
Tight (Double) Exponential Bounds for
Identification Problems: Locating-Dominating Set
and Test Cover
Dipayan Chakraborty #Ñ

Université Clermont Auvergne, CNRS, Mines Saint-Étienne, Clermont Auvergne INP, LIMOS,
63000 Clermont-Ferrand, France
Department of Mathematics and Applied Mathematics, University of Johannesburg, South Africa

Florent Foucaud #Ñ

Université Clermont Auvergne, CNRS, Mines Saint-Étienne, Clermont Auvergne INP, LIMOS,
63000 Clermont-Ferrand, France

Diptapriyo Majumdar # Ñ

Indraprastha Institute of Information Technology Delhi, New Delhi, India

Prafullkumar Tale # Ñ

Indian Institute of Science Education and Research Bhopal, India

Abstract
Foucaud et al. [ICALP 2024] demonstrated that some problems in NP can admit (tight) double-
exponential lower bounds when parameterized by treewidth or vertex cover number. They showed
these first-of-their-kind results by proving conditional lower bounds for certain graph problems, in
particular, the metric-based identification problems (Strong) Metric Dimension. We continue
this line of research and highlight the usefulness of this type of problems, to prove relatively rare
types of (tight) lower bounds. We investigate fine-grained algorithmic aspects of classical (non-metric
based) identification problems in graphs, namely Locating-Dominating Set, and in set systems,
namely Test Cover. In the first problem, an input is a graph G on n vertices and an integer k, and
the objective is to decide whether there is a subset S of k vertices such that any two distinct vertices
not in S are dominated by distinct subsets of S. In the second problem, an input is a set of items U ,
a collection of subsets F of U called tests, and an integer k, and the objective is to select a set S of
at most k tests such that any two distinct items are contained in a distinct subset of tests of S.

For our first result, we adapt the techniques introduced by Foucaud et al. [ICALP 2024] to prove
similar (tight) lower bounds for these two problems.

Locating-Dominating Set (respectively, Test Cover) parameterized by the treewidth of the
input graph (respectively, the natural auxiliary graph) does not admit an algorithm running in
time 22o(tw)

· poly(n) (respectively, 22o(tw)
· poly(|U | + |F|))), unless the ETH fails.

This augments the short list of NP-Complete problems that admit tight double-exponential lower
bounds when parameterized by treewidth, and shows that “local” (non-metric-based) problems can
also admit such bounds. We show that these lower bounds are tight by designing treewidth-based
dynamic programming schemes with matching running times.

Next, we prove that these two problems also admit “exotic” (and tight) lower bounds, when
parameterized by the solution size k. We prove that unless the ETH fails,

Locating-Dominating Set does not admit an algorithm running in time 2o(k2) · poly(n), nor a
polynomial-time kernelization algorithm that reduces the solution size and outputs a kernel with
2o(k) vertices, and
Test Cover does not admit an algorithm running in time 22o(k)

· poly(|U | + |F|) nor a kernel
with 22o(k)

vertices.
Again, we show that these lower bounds are tight by designing (kernelization) algorithms with
matching running times. To the best of our knowledge, Locating-Dominating Set is the first
known problem which is FPT when parameterized by solution size k, where the optimal running
time has a quadratic function in the exponent. These results also extend the (very) small list of
problems that admit an ETH-based lower bound on the number of vertices in a kernel, and (for

© Dipayan Chakraborty, Florent Foucaud, Diptapriyo Majumdar, and Prafullkumar Tale;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 19; pp. 19:1–19:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dipayan.chakraborty@uca.fr
https://dipayan5186.github.io/Website/
https://orcid.org/0000-0001-7169-7288
mailto:florent.foucaud@uca.fr
https://perso.limos.fr/ffoucaud
https://orcid.org/0000-0001-8198-693X
mailto:diptapriyo@iiitd.ac.in
https://diptapriyomajumdar.wixsite.com/toto
https://orcid.org/0000-0003-2677-4648
mailto:prafullkumar@iiserb.ac.in
https://pptale.github.io/
https://orcid.org/0000-0001-9753-0523
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Tight (Double) Exponential Bounds for Identification Problems

Test Cover) a double-exponential lower bound when parameterized by the solution size. Whereas
it is the first example, to the best of our knowledge, that admit a double exponential lower bound
for the number of vertices.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Identification Problems, Locating-Dominating Set, Test Cover, Double
Exponential Lower Bound, ETH, Kernelization Lower Bounds

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.19

Related Version Full Version: https://arxiv.org/abs/2402.08346

Funding Dipayan Chakraborty: International Research Center “Innovation Transportation and
Production Systems” of the I-SITE CAP 20-25.
Florent Foucaud: ANR project GRALMECO (ANR-21-CE48-0004), French government IDEX-ISITE
initiative 16-IDEX-0001 (CAP 20-25), International Research Center “Innovation Transportation
and Production Systems” of the I-SITE CAP 20-25.
Diptapriyo Majumdar : Supported by Science and Engineering Research Board (SERB) grant
SRG/2023/001592.
Prafullkumar Tale: Supported by INSPIRE Faculty Fellowship DST/INSPIRE/04/2021/00314.

1 Introduction

The article aims to study the algorithmic properties of certain identification problems in
discrete structures. In identification problems, one wishes to select a solution substructure
of an input structure (a subset of vertices, the coloring of a graph, etc.) so that the
solution substructure uniquely identifies each element. Some well-studied examples are, for
example, the problems Test Cover for set systems and Metric Dimension for graphs
(Problems [SP6] and [GT61] in the book by Garey and Johnson [39], respectively). This type
of problem has been studied since the 1960s both in the combinatorics community (see e.g.
Rényi [60] or Bondy [9]), and in the algorithms community since the 1970s [7, 10, 25, 55].
They have multiple practical and theoretical applications, such as network monitoring [59],
medical diagnosis [55], bioinformatics [7], coin-weighing problems [62], graph isomorphism [4],
games [19], machine learning [18] etc. An online bibliography on the topic with over 500
entries as of 2024 is maintained at [46].

In this article, we investigate fine-grained algorithmic aspects of identification problems
in graphs, namely Locating-Dominating Set, and in set systems, namely Test Cover.
Like most other interesting and practically motivated computational problems, identification
problems also turned out to be NP-hard, even in very restricted settings. See, for example,
[20] and [39], respectively. We refer the reader to “Related Work” towards the end of this
section for a more detailed overview on their algorithmic complexity.

To cope with this hardness, these problems have been studied through the lens of
parameterized complexity. In this paradigm, we associate each instance I with a parameter
ℓ, and are interested to know whether the problem admits a fixed parameter tractable (FPT)
algorithm, i.e., an algorithm with the running time f(ℓ)·|I|O(1), for some computable function
f . A parameter can either originate from the formulation of the problem itself or can be a
property of the input. If a parameter originates from the formulation of the problem itself,
then that is called a natural parameter. Otherwise, the parameters that are properties of the
input graph are called the structural parameters. One of the most well-studied structural
parameters is ‘treewidth’ (which, informally, quantifies how close the input graph is to a

https://doi.org/10.4230/LIPIcs.ISAAC.2024.19
https://arxiv.org/abs/2402.08346

D. Chakraborty, F. Foucaud, D. Majumdar, and P. Tale 19:3

tree, and is denoted by tw). We refer readers to [26, Chapter 7] for a formal definition.
Courcelle’s celebrated theorem [21] states that the class of graph problems expressible in
Monadic Second-Order Logic (MSOL) of constant size admit an algorithm running in time
f(tw) ·poly(n). Hence, a large class of problems admit an FPT algorithm when parameterized
by the treewidth. Unfortunately, the function f is a tower of exponents whose height depends
roughly on the size of the MSOL formula. Hence, this result serves as a starting point to
obtain an (usually impractical) FPT algorithm.

Over the years, researchers have searched for more efficient problem-specific algorithms
when parameterized by the treewidth. There is a rich collection of problems that admit an
FPT algorithm with single- or almost-single-exponential dependency with respect to treewidth,
i.e., of the form 2O(tw) · nO(1) or 2O(tw log(tw)) · nO(1), (see, for example, [26, Chapter 7]).
There are a handful of graph problems that only admit FPT algorithms with double- or
triple-exponential dependence in the treewidth [8, 30, 31, 32, 42, 54]. In the respective articles,
the authors prove that this double- (respectively, triple-) dependence in the treewidth cannot
be improved unless the Exponential Time Hypothesis (ETH)1 fails.

All the double- (or triple-) exponential lower bounds in treewidth mentioned in the
previous paragraph are for problems that are #NP-complete, Σp

2-complete, or Πp
2-complete.

