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Abstract
We consider the k-min-sum-radii (k-MSR) clustering problem with fairness constraints. The k-min-
sum-radii problem is a mixture of the classical k-center and k-median problems. We are given a set
of points P in a metric space and a number k and aim to partition the points into k clusters, each
of the clusters having one designated center. The objective to minimize is the sum of the radii of
the k clusters (where in k-center we would only consider the maximum radius and in k-median we
would consider the sum of the individual points’ costs).

Various notions of fair clustering have been introduced lately, and we follow the definitions due
to Chierichetti et al. [13] which demand that cluster compositions shall follow the proportions of
the input point set with respect to some given sensitive attribute. For the easier case where the
sensitive attribute only has two possible values and each is equally frequent in the input, the aim is
to compute a clustering where all clusters have a 1:1 ratio with respect to this attribute. We call
this the 1:1 case.

There has been a surge of FPT-approximation algorithms for the k-MSR problem lately, solving
the problem both in the unconstrained case and in several constrained problem variants. We add
to this research area by designing an FPT (6 + ϵ)-approximation that works for k-MSR under the
mentioned general fairness notion. For the special 1:1 case, we improve our algorithm to achieve a
(3 + ϵ)-approximation.
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1 Introduction

Cluster analysis is an unsupervised learning task that has inspired much research during the
last decades. Nearly all popular clustering formulations lead to NP-hard and often APX-hard
problems, thus there is a thriving field designing approximation algorithms for clustering. A
very popular and well studied problem is the k-median problem: Given n points P from a
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16:2 FPT Approximations for Fair k-Min-Sum-Radii

metric space and a number k, find k centers C ⊆ P such that the sum of the distances of
all points to their respective centers is minimized. Notice that k centers implicitly define k

clusters by assigning each point to its closest center (breaking ties arbitrarily). The k-median
problem is APX-hard [19, 23], but allows for O(1)-approximations. After a long line of
research, the currently best approximation for k-median achieves a guarantee of 2.675+ε [10]2.
A clustering function that is very popular for its simplicity and elegant algorithms is k-center.
It has the same input and solution space, but judges clusterings based on the maximum radius
of the (induced) clusters. The goal is to minimize the radius of the cluster with largest radius.
It has been known for quite some time that k-center admits a 2-approximation [18, 20], and
that this is tight when assuming P̸= NP [21].

In this paper, we consider k-min-sum-radii clustering, abbreviated as k-MSR. We get the
same input and solution space as for k-center, but the objective changes to the sum of the
cluster radii. The problem thus lies in between k-center and k-median as it is a sum-based
objective, but considers radii instead of points. Contrary to intuition, in metric spaces, many
design techniques fail for k-msr which work fine for k-center and k-median. However, the
problem allows for a polynomial (3 + ϵ)-approximation [9] via primal dual algorithms.

The model of fair clustering was introduced by Chierichetti et. al. [13] based on a disparate
impact approach. In the easiest case, given an input point set with the same number of
blue and red points, the goal of fair clustering is to find a clustering where every cluster
is composed of the same number of red and blue points (the colors represent values of a
sensitive attribute). The number of points in a cluster is unlimited, but the composition of
the clusters is constrained. For k-center and k-median, the following simple approach suffices
to design polynomial-time approximation algorithms for fair clustering in this scenario:

Compute a fair micro clustering, i.e., a clustering into µ≫ k clusters which is fair (this
is easier than finding exactly k clusters, for two colors and µ = n/2 it is just a matching).
Consider the clusters in this micro clustering as inseparable entities and use an algorithm for
the unconstrained problem to cluster them into k clusters. The resulting clusters are fair
because the union of fair clusters is again fair (this property of the constraint fairness is
sometimes called mergeability). In addition, both for k-center and for k-median, the cost
of the resulting clusters can be reasonably bounded, yielding O(1)-approximations for the
respective fair clustering problems. Most surprisingly, the same approach does not work in
the case of k-min-sum-radii. The reason is that for k-min-sum-radii, the cost of a micro
clustering can actually be larger than the clustering with k clusters. This property is shared
neither by k-center nor by k-median: For k-center, the radius of the micro clustering is
always bounded by the k-clustering, and for k-median, the sum of the points’ costs in the
micro clustering is bounded by the respective sum of the k-clustering.

Figure 1 illustrates the situation for k-MSR. The figure is for unconstrained k-MSR
to ease visualization, and just illustrates how the cost of micro clusterings for k-MSR can
behave. The examples are depicted with k = 1 and µ = 4. In (a), we see a cluster with
k-MSR cost 1 in which all points have the same pairwise distance, namely 1. If this cluster
is broken into µ pieces, then these pieces suddenly contribute t to the objective. In (b), we
have a star with µ leaves where one cost 1 cluster remains when we use µ clusters, so the
cost stays the same. In (c), the cluster only contains µ points, and then the cost drops to
zero when it is divided into µ subclusters. Overall we observe that we have no control over
the cost of a micro clustering and that the micro clustering approach fails.

2 This result actually holds for a slightly more general variant where the set of input points P can be
different than the set of possible center locations from which we pick C.
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cost 1
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⇒
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cost 0
(a) cost increases to µ (b) cost stays the same (c) cost drops to 0

Figure 1 Anything can happen for k-MSR: The cost of a micro clustering with µ = 4 compared
to the macro clustering with k = 1. All pictures use shortest path metrics, the edges have unit
weights.

Table 1 A list of FPT approximation results for k-MSR and k-median, all of which appeared in
the last five years. Multiple results for the same problem are listed in reverse chronological order.

Unconstr. Capacities / Uniform Cap. Matroid Con. Fair Centers

k-MSR 2+ϵ [12] ≈ 7.6 [24], 15+ϵ [5] / 3 [24], 4+ϵ [5], 28 [22] 9+ϵ [22] 3+ϵ [12]
k-med 1.546 [4]∗) 3+ϵ [15], 7+ϵ [1] / no improvement 2+ϵ [14] –
∗) This result holds for the problem as described in the introduction. If centers can be chosen from

a set possibly different from P then the best known FPT approximation bound is ≈ 1.735+ϵ [14].

FPT Approximation. There is mainly one approach for designing polynomial-time approx-
imation algorithms for k-MSR, which is a primal-dual approach that yielded the currently best
known bounds for unconstrained k-MSR and k-MSR with lower bounds on the cluster sizes,
or outliers [9]. This lack of diversity in the techniques to obtain approximation algorithms
for k-MSR has lately led to a surge of FPT approximation algorithms for k-MSR, that was
also inspired by a similar strong interest in FPT approximation algorithms for the k-median
problem. FPT approximation algorithms have been obtained for various problem variants,
see Table 1. The “fair centers” variant demands that the set of centers is fair rather than
the clusters. For more details, see the paragraph about related work. While the obtained
approximation algorithms only work for small k, they are still of high interest due to the
problem insights that they provide and also due to the fact that clustering with a small
number of clusters is an important domain.

