
Succinct Data Structures for Baxter Permutation
and Related Families
Sankardeep Chakraborty #

The University of Tokyo, Japan

Seungbum Jo1 #

Chungnam National University, Daejeon, Republic of Korea

Geunho Kim #

Pohang University of Science and Technology, Republic of Korea

Kunihiko Sadakane #

The University of Tokyo, Japan

Abstract
A permutation π : [n] → [n] is a Baxter permutation if and only if it does not contain either of the
patterns 2 41 3 and 3 14 2. Baxter permutations are one of the most widely studied subclasses
of general permutation due to their connections with various combinatorial objects such as plane
bipolar orientations and mosaic floorplans, etc. In this paper, we introduce a novel succinct
representation (i.e., using o(n) additional bits from their information-theoretical lower bounds) for
Baxter permutations of size n that supports π(i) and π−1(j) queries for any i ∈ [n] in O(f1(n)) and
O(f2(n)) time, respectively. Here, f1(n) and f2(n) are arbitrary increasing functions that satisfy the
conditions ω(log n) and ω(log2 n), respectively. This stands out as the first succinct representation
with sub-linear worst-case query times for Baxter permutations. The main idea is to traverse the
Cartesian tree on the permutation using a simple yet elegant two-stack algorithm which traverses
the nodes in ascending order of their corresponding labels and stores the necessary information
throughout the algorithm.

Additionally, we consider a subclass of Baxter permutations called separable permutations, which
do not contain either of the patterns 2 4 1 3 and 3 1 4 2. In this paper, we provide the first succinct
representation of the separable permutation ρ : [n] → [n] of size n that supports both ρ(i) and
ρ−1(j) queries in O(1) time. In particular, this result circumvents Golynski’s [SODA 2009] lower
bound result for trade-offs between redundancy and ρ(i) and ρ−1(j) queries.

Moreover, as applications of these permutations with the queries, we also introduce the first
succinct representations for mosaic/slicing floorplans, and plane bipolar orientations, which can
further support specific navigational queries on them efficiently.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Succinct data structure, Baxter permutation, Mosaic floorplan, Plane bipolar
orientation

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.17

Related Version Full Version: https://arxiv.org/abs/2409.16650 [8]

Funding Seungbum Jo: This work was supported by research fund of Chungnam National University.
Geunho Kim: This research was partly supported by the Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.
2017-0-00905, Software Star Lab (Optimal Data Structure and Algorithmic Applications in Dynamic
Geometric Environment)).

1 Corresponding author

© Sankardeep Chakraborty, Seungbum Jo, Geunho Kim, and Kunihiko Sadakane;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 17; pp. 17:1–17:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sankardeep.chakraborty@gmail.com
https://orcid.org/0000-0002-2395-4160
mailto:sbjo@cnu.ac.kr
https://orcid.org/0000-0002-8644-3691
mailto:gnhokim@postech.ac.kr
https://orcid.org/0000-0003-4705-0489
mailto:sada@mist.i.u-tokyo.ac.jp
https://orcid.org/0000-0002-8212-3682
https://doi.org/10.4230/LIPIcs.ISAAC.2024.17
https://arxiv.org/abs/2409.16650
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Succinct Data Structures for Baxter Permutation and Related Families

1 Introduction

A permutation π : [n] → [n] is a Baxter permutation if and only if there are no three indices
i < j < k that satisfy π(j + 1) < π(i) < π(k) < π(j) or π(j) < π(k) < π(i) < π(j + 1)
(that is, π does not have pattern 2 41 3 or 3 14 2) [2]. For example, 3 5 2 1 4 is not a
Baxter permutation because the pattern 2 41 3 appears (π(2 + 1) = 2 < π(1) = 3 < π(5) =
4 < π(2) = 5 holds). A Baxter permutation π is alternating if the elements in π rise and
descend alternately. One can also consider separable permutations, which are defined as
the permutations without two patterns 2 4 1 3 and 3 1 4 2 [7]. From the definitions, any
separable permutation is also a Baxter permutation, but the converse does not hold. For
example, 2 5 6 3 1 4 8 7 is a Baxter permutation but not a separable permutation because of
the appearance of the pattern 2 4 1 3 (2 5 1 4).

In this paper, we focus on the design of a succinct data structure for a Baxter permutation
π of size n, i.e., the data structure that uses up to o(n) extra bits in addition to the information-
theoretical lower bound along with supporting relevant queries efficiently. Mainly, we consider
the following two fundamental queries on π: (1) π(i) returns the i-th value of π, and (2)
π−1(j) returns the index i of π(i) = j. We also consider the design of a succinct data
structure for a separable permutation ρ of size n that supports ρ(i) and ρ−1(j) queries. In
the rest of this paper, log denotes the logarithm to the base 2, and we assume a word-RAM
model with Θ(log n)-bit word size, where n is the size of the input. Also, we ignore all ceiling
and floor operations that do not impact the final results.

1.1 Previous Results
For general permutations, there exist upper and lower bound results for succinct data
structures supporting both π(i) and π−1(j) queries in sub-linear time [20,27]. However, to
the best of our knowledge, there does not exist any data structures for efficiently supporting
these queries on any subclass of general permutations. One can consider suffix arrays [21]
as a subclass of general permutations, but their space consumption majorly depends on
the entropy of input strings. This implies that for certain input strings, Ω(n log n) bits
(asymptotically the same space needed for storing general permutations) are necessary for
storing the suffix arrays on them.

Baxter permutation is one of the most widely studied classes of permutations [5] because
diverse combinatorial objects, for example, plane bipolar orientations, mosaic floorplans,
twin pairs of binary trees, etc. have a bijection with Baxter permutations [1, 15]. Note that
some of these objects are used in many applied areas. For example, mosaic floorplans are
used in large-scale chip design [25], plane bipolar orientations are used to draw graphs in
various flavors (visibility [34], straight-line drawing [17]), and floorplan partitioning is used
to design a model for stochastic processes [29]. The number of distinct Baxter permutations
of size n is Θ(8n/n4) [32], which implies that at least 3n − o(n) bits are necessary to store
a Baxter permutation of size n. Furthermore, the number of distinct alternating Baxter
permutations of size 2n (resp. 2n + 1) is (cn)2 (resp. cncn+1) where cn = (2n)!

(n+1)!n! is the n-th
Catalan number [11]. Therefore, at least 2n − o(n) bits are necessary to store an alternating
Baxter permutation of size n. Dulucq and Guibert [12] established a bijection between
Baxter permutations π of size n and a pair of unlabeled binary trees, called twin binary trees,
which are essentially equivalent to the pair of unlabeled minimum and maximum Cartesian
trees [35] for π. They provided methods for constructing π from the structure of twin
binary trees and vice versa, both of which require O(n) time. Furthermore, they presented a
representation scheme that requires at most 8n bits for Baxter permutations of size n and 4n

S. Chakraborty, S. Jo, G. Kim, and K. Sadakane 17:3

bits for alternating Baxter permutations of size n. Gawrychowski and Nicholson proposed a
3n-bit representation that stores the tree structures of alternating representations of both
minimum and maximum Cartesian trees [18]. Based on the bijection established in [12],
the representation in [18] gives a succinct representation of a Baxter permutation of size n.
Moreover, this representation can efficiently support a wide range of tree navigational queries
on these trees in O(1) time using only o(n) additional bits. However, surprisingly, all of these
previous representations of π crucially fail to address both, perhaps the most natural, π(i)
and π−1(j) queries efficiently as these queries have a worst-case time complexity of Θ(n).

