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Abstract
To characterize the computational complexity of satisfiability problems for probabilistic and causal
reasoning within Pearl’s Causal Hierarchy, van der Zander, Bläser, and Liśkiewicz [IJCAI 2023]
introduce a new natural class, named succ-∃R. This class can be viewed as a succinct variant of
the well-studied class ∃R based on the Existential Theory of the Reals (ETR). Analogously to ∃R,
succ-∃R is an intermediate class between NEXP and EXPSPACE, the exponential versions of NP and
PSPACE.

The main contributions of this work are threefold. Firstly, we characterize the class succ-∃R in
terms of nondeterministic real Random-Access Machines (RAMs) and develop structural complexity
theoretic results for real RAMs, including translation and hierarchy theorems. Notably, we demon-
strate the separation of ∃R and succ-∃R. Secondly, we examine the complexity of model checking and
satisfiability of fragments of existential second-order logic and probabilistic independence logic. We
show succ-∃R-completeness of several of these problems, for which the best-known complexity lower
and upper bounds were previously NEXP-hardness and EXPSPACE, respectively. Thirdly, while
succ-∃R is characterized in terms of ordinary (non-succinct) ETR instances enriched by exponential
sums and a mechanism to index exponentially many variables, in this paper, we prove that when only
exponential sums are added, the corresponding class ∃RΣ is contained in PSPACE. We conjecture
that this inclusion is strict, as this class is equivalent to adding a VNP-oracle to a polynomial
time nondeterministic real RAM. Conversely, the addition of exponential products to ETR, yields
PSPACE. Furthermore, we study the satisfiability problem for probabilistic reasoning, with the
additional requirement of a small model, and prove that this problem is complete for ∃RΣ.
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1 Introduction

The existential theory of the reals, ETR, is the set of all true sentences of the form

∃x0 . . . ∃xn φ(x0, . . . , xn), (1)

where φ is a quantifier-free Boolean formula over the basis {∨,∧,¬}, variables x0, . . . , xn,
and a signature consisting of the constants 0 and 1, the functional symbols + and ·, and the
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13:2 The Existential Theory of the Reals with Summation Operators

relational symbols <, ≤, and =. The sentences are interpreted over the real numbers in the
standard way. The significance of this theory lies in its exceptional expressiveness, enabling
the representation of numerous natural problems across computational geometry [1, 20, 8],
Machine Learning and Artificial Intelligence [2, 21, 31], game theory [4, 12], and various
other domains. Consequently, a complexity class, ∃R, has been introduced to capture the
computational complexity associated with determining the truth within the existential theory
of the reals. This class is formally defined as the closure of ETR under polynomial-time
many-one reductions [14, 7, 25]. For a comprehensive compendium on ∃R, see [26].

Our study focuses on ETR which extends the syntax of formulas to allow the use of
summation operators in addition to the functional symbols + and ·. This research direction,
initiated in [31], was motivated by an attempt to accurately characterize the computational
complexity of satisfiability problems for probabilistic and causal reasoning across “Pearl’s
Causal Hierarchy” (PCH) [28, 23, 3].

In [31], the authors introduce a new natural class, named succ-∃R, which can be viewed
as a succinct variant of ∃R. Perhaps, one of the most notable complete problems for the new
class is the problem, called Σvi-ETR (“vi” stands for variable indexing). It is defined as an
extension of ETR by adding to the signature an additional summation operator1 ∑1

xj=0
which can be used to index the quantified variables xi used in Formula (1). To this end,
the authors define variables of the form x⟨xj1 ,...,xjm ⟩, which represent indexed variables with
the index given by xj1 , . . . , xjm interpreted as a number in binary. They can only be used
when variables xj1 , . . . , xjm

occur in the scope of summation operators with range {0, 1}.
E.g., ∃x0 . . . ∃x2N −1

∑1
e1=0 . . .

∑1
eN =0(x⟨e1,...,eN ⟩)2 = 1 is a Σvi-ETR sentence2 encoding a

unit vector in R2N . Note that sentences of Σvi-ETR allow the use of exponentially many
variables. Another example sentence is

∑1
x1=0

∑1
x2=0(x1 + x2)(x1 + (1 − x2))(1 − x1) = 0

that models the co-Sat instance (p ∨ q) ∧ (p ∨ q) ∧ p. It shows that the summation operator
can also be used in Σvi-ETR formulas in a standard way.

Analogously to ∃R, succ-∃R is an intermediate class between the exponential versions of
NP and PSPACE:

NP ⊆ ∃R ⊆ PSPACE ⊆ NEXP ⊆ succ-∃R ⊆ EXPSPACE. (2)

An interesting challenge, in view of the new class, is to determine whether it contains harder
problems than NEXP and to examine the usefulness of succ-∃R-completeness as a tool for
understanding the apparent intractability of natural problems. A step in these directions,
that we take in this work, is to express succ-∃R in terms of machine models over the reals,
which in the case of ∃R yield an elegant and useful characterization by NPreal [10].

In our work, we study also the different restrictions on which the summation operators
in ETR are allowed to be used and the computational complexity of deciding the resulting
problems. In particular, we investigate ∃RΣ – the class based on ETR enriched with standard
summation operator, and succ-∃Rpoly which is based on Σvi-ETR with the restriction that
only polynomially many variables can be used.

In this paper, we employ a family of satisfiability problems for probabilistic reasoning,
which nicely demonstrates the expressiveness of the ETR variants under consideration and
illustrates the natural necessity of introducing the summation operator.

1 In [31], the authors assume arbitrary integer lower and upper bound in
∑b

xj =a
. It is easy to see that,

w.l.o.g., one can restrict a and b to binary values.
2 We represent the instances in Σvi-ETR omitting the (redundant) block of existential quantifiers, so the

encoding of the example instance has length polynomial in N .
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Figure 1 The landscape of complexity classes of the existential theories of the reals and the
satisfiability problems for the probabilistic languages (to the left-hand side) complete for the
corresponding classes. Arrows “→” denote inclusions ⊆ and the earth-yellow labeled lines “−”
connect complexity classes with complete problems for those classes. The completeness results
(a), (b), and (d) were proven by Fagin et al. [11], Mossé et al. [21], resp. van der Zander et al. [31].
The characterization (c) is due to Erickson et al. [10] and (e) is proven in [31]. The references to our
results are as follows: (1) Theorem 26, (2) Theorem 24, (3) and (4) Theorem 19, (5) Lemma 2, and
(6) Theorem 12.