Our Results

We get the following results in FPT-time where the parameter is the number of clusters k.
A (3 + ϵ)-approximation for the fair clustering k-MSR problem when there are only two
colors, both have exactly a ratio of 1:1 in the input point set, and we also want to achieve
that exact ratio. We are not aware of any results on fair k-MSR in general metrics.
A (6 + ϵ)-approximation that works for a variety of more general fairness constraints,
including all notions defined in [7, 13, 25]. To the best of our knowledge, there are no
previous results for this problem.

We also extend our approach for clustering with uniform lower bounds, and generally to the
class of mergeable constraints (see Definition 1). Uniform lower bounds have been studied in
the clustering literature to model anonymity [2]: The constraint demands that every cluster
contains a minimum number of ℓ points, i.e., that |a(c)| ≥ ℓ for all c ∈ C. A polynomial-time
(3.5 + ϵ)-approximation algorithm for k-MSR with lower bounds is known [9], and our FPT
approximation algorithm achieves a (3 + ϵ)-guarantee.

ISAAC 2024



16:4 FPT Approximations for Fair k-Min-Sum-Radii

Main Technical Contribution. Our main technical contribution is the development of a
completely novel approach to design FPT approximation algorithms for k-MSR. We give
more details on this approach in the next paragraph, but the main gain from our approach
is that we make it possible to use k-center algorithms as a subroutine via a clever branching
that we have not seen like this in the literature before. We believe this technique to be of
independent interest for the design of FPT approximation algorithms for k-MSR.

Following this novel design scheme, it is possible to obtain O(1)-approximations for fair
k-MSR and mergeable constraints in general. An additional technical contribution lies in
reducing the factors to small constants. In particular in the general fairness case, obtaining
the factor 6 + ϵ requires a clever bounding technique.

More Insight into the Scheme. We first discuss another approach that does not work
for k-MSR. There is a fairly general idea to obtain FPT approximations for constrained
k-clustering problems which we can think of in the following way: Compute a solution to
the unconstrained clustering problem with an approximation algorithm (here, one can even
use a bicriteria approximation which computes O(k) centers). This gives a set of centers S.
Then “move” all points to their closest center, i.e., create an instance I where all points lie
at the k centers in S. The optimum cost for the constrained problem on I can be related to
the optimum cost for the constrained problem on the original instance. Then solve I with
an algorithm that uses that the points all lie on k locations (notice that the constraint will
prevent us from simply opening one center at each location). The resulting solution is then
translated back to the original instance.

Adamczyk et al. [1] use this approach to develop an FPT (7 + ε)-approximation for
capacitated k-median. But here is another problem of the k-MSR cost function: Moving
all points to centers of an approximate solution also has uncontrollable effects on the cost
function. There seems to be no easy fix to this, and Inamdar and Varadarajan in the
introduction of [22] also notice that the approach does not seem to extend to k-MSR, so
there is a need for new techniques to design FPT algorithms for k-MSR in general.

The starting idea of our approach is to use an algorithm for the unconstrained k-center
problem at the core of the algorithm (rather than for an unconstrained k-MSR problem, which
would follow the above scheme). This means that we start off with a small approximation
ratio of 2. Notice that there is a connection between the value F ∗ of an optimal k-center
solution and the largest radius rmax in an optimal k-min-sum-radii solution: rmax must lie
in the interval [F ∗, kF ∗]. This relation is obviously not tight enough to directly lead to an
algorithm, but it can be used to find a near optimal approximation r̂max for the largest radius
(a proof can be found in the full version). Now our first idea is that we can find the largest
cluster in an k-MSR solution by running a k-center algorithm with r̂max and then guessing
in which of the k-center clusters the largest k-MSR cluster lies. But this only works for the
first cluster. To recurse, we have to eliminate this cluster from the input such that a k-center
algorithm can find the next cluster. The main hurdle here is that we cannot simply delete
the cluster because we might destroy the optimal fair assignment (which we do not know
and cannot guess at this point). We resolve this problem by keeping all points but adjusting
the metric to a (non-metric) distance function. Then we show that we can still solve the
resulting problem by approximately solving a so called k-center completion problem.

This problem might be of independent interest and could play a role in further k-MSR
research: Basically, we hand the problem an incomplete set of centers C ′ = {c1, . . . , cℓ} with
ℓ ≤ k together with radii r1, . . . , rℓ and ask it to find a k-center solution where points can be
assigned to a center ci from C ′ while paying ri less than the actual distance. We observe
that the k-center completion problem can be solved by Gonzalez’ 2-approximation technique
for k-center [18].
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Using this modeling we are able to recursively find largest clusters. There is another
technical problem, though. In every step, we are guessing the cluster in the completed
solution returned from the k-center completion problem in which the optimal center of the
next k-MSR cluster lies. But this may be one of the first ℓ clusters. Now the final crucial
idea is that in this case, we opt to increase the radius of that previous cluster instead of
opening a new cluster. It makes sense that for the k-MSR objective, this is a good idea:
Often we can reduce cost by using less clusters instead of using overlapping clusters.

Combining these three ideas ((i) guessing clusters based on a k-center solution, (ii)
modeling the elimination of clusters by using a completion problem, (iii) allowing clusters to
grow), we obtain our main algorithm.

Applying our scheme yields a covering of the input points where we know that the balls
are reasonably small compared to the balls in an optimal solution, and every optimum ball
is covered by one of our balls. However, we also need to compute the actual clustering.
Doing so requires to resolve the cluster membership of points that are in multiple balls, while
respecting fairness constraints. For the general fairness case, we do this by modelling the
overlap of balls by a graph and computing connected components in this graph. We can then
show that the radius of the components is not too large (see Section 3.2).

Related Work. Research on FPT algorithms for constrained and unconstrained k-MSR is
highly active at the moment, see Table 1. Notice that the paper by Chen et al. [12] gives an
algorithm for a problem called fair sum of radii, but it refers to setting different from ours:
While points also have colors, the fairness constraints are not imposed on the clusters but
rather on the centers. More precisely, each color i has its own associated value ki and any
feasible solution has to use exactly ki centers from that color. We call this fair centers in the
table. All the results in the table are in general metric space, which is our setting.

In the more restricted Euclidean case, Drexler et al. [16] gave a PTAS for the fair k-MSR
problem for constant k, however, the PTAS was faulty and a corrected version only exists for
k-MSR with outliers, not for fair k-MSR. It is thus open to give a better result for Euclidean
fair k-MSR. Bandyapadhyay et al. [5] give a (2+ε)-approximation for the capacitated k-MSR
problem whose runtime linearly depends on the dimension, and a (1 + ε)-approximation
which depends exponentially on the dimension.