Separable permutation was introduced by Bose et al.[7] as a specific case of patterns for
the permutation matching problem. It is known that the number of separable permutations
of size n equals the large Schröder number An, which is Θ

(
(3+2

√
2)n

n1.5

)
[36]. Consequently, to

store a separable permutation ρ of size n, at least n log(3+2
√

2)−O(log n) ≃ 2.54n−O(log n)
bits are necessary. Bose et al. [7] also showed that ρ can be encoded as a separable tree,
which is a labeled tree with at most 2n − 1 nodes. Thus, by storing the separable tree using
O(n log n) bits, one can support both ρ(i) and ρ−1(j) queries in O(1) time using standard tree
navigation queries. Yao et al. [36] showed a bijection between all canonical forms of separable
trees with n leaves and the separable permutations of size n. To the best of our knowledge,
there exists no o(n log n)-bit representation for storing either separable permutations or their
corresponding separable trees that can be constructed in polynomial time while supporting ρ

queries in sub-linear time.
A mosaic floorplan is a collection of rectangular objects that partition a single rectangular

region. Due to its broad range of applications, there is a long history of results (see [22,36]
and the references therein) concerning the representation of mosaic floorplans of size n in
small space [1, 22, 23]. Ackerman et al. [1] presented a linear-time algorithm to construct
a mosaic floorplan of size n from its corresponding Baxter permutation of size n and vice
versa. Building on this construction algorithm, He [22] proposed the current state-of-the-art,
a succinct representation of a mosaic floorplan of size n using 3n − 3 bits. Again, all of
these previous representations primarily focus on constructing a complete mosaic floorplan
structure and do not consider supporting navigational queries, e.g., return a rectangular
object immediately adjacent to the query object in terms of being left, right, above, or below
it, without constructing it completely. Note that these queries have strong applications
like the placement of blocks on the chip [1, 37]. There also exists a subclass of mosaic
floorplans known as slicing floorplans, which are mosaic floorplans whose rectangular objects
are generated by recursively dividing a single rectangle region either horizontally or vertically.
The simplicity of a slicing floorplan makes it an efficient solution for optimization problems, as
stated in [38]. Yao et al. [36] showed there exists a bijection between separable permutations
of size n and slicing floorplans with n rectangular objects. They also showed that separable
trees can be used to represent the positions of rectangular objects in the corresponding slicing
floorplans. However, to the best of our knowledge, there exists no representation of a slicing
floorplan using o(n log n) bits that supports the above queries without reconstructing it.

1.2 Our Results and Main Idea
In this paper, we first introduce a (3n + o(n))-bit representation of a Baxter permutation
π of size n that can support π(i) and π−1(j) queries in O(f1(n)) and O(f2(n)) time re-
spectively. Here, f1(n) and f2(n) are any increasing functions that satisfy ω(log n) and
ω(log2 n), respectively. We also show that the same representation provides a (2n + o(n))-bit
representation of an alternating Baxter permutation of size n with the same query times.
These are the first succinct representations of Baxter and alternating Baxter permutations
that can support the queries in sub-linear time in the worst case.

ISAAC 2024

17:4 Succinct Data Structures for Baxter Permutation and Related Families

Our main idea of the representation is as follows. To represent π, it suffices to store the
minimum or maximum Cartesian tree defined on π along with their labels. Here the main
challenging part is to decode the label of any node in either of the trees in sub-linear time,
using o(n)-bit auxiliary structures. Note that all the previous representations either require
linear time for the decoding or explicitly store the labels using O(n log n) bits. To address
this issue, we first introduce an algorithm that labels the nodes in the minimum Cartesian
tree in ascending order of their labels. This algorithm employs two stacks and only requires
information on whether each node with label i is a left or right child of its parent, as well as
whether it has left and/or right children. Note that unlike the algorithm of [12], our algorithm
does not use the structure of the maximum Cartesian tree. We then proceed to construct a
representation using at most 3n + o(n) bits, which stores the information used throughout
our labeling algorithm. We show that this representation can decode the minimum Cartesian
tree, including the labels on its nodes. This approach was not considered in previous succinct
representations that focused on storing the tree structures of both minimum and maximum
Cartesian trees, or their variants. To support the queries efficiently, we show that given any
label of a node in the minimum or maximum Cartesian tree, our representation can decode the
labels of its parent, left child, and right child in O(1) time with o(n)-bit auxiliary structures.
Consequently, we can decode any O(log n)-size substring of the balanced parentheses of both
minimum and maximum Cartesian trees with dummy nodes to locate nodes according to
their inorder traversal (see Section 4.1 for a detailed definition of the inorder traversal) on π

in O(f1(n)) time. This decoding step plays a key role in our query algorithms, which can
be achieved from non-trivial properties of our representation, and minimum and maximum
Cartesian trees on Baxter permutations. As a result, our representation not only supports
π(i) and π−1(j) queries, but also supports range minimum/maximum and previous/next
larger/smaller value queries efficiently.

Next, we give a succinct representation of separable permutation ρ of size n, which
supports all the operations above in O(1) time. Our result implies the Golynski’s lower
bound result [20] for trade-offs between redundancy and ρ(i) and ρ−1(j) queries does not hold
in separable permutations. The main idea of the representation is to store the separable tree
of ρ using the tree covering algorithm [14], where each micro-tree is stored as its corresponding
separable permutation to achieve succinct space. Note that a similar approach has been
employed for succinct representations on some graph classes [4, 9]. However, due to the
different structure of the separable tree compared to the Cartesian tree, the utilization of
non-trivial auxiliary structures is crucial for achieving O(1) query time on the representation.

Finally, as applications of our succinct representations of Baxter and separable permuta-
tions, we present succinct data structures of mosaic and slicing floorplans and plane bipolar
orientations that support various navigational queries on them efficiently. While construction
algorithms for these structures already exist from their corresponding Baxter or separable
permutations [1, 6], we show that the navigational queries can be answered using a constant
number of π(i) (or ρ(i)), range minimum/maximum, and previous/next smaller/larger value
queries on their respective permutations, which also require some nontrivial observations
from the construction algorithms. This implies that our succinct representations allow for the
first time succinct representations of these structures that support various navigation queries
on them in sub-linear time. For example, we consider two queries on mosaic and slicing
floorplans as (1) checking whether two rectangular objects are adjacent, and (2) reporting all
rectangular objects adjacent to the given rectangular object. Note that the query of (2) was
previously addressed in [1], as the direct relation set (DRS) query, which was computed in
O(n) time, and important for the actual placement of the blocks on the chip.

S. Chakraborty, S. Jo, G. Kim, and K. Sadakane 17:5

The paper is organized as follows. We introduce the representation of a Baxter permutation
π of size n in Section 3. In Section 4, we explain how to support π(i) and π−1(j) queries on π,
in addition to tree navigational queries on both the minimum and maximum Cartesian trees.
In Section 5.1, we present a succinct representation of separable permutation ρ that can
support ρ(i) and ρ−1(j) in O(1) time. Finally, some preliminaries are outlined in the next
section. Due to the space limit, the remaining results of our work (succinct representations
of mosaic/slicing floorplans and plane bipolar orientations) are included in the full version of
the paper [8].

2 Preliminaries

In this section, we introduce some preliminaries that will be used in the rest of the paper.

Cartesian trees. Given a sequence S = (s1, s2, . . . , sn) of size n from a total order, a
minimum Cartesian tree of S, denoted as MinC(S) is a binary tree constructed as fol-
lows [35]: (a) the root of the MinC(S) is labeled as the minimum element in S (b) if the
label of the root is si, the left and right subtree of S are MinC(S1) and MinC(S2), respect-
ively where S1 = (s1, s2, . . . , si−1) and S2 = (si+1, si+2, . . . , sn). One can also define a
maximum Cartesian tree of S (denoted as MaxC(S)) analogously. From the definition, in
both MinC(S) and MaxC(S), any node with inorder i is labeled with si.

Balanced parentheses. Given an ordered tree T of n nodes, the BP of T (denoted as
BP (T)) is defined as a sequence of open and closed parentheses constructed as follows [28].
One traverses T from the root node in depth-first search (DFS) order. During the traversal,
for each node p ∈ T , we append “(” when we visit the node p for the first time, and append
“)” when all the nodes on the subtree rooted at p are visited, and we leave the node p. From
the construction, it is clear that the size of BP (T) is 2n bits, and always balanced. Munro
and Raman [28] showed that both (a) findopen(i): returns the position of matching open
parenthesis of the close parenthesis at i, and (b) findclose(i): returns the position of matching
close parenthesis of the open parenthesis at i, queries can be supported on BP (T) in O(t(n))
time with o(n)-bit auxiliary structures, when any O(log n)-bit substring of the BP (T) can
be decoded in t(n) time. Furthermore, it is known that the wide range of tree navigational
queries on T also can be answered in O(t(n)) time using BP (T) with o(n)-bit auxiliary
structures [30]: Here, each node is given and returned as the position of the open parenthesis
that appended when the node is first visited during the construction of BP (T) (for the full
list of the queries, please refer to Table I in [30]).

