
Simple Realizability of Abstract Topological Graphs
Giordano Da Lozzo # Ñ

Roma Tre University, Italy

Walter Didimo # Ñ

University of Perugia, Italy

Fabrizio Montecchiani # Ñ

University of Perugia, Italy

Miriam Münch #Ñ

University of Passau, Germany

Maurizio Patrignani # Ñ

Roma Tre University, Italy

Ignaz Rutter # Ñ

University of Passau, Germany

Abstract
An abstract topological graph (AT-graph) is a pair A = (G, X), where G = (V, E) is a graph
and X ⊆

(
E
2

)
is a set of pairs of edges of G. A realization of A is a drawing ΓA of G in the plane

such that any two edges e1, e2 of G cross in ΓA if and only if (e1, e2) ∈ X ; ΓA is simple if any two
edges intersect at most once (either at a common endpoint or at a proper crossing). The AT-graph
Realizability (ATR) problem asks whether an input AT-graph admits a realization. The version of
this problem that requires a simple realization is called Simple AT-graph Realizability (SATR).
It is a classical result that both ATR and SATR are NP-complete [16, 19].

In this paper, we study the SATR problem from a new structural perspective. More precisely,
we consider the size λ(A) of the largest connected component of the crossing graph of any realization
of A, i.e., the graph C(A) = (E, X). This parameter represents a natural way to measure the level
of interplay among edge crossings. First, we prove that SATR is NP-complete when λ(A) ≥ 6. On
the positive side, we give an optimal linear-time algorithm that solves SATR when λ(A) ≤ 3 and
returns a simple realization if one exists. Our algorithm is based on several ingredients, in particular
the reduction to a new embedding problem subject to constraints that require certain pairs of edges
to alternate (in the rotation system), and a sequence of transformations that exploit the interplay
between alternation constraints and the SPQR-tree and PQ-tree data structures to eventually arrive
at a simpler embedding problem that can be solved with standard techniques.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathematics
of computing → Graph algorithms; Human-centered computing → Graph drawings

Keywords and phrases Abstract Topological Graphs, SPQR-Trees, Synchronized PQ-Trees

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.23

Related Version Full Version: http://arxiv.org/abs/2409.20108 [5]

Funding Research by Da Lozzo, Didimo, Montecchiani, and Patrignani was supported, in part, by
MUR of Italy (PRIN Project no. 2022ME9Z78 – NextGRAAL and PRIN Project no. 2022TS4Y3N –
EXPAND). Research by Münch and Rutter was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 541433306.

Acknowledgements Research started at the 1st Summer Workshop on Graph Drawing, September
2021, Castiglione del Lago, Italy.

© Giordano Da Lozzo, Walter Didimo, Fabrizio Montecchiani, Miriam Münch, Maurizio Patrignani,
and Ignaz Rutter;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:giordano.dalozzo@uniroma3.it
http://www.dia.uniroma3.it/~dalozzo
https://orcid.org/0000-0003-2396-5174
mailto:walter.didimo@unipg.it
https://mozart.diei.unipg.it/didimo/
https://orcid.org/0000-0002-4379-6059
mailto:fabrizio.montecchiani@unipg.it
https://mozart.diei.unipg.it/montecchiani/
https://orcid.org/0000-0002-0543-8912
mailto:muenchm@fim.uni-passau.de
https://www.fim.uni-passau.de/theoretische-informatik/lehrstuhlteam/miriam-muench
https://orcid.org/0000-0002-6997-8774
mailto:maurizio.patrignani@uniroma3.it
https://compunet.ing.uniroma3.it/#!/people/titto
https://orcid.org/0000-0001-9806-7411
mailto:rutter@fim.uni-passau.de
https://www.fim.uni-passau.de/en/theoretical-computer-science/chair/prof-dr-ignaz-rutter
https://orcid.org/0000-0002-3794-4406
https://doi.org/10.4230/LIPIcs.ISAAC.2024.23
http://arxiv.org/abs/2409.20108
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Simple Realizability of Abstract Topological Graphs

1 Introduction

A topological graph Γ is a geometric representation of a graph G = (V,E) in the plane such
that the vertices of G are mapped to distinct points and the edges of G are simple curves
connecting the points corresponding to their end-vertices. For simplicity, the geometric
representations of the elements of V and E in Γ are called vertices and edges of Γ, respectively.
It is required that: (i) any intersection point of two edges in Γ is either a common endpoint or
a crossing (a point where the two edges properly cross); (ii) any two edges of Γ have finitely
many intersections and no three edges pass through the same crossing point. Additionally,
we say that Γ is simple if adjacent edges never cross and any two non-adjacent edges cross
at most once. The crossing graph C(Γ) of a topological graph Γ is a graph whose vertices
correspond to the edges of Γ (and hence of G) and two vertices are adjacent if and only if
their corresponding edges cross in Γ.

