
Enhancing Generalized Compressed Suffix Trees,
with Applications
Sankardeep Chakraborty #

The University of Tokyo, Japan

Kunihiko Sadakane #

The University of Tokyo, Japan

Wiktor Zuba #

CWI, Amsterdam, The Netherlands

Abstract
Generalized suffix trees are data structures for storing and searching a set of strings. Though many
string problems can be solved efficiently using them, their space usage can be large relative to the
size of the input strings. For a set of strings with n characters in total, generalized suffix trees
use O(n log n) bit space, which is much larger than the strings that occupy n log σ bits where σ

is the alphabet size. Generalized compressed suffix trees use just O(n log σ) bits but support the
same basic operations as the generalized suffix trees. However, for some sophisticated operations we
need to add auxiliary data structures of O(n log n) bits. This becomes a bottleneck for applications
involving big data. In this paper, we enhance the generalized compressed suffix trees while still
retaining their space efficiency. First, we give an auxiliary data structure of O(n) bits for generalized
compressed suffix trees such that given a suffix s of a string and another string t, we can find the
suffix of t that is closest to s. Next, we give a o(n) bit data structure for finding the ancestor of
a node in a (generalized) compressed suffix tree with given string depth. Finally, we give data
structures for a generalization of the document listing problem from arrays to trees. We also show
their applications to suffix-prefix matching problems.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases suffix tree, compact data structure, suffix-prefix query, weighted level ancestor

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.18

Funding Sankardeep Chakraborty: Supported by MEXT Quantum Leap Flagship Program (MEXT
Q-LEAP) Grant Number JPMXS0120319794.
Wiktor Zuba: Received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreements No 101034253 and 872539.

1 Introduction

Suffix trees are data structures for string matching [29]. In addition to the basic pattern
matching problem, they can also be used for other problems such as finding longest common
extensions, maximal pairs, approximate string matching, etc. [14]. They can be further
extended to generalized suffix trees (GSTs for short) storing suffixes of a set of strings, which
gives them many applications in bioinformatics such as longest common substrings, maximal
unique matches [5], and maximal exact matches [17]. Hereafter we do not distinguish suffix
trees and GSTs unless specified because GST is the suffix tree of the string obtained by
concatenating all the strings from the set.

Though suffix trees are the most basic data structures in string processing, one drawback
is their space usage. Though the suffix tree of a string uses O(n) machine words, where
n is the string length, that alone already requires huge memory. It was estimated that
for a human genome, which has about 3 billion characters, the suffix tree uses more than
40 GB of memory [16]. Therefore there has been much research on reducing the space

© Sankardeep Chakraborty, Kunihiko Sadakane, and Wiktor Zuba;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 18; pp. 18:1–18:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sankardeep.chakraborty@gmail.com
https://orcid.org/0000-0002-2395-4160
mailto:sada@mist.i.u-tokyo.ac.jp
https://orcid.org/0000-0002-8212-3682
mailto:w.zuba@mimuw.edu.pl
https://orcid.org/0000-0002-1988-3507
https://doi.org/10.4230/LIPIcs.ISAAC.2024.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Enhancing Generalized Compressed Suffix Trees, with Applications

requirement of suffix trees. There are two approaches; one is to omit some of the components
of suffix trees and the other is to compress the components. For the first approach, suffix
arrays [19], enhanced suffix arrays [1], and space efficient suffix trees [21] have been proposed
as space-efficient alternatives to the suffix trees. For the second approach, the compressed
suffix arrays [13] and compressed suffix trees [25] have been proposed for compressing the
respective standard structures. The first approach aims mainly at reduction of the practical
space usage as asymptotically the space usage remains the same; suffix arrays and enhanced
suffix arrays use O(n log n) bits of space for a string of length n – the same as the suffix
trees. The second approach, on the other hand, aims at improving the asymptotic bounds;
compressed suffix arrays and trees use O(n log σ) bits where σ is the size of the alphabet of
the string. These data structures are truly linear space data structures – the space is linear
to the actual input size – n log σ bits1 (the space needed to represent the string).

Though the compressed suffix trees support the same set of basic operations as the suffix
trees, some of auxiliary data structures for supporting extended operations still use O(n log n)
bit space, which dominates the space of the entire data structure.

1.1 Our contributions
In this paper, we enhance the generalized compressed suffix trees. First we add auxiliary
data structures which for a given suffix t and a string ID i allow finding the suffix of the
string i most similar to t. For two given suffixes it is easy to compute the length of their
longest common prefix using the suffix tree even if the suffixes belong to different strings.
However, if a suffix t of a string is fixed and the ID i of another string is given, finding the
suffix of the string i with the longest common prefix with s takes time due to the multiplicity
of the possible candidate suffixes.

▶ Theorem 1 (Closest colored suffixes). We are given a set of strings S1, S2, . . . , Sk on an
alphabet of size σ. The total length of the strings is n. There exists a data structure using
SIZESA(2n, σ) + O(n + k) bits so that given a suffix t of a string Sj and an index i, we can
obtain the suffix s of Si that has the maximum LCP with t in O(TIMESA · log log k) time,
where SIZESA(n, σ) is the size of a data structure storing a suffix array for a string of length
n on an alphabet of size σ, and TIMESA is the time for obtaining an entry of a suffix array
or its inverse.

Note that TIMESA also depends on n and σ in general, but we omit them because they are
fixed throughout the paper. If we use the data structure in the second row of Table 1, the
space and the time complexities become 2n log σ + O(n + k) bits and O(log n log log k) time,
respectively. An existing solution [18] has O(log log k) query time using O(n log n) bit space.
Our algorithm is faster than the original GST, which is O(TIMESA · log n) time.

Next we give a succinct index for weighted level ancestors in compressed suffix trees.

▶ Theorem 2 (Weighted level ancestors). By adding an auxiliary data structure of o(n) bits
to the compressed suffix tree, we can compute the nearest ancestor of a node with string depth
smaller than a given value in O(TIMESA · log log n) time.

This is faster than the original GST, which is O(TIMESA · log n) time. The proofs are given
in Section 3.

1 Throughout the paper the base of the logarithm is two.

S. Chakraborty, K. Sadakane, and W. Zuba 18:3

Table 1 Size in bits and query time of suffix arrays and compressed suffix arrays, where n is the
length of the string and σ is its alphabet size. Hk is the k-th order entropy of the string. Time for
obtaining an entry of the suffix array is denoted by TIMESA.