Indeed, until recently, this type of lower bounds were known only for problems that are
complete for levels that are higher than NP in the polynomial hierarchy. Foucaud et al. [36]
recently proved for the first time, that it is not necessary to go to higher levels of the
polynomial hierarchy to achieve double-exponential lower bounds in the treewidth. The
authors studied three NP-complete metric-based graph problems viz Metric Dimension,
Strong Metric Dimension, and Geodetic Set. They proved that these problems admit
double-exponential lower bounds in tw (and, in fact in the size of minimum vertex cover
size vc for the second problem) under the ETH. The first two of these three problems are
identification problems.

In this article, we continue this line of research and highlight the usefulness of identifica-
tion problems to prove relatively rare types of lower bounds, by investigating fine-grained
algorithmic aspects of Locating-Dominating Set and Test Cover, two classical (non-
metric-based) identification problems. This also shows that this type of bounds can hold for
“local” (i.e., non-metric-based) problems (the problems studied in [36] were all metric-based).
Apart from serving as examples for double-exponential dependence on treewidth, these prob-
lems are of interest in their own right, and possess a rich literature both in the algorithms
and discrete mathematics communities, as highlighted in “Related Work”.

Locating-Dominating Set
Input: A graph G on n vertices and an integer k.
Question: Does there exist a locating-dominating set of size k in G, that is, a set S of
V (G) of size at most k such that for any two different vertices u, v ∈ V (G) \ S, their
neighbourhoods in S are different, i.e., N(u) ∩ S ̸= N(v) ∩ S and non-empty?

Test Cover
Input: A set of items U , a collection F of subsets of U called tests, and an integer k.
Question: Does there exist a collection of at most k tests such that for each pair of
items, there is a test that contains exactly one of the two items?

1 The ETH roughly states that n-variable 3-SAT cannot be solved in time 2o(n)nO(1).
See [26, Chapter 14].

ISAAC 2024

19:4 Tight (Double) Exponential Bounds for Identification Problems

As Test Cover is defined over set systems, for structural parameters, we define an
auxiliary graph in the natural way: A bipartite graph G on n vertices with bipartition ⟨R,B⟩
of V (G) such that sets R and B contain a vertex for every set in F and for every item in
U , respectively, and r ∈ R and b ∈ B are adjacent if and only if the set corresponding to r
contains the element corresponding to b.

The Locating-Dominating Set problem is also a graph domination problem. In the
classical Dominating Set problem, an input is an undirected graph G and an integer k,
and the objective is to decide whether there is a subset S ⊆ V (G) of size k such that for
any vertex u ∈ V (G) \ S, at least one of its neighbours is in S. It can also be seen as a
local version of Metric Dimension2 in which the input is the same and the objective is
to determine a set S of V (G) such that for any two vertices u, v ∈ V (G) \ S, there exists a
vertex s ∈ S such that dist(u, s) ̸= dist(v, s).

We demonstrate the applicability of the techniques from [36] to Locating-Dominating
Set and Test Cover. We adopt the main technique developed in [36] to our setting,
namely, the bit-representation gadgets and set representation gadget to prove the following
result.

▶ Theorem 1. Unless the ETH fails, Locating-Dominating Set (respectively, Test
Cover) parameterized by the treewidth of the input graph (respectively, the natural auxiliary
graph) does not admit an algorithm running in time 22o(tw) · poly(n).

We remark that the algorithmic lower bound of Theorem 1 holds true even with respect
to treedepth (and hence with respect to pathwidth), a parameter larger than treewidth. In
contrast, Dominating Set admits an algorithm running in time O(3tw · n2) [67, 52]. In
the full version of the paper, we prove that both Locating-Dominating Set and Test
Cover admit an algorithm with matching running time, by nontrivial dynamic programming
schemes on tree decompositions.

Theorem 1 adds Locating-Dominating Set and Test Cover to the short list of
NP-Complete problems that admit (tight) double-exponential lower bounds for treewidth.
Using the techniques mentioned in [36], two more problems, viz. Non-Clashing Teaching
Map and Non-Clashing Teaching Dimension, from learning theory were recently shown
in [14] to admit similar lower bounds.

Next, we prove that Locating-Dominating Set and Test Cover also admit “exotic”
lower bounds, when parameterized by the solution size k. First, note that both problems are
trivially FPT when parameterized by the solution size. Indeed, as any solution must have
size at least logarithmic in the number of elements/vertices (assuming no redundancy in the
input), the whole instance is a trivial single-exponential kernel for Locating-Dominating
Set, and double-exponential in the case of Test Cover. To see this, note that in both
problems, any two vertices/items must be assigned a distinct subset from the solution set.
Hence, if there are more than 2k of them, we can safely reject the instance. Thus, for
Locating-Dominating Set, we can assume that the graph has at most 2k + k vertices,
and for Test Cover, at most 2k items. Moreover, for Test Cover, one can also assume
that every test is unique (otherwise, delete any redundant test), in which case there are at
most 22k tests. Hence, Locating-Dominating Set admits a kernel with size O(2k), and
an FPT algorithm running in time 2O(k2) (See Proposition 7). We prove that both of these
bounds are optimal.

2 Note that Metric Dimension is also an identification problem, but it is inherently non-local in nature,
and indeed was studied together with two other non-local problems in [36], where the similarities
between these non-local problems were noticed.

D. Chakraborty, F. Foucaud, D. Majumdar, and P. Tale 19:5

▶ Theorem 2. Unless the ETH fails, Locating-Dominating Set, parameterized by the
solution size k, does not admit

an algorithm running in time 2o(k2) · nO(1), nor
a polynomial time kernelization algorithm that reduces the solution size and outputs a
kernel with 2o(k) vertices.

To the best of our knowledge, Locating-Dominating Set is the first known problem to
admit such an algorithmic lower bound, with a matching upper bound, when parameterized
by the solution size. The only other problems known to us, admitting similar lower bounds,
are for structural parameterizations like vertex cover [1, 14, 36] or pathwidth [58, 61]. The
second result is also quite rare in the literature. The only results known to us about ETH-
based conditional lower bounds on the number of vertices in a kernel when parameterized by
the solution size are for Edge Clique Cover [27] and Biclique Cover [15]3. Theorem 2
also improves upon a “no 2O(k)nO(1) algorithm” bound from [5] (under W[2] ̸= FPT) and a
2o(k log k) ETH-based lower bound recently proved in [11].

Now, consider the case of Test Cover. As mentioned before, it is safe to assume that
|F| ≤ 2|U | and |U | ≤ 2k. By Bondy’s celebrated theorem [9], which asserts that in any
feasible instance of Test Cover, there is always a solution of size at most |U | − 1, we can
also assume that k ≤ |U | − 1. Hence, the brute-force algorithm that enumerates all the
sub-collections of tests of size at most k runs in time |F|O(|U |) = 2O(|U |2) = 22O(k) . Our next
result proves that this simple algorithm is again optimal.

▶ Theorem 3. Unless the ETH fails, Test Cover does not admit
an algorithm running in time 22o(k) · (|U | + |F|)O(1), nor
a polynomial time kernelization algorithm that reduces the solution size and outputs a
kernel with 22o(k) vertices.

This result adds Test Cover to the relatively rare list of NP-complete problems that
admit such double-exponential lower bounds when parameterized by the solution size and
the matching algorithm. The only other examples that we know of are Edge Clique
Cover [27], Distinct Vectors Problem [57], and Telephone Broadcast [66]. For
double-exponential algorithmic lower bounds with respect to structural parameters, please
see [33, 42, 45, 47, 48, 50, 51, 53].

The second result in the theorem is a simple corollary of the first result. Assume that
the problem admits a kernel with 22o(k) vertices. Then, the brute-force enumerating all the
possible solutions works in time

(22o(k)

k

)
· (|U | + |F|)O(1), which is 2k·2o(k) · (|U | + |F|)O(1),

which is 22o(k) · (|U | + |F|)O(1), contradicting the first result. To the best of our knowledge,
Test Cover is the first problem that admit a double exponential kernelization lower bound
for the number of vertices when parameterized by solution size, or by any natural parameter.

Related Work. Locating-Dominating Set was introduced by Slater in the 1980s [63, 64].
The problem is NP-complete [20], even for special graph classes such as planar unit disk
graphs [56], planar bipartite subcubic graphs, chordal bipartite graphs, split graphs and co-
bipartite graphs [35], interval and permutation graphs of diameter 2 [38]. By a straightforward
application of Courcelle’s theorem [22], Locating-Dominating Set is FPT for parameter
treewidth and even cliquewidth [23]. Explicit polynomial-time algorithms were given for
trees [63], block graphs [3], series-parallel graphs [20], and cographs [37]. Regarding the
approximation complexity of Locating-Dominating Set, see [35, 40, 65].