Related Work to our Study

In a pioneering paper in this field, Fagin, Halpern, and Megiddo [11] consider the probabilistic
language consisting of Boolean combinations of (in)equalities of basic and linear terms, like
P((X=0∨Y=1)∧ (X=0∨Y=0))=1∧ (P(X=0)=0∨P(X=0)=1)∧ (P(Y=0)=0∨P(Y=0)=1),
over binary variables X,Y (which can be seen as a result of reduction from the satisfied
Boolean formula (a ∨ b) ∧ (a ∨ b)). The authors provide a complete axiomatization for the
used logic and investigate the complexity of the probabilistic satisfiability problems Satbase

prob
and Satlin

prob, which ask whether there is a joint probability distribution of X,Y, . . . that
satisfies a given Boolean combination of (in)equalities of basic, respectively linear, terms (for
formal definitions, see Sec. 2). They show that both satisfiability problems are NP-complete
(cf. Fig. 1). Thus, surprisingly, the complexity is no worse than that of propositional logic.
Fagin et al. extend then the language to (in)equalities of polynomial terms, with the goal
of reasoning about conditional probabilities. They prove that there is a PSPACE algorithm,
based on Canny’s decision procedure [7], for deciding if such a formula is satisfiable but left
the exact complexity open. Recently, Mossé, Ibeling, and Icard, [21] have solved this problem,
showing that deciding the satisfiability (Satpoly

prob) is ∃R-complete. In [21], the authors also
investigate the satisfiability problems for the higher, more expressive PCH layers – which
are not the subject of our paper – and prove an interesting result, that for (in)equalities
of polynomial terms both at the interventional and the counterfactual layer the decision
problems still remain ∃R-complete.

ISAAC 2024



13:4 The Existential Theory of the Reals with Summation Operators

The languages used in [11, 21] and also in other relevant works as, e.g., [22, 13, 17], can only
represent marginalization as an expanded sum since they lack a unary summation operator Σ.
Thus, for instance, to express the marginal distribution of a random variable Y over a subset of
(binary) variables {Z1, . . . , Zm} as

∑
z1,...,zm

P(y, z1, . . . , zm), an encoding without summation
requires an extension P(y, Z1=0, . . . , Zm=0) + . . . + P(y, Z1=1, . . . , Zm=1) of exponential
size. Thus to analyze the complexity aspects of the standard notation of probability theory,
one requires an encoding that directly represents marginalization. In a recent paper [31],
the authors introduce the class succ-∃R, and show that the satisfiability (Satpoly⟨Σ⟩

prob ) for the
(in)equalities of polynomial terms involving probabilities is succ-∃R-complete.

Thus, succ-∃R-completeness seems to be a meaningful yardstick for measuring com-
putational complexity of decision problems. An interesting task would be to investigate
problems involving the reals that have been shown to be in EXPSPACE, but not to be
EXPSPACE-complete, which are natural candidates for succ-∃R-complete problems.

Contributions and Structure of the Paper

Below we highlight our main contributions, partially summarized also in Fig. 1.
We provide the characterization of succ-ETR in terms of nondeterministic real RAMs
of exponential time respectively (Sec. 3). Moreover, for the classes over the reals in
the sequence of inclusions (2), an upward translation result applies, which implies, e.g.,
NEXP ⊊ succ-∃R unless NP = ∃R which is widely disbelieved (Sec. 4).
We strength slightly the completeness result (marked as (d) in Fig. 1) of [31] and prove
the problem Satpoly⟨Σ⟩

prob remains succ-∃R-complete even if we disallow the basic terms to
contain conditional probabilities (Sec. 5).
We show that existential second order logic of real numbers is complete for succ-∃R(Sec. 6).
PSPACE has natural characterizations in terms of ETR; It coincides both with ∃RΠ –
the class based on ETR enriched with standard product operator, and with succ-∃Rpoly,
defined in terms of the succinct variant of ETR with polynomially many variables (Sec. 7).
∃RΣ – defined similar to ∃RΠ, but with the addition of a unary summation operator
instead – is contained in PSPACE = ∃RΠ. We conjecture that this inclusion is strict, as
the class is equivalent to NPVNPR

real , machine to be an NPreal model with a VNPR oracle,
where VNPR denotes Valiant’s NP over the reals (Sec. 8.1).
Unlike the languages devoid of the marginalization operator, the crucial small-model
property is no longer satisfied. This property says that any satisfiable formula has a model
of size bounded polynomially in the input length. Satisfiability with marginalization and
with the additional requirement that there is a small model is complete for ∃RΣ at the
probabilistic layer (Sec. 8.2).

2 Preliminaries

Complexity Classes Based on the ETR

The problem succ-ETR and the corresponding class succ-∃R are defined in [31] as follows.
succ-ETR is the set of all Boolean circuits C that encode a true sentence φ as in Equation (1)
as follows: Assume that C computes a function {0, 1}N → {0, 1}M . Then φ is a tree
consisting of 2N nodes, each node being labeled with a symbol of {∨,∧,¬,+, ·, <,≤,=}, a
constant 0 or 1, or a variable x0, . . . x2N −1. For the node i ∈ {0, 1}N , the circuit computes
an encoding C(i) of the description of node i, consisting of the label of i, its parent, and
its two children. The tree represents a true sentence, if the value at the root node would
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become true after applying the operator of each node to the value of its children, whereby
the value of constants and variables is given in the obvious way. As in the case of ∃R, to
succ-∃R belong all languages which are polynomial time many-one reducible to succ-ETR.

Besides succ-ETR, [31] introduce more complete problems for succ-∃R as intermediate
problems in the hardness proof. Of particular importance is the problem Σvi-ETR that
we already discussed in the Introduction. Formally, the problem is defined as an extension
of ETR by adding to the signature an additional summation operator

∑1
xj=0 with the

following semantics3: If an arithmetic term is given by a tree with the top gate
∑1

xj=0 and
t(x1, . . . , xn) is the term computed at the child of the top gate, then the new term computes∑1

e=0 t(x1, . . . , xj−1, e, xj+1, . . . , xn), that is, we replace the variable xj by a summation
variable e, which then runs from 0 to 1. By nesting the summation operator, we are able
to produce a sum with an exponential number of summands. The main reason why the
new summation variables are introduced is due to the fact they can be used to index the
quantified variables xi used in Formula (1). Similarly as in succ-ETR, sentences of Σvi-ETR
allow the use of exponentially many variables, however, the formulas are given directly and
do not require any succinct encoding.

Probabilistic Languages

We always consider discrete distributions in the probabilistic languages studied in this paper.
We represent the values of the random variables as Val = {0, 1,..., c − 1} and denote by
X1, X2,..., Xn the random variables used in the input formula. We assume, w.l.o.g., that
they all share the same domain Val. A value of Xi is often denoted by xi or a natural
number. In this section, we describe syntax and semantics of the probabilistic languages.

By an atomic event, we mean an event of the form X = x, where X is a random
variable and x is a value in the domain of X. The language E of propositional formulas
over atomic events is the closure of such events under the Boolean operators ∧ and ¬:
p ::= X = x | ¬p | p ∧ p. The probability P(δ) for formulas δ ∈ E is called primitive
or basic term, from which we build the probabilistic languages. The expressive power
and computational complexity of the languages depend on the operations applied to the
primitives.Allowing gradually more complex operators, we describe the languages which are
the subject of our studies below. We start with the description of the languages T ∗ of terms,
using the grammars given below.4

T base t ::= P(δ)
T lin t ::= P(δ) | t + t
T poly t ::= P(δ) | t + t | −t | t · t
T poly⟨Σ⟩ t ::= P(δ) | t + t | −t | t · t |

∑
x t

In the summation operator
∑

x, we have a dummy variable x which ranges over all values
0, 1,..., c − 1. The summation

∑
x t is a purely syntactical concept which represents the

sum t[0/x] + t[1/x] + ... + t[c − 1/x], where by t[v/x], we mean the expression in which all
occurrences of x are replaced with value v. For example, for Val = {0, 1}, the expression

3 Recall, in [31], the authors assume arbitrary integer lower and upper bound in
∑b

xj =a
. But it is easy

to see that, w.l.o.g., one can restrict a and b to binary values.
4 In the given grammars we omit the brackets for readability, but we assume that they can be used in a

standard way.

