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Abstract
In his 2018 paper, Herlihy introduced an atomic protocol for multi-party asset swaps across different
blockchains. Practical implementation of this protocol is hampered by its intricacy and computational
complexity, as it relies on elaborate smart contracts for asset transfers, and specifying the protocol’s
steps on a given digraph requires solving an NP-hard problem of computing longest paths. Herlihy
left open the question whether there is a simple and efficient protocol for cross-chain asset swaps in
arbitrary digraphs. Addressing this, we study HTLC-based protocols, in which all asset transfers are
implemented with standard hashed time-lock smart contracts (HTLCs). Our main contribution is
a full characterization of swap digraphs that have such protocols, in terms of so-called reuniclus
graphs. We give an atomic HTLC-based protocol for reuniclus graphs. Our protocol is simple and
efficient. We then prove that non-reuniclus graphs do not have atomic HTLC-based swap protocols.
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1 Introduction

In 2018, Herlihy [9] introduced a model for multi-party asset swaps across different blockchains,
where an asset swap is represented by a strongly connected directed graph, with each vertex
corresponding to one party and each arc representing a pre-arranged asset transfer between
two parties. The goal is to design a protocol to implement the transfer of all assets. The
protocol must guarantee, irrespective of the behavior of other parties, that each honest party
will end up with an outcome that it considers acceptable. The protocol should also discourage
cheating, so that any coalition of parties cannot improve its outcome by deviating from the
protocol. These two conditions are called safety and strong Nash equilibrium, respectively. A
protocol that satisfies these conditions is called atomic.

In this model, Herlihy [9] developed an atomic protocol for asset swaps in arbitrary
strongly connected digraphs. While this result is a significant theoretical advance, its
practical implementation is hampered by its intricacy and high computational complexity,
as it relies on elaborate smart contracts for asset transfers, and specifying the protocol’s
steps on a given digraph requires solving an NP-hard problem of computing longest paths. It
also uses a cryptographic scheme with nested digital signatures that may reveal the graph’s
topology to all parties, raising concerns about privacy.
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Herlihy [9] also mentions a simpler protocol that uses only standard smart contracts
called hashed time-lock contracts (HTLC’s), that require only one secret/hashlock pair and a
time-out mechanism (see [19, 16]). This protocol, however, works correctly only for special
types of digraphs that we call bottleneck graphs. This raises a natural question, already posed
in [9]: Is there a simple and efficient protocol for multi-party asset swaps that is atomic and
works on all strongly connected digraphs?

Our contributions. Motivated by this question, we study HTLC-based protocols, which
are allowed to exchange assets only via HTLC’s. As it turns out, the class of digraphs that
have such protocols is much broader than bottleneck digraphs; in fact, we give a complete
characterization of digraphs that admit HTLC-based protocols. We call them reuniclus
graphs. Roughly, a reuniclus graph can be thought of as a tree of biconnected components,
each being an induced bottleneck subgraph. In this terminology, our main contribution can
be stated as follows:

▶ Theorem 1. A swap digraph G has an atomic HTLC-based protocol if and only if G is a
reuniclus digraph.

The sufficiency condition is proved by providing an atomic HTLC-based protocol for
reuniclus digraphs. The protocol itself is simple and efficient. Also, testing whether a given
graph is a reuniclus graph and, if it is, computing the specification of the protocol for each
party can be accomplished in linear time. (The key ingredient is the algorithm from [12] that
can be used to recognize bottleneck graphs.) Our most technically challenging contribution
is the proof of the necessity condition. This requires showing that the atomicity assumption
implies some structural properties of the underlying graph. By carefully exploiting this
approach, we prove that each digraph with an atomic protocol must have the reuniclus
structure.

Our asset-swap model is in fact a slight generalization of the one in [9], as it uses a
relaxed definition of the preference relation, which allows each party to customize some of
their preferences.

Related work. The problem of securely exchanging digital products between untrustful
parties has been studied since 1990s under the name of fair exchange. As simultaneous
exchange is not feasible in a typical electronic setting, protocols for fair exchange rely on a
trusted party – see for example [15, 7, 3, 1, 2]. In the model from [9], smart contracts play
the role of trusted parties.

With users now holding assets on a quickly growing number of different blockchains,
cross-chain interoperability tools became necessary to allow these users to trade their assets.
An atomic swap concept was one of the proposed tools to address this issue. The concept
itself and some early implementations of asset-swap protocols (see, for example [18]) predate
the work of Herlihy [9].

In recent years there has been intensive research activity on asset-swap protocols. The
preference relation of the participants in the model from [9] is very rudimentary, and some
refinements of this preference model were studied in [4, 11]. Some proposals [14, 20] address
the issue of “ grieving”, when one party needs to wait for the counter-party to act, while
its assets are locked and unaccessible. Other directions of study include investigations of
protocol’s time and space complexity [11], privacy issues [6], security enhancements [13], and
generalizations of swaps to more complex transactions [10, 17, 8].
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2 Multi-Party Asset Swaps

The multi-party asset swap problem we address is this: There is a set V of parties, each with
a set of assets that it wishes to exchange for some other assets. Suppose that there is a
way to reassign assets from each current owner to their new owner in such a way that each
party would receive exactly their desired assets. This reassignment is called a multi-party
asset swap. The goal is now to arrange the transfers of these assets. The challenge is that
some parties may deviate from the protocol, attempting to improve their outcome, or even
behave irrationally. To address this, the asset-swap protocol must satisfy the following
safety property in addition to correctness: an outcome of any honest party (that follows the
protocol) must be guaranteed to be acceptable (not worse than its initial holdings), even if
other parties deviate from the protocol or collaboratively attempt to cheat.