There are some results on poly-time approximation algorithms for k-MSR in general
metrics, all following the primal-dual scheme. For the unconstrained case, the first was
due to Charikar and Panigrahy [11], and there are two recent improvements by Friggstad
and Jamshidian [17] and Buchem et al [9] (see below). The k-MSR problem with uniform
lower bounds has been studied by Ahmadian and Swamy [3] who give a polynomial-time
3.83-approximation, and additionally give a 12.365-approximation if outliers are additionally
considered. In [9], Buchem et al. improve upon all these factors by proposing a (3 + ε)-
approximation for the unconstrained case and the version with outliers, and a (3.5 + ε)-
approximation for lower bounds and lower bounds with outliers. Their algorithm also works
for the non-uniform lower bounded case (for this case, we could achieve a (6+ϵ)-approximation
since lower bounds are mergeable, but that is worse than (3.5 + ϵ)).

2 Getting Started

Defining the k-Center and k-MSR Problem. An instance I for a k-clustering problem
consists of a finite set P of n points, a (metric) distance function d : P × P → R≥0 and a
number k ∈ N with k ≤ n. A feasible solution S = (C, σ) consists of a set C = {c1, . . . , ck} ⊆ P

ISAAC 2024



16:6 FPT Approximations for Fair k-Min-Sum-Radii

of centers and an assignment σ : P → C of points to centers. For a center ci ∈ C, we call
Ci = σ−1(ci) the cluster of ci induced by σ. Furthermore, we let ri = maxp∈Ci

d(p, ci)
denote the radius of Ci. Let r1, r2, . . . , rk be the radii induced by a solution S. We refer to
the tuple (r1, . . . , rk) as the radius profile of S. The cost of S = (C, σ) with radius profile
(r1, . . . , rk) with respect to the k-center objective is defined as maxi∈{1,...,k} ri, while the
cost with respect to the k-min-sum-radii objective is defined as MSR(S) =

∑k
i=1 ri. The

k-center/k-min-sum-radii problem takes as input a point set P , a metric d : P × P → R≥0
and a number k ∈ N, and the task is to minimize the k-center/k-min-sum-radii objective.

Exact Fairness. In the fairness setting, every point belongs to exactly one protected group.
Here, we will usually denote these groups by colors γ1, . . . , γm. A coloring of the points is
given by a function γ : P → {γ1, . . . , γm}.

The notion of exact fairness as for example defined in [25] is based on maintaining the
underlying proportions of colors in the clusters. That is, for every color γj , the proportion of
points in P with color γj is the same as the proportion of points with color γj in any cluster.
To be more precise, we call a solution S = (C, σ) with induced clusters C1, . . . , Ck fair if

|Ci ∩ Γj |
|Ci|

= |Γj |
|P |

for all i ≤ k and j ≤ m, where Γj = γ−1(γj) is the set of points with color γj . The special
case of m = 2 and |Γ1| = |Γ2| has a specifically nice structure because the optimum solution
can be partitioned into |P |/2 bicolored pairs. We refer to this as the 1:1 case.

There also exist more relaxed definitions of fairness that do not demand strict preservation
of input ratios. In the full version, we discuss notions from [6, 7, 8, 13, 25].

Mergeable Constraints. Let (C, σ) be a clustering. We merge two clusters Ci := σ−1(ci),
Cj := σ−1(cj) by replacing ci, cj ∈ C by an arbitrary point c′ ∈ Ci∪Cj (i.e., C := C\{ci, cj}∪
{c′}) and assigning σ(p) = c′ for all p ∈ Ci ∪ Cj . Notice that because σ maps every point to
exactly one center, all clusters Ci := σ−1(ci), i = 1, . . . , k need to be pairwise disjoint.

▶ Definition 1. We say a constraint is mergeable if a feasible clustering is still feasible with
respect to the constraint after merging two of its clusters.

In this context, we say an assignment is feasible if it preserves the constraint. When dealing
with the k-min-sum-radii problem with a specific mergeable constraint, we refer to the
k-center problem with the same constraint as the corresponding k-center problem. For
example, for k-min-sum-radii with exact fairness, the corresponding k-center problem is
k-center with exact fairness. In the full version, we list several (fairness) constraints that are
mergeable and prove this.

2.1 The k-center completion problem
The following problem can be solved in a relatively straightforward way using Gonzalez’
algorithm [18].

▶ Definition 2. The k-center completion problem takes as input a point set P , a metric
d : P × P → R≥0, a number k ∈ N, a set of predefined centers c1, . . . , cℓ for an ℓ ∈ [k], and
corresponding radii r1, . . . , rℓ. The aim is to compute centers cℓ+1, . . . , ck and an assignment
α : P → {c1, . . . , ck} such that maxx∈P d′(x, α(x)) is minimized where
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p

ĉ1

ĉ2 c̄3

r̂1

r̂2

Figure 2 An instance of a 3-center completion problem. The centers ĉ1 and ĉ2 with corresponding
radii r̂1 = 1 and r̂2 = 0.5 are already given. The underlying distances are given by d(p, ĉ1) = 1.5,
d(p, ĉ2) = 1, d(p, c̄3) =

√
2. In d′, all distances to one of the centers ĉ1, ĉ2 are shortened by the

respective radius r̂1, r̂2. Dotted parts indicate the segments that do not contribute to the distance
d′. For example, d′(p, ĉ1) = 0.5, d′(p, ĉ2) = 0.5. However, distances not involving ĉ1 or ĉ2 as one of
the end points stay the same, i.e., d′(p, c̄3) = d(p, c̄3). Originally, the point p is closer to c̄3 than to
ĉ1. But under d′, p is closer to ĉ1. This example also shows that the distance d′ does not fulfill the
triangle inequality: While d′(p, c̄3) =

√
2, the detour via ĉ2 is shorter: d′(p, ĉ2) + d(ĉ2, c̄3) = 1.

d′(x, y) =


max{d(x, y)− ri, 0} if x ∈ P \ {c1, . . . , cℓ}, y = ci with i ∈ {1, . . . , ℓ}
max{d(x, y)− ri − rj , 0} if x = ci, y = cj with i, j ∈ {1, . . . , ℓ}
d(x, y) else

i.e., the radius of clusters 1 to ℓ is reduced by r1, . . . , rℓ when computing the objective function.