ISAAC 2024



13:6 The Existential Theory of the Reals with Summation Operators

∑
x P(Y=1, X=x) semantically represents P(Y=1, X=0) + P(Y=1, X=1). We note that the

dummy variable x is not a (random) variable in the usual sense and that its scope is defined
in the standard way.

The polynomial calculus T poly was originally introduced by Fagin, Halpern, and Megiddo
[11] to be able to express conditional probabilities by clearing denominators. While this
works for T poly, this does not work in the case of T poly⟨Σ⟩, since clearing denominators with
exponential sums creates expressions that are too large. But we could introduce basic terms
of the form P(δ′|δ) with δ, δ′ ∈ E explicitly. All our hardness proofs work without conditional
probabilities but all our matching upper bounds are still true with explicit conditional
probabilities. For example, expression as P(X=1) + P(Y=2) · P(Y=3) is a valid term in
T poly.

Now, let Lab = {base, lin,poly,poly⟨Σ⟩} denote the labels of all variants of languages.
Then for each ∗ ∈ Lab we define the languages L∗ of Boolean combinations of inequalities in
a standard way: f ::= t ≤ t′ | ¬f | f ∧ f , where t, t′ are terms in T ∗.

Although the language and its operations may appear rather restricted, all the usual
elements of probabilistic formulas can be encoded. Namely, equality is encoded as greater-
or-equal in both directions, e.g. P(x) = P(y) means P(x) ≥ P(y) ∧ P(y) ≥ P(x). The
number 0 can be encoded as an inconsistent probability, i.e., P(X=1 ∧X=2). In a language
allowing addition and multiplication, any positive integer can be easily encoded from the fact
P(⊤) ≡ 1, e.g. 4 ≡ (1+1)(1+1) ≡ (P(⊤)+P(⊤))(P(⊤)+P(⊤)). If a language does not allow
multiplication, one can show that the encoding is still possible. Note that these encodings
barely change the size of the expressions, so allowing or disallowing these additional operators
does not affect any complexity results involving these expressions.

We define the semantics of the languages as follows. Let M = ({X1,..., Xn}, P ) be
a tuple, where P is the joint probability distribution of variables X1,..., Xn. For val-
ues x1,..., xn ∈ Val and δ ∈ E , we write x1,..., xn |= δ if δ is satisfied by the assign-
ment X1=x1,..., Xn=xn. Denote by Sδ = {x1,..., xn | x1,..., xn |= δ}. We define JeKM,
for some expression e, recursively in a natural way, starting with basic terms as follows
JP(δ)KM =

∑
x1, ...,xn∈Sδ

P (X1=x1,..., Xn=xn) and JP(δ|δ′)KM = JP(δ∧ δ′)KM/JP(δ′)KM, as-
suming that the expression is undefined if JP(δ′)KM = 0. For two expressions e1 and e2,
we define M |= e1 ≤ e2, if and only if, Je1KM ≤ Je2KM. The semantics for negation and
conjunction are defined in the usual way, giving the semantics for M |= φ for any φ ∈ L∗.

Existential Second Order Logic of Real Numbers

We follow the definitions of [16]. Let A be a non-empty finite set and A = (A,R, fA1 ,..., fAr ,
gA1 ,..., gAt ), with fAi : Aar(fi) → R and gAi ⊆ Aar(gi), be a structure. Each gAi is an ar(gi)-ary
relation on A and each fAi is a weighted real function on Aar(fi). The term t is generated
by the following grammar: t ::= c | f(x⃗) | t + t | t − t | t × t |

∑
x t, where c ∈ R is a

constant (denoting itself), f is a function symbol, and x⃗ is a tuple of first-order variables.
An assignment s is a total function that assigns a value in A for each first-order variable.
The numerical value of t in a structure A under an assignment s, denoted by JtKs

A, is defined
recursively in a natural way, starting with Jfi(x⃗)Ks

A = fAi (s(x⃗)) and applying the standard
rules of real arithmetic.

For operators O ⊆ {+,×,Σ,−}, (in-)equality operators E ⊆ {≤, <,=}, and constants
C ⊆ R, the grammar of ESOR(O,E,C) sentences is given by ϕ ::= x = y | ¬(x = y) | i e j |
¬(i e j) | R(x⃗) | ¬R(x⃗) | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x ϕ | ∀x ϕ | ∃f ϕ, where x, y ∈ A are first order
variables, i, j are real terms constructed using operations from O and constants from C,
e ∈ E, and R denotes a relation symbol of a finite relational vocabulary5 g1, . . . , gt.

5 The grammar of [16] does not allow quantification over relations, e.g. ∃R, as these relations can be
replaced by functions, e.g. chosen by ∃f .
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The semantics of ESOR(O,E,C) is defined via R-structures and assignments analogous
to first-order logic with additional semantics for second order existential quantifier ∃f . That
is, a structure A satisfies a sentence ϕ under an assignment s, i.e., A |=s ϕ, according to the
following cases of the grammar: A |=s x = y, iff s(x) equals s(y); A |=s ¬(ϕ) iff A ̸|=s ϕ;
A |=s i e j iff JiKs

A e JjKs
A where JiKs

A is the numerical value of i as defined above; A |=s R(x⃗)
iff gAi (s(x⃗)) is true for the gAi corresponding to R in the model A; A |=s ϕ ∧ ϕ′ iff A |=s ϕ

and A |=s ϕ
′; A |=s ϕ ∨ ϕ′ iff A |=s ϕ or A |=s ϕ

′; A |=s ∃xϕ iff A |=s[a/x] ϕ for some a ∈ A

where s[a/x] means the assignment s modified to assign a to x; A |=s ∀xϕ iff A |=s[a/x] ϕ for
all a ∈ A; and A |=s ∃fϕ iff A[h/f ] |=s ϕ for some6 function h : Aar(f) → R where A[h/f ] is
the expansion of A that interprets f as h.

For a set S ⊆ R, we consider the restricted logic ESOS(O,E,C) and L-ESOS(O,E,C).
There only the operators and constants of O ∪ E ∪ C are allowed and all functions f are
maps into S, i.e. f : Aar(f) → S. In the loose fragment L-ESOS(O,E,C), negations ¬(i e j)
on real terms are also disallowed.

Probabilistic independence logic FO(⊥⊥c) is defined as the extension of first-order logic
with probabilistic independence atoms x⃗⊥⊥z⃗ y⃗ whose semantics is the standard semantics of
conditional independence in probability distributions [9, 16].