Let G = (V, A) be a digraph with vertex set V and arc set A, without self-loops or parallel
arcs. By N in

v we denote the set of in-neighbors of v, by Ain
v its set of incoming arcs, Nout

v are
the out-neighbors of v and Aout

v are its outgoing arcs. Other graph notation and terminology
is standard.

Clearing service. We assume the existence of a market clearing service, where each party
submits its proposed exchange (the collections of its current and desired assets). If a swap is
possible, the clearing service constructs a digraph G = (V, A) representing this swap. Each
arc (u, v) of G represents the intended transfer of one asset from its current owner u (the
seller) to its new owner v (the buyer). For simplicity, we assume that any party can transfer
only one asset to any other party, and we identify assets with arcs, so (u, v) denotes both
an arc of G and the asset of u to be transferred to v. The service ensures that G satisfies
the assumptions of the swap protocol, and it informs each party of the protocol’s steps.
Importantly, we do not assume that the parties trust the market clearing service.

Secrets and hashlocks. We allow each party v to create a secret value sv, and convert it
into a hashlock value hv = H(sv), where H() is a one-way permutation. The value of sv is
secret, meaning that no other party has the capability to compute sv from hv. The hashlock
values can be made public.

Hashed time-lock contracts (HTLCs). Asset transfers are realized with smart contracts,
which are simply pieces of code running on a blockchain. The contracts used in our model
are called hashed time-lock contracts, or HTLCs, for short, and are defined as follows: Each
contract is associated with an arc (u, v) of G, and is used to transfer the asset (u, v) from u

to v. It is created by u, with u providing it with the asset, timeout value τ , and a hashlock
value h. Once this contract is created, the possession of the asset is transferred from u to the
contract. The counter-party v can access the contract to verify its correctness; in particular,
it can learn the hashlock value h. There are two ways in which the asset can be released: (1)
One, v can claim it. To claim it successfully, v must provide a value s such that H(s) = h

not later than at time τ . When this happens, the smart contract transfers the asset to v,
and it gives s to u. (2) Two, the contract can expire. As soon as the current time exceeds τ ,
and if the asset has not been claimed, the contract returns the asset to u.

Further overloading notation and terminology, we will also refer to the contract on arc
(u, v) as “contract (u, v)”. If this contract has hashlock hx of a party x (where x may be
different from u and v), we will say that it is protected by hashlock hx or simply protected by
party x.

ISAAC 2024
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Protocols. In an execution of P there is no guarantee that all parties actually follow P.
When we refer to an honest or conforming party u, we mean that u follows P, except when
it can infer that not all parties follow P. From that point on, u may behave arbitrarily (but
still rationally).

In an HTLC-based protocol, all asset transfers are implemented with HTLCs, and no other
interaction between the parties is allowed. Each party can create one secret/hashlock pair.
These hashlock values are distributed via smart contracts (or can simply be made public).

Outcomes. For each party v, v’s outcome associated with an execution of a protocol P is
specified by the sets of assets that are relinquished and acquired by v. Thus such an outcome
is a pair ω =

〈
ωin | ωout

〉
, where ωin ⊆ Ain

v and ωout ⊆ Aout
v . To reduce clutter, instead of

arcs, in
〈
ωin | ωout

〉
we can list only the corresponding in-neighbors and out-neighbors of v;

for example, instead of ⟨{(x, v), (y, v)} | {(v, z)}⟩ we will write ⟨x, y | z⟩.
An outcome ω =

〈
ωin | ωout

〉
of some party u is called acceptable if in this outcome u

retains all its own assets or it gains all incoming assets. That is, either ωin = Ain
v or ωout = ∅.

The following two types of outcomes are particularly significant: Dealv =
〈
Ain

v | Aout
v

〉
represents an outcome where all prearranged asset transfers involving v are completed, and
NoDealv = ⟨∅ | ∅⟩ represents an outcome where none of the prearranged asset transfers
involving v is completed. We will skip the subscript v in these notations whenever v is
understood from context1.

For a set C of parties, its set Ain
C of incoming arcs consists of arcs (u, v) with u /∈ C

and v ∈ C. The set Aout
C of outgoing arcs is defined analogously. With this, the concept of

outcomes and its properties extend naturally to sets of parties (“coalitions”). For example,
an outcome of C is acceptable if it either contains all incoming arcs of C or does not contain
any outgoing arcs of C.

The preference relation. A preference relation of a party v is a partial order on the set
of all outcomes for v that satisfies the following three properties: (p1) If ωin

1 ⊆ ωin
2 and

ωout
1 ⊇ ωout

2 , then ω2 is preferred to ω1 ; (p2) If ω is unacceptable then NoDeal is preferable
to ω; (p3) Deal is better than NoDeal. These are natural: (p1) says that it is better to
receive more assets and relinquish fewer assets, and without (p3) v would have no incentive
to participate in the protocol. The preference relation captures rational behavior, leading to
the definition of Nash equilibrium property, below.