Index Space (SIZESA(n, σ)) Query time (TIMESA)
Suffix array [19] n log n O(1)
Compressed suffix array [13] n log σ + O(n) O(log n)
Compressed suffix array [13] O(ϵ−1n log σ) O(logϵ n)
FM-index [7] nHk + o(n log σ) O(log σ

log log n
)

We also give applications of these two enhancements in Section 4. Our proposed data
structures are used to solve the suffix-prefix matching problems [18] (see also [31] for
their approximate version). Existing solutions use O(n log n) bit space, whereas ours use
linear (O(n log σ) bit) space. For solving this problem, we generalize the document listing
problem [22] from arrays to trees providing data structures that are of independent interest.

2 Preliminaries

2.1 Suffix arrays, suffix trees, and their compression
A string S of length n on an alphabet A is an array S[1, n] of characters in A. We assume the
alphabet is an ordered set. We add a terminator $ at the end of the string, that is, S[n+1] = $,
which is smaller than any character in A. The character at position i in the string S is
denoted by S[i]. A substring of S is the concatenation of characters S[i], S[i+1], . . . , S[j] and
denoted by S[i, j]. Substrings of the form S[i, n] and S[1, i] are called suffixes and prefixes,
respectively. For two strings s, t, LCP(s, t) is defined to be the length of the longest common
prefix between them.

The suffix array [19] of a string S of length n is an integer array SA[0, n], where SA[i] = j

means that the suffix S[j, n] is lexicographically the i-th suffix among all the suffixes of S

(S[0] = n + 1). The (classic) suffix array uses n log n bits of space for the array SA, and
n log σ bits of space for the string S itself.

The suffix tree of a string is a compacted trie representing all the suffixes of the string [29].
The suffix tree has n + 1 leaves, each corresponding to a suffix of S (including the last suffix
S[n + 1, n + 1] = $). Each edge of the suffix tree has a string label. We define the string label
of a node as the concatenation of the labels of the edges between the root and the node. The
string label of the i-th leaf coincides with lexicographically the i-th suffix. The string depth
of an internal node v of the suffix tree is the length of the string label of v. For two suffixes
s and t, LCP(s, t) is equal to the string depth of the lowest common ancestor between their
corresponding leaves.

The suffix array can be compressed to O(n log σ) bits where σ = |A| so that each entry
SA[i] can be computed in polylog(n) time [13]. The inverse suffix array ISA[1, n + 1] of a
string is an integer array such that ISA[j] = i if and only if SA[i] = j. The inverse array can
be computed within the same time complexity as the suffix array. Let TIMESA denote the
time for computing a value of a suffix array or an inverse suffix array. The space and query
time complexities for compressed versions of the suffix arrays are shown in Table 1.

The compressed suffix tree [25] of a string S consists of the compressed suffix array
of S, a balanced parentheses (BP) representation [20, 23] of the compacted trie, and a
bit-vector storing the information about the string depths of nodes. The second and the third
components use 4n + o(n) bits and 2n + o(n) bits, respectively. Using these components, we
can compute the string depth of a node in O(TIMESA) time.

ISAAC 2024

18:4 Enhancing Generalized Compressed Suffix Trees, with Applications

Using the compressed suffix tree, we can support the following operations:
Finding the leaf corresponding to the lexicographically i-th suffix in constant time.
Finding the lowest common ancestor of two nodes in constant time.
Finding the level ancestor (the ancestor of a node with given depth) in constant time [23].
Note that this depth is not the string depth.
Computing the string depth of a node in O(TIMESA) time.
Computing the edge labels of length ℓ in O(TIMESA + ℓ) time.

Note that the compressed suffix tree of [25] supports weighted level ancestor queries w.r.t.
string depths in O(TIMESA · log n) time by a binary search using (unweighted) level ancestor
queries and string depth queries. If we can use O(n log n) bits of space we can support
this query in constant time [3]. In this paper we give an index supporting the queries in
O(TIMESA · log log n) time using additional o(n) bits to the compressed suffix trees.

2.2 Bit-vectors and rank/select dictionaries
A bit-vector is a string B[1, n] on alphabet {0, 1} supporting the following three operations.

access(B, i): returns B[i].
rankc(B, i): returns the number of c’s (c ∈ {0, 1}) in B[1, i].
selectc(B, i): returns the position of the i-th occurrence of c ∈ {0, 1}. If i > rankc(B, n),
we define selectc(B, i) = n + 1. We also define selectc(B, 0) = 0.

We can perform each of these operations in constant time using n + o(n) bits of space [24].
The predecessor predc(B, i) and the successor succc(B, i) are the positions of c closest to

i. They can be computed in constant time as predc(B, i) := selectc(B, rankc(B, i − 1)) and
succc(B, i) := selectc(B, rankc(B, i) + 1). Note that predc(B, i) < i < succc(B, i).

2.3 Generalized suffix arrays and trees
We are given a set of strings S1, S2, . . . , Sk on an alphabet of size σ. We concatenate them
into string S = S1$S2$ · · · Sk$. The generalized suffix array/tree of the set of the strings is
just the suffix array/tree of S with the following modification.

We create a bit-vector D of length n + k where n = |S1| + |S2| + · · · + |Sk|, and set
1’s for the positions of $’s in S. Then, given a position j in S, we can compute the ID d

of the string Sd containing the position j in constant time by d := rank1(D, j) + 1. We
define the document array A[0, n + k] as A[i] := rank1(D, SAS [i]) + 1. we do not store the
document array explicitly because it uses n log k bits and each entry can be computed from
the (compressed) suffix array in TIMESA time.

Sadakane [26] enhanced generalized compressed suffix trees to compute the number of
occurrences of a pattern in each of the strings efficiently. After creating (compressed) suffix
arrays (and inverse suffix arrays) of S and each Sd we can convert the rank rl of a suffix of
Sd into the rank rg in S and vice versa in O(tSA) time as follows.

rg = ISAS [SASd
[rl] + sd] (1)

rl = ISASd
[SAS [rg] − sd] (2)

where sd = |S1| + |S2| + · · · + |Sd−1| + d − 1. We can compute sd in constant time using
the bit-vector D, namely, sd = select1(D, d − 1). Recall that d is computed from rg by
d := rank1(D, rg) + 1. We call rg and rl as the global and the local rank of the suffix,
respectively.

