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Abstract
In this paper, we study a multicut-mimicking network for a hypergraph over terminals T with a
parameter c. It is a hypergraph preserving the minimum multicut values of any set of pairs over T

where the value is at most c. This is a new variant of the multicut-mimicking network of a graph
in [Wahlström ICALP’20], which introduces a parameter c and extends it to handle hypergraphs.
Additionally, it is a natural extension of the connectivity-c mimicking network introduced by
[Chalermsook et al. SODA’21] and [Jiang et al. ESA’22] that is a (hyper)graph preserving the
minimum cut values between two subsets of terminals where the value is at most c.

We propose an algorithm for a hypergraph that returns a multicut-mimicking network over
terminals T with a parameter c having |T |cO(r log c) hyperedges in p1+o(1) + |T |(cr log n)Õ(rc)m time,
where p and r are the total size and the rank, respectively, of the hypergraph.
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1 Introduction

Graph sparsification is a fundamental tool in theoretical computer science. By reducing
the size of a graph while preserving specific properties, such as the value of an objective
function or its approximation, graph sparsification significantly enhances computational
efficiency. This is particularly crucial for practical applications with limited resources and
for handling large-scale data in real-world problems. Due to these advantages, various types
of sparsification results have been presented over the decades, including spanners [4, 9], flow
sparsification [6, 15], and cut sparsification [5]. Additionally, their applications have been
widely studied, such as in designing dynamic algorithms [11]. In this paper, we focus on
graph sparsification specifically tailored for hypergraph separation and cut problems.

Hypergraph separation and cut problems have garnered significant attention due to
their extensive applications and theoretical challenges. These problems are particularly
compelling because hypergraphs offer more accurate modeling of many complex real-world
scenarios compared to normal graphs. Examples include VLSI layout [1], data-pattern-
based clustering [23], and social tagging networks [25]. The transition from graph to
hypergraph separation problems opens up new avenues for research, driven by the need
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to address the unique properties and complexities inherent in hypergraphs. Researchers
have thus increasingly focused on developing graph algorithms and theoretical frameworks
for hypergraph problems, such as the small set expansion problem in hypergraphs [19],
spectral sparsification in hypergraphs [2, 13], and connectivity-c mimicking problem in
hypergraphs [10]. This growing interest underscores the critical importance of hypergraph
separation and cut problems in both theoretical and practical applications.

One of the key problems in (hyper)graph sparsification is the mimicking problem. It aims
to find a graph that preserves minimum cut sizes between any two subsets of vertices called
terminals. A cut between two sets of vertices is a set of edges whose removal disconnects the
given two sets. Kratsch et al. [14] showed that there is a mimicking network with O(τ3) edges,
where τ is the number of edges incident to terminals. Chalermsook et al. [3] introduced a
constraint version, called connectivity-c mimicking problem, that aims to preserve minimum
cut sizes between every two subsets of terminals where the size is at most c, and they showed
that there is such a graph with O(kc4) edges, which was later improved to O(kc3) [16], where
k is the number of terminals. This result was extended to hypergraphs by Jiang et al. [10].

A crucial variant of the mimicking problem is the multicut-mimicking problem. A multicut
of pairs of vertices is a set of (hyper)edges whose removal disconnects each given pair. Studies
have shown that the multicut problem is highly beneficial in various applications, including
network design, optimization, and security, where maintaining specific connectivity while
minimizing resources is necessary compared to cut problems [12]. It is already known that
the problem is NP-hard even for graphs [8, 20]. A multicut-mimicking network for a set
of terminals in a (hyper)graph is a (hyper)graph that preserves the size of the minimum
multicut for any set of pairs of terminals. Kratsch et al. [14] proposed a method to obtain
a multicut-mimicking network by contracting edges in a graph except at most τO(k) edges,
where k and τ are the numbers of terminals and incident edges to terminals, respectively.
Wahlström [24] refined this method and reduced the number of edges to τO(log τ).

Unlike the mimicking problem, there is no existing result for the constraint version
of multicut-mimicking network problem, even for graphs. We further study the multicut-
mimicking problem by introducing a parameter c. Precisely, we present an algorithm to
compute a hypergraph, that preserves the size of the minimum multicut for any set of pairs
of terminals where the size is at most c, with a linear size in the number of terminals while
the previous best-known result for multicut-mimicking network, without the parameter c,
has an exponential size [14]. It will allow for more refined control over the sparsification
process, enabling the construction of smaller and more efficient networks. For instance, this
notion in mimicking problem was utilized for a dynamic connectivity problem [11].

Our result. In this paper, we study vertex sparsifiers for multiway connectivity with a
parameter c > 0. Our instance (G, T, c) consists of an undirected hypergraph G, terminal
set T ⊆ V (G), and a parameter c. Precisely, we construct a hypergraph that preserves
minimum multicut values over T where the value is at most c. It is the first result for the
multicut-mimicking networks adapting the parameter c even for graphs.

Previously, the best-known multicut-mimicking network had a quasipolynomial size in the
total degree of terminals in T [24], specifically |∂T |O(log |∂T |). By introducing the parameter
c, we demonstrate that a multicut-mimicking network for (G, T, c) exists with a size linear
in |T |. This allows us to utilize the near-linear time framework of Jiang et al. [10] to find
a mimicking network using the expander decomposition of Long and Saranurak [18]. Our
result is summarized in Theorem 1. Here, m = |E(G)| and r is the rank of G.
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▶ Theorem 1. For (G, T, c), we can compute a multicut-mimicking network of at most
kcO(r log c) hyperedges in p1+o(1)+k(cr log c log n)O(rc)m time, where k = |T | and p =

∑
e∈E |e|.