Figure 2 shows an example instance for such a completion problem. The k-center
completion problem can be solved by running an adapted farthest-first traversal starting
with c1, . . . , cℓ and using distance function d′. For i = ℓ + 1, . . . , k, always pick a point x that
maximizes minj∈[i] d′(x, cj) and set ci := x. When started with ℓ = 0 and d instead of d′,
this is known as farthest-first traversal or Gonzalez’ algorithm [18]. The change is that we
already have chosen the first ℓ centers and thus they differ from what Gonzalez’ algorithm
would have picked (and consequently, the remaining centers also differ), and also that the
distance to the first ℓ points is not metric. The adapted algorithm is described in Algorithm 1.
Lemma 3 verifies that the algorithm still succeeds in computing a 2-approximation.

▶ Lemma 3. Running Algorithm 1 with d′ and c1, . . . , cℓ already fixed yields a 2-approximation
for the k-center completion problem with input (P, d, k, c1, . . . , cℓ, r1, . . . , rℓ).

Proof. We follow the proof for the approximation guarantee of Gonzalez’ algorithm and
verify that it still works in the case of the somewhat different k-center problem. Let D be
the maximum distance of any point to its closest point in {c1, . . . , ck} with respect to d′,
i.e., D is the cost of the solution computed by Farthest-first-traversal-completion
with c1, . . . , cℓ already fixed. Let ck+1 be a point with mini∈[k] d′(ck+1, ci) = D. Observe
that all ci with i ≥ ℓ + 1 satisfy that d′(ci, cj) ≥ D for all j ∈ {1, . . . , ℓ} because otherwise
ck+1 would have been chosen as a center since its minimum distance is D. Inductively we
also get for all ci, cj with i, j ≥ ℓ + 1 that d′(ci, cj) ≥ D is true because otherwise ck+1 would
have been chosen. Now we get to the point where the proof differs slightly from the original

ISAAC 2024



16:8 FPT Approximations for Fair k-Min-Sum-Radii

Algorithm 1 Farthest-first-traversal-completion.

Input : Point set P , distance function d, integer k, centers c1, . . . , ci, radii r1, . . . , ri

Output : Set of k centers, assignment α

1 // Update distance function
2 d′ ← d

3 for j = 1, . . . , i do
4 for p ∈ P do
5 d′(cj , p)← max{d(cj , p)− rj , 0}

6 // Complete centers by farthest-first-traversal
7 for j = i + 1, . . . , k do
8 ci+1 ← arg maxp∈P maxc∈{c1,...,ci} d′(p, c)
9 // Assign points to their closest centers

10 for p ∈ P do
11 α(p)← arg minc∈{c1,...,ck} d′(p, c)
12 return c1, . . . , ck, α

proof because we have a case distinction. We have k + 1 points c1, . . . , ck+1. In an optimum
solution for the somewhat different k-center problem, we can assume that every point is
assigned to its closest center, and in particular, all centers are assigned to themselves. There
is always an optimum solution that satisfies this (this property is not necessarily ensured for
clustering problems with constraints). Let c∗

ℓ+1, . . . , c∗
k and α∗ : P → {c1, . . . , cℓ, c∗

ℓ+1, . . . , c∗
k}

be a such an optimal solution, i.e., α∗(ci) = ci for all i ∈ [ℓ].
Case 1 is that for some i ∈ {ℓ + 1, . . . , k + 1}, α∗(ci) = cj ∈ {c1, . . . , cℓ}, i.e., one of the

points we picked as a center or the additional point ck+1 is in the optimum solution assigned
to one of the predefined centers. In this case, OPT ≥ d′(ci, cj) ≥ D since we argued that all
our centers have distance of at least D to the predefined centers.

Case 2 is that none of cℓ+1, . . . , ck+1 is assigned to any predefined center. Thus, they are
all assigned to the k − ℓ centers c∗

ℓ+1, . . . , c∗
k. By the pigeonhole principle, this means that

α∗(ci) = α∗(cj) = c∗
m for some i, j ∈ {ℓ+1, . . . , k +1} and m ∈ {ℓ+1, . . . , k}. Since i, j ∈ [ℓ],

d′(ci, cj) ≥ D as argued above. Also since i, j, m ∈ [ℓ], by definition, d′(ci, cj) = d(ci, cj),
d′(ci, cm) = d(ci, cm) and d′(cj , cm) = d(cj , cm).

We conclude by the triangle inequality that

D ≤ d′(ci, cj) = d(ci, cj) ≤ d(ci, c∗
m) + d(d∗

m, cj)
≤ 2 max

g=i,j
{d(cg, α∗(cg))} ≤ 2 max

g≥ℓ+1
{d(cg, α∗(cg))}.

As d(cg, α∗(cg)) = d′(cg, α∗(cg)) for all g ≥ ℓ + 1 by definition, this implies OPT ≥ 1
2 D. ◀

2.2 Guessing an Approximate Radius Profile for the Optimum Solution
In the full version, we obtain the following corollary that allows us to guess close approx-
imations for all radii of the optimal k-MSR solution in FPT time. Let (r∗

1 , . . . , r∗
k) be the

radius profile of an optimal solution. We call a radius profile (r̃1, . . . , r̃k) near-optimal if
r∗

i ≤ r̃i ≤ (1 + ε)r∗
i for all i ∈ {1, . . . , k}.

▶ Corollary 4. Let (r∗
1 , . . . , r∗

k) be the radius profile of an optimal solution, and assume
that we know the value of a constant-factor approximation solution for the corresponding
k-center problem on the same instance. Then we can compute a set of size O(logk

1+ε(k/ ε))
that contains a near-optimal radius profile (r̃1, . . . , r̃k) in time O(k logk

1+ε(k/ ε)).
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3 Algorithm for k-Min-Sum-Radii with Mergeable Constraints

The aim of this section is to prove the following Theorem 5 which is proven in Section 3.2,
followed by Theorem 13 for 1:1 fairness in Section 3.2.1 and Corollary 14 for lower bounds in
Section 3.2.2.

▶ Theorem 5. For every ε > 0, there exists an algorithm that computes a (6 − 3
k + ε)-

approximation for k-min-sum-radii with mergeable constraints in time O((k log1+ε(k/ ε))k ·
poly(n)) if the corresponding constrained k-center problem has a constant factor approximation
algorithm.

Our algorithm works in two steps. First, the algorithm computes a candidate set of k radii
and centers based on guessing. If it guesses correctly, the induced balls form a feasible
k-min-sum-radii solution with certain properties. However, it might not fulfill the mergeable
constraint yet. What it means to guess correctly is defined later in Definition 6 after the
algorithm is specified. Notice that for this part, we need no assumptions about the constraint
aside from the fact that an approximation algorithm for the k-center problem under this
mergeable constraint exists. We need mergeability only in the computation of the final
assignment in Section 3.2.