3 Additionally, Point Line Cover does not admit a kernel with O(k2−ϵ) vertices, for any ϵ > 0, unless
NP ⊆ coNP/poly [49].

ISAAC 2024

19:6 Tight (Double) Exponential Bounds for Identification Problems

It was shown in [5] that Locating-Dominating Set cannot be solved in time 2o(n) on
bipartite graphs, nor in time 2o(

√
n) on planar bipartite graphs or on apex graphs, assuming

the ETH. Moreover, they also showed that Locating-Dominating Set cannot be solved
in time 2O(k)nO(1) on bipartite graphs, unless W[2] = FPT. Note that the authors of [5]
have designed a complex framework with the goal of studying a large class of identification
problems related to Locating-Dominating Set and similar problems.

In [12], structural parameterizations of Locating-Dominating Set were studied. It was
shown that the problem admits a linear kernel for the parameter max-leaf number, however
(under standard complexity assumptions) no polynomial kernel exists for the solution size,
combined with either the vertex cover number or the distance to a clique. They also provide
a double-exponential kernel for the parameter distance to the cluster. In the full version [11]
of [12], the same authors show that Locating-Dominating Set does neither admit a
2o(k log k)nO(1)-time nor an no(k)-time algorithm, assuming the ETH.

Test Cover was shown to be NP-complete by Garey and Johnson [39, Problem SP6]
and it is also hard to approximate within a ratio of (1 − ϵ) lnn [10] (an approximation
algorithm with ratio 1 + lnn exists by reduction to Set Cover [7]). As any solution has
size at least log2(n), the problem admits a trivial kernel of size 22k , and thus Test Cover
is FPT parameterized by solution size k. Test Cover was studied within the framework of
“above/below guarantee” parameterizations in [6, 24, 25, 41] and kernelization in [6, 24, 41].
These results have shown an intriguing behavior for Test Cover, with some nontrivial
techniques being developed to solve the problem [6, 25]. Test Cover is FPT for parameters
n−k, but W [1]-hard for parameters m−k and k− log2(n) [25]. However, assuming standard
assumptions, there is no polynomial kernel for the parameterizations by k and n− k [41],
although there exists a “partially polynomial kernel” for parameter n− k [6] (i.e. one with
O((n− k)7) elements, but potentially exponentially many tests). When the tests have all a
fixed upper bound r on their size, the parameterizations by k, n− k and m− k all become
FPT with a polynomial kernel [24, 41].

The problem Discriminating Code [16] is very similar to Test Cover (with the
distinction that the input is presented as a bipartite graph, one part representing the
elements and the other, the tests, and that every element has to be covered by some solution
test), and has been shown to be NP-complete even for planar instances [17].

Organization. Due to the space constraints, we present overviews of the reductions in this
extended abstract. Formal proofs for the arguments can be found in the full version of
the paper. We use the Locating-Dominating Set problem to demonstrate key technical
concepts regarding our lower bounds and algorithms. We present an overview of the arguments
about Locating-Dominating Set in Sections 3 and 4. The arguments regarding Test
Cover follow the identical line, and an overview is presented in Section 5. We conclude with
an open problem in Section 6.

2 Preliminaries

For a positive integer q, we denote the set {1, 2, . . . , q} by [q]. We use N to denote the
collection of all non-negative integers.

Graph theory. We use standard graph-theoretic notation, and we refer the reader to [28]
for any undefined notation. For an undirected graph G, sets V (G) and E(G) denote its set
of vertices and edges, respectively. We denote an edge with two endpoints u, v as uv. Unless

D. Chakraborty, F. Foucaud, D. Majumdar, and P. Tale 19:7

otherwise specified, we use n to denote the number of vertices in the input graph G of the
problem under consideration. Two vertices u, v in V (G) are adjacent if there is an edge uv in
G. The open neighborhood of a vertex v, denoted by NG(v), is the set of vertices adjacent to
v. The closed neighborhood of a vertex v, denoted by NG[v], is the set NG(v) ∪ {v}. We say
that a vertex u is a pendant vertex if |NG(v)| = 1. We omit the subscript in the notation for
neighborhood if the graph under consideration is clear. For a subset S of V (G), we define
N [S] =

⋃
v∈S N [v] and N(S) = N [S] \ S. For a subset S of V (G), we denote the graph

obtained by deleting S from G by G− S. We denote the subgraph of G induced on the set
S by G[S].

Locating-Dominating Sets. A subset of vertices S in graph G is called its dominating set
if N [S] = V (G). A dominating set S is said to be a locating-dominating set if for any two
different vertices u, v ∈ V (G) \S, we have N(u) ∩S ̸= N(v) ∩S. In this case, we say vertices
u and v are distinguished by the set S. We say a vertex u is located by set S if for any vertex
v ∈ V (G) \ {u}, u and v are distinguished by S (equivalently N(u) ∩ S ≠ N(v) ∩ S). Note
that, if S locates u, then any superset S′ ⊃ S also locates u. By extension, a set X is located
by S if all vertices in X are located by S. We note the following simple observation (see also
[13, Lemma 5]).

▶ Observation 4. If S is a locating-dominating set of a graph G, then there exists a locating-
dominating set S′ of G such that |S′| ≤ |S| and that contains all vertices that are adjacent
with a pendant vertices (i.e. vertices of degree 1) in G.

Proof. Let u be a pendant vertex which is adjacent with a vertex v of G. We now look for a
locating dominating set S′ of G such that |S′| ≤ |S| and contains the vertex v. As S is a
(locating) dominating set, we have {u, v} ∩ S ̸= ∅. If v ∈ S, then take S′ = S. Therefore,
let us assume that u ∈ S and v ̸∈ S. Define S′ = (S ∪ {v}) \ {u}. It is easy to see that S′

is a dominating set. If S′ is not a locating-dominating set, then there exists w, apart from
u, in the neighbourhood of v such that both u and w are adjacent with only v in S′. As u
is a pendant vertex and v its unique neighbour, w is not adjacent to u. Hence, w was not
adjacent with any vertex in S′ \ {v} = S \ {u}. This, however, contradicts the fact that S is
a (locating) dominating set. Hence, S′ is a locating-dominating set and |S′| = |S|. Thus,
the result follows from repeating this argument for each vertex of G adjacent to a pendant
vertex. ◀

Parameterized complexity. An instance of a parameterized problem Π consists of an input
I, which is an input of the non-parameterized version of the problem, and an integer k,
which is called the parameter. Formally, Π ⊆ Σ∗ × N. A problem Π is said to be fixed-
parameter tractable, or FPT, if given an instance (I, k) of Π, we can decide whether (I, k)
is a Yes-instance of Π in time f(k) · |I|O(1). Here, f : N 7→ N is some computable function
depending only on k. A parameterized problem Π is said to admit a kernelization if given
an instance (I, k) of Π, there is an algorithm that runs in time polynomial in |I| + k and
constructs an instance (I ′, k′) of Π such that (i) (I, k) ∈ Π if and only if (I ′, k′) ∈ Π, and
(ii) |I ′| + k′ ≤ g(k) for some computable function g : N 7→ N depending only on k. If g(·) is
a polynomial function, then Π is said to admit a polynomial kernelization. For a detailed
introduction to parameterized complexity and related terminologies, we refer the reader to
the recent books by Cygan et al. [26] and Fomin et al. [34].

ISAAC 2024

19:8 Tight (Double) Exponential Bounds for Identification Problems

3 Locating-Dominating Set Parameterized by Treewidth

We first present a bird’s eye overview of the dynamic programming algorithm. Let T =
(T, {Xt}t∈V (T)) be a nice tree decomposition of G. For every node t ∈ V (T), consider the
subtree Tt of T rooted at t. Let Gt denote the subgraph of G that is induced by the vertices
that are present in the bags of Tt. For every node t ∈ T , we define a subproblem (or DP-state)
using a tuple [t, (Y,W), (A,D),B]. Consider a partition (Y,W,Xt \ (Y ∪ W)) of Xt. The
first part denotes the vertices in the partial solution S. The second part denotes the vertices
in Xt that are dominated (but need not be located) by the solution vertices in Gt but that
are outside Xt. To extend this partial solution, we need to keep track of vertices that are
adjacent to a unique subset in Y . For example, suppose there is vertex u ∈ V (Gt) \ (S ∪Xt)
such that NGt

(u) ∩ S = A for some subset A ⊆ Y . Then u still needs to be located by S. It
means that there should not be a vertex, say v, in V (G) \ V (Gt) such that NGt

(v) ∩ S′ = A,
where S′ is an extension of the partial solution S. Hence, we need to keep track of all such
vertices by keeping track of the neighbourhood of all such vertices. We define A, which is a
subset of the power set of Y , to store all such sets that are the neighborhoods of vertices in
V (Gt) \ Xt. Similarly, we define D to store all such sets with respect to vertices that are
in Xt. Finally, we define B to store the pairs of vertices that need to be resolved by the
extension of the partial solution. We formalise these ideas in the full version of the paper to
prove the following theorem.