Protocol properties. Following [9], we define the following properties of a swap protocol P:
Liveness: P is live if each party ends up in Deal, providing that all parties follow P.
Safety: P is safe if each honest party ends up in an acceptable outcome, independently of

the behavior of other parties.
Strong Nash Equilibrium: P has the strong Nash equilibrium property if for any set C of

parties, if all parties outside C follow P then the parties in C cannot improve the outcome
of C by deviating from P.

Atomicity: P is called atomic if it’s live, safe, and has the strong Nash equilibrium property.

The lemma below is a mild extension of the one in [9]. The point of the lemma is that, in
Herlihy’s preference model, the strong Nash equilibrium property comes for free. The strong
connectivity assumption is necessary for the safety property to hold, see [9]. (See the full
paper for the easy proof.)

1 Herlihy [9] defines other types of outcomes: Discount, FreeRide and Underwater, but these are not
essential – see the full version of the paper.
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▶ Lemma 2. Assume that digraph G is strongly connected. If a protocol P is live and safe
then P is atomic.

3 An Atomic Protocol for Reuniclus Digraphs

In this section we give an atomic asset-swap protocol for reuniclus digraphs. First, in
Section 3.1, we describe an atomic protocol for bottleneck digraphs called Protocol BDP.
This protocol is mostly equivalent to the simplified protocol from [9, Section 4.6]. We include
it here, because it serves as a stepping stone to our full protocol for reuniclus digraphs that
is presented in Section 3.2.

3.1 Protocol BDP for Bottleneck Digraphs

Protocol BDP for leader ℓ:
At time 0: Create a secret sℓ and com-
pute hℓ = H(sℓ). For each arc (ℓ, v),
create contract with hashlock hℓ and
timeout τℓv = D∗ + D+

v .
At time D∗: Claim all incoming assets
using secret sℓ.

Protocol BDP for a follower u:
At time D−

u : For each arc (u, v), create
contract with hashlock h and timeout
τuv = D∗ + D+

v .
At time D∗ + D+

u : Let s be the secret
obtained from the contract for some
claimed outgoing assets. Use s to claim
all incoming assets.

Figure 1 Protocol BDP, for the leader on the left, and for the followers on the right. Each
bullet-point step takes one time unit. In the description we tacitly assume that u aborts if it detects
any deviation from the protocol.

A vertex v in a digraph G is called a bottleneck vertex if it belongs to each cycle of G.
If G is strongly connected and has a bottleneck vertex then we refer to G as a bottleneck
digraph.

We now describe Protocol BDP for a bottleneck digraph G. One bottleneck vertex of G is
designated as the leader. This leader, denoted ℓ, creates its secret/hashlock pair (sℓ, hℓ). The
other vertices are called followers. Protocol BDP has two phases. The first phase, initiated
by ℓ, creates all contracts. Each follower waits for all the incoming contracts to be created,
and then creates the outgoing contracts. For followers, the timeout values for all incoming
contracts are strictly larger than the timeout values for all outgoing contracts. In the second
phase the assets are claimed, starting with ℓ claiming its incoming assets. Now the process
proceeds backwards. For each follower v, when any of its outgoing assets is claimed, v learns
the secret value sℓ, and it can now claim its incoming assets.

The detailed description of this protocol is given in Figure 1. In the protocol, D−
v denotes

the maximum distance from ℓ to v, defined as the maximum length of a simple path from ℓ

to v. In particular, D−
ℓ = 0. The values D−

y are used in contract creation times. By D∗ we
denote the maximum length of a simple cycle in G, so D∗ = maxz∈Nin

ℓ
D−

z + 1.
In the timeout values, the notation D+

v is the maximum distance from v to ℓ. Naturally,
we have maxz∈Nout

ℓ
D+

z + 1 = D∗. Note that, for each v, the timeouts of all incoming
contracts (u, v) are equal to D∗ + D+

v , exactly when v claims them. Also, if v ̸= ℓ then
D∗ + D+

v is larger than the timeout D∗ + D+
w of each outgoing contract (v, w).

▶ Theorem 3. If G is a bottleneck digraph, then Protocol BDP is an atomic swap protocol
for G.

ISAAC 2024
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The safety property should be intuitive: The leader protects its outgoing assets, so it will
lose these assets only if it first claims its incoming assets. If a follower loses an outgoing
asset, it has at least one time unit to claim its incoming assets. The formal proof is similar
(in fact, easier) to that for reuniclus graphs and omitted. (See the full version.)

3.2 Protocol RDP for Reuniclus Digraphs
Reuniclus digraphs. A strongly connected digraph G is called a reuniclus digraph if there
are vertices b1, b2, ..., bp ∈ G, induced subgraphs G1, G2, ..., Gp of G, and a rooted tree K
whose nodes are b1, b2, ..., bp, such that: (rg1) Each digraph Gj is a bottleneck subgraph,
with bj being its bottleneck vertex. We call Gj a bottleneck component of G and the home
component of bj . (rg2) If i ̸= j, then Gi ∩ Gj = {bj} if bi is the parent of bj in K, and
Gi ∩ Gj = ∅ otherwise.