Figure 1 shows the generalized suffix tree for a set of strings ACAA, ACAG, ACGC,
CACA. Note that we use the same example as [18]. Each string is appended with a terminator
$. To bound the degree of a node by σ + 1, we add an artificial node if a node has more than

S. Chakraborty, K. Sadakane, and W. Zuba 18:5

10 15 205 4 19 3 17 1 6 11 8 14 18 2 16 7 12 9 13SA

A 1 2 3 4 1 4 1 4 1 2 3 2 3 4 1 4 2 3 2 3

$
A C

G

$

A
$

C G
$

A G
C

$
$ G

$

$ A
G

C
$

$

A
$

C
A
$

G
$

C
$

$

A
$

𝒮𝒮 ACAA$ACAG$ACGC$CACA$
1 20

𝐷𝐷 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0

Figure 1 Generalized suffix tree for a set of strings ACAA, ACAG, ACGC, CACA. SA is the
suffix array of the concatenated string S, and A is the array storing ID’s of suffixes.

one edge with label starting from $. For example, the root node has an edge with label $
pointing to a node with four edges labeled $. We can distinguish $’s by their positions in S.
We define the string depth of an artificial node as that of its parent node. We can compute
it using the same algorithm as that for normal nodes.

2.4 LCP arrays
For a string T of length n and its suffix array SA, we define the LCP (longest common
prefix) array L[1, n] as

L[i] = LCP(T [SA[i − 1], n], T [SA[i], n]).

If we store L in plain form, we need n log n bits of space. However, if we have access to the
suffix array, we can compress it into 2n + o(n) bits so that any entry of L[i] is computed in
TIMESA + O(1) time [25].

The length of the LCP between two suffixes T [SA[p], n] and T [SA[q], n] of a string can
be obtained by minp<i≤q L[i]. The index i attaining the minimum value can be computed in
constant time using the 2n + o(n) bit data structure for range minimum queries [8]. We can
also compute it using the compressed suffix tree [25]. In this case, we use 4n + o(n) bits for
the tree topology of the suffix tree.

2.5 Rank and select data structures for large alphabets
Let T [1, n] be a string on alphabet A of size k. As a generalization of the case of bit-vectors,
we can define operations access(T, i), rankc(T, i), and selectc(T, i) for c ∈ A. The wavelet
tree [12] supports all the operations in O(log k) time using (n+o(n)) log k bit space. Golynski
et al. [11] gave a data structure supporting select in constant time and rank and access in
O(log log k) time using (n + o(n)) log k + 2n bit space2.

These data structures encode the string in a specific form. Therefore we cannot further
compress the string. Barbay et al. [2] considered another approach; they design succinct
indexes for abstract data types. Their results are summarized as follows3.

2 There are other variants.
3 The claim is slightly simplified from the original one.

ISAAC 2024

18:6 Enhancing Generalized Compressed Suffix Trees, with Applications

▶ Theorem 3 (Theorem 2.10 in [2]). Given support for select in f(n, k) time on a string S of
length n on an alphabet of size k, we can support access, rank, predecessor, and successor (for
any character) in O(f(n, k) log log k) time with a succinct index using O(n log k/ log log k)
bits of space.

Though this index uses asymptotically smaller space than the string itself, its size still
depends on the alphabet size k. In this paper we follow the abstract data type approach and
give a new index using less space (see Lemma 6).

2.6 Nearest marked ancestors
Let T be a rooted tree with some of the nodes marked. In the nearest marked ancestor
problem, for a given node v of T we want to find its closest marked ancestor. Tsur [28] gave
solutions for a generalized version of this problem – nearest colored ancestor – where each
node has a color and we find the nearest ancestor with a given color. In this paper we only
use the nearest marked ancestor queries, thus we provide a simplified statement.

▶ Theorem 4 (A simplified version of Theorem 1 of [28]). There exists a representation of T

that uses n + o(n) bits in addition to a 2n + o(n) bit representation of the tree topology that
allows for answering the nearest marked ancestor queries in O(1) time.

2.7 Weighted level ancestor queries
Consider a rooted tree with n nodes where each node has an integer weight in [0, U] and
on any path from a leaf to the root, the weights are non-increasing. The weighted level
ancestor WA(v, w) of node v is the closest node on the path from v to the root that has
weight smaller than w. Kopelowitz and Lewenstein [15] gave a data structure using linear
space that answers a query in the same time complexity as finding the predecessor among n

values in [0, U]. For the case of U = O(n), we obtain a data structure using O(n log n) bits of
space that answers a query in O(log log n) time. As shown above, for the case that weights
are equal to the string depths in a suffix tree, there is a data structure using O(n log n) bits
of space that supports the query in constant time [3]. In Section 3.3 we show how to reduce
the space at the cost of more expensive queries.

2.8 Tree Covering
Here we provide an overview of Farzan and Munro’s tree covering representation and its
application in creating a succinct tree data structure [6]. Their approach involves decomposing
the input tree into smaller units called “mini-trees”, which are further divided into “micro-
trees.” These micro-trees are stored efficiently in a compact precomputed table. By focusing
on the connections and links between these subtrees, the entire tree can be represented using
the shared roots of the mini-trees. The main result is the following theorem.

▶ Theorem 5 ([6]). For a rooted ordered tree with n nodes and a positive integer 1 ≤ ℓ ≤ n,
one can decompose the trees into subtrees satisfying the following conditions: (1) each subtree
contains at most 2ℓ nodes, (2) the number of subtrees is O(n/ℓ), (3) each subtree has at most
one outgoing edge, apart from those from the root of the subtree.

Note that to achieve this, we allow subtrees to share their root nodes, hence the name “tree
covering”. Theorem 5 applied with ℓ = log2 n creates a tree covering representation for a
tree with n nodes, resulting in O(n/ log2 n) mini-trees. The resulting tree over mini-trees,

S. Chakraborty, K. Sadakane, and W. Zuba 18:7

with O(n/ log2 n) nodes, can be represented in O(n/ log n) = o(n) bits. Theorem 5 can be
then applied to each mini-tree with ℓ1 = 1

6 log n, resulting in O(n/ log n) micro-trees. The
mini-tree over micro-trees is obtained by contracting each micro-tree into a node and adding
dummy nodes for micro-trees sharing a common root, and it has O(log n) vertices, thus,
it can be represented by O(log log n)-bit pointers. The total space for all mini-trees over
micro-trees is O(n log log n/ log n) = o(n) bits. Micro-trees are stored with two-level pointers
in a precomputed table, which occupies 2n + o(n) bits. This representation, supplemented
by auxiliary data structures requiring only o(n) bits, enables fundamental tree navigation
operations, such as accessing the parent, the i-th child, the lowest common ancestor, and
many more in O(1) time [6].