Outline. Our work extends the framework from connectivity-c mimicking networks for
hypergraphs, introduced by Jiang et al. [10], to multicut-mimicking networks, as well as adapt-
ing methods from multicut-mimicking networks for graphs, introduced by Wahlström [24], to
hypergraphs with a parameter c. While we broadly follow the previous approaches, we extend
the concepts and methods used in the previous studies to fit the multicut-mimicking problem
in hypergraphs with the parameter c. This extension allows us to handle the complexities of
hypergraphs effectively.

We introduce notions used in this paper in Section 2 and illustrate an efficient algorithm
to compute a small-sized multicut-mimicking network outlined in Theorem 1 in Section 3.
We give an upper bound for the size of minimal multicut-mimicking networks of hypergraphs
in Section 4, which is a witness for the performances of our algorithm outlined in Theorem 1.

2 Preliminaries

A hypergraph G is a pair (V (G), E(G)), where V (G) denotes the set of vertices and E(G) is
a collection of subsets of V (G) referred to as hyperedges. If the context is clear, we write V

and E. The rank of G is defined as the size of its largest hyperedge. For a vertex v ∈ V , a
hyperedge e is said to be incident to v if v ∈ e. For a vertex set X ⊂ V , let ∂GX denote the
set of hyperedges in E containing at least one vertex from X and one from V \ X, and let
E(X) denote the set of hyperedges fully contained in X. Additionally, we let G/e denote the
contraction of a hyperedge e in G obtained by merging all vertices in e into a single vertex
and modifying the other hyperedges accordingly. A path in a hypergraph is defined as a
sequence of hyperedges such that any two consecutive hyperedges contain a common vertex.

Consider a partition (X1, . . . , Xs) of a vertex set X ⊆ V . We call each subset Xi a
component of this partition. Additionally, the cut of (X1, . . . , Xs) in G is defined as the
set of hyperedges of G intersecting two different components. We let [a] = {1, . . . , a} and
[a, b] = {a, . . . , b} for integers a < b. Furthermore, let |X| denote the number of elements of
a set X. For a hyperedge e ∈ E(G), we let |e| to denote the number of vertices in e.

In this paper, an instance (G, T, c) consists of a hypergraph G, a set T ⊆ V (G), and a
positive constant c. We refer to the vertices in T as terminals. For a set R of pairs of T , a
multicut of R in G is a set of hyperedges F ⊂ E(G) such that every connected component
in G \ F contains at most one element of every pair {t, t′} ∈ R. We construct a multicut-
mimicking network H of (G, T, c) that is a hypergraph obtained from G by contraction
of hyperedges which preserves the size of minimum multicut for all set R of pairs over T

where the size is at most c. Precisely, if a multicut F of R exists in G with |F | ≤ c, then a
multicut F ′ of R exists in H with |F ′| ≤ |F |. We say H is minimal if no contraction H/e is
a multicut-mimicking network of (G, T, c). Analogously, we define a minimal instance. We
address the multicut-mimicking problem by utilizing multiway cuts.

2.1 Multiway Cuts and Essential Edges
We refer to a partition of terminals T as a terminal partition. For a terminal partition
T , a hyperedge set F is termed a multiway cut of T if any two terminals from different
components in T are not connected in G \ F . Furthermore, if there is no multiway cut of
size less than |F |, then F is called a minimum multiway cut of T in G. Let min-cutG(T )

ISAAC 2024
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(a) (b) (c)

e

Figure 1 Sketch of Lemma 3. For a multiway cut F of a terminal partition T and X ⊂ V ,
illustrated in (a), let T ′ be the terminal partition of TX in (Ĝ[X], TX , cX) according to G \ F . Then
we can modify F as excluding e if e is non-essential in (Ĝ[X], TX , cX), illustrated in (b-c).

denote the minimum multiway cut size of the partition in G. A hyperedge e ∈ E(G) is said
to be essential for (G, T, c) if there exists a terminal partition T with min-cutG(T ) ≤ c such
that every minimum multiway cut of T in G contains e. Otherwise, e is non-essential.

Multicuts and multiway cuts in graphs are closely related [24, Proposition 2.2]. We observe
that this close relation also holds in hypergraphs. Briefly, a contraction of a non-essential
hyperedge is a multicut-mimicking network by Lemma 2, proved in the full version.

▶ Lemma 2. For a hyperedge e of G, G/e is a multicut-mimicking network for (G, T, c) if
and only if e is non-essential for (G, T, c).

A multicut-mimicking network is minimal if and only if every hyperedge is essential. Note
that we cannot contract multiple non-essential hyperedges simultaneously. This is because
even if two hyperedges e and e′ are non-essential in (G, T, c), the contraction G/{e, e′} might
not be a multicut-mimicking network of (G, T, c) even for a graph G, not a hypergraph. In this
paper, we construct a multicut-mimicking network by finding and contracting non-essential
hyperedges one by one.

2.2 Restricted Hypergraphs and Subinstances
The subinstance (Ĝ[X], TX , cX) of (G, T, c) for X ⊂ V (G) is constructed as follows. Refer to
Figure 1 (a-b). For each hyperedge e ∈ ∂X, we insert a vertex ae, and we choose an arbitrary
terminal te in e ∩ (X ∩ T ). If no such terminal exists, we insert a new vertex te. We refer to
ae, te as the anchored terminals of e, and (e ∩ X) ∪ {ae, te} as the restricted hyperedge of e,
denoted by eX . We obtain Ĝ[X] from G through the following: i) add the anchored terminals
of the hyperedges in ∂X, ii) replace the hyperedges in ∂X with their restricted hyperedges,
and iii) delete the vertices V \ X and the hyperedges E(V \ X). We call it the restricted
hypergraph of G for X. Let TX denote the set of all terminals in T ∩ X and the anchored
terminals, and cX = min{c, |TX |}. All subinstances preserve all essential hyperedges in the
original instance by Lemma 3. Figure 1 sketches its proof, and details are in the full version.