Known Completeness and Complexity Results

The decision problems Sat∗
prob, with ∗ ∈ Lab, take as input a formula φ in the languages L∗

and ask whether there exists a model M such that M |= φ. The computational complexity
of probabilistic satisfiability problems has been a subject of intensive studies for languages
which do not allow explicitly marginalization via summation operator Σ. Very recently [31]
addressed the problem for polynomial languages.

Below, we summarize these results7, informally presented in the Introduction:
Satbase

prob and Satlin
prob are NP-complete, [11],

Satpoly
prob is ∃R-complete [21], and

Satpoly⟨Σ⟩
prob is succ-∃R-complete [31].

For a logic L, the satisfiability problem Sat(L) is defined as follows: given a formula
φ ∈ L, decide whether φ is satisfiable. For the model checking problem of a logic L, we
consider the following variant: given a sentence φ ∈ L and a structure A, decide whether
A |= φ. For model checking of FO(⊥⊥c), the best-known complexity lower and upper bounds
are NEXP-hardness and EXPSPACE, respectively [15].

3 NEXP over the Reals

In [10], Erickson, van Der Hoog, and Miltzow extend the definition of word RAMs to real
computations. In contrast to the so-called BSS model of real computation [5], the real
RAMs of Erickson et al. provide integer and real computations at the same time, allowing for
instance indirect memory access to the real registers and other features that are important
to implement algorithms over the reals. The input to a real RAM is a pair of vectors, the
first one is a vector of real numbers, the second is a vector of integers. Real RAMs have two
types of registers, word registers and real registers. The word registers can store integers

6 Note that h might be an arbitrary function and is not restricted to the functions fA
i of the model.

7 In the papers [21] and [31] the authors show even stronger results, namely that the completeness results
also hold for causal satisfiability problems.
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13:8 The Existential Theory of the Reals with Summation Operators

with w bits, where w is the word size. The total number of registers is 2w for each of the
two types. Real RAMs perform arithmetic operations on the word registers, where words are
interpreted as integers between 0 and 2w − 1, and bitwise Boolean operations. On the real
registers, only arithmetic operations are allowed. Word registers can be used for indirect
addressing on both types of registers and the control flow is established by conditional jumps
that depend on the result of a comparison of two word registers or of a real register with the
constant 0. For further details we refer to the original paper [10].

The real RAMs of [10] characterize the existential theory of the reals. The authors prove
that a problem is in ∃R iff there is a polynomial time real verification algorithm for it. In this
way, real RAMs are an “easy to program” mechanism to prove that a problem is contained
in ∃R. Beside the input I, which is a sequence of words, the real verification algorithm also
gets a certificate consisting of a sequence of real numbers x and a further sequence of words
z. I is in the language if there is a pair (x, z) that makes the real verification algorithm
accept. I is not in the language if for all pairs (x, z), the real verification rejects.

Instead of using certificates and verifiers, we can also define nondeterministic real RAMs
that can guess words and real numbers on the fly. Like for classical Turing machines, it
is easy to see that these two definitions are equivalent (when dealing with time bounded
computations).

▶ Definition 1. Let t : N → N be a function. We define NTimereal(t) to be the set of all
languages L ⊆ {0, 1}⋆, such that there is a constant c ∈ N and a nondeterministic real
word-RAM M that recognizes L in time t for all word-sizes w ≥ c · log(t(n)) + c.

For any set of functions T , we define NTimereal(T ) =
⋃

t∈T NTimereal(t). We define our
two main classes of interest, NPreal and NEXPreal as follows:

NPreal = NTimereal(poly(n)), NEXPreal = NTimereal(2poly(n)).

Note that the word size needs to be at least logarithmic in the running time, to be able
to address a new register in each step.

One of the main results of Erickson et al. (Theorem 2 in their paper) can be rephrased
as ∃R = NPreal. Their techniques can be extended to prove that succ-∃R = NEXPreal.

We get the following in analogy to the well-known results that the succinct version of
3-Sat is NEXP-complete.

▶ Lemma 2. succ-ETR is NEXPreal-complete and thus NEXPreal = succ-∃R.

Proof idea. For the one direction, one carefully has to analyze the construction by Erickson
et al. and show that the simulation there can also be implemented succinctly. The reverse
direction simply follows from expanding the succinct ETR instance and use the fact that
nondeterministic real word-RAMs can solve ETR in polynomial time. Along the way, we
also obtain a useful normalization procedure for succinct ETR instances. While for normal
ETR instances, it is obvious that one can always push negations down, it is not clear for
succinct instances. We describe the details in the full version. ◀

4 The Relationships between the Boolean Classes and Classes over
the Reals

Now we study the new class NEXPreal = succ-∃R from a complexity theoretic point of view.

NP ⊆ ∃R ⊆ PSPACE; NEXP ⊆ succ-∃R ⊆ EXPSPACE. (3)
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The left side of (3) is well-known. The first inclusion on the right side is obvious, since a
real RAM simply can ignore the real part. The second inclusion follows from expanding the
succinct instance into an explicit formula (which now has exponential size) and simply using
the known PSPACE-algorithm.

We prove two translation results, that is, equality of one of the inclusion in the left
equation of (3) implies the equality of the corresponding inclusion in the right equation of (3).

▶ Theorem 3. If ∃R = NP, then succ-∃R = NEXP.

▶ Theorem 4. If ∃R = PSPACE, then succ-∃R = EXPSPACE.

Further we prove a nondeterministic time hierarchy theorem (see the full version for the
details) for real word RAMs. Using the characterization of ∃R and succ-∃R in terms of real
word RAMs, in particular, we get that succ-ETR is strictly more expressive than ETR.

▶ Corollary 5. ∃R = NPreal ⊊ NEXPreal = succ-∃R.

5 Hardness of Probabilistic Satisfiability without Conditioning

To prove that Satpoly⟨Σ⟩
prob is succ-∃R-complete, van der Zander, Bläser and Liśkiewicz [31]

show the hardness part for the variant of the probabilistic language where the primitives are
also allowed to be conditional probabilities. A novel contribution of our work is to extend
this completeness result to our version for languages which disallow conditional probabilities:

▶ Theorem 6. The problem Satpoly⟨Σ⟩
prob remains succ-∃R-complete even without conditional

probabilities.

In the rest of this section, we will give the proof of the theorem.
In [31] the authors have already shown that Σvi-ETR is succ-∃R-complete. We define

Σvi-ETR1 in the same way as Σvi-ETR, but asking the question whether there is a solution
where the sum of the absolute values (ℓ1 norm) is bounded by 1. Then we can reduce
Σvi-ETR1 to Satpoly⟨Σ⟩

prob without the need for conditional probabilities (Lemma 9). The
proof that Σvi-ETR1 is hard for succ-∃R (Lemma 8) depends on a result of Grigoriev and
Vorobjov [14] who showed that the solution to an ETR instance can be bounded by a constant
that only depends on the bitsize of the instance. Thus the solution can be scaled to fit into a
probability distribution. This completes the proof of Theorem 6.