2.9 Document listing problems
The document listing problem [22] is, given an array of colors A[1, n] and an interval [i, j]
of the indices of the array, to enumerate all distinct colors in the sub-array A[i, j]. The
problem can be solved in optimal O(1 + k) time where k is the output size (the number of
distinct colors in A[i, j]), after O(n) time preprocessing for A. Namely, the preprocessing
first constructs another array P [1, n] such that P [i] = j if j < i is the largest index such that
A[i] = A[j], and P [i] = −1 if no such j exists, and then constructs a range minimum query
data structure for P . We can consider P to be a representation of linked lists connecting the
same colors.

A query for A[i, j] is done as follows. First we find the index m of the minimum value in
P [i, j]. If P [m] < i, we output A[m] and recurse for A[i, m − 1] and A[m + 1, j]. If P [m] ≥ i,
we terminate. If we have access to the array P in time t, the query time complexity is
O((1 + k)t).

The algorithm is extended so that it works without storing P explicitly [26]. Instead we
store a range minimum query data structure for P using 2n + o(n) bits. The query algorithm
is changed to work without accesses to P . Instead of checking if P [m] < i for finding answers
without duplicates, we use a bit array D whose length is the number of possible colors in A,
and set D[c] = 1 if color c is output. Therefore it can be checked in constant time if a color
is already output or not. After outputting all the answers, we clear the bits of D. To do this,
we need to keep the output in the memory.

3 Enhancing Generalized Compressed Suffix Trees

3.1 New predecessor data structures
Let T [1, n] be a string on alphabet A of size k. We give a simpler and more space-efficient
index than [2] by omitting support for the access operation, which can be done using a GST.
Our new index is summarized as follows.

▶ Lemma 6. Given support for select in f(n, k) time on a string S of length n on an alphabet
of size k, there is a succinct index using O(n + k) bits that supports rank, predecessor, and
successor for any character in O(f(n, k) log log k) time.

Proof. Since predecessors and successors can be computed using rank and select operations
as shown in Section 2.2, it is enough to show that we can compute ranks in O(f(n, k) log log k)
time. We use a similar approach to [2]. We partition T into blocks T1, T2, . . . , Tm (m = ⌈n/k⌉)
of length k each. Let Fc be a bit-vector storing frequencies of c ∈ A for each block using unary
codes. That is, Fc = 1fc(1)01fc(2)0 · · · 1fc(m)0 where fc(i) is the number of occurrences of c in

ISAAC 2024

18:8 Enhancing Generalized Compressed Suffix Trees, with Applications

T 1 2 3 4 1 4 1 1 4 2 3 2 3 4 1 4 2 3 2 3

1 2 3 4 T1 1 4 1 1 T2 4 2 3 2 T3 3 4 1 4 T4 2 3 2 3 T5

1 0 1 1 1 0 0 1 0 0 F1

1 0 0 1 1 0 0 1 1 0 F2

1 0 0 1 0 1 0 1 1 0 F3

1 0 1 0 1 0 1 1 0 0 F4

Figure 2 An example of our rank/select indexes of Lemma 6. The array T in the figure is the
same as the array A in Figure 1.

Ti. The total length of Fc for all c ∈ A is
∑k

c=1(fc +m) ≤ 2n+2k where fc =
∑m

i=1 fc(i). We
can compute the number of c’s in T1, . . . , Ti in f(n, k) time by select0(Fc, i) − i. We can also
obtain the block containing the j-th occurrence of c in f(n, k) time by select1(Fc, j) − j + 1.
Therefore given an index j of T , we can obtain the number p of occurrences of c in blocks
before the block containing j in f(n, k) time by p = select0(Fc, b) − b where b = ⌈j/k⌉ is the
index of the block. Then the problem is reduced to computing the rank of c in block Tb.

We assume that for each character c ∈ A, we can compute select in τ time, and show
that with this assumption we can compute rank in a block in O(τ log log k) time using an
auxiliary data structure of O(n) bits.

Let b be the index of the block containing T [j] (b = ⌈j/k⌉). If fc(b) ≤ log k, we can
compute rank in O(τ log log k) time by simply doing a binary search using select operations.
If fc(b) > log k, we choose every log k values of the positions of c’s in block Tb, and construct
the y-fast trie [30]. The space is O

(⌈
fc(b)
log k

⌉
· log k

)
bits for each character c. Because there

are less than k/ log k such c’s, the total space for block Tb is O
(∑

c

(
fc(b)
log k + 1

)
log k

)
= O(k)

bits, and the total space for all the blocks is O(n) bits. Using the y-fast trie, we can obtain
the predecessor among the samples in O(log log k) time, and then by a binary search we
can obtain the true predecessor in O(τ log log k) time. Successors and ranks are similarly
computed in O(τ log log k) time. ◀

3.2 Finding Closest Colored Suffixes
Given a suffix t of a string Si and the index j of another string Sj , we compute a suffix of Sj

that has the maximum LCP value with s.
We use the same framework as [18]. Let p and q be the lex-order of suffix s of Si

and the closest suffix t of Sj to t in the suffix array for S, respectively. Then there are
no suffixes of Sj whose lex-order in S is between p and q. Let A[1, n + k] be an array of
integers such that A[i] = d if lexicographically the i-th suffix in S belongs to Sd. That is,
d = rank1(D, SAS [i]) + 1 is the ID of the string containing the suffix, as shown in Section 2.3.
Then it holds that A[q] = d and for all i between p and q exclusive A[i] ̸= d. That is,
q is either the predecessor or the successor of p representing d. In their paper, the data
structure of [4] is used for computing predecessors and successors. We replace it with our
predecessor data structure of Lemma 6. To use it, we need to give an algorithm for computing
selectd(A, i).

▶ Lemma 7. We can compute selectd(A, i) in O(TIMESA) time.