▶ Lemma 3. If a hyperedge e is non-essential in a subinstance (Ĝ[X], TX , cX), then e is
also non-essential in the original instance (G, T, c). Furthermore, e is not in ∂GX.

3 Efficient Algorithm for Computing Multicut-Mimicking Networks

In this section, we design an algorithm to compute a minimal multicut-mimicking network
for (G, T, c), where G is a hypergraph. We broadly follow the approach of Jiang et al. [10].
Since their original algorithm was designed for mimicking networks, not multicut-mimicking
networks, we need to modify their algorithm. First, we introduce their algorithm briefly.
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Jiang et al. [10] designed an algorithm to find a connectivity-c mimicking network for
hypergraphs using the expander decomposition of Long and Saranurak [18]. Precisely, they
designed an algorithm to find a connectivity-c mimicking network of size linear in |T | for an
expander G with terminals T , and then, they extended it for a general hypergraph using the
expander decomposition. For a parameter ϕ > 0, a hypergraph G (and instance (G, T, c)) is
called a ϕ-expander if either E(X) or E(V \ X) has at most ϕ−1|∂X| hyperedges for any
vertex set X ⊂ V (G). The following explains the key idea of their and our algorithm.

Recall that contracting a non-essential hyperedge obtains a smaller mimicking network by
Lemma 2. Generally, a non-essential hyperedge can be found by comparing every terminal
partition and subset of hyperedges, which is time-consuming. However, if we suppose
that the given instance is an expander, then we can do this more efficiently by comparing
useful terminal partitions and their minimum multiway cuts instead of whole partitions and
hyperedge subsets. We adapt concepts used in the previous research such as useful terminal
partitions to suit our needs, and we newly introduce the concept core of a multiway cut
which refers to a small-sized vertex set including whole hyperedges of the multiway cut.

Useful terminal partitions, connected multiway cuts, and cores. Assume that the instance
(G, T, c) is a ϕ-expander and G is a connected hypergraph. For a multiway cut F in G, we
define the core of F as the union C of connected components X in G\F with |E(X)| ≤ ϕ−1|F |.
The definition of an expander guarantees that at most one component in G \ F has more
than ϕ−1|F | hyperedges. Therefore, the multiway cut F includes all hyperedges ∂C and is
contained in E(C) ∪ ∂C. We say F is a connected multiway cut in (G, T, c) if it is a minimum
multiway cut of some terminal partition with |F | ≤ c and T ∩ C is connected in Ĝ[C], where
C is the core of F and Ĝ[C] is the restricted hypergraph defined in Section 2.2. A terminal
partition is said useful if every minimum multiway cut of it is a connected multiway cut.

Since every core of connected multiway cuts has a small number of vertices and hyperedges
in ϕ-expander, we can enumerate all of them efficiently. Additionally, since a core includes its
corresponding multiway cut, we can also enumerate all connected multiway cuts and useful
partitions. Details are in Section 3.1. The most interesting property is that comparing all
useful partitions is sufficient to find a non-essential hyperedge.

▶ Lemma 4. A hyperedge e ∈ E is essential for (G, T, c) if and only if there is a useful
partition such that every minimum multiway cut for it contains e.

Proof. The “if” direction is trivial since it is consistent with the definition of essential. For
the “only if” direction, we assume that e is essential for (G, T, c). Let T be a terminal
partition minimizing min-cutG(T ) of which every minimum multiway cut involves e. In the
following, we show that T is a useful partition by contradiction. Figure 2 illustrates this
proof.

Assume that T is not a useful partition for (G, T, c), and let F be a minimum multiway
cut of T which is not a connected multiway cut. If the core of F is V (G), then F is a
connected multiway cut. Therefore, the core is the complement of some connected component
X in G \ F . Let C be the connected component in G − X that intersects the hyperedge
e. Refer to Figure 2(a). Then we decompose the multiway cut F into Fe and F̄ where
Fe = F ∩ E(C ∪ X) and F̄ = F \ Fe. By the construction, we have Fe ⊊ F and e ∈ Fe. We
construct a minimum multiway cut of T excluding e that completes the proof.

Let T ′ be the terminal partition according to G \ Fe. Since Fe ⊊ F and we chose T
as minimizing min-cutG(T ) while any minimum multiway cut of T contains e, there is a
multiway cut F ′ of T ′ excluding e. We claim that F ′ ∪ F̄ is a minimum multiway cut of T

ISAAC 2024
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e

(a) (b) (c)

Figure 2 Illustration of the proof of Lemma 4. (a) Illustration of the terminal partition T and
the vertex partition according to G \ F . The middle gray area is X. The right three red areas form
C. (b) Illustration of the terminals partition T ′ and the partition of G \ F ′. (c) Illustration of the
partition G \ (F ′ ∪ F̄ ). F ′ ∪ F̄ is a multiway cut of T excluding e.

excluding e which contradicts and completes the proof. Refer to Figure 2(b-c). Note that
the multiway cut has a size at most |F | and excludes e by construction. Thus, it is sufficient
to show that there is no path in G \ (F ′ ∪ F̄ ) between two components in T .