We refer to K as the control tree of G. (See Figure 2 for an example.) We extend the
tree terminology to relations between bottleneck components, or between bottleneck vertices
and components, in a natural fashion. Intuitively, a reuniclus graph G can be divided into
bottleneck components. Overlaps are allowed only between two components if one is the
parent of the other in the control tree K, in which case the overlap is just a single vertex
that is the bottleneck of the child component.

k u

b

j

x

d

z

y

h

c

BU X

Y

f

Z
g

b

u x

y z

Figure 2 An example of a reuniclus graph (left) and its control tree (right). The bottleneck
components (circled) are B, U , X, Y and Z. Their designated bottleneck vertices are b, u, x, y

and z.

From the definition, the set of all bottleneck vertices in G forms a feedback vertex set of
G. These bottleneck vertices are articulation vertices of G. Each bottleneck component may
consist of several biconnected components that share the same bottleneck vertex.

Protocol RDP. Protocol RDP can be thought of as a hierarchical extension of Protocol BDP.
Each bottleneck vertex bj is called the leader of Gj . It creates a secret/hashlock pair (sj , hj),
and its hashlock hj is used to transfer assets within Gj , while the transfer of assets in the
descendant components of bj is “delegated” to the children of bj in K. We assume that the
root component of K is G1, and its bottleneck b1 is called the main leader, denoted also by ℓ.
All non-leader vertices are called followers.

Protocol RDP has two phases: contract creation and asset claiming. In the first phase, at
time 0 all leaders create the outgoing contracts within their home bottleneck components.
Then the contracts are propagated within the bottleneck components, to some degree inde-
pendently; except that each leader bj creates its outgoing contracts in its parent component
Gi only after all its incoming contracts, both in Gi and Gj , are created. This ensures that at
that time all contracts in its descendant components will be already created.
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Protocol RDP for a leader bj ∈ Gi ∩ Gj :
At time 0: Generate secret sj and compute hj = H(sj). For each arc (bj , v) in Gj ,
create contract with hashlock hj and timeout τbjv = B∗ + D+

v .
At time B−

bj
: For each arc (bj , v) in Gi create its contract with hashlock h and timeout

τbjv = B∗ + D+
v .

At time B∗ + D+
bj

: Claim all incoming assets, using secret s in Gi and secret sj in Gj .

Figure 3 Protocol RDP for a sub-leader bj , namely the bottleneck vertex of Gj that also belongs
to its parent component Gi. Recall that B−

u denotes the maximum distance from some leader to u

along a path that satisfies conditions (i)-(iii), and that B∗ = B−
ℓ . D+

v is the maximum length of a
simple path from v to ℓ. We assume that bj aborts when it detects any deviation from the protocol.

In the asset claiming phase, the main leader ℓ is the first to claim the incoming contracts.
The behavior of followers is the same as in Protocol BDP: they claim the incoming assets one
step after all their outgoing assets were claimed. The behavior of all non-main leaders is more
subtle. Each such sub-leader bj waits until all its outgoing assets in the parent component
are claimed, and then it claims all of its incoming assets.

The full protocol for non-main leaders bj is given in Figure 3. Figure 4 shows timeout
values for the reuniclus graph in Figure 2. In what follows we explain some notations used in
the protocol.

As before, we use notation D+
y for the maximum distance from y to ℓ in G. We also

need the concept analogous to the maximum distance from a leader, but this one is a little
more subtle than for bottleneck graphs, because we now need to consider paths whose initial
bottleneck vertex can be repeated once on the path. Formally, if v ∈ Gi, then B−

v denotes
the maximum length of a path with the following properties: (i) it starts at some leader bj

that is a descendant of bi (possibly bj = bi), (ii) it ends in v, and (iii) it does not repeat
any vertices, with one possible exception: it can only revisit bj , and if it does, it either ends
or leaves Gj (and continues in the parent component of bj). (This can be interpreted as a
maximum path length in a DAG obtained by splitting each leader into two vertices, one with
the outgoing arcs into its home component and the other with all other arcs.) For example,
in the graph in Figure 2, one allowed path for v = u is x − y − z − d − g − x − j − u.

These values can be computed using auxiliary values B−
uv defined for each edge (u, v).

Call an edge (u, v) a bottleneck edge if u is a bottleneck vertex, say u = bj , and v ∈ Gj .
That is, bottleneck edges are the edges from bottleneck vertices that go into their home
components. First, for each bottleneck edge (bj , v) let B−

bjv = 0. Then, for each vertex u and
each non-bottleneck edge (u, v) let B−

u = B−
uv = max(x,u) B−

xu + 1, where the maximum is
over all edges (x, u) entering u. By B∗ we denote the value of B−

ℓ .
The values B−

z determine contract creation times. As shown in Figure 3, each leader
bj creates its contracts in its home component at time 0. Each other contract (u, v) will
be created at time B−

u . The last contract will be created by some in-neighbor of ℓ at time
step B∗ − 1. Then ℓ will initiate the contract claiming phase at time B∗. Analogous to
Protocol BDP, each party u will claim its incoming contracts at time B∗ + D+

u , which is its
timeout value.