▶ Theorem 7 (Grigoriev and Vorobjov [14] ). Let f1, . . . , fk ∈ R[X1, . . . , Xn] be polynomials
of total degree ≤ d with coefficients of bit size ≤ L. Then every connected component of
{x ∈ Rn | f1(x) ≥ 0 ∧ · · · ∧ fk(x) ≥ 0} contains a point of distance less than 2Ldcn from the
origin for some absolute constant c. The same is true if some of the inequalities are replaced
by strict inequalities.

▶ Lemma 8. Σvi-ETR ≤P Σvi-ETR1.

Proof. Let ϕ be an instance of Σvi-ETR. We will transform it into a formula φ such that φ
has a solution with ℓ1 norm bounded by 1 iff ϕ has any solution.

Let S be the bit length of ϕ. The number n of variables in ϕ is bounded by 2S . The
degree of all polynomials is bounded by S. Note that the exponential sums do not increase
the degree at all. Finally, all coefficients have bit size O(S). Note that one summation
operator doubles the coefficients at most. By Theorem 7, if ϕ is satisfiable, then there is a
solution with entries bounded by T := 222cS

for some constant c.
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In our new instance φ first creates a small constant d ≤ 1/((2m + n)T ) for some m
polynomial in S defined below. This can be done using Tseitin’s trick: We take 2m many
fresh variables ti and start with (2m + 2S)t1 = 1 and then iterate by adding the equation∑2m−1

i=1 (t2i − ti+1)2 = 0, i.e. forcing ti+1 = t2i . To implement the first equation we replace
2m by

∑1
e1=0 · · ·

∑1
em=0 1 and similarly replace 2S . To implement the second equation

we replace
∑2m−1

i=1 (t2i − ti+1)2 by
∑1

e1=0 · · ·
∑1

em=0
∑1

f1=0 · · ·
∑1

fm=0(t2e1,...,em
− tf1,...,fm

)2 ·
A(e1, . . . , em, f1, . . . , fm) where A is an arithmetic formula returning 1 iff the binary number
represented by f1, . . . , fm is the successor of the binary number represented by e1, . . . , em.
The number m is polynomial in S. The unique satisfying assignment to the ti has its entries
bounded by 1/(2m + 2S). Let d := t2m be the last variable.

Now in ϕ we replace every occurrence of xi by xi/d and then multiple each (in-)equality
by an appropriate power of d to remove the divisions in order to obtain φ. In this way, from
every solution to ϕ, we obtain a solution to φ by multiplying the entries by d and vice versa.
Whenever ϕ has a solution, then it has one with entries bounded by T . By construction φ

then has a solution with entries bounded by 1/(2m + 2S). Since each entry of the solution is
bounded by 1/(2m + 2S), the ℓ1 norm is bounded by 1/2. ◀

▶ Lemma 9. Σvi-ETR1 ≤P Satpoly⟨Σ⟩
prob via a reduction without the need for conditional

probabilities.

Proof. Let X0 be a random variable with range {−1, 0, 1} and let X1, . . . , XN be binary
random variables. We replace each real variable xe1,...,eN

in the Σvi-ETR1 formula as follows:

xe1,...,eN
:= P(X0=1 ∧X1=e1 ∧ . . . ∧XN =eN ) − P(X0= − 1 ∧X1=e1 ∧ . . . ∧XN =eN )

This guarantees that xe1,...,eN
∈ [−1, 1]. The existential quantifiers now directly correspond

to the existence of a probability distribution P (X0, . . . , XN ), where each variable corresponds
to an different set of two entries of P .

Let P (X0, . . . , XN ) be a solution to the constructed Satpoly⟨Σ⟩
prob instance. Then clearly set-

ting xe1,...,eN
= P (1, e1, . . . , eN ) −P (−1, e1, . . . , eN ) satisfies the original Σvi-ETR1 instance.

Furthermore it has an ℓ1 norm bounded by 1:

1∑
e1=0

· · ·
1∑

eN =0
|xe1,...,eN

| =
1∑

e1=0
· · ·

1∑
eN =0

|P (1, e1, . . . , eN ) − P (−1, e1, . . . , eN )|

≤
1∑

e1=0
· · ·

1∑
eN =0

(P (1, e1, . . . , eN ) + P (−1, e1, . . . , eN ))

≤ 1 .

Vice-versa, let the original Σvi-ETR1 be satisfied by some choice of the xe1,...,eN
with ℓ1

norm α bounded by 1. We define the probability distribution

P (X0, X1, . . . , XN ) =


1−α
2N if X0 = 0

max(xX1,...,XN
, 0) if X0 = 1

max(−xX1,...,XN
, 0) if X0 = −1

Every entry of P is non-negative since α ≤ 1. Furthermore the sum of all entries is
exactly 1, the entries with X0 ∈ {−1, 1} contribute exactly α total and the 2N entries with
X0 = 0 contribute 1 − α total. Since P fulfills the equation xe1,...,eN

= P (1, e1, . . . , eN ) −
P (−1, e1, . . . , eN ), it is a solution to the constructed Satpoly⟨Σ⟩

prob instance. ◀
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6 Correspondence to Existential Second Order Logic and FO(⊥⊥c)

In this section, we investigate the complexity of existential second order logics and the
probabilistic independence logic FO(⊥⊥c).

▶ Lemma 10. Model checking of ESOR(Σ,+,×,≤, <,=,Q) is in succ-∃R.

Proof. In model checking, the input is a finite structure A and a sentence ϕ, and we need to
decide whether A |= ϕ. A includes a domain A for the existential/universal quantifiers over
variables. Any function (relation) of arity k can be represented as a (Boolean) table of size
|A|k. Some of these tables might be given in the input. The remaining tables of functions
chosen by quantifiers ∃f can simply be guessed by a NEXPreal machine in non-deterministic
exponential time. Then all possible values for the quantifiers of the finite domain can
be enumerated and all sentences can be evaluated. This completes the proof, due to the
characterization given in Lemma 2. ◀

▶ Proposition 11. Model checking of L-ESO[0,1](+,×,≤, 0, 1) is succ-∃R-hard.

Proof. We start with the following equivalences relating the logics:

L-ESO[0,1](+,×,≤, 0, 1) ≡ L-ESO[−1,1](+,×,≤, 0, 1) ≡ L-ESO[−1,1](+,×,−,=,≤, 0, 1/8, 1).

The first equivalence has been shown by Hannula et al. [16]. To see the second one, note
that we can replace operator = using a = b as a ≤ b ∧ b ≤ a. The negative one −1 can
be defined by a function −1 of arity 0 using ∃(−1) : (−1) + 1 = 0. Then any subtraction
a − b can be replaced with a + (−1) × b. Finally, the fraction 1/8 is a function given by
∃1/8 : 1/8 + 1/8 + 1/8 + 1/8 + 1/8 + 1/8 + 1/8 + 1/8 = 1. These equivalence reductions can be
performed in polynomial time.