▶ Theorem 5. Locating-Dominating Set, parameterized by the treewidth tw of the input
graph admits an algorithm running in time 22O(tw) · nO(1).

In the remainder of this section, we prove the lower bound mentioned in Theorem 1
by presenting a reduction from a variant of 3-SAT called (3, 3)-SAT. In this variation, an
input is a boolean satisfiability formula ψ in conjunctive normal form such that each clause
contains at most 3 variables, and each variable appears at most 3 times. Using the ETH [43],
the sparcification lemma [44], and a simple reduction from 3-SAT, we have the following
result.

▶ Proposition 6. (3, 3)-SAT, with n variables and m clauses, does not admit an algorithm
running in time 2o(m+n), unless the ETH fails.

We highlight that every variable appears positively and negatively at least once. Otherwise,
if a variable appears only positively (respectively, only negatively) then we can assign it True
(respectively, False) and safely reduce the instance by removing the clauses containing this
variable. Hence, instead of the first, second, or third appearance of the variable, we use the
first positive, first negative, second positive, or second negative appearance of the variable.

Reduction. The reduction takes as input an instance ψ of (3, 3)-SAT with n variables and
outputs an instance (G, k) of Locating-Dominating Set such that tw(G) = O(log(n)).
Suppose X = {x1, . . . , xn} is the collection of variables and C = {C1, . . . , Cm} is the
collection of clauses in ψ. Here, we consider ⟨x1, . . . , xn⟩ and ⟨C1, . . . , Cm⟩ to be arbitrary
but fixed orderings of variables and clauses in ψ. For a particular clause, the first order
specifies the first, second, or third (if it exists) variable in the clause in a natural way. The
second ordering specifies the first/second positive/negative appearance of variables in X in a
natural way. The reduction constructs a graph G as follows.

To construct a variable gadget for xi, it starts with two claws {α0
i , α

1
i , α

2
i , α

3
i } and

{β0
i , β

1
i , β

2
i , β

3
i } centered at α0

i and β0
i , respectively. It then adds four vertices

x1
i ,¬x1

i , x
2
i ,¬x2

i , and the corresponding edges, as shown in Figure 1. Let Ai be the collec-
tion of these twelve vertices and we define A = ∪n

i=1Ai. Define Xi := {x1
i ,¬x1

i , x
2
i ,¬x2

i }.

D. Chakraborty, F. Foucaud, D. Majumdar, and P. Tale 19:9

Figure 1 For the sake of clarity, we do not explicitly show the pendant vertices adjacent to
vertices in V . The variable and clause gadgets are on the left-side and right-side of V , respectively.
In this example, we consider a clause Cj = xi ∨ ¬xi+1 ∨ xi+2. Moreover, suppose this is the second
positive appearance of xi and the first negative appearance of xi+1, and xi corresponds to c1

j and
xi+1 corresponds to c2

j . Suppose V contains 6 vertices indexed from top to bottom, and the set
corresponding to these two appearances are {1, 3, 4} and {3, 4, 6} respectively. The star boundary
denote the vertices that we can assume to be in any locating-dominating set, without loss of generality.
The square boundary corresponds to selection of other vertices in S. In the above example, it
corresponds to setting both xi and xi+1 to True. On the clause side, the selection corresponds to
selecting xi to satisfy the clause Cj .

To construct a clause gadget for Cj , the reduction starts with a star graph centered
at γ0

j and with four leaves {γ1
j , γ

2
j , γ

3
j , γ

4
j }. It then adds three vertices c1

j , c
2
j , c

3
j and the

corresponding edges shown in Figure 1. Let Bj be the collection of these eight vertices
and B = ∪m

j=1Bj .
Let p be the smallest positive integer such that 4n ≤

(2p
p

)
. Define Fp as the collection of

subsets of [2p] that contains exactly p integers (such a collection Fp is called a Sperner
family). Define set-rep :

⋃n
i=1 Xi → Fp as an injective function by arbitrarily assigning

a set in Fp to a vertex xℓ
i or ¬xℓ

i , for every i ∈ [n] and ℓ ∈ [2]. In other words, every
appearance of a literal is assigned a distinct subset in Fp.
The reduction adds a connection portal V , which is a clique on 2p vertices v1, v2, . . . , v2p.
For every vertex vq in V , the reduction adds a pendant vertex uq adjacent to vq.
For each vertex xℓ

i ∈ X where i ∈ [n] and ℓ ∈ [2], the reduction adds edges (xℓ
i , vq) for

every q ∈ set-rep(xℓ
i). Similarly, it adds edges (¬xℓ

i , vq) for every q ∈ set-rep(¬xℓ
i).

For a clause Cj , suppose variable xi appears positively for the ℓth time as the rth variable
in Cj . For example, xi appears positively for the second time as the third variable in Cj .
Then, the reduction adds edges across B and V such that the vertices cr

j and xℓ
i have

the same neighbourhood in V , namely, the set {vq : q ∈ set-rep(xℓ
i)}. Similarly, it adds

edges for the negative appearance of the variables.

This concludes the construction of G. The reduction sets k = 4n+ 3m+ 2p and returns
(G, k) as the reduced instance of Locating-Dominating Set.

ISAAC 2024

19:10 Tight (Double) Exponential Bounds for Identification Problems

We now provide an overview of the proof of correctness in the reverse direction. The
crux of the correctness is: Without loss of generality, all the vertices in the connection portal
V are present in any locating-dominating set S of G. Consider a vertex, say x1

i , on the
“variable-side” of S and a vertex, say c1

j , on the “clause-side” of S. If both of these vertices
have the same neighbors in the connection portal and are not adjacent to the vertices in
S \ V , then at least one of x1

i or c1
j must be included in S.

More formally, suppose S is a locating-dominating set of G of size at most k = 4n +
3m + 2p. Then, we prove that S must have exactly 4 vertices from each variable gadget
and exactly 3 vertices from each clause gadget. Further, S contains either {αi

0, β
i
0, x

1
i , x

2
i } or

{αi
0, β

i
0,¬x1

i ,¬x2
i }, but no other combination of vertices in the variable gadget corresponding

to xi. For a clause gadget corresponding to Cj , S contains either {γ0
j , c

2
j , c

3
j}, {γ0

j , c
1
j , c

3
j},

or {γ0
j , c

1
j , c

2
j}, but no other combination. These choices imply that c1

j , c2
j , or c3

j are not
adjacent to any vertex in S \ V . Consider the first case and suppose c1

j corresponds to the
second positive appearance of variable xi. By the construction, the neighborhoods of x2

i

and c1
j in V are identical. This forces a selection of {αi

0, β
i
0, x

1
i , x

2
i } in S from the variable

gadget corresponding to xi, which corresponding to setting xi to True. Hence, a locating
dominating set S of size at most k implies a satisfying assignment of ψ.

Sketch of Proof of Theorem 1. Note that since each component of G − V is of constant
order, the tree-width of G is O(|V |). By the asymptotic estimation of the central binomial
coefficient,

(2p
p

)
∼ 4p

√
π·p [2]. To get the upper bound of 2p, we scale down the asymptotic

function and have 4n ≤ 4p

2p = 2p. Since we choose the value of p as small as possible such
that 2p ≥ 4n, we choose p = log(n) + 3. This ensures us that p = O(log(n)). And hence,
|V | = O(log(n)) which implies tw(G) = O(logn). The remaining arguments are standard for
proving the conditional lower bound under ETH. ◀

4 Locating-Dominating Set Parameterized by the Solution Size

In this section, we study the parameterized complexity of Locating-Dominating Set when
parameterized by the solution size k. First, we formally prove that the problem admits a
kernel with O(2k) vertices, and hence a simple FPT algorithm running in time 2O(k2). Next,
we prove that both results mentioned above are optimal under the ETH.