Proof. We can compute selectd(A, i) by the following formula.

selectd(A, i) := ISAS [SASd
[i] + select1(D, d)]

This takes clearly O(TIMESA) time. ◀

S. Chakraborty, K. Sadakane, and W. Zuba 18:9

To compute the closest suffix we first compute the predecessor q1 and the successor q2 in
A, which correspond to suffixes s1 and s2 of Sj , then we decide which one is closer to t. We
compute the lengths of LCP(s1, t) and LCP(s2, t) and choose the larger one (if they are the
same, we choose one arbitrarily). The length of LCP(s1, t) is computed as follows.

Find the leaves of the suffix tree of S corresponding to s1 and t. They are lexicographically
the q1-th and p-th suffixes.
Find the lowest common ancestor v between the leaves.
Compute the string depth of v.

All this can be done in O(TIMESA) total time. The length of LCP(s2, t) is computed
similarly.

Now we give a proof of Theorem 1.

Proof. We construct compressed suffix trees for each of S1, S2, . . . , Sk, and the compressed suf-
fix tree for their concatenation S. The compressed suffix arrays of Si have size SIZESA(|Si|, σ)
for i = 1, 2, . . . , k and the total size is SIZESA(n, σ) bits. The compressed suffix array of
S uses additional SIZESA(n, σ) bits. The suffix tree structures are stored in O(n + k) bits.
Therefore the total space is SIZESA(2n, σ) + O(n + k) bits. We store the bit-vector D of
the lengths of the strings in n + k + o(n + k) bits. We also construct the predecessor data
structure of Lemma 6 for the document array A storing ID’s of suffixes in S. Note that we
do not store the document array A explicitly; each entry of A is computed in O(TIMESA)
time using the compressed suffix arrays of S (see Section 2.3).

For a query, we compute the global rank p of t in S using Equation 1 in O(TIMESA) time.
Then we compute the predecessor q1 and the successor q2 in A such that A[q1] = A[q2] = j

in O(TIMESA · log log k) time using Lemma 6 where f(n, k) = O(TIMESA). We compute
the LCP’s between the suffix at q1 and t and the suffix at q2 and t in O(TIMESA) time,
and choose the suffix with longer LCP. The query complexity is O(TIMESA · log log k) in
total. ◀

3.3 Succinct index for weighted level ancestor queries
We prove Theorem 2. The solution of Kopelowitz and Lewenstein [15] for weighted level
ancestor queries uses O(n log n) bit space and supports a query in O(log log n) time. Though
there are improved data structures [10, 3] that support a query in constant time for a suffix
tree, they also use O(n log n) bit space.

We give a succinct (o(n) bit) index for weighted level ancestors which can be used together
with a (generalized) compressed suffix tree. The query time is O(TIMESA log log n). The
basic idea is to decompose the tree into small components using the tree covering [6] so that
each component is a connected subgraph, called a mini tree, of the tree with O(log2 n) nodes.
The number of components is O(n/ log2 n). We create a tree, called tree over mini trees,
connecting the components and use the O(n log n) bit data structure (in our application we
use O((n/ log2 n) log n) = O(n/ log n) bits) for this new tree.

Given a query WA(v, w), we first find the mini tree containing v and check if the root
of the mini tree has weight smaller than w. If so, the answer is inside the mini tree, and
we can find it by a binary search using unweighted level ancestor queries. Because the mini
tree contains O(log2 n) nodes, the path length from v to the mini tree root is also O(log2 n).
Therefore the binary search takes O(log log n) steps and at each step we compute the string
depth of a node in O(TIMESA) time. If the root of the mini tree has weight larger than w,
we find the nearest mini tree whose root has weight smaller than w. This is done by using
the data structure of [15] in O(log log n) time. Finally we find the answer - the right node
of this mini tree through binary search. The total time complexity is O(TIMESA · log log n)
and the space complexity is o(n) bits in addition to that of the compressed suffix tree.

ISAAC 2024

18:10 Enhancing Generalized Compressed Suffix Trees, with Applications

3.4 Document listing problem in a rooted tree
We generalize the document listing problem from arrays to rooted trees, that is, given two
nodes of the tree with an ancestor-descendant relation we output all the distinct colors
appearing on the path connecting them. A single node can have one color, multiple colors,
or no color at all.

To solve this problem, we use the heavy-path decomposition of the rooted tree [27].
That is we decompose the tree with n nodes into heavy paths so that any root-to-leaf path
intersects O(log n) heavy paths.

First we give an O(n + k) bit representation of heavy paths. See Figure 3 for an example.
We assume the tree topology is given as a BP sequence. Its length is at most 4(n+k) because
the tree has n + k leaves and at most n + k − 1 internal nodes. We encode heavy edges using
bit-vector called “heavy”. We set heavy[i] = 1 iff the edge between the node with preorder i

and its parent is heavy. We mark a node if it is the head of a heavy path using a bit-vector of
length n, called “head”. Then by a nearest marked ancestor query we can find the preorder
of the head of the heavy path containing a given node and the distance between them in
constant time. We can give a total order for the heavy paths by the preorders of the head
nodes. Using the bit-vector “head”, we can give numbers from 1 to m ≤ n to heavy paths.
We can also store the lengths of the heavy paths using unary codes in at most m + n bits.
This is encoded in “path-len”. In Figure 3, the heavy path from node a to the 8-th leaf
from the left has the head at node a, and it is the first heavy path because the head has the
smallest preorder among all the five heavy paths. Its length 5 is encoded by the unary code
at the beginning of the bit-vector “path-len”.

Next we give an encoding of the colors of the nodes. For each heavy path, we encode the
number of colors in each node using unary codes. The first heavy path has nodes a, c, e, f
plus a leaf and the number of colors of them is 4, 2, 0, 1, and 0, respectively. The numbers
are encoded in bit-vector “multi” using n + u bits where u ≤ n is the total number of colors.
For other heavy paths, the numbers of colors are stored similarly. The array named “color”
stores the colors of nodes. Note that this array is constructed in the preprocessing phase
and deleted after we construct the range minimum query data structure for array P (see
Section 2.9). The range minimum query data structure uses O(n + u) bits. Note that in
the original algorithm for arrays, we set P [i] = −1 if there are no values j < i such that
A[j] = A[i], whereas in our algorithm for trees, we set P [i] = j if there exists j < i such that
color[j] = color[i] and the node with color[j] is the nearest such ancestor of the node with
color[i]. In the example, for the heavy path containing nodes g, h, and a leaf, the colors
of the nodes in the path are stored in color[8, 9], and the corresponding P values are 3, 4
because the root node has colors 3, 4 and therefore we store the indices of P storing the same
colors.