In the rest of the proof, we show the hardness, reducing the problems in succ-∃R to
the existential second order logic L-ESO[−1,1](+,×,−,=,≤, 0, 1/8, 1). To this aim, we use
a succ-∃R-complete problem which is based on a problem given by Abrahamsen et al. [1],
who have shown that an equation system consisting of only sentences of the form xi = 1/8,
xi + xj = xk, and xi · xj = xk is ∃R-complete. As shown in [31], this can be turned
into a succ-∃R-complete problem, denoted as succETR1/8,+,×

[−1/8,1/8], by replacing the explicit
indices i, j, k with circuits that compute the indices for an exponential number of these three
equations. The circuits can be encoded with arithmetic operators, which allows us to encode
all equations in existential second order logic in a polynomial time reduction.

The instances of succETR1/8,+,×
[−1/8,1/8] are represented as seven Boolean circuits C0, C1,..., C6 :

{0, 1}M → {0, 1}N such that C0(j) gives the index of the variable in the jth equation of
type xi = 1/8, C1(j), C2(j), C3(j) give the indices of variables in the jth equation of the type
xi1 + xi2 = xi3 , and C4(j), C5(j), C6(j) give the indices of variables in the jth equation of
the type xi1xi2 = xi3 . Without loss of generality, we can assume that each type has the same
number 2M of equations. An instance of the problem succETR1/8,+,×

[−1/8,1/8] is satisfiable if and
only if:

∃x0,..., x2N −1 ∈ [−1/8, 1/8] : ∀j ∈ [0, 2M − 1] :
xC0(j) = 1/8, xC1(j) + xC2(j) = xC3(j), and xC4(j) · xC5(j) = xC6(j). (4)

Below, we prove that

succETR1/8,+,×
[−1/8,1/8] ≤P L-ESO[−1,1](+,×,−,=,≤, 0, 1/8, 1). (5)
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Let the instance of succETR1/8,+,×
[−1/8,1/8] be represented by seven Boolean circuits

C0, C1,..., C6 : {0, 1}M → {0, 1}N as described above. Let the variables of the instance
be indexed as xe1,...,eN

, with ei ∈ {0, 1} for i ∈ [N ]. We will identify the bit sequence
b⃗ = b1,..., bM by an integer j, with 0 ≤ j ≤ 2M − 1, the binary representation of which is
b1...bM and vice versa.

We construct sentences in the logic L-ESO[−1,1](+,×,−,=,≤, 0, 1/8, 1) and prove that a
binary model satisfies the sentences if and only if the formula (4) is satisfiable.

Let q be an N -ary function where q(e1, . . . , eN ) should encode the value of variable
xe1,...,eN

. For the range, we require ∀x⃗ : 0 − 1/8 ≤ q(x⃗) ∧ q(x⃗) ≤ 1/8.
For each circuit Ci, we define a function yi whose value yi(⃗b) is xCi(j), i.e., q(Ci(j)). Then

yi can directly be inserted in the equation system (4). For this, we need to encode the circuit
as logical sentences and relate y and q.

To model a Boolean formula encoded by a node of Ci, with i = 0, 1,..., 6, we use one step
of arithmetization to go from logical formulas to calculations on real numbers, where 0 ∈ R
means false and 1 ∈ R means true. While negation is not allowed directly in L-ESO, on the
real numbers we can simulate negation by subtraction.

For each node v of each circuit Ci, we need a function ci,v of arity M , such that ci,v (⃗b) is
the value computed by the node if the circuit is evaluated on input j = b1...bM .

If v is an input node, the node only reads one bit ui,k from the input, so let ∀⃗b : ci,v (⃗b) =
id(bk), where id is a function that maps 0, 1 from the finite domain to 0, 1 ∈ R.

For each internal node v of Ci, we proceed as follows.
If v is labeled with ¬ and u is a child of v, then we require ∀⃗b : ci,v (⃗b) = 1 − ci,u(⃗b).
If v is labeled with ∧ and u and w are children of v, then we require ∀⃗b : ci,v (⃗b) =

ci,u(⃗b) × ci,w (⃗b).
Finally, if v is labeled with ∨ and u and w are children of v, then we require ∀⃗b : ci,v (⃗b) =

1 − (1 − ci,u(⃗b)) × (1 − ci,w (⃗b)).
Thus, if v is an output node of a circuit Ci, then, for Ci fed with input j = b1...bM ∈

{0, 1}M , we have that v evaluates to true if and only if ci,v (⃗b) = 1.
Next, we need an (N +M)-arity selector function si(⃗b, e⃗) which returns 1 iff the output

of circuit Ci on input b⃗ is e⃗. It can be defined as:

∀⃗b, e⃗ : si(⃗b, e⃗) =
N∏

k=1
(ci,vk

(⃗b) × id(ek) + (1 − ci,vk
(⃗b)) × (1 − id(ek))).

Each factor of the product is 1 iff ci,vk
(⃗b) = ek. It has constant length, so it can be expanded

using the multiplication of the logic.
We express each q(Ci(j)) as a function yi(j), where b⃗ is the binary representation of j:

∀⃗b, e⃗ : yi(⃗b) × si(⃗b, e⃗) = q(e⃗) × si(⃗b, e⃗).

The above equation is trivially satisfied for si(⃗b, e⃗) = 0, thus it enforces equality of yi(⃗b)
and q(e⃗) only in the case si(⃗b, e⃗) = 1. Inserting yi in the equation system (4) gives us the
last L-ESO formula:

∀⃗b : y0(⃗b) = 1/8, y1(⃗b) + y2(⃗b) = y3(⃗b), and y4(⃗b) × y5(⃗b) = y6(⃗b),

which, combining with the previous formulas and preceded by second order existential
quantifiers ∃yi,∃si,∃ci,v,∃id, with i = 0, . . . , 6, is satisfiable if and only if the formula (4)
are satisfiable.
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Obviously, the size of the resulting sentences are polynomial in the size |C0|+|C1|+...+|C6|
of the input instance and the sentences can be computed in polynomial time.

This completes the construction of reduction (5) and the proof of the proposition. ◀

As L-ESO[0,1](+,×,≤, 0, 1) is weaker than ESOR(Σ,+,×,≤, <,=,Q), it follows:

▶ Theorem 12. Let S = R or S = [a, b] with [0, 1] ⊆ S, {0, 1} ⊆ C ⊆ Q, {×} ⊆ O ⊆
{+,×,Σ} with |O| ≥ 2,and E ⊆ {≤, <,=} with {≤,=} ∩ E ̸= ∅. Model checking of

L-ESOS(O,E,C) and
ESOS(O,E,C)

is succ-∃R-complete.

Proof. We start with the following equivalence, which follows from the fact that a comparison
a ≤ b can be replaced by ∃ϵ, x : aϵ+ x = bϵ:

L-ESO[0,1](+,×,≤, 0, 1) ≡ L-ESO[0,1](+,×,=, 0, 1). (6)

The next fact has been used by [16], but without proof. Perhaps the authors thought it
to be too trivial to mention. But it is not obvious, since the standard technique of replacing
a ≤ b with ∃x : a+ x2 = b does not work here when x is restricted to [0, 1].

In some sense, L-ESO[0,1](+,×,≤, 0, 1) is the weakest logic one can consider in this
context:

▶ Fact 13. Let S = R or S = [a, b] with [0, 1] ⊆ S, {0, 1} ⊆ C ⊆ Q, {×} ⊆ O ⊆ {+,×,Σ}
with |O| ≥ 2,and E ∈ {≤,=}.