▶ Proposition 7. Locating-Dominating Set admits a kernel with O(2k) vertices and an
algorithm running in time 2O(k2) + O(k logn).

Proof. Slater proved that for any graph G on n vertices with a locating-dominating set of
size k, we have n ≤ 2k + k − 1 [64]. Hence, if n > 2k + k − 1, we can return a trivial No
instance (this check takes time O(k logn)). Otherwise, we have a kernel with O(2k) vertices.
In this case, we can enumerate all subsets of vertices of size k, and for each of them, check in
quadratic time if it is a valid solution. Overall, this takes time

(
n
k

)
n2; since n ≤ 2k + k − 1,

this is
(2O(k)

k

)
· 2O(k), which is 2O(k2). ◀

To prove Theorem 2, we present a reduction that takes as input an instance ψ, with n

variables, of 3-SAT and returns an instance (G, k) of Locating-Dominating Set such
that |V (G)| = 2O(

√
n) and k = O(

√
n). By adding dummy variables in each set, we can

assume that
√
n is an even integer. Suppose the variables are named xi,j for i, j ∈ [

√
n]. The

reduction constructs graph G as follows:
It partitions the variables of ψ into

√
n many buckets X1, X2, . . . , X√

n such that each
bucket contains exactly

√
n many variables. Let Xi = {xi,j | j ∈ [

√
n]} for all i ∈ [

√
n].

D. Chakraborty, F. Foucaud, D. Majumdar, and P. Tale 19:11

Figure 2 Suppose an instance ψ of 3-SAT has n = 9 variables and 4 clauses. We do not show
the third variable bucket and explicit edges across A and bit-rep(A) for brevity.

For every Xi, it constructs set Ai of 2
√

n new vertices, Ai = {ai,ℓ | ℓ ∈ [2
√

n]}. Each
vertex in Ai corresponds to a unique assignment of variables in Xi. Let A be the
collection of all the vertices added in this step.
For every Xi, the reduction adds a path on three vertices b◦

i , b′
i, and b⋆

i with edges
(b◦

i , b
′
i) and (b′

i, b
⋆
i). Suppose B is the collection of all the vertices added in this step.

For every Xi, it makes b◦
i adjacent with every vertex in Ai.

For every clause Cj , the reduction adds a pair of vertices c◦
j , c

⋆
j . For a vertex ai,ℓ ∈ Ai

for some i ∈ [
√
n], and ℓ ∈ [2

√
n], if the assignment corresponding to vertex ai,ℓ satisfies

clause Cj , then it adds edge (ai,ℓ, c
◦
j).

The reduction adds a bit-representation gadget4 to locate set A. Once again, informally
speaking, it adds some supplementary vertices such that it is safe to assume these vertices
are present in a locating-dominating set, and they locate every vertex in A. More precisely:

First, set q := ⌈log(|A|)⌉ + 1. This value for q allows to uniquely represent each integer
in [|A|] by its bit-representation in binary (starting from 1 and not 0).
For every i ∈ [q], the reduction adds two vertices yi,1 and yi,2 and edge (yi,1, yi,2).
For every integer q′ ∈ [|A|], let bit(q′) denote the binary representation of q′ using q
bits. Connect ai,ℓ ∈ A with yi,1 if the ith bit in bit((i+ (ℓ− 1) ·

√
n)) is 1.

It adds two vertices y0,1 and y0,2, and edge (y0,1, y0,2). It also makes every vertex in
A adjacent with y0,1.
Let bit-rep(A) be the collection of the vertices yi,1 for all i ∈ {0} ∪ [q] added in this
step.

Finally, the reduction adds a bit-representation gadget to locate set C. However, it adds
the vertices in such a way that for any pair c◦

j , c
⋆
j , the supplementary vertices adjacent to

them are identical.

4 With the problem-specific adaptations, the bit-representation gadgets resembles the gadget used in [29].

ISAAC 2024

19:12 Tight (Double) Exponential Bounds for Identification Problems

The reduction sets p := ⌈log(|C|/2)⌉ + 1 and for every i ∈ [p], it adds two vertices zi,1
and zi,2 and edge (zi,1, zi,2).
For every integer j ∈ [|C|/2], let bit(j) denote the binary representation of j using q
bits. Connect c◦

j , c
⋆
j ∈ C with zi,1 if the ith bit in bit(j) is 1.

It adds two vertices z0,1 and z0,2, and edge (z0,1, z0,2). It also makes every vertex in C
adjacent with y0,1.
Let bit-rep(C) be the collection of the vertices zi,1 for all i ∈ {0} ∪ [p] added in this
step.

This completes the reduction. See Figure 2 for an illustration. Please check this. The
reduction sets

k = |B|/3 + (⌈log(|A|)⌉ + 1 + 1) + ⌈(log(|C|/2)⌉ + 1 + 1) +
√
n = O(

√
n)

as |B| = 3
√
n, |A| =

√
n · 2

√
n, and |C| = O(n3), and returns (G, k) as a reduced instance.

We present a brief overview of the proof of correctness in the reverse direction. Suppose
S is a locating-dominating set of graph G of size at most k. Note that b⋆

i , yi,2 and zi,2 are
pendant vertices for appropriate i. We argue that it is safe to consider that vertices b′

i, yi,1,
and zi,1 are in S. This already forces |B|/2 + ⌈log(|A|)⌉ + 2 + ⌈log(|C|/2)⌉ + 2 many vertices
in S. The remaining

√
n many vertices need to locate vertices in pairs (b◦

i , b⋆
i) and (c◦

j , c⋆
j)

for every i ∈ [
√
n] and j ∈ [|C|]. Note that the only vertices that are adjacent with b◦

i but
are not adjacent with b⋆

i are in Ai. Also, the only vertices that are adjacent with c◦
j but are

not adjacent with c⋆
j are in Ai and correspond to an assignment that satisfies Cj . Hence, any

locating-dominating set should contain at least one vertex in Ai (which will locate b◦
i from

b⋆
i) such that the union of these vertices resolves all pairs of the form (c◦

j , c⋆
j), and hence

corresponds to a satisfying assignment of ψ.

Proof of Theorem 2. Assume there exists an algorithm, say A, that takes as input an
instance (G, k) of Locating-Dominating Set and correctly concludes whether it is a
Yes-instance in time 2o(k2) · |V (G)|O(1). Consider algorithm B that takes as input an instance
ψ of 3-SAT, uses the reduction above to get an equivalent instance (G, k) of Locating-
Dominating Set, and then uses A as a subroutine. The correctness of algorithm B follows
from the correctness of the reduction and of algorithm A. From the description of the reduction
and the fact that k =

√
n, the running time of algorithm B is 2O(

√
n) + 2o(k2) · (2O(

√
n))O(1) =

2o(n). This, however, contradicts the ETH. Hence, Locating-Dominating Set does not
admit an algorithm with running time 2o(k2) · |V (G)|O(1) unless the ETH fails.

For the second part of Theorem 2, assume that such a kernelization algorithm exists.
Consider the following algorithm for 3-SAT. Given a 3-SAT formula on n variables, it uses
the above reduction to get an equivalent instance of (G, k) such that |V (G)| = 2O(

√
n) and k =

O(
√
n). Then, it uses the assumed kernelization algorithm to construct an equivalent instance

(H, k′) such that H has 2o(k) vertices and k′ ≤ k. Finally, it uses a brute-force algorithm,
running in time |V (H)|O(k′), to determine whether the reduced instance, equivalently the
input instance of 3-SAT, is a Yes-instance. The correctness of the algorithm follows from the
correctness of the respective algorithms and our assumption. The total running time of the
algorithm is 2O(

√
n)+(|V (G)|+k)O(1)+|V (H)|O(k′) = 2O(

√
n)+(2O(

√
n))O(1)+(2o(

√
n))O(

√
n) =

2o(n). This, however, contradicts the ETH. ◀

5 Test Cover Parameterization by the Solution Size

In this section, we present a reduction that is very close to the reduction used in the proof of
Theorem 2 to prove Theorem 3.

D. Chakraborty, F. Foucaud, D. Majumdar, and P. Tale 19:13

For notational convenience, instead of specifying an instance of Test Cover, we specify
the auxiliary graph as mentioned in the definition. The reduction takes as input an instance
ψ, with n variables and m clauses, of 3-SAT and returns a reduced instance (G, ⟨R,B⟩, k) of
Test Cover and k = O(log(n) + log(m)) = O(log(n)), using the sparcification lemma [44].
The reduction constructs graph G as follows.