In the second step of the algorithm, we compute an assignment of points to the candidate
centers. If the center and radius candidates from the first step are appropriate, then this
assignment is guaranteed to fulfill the mergeable constraint.

In the following, we fix an optimal solution that we are trying to find. It consists of
clusters C∗

1 , . . . , C∗
k , with centers c∗

1, . . . , c∗
k and radii r∗

1 , . . . , r∗
k. We will assume that the

optimal radii are sorted decreasingly. All clusters necessarily fulfill the mergeable constraint.
Furthermore, we assume that we are in an iteration where we consider the radius profile
r̃1, . . . , r̃k satisfying r∗

j ≤ r̃j ≤ (1 + ε)r∗
j for all j ≤ k. We also say that such a radius profile

is near-optimal. Such an iteration exists due to Corollary 4. During this run of the algorithm,
we are constructing candidate centers ĉ1, . . . , ĉk and candidate radii r̂1, . . . , r̂k. In summary,
we have the following notation to be aware of during the following:

C∗
1 , . . . , C∗

k denote an optimal clustering for k-MSR with mergeable constraint with centers
c∗

1, . . . , c∗
k and radii r∗

1 ≥ . . . ≥ r∗
k

r̃1, . . . , r̃k denote initial near-optimal radius profile such that r∗
j ≤ r̃j ≤ (1 + ε)r∗

j for all
j ≤ k

ĉ1, . . . , ĉi, r̂1, . . . , r̂i denote candidate centers and radii constructed up to iteration i

3.1 Selection of Candidate Centers and Radii
The general idea of the algorithm is as follows: Assume that in the beginning of iteration i,
we already fixed candidate centers ĉ1, . . . , ĉi−1 and candidate radii r̂1, . . . , r̂i−1. We compute
a 2-approximation for the induced k-center completion instance. The resulting output
consists of centers ĉ1, . . . , ĉi−1, c̄i, . . . , c̄k, radii r̂1, . . . , r̂i−1, r̄i, . . . , r̄k and an assignment α.
We guess α(c∗

i ), i.e. where the i-th center of the optimal solution is assigned to in the
k-center completion solution. Recall that we already have a good approximation for r̃i for
the corresponding optimal solution radius r∗

i . If we guess that α(c∗
i ) is among the newly

chosen centers, i.e. if α(c∗
i ) = c̄j ∈ {c̄i, . . . , c̄k}, we open a new ball with radius r̂i = 3r̃i at

this center ĉi := c̄j . Otherwise, if we guess that α(c∗
i ) = ĉj ∈ {ĉ1, . . . , ĉi−1}, there already

exists a ball around this center, and we only need to enlarge this ball by 3r̃i. In order to
have k centers in the end, we set ĉi to some arbitrary point and r̂i = 0.
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The guessing of the center assignments can be handled as follows. In every iteration i,
we have k possible choices for α(c∗

i ). So each sequence of k “guesses” can be encoded by a
tuple a = (a1, . . . , ak) ∈ {1, . . . , k}k, where ai = ℓ means that in the ith iteration, we choose
the ℓ-th center of the k-center completion solution as α(c∗

i ) (i.e. ĉℓ if ℓ < i, or c̄ℓ if ℓ ≥ i).
Thus, we can emulate the guessing by generating all such tuples upfront, computing the
candidate balls for each of these, and choosing the best feasible one in the end. For a formal
description of the algorithm, see Algorithm 2.

Algorithm 2 Centers-and-radii.

Input : Points P , distances d, k ∈ N, radius profile (r̃1, . . . , r̃k), tuple (a1, . . . , ak)
Output : Set of k centers, set of k radii

1 I0 ← (P, d, k, ∅, ∅)
2 for i = 1, . . . , k do
3 (Skcc, α)← Farthest-first-traversal-completion(Ii−1) , where

Skcc = {ĉ1, . . . , ĉi−1, c̄i, . . . , c̄k} and α : P → Skcc

4 if ai < i then
5 // guess that α(c∗

i ) ∈ {ĉ1, . . . , ĉi−1}
6 Set r̂ai ← r̂ai + 3r̃i, choose ĉi arbitrarily, set r̂i ← 0
7 else if ai ≥ i then
8 // guess that α(c∗

i ) ∈ {c̄i, . . . , c̄k}
9 Set ĉi ← c̄ai

, r̂i ← 3r̃i

10 Ii ← (P, d, k, {ĉ1, . . . , ĉi}, {r̂1, . . . , r̂i})
11 return {ĉ1, . . . , ĉk}, {r̂1, . . . , r̂k}

In the full version, we show an example run of Algorithm 2. With this notation and
Algorithm 2 in place, we can now formally define what it means to guess correctly.

▶ Definition 6 (Guessing correctly). Given a solution (Skcc, α) for the k-center completion
problem with input ĉ1, . . . , ĉi−1 and r̂1, . . . , r̂i−1. We say that Algorithm 2 guesses correctly
if the input tuple a is such that in every iteration i, ai is a correct guess of the assignment
of the next optimal center under α. To be more precise, ai is the smallest index in {1, . . . , k}
such that cai

= α(c∗
i ) with Skcc = {c1, . . . , ck}, where c∗

i is the center of the next optimal
cluster C∗

i .

The idea of Algorithm 2 is that it fully covers one so-far uncovered optimal cluster in
every iteration (under the assumption that the initial radius profile is near-optimal and
Algorithm 2 guesses correctly). For the analysis, we need the following Lemma that bounds
the cost of an optimal k-center completion solution in any iteration of Algorithm 2 by the
radius of the largest remaining optimal cluster that is not fully covered yet. Combining with
Lemma 3 gives an upper bound on the distance between an optimal center c∗ and the center
α(c∗) it is assigned to.

▶ Lemma 7. Assume that up to the end of iteration i, Algorithm 2 chose centers ĉ1, . . . , ĉi

and radii r̂1, . . . , r̂i such that for all p ∈
⋃

j≤i C∗
j , there exists a center ĉℓ ∈ {ĉ1, . . . , ĉi} such

that d′(p, ĉℓ) = 0. Then, the value of an optimal solution for the k-center completion problem
with input {ĉ1, . . . , ĉi}, {r̂1, . . . , r̂i} is at most r∗

i+1.