An abstract topological graph (AT-graph) is a pair A = (G,X) such that G = (V,E) is
a graph and X ⊆

(
E
2
)

is a set of pairs of edges of G. We say that A is realizable if there
exists a topological graph ΓA isomorphic to G such that any two edges e and e′ of G cross
(possibly multiple times) in ΓA if and only if (e, e′) ∈ X . The topological graph ΓA is called
a realization of A. Note that, by definition, A is realizable if and only if the crossing graph
of any realization ΓA of A is isomorphic to the graph (E,X). Since such a crossing graph
only depends on A (i.e., it is the same for any realization of A), we denote it by C(A).

The AT-graph Realizability (ATR) problem asks whether an AT-graph A = (G,X)
is realizable. The Simple AT-graph Realizability (SATR) problem is the version of
ATR in which the realization of A is required to be simple; if such a realization exists, then
A is said to be simply realizable. Since the introduction of the concept of AT-graphs [18],
establishing the complexity of the ATR (and of the SATR) problem has been the subject of
an intensive research activity, also due to its connection with other prominent problems in
topological and geometric graph theory. Clearly, if X = ∅, both the ATR and the SATR
problems are equivalent to testing whether G is planar, which is solvable in linear time [3, 15].
However, for X ≠ ∅, a seminal paper by Kratochvíl [16] proves that ATR is NP-hard and
that this problem is polynomially equivalent to recognizing string graphs. We recall that a
graph S is a string graph if there exists a system of curves (called strings) in the plane whose
crossing graph is isomorphic to S. In the same paper, Kratochvíl proves the NP-hardness of
the Weak AT-graph Realizability (WATR) problem, that is, deciding whether a given
AT-graph A = (G,X) admits a realization where a pair of edges may cross only if it belongs
to X . He also proves that recognizing string graphs remains polynomial-time reducible to
WATR. Subsequent results focused on establishing decision algorithms for WATR; it was
first proven that this problem belongs to NEXP [25] and then to NP [24]. This also implies the
NP-completeness of recognizing string graphs (which is polynomial-time reducible to WATR)
and of ATR (which is polynomially equivalent to string graph recognition). Concerning
the simple realizability setting for AT-graphs, it is known that the SATR problem remains
NP-complete, still exploiting the connection with recognizing string graphs [19, 20]. On the
positive side, for those AT-graphs A = (G,X) for which G is a complete n-vertex graph,
SATR is solvable in polynomial-time, with an O(n6)-time algorithm [21, 22]. Refer to [21]
for the complexity of other variants of ATR, and to [11] for a connection with the popular
Simultaneous Graph Embedding problem.

Our contributions. In this paper, we further investigate the complexity of the simple
realizability setting, i.e., of the SATR problem. We remark that focusing on simple drawings
is a common scenario in topological graph theory, computational geometry, and graph

G. Da Lozzo, W. Didimo, F. Montecchiani, M. Münch, M. Patrignani, and I. Rutter 23:3

drawing (see, e.g., [9, 12, 14, 26]), because avoiding crossings between adjacent edges, as well
as multiple crossings between a pair of non-adjacent edges, is a requirement for minimal edge
crossing layouts. Specifically, we study the simple realizability problem for an AT-graph A

from a new structural perspective, namely looking at the number of vertices of the largest
connected component of the crossing graph C(A), which we denote by λ(A). This parameter
is a natural measure of the level of interplay among edge crossings. Namely, SATR is trivial
on instances for which λ(A) ≤ 2, that is, instances in which the number of crossings is
unbounded but each edge is crossed at most once. On the other hand, the problem becomes
immediately nontrivial as soon as λ(A) ≥ 3. Precisely, our results are as follows:

We prove that Simple AT-graph Realizability is NP-complete already for instances A
for which λ(A) = 6 (which, in fact, implies the hardness for every fixed value of λ(A) ≥ 6);
see Section 3. A consequence of our result is that, unless P = NP, the problem is not
fixed-parameter tractable with respect to λ(A) and, thus, with respect to any graph
parameter bounded by λ(A), such as the maximum node degree, the treewidth or even
the treedepth. As the results in [16, 19, 20], our hardness proof uses a reduction from
3-Connected Planar 3-SAT. However, the reduction in [16] does not deal with the
simplicity of the realization, whereas the reduction in [19, 20] may lead to instances A
for which λ(A) is greater than six and, actually, is even not bounded by a constant.
We prove that Simple AT-graph Realizability can be solved efficiently when λ(A) ≤ 3.
More precisely, we give an optimal O(n)-time testing algorithm, which also finds a simple
realization if one exists; see Section 4. We remark that the only polynomial-time algorithm
previously known in the literature for the SATR problem is restricted to complete graphs
and has high complexity [21, 22]. Our algorithm is based on several ingredients, including
the reduction to a new embedding problem subject to constraints that require certain
pairs of edges to alternate (in the rotation system), and a sequence of transformations that
exploit the interplay between alternation constraints and the SPQR-tree [7, 8] and PQ-
tree [3, 4] data structures to eventually arrive at a simpler embedding problem that can be
solved with standard techniques. We remark that the alternation constraints we encounter
in our problem are rather opposite to the more-commonly encountered consecutivity
constraints [1, 2, 13, 23] and cannot be handled straightforwardly with PQ-trees.

For proofs of lemmas and theorems marked with (⋆) we refer to the full version [5].

2 Basic Definitions and Tools

For basic definitions about graphs and their drawings, refer to [6, 10]. We only consider
simple realizations and thus we often omit the qualifier “simple” when clear from the context.

Let A = (G,X) be an AT-graph, with G = (V,E), and let ΓA be a realization of A.
A face of ΓA is a region of the plane bounded by maximal uncrossed portions of the
edges in E. A set E′ ⊆ E of k edges pairwise crossing in ΓA is a k-crossingof ΓA.
As we focus on simple realizations, we assume that the edges in E′ are pairwise non-
adjacent in G. For a k-crossing E′, denote by V (E′) the set of 2k endpoints of the k

edges in E′. The arrangement of E′, denoted by CE′ , is the arrangement of the curves
representing the edges of E′ in ΓA. A k-crossing E′ is untangled if, in the arrangement CE′ ,
all 2k vertices in V (E′) are incident to a common face (see Fig. 1b); otherwise, it is tangled
(see Fig. 1a). The next lemma will turn useful in Section 4.

▶ Lemma 1 (⋆). An AT-graph A with λ(A) ≤ 3 admits a simple realization if and only if it
admits a simple realization in which all 3-crossings are untangled.

ISAAC 2024

23:4 Simple Realizability of Abstract Topological Graphs

e1

e2

e3 u2
u1

v2

v1 Gf

Gh

p

(a) Realization ΓA.

Q

e1

e2

e3 u2
u1

a
b

Gf

Gh

c

(b) Realization Γ′
A.

a

c

b

λ1

u1

v1

λ2λ3 λ4

(c) Curves of e1.

Figure 1 Illustrations for the proof of Lemma 1. (a) A schematic representation of a simple
realization ΓA of an AT-graph A with a tangled 3-crossing E′ = {e1, e2, e3}. (b) The simple
realization Γ′

A obtained from ΓA, where E′ is untangled. (c) The curves forming e1 in Γ′
A.

Proof Sketch. Let A be an AT-graph with λ(A) ≤ 3 and let ΓA be a simple realization of
A that contains a tangled 3-crossing E′. We show how to obtain a new simple realization Γ′

A

of A that coincides with ΓA except for the drawing of one of the edges in E′ and such that
E′ is untangled (refer to Fig. 1). Repeating such a transformation for each tangled 3-crossing
yields the desired simple realization of A with no tangled 3-crossings.