▶ Theorem 4. If G is a reuniclus digraph, then Protocol RDP is an atomic swap protocol
for G.

Proof. According to Lemma 2, it is sufficient to prove only the liveness and safety properties.
Liveness. The liveness property is quite straightforward. Each party u ̸= ℓ has exactly
one time unit, after its last incoming contract is created, to create its outgoing contracts.
This will complete the contract creation at time B∗ − 1. Thus at time B∗ leader ℓ can claim

ISAAC 2024
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k u

b

j

x

d

z

y

10, hu

11, hu 9, hb

11, hb

12, hb

11, h b10, hb

16, hx

15, hx

14, hx
13, hx

h
16, h z

15
, h z

c16, h y

17, h y

f

15, hz

16, hzg

12, h
x

13
, h

x 14, hx

Figure 4 Timeout values and hashlocks for Protocol RDP for the graph in Figure 2. The main
leader is ℓ = b. We have B∗ = 9 (this is the length of path y − c − y − z − d − g − x − j − u − b).

its incoming assets. For any other party u, each incoming asset (x, u) of u has timeout
τxu = B∗ + D+

u . If u is a follower then all the outgoing assets of u will be claimed before
time τxu, and if u is a non-main leader then all of u’s outgoing assets in its parent component
will be claimed before time τxu. So u can claim all incoming assets at time τxu.

Safety. The proof of the safety condition for the main leader ℓ and pure followers is the
same as in Protocol BDP for bottleneck digraphs. So here we focus only on non-main leaders.

Let bj be a non-main leader whose parent component is Gi. Assume that bj follows the
protocol. So, according to Protocol RDP, bj will create its outgoing contracts in Gj at time 0.
Before creating its outgoing contracts in Gi, bj checks if all incoming contracts are created.
If any of its incoming contracts is not created or not valid, bj will abort without creating its
outgoing contracts in Gi. Thus its outcome will be NoDeal.

We can thus assume that all incoming contracts of bj are created and correct; in particular
all incoming contracts in Gj have hashlock hj and all incoming contracts in Gi have the same
hashlock h (which may or may not be equal to hi). Then bj creates its outgoing contracts in
Gi, as in the protocol. We now need to argue that if any of bj ’s outgoing assets is successfully
claimed then bj successfully claims all its incoming assets.

Suppose that some outgoing asset of bj , say (bj , w) is successfully claimed by w. Two
cases arise, depending on whether w is in Gi or Gj .

If w ∈ Gi then from contract (bj , w) will provide bj with some secret value s for which
H(s) = h, because bj used h for its outgoing contracts in Gi. At this point, bj has both
secret values s and sj , and the timeout of all incoming contracts of bj is greater than the
timeout of (bj , w). Therefore bj has the correct secrets and at least one time unit to claim
all incoming contracts, and its outcome will be Deal or Discount, thus acceptable.

In the second case, w ∈ Gj , the home component of bj . For w to successfully claim
(bj , w), it must have the value of sj . But, as bj follows the protocol, it releases sj only when
claiming all incoming assets. So at this time bj already has all incoming assets. Therefore in
this case the outcome of bj is also either Deal or Discount. ◀

4 A Characterization of Digraphs that Admit HTLC-Based Protocols

This section proves Theorem 1. By straightforward inspection, Protocol RDP from Section 3.2
is HTLC-based: each party creates at most one secret/hashlock pair, and all contracts are
transferred using HTLC’s. This already proves the (⇐) implication in Theorem 1.

It remains to prove the (⇒) implication, namely that the existence of an atomic HTLC-
based protocol implies the reuniclus property of the underlying graph. We divide the proof
into two parts. First, in Section 4.1 we establish some basic properties of HTLC-based
protocols. Using these properties, we then wrap up the proof of the (⇒) implication in
Section 4.2.
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4.1 Basic Properties of HTLC-Based Protocols
Let P be an HTLC-based protocol for a strongly connected digraph G, and for the rest of
this section assume that P is atomic. We now establish some fundamental properties that
must be satisfied by P.

Most of the proofs of protocol properties given below use the same fundamental approach,
based on an argument by contradiction: we show that if P did not satisfy the given property
then there would exist a (non-conforming) execution of P in which some parties, by deviating
from P, would force a final outcome of some conforming party to be unacceptable, thus
violating the safety property.

For illustration, we include the proofs for Lemma 5 and for some other theorems and
corollaries later in the section. See the full version [5] for the missing proofs.

▶ Lemma 5. If some party successfully claims an incoming asset at some time t, then all
contracts in the whole graph must be placed before time t.

Proof. Assume that a party v successfully claims an asset (u, v) at time t. Towards con-
tradiction, suppose that there is some arc (x, y) for which the contract is still not placed
at time t. Since G is strongly connected, there is a path y = u1, u2, ..., up = u from y to u

in G. Let also u0 = x and up+1 = v. Now consider an execution of P in which all parties
except x are conforming, x follows P up to time t − 1, but later it never creates contract
(x, y). This execution is indistinguishable from the conforming execution up until time t − 1,
so at time t node v will claim contract (u, v). Since the first asset on path u0, u1, ..., up+1 is
not transferred and the last one is, there will be a party uj on this path, with 1 ≤ j ≤ p,
for which asset (uj−1, uj) is not transferred but (uj , uj+1) is. But then the outcome of uj is
unacceptable even though uj is honest, contradicting the safety property of P. ◀

Lemma 5 is important: it implies that P must consist of two phases: the contract creation
phase, in which all parties place their outgoing contracts (by the liveness property, all
contracts must be created), followed by the asset claiming phase, when the parties claim
their incoming assets.