A document listing query is done as follows. We first give an algorithm for the case
P is explicitly stored. We are given the head h and the tail t nodes of a sub-path p on a
root-to-leaf path. First we partition the path into a set of heavy paths. This is done by
first obtaining the nearest marked node of the tail node, that is, the head of the heavy path
containing t. We go to the parent of the head node and repeat this process until we find the
heavy path containing h. This is done in O(log n) time because the sub-path p may contain
O(log n) heavy paths. Then for each heavy path which has an overlap with p, we find the
minimum value P [i] and choose the minimum among those values. We check whether the
value of P [i] is smaller than the index of h in the array color, and if it is, we output its
color and continue the process. The first minimum value P [i] is obtained in O(log n) time,
then we divide the heavy path containing P [i] into two. To efficiently output all distinct

S. Chakraborty, K. Sadakane, and W. Zuba 18:11

a

c

i

2 3 41 1 4 1

e

f

1 4 2 3 2

g

3

h

4 1 4 2 3 2 3A

b
d

$

$

$

$

$ $

1,2,3,4

1,4

1 4

3

2

((() () () ()) ((() ()) () ((() () ()) ()) ()) (() (() () () ()) ()) (() ()))
ab c d e f g h i

0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0

1 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9preorder

a b c d e f g h i

1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
heavy
head

path-len 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0
a b d g i

multi 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0
1 2 3 4 1 4 1 3 4 2

a c e f b d g h i

color
P -1-1-1-1 1 4 5 3 4 2

Figure 3 A data structure for document listing problem in a rooted tree. Node c has colors 1,4
because there are two suffixes of S1 and S4 ending at the node. The heavy-path from the node
consists of nodes a, c, e, f, and a leaf, and it is represented by the boxes in the bit-vectors.

colors, we maintain divided paths using a Fibonacci heap [9]. Because O(log n + z) values
are stored in the Fibonacci heap where z is the output size, the query algorithm runs in
O(log n + z log(z + log n)) time using O(log n(z + log n)) bit space.

We modify the algorithm for the case where P is represented only through its range
minimum data structure. We compute the color of a suffix using a GST. In this case, we use
a similar algorithm to the one described in Section 2.9 using a bit array of length k to mark
output colors. First we obtain O(log n) paths representing p. Then for each path, we find
the position i of the minimum value of P . We compute the color color[i] in O(TIMESA) time
using the GST. If this color was not found yet, we output it and divide the path into two. It
is not necessary to find the minimum of the minimum values because duplication is checked
by a different mechanism. It is also not necessary to store the paths in a Fibonacci heap.
The time complexity is O(TIMESA(log n + z)) and the working space is O(log n(log n + z))
bits.

4 Application to Suffix-prefix Matching

In the Suffix-Prefix problem we are given a set of strings S1, . . . , Sk. We want to preprocess
this set of strings so that given i, j ∈ [1, k] we can answer query “what is the length of the
longest suffix of Si that is also a prefix of Sj” fast.

For any i, j ∈ [1, k], we define SPLi,j as the longest string that is both a suffix of Si and
a prefix of Sj . We consider the following variants [18]:

One-to-One(i, j): output SPLi,j .
One-to-All(i): output SPLi,j for every j ∈ [1, k].
Report(i, ℓ): output all distinct j ∈ [1, k] such that SPLi,j ≥ ℓ, where ℓ ≥ 0 is an integer.
Count(i, ℓ): output the number of distinct j ∈ [1, k] such that SPLi,j ≥ ℓ, where ℓ ≥ 0 is
an integer.
Top(i, K): output K distinct j ∈ [1, k] with the highest values of SPLi,j , breaking ties
arbitrarily.

ISAAC 2024

18:12 Enhancing Generalized Compressed Suffix Trees, with Applications

Table 2 Time complexities for suffix-prefix problems. An existing solution uses O(n log n) bits
of space, while ours uses SIZESA(2n, σ) + O(n + k) bits of space. Typical values of SIZESA and
TIMESA are n log σ + O(n) and O(log n), respectively. The term z in the time complexity of the
Report and Count queries is the output size of the Report query.

Query Time ([18]) Time (ours)
One-to-One(i, j) O(log log k) O(TIMESA · log log n)
One-to-All(i) O(k) O(k · TIMESA · log log n)
Report(i, ℓ) O(log n/ log log n + z) O(TIMESA(log n + z))
Count(i, ℓ) O(log n/ log log n) O(TIMESA(log n + z))

We give compact data structures for these problems except for Top(i, K). The results
are summarized in Table 2.

4.1 Answering One-to-One and One-to-All queries
The base of the data structure consists of suffix trees STi of Si for each i ∈ [1, k] and a
generalized suffix tree ST of the whole set of strings. ST is additionally enhanced with a
rank-select queries data structure and the lowest common ancestor queries data structure. A
node v of ST is colored j if the string label of v is equal to a suffix of j. Note that a node
may have multiple colors.

Using Theorem 1 for the full string Si and j we obtain the location of the closest suffix
U of Sj in ST in O(TIMESA · log log k) time. We can convert the global rank of U to the
local rank in STj in O(TIMESA) time. Next, using the lowest common ancestor query for
Si and U in ST we can find the LCP of those two strings, that is the string depth of the
lowest common ancestor of the nodes representing them, in O(TIMESA) time. Next by using
the weighted level ancestor query in STj for the leaf representing U and the LCP length we
locate the node u of STj with the property that every ancestor of Si in ST marked with
color j is also an ancestor of u in STj , and every ancestor of u in STj is also an ancestor
of Si, in O(TIMESA · log log n) time. Thus we reduced the problem of finding the nearest
ancestor marked with color j in ST to finding the nearest marked ancestor in STj - that is
in a situation where all the marks have the same color.

For the topology of each STj , we use the nearest marked ancestor data structure [28].
The additional space is n + o(n) bits for all STj ’s, and the answer is obtained in constant
time. In summary, a One-to-One suffix-prefix query is done in O(TIMESA · log log n) time.