Rank and Select queries. Given a sequence S = (s1, s2, . . . , sn) ∈ {0, . . . , σ − 1}n of size n

over an alphabet of size σ, (a) rankS(a, i) returns the number of occurrence of a ∈ {0, . . . , σ−1}
in (s1, s2, . . . , si), and (b) selectS(a, j) returns the first position of the j-th occurrence of
a ∈ {0, . . . , σ − 1} in S (in the rest of this paper, we omit S if it is clear from the context).
The following data structures are known, which can support both rank and select queries
efficiently using succinct space [3, 31]: (1) suppose σ = 2, and S has m 1s. Then there exists
a (log

(
n
m

)
+ o(n))-bit data structure that supports both rank and select queries in O(1) time.

The data structure can also decode any O(log n) consecutive bits of S in O(1) time, (2) there
exists an (n log σ + o(n))-bit data structure that can support both rank and select queries in
O(1) time, and (3) if σ = O(1) and one can access any O(log n)-length sequence of S in t(n)
time, one can support both rank and select queries in O(t(n)) time using o(n)-bit auxiliary
structures.

ISAAC 2024

17:6 Succinct Data Structures for Baxter Permutation and Related Families

Range minimum and previous/next smaller value queries. Given a sequence S =
(s1, s2, . . . , sn) of size n from a total order with two positions i and j with i ≤ j, the
range minimum query RMin(i, j) on S returns the position of the smallest element within
the range si, . . . , sj . Similarly, a range maximum query RMax(i, j) on S is defined to find
the position of the largest element within the same range.

In addition, one can define previous (resp. next) smaller value queries at the position i

on S, denoted as PSV(i) (resp. NSV(i)), which returns the nearest position from i to the left
(resp. right) whose value is smaller than si. If there is no such elements, the query returns
0 (resp. n + 1). One can also define previous (resp. next) larger value queries, denoted as
PLV(i) (resp. NLV(i)) analogously.

It is known that if S is a permutation, RMin, PSV, and NSV queries on S can be answered
in O(1) time, given a BP of MinC(S) with o(n) bit auxiliary structures [16,30].

Tree Covering. Here, we briefly outline Farzan and Munro’s [14] tree covering representation
and its application in constructing a succinct tree data structure. The core idea involves
decomposing the input tree into mini-trees and further breaking them down into smaller units
called micro-trees. These micro-trees can be efficiently stored in a compact precomputed
table. The shared roots among mini-trees enable the representation of the entire tree by
focusing only on connections and links between these subtrees. We summarize the main
result of Farzan and Munro’s algorithm in the following theorem.

▶ Theorem 1 ([14]). For a rooted ordered tree with n nodes and a positive integer 1 ≤ ℓ1 ≤ n,
one can decompose the trees into subtrees satisfying the following conditions: (1) each subtree
contains at most 2ℓ1 nodes, (2) the number of subtrees is O(n/ℓ1), (3) each subtree has at
most one outgoing edge, apart from those from the root of the subtree.

See Figure 3 for an example. After decomposing the subtree as above, any node with an
outgoing edge to a child outside the subtree is termed a boundary node. The corresponding
edge is referred to as the non-root boundary edge. Each subtree has at most one boundary
node and a non-root boundary edge. Additionally, the subtree may have outgoing edges
from its root node, designated as root boundary edges. For example, to achieve a tree
covering representation for an arbitrary tree with n nodes, Theorem 1 is initially applied with
ℓ1 = log2 n, yielding O(n/log2 n) mini-trees. The resulting tree, formed by contracting each
mini-tree into a vertex, is denoted as the tree over mini-trees. This tree, with O(n/log2 n)
nodes, can be represented in O(n/log n) = o(n) bits through a pointer-based representation.
Subsequently, Theorem 1 is applied again to each mini-tree with ℓ2 = 1

6 log n, resulting in
a total of O(n/log n) micro-trees. The mini-tree over micro-trees, formed by contracting
each micro-tree into a node and adding dummy nodes for micro-trees sharing a common
root, has O(log n) vertices and is represented with O(log log n)-bit pointers. Encoding the
non-root/root boundary edge involves specifying the originating vertex and its rank among
all children. The succinct tree representation, such as balanced parentheses (BP) [26], is
utilized to encode the position of the boundary edge within the micro-tree, requiring O(log ℓ2)
bits. The overall space for all mini-trees over micro-trees is O(n log log n/log n) = o(n) bits.
Finally, the micro-trees are stored with two-level pointers in a precomputed table containing
representations of all possible micro-trees, demonstrating a total space of 2n + o(n) bits. By
utilizing this representation, along with supplementary auxiliary structures that require only
o(n) bits of space, it is possible to perform fundamental tree navigation operations, such as
accessing the parent, the i-th child, the lowest common ancestor, among many others, in
O(1) time [14].

S. Chakraborty, S. Jo, G. Kim, and K. Sadakane 17:7

3 Succinct Representation of Baxter Permutation

In this section, we present a (3n + o(n))-bit representation for a Baxter permutation π =
(π(1), . . . , π(n)) of size n. We begin by providing a brief overview of our representation.
It is clear that the tree structure of MinC(π), along with the associated node labels can
decode π completely. However, the straightforward storage of node labels uses Θ(n log n) bits,
posing an efficiency challenge. To address this issue, we first show that when π is a Baxter
permutation, a two-stack based algorithm can be devised to traverse the nodes of MinC(π)
according to the increasing order of their labels. After that, we present a (3n + o(n))-bit
representation that stores the information used throughout the algorithm, and show that the
representation can decode MinC(π) with the labels of the nodes.

Algorithm 1 Two-stack based algorithm.

Initialize two empty stacks L and R.
Visit ϕ(1) (i.e., the root of MinC(π)).
while i = 2 . . . n do

// The last visited node is ϕ(i − 1) by Lemma 2.
if ϕ(i) is a left child of its parent then

if ϕ(i − 1) has a left child then
Visit the left child of ϕ(i − 1).

else
Pop a node from stack L, and visit the left child of the node.

end
if ϕ(i − 1) has a right child that has not yet been visited then

Push ϕ(i − 1) to the stack R.
end

else // ϕ(i) is a right child of its parent
if ϕ(i − 1) has a right child then

Visit the right child of ϕ(i − 1).
else

Pop a node from stack R, and visit the right child of the node.
end
if ϕ(i − 1) has a left child that has not yet been visited then

Push ϕ(i − 1) to the stack L.
end

end
end

Note that our encoding employs a distinct approach compared to prior representations,
as seen in references [12,13,18,24]. These earlier representations store the tree structures
of MinC(π) and MaxC(π) (or their variants) together, based on the observation that there
always exists a bijection between π and the pair of MinC(π) and MaxC(π) if π is a Baxter
permutation [12]. We show that for any node in MinC(π), our representation allows to decode
the labels of its parent, left child, and right child in O(1) time using o(n)-bit auxiliary data
structures. Using the previous representations that only store tree structures of MinC(π) and
MaxC(π), these operations can take up to Θ(n) time in the worst-case scenario, even though
tree navigation queries can be supported in constant time.

ISAAC 2024

17:8 Succinct Data Structures for Baxter Permutation and Related Families

i
i4

i + 1

i3

i′

k

i
i2

i + 1

i1

i′

(a) (b)

k

Figure 1 (a) the case when ϕ(i) is in the left subtree of ϕ(k), and (b) the case when ϕ(i) is in
the right subtree of ϕ(k).