Consider a path π in G between two terminals in different components in T . Note that π

is not a path in G \ F , and thus, π is not in G \ Fe or G \ F̄ . Recall that F ′ is the multiway
cut of the terminal partition according to G \ Fe. That means π is not in G \ F ′ if it is not
in G \ Fe. Therefore, there is no path in G \ (F ′ ∪ F̄ ) between two components in T . ◀

3.1 Useful Terminal Partitions in Expanders
In this section, we explain how to efficiently enumerate all useful terminal partitions and
their minimum multiway cuts. Then, we explain how to compute a multicut-mimicking
network for an expander using the enumerated list along with Lemma 4. Here, the instance
(G, T, c) is a ϕ-expander and G is a connected hypergraph.

The key is based on Observation 5, proved in the full version. Briefly, cores in a ϕ-expander
have a small number of vertices and hyperedges. The observation enables us to find all cores
of connected multiway cuts and subsequently enumerate all useful partitions. However, it is
possible to enumerate terminal partitions that are not useful. Therefore, we need to prune
the enumerated lists for useful terminal partitions and their minimum multiway cuts.

▶ Observation 5. For a connected multiway cut F and its core C, the restricted hypergraph
Ĝ[C] is connected and has at most (3ϕ−1 + 1)|F | hyperedges.

Enumerating connected multiway cuts. Jiang et al. [10, EnumerateCutsHelp] designed an
algorithm to enumerate all connected vertex sets C with |∂C| ≤ c, |E(C)| ≤ M , and t ∈ C

in the ϕ-expander G when a vertex t ∈ V (G) and two integers c, M are given as an input.
This algorithm takes (r(M + c))O(rc) time. Additionally, the number of returned connected
vertex sets is at most (r(M + c))O(rc). We use this algorithm along with Observation 5 for
enumerating all connected multiway cuts. Details are in the full version. Briefly, we find all
connected vertex set C with C ∩ T ̸= ∅, |∂C| ≤ c, and |E(C)| ≤ (3ϕ−1 + 1)c. Then we can
enumerate every connected multiway cut from c sized subsets of E(C) ∪ ∂C by Observation 5.

In conclusion, we enumerate |T |(rcϕ−1)O(rc) multiway cuts including all connected mul-
tiway cuts of size at most c in |T |(rcϕ−1)O(rc) time. At most |T |(rcϕ−1)O(rc) terminal
partitions of T are contributed by the enumerated multiway cuts since each multiway cut of
size c generates at most rc connected components. They include all useful partitions.

Pruning useful terminal partitions. To check whether a terminal partition is useful or not,
we need to verify if C ∩ T is connected in Ĝ[C] for each core C of its minimum multiway
cuts. Specifically, it is sufficient to check the inclusion-wise minimal cores among them. For
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this, we utilize important cuts ∂R, which inclusion-wise maximizes R ⊂ V while maintaining
the size of the cut ∂R. The definition aligns with our needs as outlined in Lemma 6, proved
in the full version.

For two disjoint vertex sets A and B, let R be a vertex set containing A while excluding
B. We say ∂R is an important cut of (A, B) if there is no R′ ⊋ R excluding B with
|∂R′| ≤ |∂R|. This definition holds even if A = ∅. In a directed graph, an important cut is
defined analogously by setting ∂R as the outgoing arcs from R to V \ R. Furthermore, there
is an FPT algorithm for enumerating all important cuts in a directed graph [7].

▶ Lemma 6. For a terminal partition T with min-cutG(T ) ≤ c, the following are equivalent:
(i) T is a useful terminal partition of T , and
(ii) Every minimum multiway cut F of T is a connected multiway cut if some component

T ′ in T and important cut R of (T ′, T \ T ′) satisfy ∂R ⊂ F , |E(R)| ≥ cϕ−1, and
F ∩ E(R) = ∅.

We construct an auxiliary directed graph Dinc to enumerate important cuts in G. For
instance (G, T, c), the vertex set of Dinc is the union of V (G) and two copies Ein and Eout of
E(G). For a hyperedge e in E(G), we use ein and eout to denote the copies of e in Ein and
Eout, respectively, and we insert one arc from ein to eout. For each v ∈ V (G) and e ∈ E(G)
with v ∈ e, we insert 2c parallel arcs from v to ein and from eout to v. Important cuts in G

correspond one-to-one with those in Dinc. Details are in the full version.
We can enumerate all important cuts of G by applying the FPT algorithm for Dinc. There

are at most 2O(rc) number of important cuts in G, and they can be enumerated in 2O(rc)m

time [7], where m = |E(G)|. By Lemma 6, we can prune all useful terminal partitions in
|T |(rcϕ−1)O(rc)m time among the |T |(rcϕ−1)O(rc) enumerated candidates.

Lemma 7 summarizes this section, details are in the full version. In the remainder,
we give an algorithm to compute a minimal multicut-mimicking network for ϕ-expander
using it.

▶ Lemma 7. There are |T |(rcϕ−1)O(rc) useful partitions and their minimum multiway cuts
in a ϕ-expander (G, T, c). We can enumerate all of them in |T |(rcϕ−1)O(rc)m time.

Algorithm for ϕ-expanders. By Lemma 4 and Lemma 7, we can recursively find and
contract a non-essential hyperedge efficiently for a ϕ-expander (G, T, c) until every hyperedge
in the instance is essential. The algorithm is outlined in the following lemma. Recall that a
minimal multicut-mimicking network H of (G, T, c) is a multicut-mimicking network so that
every hyperedge in (H, T, c) is essential. Here, m = |E(G)| and r is the rank of G.

▶ Lemma 8. For a ϕ-expander (G, T, c), we can find a minimal multicut-mimicking network
in |T |(rcϕ−1)O(rc)m time. Moreover, it has at most |T |cO(r log c) hyperedges.