For a One-to-All query, we naively repeat One-to-One queries for each j ∈ [1, k]. Then
the time complexity is O(k · TIMESA · log log n).

4.2 Report and Count queries
As shown in [18], Report(i, ℓ) and Count(i, ℓ) are the same as Reportr(j, ℓ) and Countr(j, ℓ)
for the reversed strings Sr

1 , . . . , Sr
k. Let ST r be the generalized compressed suffix tree of the

set of the reversed strings, and let v be the nearest node to the root that is on the path
from the root node representing Sr

j (reversed sting Sj) and that has a string depth at least
ℓ. We color node u by color i if a suffix of Sr

i (without the terminator) ends at u. Then
Reportr(j, ℓ) is to output all distinct colors on the path from v to the leaf corresponding
to Sr

j . That is, Reportr(j, ℓ) corresponds to the document listing problem in a tree. The
node v is obtained in O(TIMESA · log log n) time using the weighted level ancestor query.
We use the algorithm from Section 3.4. Note that the arrays “color” and P are not stored
explicitly. By using range minimum queries on P , we obtain only the position in P of the

S. Chakraborty, K. Sadakane, and W. Zuba 18:13

minimum value. To obtain the color, we use the compressed suffix tree. If a node u has color
i, then u has an edge labeled $ and a leaf connected by the edge stores a suffix of Sr

i (nodes
f, g, h, and i in Figure 3). If u has multiple colors, we create a child w of u connected by an
edge labeled $ and create a leaf as a child of w for each color (nodes a and c in Figure 3).
Since we can obtain the global rank of the suffix using the BP sequence of the generalized
suffix tree, we can obtain the color in O(TIMESA) time. The total time complexity becomes
O(TIMESA(log n + z)) time. Count(j, ℓ) is done in the same time complexity as Report(j, ℓ).

For Top-K, we can use the observation in [18] that there exists an integer ℓ ∈ [0, n − 1]
such that Count(i, ℓ + 1) ≤ K < Count(i, ℓ). Therefore we can solve a Top-K query by a
binary search based on the value of Count(i, ℓ). Unfortunately the time for Count(j, ℓ) by
our algorithm depends on the value, hence such an algorithm for Top-K is inefficient.

5 Concluding Remarks

This paper has proposed auxiliary data structures to enhance generalized compressed suffix
trees (GSTs). By adding O(n) bits of space, we improved the time complexity for finding the
closest colored suffix from O(TIMESA · log n) to O(TIMESA · log log k) time, where k is the
number of strings and n is the total length of the strings, and TIMESA is the time to obtain
an entry of the suffix array. We also improved the time complexity for finding weighted level
ancestors in a compressed suffix tree from O(TIMESA · log n) to O(TIMESA · log log n) time.
Using these enhanced GSTs, we obtained linear space (O(n log σ) bits) data structures for
suffix-prefix queries for a set of strings. Future work will be to give time-efficient algorithms
for Count and Top-K queries using O(n) bits of space. A challenging open problem is to
obtain a weighted level ancestor data structure for suffix trees using O(n) bits of space
supporting a query in constant time.

References
1 Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing suffix trees with

enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–86, 2004. The 9th International
Symposium on String Processing and Information Retrieval. doi:10.1016/S1570-8667(03)
00065-0.

2 Jérémy Barbay, Meng He, J. Ian Munro, and Srinivasa Rao Satti. Succinct indexes for
strings, binary relations and multilabeled trees. ACM Trans. Algorithms, 7(4), September
2011. doi:10.1145/2000807.2000820.

3 Djamal Belazzougui, Dmitry Kosolobov, Simon J. Puglisi, and Rajeev Raman. Weighted
Ancestors in Suffix Trees Revisited. In Paweł Gawrychowski and Tatiana Starikovskaya, editors,
32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021), volume 191 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 8:1–8:15, Dagstuhl, Germany,
2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CPM.2021.8.

4 Djamal Belazzougui and Gonzalo Navarro. Optimal lower and upper bounds for representing
sequences. ACM Trans. Algorithms, 11(4), April 2015. doi:10.1145/2629339.

5 Arthur L. Delcher, Adam Phillippy, Jane Carlton, and Steven L. Salzberg. Fast algorithms
for large-scale genome alignment and comparison. Nucleic Acids Research, 30(11):2478–2483,
June 2002. doi:10.1093/nar/30.11.2478.

6 Arash Farzan and J. Ian Munro. A uniform paradigm to succinctly encode various families of
trees. Algorithmica, 68(1):16–40, 2014. doi:10.1007/S00453-012-9664-0.

7 P. Ferragina and G. Manzini. Indexing compressed texts. Journal of the ACM, 52(4):552–581,
2005. doi:10.1145/1082036.1082039.

ISAAC 2024

https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1145/2000807.2000820
https://doi.org/10.4230/LIPIcs.CPM.2021.8
https://doi.org/10.1145/2629339
https://doi.org/10.1093/nar/30.11.2478
https://doi.org/10.1007/S00453-012-9664-0
https://doi.org/10.1145/1082036.1082039

18:14 Enhancing Generalized Compressed Suffix Trees, with Applications

8 Johannes Fischer and Volker Heun. A new succinct representation of rmq-information and
improvements in the enhanced suffix array. In Bo Chen, Mike Paterson, and Guochuan Zhang,
editors, Combinatorics, Algorithms, Probabilistic and Experimental Methodologies, pages 459–
470, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. doi:10.1007/978-3-540-74450-4_
41.

9 Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596–615, July 1987. doi:10.1145/28869.
28874.

10 Paweł Gawrychowski, Moshe Lewenstein, and Patrick K. Nicholson. Weighted ancestors in
suffix trees. In Andreas S. Schulz and Dorothea Wagner, editors, Algorithms - ESA 2014,
pages 455–466, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

11 Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao. Rank/select operations on large
alphabets: a tool for text indexing. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithm, SODA ’06, pages 368–373, USA, 2006. Society for Industrial
and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=1109557.1109599.

12 R. Grossi, A. Gupta, and J. S. Vitter. High-Order Entropy-Compressed Text Indexes. In
Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 841–850, 2003.

13 R. Grossi and J. S. Vitter. Compressed Suffix Arrays and Suffix Trees with Applications
to Text Indexing and String Matching. SIAM Journal on Computing, 35(2):378–407, 2005.
doi:10.1137/S0097539702402354.