Now we introduce a two-stack based algorithm to traverse the nodes in MinC(π) according
to the increasing order of their labels. Let ϕ(i) denote the node of MinC(π) with the label i.
The algorithm assumes that we know whether ϕ(i) is left or right child of its parent for all
i ∈ {2, . . . , n}.

The following lemma shows that if π is a Baxter permutation, the two-stack based
algorithm works correctly.

▶ Lemma 2. If π is a Baxter permutation, the two-stack based algorithm on MinC(π) traverses
the nodes according to the increasing order of their labels.

Proof. From Algorithm 1, it is clear that we first visit the root node, which is ϕ(1). Then we
claim that for any i, the two-stack based algorithm traverses the node ϕ(i + 1) immediately
after traversing ϕ(i), thereby proving the theorem.

Suppose not. Then we can consider the cases as (a) the left child of ϕ(i) exists, but
ϕ(i + 1) is not a left child of ϕ(i), or (b) the left child of ϕ(i) does not exist, but ϕ(i + 1) is
not a left child of the node at the top of L. For the case (a) (the case (b) can be handled
similarly), suppose ϕ(i + 1) is a left child of the node ϕ(i′). Then i′ < i by the definition
of MinC(π) and the case (a). Now, let ϕ(k) be the lowest common ancestor of ϕ(i) and
ϕ(i′). If ϕ(i) is in the left subtree of ϕ(k) (see Figure 1(a) for an example), k cannot be i′

from the definition of MinC(π). Then consider two nodes, ϕ(i1) and ϕ(i2), which are the
leftmost node of the subtree rooted at node ϕ(i′) and the node whose inorder is immediately
before ϕ(i1), respectively. Since ϕ(i2) lies on the path from ϕ(k) to ϕ(i′), we have i + 1 ≤ i1
and k ≤ i2 < i′. Therefore, there exists a pattern 3 14 2 induced by i − i2, i1 − i′, which
contradicts the fact that π is a Baxter permutation.

If ϕ(i) is in the right subtree of ϕ(k) (see 1(b) for an example), k cannot be i from the
definition of MinC(π). Consider two nodes, ϕ(i3) and ϕ(i4), which are the leftmost node of
the subtree rooted at node ϕ(i) and the node whose inorder is immediately before ϕ(i3),
respectively. Since ϕ(i4) lies on the path from ϕ(k) to ϕ(i), we have i + 1 < i3 (i3 is greater
than i and cannot be i + 1) and k ≤ i4 < i. Therefore, there exists a pattern 3 14 2 induced
by (i + 1) − i4, i3 − i, which contradicts the fact that π is a Baxter permutation.

The case when ϕ(i+1) is a right child of its parent can be proven using the same argument
by showing that if the algorithm fails to navigate ϕ(i + 1) correctly, the pattern 2 41 3 exists
in π. ◀

The representation of π encodes the two-stack based algorithm as follows. First, to
indicate whether each non-root node is whether a left or right child of its parent, we store
a binary string lr[1, . . . n − 1] ∈ {l, r}n−1 of size n − 1 where lr[i] = l (resp. lr[i] = r) if the
node ϕ(i + 1) is a left (resp. right) child of its parent. Next, to decode the information on

S. Chakraborty, S. Jo, G. Kim, and K. Sadakane 17:9

1

8

9 10

2

4

7
5

6

3
11

lr r r l r r l l l r r
lp (() ())
rp { { } }
E 3 3 2 3 2 0 0 3 0 0
lrp (({) ([])) { } }
U 1 1 2 1 2 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11

9 8 10 1 7 4 5 6 2 3 11permutation
1 2 3 4 5 6 7 8 9 10 11

Figure 2 An example of the representation of the Baxter permutation π =
(9, 8, 10, 1, 7, 4, 5, 6, 2, 3, 11). Note that the data structure maintains only E and lr along with
o(n)-bit auxiliary structures.

the stack L during the algorithm, we define an imaginary string of balanced parentheses
lp[1 . . . n − 1] as follows: After the algorithm traverses ϕ(i), lp[i] is (1) “(” if the algorithm
pushes ϕ(i) to the stack L, (2) “)” if the algorithm pops a node from the stack L, and (3)
undefined otherwise. We also define an imaginary string of balanced parentheses rp[1, . . . n]
in the same way to decode the information on the stack R during the algorithm. We use
“{” and “}” to denote the parentheses in rp. Then from the correctness of the two-stack
algorithm (Lemma 2), and the definitions of lr, lp, and rp, we can directly derive the following
lemma:

▶ Lemma 3. For any i ∈ {1, . . . , n − 1}, the following holds:
Suppose the node ϕ(i) is a leaf node. Then either lp[i] or rp[i] is defined. Also, lr[i] is l

(resp. r) if and only if lp[i] (resp. rp[i]) is a closed parenthesis.
Suppose the node ϕ(i) only has a left child. In this case, lr[i] is l if and only if both lp[i]
and rp[i] are undefined. Also, lr[i] is r if and only if lp[i] = “(” and rp[i] = “}”.
Suppose the node ϕ(i) only has a right child. In this case, lr[i] is l if and only if lp[i] = “)”
and rp[i] = “{”. Also, lr[i] is r if and only if both lp[i] and rp[i] are undefined.
Suppose the node ϕ(i) has both left and right child. In this case, lr[i] is l if and only if
lp[i] is undefined and rp[i] = “{”. Also, lr[i] is r if and only if lp[i] = “(” and rp[i] is
undefined.

To indicate whether each node ϕ(i) has a left and/or right child we store a string
E ∈ {0, 1, 2, 3}n−1 of size n − 1 where (a) E[i] = 0 if ϕ(i) is a leaf node (b) E[i] = 1 if ϕ(i)
has only a left child, (c) E[i] = 2 if ϕ(i) has only a right child, and (d) E[i] = 3 if ϕ(i) has
both left and right children. We store E using 2n + o(n) bits, which allows support both rank
and select operations in O(1) time [3]. Thus, the overall space required for our representation
is at most 3n + o(n) bits (2n bits for E, n bits for lr along with o(n)-bit auxiliary structures).
From Lemma 3, our representation can access lp[i] and rp[i] in O(1) time by referring lr[i]
and E[i]. Next, we show both findopen and findclose on lp and rp in O(1) time using the
representation. We define an imaginary string lrp of length at most 2(n − 1) over an alphabet
of size 6 that consists of three different types of parentheses (), {}, [] constructed as follows.
We first initialize lrp as an empty string and scan lr and E from the leftmost position. Then
based on Lemma 3, whenever we scan lr[i] and E[i], we append the parentheses to lrp as
follows:

ISAAC 2024

17:10 Succinct Data Structures for Baxter Permutation and Related Families

(if lr[i] = r and E[i] = 3
) if lr[i] = l and E[i] = 0
{ if lr[i] = l and E[i] = 3
} if lr[i] = r and E[i] = 0
(} if lr[i] = r and E[i] = 1
{) if lr[i] = l and E[i] = 2
[] if (1) lr[i] = l and E[i] = 1, or (2) lr[i] = r and E[i] = 2

We store a precomputed table that has all possible pairs of lr and E of size (log n)/4 as
indices. For each index of the table, it returns lrp constructed from the corresponding pair of
lr and E. Thus, the size of the precomputed table is O(2 3

4 log n log n) = o(n) bits
Additionally, we define an imaginary binary sequence U ∈ {1, 2}n−1 of size n − 1, where

U [i] denotes the number of symbols appended to lrp during its construction by scanning lr[i]
and E[i]. Then by Lemma 3, we can decode any O(log n)-sized substring of U starting from
position U [i] by storing another precomputed table of size o(n) bits, indexed by all possible
pairs of lr and E of size (log n)/4. Consequently, we can support both rank and select queries
on U by storing o(n)-bit auxiliary structures, without storing U explicitly [3].