Sketch of the proof. We demonstrate that a minimal multicut-mimicking network has at
most |T |cO(r log c) hyperedges in Section 4 which is one of our main contributions. We sketch
an algorithm to compute a minimal multicut-mimicking network, details are in the full
version.

If m ∈ O(cϕ−1), then we can obtain such a multicut-mimicking network by enumerating
all multiway cuts of size at most c. In the following, we consider the other case that
m ≥ 3cϕ−1 + c. At the beginning of the algorithm, we enumerate all important cuts and
their minimum multiway cuts by applying Lemma 7. Since there are at most k(rcϕ−1)O(rc)

multiway cuts and each multiway cut consists at most (rc)O(rc) useful partitions, we visit
a hyperedge and check whether it is non-essential in the current instance in k(rcϕ−1)O(rc)

time by Lemma 4. If it is non-essential, we contract it before we move to another hyperedge.

ISAAC 2024
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After we contract a non-essential hyperedge, we do not need to call the algorithm outlined
in Lemma 7 again. Precisely, deleting multiway cuts which include the contracted hyperedge
among the already enumerated ones is sufficient while more than (3cϕ−1 + c) hyperedges are
left. This is because no new connected multiway cut occurs or disappears by contracting
a non-essential hyperedge if the number of remaining hyperedges exceeds (3cϕ−1 + c). Its
detailed proof is in the full version. If all remaining hyperedges are essential, then we return
the current instance as a solution. For the other case that the number of them is at most
(3cϕ−1 + c), we apply the algorithm for m ∈ O(cϕ−1) explained before. In conclusion, we
can obtain a minimal multicut-mimicking network in the time complexity in Lemma 8. ◀

3.2 Near-Linear Time Algorithm for General Hypergraphs
In this section, we obtain a multicut-mimicking network for a general instance (G, T, c), by
recursively calling MimickingExpander. The submodule MimickingExpander computes a small
multicut-mimicking network based on the expander decomposition of Long and Saranurak [18]
and the algorithm for a ϕ-expander with ϕ > 0 outlined in Lemma 8. However, its return is
not sufficiently small, and thus, we obtain a much smaller solution by applying it recursively.

MimickingExpander(G; T, c). We let n = |V (G)|, m = |E(G)|, and ϕ−1 =
4rcMr log c log3 n, where the multicut-mimicking network returned by Lemma 8 has at most
kcMr log c hyperedges for an expander with k terminals. When the submodule is called, we
first decompose the vertex set V (G) into the vertex partition (V1, . . . , Vs) so that the size of
the cut of (V1, . . . , Vs) is at most ϕm log3 n and each Ĝ[Vj ] is a ϕ-expander for j ∈ [s]. There
is a p1+o(1) time algorithm computing such a vertex partition [18], where p =

∑
e∈E |e|.

Every subinstance (Ĝ[Vj ], Tj , cj) is a ϕ-expander, where cj = min{c, |Tj |} and Tj is the
union of T ∩ Vj and anchored terminals in Ĝ[Vj ]. For each (Ĝ[Vj ], Tj , cj), we construct a
multicut-mimicking network Hj by Lemma 8. Finally, we return the multicut-mimicking
network H by gluing H1, . . . , Hs. Precisely, we merge all restricted hyperedges having a
common anchored terminal and remove all anchored terminals not in V . The following
lemma summarizes the performance of this submodule, proved in the full version.

▶ Lemma 9. MimickingExpander(G; T, c) returns a multicut-mimicking network of (G, T, c)
with (|T |cO(r log c) + (m/2)) hyperedges in (p1+o(1) + |T |(cr log c log n)O(rc)m) time.

Overall algorithm. For an instance (G, T, c), we initialize G0 = G and obtain the multicut-
mimicking network Gi by MimickingExpander(Gi−1; T, c) for i ∈ [⌈log m⌉], inductively. Finally,
we return G⌈log m⌉. This algorithm corresponds to Theorem 1. Details are in the full version.

▶ Theorem 1. For (G, T, c), we can compute a multicut-mimicking network of at most
kcO(r log c) hyperedges in p1+o(1)+k(cr log c log n)O(rc)m time, where k = |T | and p =

∑
e∈E |e|.

4 Bound for Minimal Instances

To complete the proof of Lemma 8 (and Theorem 1), we need to show that a minimal
multicut-mimicking network for an expander (G, T, c) has at most |T |cO(r log c) hyperedges.
This section demonstrates it for not only expanders but also general instances. Precisely, we
show the following theorem in this section. Here, r is the rank of G.

▶ Theorem 10. Every minimal instance (G, T, c) has at most |T |cO(r log c) hyperedges.
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In this section, we consider the scenario that every terminal in T has degree one in G. It
is sufficient since the other case can be reduced to this scenario by inserting c + 1 dummy
terminals instead of each terminal t in T that are adjacent only to t. This reduction does not
increase the rank or the parameter c while increasing the number of terminals by at most c

times. However, this increase does not affect the asymptotic complexity in Theorem 10. The
following explains the previous works and introduces the notions used in this section.

We broadly follow the approach of Wahlström [24]. He utilized the framework of Kratsch
et al. [14] for multicut-mimicking networks in graphs without the parameter c. We incorporate
the unbreakable concept to address the parameter c. Additionally, we slightly modify the
dense concept used in the previous work to account for hypergraphs.