▶ Lemma 6. Suppose that at a time t a party v creates an outgoing contract protected by a
party different than v. Then all v’s incoming contracts must be created before time t.

Consider now the snapshot of of P right after the contract creation phase, when all
contracts are already in place but none of the assets are yet claimed. Lemma 6 implies the
following:

▶ Corollary 7.
(a) If on some path each contract except possibly the first is not protected by its seller, then

along this path the contract creation times strictly increase.
(b) Each cycle must contain a contract protected by its seller.

Next, we establish some local properties of P; in particular we will show that for each
party v there is at most one other party that protects contracts involving v.

▶ Lemma 8. If a party v has an incoming contract protected by some party x different from
v then:
(a) Party v has at least one outgoing contract protected by x;
(b) All contracts involving v are protected either by v or by x.
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▶ Lemma 9. Let P = u1, u2, ..., uk be a simple path whose last contract is protected by some
party z /∈ {u1, u2, ..., uk−1}. Then for each i = 1, ..., k − 1, contract (ui, ui+1) is protected by
one of the parties ui+1, ui+2, ..., uk−1, z. Consequently, each contract on P is not protected
by its seller.

▶ Lemma 10. If all incoming contracts of a party v are protected by v then all outgoing
contracts of v are also protected by v.

Intuitively, if v had an outgoing contract protected by some other party x but not an
incoming contract protected by x, then this outgoing contract would be “redundant” for
v, since v does not need the secret from this contract to claim an incoming contracts. The
lemma shows that the issue is not just redundancy – this is in fact not even possible if the
protocol is atomic.

▶ Lemma 11. If a party v has an outgoing contract protected by some party x different from
v then it has an incoming contract protected by x.

▶ Lemma 12. A party v has an incoming contract protected by v if and only if it has an
outgoing contract protected by v.

The theorem below summarizes the local properties of the contracts involving a party v.

▶ Theorem 13. Consider the contracts involving a party v, both incoming and outgoing.
(a) For each party x (which may or may not be v), v has an incoming contract protected by

x if and only if v has an outgoing contract protected by x.
(b) If there are any contracts protected by v, then at least one incoming contract protected by

v has a smaller timeout than all outgoing contracts protected by v.
(c) There is at most one party x ̸= v that protects a contract involving v. For this x, all

timeouts of the outgoing contracts protected by x are smaller than all timeouts of the
incoming contracts (no matter what party protects them).

Proof.
(a) This part is just a restatement of the properties established earlier. For x = v, the

statement is the same as in Lemma 12. For x ̸= v, if v has an incoming contract protected
by x then, by Lemma 8, it must have an outgoing contract protected by x, and if v

has an outgoing contract protected by x then, by Lemma 11, it must have an incoming
contract protected by x.

(b) Let (v, w) be an outgoing contract protected by v whose timeout value τvw is smallest.
Consider any path P from w to v with all contracts on P protected by v. (This path must
exist. To see this, starting from w follow contracts protected by v. By Corollary 7(b),
eventually this process must end at v.) Then part (b) of Theorem 13 implies that along
this path timeout values must decrease, so its last contract (u, v) must satisfy τuv < τvw.
Thus, by the choice of w, the timeout value of (u, v) is smaller than all timeout values of
the outgoing contracts protected by v.

(c) Let x ̸= v. If v has an incoming contract protected by x then, by Lemma 8, all contracts
involving v but not protected by v are protected by x. If v has an outgoing contract
protected by x then Lemma 11 implies that some incoming contract is protected by x.

We now consider the claims about the timeout values. Let (v, w) be an outgoing contract
protected by x, and let (u, v) be an incoming contract. Towards contradiction, suppose that
in P the timeouts of these contracts satisfy τuv ≤ τvw. Denote by t∗ the first step of P after
the contract creation phase. We consider two cases, depending on whether (u, v) is protected
by x or v.
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Case 1: contract (u, v) is protected by x. We consider an execution of P where all parties
follow P until time t∗ − 1. Then, starting at time t∗, we alter the behavior of some parties, as
follows: all parties other than v, w and x will abort the protocol, x will provide its secret sx

to w, and w will claim asset (v, w) at time τvw. This way, the earliest v can claim asset (u, v)
is at time τvw + 1, which is after timeout τuv. Thus v ends up in an unacceptable outcome,
giving us a contradiction, which completes the proof of (b).
Case 2: contract (u, v) is protected by v. We can assume that its timeout τuv is minimum
among all incoming contracts protected by v. (Otherwise, in the argument below replace
(u, v) by the incoming contract protected by v that has minimum timeout.) Let (v, y) be any
outgoing contract protected by v. From part (b), we have that τuv < τvy. Let also (z, v) be
any incoming contract protected by x.