L-ESO[0,1](+,×,≤, 0, 1) ≤ L-ESOS(O,E,C) ≤ ESOS(O,E,C).

Proof of Fact 13. Relation = subsumes ≤ due to (6).
If + ∈ O, the remaining statements are trivial. Otherwise, we need to express + using Σ.
If S = R, x+ y can be written as Σtc(t) where c(0) = x, c(1) = y. (we consider model

checking problems, where the finite domain can be set to binary)
If S = [a, b], x or y might be outside the range. But the total weight of any k-arity

function is (b − a)k and each term has a maximal polynomial degree D, so x and y are
bounded by O((b− a)kD). So all expressions can be scaled to fit in the range (Lemma 6.4.
Step 3 proves this for functions that are probability distributions in [16]). ◀

All of this combined shows the theorem. ◀

Hannula et. al [16] and Durand et. al [9] have shown the following relationships
between expressivity of the logics: L-ESO[0,1](+,×,=, 0, 1) ≤ L-ESOd[0,1](Σ,×,=) ≡ FO(⊥⊥c).
L-ESOd[0,1][O,E,C] means a variant of L-ESO[0,1](O,E,C) where all functions are required
to be distributions, that is fA : Aar(f) → [0, 1] and

∑
a⃗∈Aar(f) fA(⃗a) = 1. From the proof for

the translation from L-ESO to FO(⊥⊥c) in [9], it follows that the reduction can be done in
polynomial time. Moreover, it is easy to see that model checking of FO(⊥⊥c) can be done in
NEXPreal. Thus we get

▶ Corollary 14. Model checking of FO(⊥⊥c) is succ-∃R-complete.

This corollary answers the question asked in [15] for the exact complexity of FO(⊥⊥c) and
confirms their result that the complexity lies between NEXP and EXPSPACE.
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7 Succinct ETR of Polynomially Many Variables

The key feature that makes the language Σvi-ETR defined in [31] very powerful is the ability
to index the quantified variables in the scope of summation. Nesting the summations allows
handling an exponential number of variables. Thus, similarly as in succ-ETR, sentences of
Σvi-ETR allow the use of exponentially many variables, however, the formulas are given
directly and do not require any succinct encoding. Due to the fact that variable indexing is
possible, [31] show that Σvi-ETR is polynomial time equivalent to succ-ETR.

Valiant’s class VNP [6, 19] is also defined in terms of exponential sums (we recall the
definition of VNP and related concepts in the full version). However, we cannot index
variables as above, therefore, the overall number of variables is always bounded by the length
of the defining expression. It is natural to extend ETR with a summation operator, but
without variable indexing as was allowed in Σvi-ETR. In this way, we can have exponential
sums, but the number of variables is bounded by the length of the formula. Instead of a
summation operator, we can also add a product operator, or both.

▶ Definition 15.
1. Σ-ETR is defined as ETR with the addition of a unary summation operator

∑1
xi=0.

2. Π-ETR is defined similar to Σ-ETR, but with the addition of a unary product operator∏1
xi=0 instead.

3. ΣΠ-ETR is defined similar to Σ-ETR or Π-ETR, but including both unary summation
and product operators.

In the three problems above, the number of variables is naturally bounded by the
length of the instance, since the problems are not succinct. For example, the formula∑1

x1=0
∑1

x2=0(x1 + x2)(x1 + (1 − x2))(1 − x1) = 0 explained in the introduction is also in
Σ-ETR and ΣΠ-ETR, but not in Π-ETR. The formula

∑1
e1=0 . . .

∑1
eN =0(x⟨e1,...,eN ⟩)2 = 1

is in neither of these three classes since it uses variable indexing.
To demonstrate the expressiveness of Π-ETR, we will show that the PSPACE-complete

problem QBF can be reduced to it.

▶ Lemma 16. QBF ≤P Π-ETR.

Proof. Let Q1x1Q2x2 . . . Qnxnφ(x1, . . . , xn) be a quantified Boolean formula with
Q1, . . . , Qn ∈ {∃,∀}. We arithmetize φ as A(φ) inductively using the following rules:
φ is a variable xi: We construct A(φ) = xi.
φ is ¬φ1: We construct A(φ) as 1 −A(φ1).
φ is φ1 ∧ φ2: We construct A(φ) as A(φ1) ·A(φ2).
φ is φ1 ∨ φ2: We construct A(φ) as 1 − (1 −A(φ1)) · (1 −A(φ2)) via De Morgan’s law and

the previous two cases.
The special treatment of the ∨ operator ensures that whenever x1, . . . , xn ∈ {0, 1}, then A(φ)
evaluates to 1 iff x1, . . . , xn satisfy φ and 0 otherwise. We then arithmetize the quantifiers
Q1, . . . , Qn in a similar way, but using the unary product operator.
Qi = ∀: We construct A(∀xiQi+1xi+1 . . . Qnxnφ) as

∏1
xi=0 A(Qi+1xi+1 . . . Qnxnφ)

Qi = ∃: We construct A(∃xiQi+1xi+1 . . . Qnxnφ(x1, . . . , xn) as
1 −

∏1
xi=0(1 −A(Qi+1xi+1 . . . Qnxnφ)), again using De Morgan’s law.

The final Π-ETR formula is then just A(Q1x1Q2x2 . . . Qnxnφ) = 1.
The correctness of the construction follows because a formula of the form ∀ψ(x) is true over

the Boolean domain iff ψ(0) ∧ψ(1) is true. The unary product together with arithmetization
allows us to write the whole formula down without an exponential blow-up. ◀
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We also consider the succinct version of ETR with only a polynomial number of variables.

▶ Definition 17. succ-ETRpoly is defined similar to succ-ETR, but variables are encoded
in unary instead of binary, thus limiting the amount of variables to a polynomial amount of
variables. (Note that the given input circuit succinctly encodes an ETR formula and not an
arbitrary circuit.)

For succ-ETR, it does not matter whether the underlying structure of the given instance
is a formula or an arbitrary circuit, since we can transform the circuit into a formula using
Tseitin’s trick. This, however, requires a number of new variables that is proportional to the
size of the circuit, which is exponential.

Like for ETR, we can now define corresponding classes by taking the closure of the
problems defined above. It turns out that we get meaningful classes in this way, however,
for some unexpected reason. Except for Σ-ETR, all classes coincide with PSPACE, which
we will see below. By restricting the number of variables to be polynomial, the complexity
of succ-ETR reduces considerably, from being NEXPreal-complete, which contains NEXP,
to PSPACE. On the other hand, the problems are most likely more powerful than ETR,
assuming that ∃R is a proper subset of PSPACE, which is believed by at least some researchers.

▶ Definition 18. Let succ-∃Rpoly be the closure of succ-ETRpoly under polynomial time
many one reductions.

▶ Theorem 19. PSPACE = succ-∃Rpoly and the problems Π-ETR, ΣΠ-ETR, and
succ-ETRpoly are PSPACE-complete.