To decode any O(log n)-sized substring of lrp starting from position lrp[i], we first decode
a O(log n)-sized substring of E and lr from the position i′ = i − rankU (2, i) and decode the
substring of lrp by accessing the precomputed table a constant number of times (bounded
conditions can be easily verified using rankU (2, i − 1)). Thus, without maintaining lrp, we can
support rank, select, findopen, and findclose queries on lrp in O(1) time by storing o(n)-bit
auxiliary structures [3, 10]. With the information provided by lrp and U , we can compute
findopen(i) and findclose(i) operations on lp in O(1) time as follows: To compute findopen(i),
we compute i1 − rankU (2, i1 −1), where i1 is the position of the matching “(” corresponding to
lrp[i + rankU (2, i)]. For computing findclose(i), we similarly compute i2 − rankU (2, i2), where
i2 corresponds to the position of the “)” corresponding to lrp[i + rankU (2, i − 1)]. Likewise,
we can compute findopen(i) and findclose(i) operations on rp by locating the matching “{”
or “}” in lrp. In summary, our representation enables findopen and findclose operations on
both lp and rp to be supported in O(1) time without storing them explicitly.

Now we show that our representation is valid, i.e., we can decode π from the representation.

▶ Theorem 4. The strings lr and E give a (3n + o(n))-bit representation for the Baxter
permutation π = (π(1), . . . , π(n)) of size n.

Proof. It is enough to show that the representation can decode MinC(π) along with the
associated labels. For each non-root node ϕ(i), we can check ϕ(i) is either a left or right
child of its parent by referring lr[i − 1]. Thus, it is enough to show that the representation
can decode the label of the parent of ϕ(i). Without loss of generality, suppose ϕ(i) is a left
child of its parent (the case that ϕ(i) is a right child of its parent is analogous). Utilizing
the two-stack based algorithm and referring to Lemma 3, we can proceed as follows: If no
element is removed from the L stack after traversing ϕ(i−1) (this can be checked by referring
lr[i] and E[i]), we can conclude that the parent node of ϕ(i) is indeed ϕ(i − 1). Otherwise,
the parent of ϕ(i) is the node labeled with findopen(i − 1) on lp from the two-stack based
algorithm. ◀

S. Chakraborty, S. Jo, G. Kim, and K. Sadakane 17:11

▶ Example 5. Figure 2 shows the representation of the Baxter permutation π =
(9, 8, 10, 1, 7, 4, 5, 6, 2, 3, 11). Using the representation, we can access lp[3] =“)” by refer-
ring lr[3] = l and E[3] = 2 by Lemma 3. Also, findopen(6) on lp computed by (1) computing
the position of the matching “(” of the parenthesis of lrp at the position i′ = 6+rankU (2, 6) = 8,
which is 5, and (2) returning 5 − rankU (2, 5 − 1) = 4. Note that lrp is not explicitly stored.
Finally, we can decode the label of the parent of ϕ(4) using findopen(3) on lp (ϕ(4) is the left
child of its parent since lr[3] = l), resulting in the value 2. Thus, ϕ(2) is the parent of ϕ(4).

Representation of alternating Baxter Permutation. Assuming π is an alternating permuta-
tion of size n, one can ensure that MinC(π) always forms a full binary tree by introducing, at
most, two dummy elements n + 1 and n + 2, and adding them to the leftmost and rightmost
positions of π, respectively [11, 12]. Specifically, we add the node ϕ(i + 1) as the leftmost
leaf of MinC(π) if π(1) < π(2), Similarly, we add the node ϕ(i + 2) as the rightmost leaf of
MinC(π) if π(n − 1) > π(n).

Since no node in MinC(π) has exactly one child in this case, we can optimize the string
E in the representation of Theorem 4 into a binary sequence of size at most n − 1, where
E[i] indicates whether the node ϕ(i) is a leaf node or not. Thus, we can store π using at
most 2n + o(n) bits. We summarize the result in the following corollary.

▶ Corollary 6. The strings lr and E give a (2n + o(n))-bit representation for the alternating
Baxter permutation π = (π(1), . . . , π(n)) of size n.

4 Computing the BP sequence of Cartesian trees

Let π be a Baxter permutation of size n. In this section, we describe how to to compute π(i)
and π−1(j) for i, j ∈ {1, 2, . . . , n} using the representation of Theorem 4. First in Section 4.1
we modify Cartesian trees so that inorders are assigned to all the nodes. Then we show in
Section 4.2 we can obtain the BP sequence of MinC(π) from our representation. By storing
the auxiliary data structure of [30], we can support tree navigational operations in Section 2.
Finally, in Section 4.4, we show that our data structure can also support the tree navigational
queries on MaxC(π) efficiently, which used in the results in the succinct representations of
mosaic floorplans and plane bipolar orientations.

To begin discussing how to support π(i) and π−1(j) queries, we will first show that the
representation of Theorem 4 can efficiently perform a depth-first traversal on MinC(π) using
its labels. We will establish this by proving the following lemma, which shows that three
key operations, namely (1) left_child_label(i): returns the label of the left child of ϕ(i),
(2) right_child_label(i): returns the label of the right child of ϕ(i), and (3) parent_label(i):
returns the label of the parent of ϕ(i) on MinC(π), can be supported in O(1) time.

▶ Lemma 7. The representation of Theorem 4 can support left_child_label(i),
right_child_label(i), and parent_label(i) in O(1) on MinC(π) in O(1) time.

Proof. The proof of Theorem 4 shows how to support parent_label(i) in O(1) time. Next,
to compute left_child_label(i), it is enough to consider the following two cases according to
Lemma 3: (1) If lr[i] = l and lp[i] is undefined, left_child_label(i) is i + 1, and (2) if lr[i] = r

and lp[i] = ‘(’, we can compute left_child_label(i) in O(1) time by returning findclose(i) on lp.
Similarly, right_child_label(i) can be computed in O(1) time using lr and rp analogously. ◀

Now we can compute ϕ(i + 1) from ϕ(i) without using the two stacks in O(1) time. We
denote this operation by next(i).

ISAAC 2024

17:12 Succinct Data Structures for Baxter Permutation and Related Families

1. If lr[i] = l and the left child of ϕ(i) exists, next(i) is the left child of ϕ(i).
2. If lr[i] = r and the right child of ϕ(i) exists, next(i) is the right child of v.
3. If lr[i] = l and the left child of ϕ(i) does not exist, next(i) is the left child of ϕ(j) where

j = findclose(i) on lp.
4. If lr[i] = r and the right child of ϕ(i) does not exist, next(i) is the left child of ϕ(j) where

j = findclose(i) on rp.

4.1 Computing inorders
First, we define the inorder of a node in a binary tree. Inorders of nodes are defined recursively
as follows. We first traverse the left subtree of the root node and give inorders to the nodes
in it, then give the inorder to the root, and finally traverse the right subtree of the root node
and give inorders. In [30], inorders are defined for only nodes with two or more children. To
apply their data structures to our problem, we modify a binary tree as follows. For each
leaf, we add two dummy children. If a node has only right child, we add a dummy left child.
If a node has only left child, we add a dummy right child. Then in the BP sequence B of
the modified tree, i-th occurrence of “)(” corresponds to the node with inorder i. Therefore
we can compute rank and select on “)(” in constant time using the data structure of [30]
if we store the BP sequence B of the modified tree explicitly. However, if we do so, we
cannot achieve a succinct representation of a Baxter permutation. We implicitly store B.
The details are explained next.

4.2 Implicitly storing BP sequences
We first construct B for MinC(π) and auxiliary data structures of [30] for tree navigational
operations. In their data structures, B is partitioned into blocks of length ℓ for some
parameter ℓ, and search trees called range min-max trees are constructed on them. In the
original data structure, blocks are stored explicitly, whereas in our data structure, they are
not explicitly stored and temporarily computed from our representation. If we change the
original search algorithm so that an access to an explicitly stored block is replaced with
decoding the block from our representation, we can use the range min-max trees as a black
box, and any tree navigational operation works using their data structure. Because the
original algorithms have constant query time, they do a constant number of accesses to
blocks. If we can decode a block in t time, A tree navigational operation is done in O(t)
time. Therefore what remains is, given a position of B, to extract a block of ℓ bits.