14 D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, 1997.
15 Tsvi Kopelowitz and Moshe Lewenstein. Dynamic weighted ancestors. In Proceedings of

the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, pages
565–574, USA, 2007. Society for Industrial and Applied Mathematics. URL: http://dl.acm.
org/citation.cfm?id=1283383.1283444.

16 S. Kurtz. Reducing the Space Requirement of Suffix Trees. Software – Practice and Ex-
perience, 29(13):1149–1171, 1999. doi:10.1002/(SICI)1097-024X(199911)29:13\%3C1149::
AID-SPE274\%3E3.0.CO;2-O.

17 Stefan Kurtz, Adam Phillippy, Arthur Delcher, Michael Smoot, Martin Shumway, Corina
Antonescu, and Steven Salzberg. Versatile and open software for comparing large genomes.
Genome biology, 5:R12, February 2004. doi:10.1186/gb-2004-5-2-r12.

18 Grigorios Loukides, Solon P. Pissis, Sharma V. Thankachan, and Wiktor Zuba. Suffix-
Prefix Queries on a Dictionary. In Laurent Bulteau and Zsuzsanna Lipták, editors, 34th
Annual Symposium on Combinatorial Pattern Matching (CPM 2023), volume 259 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 21:1–21:20, Dagstuhl, Germany, 2023.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CPM.2023.21.

19 U. Manber and G. Myers. Suffix arrays: A New Method for On-Line String Searches. SIAM
Journal on Computing, 22(5):935–948, 1993. doi:10.1137/0222058.

20 J. I. Munro and V. Raman. Succinct Representation of Balanced Parentheses and Static Trees.
SIAM Journal on Computing, 31(3):762–776, 2001. doi:10.1137/S0097539799364092.

21 J. I. Munro, V. Raman, and S. R. Satti. Space Efficient Suffix Trees. Journal of Algorithms,
39:205–222, 2001. doi:10.1006/JAGM.2000.1151.

22 S. Muthukrishnan. Efficient Algorithms for Document Retrieval Problems. In Proceedings
of ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 657–666, 2002. URL:
http://dl.acm.org/citation.cfm?id=545381.545469.

23 G. Navarro and K. Sadakane. Fully-Functional Static and Dynamic Succinct Trees. ACM
Transactions on Algorithms (TALG), 10(3):Article No. 16, 39 pages, 2014.

24 R. Raman, V. Raman, and S. R. Satti. Succinct indexable dictionaries with applications to
encoding k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms (TALG),
3(4), 2007. doi:10.1145/1290672.1290680.

25 Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory Comput. Syst.,
41(4):589–607, 2007. doi:10.1007/S00224-006-1198-X.

https://doi.org/10.1007/978-3-540-74450-4_41
https://doi.org/10.1007/978-3-540-74450-4_41
https://doi.org/10.1145/28869.28874
https://doi.org/10.1145/28869.28874
http://dl.acm.org/citation.cfm?id=1109557.1109599
https://doi.org/10.1137/S0097539702402354
http://dl.acm.org/citation.cfm?id=1283383.1283444
http://dl.acm.org/citation.cfm?id=1283383.1283444
https://doi.org/10.1002/(SICI)1097-024X(199911)29:13%3C1149::AID-SPE274%3E3.0.CO;2-O
https://doi.org/10.1002/(SICI)1097-024X(199911)29:13%3C1149::AID-SPE274%3E3.0.CO;2-O
https://doi.org/10.1186/gb-2004-5-2-r12
https://doi.org/10.4230/LIPIcs.CPM.2023.21
https://doi.org/10.1137/0222058
https://doi.org/10.1137/S0097539799364092
https://doi.org/10.1006/JAGM.2000.1151
http://dl.acm.org/citation.cfm?id=545381.545469
https://doi.org/10.1145/1290672.1290680
https://doi.org/10.1007/S00224-006-1198-X

S. Chakraborty, K. Sadakane, and W. Zuba 18:15

26 Kunihiko Sadakane. Succinct data structures for flexible text retrieval systems. J. Discrete
Algorithms, 5(1):12–22, 2007. doi:10.1016/J.JDA.2006.03.011.

27 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal of
Computer and System Sciences, 26(3):362–391, 1983. doi:10.1016/0022-0000(83)90006-5.

28 Dekel Tsur. Succinct data structures for nearest colored node in a tree. Information Processing
Letters, 132:6–10, 2018. doi:10.1016/j.ipl.2017.10.001.

29 P. Weiner. Linear Pattern Matching Algorithms. In Proceedings of IEEE Symposium on
Switching and Automata Theory, pages 1–11, 1973.

30 Dan E. Willard. Log-logarithmic worst-case range queries are possible in space θ(n). Informa-
tion Processing Letters, 17(2):81–84, 1983. doi:10.1016/0020-0190(83)90075-3.

31 Wiktor Zuba, Grigorios Loukides, Solon P. Pissis, and Sharma V. Thankachan. Approximate
suffix-prefix dictionary queries. In Rastislav Královic and Antonín Kucera, editors, 49th
International Symposium on Mathematical Foundations of Computer Science, MFCS 2024,
August 26-30, 2024, Bratislava, Slovakia, volume 306 of LIPIcs, pages 85:1–85:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.MFCS.2024.85.

ISAAC 2024

https://doi.org/10.1016/J.JDA.2006.03.011
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1016/j.ipl.2017.10.001
https://doi.org/10.1016/0020-0190(83)90075-3
https://doi.org/10.4230/LIPICS.MFCS.2024.85

	1 Introduction
	1.1 Our contributions

	2 Preliminaries
	2.1 Suffix arrays, suffix trees, and their compression
	2.2 Bit-vectors and rank/select dictionaries
	2.3 Generalized suffix arrays and trees
	2.4 LCP arrays
	2.5 Rank and select data structures for large alphabets
	2.6 Nearest marked ancestors
	2.7 Weighted level ancestor queries
	2.8 Tree Covering
	2.9 Document listing problems

	3 Enhancing Generalized Compressed Suffix Trees
	3.1 New predecessor data structures
	3.2 Finding Closest Colored Suffixes
	3.3 Succinct index for weighted level ancestor queries
	3.4 Document listing problem in a rooted tree

	4 Application to Suffix-prefix Matching
	4.1 Answering One-to-One and One-to-All queries
	4.2 Report and Count queries

	5 Concluding Remarks