Proof. Consider the center extension {c∗
i+1, . . . , c∗

k}. By the precondition of the lemma, we
can assign every point in p ∈

⋃
j≤i C∗

j to a center in {ĉ1, . . . , ĉi} at distance 0 with respect
to d′. For all h ≥ i + 1, any x ∈ C∗

h can be assigned to c∗
h at distance ≤ r∗

h. As the optimal
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radii are sorted in decreasing order, r∗
i+1 is the largest remaining radius among the optimal

clusters under d′. Hence, the resulting assignment α′ satisfies d′(x, α′(x)) ≤ r∗
i+1. Notice

that {c∗
i+1, . . . , c∗

k} and α′ form a feasible solution for the k-center completion problem and
that the maximum radius of this solution is r∗

i+1 as argued above. Hence, the optimum value
for the k-center completion problem is upper bounded by r∗

i+1. ◀

Now, we can show that there exists a surjective mapping φ : {C∗
1 , . . . , C∗

k} → B̂, where B̂ is
the collection of balls from {B(ĉ1, r̂1), . . . , B(ĉk, r̂k)} for which r̂i > 0, such that C∗

j ⊆ φ(C∗
j )

for all j ≤ k. The next Lemma formalizes this.

▶ Lemma 8. Assume that our guess of the initial radius profile is near-optimal and that
Algorithm 2 guesses correctly. Let B̂ denote the set of balls B(ĉ1, r̂1), . . . , B(ĉk, r̂k) found by
Algorithm 2. Then the following two statements hold true
1. for all j ≤ k, there exists ℓ ≤ k such that C∗

j ⊆ B(ĉℓ, r̂ℓ)
2. for all ℓ ≤ k, if rℓ > 0 then there exists j ≤ k such that C∗

j ⊆ B(ĉℓ, r̂ℓ).

Proof. We show that the statement holds at the end of every iteration of Algorithm 2. That
is, we show that for all i ≤ k, the following holds
(1) for all j ≤ i, there exists ℓ ≤ i such that C∗

j ⊆ B(ĉℓ, r̂ℓ)
(2) for all ℓ ≤ i, if rℓ > 0 then there exists j ≤ i such that C∗

j ⊆ B(ĉℓ, r̂ℓ).
Then setting i = k implies the result. We prove this via induction over i ≤ k. For i = 0, the
statements are trivially fulfilled. Now let the statement be fulfilled at the end of iteration
i− 1 < k for some i > 0.

By Lemma 7, OPTkcc ≤ r∗
i , where OPTkcc is the value of an optimal solution for the

k-center completion problem that takes the centers and radii generated until the end of
iteration i− 1 as input. By Lemma 3, Farthest-first-traversal-completion in Line 3
of Algorithm 2 computes a 2-approximation for the k-center completion problem. These two
arguments together imply d(c∗

i , α(c∗
i )) ≤ 2 OPTkcc ≤ 2r∗

i .
If c∗

i = ĉj for some j ≤ i− 1, then for all p ∈ C∗
i , it is d(p, ĉj) = d(p, c∗

i ) ≤ r∗
i ≤ r∗

j , where
the last inequality holds because the optimal radii are sorted decreasingly.

If Algorithm 2 guesses correctly, cai
= α(c∗

i ) = c∗
i = ĉj and the radius r̂new

j produced
in Line 6 fulfills r̂new

j := r̂j + 3r̃i ≥ r∗
i . Therefore C∗

i is covered completely by B(ĉj , r̂new
j ).

This implies that (1) holds. For index i, the algorithm creates a new ball with radius r̂i = 0.
Therefore, statement (2) is fulfilled by the induction hypothesis.

Now, we assume that c∗
i /∈ {ĉ1, . . . , ĉi−1}. There are two cases for the guess ai.

1. Either ai < i. Then, we are in Line 6 of Algorithm 2 and enlarge an already existing ball
centered at α(c∗

i ) = ĉai by 3r̃i, i.e., the ai-th ball is B(ĉai , r̂ai + 3r̃i) at the end of the
iteration. For every p ∈ C∗

i ,

d(p, ĉai
) ≤ d(p, c∗

i )+d(c∗
i , ĉai

) = d(p, c∗
i )+d′(c∗

i , ĉai
)+ r̂ai

= d(p, c∗
i )+d′(c∗

i , α(c∗
i ))+ r̂ai

.

It is d(p, c∗
i ) ≤ r∗

i as p ∈ C∗
i , and d′(c∗

i , α(c∗
i )) ≤ 2r∗

i as α is the assignment given by the
2-approximation. Further, r∗

i ≤ r̃i. Overall, d(p, ĉai
) ≤ 3r̃i + r̂ai

, which implies that the
ball B(ĉai , r̂ai + 3r̃i) covers C∗

i completely.
2. Or ai ≥ i. In this case, the algorithm creates a new ball B(ĉi, r̂i) with ĉi := cai

= α(c∗
i )

and r̂ := 3r̃i. For every p ∈ C∗
i ,

d(p, ĉi) = d(p, α(c∗
i )) ≤ d(p, c∗

i ) + d(c∗
i , α(c∗

i )) = d(p, c∗
i ) + d′(c∗

i , α(c∗
i )),

where the last equality holds because c∗
i ̸∈ {ĉ1, . . . , ĉi−1} and ai is the smallest index

such that cai = α(c∗
i ), which implies cai ̸∈ {ĉ1, . . . , ĉi−1}. Again, d(p, c∗

i ) ≤ r∗
i and

d′(c∗
i , α(c∗

i )) ≤ 2r∗
i . Overall, d(p, ĉi) ≤ 3r∗

i ≤ 3r̃i, and hence, C∗
i is completely covered by

B(ĉi, r̂i). ◀
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ĉ1

ĉ2

ĉ3

ĉ4r̂1

r̂2

r̂3
r̂4

Figure 3 An instance of a k-min-sum-radii problem with exact fairness constraint with two colors
and a blue:orange ratio of 2:1. The larger dots indicate centers and the gray lines indicate the radii
output by Alg. 2. The black circles show the induced balls B(ĉi, r̂i). The black lines between points
represent the edges of the induced access graph. Note that the balls themselves are not necessarily
fair, but every connected component is.

Notice that the candidate balls might overlap, but the optimal clusters are pairwise disjoint
by definition of a clustering. The following lemma relates the total cost of the clustering
consisting of the candidate balls to the cost of an optimal k-min-sum-radii with mergeable
constraints solution. This will be useful for analyzing the cost of our final solution later
on. Notice that this statement does not imply an approximation ratio for the vanilla
k-min-sum-radii problem.

▶ Lemma 9. Let r̂1, . . . , r̂k be the radii produced by Alg. 2. Then
∑k

j=1 r̂j ≤ 3(1+ε)
∑k

j=1 r∗
j .

Proof. We show by induction that
∑i

j=1 r̂j ≤ 3 ·
∑i

j=1 r̃j for all i ≤ k. Then for i = k, the
result follows since r̃j ≤ (1 + ε)r∗

j for all j ≤ k.
For i = 0, the statement trivially holds. Now assume that the statement holds for i− 1.