Given the inorder of a node, we can compute its label as follows. For each block, we store
the following. For the first bit of the block, there are four cases: (1) it belongs to a node in
the Cartesian tree. (2) it belongs to two dummy children for a leaf in the Cartesian tree. (3)
it belongs to the dummy left child of a node. (4) it belongs to the dummy right child of a
node. We store two bits to distinguish these cases. For case (1), we store the label and the
inorder of the node using log n bits, and the information that the parenthesis is either open
or close using 1 bit. For case (2), we store the label and the inorder of the parent of the two
dummy children, and the offset in the pattern “(()())” of the first bit in the block. For cases
(3) and (4), we store the label and the inorder of the parent of the dummy node and the
offset in the pattern “()”.

To extract a block, we first obtain the label of the first non-dummy node in the block. Then
from that node, we do a depth-first traversal using left_child_label(i), right_child_label(i),
and parent_label(i), and compute a sub-sequence of B for the block. During the traversal,
we also recover other dummy nodes. Because the sub-sequence is of length ℓ, there are O(ℓ)

S. Chakraborty, S. Jo, G. Kim, and K. Sadakane 17:13

nodes and it takes O(ℓ) time to recover the block. To compute an inorder rank and select,
we use a constant number of blocks. Therefore it takes O(ℓ) time. The space complexity for
additional data structure is O(n log n/ℓ) bits. If we choose ℓ = ω(log n), the space is o(n).

To support other tree operations including RMin, NSV, and PSV queries on π, we use the
original auxiliary data structures of [30]. The space complexity is also O(n log n/ℓ) bits.

4.3 Converting labels and inorders
For the minimum Cartesian tree MinC(π) of Baxter permutation π, the label of the node
with inorder i is π(i). The inorder of the node with label j is denoted by π−1(j).

We showed how to compute the label of the node with given inorder i above. This
corresponds to computing π(i). Next we consider given label j, to compute the inorder
i = π−1(j) of the node with label j. Note that π(i) = j and π−1(j) = i hold.

We use next(·) to compute the inorder of the node with label j. Assume iℓ+1 ≤ j < (i+1)ℓ.
We start from the node ϕ(iℓ + 1) with label iℓ + 1 and iteratively compute next(·) until we
reach the node with label j. Therefore for i = 0, 1, . . . , n/ℓ, we store the positions in the
modified BP sequence for nodes ϕ(iℓ + 1) using O(n log n/ℓ) bits. If next(iℓ + k) is a child of
ϕ(iℓ + k), we can compute its position in the modified BP sequence using the data structure
of [30]. If next(iℓ + k) is not a child of ϕ(iℓ + k), we first compute p = findclose(iℓ + k) on lp
or rp. A problem is how to compute the node ϕ(p) and its inorder. To compute the inorder of
ϕ(p), we use pioneers of the BP sequence [19]. A pioneer is an open or close parenthesis whose
matching parenthesis belongs to a different block. If there are multiple pioneers between two
blocks, only the outermost one is a pioneer. The number of pioneers is O(n/ℓ) where ℓ is
the block size. For each pioneer, we store its position in the BP sequence. Therefore the
additional space is O(n log n/ℓ) bits. Consider the case we obtained p = findclose(v). If v

is a pioneer, the inorder of ϕ(p) is stored. If v is not a pioneer, we go to the pioneer that
tightly encloses v and ϕ(p), obtain its position in the BP sequence, and climb the tree to ϕ(p).
Because ϕ(p) and the pioneer belong to the same block, this takes O(ℓ) time. Computing a
child also takes O(ℓ) time. We repeat this O(ℓ) times until we reach ϕ(j). Therefore the time
complexity for converting the label of a node to its inorder takes O(ℓ2) time. The results are
summarized as follows.

▶ Theorem 8. For a Baxter permutation π of size n, π(i) and π−1(j) can be computed in
O(ℓ) time and O(ℓ2) time, respectively, using a 3n + O(n log n/ℓ) bit data structure. This is
a succinct representation of a Baxter permutation if ℓ = ω(log n). The data structure also
can support the tree navigational queries in Section 2 on MinC(π), RMin, PSV, and NSV
queries in O(ℓ) time.

Note that Theorem 8 also implies that we can obtain the (2n + o(n))-bit succinct data
structure of an alternating Baxter permutation of size n that support π(i) and π−1(j) can
be computed in O(ℓ) time and O(ℓ2) time, respectively, for any ℓ = ω(log n).

4.4 Navigation queries on Maximum Cartesian trees
In this section, we show the representation of Theorem 4 can also support the tree navigational
queries on MaxC(π) in the same time as queries on MinC(π), which will be used in the succinct
representations of mosaic floorplans and plane bipolar orientations.

Note that we can traverse the nodes in MaxC(π) according to the decreasing order of
their labels, using the same two-stack based algorithm as described in Section 3. Now, let
ϕ′(i) represent the node in MaxC(π) labeled with i. We then define sequences lr and E

ISAAC 2024

17:14 Succinct Data Structures for Baxter Permutation and Related Families

on MaxC(π) in a manner analogous to the previous definition (we denote them as lr′, and
E′, respectively). The only difference is that the value of i-th position of these sequences
corresponds to the node ϕ′(n − i + 1) instead of ϕ(i), since we are traversing from the node
with the largest label while traversing MaxC(π). Then by Theorem 4 and 8, it is enough to
show how to decode any O(log n)-size substring of lr′ and E′ from lr and E, respectively.

We begin by demonstrating that for any i ∈ [1, . . . , n − 1], the value of lr′[i] is l if and only
if lr[n − i] is r. As a result, our representation can decode any O(log n)-sized substring of lr′

in constant O(1) time. Consider the case where lr[i] is l (the case when lr[i] = r is handled
similarly). In this case, according to the two-stack based algorithm, ϕ(i + 1) is the left child
of ϕ(i1), where i1 ≤ i. Now, we claim that ϕ′(i) is the right child of its parent. Suppose,
for the sake of contradiction, that ϕ′(i) is a left child of ϕ′(i2). Then ϕ(i + 1) cannot be an
ancestor of ϕ(i), as there are no labels between i + 1 and i. Thus, i2 > i + 1, and there
must exist a lowest common ancestor of ϕ′(i) and ϕ′(i + 1) (denoted as ϕ′(k)). At this point,
ϕ′(i + 1) and ϕ′(i2) reside in the left and right subtrees rooted at ϕ′(k), respectively. Now
i3 ≤ i be a leftmost leaf of the subtree rooted at ϕ′(i). Then there exists a pattern 2 41 3
induced by (i + 1) − k and i3 − i2, which contradicts the fact that π is a Baxter permutation.

Next, we show that the following lemma implies that the representation can also decode
any O(log n)-size substring of E′ in O(1) time from E along with π(1) and π(n).

▶ Lemma 9. Given a permutation π, ϕ(i) has a left child if and only if π−1(i) > 1
and π(π−1(i) − 1) > i. Similarly, ϕ(i) has a right child if and only if π−1(i) < n and
π(π−1(i) + 1) > i.

Proof. We only prove that ϕ(i) has a left child if and only if π−1(i) > 1 and π(π−1(i)−1) < i

(the other statement can be proved using the same argument). Let i1 be π(π−1(i) − 1). From
the definition of the minimum Cartesian tree, if ϕ(i1) is at the left subtree of ϕ(i), it is clear
that i1 > i. Now, suppose i1 > i, but ϕ(i) does not have a left child. In this case, ϕ(i) cannot
be an ancestor of ϕ(i1). Thus, there must exist an element in π positioned between i1 and i,
which contradicts the fact that they are consecutive elements. ◀

As a conclusion, the data structure of Theorem 8 can support the tree navigational
queries in Section 2 on MaxC(π), and RMax, PSV, and NSV queries in ω(log n) time using
o(n)-bit auxiliary structures from the results in Section 4.2. We summarize the results in the
following theorem.

▶ Theorem 10. For a Baxter permutation π of size n, The succinct data structure of
Theorem 8 on π can support the tree navigational queries in Section 2 on MaxC(π), RMax,
PLV, and NLV queries in O(f1(n)) time for any f1(n) = ω(log n).