We now consider an execution of P where all parties follow the protocol until time t∗ − 1.
At time t, all parties other than u, w, x, y, z abort the protocol, and x gives its secret sx to
w. As time proceeds, v may notice that some parties do not follow the protocol, so, even
though v is honest, from this time on it is not required to follow the protocol. We show that
independently of v’s behavior, it can end up in an unacceptable outcome, contradicting the
safety property of P.

To this end, we consider two possibilities. If v does not claim (u, v) at or before time τuv,
then w can claim (v, w) at time τvw, so v will lose asset (v, w) without getting asset (u, v).
On the other hand, if v claims (u, v), then u can give secret sv to y who can then claim asset
(v, y), and w will not claim asset (v, w), so v will not be able to claim asset (z, v), as it will
not have secret sx. In both cases, the outcome of v is unacceptable. ◀

We now use the above properties to establish some global properties of P. The first
corollary extends Corollary 7, and is a direct consequence of Theorem 13(b).

▶ Corollary 14. If on some path each contract except possibly the first is not protected by the
seller, then along this path the timeout values strictly decrease.

The next corollary follows from Corollaries 7 and 14.

▶ Corollary 15. Let P be a path such that all contracts on P except possibly the first are
protected by a party x that is not an internal vertex of P . Then all contract creation times
along P strictly increase and all timeout values strictly decrease.

▶ Corollary 16.
(a) Let (u, v) be a contract protected by some party x other than v. Consider a path P

starting with arc (u, v), that doesn’t contain x as an internal vertex and on which each
contract is not protected by its seller. Then all contracts along P are protected by x.

(b) Let (u, v) be a contract protected by some party x other than u. Consider a path P ending
with arc (u, v), that doesn’t contain x as an internal vertex and on which each contract
is not protected by its buyer. Then all contracts along P are protected by x.

Proof.
(a) The corollary follows easily by repeated application of Theorem 13. Let (v, w) be the

second arc on P . By the assumption, (v, w) is not protected by v, and since v has an
incoming contract protected by x and x ̸= v, Theorem 13 implies that contract (v, w)
must be also protected by x. If w = x, this must be the end of P . If w ≠ x, then w has
an incoming contract protected by x, so we can repeat the same argument for w, and so
on. This implies part (a).

(b) The proof for this part is symmetric to that for part (a), with the only difference being
that we proceed now backwards from u along P . ◀
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▶ Theorem 17.
(a) Let P be a simple path starting at a vertex x whose last contract is protected by x. Then

all contracts on P are protected by x.
(b) Let Q be a simple path ending at a vertex x whose first contract is protected by x. Then

all contracts on Q are protected by x.

Proof. (a) Let P = u1, u2, ..., up+1, where u1 = x and (up, up+1) is protected by x. The
proof is by contradiction. Suppose that P violates part (a), namely it contains a contract not
protected by x. (In particular, this means that p ≥ 2.) We can assume that among all simple
paths that violate property (a), P is shortest. (Otherwise replace P in the argument below
by a shortest violating path.) Then (up−1, up) is not protected by x, because otherwise the
prefix of P from x to up would be a violating path shorter than P . So (up−1, up) is protected
by up. Using Lemma 9, each contract on the path u1, u2, ..., up is not protected by the seller.
Since (up, up+1) is protected by x and x ≠ up, each contract on P is not protected by its
seller.

x

u3 u4

u5

u6

u7

u8
u9

u4
u5 u8

u8

u8

xx
xx

x

P

P'

u2 u4

u2

Figure 5 Illustration of the proof of Theorem 17(a). Path P is marked with solid arrows, path
P ′ is marked with dashed arrows. Here, p = 8 and u1 = x. The labels on edges show the parties
that protect them.

Next, we claim that there is a simple path P ′ from up+1 to x whose all contracts are
protected by x. If up+1 = x, this is trivial, so assume that up+1 ̸= x. Then, since up+1 has
an incoming contract protected by x and x ̸= up+1, up+1 must have an outgoing contract
(up+1, w) protected by x. If w = x, we are done. Else, we repeat the process for w, and so
on. Eventually, extending this path we must end at x, for otherwise we would have a cycle
with all contracts protected by x but not containing x, contradicting Corollary 7(b). This
proves that such path P ′ exists. Since all contracts on P ′ are protected by x, they are not
protected by their sellers.

Finally, let C be the cycle obtained by combining paths P and P ′. (See Figure 5.) Then
every contract on C is not protected by its seller, contradicting Corollary 7, completing the
proof. ◀

4.2 Proof of the (⇐) Implication in Theorem 1
In this section we use the protocol properties established in the previous section to prove
necessary conditions for a digraph to admit an atomic HTLC protocol. We start with
protocols that use only one common hashlock for the whole graph. (See the full version for
the missing proofs.)

▶ Lemma 18. Suppose that G has an atomic HTLC protocol P in which only one party
creates a secret/hashlock pair. Then G must be a bottleneck graph.

We now consider the general case, when all parties are allowed to create secret/hashlock
pairs. The lemma below establishes the (⇒) implication in Theorem 1.
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▶ Lemma 19. Suppose that G has an atomic HTLC protocol P. Then G must be a reuniclus
digraph.