Unbreakable and dense. For a subinstance (Ĝ[X], TX , cX) with respect to X ⊂ V (G),
the terminal set TX includes T ∩ X and up to two anchored terminals for each restricted
hyperedge e ∈ ∂GX. Hence, |TX | ≤ 2|∂GX| + |T ∩ X|. We denote the value 2|∂GX| + |T ∩ X|
as capT (X; G), or capT (X) if the context is clear. Furthermore, we define the following:

Unbreakable: An instance (G, T, c) is said to be d-unbreakable for d > 0 if |T ∩ X| ≤ d

for any vertex set X ⊆ V (G) with |T ∩ X| ≤ |T \ X| and |∂X| ≤ c.
Dense: An instance (G, T, c) is said to be α-dense for α > 0 if |E(X)| ≤ (capT (X))α for
any vertex set X ⊆ V with 0 < |E(X)| ≤ |E(V \ X)| and |∂X| ≤ c.

Wahlström [24] also used the concept of dense defining it based on the vertices instead of
E(·). Since he addressed graphs, it was guaranteed that |E(X)| = Ω(|X|) by using connective
assumption. However, this is not for hypergraphs. Thus, we slightly modify the definition.

In Section 4.2, we prove Theorem 10 for unbreakable and dense instances using the notions
introduced in Section 4.1. Section 4.3 explains how to extend this proof for general instances.

4.1 Matroids and Representative Sets
We use the notion of matroids and representative sets as in the previous work, which is a
generalization of the notion of linear independence in vector spaces. Formally, a matroid
(S, I) consists of a universe set S and an independent set I ⊆ 2S with ∅ ∈ I satisfying:

If B ∈ I and A ⊆ B, then A ∈ I, and
If A, B ∈ I with |A| < |B|, then there exists x ∈ B \ A such that A ∪ {x} ∈ I.

For a matroid (S, I), its rank is the size of the largest set in I. It is said to be representable
if there is a matrix over a field whose columns are indexed by the elements of S such that:
F ⊂ S is in I if and only if the columns indexed by F are linearly independent over the field.

Representative sets. Kratsch et al. [14] introduced a framework for computing non-essential
vertices using the notion of representative sets. We employ the framework. For this purpose,
we introduce two operations: truncation and direct sum along with Lemma 11. For a matroid
(S, I) and an integer r > 0, the r-truncation of (S, I) is defined as a matroid (S, I ′) such
that F ⊆ S is contained in I ′ if and only if |F | ≤ r and F ∈ I. Note that an r-truncation
has rank at most r. For matroids M1, . . . , Ms over disjoint universes with Mi = (Si, Ii) for
i ∈ [s], their direct sum is defined as a matroid (S, I) such that S is the union of all Si, and
a subset F of S is in I if and only if F can be decomposed into s disjoint subsets, each of
which is independent in Mi. The direct sum of matroids also satisfies the matroid axioms.

For a matroid (S, I) and two subsets A, B of S, we say A extends B if A ∩ B = ∅ and
A ∪ B ∈ I. For J ⊆ 2S , a subset J ∗ of J is called a representative set if for any set B ⊆ S,
there is a set A∗ ∈ J ∗ that extends B when there is a set A ∈ J that extends B.

ISAAC 2024
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▶ Lemma 11 ([14, Lemma 3.4]). Let M1 = (S1, I1), . . . , Ms = (Ss, Is) be matroids repre-
sented over the same finite field and with pairwise disjoint universe sets. Let J be a collection
of sets containing one element from Si for each i ∈ [s]. Then, some representative set of J
in the direct sum of all matroids Mi has a size at most the product of the ranks of all Mi.

Uniform and (hyperedge) gammoids. We use two classes of representable matroids: uniform
matroids and gammoids. They, along with their truncation and direct sum, are representable
over any large field [7, 14, 17, 21, 22].

Uniform matroid: For a set S and an integer r > 0, the uniform matroid on S of rank
r is the matroid in which the universe set is S and the independent set consists of the
sets containing at most r elements in S.
Gammoid: For a directed graph D = (V, A) and two subsets S and U of V , a gammoid
defined on (D, S, U) is a matroid (U, I) where I consists of the sets X ⊆ U such that
there are |X| pairwise vertex-disjoint paths in D from S to X.

In this paper, we define and use hyperedge gammoids to handle hypergraphs.

Hyperedge gammoid: For a hypergraph G and a terminal set T ⊂ V (G), we consider
a directed graph Dsplit defined as follows. First, we start from the undirected graph Dsplit

of which the vertex set is E(G) and ee′ ∈ E(Dsplit) for two e, e′ in E(G) (and V (Dsplit))
if and only if e ∩ e′ is not empty. Then, we replace each undirected edge with two-way
directed arcs. Furthermore, we insert a copy Esink of E(G) into V (Dsplit). We call the copy
in Esink of a hyperedge e ∈ E(G) a sink-only copy of e, and denote it by sink(e). We insert
one-way arcs from e′ to sink(e) on Dsplit for every e′ ∈ E(G) where e′ ∩ e is not empty.
The hyperedge gammoid of (G, T ) is the gammoid on (Dsplit, ∂GT ⊂ E(G), E(G) ∪ Esink).

Recall that a path of a hypergraph is defined as a sequence of hyperedges such that any
two consecutive hyperedges contain a common vertex. If a path starts or ends at a hyperedge
containing a terminal t, we say that it starts or ends at t to make the description easier. For
a subset F of E(G) ∪ Esink, let FE be the set of hyperedges e of E(G) where e or sink(e) is
contained in F . Even if F contains both e and sink(e), e appears in FE exactly once.

▶ Observation 12. F ⊆ E(G) ∪ Esink is independent in the hyperedge gammoid of (G, T ) if
and only if there exist |F | pairwise edge-disjoint paths from T to FE in G with two exceptions:

Two paths can end at e ∈ E(G) if e ∈ F and sink(e) ∈ F , and
One path can pass through e while another path ends at e if e /∈ F but sink(e) ∈ F .