5 Succinct Data Structure of Separable Permutation

In this section, we present a succinct data structure for a separable permutation ρ =
(ρ(1), . . . , ρ(n)) of size n that supports ρ(i) and ρ−1(j) in O(1) time. The main idea of the
data structure is as follows. It is known that for the separable permutation ρ, there exists a
unique separable tree (v − h tree) Tρ of n leaves [7,33], which will be defined later. Since Tρ is
a labeled tree with at most 2n − 1 nodes, O(n log n) bits are necessary to store Tρ explicitly.
Instead, we store it using a tree covering where each micro-tree of Tρ is stored as an index of
the precomputed table that maintains all separable permutations whose separable trees have
at most ℓ2 nodes, where ℓ2 is a parameter of the size of the micro-tree of Tρ, which will be
decided later. After that, we show how to support the queries in Theorem 8 and 10 in O(1)
time using the representation, along with o(n)-bit auxiliary structures.

S. Chakraborty, S. Jo, G. Kim, and K. Sadakane 17:15

i 1 2 3 4 5 6 7 8 9 10 11 12
ρ 2 1 9 10 11 12 8 4 6 5 7 3
B 1 0 1 1 1 0 1 1 1 0 0 1

Sρ = 1 9 12 8 4 5 7 3
ρ′ = 1 11 12 8 4 5 7 3

2 1

9 10 11 12

8

4

6 5

7

3

−∞

1

11

12

8 4

5

7

3

T1

T2

T3

T4

T5 T8

T6

T7
Tp

Y

Figure 3 An example of the representation of the separable permutation ρ =
(2, 1, 9, 10, 11, 12, 8, 4, 6, 5, 7, 3). Each tree within the red area represents a mini-tree of Tρ with
ℓ1 = 3.

5.1 Succinct Representation
Given a separable permutation ρ of size n, the separable tree Tρ of ρ is an ordered tree with
n leaves defined as follows [33]:

Each non-leaf node of Tρ is labeled either ⊕ or ⊖. We call a ⊕ node as an internal node
labeled with ⊕, and similarly, a ⊖ node as an internal node labeled with ⊖.
The leaf node of Tρ whose leaf rank (i.e., the number of leaves to the left) i has a label
ρ(i). In the rest of this section, we refer to it as the leaf ρ(i).
Any non-leaf child of ⊕ node is a ⊖ node. Similarly, any non-leaf child of ⊖ node is a ⊕
node.
For any internal node p ∈ Tρ, let ρp be a sequence of the labels of p’s children from left
to right, as replacing the label of non-leaf child of p to the label of the leftmost leaf node
in the rooted subtree at the node. Then if p is a ⊕ (resp. ⊖ node), ρp is an increasing
(resp. decreasing) subsequence of ρ.

See Figure 3 for an example. Szepienic and Otten [33] showed that for any separable
permutation of size n, there exists a unique separable tree of it with n leaves.

We maintain ρ through the tree covering algorithm applied to Tρ, with the parameters
for the sizes of mini-trees and micro-trees as ℓ1 = log2 n and ℓ2 = log n

6 , respectively. Here,
the precomputed table maintains all possible separable permutations whose corresponding
separable trees have at most ℓ2 nodes. Additionally, two special cases are considered: when
the micro-tree is a singleton ⊕ or ⊖ node. Since any separable permutation stored in the
precomputed table has a size at most ℓ2, there exist o(n) indices in the precomputed table.

The micro-trees of Tρ are stored as their corresponding indices in the precomputed table,
using n log(3 + 2

√
2) + o(n) ≃ 2.54n + o(n) bits in total. In the full version of the paper [8],

we consider how to support ρ(i) and ρ−1(j) in O(1) time. The data structure also supports
RMin, RMax, PSV, PLV, NSV, and NLV on ρ in O(log log n) time.

6 Future Work

We conclude with the following concrete problems for possible further work in the future:
(1) Can we improve the query times of π and π−1 for Baxter permutations? (2) can we
show any time/space trade-off lower bound for Baxter permutation similar to that of general
permutation [20]? and (3) are there any succinct data structures for other pattern-avoiding
permutations?

ISAAC 2024

17:16 Succinct Data Structures for Baxter Permutation and Related Families

References
1 Eyal Ackerman, Gill Barequet, and Ron Y. Pinter. A bijection between permutations and

floorplans, and its applications. Discret. Appl. Math., 154(12):1674–1684, 2006. doi:10.1016/
J.DAM.2006.03.018.

2 Glen Baxter. On fixed points of the composite of commuting functions. Proceedings of the
American Mathematical Society, 15(6):851–855, 1964.

3 Djamal Belazzougui and Gonzalo Navarro. Optimal lower and upper bounds for representing
sequences. ACM Transactions on Algorithms (TALG), 11(4):1–21, 2015. doi:10.1145/
2629339.

4 Guy E. Blelloch and Arash Farzan. Succinct representations of separable graphs. In CPM,
volume 6129 of Lecture Notes in Computer Science, pages 138–150. Springer, 2010. doi:
10.1007/978-3-642-13509-5_13.

5 Miklós Bóna. Combinatorics of Permutations, Second Edition. Discrete mathematics and its
applications. CRC Press, 2012.

6 Nicolas Bonichon, Mireille Bousquet-Mélou, and Éric Fusy. Baxter permutations and plane
bipolar orientations. Electron. Notes Discret. Math., 31:69–74, 2008. doi:10.1016/j.endm.
2008.06.011.

7 Prosenjit Bose, Jonathan F. Buss, and Anna Lubiw. Pattern matching for permutations. Inf.
Process. Lett., 65(5):277–283, 1998. doi:10.1016/S0020-0190(97)00209-3.

8 Sankardeep Chakraborty, Seungbum Jo, Geunho Kim, and Kunihiko Sadakane. Succinct data
structures for baxter permutation and related families, 2024. arXiv:2409.16650.

9 Sankardeep Chakraborty, Seungbum Jo, Kunihiko Sadakane, and Srinivasa Rao Satti. Succinct
data structures for bounded clique-width graphs. Discret. Appl. Math., 352:55–68, 2024.
doi:10.1016/J.DAM.2024.03.016.

10 Richie Chih-Nan Chuang, Ashim Garg, Xin He, Ming-Yang Kao, and Hsueh-I Lu. Compact
encodings of planar graphs via canonical orderings and multiple parentheses. In Automata,
Languages and Programming: 25th International Colloquium, ICALP’98 Aalborg, Denmark,
July 13–17, 1998 Proceedings 25, pages 118–129. Springer, 1998. doi:10.1007/BFB0055046.

11 Robert Cori, Serge Dulucq, and Gérard Viennot. Shuffle of parenthesis systems and baxter
permutations. Journal of Combinatorial Theory, Series A, 43(1):1–22, 1986. doi:10.1016/
0097-3165(86)90018-X.

12 Serge Dulucq and Olivier Guibert. Stack words, standard tableaux and baxter permutations.
Discrete Mathematics, 157(1-3):91–106, 1996. doi:10.1016/S0012-365X(96)83009-3.

13 Serge Dulucq and Olivier Guibert. Baxter permutations. Discrete Mathematics, 180(1-3):143–
156, 1998. doi:10.1016/S0012-365X(97)00112-X.

14 A. Farzan and J. I. Munro. A uniform paradigm to succinctly encode various families of trees.
Algorithmica, 68(1):16–40, January 2014. doi:10.1007/S00453-012-9664-0.

15 Stefan Felsner, Éric Fusy, Marc Noy, and David Orden. Bijections for baxter families and related
objects. J. Comb. Theory, Ser. A, 118(3):993–1020, 2011. doi:10.1016/J.JCTA.2010.03.017.

16 Johannes Fischer. Combined data structure for previous- and next-smaller-values. Theor.
Comput. Sci., 412(22):2451–2456, 2011. doi:10.1016/J.TCS.2011.01.036.

