition in which some item with length x is split between two or more
bins, whereas some item with length y > x is allocated entirely to some bin i. Construct a
new partition as follows: first move item x to bin i; second remove from bin i, a fraction x

y of
item y; and finally split that fraction of item y among the other bins, in the same proportions
as the previous split of item x. All bin sums remain the same. Repeat the argument until
only the longest items are split. ◀

▶ Theorem 13. For any fixed integers n ≥ 2 and u ≥ 0, there is a polynomial-time reduction
from Dec-Inter[n, u](X ) to Dec-SplitItem[n, s = u, v = 0](X ).

Proof. Given an instance X of Dec-Inter[n, u](X ), we add u items of size nM , where nM

is the size of the biggest item in X to construct an instance X ′ of Dec-SplitItem[n, s =
u, v = 0](X ′).

First, assume that X has a u-possible partition. Then there are n bins with a sum at most
S + uM . Take the u added items of size nM and add them to the bins, possibly splitting
some items between bins, such that the sum of each bin becomes exactly S + uM . This is
possible because the sum of the items in X ′ is nS + unM = n(S + uM). The result is a
0-feasible partition of X ′ with at most u split items.

Second, assume that X ′ has a 0-feasible partition with at most u split items. Then there
are n bins with a sum of exactly S + uM . By Theorem 12, we can assume the split items
are the largest ones, which are the u added items of size nM . Remove these items to get a
partition of X . The sum in each bin is now at most S + uM , so the partition is u-possible.
This construction is done in polynomial time, which completes the proof. ◀

▶ Corollary 14. For every fixed integers n ≥ 3 and s ∈ {0, . . . , n − 3}, the problem
Dec-SplitItem[n, s](X ) is NP-complete.
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Proof. Theorem 11 and Theorem 13 imply that Dec-SplitItem[n, s](X ) is NP-hard. The
problem Dec-SplitItem[n, s](X ) is in NP since given a partition, summing the sizes of the
items (or items fractions) in each bin let us check in linear time whether the partition has
equal bin sums. ◀

▶ Theorem 15. For any fixed integers n ≥ 2, s ≥ 0 and rational v ≥ 0, there is a polynomial-
time reduction from Dec-SplitItem[n, s, v](X ), to Dec-Inter[n, u](X ) for some rational
number u ≥ s.

Proof. Given an instance X of Dec-SplitItem[n, s, v](X ), denote the sum of all items in
X by nS and the largest item size by nM where S, M ∈ Q. Construct an instance X ′ of
Dec-Inter[n, u](X ′) by removing the s largest items from X . Denote the sum of remaining
items by nS′ for some S′ ≤ S, and the largest remaining item size by nM ′ for some M ′ ≤M .
Note that the size of every removed item is between nM ′ and nM , so sM ′ ≤ S − S′ ≤ sM .
Set u := (S + vS − S′)/M ′, so S′ + uM ′ = S + vS. Note that u ≥ (S − S′)/M ′ ≥ s.

First, assume that X has a v-feasible partition with s split items. By Theorem 12,
we can assume that only the s largest items are split. Therefore, removing the s largest
items results in a partition of X ′ with no split items, where the sum in each bin is at most
S + vS = S′ + uM ′. This is a u-possible partition of X ′.

Second, assume that X ′ has a u-possible partition. In this partition, each bin sum is at
most S′ + uM ′ = S + vS, so it is a v-feasible partition of X ′. To get a v-feasible partition of
X , take the s previously removed items and add them to the bins, possibly splitting some
items between bins, such that the sum in each bin remains at most S + vS. This is possible
since the items sum is nS ≤ n(S + vS). This construction is done in polynomial time. ◀

Combining Theorem 15 with Theorem 10 provides a polynomial time algorithm to solve
Dec-SplitItem[n, s, v](X ) for any fixed n ≥ 3, s ≥ n− 2 and rational v ≥ 0. The latter is
used to solve the MinMax-SplitItem[n, s](X ) optimization problem by using binary search
on the parameter v of the Dec-SplitItem[n, s, v](X ) problem. The details are given in
[4][Appendix B.1]. The binary search procedure needs to solve at most log2(nS) instances of
Dec-SplitItem[n, s, v](X ).

▶ Corollary 16. For any fixed integers n ≥ 3 and s ≥ n− 2, MinMax-SplitItem[n, s](X )
can be solved in O(poly(m, log S)) time.