Since ΓA is simple and |E′| = 3, the arrangement CE′ in ΓA splits the plane into two faces,
a bounded face f and an unbounded face h. Let e1 = (u1, v1), e2 = (u2, v2), and e3 = (u3, v3)
be the edges in E′. Since E′ is tangled, assume w.l.o.g. that f contains an endpoint of two
edges of E′ (and thus h contains the remaining four endpoints), that such endpoints are v1
and v2, and that traversing e2 from u2 to v2, we see u1 to the left at the intersection between
e2 and e1. Let Gf (resp. Gh) be the subgraph of G formed by the vertices and edges of G
in the interior of f (resp. of h). Let Q be a closed curve passing through v1 and v2 that
encloses the drawing of Gf in ΓA, without intersecting any other vertex or edge. To obtain
Γ′

A, replace the drawing of e1 in ΓA with the union of four curves λ1, λ3, λ3, λ4 defined as
shown in Fig. 1c by following the drawing of e1, e2 and Q. Moving on e2 from u2 to v2, we
now see u1 to the right at the intersection of e2 with e1. Hence, all the endpoints of the
edges in E′ lie in the same face of CE′ in Γ′

A, i.e., E′ is untangled in Γ′
A. ◀

3 NP-completeness for AT-Graphs with λ(A) ≥ 6

In this section, we show that the SATR problem is NP-complete for an AT-graph A even
when the largest component of the crossing graph C(A) has bounded size; specifically, when
λ(A) = 6 (see Theorem 6). We will exploit a reduction from the NP-complete problem
3-Connected Planar 3-SAT [17].
Let φ be a Boolean formula in conjunctive normal form. The variable-clause graph Gφ of φ
is the bipartite (multi-)graph that has a node for each variable and for each clause, and an
edge between a variable-node and a clause-node if a positive or negated literal of the variable
appears in the clause. If each clause of φ has exactly three literals corresponding to different
variables and Gφ is planar and triconnected, then φ is an instance of 3-Connected Planar
3-SAT. Observe that in this case Gφ is a simple graph. Our proof exploits several gadgets
described hereafter, which are then combined to obtain the desired reduction.

Intuitively, in the instance Aφ of SATR corresponding to φ, we encode truth values into
the clockwise or counter-clockwise order in which some edges cross suitable cycles of the
subgraphs (called “variable gadgets”) representing the variables of φ in Aφ. These edges
connect the variable gadgets to the subgraphs (called “clause gadgets”) representing those
clauses that contain a literal of the corresponding variable. Only if at least one of the

G. Da Lozzo, W. Didimo, F. Montecchiani, M. Münch, M. Patrignani, and I. Rutter 23:5

a1

a2

a3

b1
c1

c2

b2

b3

c3

d1

e1
f1

h2

d2
d3

f3

f2

l1

l3

π1,3

π2,3

ψ2,3

ψ1,3

g1

h1

e2

g2

e3

g3

h3

l2

(a)

e1

e2

e3

f1
g1

g2

f2

f3

g3

h1

a1
b1

d2

h2
h3

b3

b2

ψ1,3

ψ2,3

π2,3

π1,3

c1

d1

a2

c2

a3

c3

d3
R2,3

l1

l3

l2

(b)

S1 S2

S3S4

e11

a11

e12

a12

e13a13

a21

e21

e22a22

e23

a23

a33e33

e31

a31

a32

e32

e43

a43

e41

a41

e42 a42

ev,c1 ev,c2

ev,c4 ev,c3

(c)

Figure 2 (a,b) The split gadget S : The clockwise circular order of the edges leaving the gadget
is either b1, f1, b2, f2, b3, f3 (a) or f1, b1, f2, b2, f3, b3 (b). (c) The variable gadget Vv. The dashed
edges belong to the variable cycle of v in the skeleton Hφ.

literals appearing in a clause gadget encodes a true value, the clause gadget admits a simple
realization. We start by describing the “skeleton” of Aφ, that is the part of Aφ that encloses
all the gadgets and ensures that they are properly connected. Next, we describe the “split
gadget” which, in turn, is used to construct the variable gadget. If a variable v has literals
in k clauses, we have k pairs of edges leaving the corresponding variable gadget and entering
the k clause gadgets. The clause gadgets always receive three truth values, corresponding to
the three literals of the corresponding clause.