17 Éric Fusy. Straight-line drawing of quadrangulations. In Michael Kaufmann and Dorothea
Wagner, editors, Graph Drawing, 14th International Symposium, GD 2006, Karlsruhe, Ger-
many, September 18-20, 2006. Revised Papers, volume 4372 of Lecture Notes in Computer
Science, pages 234–239. Springer, 2006. doi:10.1007/978-3-540-70904-6_23.

18 Paweł Gawrychowski and Patrick K Nicholson. Optimal encodings for range top-k k, selection,
and min-max. In Automata, Languages, and Programming: 42nd International Colloquium,
ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I 42, pages 593–604. Springer,
2015. doi:10.1007/978-3-662-47672-7_48.

19 Richard F. Geary, Naila Rahman, Rajeev Raman, and Venkatesh Raman. A simple optimal
representation for balanced parentheses. Theoretical Computer Science, 368(3):231–246, 2006.
Combinatorial Pattern Matching. doi:10.1016/J.TCS.2006.09.014.

https://doi.org/10.1016/J.DAM.2006.03.018
https://doi.org/10.1016/J.DAM.2006.03.018
https://doi.org/10.1145/2629339
https://doi.org/10.1145/2629339
https://doi.org/10.1007/978-3-642-13509-5_13
https://doi.org/10.1007/978-3-642-13509-5_13
https://doi.org/10.1016/j.endm.2008.06.011
https://doi.org/10.1016/j.endm.2008.06.011
https://doi.org/10.1016/S0020-0190(97)00209-3
https://arxiv.org/abs/2409.16650
https://doi.org/10.1016/J.DAM.2024.03.016
https://doi.org/10.1007/BFB0055046
https://doi.org/10.1016/0097-3165(86)90018-X
https://doi.org/10.1016/0097-3165(86)90018-X
https://doi.org/10.1016/S0012-365X(96)83009-3
https://doi.org/10.1016/S0012-365X(97)00112-X
https://doi.org/10.1007/S00453-012-9664-0
https://doi.org/10.1016/J.JCTA.2010.03.017
https://doi.org/10.1016/J.TCS.2011.01.036
https://doi.org/10.1007/978-3-540-70904-6_23
https://doi.org/10.1007/978-3-662-47672-7_48
https://doi.org/10.1016/J.TCS.2006.09.014

S. Chakraborty, S. Jo, G. Kim, and K. Sadakane 17:17

20 Alexander Golynski. Cell probe lower bounds for succinct data structures. In Proceedings of
the twentieth annual ACM-SIAM symposium on Discrete algorithms, pages 625–634. SIAM,
2009. doi:10.1137/1.9781611973068.69.

21 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM J. Comput., 35(2):378–407, 2005.
doi:10.1137/S0097539702402354.

22 Bryan Dawei He. A simple optimal binary representation of mosaic floorplans and baxter
permutations. Theoretical Computer Science, 532:40–50, 2014. doi:10.1016/J.TCS.2013.05.
007.

23 Xianlong Hong, Gang Huang, Yici Cai, Jiangchun Gu, Sheqin Dong, Chung-Kuan Cheng, and
Jun Gu. Corner block list: An effective and efficient topological representation of non-slicing
floorplan. In IEEE/ACM International Conference on Computer Aided Design. ICCAD-2000.
IEEE/ACM Digest of Technical Papers (Cat. No. 00CH37140), pages 8–12. IEEE, 2000.
doi:10.1109/ICCAD.2000.896442.

24 Seungbum Jo and Geunho Kim. Space-efficient data structure for next/previous larger/smaller
value queries. In LATIN, volume 13568 of Lecture Notes in Computer Science, pages 71–87.
Springer, 2022. doi:10.1007/978-3-031-20624-5_5.

25 Thomas Lengauer. Combinatorial algorithms for integrated circuit layout. Springer Science &
Business Media, 2012.

26 J. I. Munro and V. Raman. Succinct representation of balanced parentheses and static trees.
SIAM J. Comput., 31(3):762–776, 2001. doi:10.1137/S0097539799364092.

27 J Ian Munro, Rajeev Raman, Venkatesh Raman, et al. Succinct representations of permutations
and functions. Theoretical Computer Science, 438:74–88, 2012. doi:10.1016/J.TCS.2012.03.
005.

28 J Ian Munro and Venkatesh Raman. Succinct representation of balanced parentheses and static
trees. SIAM Journal on Computing, 31(3):762–776, 2001. doi:10.1137/S0097539799364092.

29 Masahiro Nakano, Akisato Kimura, Takeshi Yamada, and Naonori Ueda. Baxter permutation
process. Advances in Neural Information Processing Systems, 33:8648–8659, 2020.

30 Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct trees.
ACM Transactions on Algorithms (TALG), 10(3):1–39, 2014. doi:10.1145/2601073.

31 Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms (TALG), 3(4):43–es, 2007.

32 Zion Cien Shen and Chris CN Chu. Bounds on the number of slicing, mosaic, and general
floorplans. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
22(10):1354–1361, 2003. doi:10.1109/TCAD.2003.818136.

33 Antoni A. Szepieniec and Ralph H. J. M. Otten. The genealogical approach to the layout
problem. In DAC, pages 535–542. ACM/IEEE, 1980. doi:10.1145/800139.804582.

34 Roberto Tamassia and Ioannis G. Tollis. A unified approach a visibility representation of
planar graphs. Discret. Comput. Geom., 1:321–341, 1986. doi:10.1007/BF02187705.

35 Jean Vuillemin. A unifying look at data structures. Communications of the ACM, 23(4):229–239,
1980. doi:10.1145/358841.358852.

36 Bo Yao, Hongyu Chen, Chung-Kuan Cheng, and Ronald L. Graham. Floorplan representations:
Complexity and connections. ACM Trans. Design Autom. Electr. Syst., 8(1):55–80, 2003.
doi:10.1145/606603.606607.

37 Xiaoke Zhu, Changwen Zhuang, and Y. Kajitani. A general packing algorithm based on
single-sequence. In 2004 International Conference on Communications, Circuits and Systems,
volume 2, pages 1257–1261 Vol.2, July 2004. doi:10.1109/ICCCAS.2004.1346402.

38 Changwen Zhuang, Xiaoke Zhu, Y. Takashima, S. Nakatake, and Y. Kajitani. An algorithm for
checking slicing floorplan based on hpg and its application. In 2004 International Conference on
Communications, Circuits and Systems (IEEE Cat. No.04EX914), volume 2, pages 1223–1227
Vol.2, 2004. doi:10.1109/ICCCAS.2004.1346395.

ISAAC 2024

https://doi.org/10.1137/1.9781611973068.69
https://doi.org/10.1137/S0097539702402354
https://doi.org/10.1016/J.TCS.2013.05.007
https://doi.org/10.1016/J.TCS.2013.05.007
https://doi.org/10.1109/ICCAD.2000.896442
https://doi.org/10.1007/978-3-031-20624-5_5
https://doi.org/10.1137/S0097539799364092
https://doi.org/10.1016/J.TCS.2012.03.005
https://doi.org/10.1016/J.TCS.2012.03.005
https://doi.org/10.1137/S0097539799364092
https://doi.org/10.1145/2601073
https://doi.org/10.1109/TCAD.2003.818136
https://doi.org/10.1145/800139.804582
https://doi.org/10.1007/BF02187705
https://doi.org/10.1145/358841.358852
https://doi.org/10.1145/606603.606607
https://doi.org/10.1109/ICCCAS.2004.1346402
https://doi.org/10.1109/ICCCAS.2004.1346395

	1 Introduction
	1.1 Previous Results
	1.2 Our Results and Main Idea

	2 Preliminaries
	3 Succinct Representation of Baxter Permutation
	4 Computing the BP sequence of Cartesian trees
	4.1 Computing inorders
	4.2 Implicitly storing BP sequences
	4.3 Converting labels and inorders
	4.4 Navigation queries on Maximum Cartesian trees

	5 Succinct Data Structure of Separable Permutation
	5.1 Succinct Representation

	6 Future Work