4.2 Essential Hyperedges in Unbreakable and Dense Instances
Assume that (G, T, c) is d-unbreakable and α-dense with c ≤ d ≤ |T | and α ≥ 35r log d,
where r is the rank of G. In this section, we show that (G, T, c) contains at most |T |dα−1

essential hyperedges which directly implies Theorem 10 for O(c)-unbreakable and Θ(r log c)-
dense instances. Precisely, if there are more than |T |dα−1 hyperedges, then at least one is
non-essential, and thus, the instance is not minimal. Here, k = |T | and r is the rank of G.

The following matroids would be a witness for our claim with i0 = 30r:
One uniform matroid on E of rank (κ + c), where κ = (d/2)α−i0−2,
One (k + c + 1)-truncation M0 of the hyperedge gammoid of (G, T ), and
i0 copies M1, . . . , Mi0 of the (d + c + 1)-truncation of the hyperedge gammoid of (G, T ),



K. Cho and E. Oh 21:11

For a hyperedge e, its appearance in the universe sets of the uniform matroid on E is
denoted by eu. In the universe set of Mi for i ∈ [0, i0], ei and sinki(e) denote the hyperedge
and its sink-only copy, respectively. Note that sink-only copies have no outgoing arc in Dsplit,
where the hyperedge gammoid is defined on the directed graph Dsplit, refer to Section 4.1.

Let M denote the direct sum of the (i0 + 2) matroids described above. For a hyperedge
e ∈ E(G), let J(e) = {eu}∪{sink0(e), . . . , sinki0(e)}. Then, we let J ∗ be the representative set
of {J(e) | e ∈ E(G)} outlined in Lemma 11. The set J ∗ consists of all essential hyperedges.

▶ Lemma 13. J ∗ contains all J(ē) where ē is an essential hyperedge for (G, T, c).

Proof. We fix an essential hyperedge ē and show that J(ē) is in J ∗. To do this, we construct
an independent set in M extended by J(ē), but not extended by J(e) for any hyperedge e ̸= ē.
Let T be a terminal partition with min-cutG(T ) ≤ c such that every minimum multiway
cut of T includes ē. We fix a minimum multiway cut F of T in G, and let (V0, . . . , Vs)
be the vertex partition according to G \ F . We assume that the component V0 maximizes
|T ∩ V0| among V0, . . . , Vs, and V1 maximizes |E(V1)| among V1, . . . , Vs. Additionally, the
other components V2, . . . , Vs are sorted in the decreasing order of capT (·) values. Let Esmall
denote the union of E(Vi0+1), E(Vi0+2), . . . , E(Vs).

Then we consider the following sets whose union will be a witness showing that J(ē)
is in any representative set of {J(e) | e ∈ E(G)}. Let Au denote the subset {eu | e ∈
(Esmall ∪ F ) \ {ē}} of the universe set of the uniform matroid on E of rank κ + c. Let Ag

i

be the subset {ei | e ∈ F ∪ ∂(T ∩ Vi)} of the universe set of Mi for i ∈ [0, i0]. We need to
demonstrate three assertions: (i) Au is extended by {(ē)u} in the uniform matroid on E of
rank κ + c, (ii) Ag

i is extended by {sinki(ē)} in Mi for i ∈ [0, i0], and (iii) any J(e) with
e ̸= ē cannot extend A = Au ∪ (∪i∈[0,i0]A

g
i ) in M. By combining these assertions, we can

conclude that A is extended in M by J(ē) only, which completes the proof of Lemma 13.

Assertion (i). Recall that the size of F is at most c. Then Au is extended by {(ē)u} in the
uniform matroid on E of rank κ + c if |Esmall| ≤ κ because ē is not in (Esmall ∪ F ) \ {ē}.

We first show that
∑

j∈[s] capT (Vj) ≤ (3d + 2rc). Note that every component Vj has at
most d terminals of T for j ∈ [s] because (G, T, c) is d-unbreakable. Precisely, if a component
Vj has more than d terminals, then V0 also contains more than d terminals since we chose
V0 as containing the most terminals, and thus, the d-unbreakable property is violated from
|Vj ∩ T |, |T \ Vj | > d. Let x be the smallest index in [s] such that

∑
j∈[x] |T ∩ Vj | > d. By

choosing x in this manner, the total size of T ∩ Vj for all indices 1 ≤ j < x is at most d, and
for all indices j > x is also at most d due to the d-unbreakable property. Due to |T ∩ Vx| ≤ d,
we have

∑
j∈[s] |T ∩ Vj | ≤ 3d. Moreover, since each hyperedge in F can intersect at most r

components and capT (Vj) = 2|∂GVj | + |T ∩ Vj |, we have
∑

j∈[s] capT (Vj) ≤ (3d + 2rc).
Now we focus on the components Vi0+1, . . . , Vs as follows. Since (G, T, c) is α-dense,

|E(Vj)| ≤ (capT (Vj))α for j ∈ [2, s] by the α-dense property.1 Thus, the ordering capT (V2) ≥
· · · ≥ capT (Vs) implies that capT (Vj) ≤ (3d + 2rc)/(j − 1). Therefore, we have

|Esmall| =
∑

j∈[i0+1,s]

|E(Vj)| ≤
∑

j∈[i0+1,s]

(
3d + 2rc

i0

)α

≤
∑

j∈[i0+1,s]

(
d

4

)α

≤ (d/4)α · rc ≤ (d/2)α+1 · (1/2)α−1
r ≤ (d/2)α−i0−2 = κ.