Proof idea. To show that succ-ETRpoly is in PSPACE, we rely on results by [24]. One of
the famous consequences of Renegar’s work is that ETR ∈ PSPACE. But Renegar shows
even more, because he can handle an exponential number of arithmetic terms of exponential
size with exponential degree as long as the number of variables is polynomially bounded. For
the completeness of Π-ETR, it turns out that an unbounded product is able to simulate an
arbitrary number of Boolean quantifier alternations, in constrast to an unbounded sum. So,
as shown in Lemma 16, we can reduce QBF to it. ◀

8 ETR with the Standard Summation Operator

In the previous section, we have seen that ETR with a unary product operator (Π-ETR)
is PSPACE-complete. Moreover, allowing both unary summation and product operators
does not lead to an increase in complexity. In this section, we investigate the complexity of
Σ-ETR, ETR with only unary summation operators.

▶ Definition 20. Let ∃RΣ be the closure of Σ-ETR under polynomial time many one
reductions. Moreover, for completeness, let ∃RΠ be the closure of Π-ETR under polynomial
time many one reductions.

8.1 Machine Characterization of ∃RΣ

By Theorem 19, we have ∃RΠ = PSPACE. For ∃RΣ, we can conclude: NPreal = ∃R ⊆ ∃RΣ ⊆
PSPACE. We conjecture that all inclusions are strict. In this section, we will provide some
arguments in favor of this.

We first observe that using summations we can quite easily solve PP-problems. In
particular, we have:
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▶ Lemma 21. NPPP ⊆ ∃RΣ .

Proof. The canonical NPPP-complete problem E-MajSat is deciding the satisfiability of a
formula

ψ : ∃x1, . . . , xn : #{(y1, . . . , yn) ∈ {0, 1}n | ϕ(x, y) = 1} ≥ 2n−1,

i.e., deciding whether there is an assignment to the x-variables such that the resulting formula
is satisfied by at least half of the assignments to the y-variables [18].

Let X1 . . . Xn, Y1 . . . Yn be real variables and ϕR the arithmetization of ϕ. We build an
equivalent ∃RΣ instance as follows:

1. Xi = 0 ∨Xi = 1, 1 ≤ i ≤ n, and

2.
1∑

Y1=0
. . .

1∑
Yn=0

ϕR(X,Y ) ≥ 2n−1.

Then this instance is satisfiable iff ψ is satisfiable because Xi are existentially chosen and
constraint to be Boolean and

∑1
Y1=0 . . .

∑1
Yn=0 ϕ

R(X,Y ) is exactly the number of satisfying
assignments to the Y -variables. ◀

Similarly to ∃R = NPreal, we can also characterize ∃RΣ using a machine model instead of
a closure of a complete problem under polynomial time many one reductions. For this we
define a NPVNPR

real machine to be an NPreal machine with a VNPR oracle, where VNPR denotes
Valiant’s NP over the reals. Since VNPR is a family of polynomials, the oracle allows us to
evaluate a family of polynomials, for example the permanent, at any real input8. The two
lemmas below demonstrate that NPVNPR

real coincides with ∃RΣ which strengthens Lemma 21
that NPPP ⊆ ∃RΣ and characterizes Σ-ETR in terms of complexity classes over the reals.

▶ Lemma 22. Σ-ETR ∈ NPVNPR
real . This also holds if the NPreal machine is only allowed to

call its oracle once.

▶ Lemma 23. Σ-ETR is hard for NPVNPR
real .

▶ Theorem 24. Σ-ETR is complete for NPVNPR
real . Thus, ∃RΣ = NPVNPR

real .

Proof idea. To prove Lemma 22, we show a normal form for Σ-ETR instances such that
all polynomials contained in it are of the form

∑
Y ∈{0,1}m p(X,Y ) where p does not contain

any unary sums. Then we show how to translate formulas in this normal form into a real
word-RAM with oracle access. For the hardness results of Lemma 23, we encode the real
word-RAM computations into an ETR-instance, where the oracle calls (which w.l.o.g. can be
assumed to be calls to the permanent) are simulated by the summation operator. ◀

8.2 Reasoning about Probabilities in Small Models
In this section, we employ the satisfiability problems for languages of the causal hierarchy.
The problem Satpoly⟨Σ⟩

sm,prob is defined like Satpoly⟨Σ⟩
prob , but in addition we require that a satisfying

distribution has only polynomially large support, that is, only polynomially many entries in
the exponentially large table of probabilities are nonzero. Formally we can achieve this by
extending an instance with an additional unary input p ∈ N and requiring that the satisfying
distribution has a support of size at most p. The membership proofs of Satpoly

prob in NP and

8 See the full version for an overview of the relevant definitions.
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in ∃R, respectively, by [11], [17], and [21] rely on the fact that the considered formulas have
the small model property: If the instance is satisfiable, then it is satisfiable by a small model.
For Satpoly⟨Σ⟩

prob , this does not seem to be true because we can directly force any model to be
arbitrarily large, e.g., by encoding the additional parameter p above in binary or by enforcing a
uniform distribution using

∑
x1
. . .

∑
xn

(P (X1=x1, . . . , Xn=xn)−P (X1=0, . . . , Xn=0))2 = 0.
Thus, we have to explicitly require that the models are small, yielding the problem Satpoly⟨Σ⟩

sm,prob.
Formally, we use the following:

▶ Definition 25. The decision problems Satpoly⟨Σ⟩
sm,prob take as input a formula φ ∈ Lpoly⟨Σ⟩ and

a unary encoded number p ∈ N and ask whether there exists a model M = ({X1,..., Xn}, P )
such that M |= φ and #{(x1,..., xn) : P (X1=x1,..., Xn=xn) > 0} ≤ p.

It turns out that Satpoly⟨Σ⟩
sm,prob is a natural complete problem for ∃RΣ:

▶ Theorem 26. The decision problem Satpoly⟨Σ⟩
sm,prob is complete for ∃RΣ.

Proof idea. To show the containment of Satpoly⟨Σ⟩
sm,prob in ∃RΣ, we first show a normal form

that every probability occurring in the input instance contains all variables. Then we have
to use the exponential sum and the polynomially many variables to “built” a probability
distribution with polynomial support. The lower bound follows from reducing from a
restricted Σ-ETR-instance. ◀

9 Discussion

Traditionally, ETR has been used to characterize the complexity of problems from geometry
and real optimization. It has recently been used to characterize probabilistic satisfiability
problems, which play an important role in AI, see e.g. [21, 31]. We have further investigated
the recently defined class succ-∃R, characterized it in terms of real word-RAMs, and shown
the existence of further natural complete problems. Moreover, we defined a new class ∃RΣ

and also gave natural complete problems for it.
The studied summation operators allow the encoding of exponentiation, but only with

integer bases, so they do not affect the decidability, unlike Tarski’s exponential function [29].
Schäfer and Stefankovic [27] consider extensions of ETR where we have a constant number

of alternating quantifiers instead of just one existential quantifier. By the work of Grigoriev
and Vorobjov [14], these classes are all contained in PSPACE. Can we prove a real version of
Toda’s theorem [30]? Are these classes contained in ∃RΣ?
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