Either the algorithm sets r̂i := 3r̃i during iteration i. Then,
∑i

j=1 r̂j =
∑i−1

j=1 r̂j + r̂i ≤
3

∑i−1
j=1 r̃j + 3r̃i. For the remaining case, let r̂

(i−1)
j denote the value of r̂j at the beginning

of the ith iteration, and r̂
(i)
j its value at the end of the iteration, j ≤ i. There exists ℓ < i

such that the algorithm sets r̂
(i)
ℓ := r̂

(i−1)
ℓ + 3r̃i and r̂

(i)
i := 0. Then,

∑i
j=1 r̂

(i)
j =

∑i−1
j=1 r̂

(i)
j =∑i−1

j=1 r̂
(i−1)
j + 3r̃i ≤ 3 ·

∑i
j=1 r̃j . ◀

3.2 Finding the Assignment
In the following, we will show how to find a feasible assignment. We construct a graph from
center and radii candidates computed in the first part of the algorithm and observe that the
clustering induced by the connected components of this graph fulfills the given mergeable
constraint. We define the access graph G = (V, E) as follows. The set of vertices corresponds
to the given point set, i.e. V = P . We add an edge between any pair of vertices x, y ∈ V

iff x = ĉi for a center ĉi constructed in Algorithm 2 and d(y, ĉi) ≤ r̂i for the corresponding
radius r̂i. The construction is exemplified in Figure 3. A connected component is a maximal
connected subgraph of G. Let CC(G) denote the set of connected components in G. Covering
a connected component Z ∈ CC(G) using one large cluster is not more expensive than
covering it using the balls B(ĉ, r̂) for all ĉ ∈ Z.
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▶ Lemma 10. Assume Algorithm 2 made the correct decision in each iteration and terminates
with centers Ĉ = {ĉ1, . . . , ĉk} and radii r̂1, . . . , r̂k. Let G = (V, E) be the corresponding access
graph. Let Z ∈ CC(G) be a connected component of G. Then assigning all vertices from Z

to an arbitrary point in Z yields a cluster that is feasible with respect to the given mergeable
constraint.

Proof. Let Z ∈ CC(G) be a connected component of G. Let V(Z) denote the set of vertices
of Z. We will show that V(Z) consists solely of ℓ optimal clusters that all lie entirely in
V(Z) for some ℓ ≥ 1. As optimal clusters fulfill the mergeable constraint, the union of these
also fulfills the mergeable constraint.

Every point p ∈ V(Z) lies in some optimal cluster. Hence, there exists at least one
optimal cluster that intersects V(Z). We want to conclude that such a cluster already is
completely contained in V(Z). Assume for a contradiction that there exists an optimal ball
C∗ such that C∗ ∩V(Z) ̸= ∅ and C∗ ̸⊆ V(Z). By Lemma 8, there exists a ball B(ĉ, r̂) such
that C∗ ⊆ B(ĉ, r̂). Let v ∈ C∗ \V(Z). Then d(v, ĉ) ≤ r̂ and therefore ĉ must be part of the
connected component Z, a contradiction. ◀

We can use this insight as follows: For every connected component Z ∈ CC(G), pick one of
the centers ĉ ∈ Ĉ ∩V(Z) that lie inside the connected component and assign all points in
V(Z) to ĉ. This way, we get a solution that contains one cluster per connected component.
To achieve the smallest possible cost guarantee, we set ĉ with the largest corresponding r̂ as
the final center.

▶ Lemma 11. Let Ĉ = {ĉ1, . . . , ĉk}, r̂1, . . . , r̂k and G = (V, E) as in Lemma 10. For every
connected component Z, we choose the center ĉZ ∈ Ĉ ∩ V(Z) such that the corresponding
radius r̂Z is maximal among all radii in the connected component. Then, the solution (C, f)
with C = {ĉZ | Z ∈ CC(G)} and f : P → C with f(z) = ĉZ for all z ∈ Z and for all
connected components Z is a (6 − 3

k + ε)-approximation for the k-min-sum-radii problem
under a mergeable constraint.

Proof. Since each cluster in the solution corresponds to exactly one connected component of
G, Lemma 10 implies that the solution fulfills the mergeable constraint.

It remains to prove the approximation factor. Let Z ∈ CC(G) be a connected component
in G. Let vZ ∈ arg maxp∈Z d(ĉZ , vZ). There exists a path from ĉZ to vZ in Z. A shortest
such path ĉZ , v1, ĉZ

1 , v2, ĉZ
2 , . . . vℓ, ĉZ

ℓZ
, vZ with ℓZ ≤ k alternatingly visits points in Ĉ and

V(Z)\Ĉ. Therefore, its length is bounded by
∑

i≤ℓZ
2r̂Z

i − r̂Z
max, where r̂Z

max := maxi : ĉi∈Z r̂Z
i .

The radius of a cluster with center ĉZ is given by d(vZ , ĉZ). Hence, the sum of the radii of
such clusters is bounded by

∑
Z∈CC(G)

d(vZ , ĉZ) ≤
∑

Z∈CC(G)

( ∑
i≤ℓZ

2r̂Z
i − r̂Z

max

)
=

k∑
j=1

2r̂j −
∑

Z∈CC(G)

r̂Z
max

where the second equality holds because a graph’s connected components are disjoint.
There exists a connected component Z ′ such that r̂Z′

max = maxi≤k r̂i =: r̂max. Therefore,∑
Z∈CC(G) r̂Z

max ≥ r̂max. Further, r̂max ≥ 1
k

∑k
j=1 r̂j . Hence,

k∑
j=1

2r̂j −
∑

Z∈CC(G)

r̂Z
max ≤

(
2− 1

k

) k∑
j=1

r̂j ,
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and by Lemma 9,

(
2− 1

k

) k∑
j=1

r̂j ≤ 3
(
1 + ε

)(
2− 1

k

) k∑
j=1

r∗
j =

(
6− 3

k

)(
1 + ε

) k∑
j=1

r∗
j . ◀

Algorithm 4 finds such a solution. Now we are ready to prove our main Theorem.

Algorithm 3 Assignment.

Input : Graph G = (V, E), distance function d, set of centers ĉ1, . . . , ĉk

Output : Set of ≤ k centers C, assignment f

1 C← ∅
2 for each connected component Z of G do
3 find a center ĉ ∈ Z ∩ Ĉ such that r̂ is largest
4 C← C ∪ {ĉ}
5 for all p ∈ Z do
6 f(p)← ĉ

7 return C, f

Algorithm 4 k-min-sum-radii with mergeable constraints.