1 |E(Vj)| = min{|E(Vj)|, |E(V \ Vj)|} ≤ capT (Vj)α for j ∈ [2, s].
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The inequalities follow from i0 = 30r, s ≤ rc, and the assumption we made at the beginning
of this subsection: c ≤ d ≤ k and α ≥ 35r log d ≥ (i0 + 2) log d.2 It implies |Au| ≤ κ + c − 1
due to (ē)u /∈ Au. Therefore, {(ē)u} extends Au in the uniform matroid on E of rank κ + c.

Sketch of Assertions (ii-iii). Details are in the full version. Briefly, Assertions (ii-iii)
holds since there are |F | + 1 pairwise edge-disjoint paths from T \ Vi to F in G for each
component Vi if we allow using ē ∈ F twice while there is no path from T \ Vi to E(Vi)
excluding F . Recall that ē is essential. Therefore, {sinki(e)} extends Ag

i if and only if e = ē

by Observation 12 along with the Menger’s theorem for hypergraphs [26]. ◀

Lemma 14 holds by Lemma 11 and Lemma 13. The detailed proof is in the full version.

▶ Lemma 14. If (G, T, c) is d-unbreakable and α-dense with α ≥ 35r log d, c ≤ d ≤ k, and
m > kdα−1, then there is a non-essential hyperedge.

4.3 Non-Essential Hyperedge in a General Instance
In this section, we show that a minimal multicut-mimicking network of (G, T, c) has at most
|T |cO(r log c) hyperedges. For this achievement, we start by assuming that (G, T, c) has more
than |T |cΩ(r log c) hyperedges, and find a subinstance that has a non-essential hyperedge.
Note that the obtained hyperedge is also non-essential in (G, T, c) by Lemma 3, and thus,
(G, T, c) is not minimal by Lemma 2. Note that we can find a 5c-unbreakable subinstance
(G′, T ′, c) of |T ′|cΩ(r log c) hyperedges [10]. Details are in the full version. In the following,
we suppose that (G, T, c) is a 5c-unbreakable with |T |cΩ(r log c) hyperedges.

We recursively find a subinstance until it satisfies the conditions in Lemma 14. Then it
has a non-essential hyperedge, furthermore, it is also non-essential in the original instance.
Note that constructing a subinstance might increase the size of a hyperedge by inserting two
anchored terminals for a restricted hyperedge. However, it increases the hyperedge size only
if the hyperedge has less than two terminals. Additionally, once increased hyperedge has
two (anchored) terminals. Thus, the rank is increased by at most one even if we obtain a
subinstance recursively. We fix r as the rank of the original instance to avoid confusion.

Construction of non-minimal instance. We suppose that (G, T, c) is d-unbreakable with
d = min{5c, |T |}. Then we show that if G has more than |T |dα(c)−1 hyperedges, (G, T, c)
has a non-essential hyperedge by inductively along m, where α(c) = 35(r + 2) log(5c). Recall
that r is a fixed constant so that the rank of (G, T, c) is at most r + 1, and α is the constant
derived from c only. For simplicity, we use α to denote α(c) when the context is clear. If
(G, T, c) is α-dense, then it has a non-essential hyperedge by Lemma 14.

When (G, T, c) is not α-dense, there is a witness vertex set X ⊆ V with 0 < |E(X)| ≤
|E(V \ X)|, |∂X| ≤ c, and |E(X)| > (capT (X))α.3 If |X ∩ T | > |T \ X|, we replace X with
V \ X. Note that the following inequalities still hold: |∂X| ≤ c, |E(X)| > (capT (X))α, and
|E(V \ X)| > 0. The first one holds since ∂X = ∂(V \ X), and the second one holds since
|T ∩ X| and capT (X) are decreased by the replacement while |E(X)| is increased. The last
holds since we chose X so that E(X), E(V \X) ̸= ∅. Additionally, the size of T ∩X is at most d

since our instance is d-unbreakable. We move to the subinstance (Ĝ[X], TX , cX) with respect
to X, where cX = min{c, |TX |} and TX is the union of terminals T ∩ X and the anchored
terminals. Recall that the size of TX is at most capT (X; G) = |T ∩ X| + 2|∂X| ≤ d + 2c.
Lemma 15, proved in the full version, ensures the safeness of this inductive proof.

2 Precisely, these assumption give us r ·
(

1
2

)α−1 ≤
(

d
2

)−i0−3 which implies the last inequality.
3 (G, T, c) is α-dense if |E(Y )| ≤ (capT (Y ))α for any Y ⊆ V with 0 < |E(Y )| ≤ |E(V \ Y )| and |∂Y | ≤ c.
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▶ Lemma 15. (Ĝ[X], TX , cX) is dX-unbreakable with dX = min{5cX , |TX |}. Additionally,
Ĝ[X] has more than |TX |dα′−1

X hyperedges but less than |E(G)|, where α′ = α(cX).

We recursively obtain a subinstance until it becomes α-dense. Note that k, d, m, and α

change during the recursion while the rank is always at most r + 1, where k and m denote
the number of terminals and hyperedges, respectively, in the current instance. However,
Lemma 15 guarantees that m > kdα−1 holds at each step. Moreover, m is strictly decreased.
Thus, we always reach a d-unbreakable and α-dense instance satisfying the conditions of
Lemma 14, and it has a non-essential hyperedge. It is easy to show that the hyperedge is
also non-essential in the original instance by applying Lemma 3 recursively.

Therefore, a d-unbreakable instance (G, T, c) with m > |T |dα(c)−1 and d = min{5c, |T |}
has a non-essential hyperedge. This section proves Theorem 10.

▶ Theorem 10. Every minimal instance (G, T, c) has at most |T |cO(r log c) hyperedges.
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