The reduction adds some dummy variables to ensure that n = 22q for some positive
integer q which is power of 2. This ensures that r = log2(n) = 2q and s = n

r both are
integers. It partitions the variables of ψ into r many buckets X1, X2, . . . , Xr such that
each bucket contains s many variables. Let Xi = {xi,j | j ∈ [s]} for all i ∈ [r].
For every Xi, the reduction constructs a set Ai of 2s many red vertices, that is, Ai =
{ai,ℓ | ℓ ∈ [2s]}. Each vertex in Ai corresponds to a unique assignment of the variables in
Xi. Moreover, let A = ∪r

i=1Ai.
Corresponding to each Xi, let the reduction add a blue vertex bi and the edges (bi, ai,ℓ)
for all i ∈ [r] and ℓ ∈ [2s]. Let B = {bi | i ∈ [r]}.
For every clause Cj , the reduction adds a pair of blue vertices c◦

j , c
⋆
j . For a vertex ai,ℓ ∈ Ai

with i ∈ [r], and ℓ ∈ [2s], if the assignment corresponding to vertex ai,ℓ satisfies the clause
Cj , then the reduction adds the edge (ai,ℓ, c

◦
j). Let C = {c◦

j , c
⋆
j | j ∈ [m]}.

The reduction adds a bit-representation gadget to locate set C. However, it adds the
vertices in such a way that for any pair c◦

j , c
⋆
j , the supplementary vertices adjacent to

them are identical.
The reduction sets p := ⌈log(m)⌉ + 1 and for every i ∈ [p], it adds two vertices, a red
vertex zi,1 and a blue vertex zi,2, and edge (zi,1, zi,2).
For every integer j ∈ [m], let bit(j) denote the binary representation of j using p bits.
Connect c◦

j , c
⋆
j ∈ C with zi,1 if the ith bit in bit(j) is 1.

It add two vertices z0,1 and z0,2, and edge (z0,1, z0,2). It also makes every vertex in C
adjacent with z0,1. Let bit-rep(C) be the collection of all the vertices added in this
step.

The reduction adds an isolated blue vertex b0.

This completes the construction. The reduction sets k = r+ 1
2 |bit-rep(C)| = O(log(n))+

O(log(m)) = O(log(n)), and returns (G, ⟨R,B⟩, k) as an instance of Test Cover. We refer
to Figure 3 for an illustration.

We present a brief overview of the proof of correctness for the backward direction (⇐).
Suppose R′ is a set of tests of the graph G of order at most k. Since b0 is an isolated blue
vertex of G, it implies that the set R′ dominates and locates every pair of vertices in B \ {b0}.
The blue vertices in bit-rep(C) are pendant vertices that are adjacent with red vertices in
bit-rep(C). Hence, all the red vertices in bit-rep(C) are in R′. The remaining r many
vertices need to locate vertices in pairs (c◦

j , c⋆
j), for every j ∈ [m], which have the same

neighbourhood in bit-rep(C). To do so, note that the only vertices adjacent to c◦
j and not

to c⋆
j are in Ai and corresponds to an assignment satisfying clause Cj . Hence, for every

j ∈ [m], the set R′ should contain at least one vertex {ai,ℓ} in order to locate c◦
j , c⋆

j , where
(ai,ℓ, c

◦
j) is an edge for some i ∈ [r] and ℓ ∈ [2s]. Moreover, in order to dominate the vertices

of B, for each i ∈ [r], the set R′ must have a vertex from each Ai. Hence, the set R′ is forced
to contain exactly one vertex from each Ai. Concatenating the assignments corresponding
to each ai,ℓ in R′, we thus obtain a satisfying assignment of ψ. Proof of Theorem 3 follows
from the arguments that are standard to proving such lower bounds.

ISAAC 2024

19:14 Tight (Double) Exponential Bounds for Identification Problems

Figure 3 An illustrative example of the graph constructed by the reduction in Section 5. Red
(squared) nodes denote the tests whereas blue (filled circle) nodes the elements.

6 Conclusion

We presented several results that advance our understanding of the algorithmic complexity of
Locating-Dominating Set and Test Cover, which we showed to have very interesting
and rare parameterized complexities. Moreover, we believe the techniques used in this
article can be applied to other identification problems to obtain relatively rare conditional
lower bounds. The process of establishing such lower bounds boils down to designing
bit-representation gadgets and set-representation gadgets for the problem in question.

Apart from the broad question of designing such lower bounds for other identific-
ation problems, we mention an interesting problem left open by our work. Can our
tight double-exponential lower bound for Locating-Dominating Set parameterized by
treewidth/treedepth be applied to the feedback vertex set number? The question could also
be studied for other related parameters.

References

1 Akanksha Agrawal, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Split contraction:
The untold story. ACM Trans. Comput. Theory, 11(3):18:1–18:22, 2019. doi:10.1145/3319909.

2 Ian Anderson. Combinatorics of Finite Sets. Oxford University Press, 1987.
3 Gabriela R. Argiroffo, Silvia M. Bianchi, Yanina Lucarini, and Annegret Katrin Wagler. Linear-

time algorithms for three domination-based separation problems in block graphs. Discret.
Appl. Math., 281:6–41, 2020. doi:10.1016/J.DAM.2019.08.001.

4 László Babai. On the complexity of canonical labelling of strongly regular graphs. SIAM J.
Comput., 9(1):212–216, 1980. doi:10.1137/0209018.

5 Florian Barbero, Lucas Isenmann, and Jocelyn Thiebaut. On the distance identifying set meta-
problem and applications to the complexity of identifying problems on graphs. Algorithmica,
82(8):2243–2266, 2020. doi:10.1007/S00453-020-00674-X.

https://doi.org/10.1145/3319909
https://doi.org/10.1016/J.DAM.2019.08.001
https://doi.org/10.1137/0209018
https://doi.org/10.1007/S00453-020-00674-X

D. Chakraborty, F. Foucaud, D. Majumdar, and P. Tale 19:15

6 Manu Basavaraju, Mathew C. Francis, M. S. Ramanujan, and Saket Saurabh. Partially
polynomial kernels for set cover and test cover. SIAM J. Discret. Math., 30(3):1401–1423,
2016. doi:10.1137/15M1039584.

7 Piotr Berman, Bhaskar DasGupta, and Ming-Yang Kao. Tight approximability results
for test set problems in bioinformatics. J. Comput. Syst. Sci., 71(2):145–162, 2005. doi:
10.1016/J.JCSS.2005.02.001.

8 Ivan Bliznets and Markus Hecher. Tight double exponential lower bounds. In Xujin Chen and
Bo Li, editors, Theory and Applications of Models of Computation - 18th Annual Conference,
TAMC 2024, Hong Kong, China, May 13-15, 2024, Proceedings, volume 14637 of Lecture Notes
in Computer Science, pages 124–136. Springer, 2024. doi:10.1007/978-981-97-2340-9_11.

9 John A Bondy. Induced subsets. Journal of Combinatorial Theory, Series B, 12(2):201–202,
1972.

10 Koen M. J. De Bontridder, Bjarni V. Halldórsson, Magnús M. Halldórsson, Cor A. J. Hurkens,
Jan Karel Lenstra, R. Ravi, and Leen Stougie. Approximation algorithms for the test cover
problem. Math. Program., 98(1-3):477–491, 2003. doi:10.1007/S10107-003-0414-6.

11 Márcia R. Cappelle, Guilherme de C. M. Gomes, and Vinícius Fernandes dos Santos. Parameter-
ized algorithms for locating-dominating sets. CoRR, abs/2011.14849, 2020. arXiv:2011.14849.

12 Márcia R. Cappelle, Guilherme C. M. Gomes, and Vinícius Fernandes dos Santos. Paramet-
erized algorithms for locating-dominating sets. In Carlos E. Ferreira, Orlando Lee, and
Flávio Keidi Miyazawa, editors, Proceedings of the XI Latin and American Algorithms,
Graphs and Optimization Symposium, LAGOS 2021, Online Event / São Paulo, Brazil,
May 2021, volume 195 of Procedia Computer Science, pages 68–76. Elsevier, 2021. doi:
10.1016/J.PROCS.2021.11.012.

13 Dipayan Chakraborty, Anni Hakanen, and Tuomo Lehtilä. The n/2-bound for locating-
dominating sets in subcubic graphs, 2024. arXiv:2406.19278.

14 Jérémie Chalopin, Victor Chepoi, Fionn Mc Inerney, and Sébastien Ratel. Non-clashing
teaching maps for balls in graphs. CoRR, abs/2309.02876, 2023. doi:10.48550/arXiv.2309.
02876.