Input : Point set P , distance function d, k ∈ N
Output : Set of ≤ k centers C, assignment f

1 U ← (6 + ε) maxx,y∈P d(x, y) // upper bound on the sum of radii cost
2 R← set of radius profile guesses
3 forall (r̃1, . . . , r̃k) ∈ R do
4 forall a ∈ {1, . . . , k}k do
5 ({ĉ1, . . . , ĉk}, {r̂1, . . . , r̂k})← Centers-and-radii(P, d, k, (r̃1, . . . , r̃k), a)
6 compute the access graph G based on {ĉ1, . . . , ĉk} and {r̂1, . . . , r̂k}
7 (C, f)← Assignment(G, d, {ĉ1, . . . , ĉk})
8 if (C, f) is feasible and MSR(C, f) < U then
9 (C∗, f∗)← (C, f)

10 U ← MSR(C, f)

11 return C∗, f∗

▶ Theorem 5. For every ε > 0, there exists an algorithm that computes a (6 − 3
k + ε)-

approximation for k-min-sum-radii with mergeable constraints in time O((k log1+ε(k/ ε))k ·
poly(n)) if the corresponding constrained k-center problem has a constant factor approximation
algorithm.

Proof. We invoke Algorithm 2 for all possible guesses of radius profiles and center assignments.
For each of these, we compute the access graph G and invoke Algorithm 3 to obtain a solution.
By Lemma 11, this solution is feasible and a (6 − 3

k + ε)-approximation, assuming that
Algorithm 2 guesses correctly. Since it iterates over all possible guesses, we can be sure that
in one of the iterations we do indeed guess correctly. In the end, we return the best solution
found, whose cost can therefore be upper bounded by (6− 3

k + ε) times the optimum.
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Figure 4 A fair k-min-sum-radii instance with two colors and equal proportions. Left: Output of
Algorithm 2 as balls B(ĉi, r̂i) for i = 1, 2, 3 and the graph edges between any fair pair of points that
have access to the same center ĉ. Right: The corresponding flow network. All edges have capacity 1.

To be able to guess a radius profile, we first need to compute an approximate solution for
constrained k-center, which can be done in polynomial time. By Corollary 4, we can then
construct the set R in Line 2 of Algorithm 4 in time O(k log1+ε(k/ ε)k). The outer for-loop in
line 3 then goes through |R| iterations, which is O(log1+ε(k/ ε)k). The inner for-loop in line
4 goes through kk iterations. So in total, lines 5-10 are invoked O

(
(k log1+ε(k/ ε))k

)
times.

The runtime of one call to Centers-and-radii is dominated by the runtime of the calls to
Farthest-first-traversal-completion. This in turn has the same asymptotic running
time as Gonzalez’ algorithm, which can be implemented to run in O(kn). So we can bound
the runtime of Centers-and-radii by O(k2n). The construction of the access graph can
be performed in O(kn), as can one call to Assignment. The feasibility of a solution can be
checked in O(n). Thus, we obtain an overall running time of O

(
(k log(k/ ε))k · poly(n)

)
. ◀

3.2.1 Fairness with two Colors and Equal Proportions
We can get better guarantees for the exact fairness constraint with two colors and equal
proportions. In this case, we can find a fair assignment such that none of the radii r̂ has to
be enlarged. The idea is that we first compute a fair micro clustering (i.e. partition P into
fair pairs) and then assign these pairs to a common center.

Let P = Γ1∪Γ2, i.e., P consists of two different colors, γ1, γ2. We set Γ1 = γ−1(γ1), Γ2 =
γ−1(γ2) as the sets of points carrying the respective color. Here, |Γ1| = |Γ2| = n

2 . We want
to partition the set P into pairs consisting of two points p1, p2 where p1 ∈ Γ1 and p2 ∈ Γ2.
This is equivalent to finding a perfect matching of size n

2 between Γ1 and Γ2.
For this, we construct a flow network where there is an edge between p1 ∈ Γ1 and

p2 ∈ Γ2 if and only if they have access to a common center ĉ, i.e., iff there exists ĉ ∈ Ĉ with
d(ĉ, p1) ≤ r̂ and d(ĉ, p2) ≤ r̂. We connect all nodes of Γ1 to some vertex s and all nodes of
Γ2 to some vertex t. We set the capacities of all the edges of this network to 1. Computing a
perfect matching between points in Γ1 and Γ2 corresponds to finding a flow with value n

2 in
the given network. Such a flow exists if Algorithm 2 guessed correctly.

From the flow, we can construct the fair pairs by combining two points p1 ∈ Γ1 and
p2 ∈ Γ2 if the edge connecting them carries flow. We assign such a pair to a center ĉ to
which both points have access. We can summarize this in the following observation:

▶ Observation 12. Let F = {p1, p2} be a fair pair constructed as described above, let ĉ be the
center to which it gets assigned and r̂ the corresponding radius. Then maxi=1,2 d(pi, ĉ) ≤ r̂.

ISAAC 2024



16:16 FPT Approximations for Fair k-Min-Sum-Radii

In other words, assigning the fair pairs as a whole does not increase the cost. Together with
Lemma 9, this implies the following theorem.

▶ Theorem 13. Let P = Γ1∪Γ2 be a set of points consisting of only two different color groups
Γ1 and Γ2 that fulfill |Γ1| = |Γ2|. For every ε > 0, there exists an FPT (3 + ε)-approximation
algorithm for the fair k-min-sum-radii problem.

Proof. We run Algorithm 2 to obtain a set of balls B(ĉ, r̂) and then compute a partitioning
of P into fair pairs as described above. We assign each fair pair to a center to which both
points of the pair have access. By Lemma 9,

∑k
i=1 r̂i ≤ 3(1 + ε)

∑k
i=1 r∗

i . As noted in
Observation 12, assigning fair pairs does not increase the cost, which concludes the proof. ◀

3.2.2 Uniform Lower Bounds
In k-min-sum-radii with uniform lower bounds, we have an additional input number ℓ ∈ N,
and every cluster in the solution needs to contain at least ℓ points. In this case we set up
a network flow between the centers Ĉ on the left and the points on the right. There is a
super source s and an edge (s, ĉ) for every ĉ ∈ Ĉ. The capacity of these edges is set to the
lower bound L. Then every ĉ is connected to all x ∈ P with d(ĉ, x) ≤ r̂. Finally, all points
are connected with a unit capacity edge (x, t) to a super sink t. Any flow in this network
corresponds to an assignment of at least L points to each center. Since our balls cover the
optimum solution, we know that there exists a feasible flow in this network that sends k · L
units of flow to the super sink. We can thus run a maximum flow algorithm to find such an
assignment. After that, any remaining point x ∈ P can be assigned arbitrarily to a center ĉ

with d(x, ĉ) ≤ r̂. Again, this is possible due to Lemma 8.

▶ Theorem 14. There exists an FPT (3+ε)-approximation algorithm for the k-min-sum-radii
problem with uniform lower bounds.
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