Proof. Recall what we have established so far in Section 4.1. From Theorem 13(c) we know
that, for each party u, all contracts involving u are protected either by u or by just one other
party. Using this property, we define the control relation on parties, as follows: If u has
any contracts protected by some other party x, we will say that x controls u. Let K be a
digraph whose vertices are the parties that created secret/hashlock pairs, and each arc (u, x)
represents the control relation, meaning that x controls u. We want to prove that K is a tree.

Each node in K has at most one outgoing arc. This property already implies that each
connected component of K is a so-called 1-tree, namely a graph that has at most one cycle.
So in order to show that K is actually a tree, it is sufficient to show the two claims below.

▷ Claim 20. K does not have any cycles.

We now prove Claim 20. Towards contradiction, suppose that K has a cycle C =
v1, v2, ..., vk, vk+1, where vk+1 = v1. Consider any arc (vi, vi+1) on C. This arc represents
that vi+1 controls vi. So, in G, vi has an outgoing contract protected by vi+1. Let Pi be
any path in G starting with this contract and ending at vi+1. Then Theorem 17(b) gives us
that all contracts on Pi are protected by vi+1. Combining these paths P1, ..., Pk we obtain a
cycle C ′ in G. Then in C ′, each contract is not protected by its seller, which would contract
Corollary 7(b). This completes the proof of Claim 20.

▷ Claim 21. K has only one tree.

From Claim 20 we know that each (weakly) connected component of K is a tree. The
roots of these trees have the property that their contracts are not protected by any other
party. To prove Claim 21, suppose towards contradiction that K has two different trees,
and denote by r and r′ the roots of these trees. Since r, r′ are roots of trees, all contracts
involving r are protected by r and all contracts involving r′ are protected by r′. Consider
any simple path P = u1, u2, ..., uk from u1 = r to r′ = uk. Since the last contract on P is
protected by r′ and r′ is not in {u1, u2, ..., uk−1}, Lemma 9 implies that all contracts on this
path are not protected by their sellers. But this contradicts the fact that (u1, u2) is protected
by u1. This completes the proof of Claim 21.

We now continue with the proof of the theorem. Denote by b1, b2, ..., bp the nodes of K.
For each bj , define Gj to be the subgraph induced by the contracts protected by bj . That
is, for each contract (u, v) protected by bj we add vertices u, v and arc (u, v) to Gj . The
necessary properties (rg1) and (rg2) follow from our results in Section 4.1. It remains to
show that subgraphs G1, G2, ..., Gp, together with tree K, satisfy conditions (rg1) and (rg2)
that characterize reuniclus graphs.

Consider some u ̸= bj that is in Gj . By the definition of Gj , u is involved in a contract
protected by bj . Then Theorem 13 gives us that u has both an incoming and outgoing
contract protected by bj . Take any path P starting at an outgoing contract of u protected
by bj and ending at bj . Then Theorem 17(b) implies that all contracts on P are protected
by bj . By the same reasoning, there is a path P ′ starting at bj and ending with an incoming
contract of u protected by bj . Then, by Theorem 17(a) all contracts on P ′ are protected by
bj . This gives us that Gj is strongly connected. And, by Corollary 7, Gj cannot contain a
cycle not including bj . Therefore Gj is a bottleneck graph with bj as its bottleneck.

We also need to prove that Gj is in fact an induced subgraph, that is, if u, v ∈ Gj and G

has an arc (u, v), then (u, v) ∈ Gj as well. That is, we need to prove that (u, v) is protected
by bj . Suppose, towards, contradiction, that (u, v) is protected by some bi ≠ bj . Then both
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u and v are involved in contracts protected by both bi and bj , and this implies that u = bi

and v = bj , or vice versa. And this further implies that bi would be protected by bj and vice
versa, which would be a cycle in K, contradicting that K is a tree. This completes the proof
of property (rg1).

Finally, consider property (rg2). If a vertex u is not any of designated bottleneck vertices
b1, b2, ..., bp, then, by Theorem 13, all its contracts are protected by the same party, which
means that it belongs to exactly one graph Gj . On the other hand, if u = bj , then again by
Theorem 13, it is involved only in contracts protected by itself and one other party, say bi.
But then it belongs only to Gj and Gi, completing the proof of (rg2). ◀

5 Final Comments

We have provided a full characterization of digraphs for which there exist atomic HTLC-based
protocols for asset swaps, by proving that these digraphs are exactly the class of reuniclus
graphs. Our work raises several natural open problems and leads to new research directions,
including the following:

One natural extension of HTLCs would be to allow multiple hashlocks in a contract. We
can show that there are non-reuniclus graphs that have atomic protocols based on such
contracts, and that there are strongly connected digraphs that don’t, although at this
time we do not have a full characterization of digraphs that admit such protocols.
A further extension would be to allow different hashlocks in the same contract have
different timeouts. What types of graphs can be handled with such protocols?
More generally, are there any simple generalizations of HTLCs that lead to atomic
protocols for arbitrary graphs?
Herlihy’s method requires computing longest paths in graphs in order to specify the
protocol’s steps on a given digraph. Are longest paths truly necessary to assure the safety
property in arbitrary graphs? If so, it would be interesting to prove this, say via some
sort of computational-hardness result.
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