15 L. Sunil Chandran, Davis Issac, and Anreas Karrenbauer. On the parameterized complexity
of biclique cover and partition. In Jiong Guo and Danny Hermelin, editors, 11th International
Symposium on Parameterized and Exact Computation, IPEC 2016, volume 63 of LIPIcs, pages
11:1–11:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPICS.
IPEC.2016.11.

16 Emmanuel Charbit, Irène Charon, Gérard D. Cohen, Olivier Hudry, and Antoine Lobstein.
Discriminating codes in bipartite graphs: bounds, extremal cardinalities, complexity. Advances
in Mathematics of Communication, 2(4):403–420, 2008. doi:10.3934/AMC.2008.2.403.

17 Irène Charon, Gérard D. Cohen, Olivier Hudry, and Antoine Lobstein. Discriminating codes in
(bipartite) planar graphs. Eur. J. Comb., 29(5):1353–1364, 2008. doi:10.1016/J.EJC.2007.
05.006.

18 Bogdan S. Chlebus and Sinh Hoa Nguyen. On finding optimal discretizations for two attributes.
In Proceedings of the First International Conference on Rough Sets and Current Trends in
Computing, volume 1424, pages 537–544, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.
doi:10.1007/3-540-69115-4_74.

19 Vasek Chvátal. Mastermind. Combinatorica, 3(3):325–329, 1983. doi:10.1007/BF02579188.
20 C. Colbourn, P. J. Slater, and L. K. Stewart. Locating-dominating sets in series-parallel

networks. Congressus Numerantium, 56:135–162, 1987.
21 Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite

graphs. Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.
22 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.

Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

ISAAC 2024

https://doi.org/10.1137/15M1039584
https://doi.org/10.1016/J.JCSS.2005.02.001
https://doi.org/10.1016/J.JCSS.2005.02.001
https://doi.org/10.1007/978-981-97-2340-9_11
https://doi.org/10.1007/S10107-003-0414-6
https://arxiv.org/abs/2011.14849
https://doi.org/10.1016/J.PROCS.2021.11.012
https://doi.org/10.1016/J.PROCS.2021.11.012
https://arxiv.org/abs/2406.19278
https://doi.org/10.48550/arXiv.2309.02876
https://doi.org/10.48550/arXiv.2309.02876
https://doi.org/10.4230/LIPICS.IPEC.2016.11
https://doi.org/10.4230/LIPICS.IPEC.2016.11
https://doi.org/10.3934/AMC.2008.2.403
https://doi.org/10.1016/J.EJC.2007.05.006
https://doi.org/10.1016/J.EJC.2007.05.006
https://doi.org/10.1007/3-540-69115-4_74
https://doi.org/10.1007/BF02579188
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H

19:16 Tight (Double) Exponential Bounds for Identification Problems

23 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.
doi:10.1007/S002249910009.

24 Robert Crowston, Gregory Z. Gutin, Mark Jones, Gabriele Muciaccia, and Anders Yeo.
Parameterizations of test cover with bounded test sizes. Algorithmica, 74(1):367–384, 2016.
doi:10.1007/S00453-014-9948-7.

25 Robert Crowston, Gregory Z. Gutin, Mark Jones, Saket Saurabh, and Anders Yeo. Para-
meterized study of the test cover problem. In Branislav Rovan, Vladimiro Sassone, and
Peter Widmayer, editors, Mathematical Foundations of Computer Science 2012 - 37th In-
ternational Symposium, MFCS 2012, Bratislava, Slovakia, August 27-31, 2012. Proceed-
ings, volume 7464 of Lecture Notes in Computer Science, pages 283–295. Springer, 2012.
doi:10.1007/978-3-642-32589-2_27.

26 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

27 Marek Cygan, Marcin Pilipczuk, and Michal Pilipczuk. Known algorithms for edge clique
cover are probably optimal. SIAM J. Comput., 45(1):67–83, 2016. doi:10.1137/130947076.

28 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012. URL: https://dblp.org/rec/books/daglib/0030488.bib.

29 Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Incompressibility through colors and
ids. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas,
and Wolfgang Thomas, editors, Automata, Languages and Programming, 36th International
Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, volume
5555 of Lecture Notes in Computer Science, pages 378–389. Springer, 2009. doi:10.1007/
978-3-642-02927-1_32.

30 Johannes Klaus Fichte, Markus Hecher, Michael Morak, Patrick Thier, and Stefan Woltran.
Solving projected model counting by utilizing treewidth and its limits. Artif. Intell., 314:103810,
2023. doi:10.1016/J.ARTINT.2022.103810.

31 Johannes Klaus Fichte, Markus Hecher, Michael Morak, and Stefan Woltran. Exploit-
ing treewidth for projected model counting and its limits. In Theory and Applications
of Satisfiability Testing - SAT 2018 - 21st International Conference, SAT 2018, Proc.,
volume 10929 of Lecture Notes in Computer Science, pages 165–184. Springer, 2018. doi:
10.1007/978-3-319-94144-8_11.

32 Jacob Focke, Fabian Frei, Shaohua Li, Dániel Marx, Philipp Schepper, Roohani Sharma, and
Karol Wegrzycki. Hitting meets packing: How hard can it be? In 32nd Annual European
Symposium on Algorithms, ESA 2024, September 2-4, 2024, Royal Holloway, London, United
Kingdom, volume 308 of LIPIcs, pages 55:1–55:21. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2024. doi:10.4230/LIPICS.ESA.2024.55.

33 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi.
Clique-width III: hamiltonian cycle and the odd case of graph coloring. ACM Trans. Algorithms,
15(1):9:1–9:27, 2019. doi:10.1145/3280824.

34 Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory
of parameterized preprocessing. Cambridge University Press, 2019.

35 Florent Foucaud. Decision and approximation complexity for identifying codes and locating-
dominating sets in restricted graph classes. J. Discrete Algorithms, 31:48–68, 2015. doi:
10.1016/J.JDA.2014.08.004.

36 Florent Foucaud, Esther Galby, Liana Khazaliya, Shaohua Li, Fionn Mc Inerney, Roohani
Sharma, and Prafullkumar Tale. Problems in NP can admit double-exponential lower bounds
when parameterized by treewidth or vertex cover. In Karl Bringmann, Martin Grohe, Gabriele
Puppis, and Ola Svensson, editors, 51st International Colloquium on Automata, Languages,
and Programming, ICALP 2024, July 8-12, 2024, Tallinn, Estonia, volume 297 of LIPIcs,
pages 66:1–66:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/
LIPICS.ICALP.2024.66.

https://doi.org/10.1007/S002249910009
https://doi.org/10.1007/S00453-014-9948-7
https://doi.org/10.1007/978-3-642-32589-2_27
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/130947076
https://dblp.org/rec/books/daglib/0030488.bib
https://doi.org/10.1007/978-3-642-02927-1_32
https://doi.org/10.1007/978-3-642-02927-1_32
https://doi.org/10.1016/J.ARTINT.2022.103810
https://doi.org/10.1007/978-3-319-94144-8_11
https://doi.org/10.1007/978-3-319-94144-8_11
https://doi.org/10.4230/LIPICS.ESA.2024.55
https://doi.org/10.1145/3280824
https://doi.org/10.1016/J.JDA.2014.08.004
https://doi.org/10.1016/J.JDA.2014.08.004
https://doi.org/10.4230/LIPICS.ICALP.2024.66
https://doi.org/10.4230/LIPICS.ICALP.2024.66

D. Chakraborty, F. Foucaud, D. Majumdar, and P. Tale 19:17

37 Florent Foucaud, George B. Mertzios, Reza Naserasr, Aline Parreau, and Petru Valicov.
Identification, location-domination and metric dimension on interval and permutation graphs.
I. bounds. Theoretical Computer Science, 668:43–58, 2017. doi:10.1016/J.TCS.2017.01.006.

38 Florent Foucaud, George B Mertzios, Reza Naserasr, Aline Parreau, and Petru Valicov.
Identification, location-domination and metric dimension on interval and permutation
graphs. II. algorithms and complexity. Algorithmica, 78(3):914–944, 2017. doi:10.1007/
S00453-016-0184-1.

39 M. R. Garey and David S. Johnson. Computers and Intractability – A guide to NP-completeness.
W.H. Freeman and Company, 1979.

40 Sylvain Gravier, Ralf Klasing, and Julien Moncel. Hardness results and approximation
algorithms for identifying codes and locating-dominating codes in graphs. Algorithmic Oper.
Res., 3(1), 2008. URL: http://journals.hil.unb.ca/index.php/AOR/article/view/2808.