We complete this result by providing a polynomial-time algorithm for the max-min version:
MaxMin-SplitItem[n, s](X ) for s ≥ n− 2 in [4][Appendix A.1].

5 Partition with Splittings

In this section, we analyze the Splitting variant.

▶ Theorem 17. For any fixed integer n ≥ 2 and fixed t ∈ N such that t ≤ n− 2, the problem
Dec-Splitting[n, t](X ) is NP-complete.

Proof. Given a partition with n bins, m items, and t splittings, summing the size of each
item (or fraction of item) in each bin allows us to check whether or not the partition is
perfect in linear time. So, the problem is in NP.

To prove that Dec-Splitting[n, t](X ) is NP-Hard, we apply a reduction from the Subset
Sum problem. We are given an instance X1 of Subset Sum with m items summing up to S

and target sum T < S. We build an instance X2 of Dec-Splitting[n, t](X2) by adding two
items, x1, x2, such that x1 = S + T and x2 = 2S(t + 1)− T and n− 2− t auxiliary items of
size 2S. Notice that the sum of the items in X2 equals
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S + (S + T ) + 2S(t + 1)− T + 2S(n− 2− t) = 2S + 2S(t + 1) + 2S(n− 2− t)
= 2S · (1 + t + 1 + n− 2− t) = 2Sn.

The goal is to partition items into n bins with a sum of 2S per bin, and at most t splittings.
First, assume that there is a subset of items W1 in X1 with a sum equal to T . Define

a set, W2, of items that contains all items in X1 that are not in W1, plus x1. The sum of
W2 is (S − T ) + x1 = S + T + S − T = 2S. Assign the items of W2 to the first bin. Assign
each auxiliary item to a different bin. There are n− (n− 2− t + 1) = t + 1 bins left. The
sum of the remaining items is 2S(t + 1). Using the “cut-the-line” algorithm described in the
introduction, these items can be partitioned into t + 1 bins of equal sum 2S, with at most t

splittings. All in all, there are n bins with a sum of 2S per bin, and the total number of
splittings is at most t.

Second, assume that there exists an equal partition for n bins with t splittings. Since
x2 = 2S(t + 1)− T = 2S · t + (2S − T ) > 2S · t, this item must be split between t + 1 bins,
which makes the total number of splittings at least t. Also, the auxiliary items must be
assigned without splittings into n− 2− t different bins. There is n− t− 1− n + 2 + t = 1
bin remaining, say bin i, containing only whole items, not containing any part of x2, and
not containing any auxiliary item. Bin i must contain x1, otherwise its sum is at most S

(sum of items in X1). Let W1 be the items of X1 that are not in bin i. The sum of W1 is
S − (2S − x1) = x1 − S = T , so it is a solution to X1. ◀

6 Conclusion and Future Directions

We presented three variants of the n-way number partitioning problem.
In the language of fair item allocation, we have solved the problem of finding a fair

allocation among n agents with identical valuations, when the ownership of some s items
may be split between agents. When agents may have different valuations, there are various
fairness notions, such as proportionality, envy-freeness or equitability. A future research
direction is to develop algorithms for finding such allocations with a bounded number of
shared items. We already have preliminary results for proportional allocation among three
agents with different valuations, which are based on the algorithms in the present paper.

In the language of machine scheduling, MinMax-SplitItem[n, s](X ) corresponds to
finding a schedule that minimizes the makespan on n identical machines when s jobs can be
split between the machines; Dec-Inter[n, u](X ) corresponds to find a schedule in which the
makespan is in a given interval. In a separate technical report, we have replicated the results
in the present paper for the more general case of uniform machines in which machines may
have different speeds rj , such that a job with length xi runs on machine j in time xi/rj . It
may be interesting to study the more general setting of unrelated machines.

Our analysis shows the similarities and differences between these variants and the more
common notion of FPTAS. One may view our results as introducing a new kind of approxim-
ation that approximates a decision problem by returning “yes” if and only if there exists
a solution between PER and (1 + v) · PER, where PER represents the value of a perfect
solution. For the n-way number partitioning problem, a perfect solution is easy to define: it
is a partition with equal bin sums. A more general definition of PER could be the solution
to the fractional relaxation of an integer linear program representing the problem. As shown,
NP-hard decision problems may become tractable when v is sufficiently large.
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