41 Gregory Z. Gutin, Gabriele Muciaccia, and Anders Yeo. (non-)existence of polynomial kernels
for the test cover problem. Inf. Process. Lett., 113(4):123–126, 2013. doi:10.1016/J.IPL.
2012.12.008.

42 Tesshu Hanaka, Noleen Köhler, and Michael Lampis. Core stability in additively separable
hedonic games of low treewidth, 2024. arXiv:2402.10815, doi:10.48550/arXiv.2402.10815.

43 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/JCSS.2000.1727.

44 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/JCSS.2001.
1774.

45 Klaus Jansen, Kim-Manuel Klein, and Alexandra Lassota. The double exponential runtime
is tight for 2-stage stochastic ILPs. Math. Program., 197:1145–1172, 2023. doi:10.1007/
S10107-022-01837-0.

46 D. Jean and A Lobstein. Watching systems, identifying, locating-dominating and discriminating
codes in graphs: a bibliography, 2024. Published electronically at https://dragazo.github.
io/bibdom/main.pdf.

47 Dusan Knop, Michal Pilipczuk, and Marcin Wrochna. Tight complexity lower bounds for integer
linear programming with few constraints. ACM Trans. Comput. Theory, 12(3):19:1–19:19,
2020. doi:10.1145/3397484.

48 Lukasz Kowalik, Alexandra Lassota, Konrad Majewski, Michal Pilipczuk, and Marek Soko-
lowski. Detecting points in integer cones of polytopes is double-exponentially hard. In
2024 Symposium on Simplicity in Algorithms (SOSA), pages 279–285, 2024. doi:10.1137/1.
9781611977936.25.

49 Stefan Kratsch, Geevarghese Philip, and Saurabh Ray. Point line cover: The easy kernel is
essentially tight. ACM Trans. Algorithms, 12(3):40:1–40:16, 2016. doi:10.1145/2832912.

50 M. Künnemann, F. Mazowiecki, L. Schütze, H. Sinclair-Banks, and K. Węgrzycki. Coverability
in VASS Revisited: Improving Rackoff’s Bound to Obtain Conditional Optimality. In 50th
International Colloquium on Automata, Languages, and Programming (ICALP 2023), volume
261 of Leibniz International Proceedings in Informatics (LIPIcs), pages 131:1–131:20, Dagstuhl,
Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPICS.
ICALP.2023.131.

51 Michael Lampis, Stefan Mengel, and Valia Mitsou. QBF as an alternative to Courcelle’s
theorem. In Theory and Applications of Satisfiability Testing - SAT 2018 - 21st International
Conference, SAT 2018, volume 10929 of Lecture Notes in Computer Science, pages 235–252.
Springer, 2018. doi:10.1007/978-3-319-94144-8_15.

52 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1–13:30, 2018.
doi:10.1145/3170442.

ISAAC 2024

https://doi.org/10.1016/J.TCS.2017.01.006
https://doi.org/10.1007/S00453-016-0184-1
https://doi.org/10.1007/S00453-016-0184-1
http://journals.hil.unb.ca/index.php/AOR/article/view/2808
https://doi.org/10.1016/J.IPL.2012.12.008
https://doi.org/10.1016/J.IPL.2012.12.008
https://arxiv.org/abs/2402.10815
https://doi.org/10.48550/arXiv.2402.10815
https://doi.org/10.1006/JCSS.2000.1727
https://doi.org/10.1006/JCSS.2001.1774
https://doi.org/10.1006/JCSS.2001.1774
https://doi.org/10.1007/S10107-022-01837-0
https://doi.org/10.1007/S10107-022-01837-0
https://dragazo.github.io/bibdom/main.pdf
https://dragazo.github.io/bibdom/main.pdf
https://doi.org/10.1145/3397484
https://doi.org/10.1137/1.9781611977936.25
https://doi.org/10.1137/1.9781611977936.25
https://doi.org/10.1145/2832912
https://doi.org/10.4230/LIPICS.ICALP.2023.131
https://doi.org/10.4230/LIPICS.ICALP.2023.131
https://doi.org/10.1007/978-3-319-94144-8_15
https://doi.org/10.1145/3170442

19:18 Tight (Double) Exponential Bounds for Identification Problems

53 Daniel Lokshtanov, Saket Saurabh, Subhash Suri, and Jie Xue. An ETH-tight algorithm
for multi-team formation. In 41st IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2021, volume 213 of LIPIcs, pages
28:1–28:9. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.
FSTTCS.2021.28.

54 Dániel Marx and Valia Mitsou. Double-exponential and triple-exponential bounds for choos-
ability problems parameterized by treewidth. In 43rd International Colloquium on Automata,
Languages, and Programming (ICALP 2016), volume 55 of LIPIcs, pages 28:1–28:15, 2016.
doi:10.4230/LIPICS.ICALP.2016.28.

55 Bernard M. E. Moret and Henry D. Shapiro. On minimizing a set of tests. SIAM Journal on
Scientific and Statistical Computing, 6(4):983–1003, 1985.

56 Tobias Müller and Jean-Sébastien Sereni. Identifying and locating-dominating codes in
(random) geometric networks. Comb. Probab. Comput., 18(6):925–952, 2009. doi:10.1017/
S0963548309990344.

57 Marcin Pilipczuk and Manuel Sorge. A double exponential lower bound for the distinct vectors
problem. Discret. Math. Theor. Comput. Sci., 22(4), 2020. doi:10.23638/DMTCS-22-4-7.

58 Michal Pilipczuk. Problems parameterized by treewidth tractable in single exponential time: A
logical approach. In Mathematical Foundations of Computer Science 2011 - 36th International
Symposium, MFCS 2011, Proceedings, volume 6907 of Lecture Notes in Computer Science,
pages 520–531. Springer, 2011. doi:10.1007/978-3-642-22993-0_47.

59 N.S.V. Rao. Computational complexity issues in operative diagnosis of graph-based systems.
IEEE Transactions on Computers, 42(4):447–457, 1993. doi:10.1109/12.214691.

60 Alfred Rényi. On random generating elements of a finite boolean algebra. Acta Scientiarum
Mathematicarum Szeged, 22:75–81, 1961.

61 Ignasi Sau and Uéverton dos Santos Souza. Hitting forbidden induced subgraphs on bounded
treewidth graphs. Inf. Comput., 281:104812, 2021. doi:10.1016/J.IC.2021.104812.

62 András Sebö and Eric Tannier. On metric generators of graphs. Mathematics of Operations
Research, 29(2):383–393, 2004. doi:10.1287/MOOR.1030.0070.

63 Peter J. Slater. Domination and location in acyclic graphs. Networks, 17(1):55–64, 1987.
doi:10.1002/net.3230170105.

64 Peter J. Slater. Dominating and reference sets in a graph. Journal of Mathematical and
Physical Sciences, 22(4):445–455, 1988.

65 Jukka Suomela. Approximability of identifying codes and locating-dominating codes. Inf.
Process. Lett., 103(1):28–33, 2007. doi:10.1016/J.IPL.2007.02.001.

66 P. Tale. Double exponential lower bound for telephone broadcast, 2024. arXiv:2403.03501,
doi:10.48550/arXiv.2403.03501.

67 Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming on
tree decompositions using generalised fast subset convolution. In Amos Fiat and Peter Sanders,
editors, Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark,
September 7-9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer Science, pages
566–577. Springer, 2009. doi:10.1007/978-3-642-04128-0_51.

https://doi.org/10.4230/LIPICS.FSTTCS.2021.28
https://doi.org/10.4230/LIPICS.FSTTCS.2021.28
https://doi.org/10.4230/LIPICS.ICALP.2016.28
https://doi.org/10.1017/S0963548309990344
https://doi.org/10.1017/S0963548309990344
https://doi.org/10.23638/DMTCS-22-4-7
https://doi.org/10.1007/978-3-642-22993-0_47
https://doi.org/10.1109/12.214691
https://doi.org/10.1016/J.IC.2021.104812
https://doi.org/10.1287/MOOR.1030.0070
https://doi.org/10.1002/net.3230170105
https://doi.org/10.1016/J.IPL.2007.02.001
https://arxiv.org/abs/2403.03501
https://doi.org/10.48550/arXiv.2403.03501
https://doi.org/10.1007/978-3-642-04128-0_51

	1 Introduction
	2 Preliminaries
	3 Locating-Dominating Set Parameterized by Treewidth
	4 Locating-Dominating Set Parameterized by the Solution Size
	5 Test Cover ParameterizationParameterization by the Solution Size
	6 Conclusion