Skeleton. Arbitrarily choose a planar embedding Eφ of Gφ. The skeleton Hφ of φ is
a 4-regular 3-connected plane graph obtained from Eφ as follows. For each degree-k variable v
of φ, the graph Hφ contains a k-cycle formed by the sequence of edges (ev,c1 , ev,c2 , . . . , ev,ck

),
which we refer to as the variable cycle of v, where c1, . . . , ck are the clause-nodes of Gφ

adjacent to v in the clockwise order in which they appear around v in Eφ.
For each clause c of φ, the graph Hφ contains a 3-cycle formed by the sequence of
edges (ec,v1 , ec,v2 , ec,v3), which we refer to as the clause cycle of c, where v1, v2, v3 are
the variable-nodes of Gφ adjacent to c in the clockwise order in which they appear around c
in Eφ.
For each edge (vi, cj) of Gφ, the graph Hφ contains two edges, which we refer to as the pipe
edges of the edge (vi, cj), connecting the endpoints of evi,cj

and ecj ,vi
without crossings.

▶ Lemma 2 (⋆). The skeleton Hφ obtained from Eφ is triconnected.

Split gadget. The split gadget S is the AT-graph defined as follows; refer to Figs. 2a and 2b.
The underlying graph of S consists of six connected components: (1) a 3-cycle formed by the
edges l1, l2, and l3, which we call outer cycle of S; (2) a 3-cycle formed by the vertices v1, v2,
and v3 (filled white in Figs. 2a and 2b) such that, for i = 1, 2, 3, the vertex vi is the endpoint
of the two paths formed by the sequence of edges (ai, bi, ci, di) (red paths in Figs. 2a and 2b)
and (ei, fi, gi, hi) (blue paths in Figs. 2a and 2b); (3) four length-3 paths π1,3, π2,3, ψ1,3,
and ψ2,3. We denote the first, intermediate, and last edge of a length-3 path p as p′, p′′,
and p′′′, respectively. The crossing graph C(S) of S consists of several connected components.
Next, we describe the eight non-trivial connected components of C(S), i.e., those that are not
isolated vertices, determined by the following crossings of the edges of S: (i) For j = 1, 2, 3,

ISAAC 2024

23:6 Simple Realizability of Abstract Topological Graphs

copyright © 2021 G. Da Lozzo

ex

ey

ez

fx

fy

fz

ax
bx

bz

by

ec,yec,x

ec,z

ay

az
True

False False

czgz

cy

gycx

gx

ex

ay

ez

fx

by

fz

ax
bx

bz

fy

ec,yec,x

ec,z

ey

az
True

False True

czgz

gy

cycx

gx

ax

ay

ez

bx

by

fz

ex
fx

bz

fy

ec,yec,x

ec,z

ey

az
True

True True

czgz

gy

cygx

cx

Figure 3 Illustrations for the existence of simple realizations of the clause gadget Qc together
with the clause cycle of c (dashed edges) when for at least one pair fv, bv, with v ∈ {x, y, z}, we
have that bv precedes fv along ec,v, while traversing the clause cycle of c clockwise.

edge lj crosses both bj and fj ; (ii) For j = 1, 2, edge π′′
j,3 crosses ψ′′

j,3; (iii) For j = 1, 2, edge
cj crosses gj and π′

j,3, further gj crosses ψ′
j,3; finally (iv) edge c3 crosses g3, π′′′

1,3, and π′′′
2,3,

further g3 crosses ψ′′′
1,3 and ψ′′′

2,3.

▶ Lemma 3 (⋆). In any simple realization of S, the circular (clockwise or counterclock-
wise) order of the edges crossing the outer cycle of S is either b1, f1, b2, f2, b3, f3
or f1, b1, f2, b2, f3, b3.

Variable gadget. For each variable v of degree k in φ and incident to clauses c1, c2, . . . , ck

in Gφ, the variable gadget Vv is an AT-graph defined as follows; refer to Fig. 2c. Assume,
w.l.o.g., that c1, c2, . . . , ck appear in this clockwise order around v in Eφ. The underlying graph
of Vv is composed of k split gadgets S1, S2, . . . , Sk. For each split gadget Si, with i = 1, . . . , k,
rename the edges aj and ej of Si as ai

j and ei
j , respectively, with j ∈ {1, 2, 3}. For i = 1, . . . , k,

we identify the edges ai
j and ai+1

j+1 and the edges ei
j and ei+1

j+1, where k + 1 = 1. The
crossing graph C(Vv) of Vv consists of all vertices and edges of the crossing graphs of Si,
with i = 1, . . . , k. Moreover, for i = 1, . . . , k, it contains a non-trivial connected component
consisting of the single edge (ai

2, e
i
2) (which coincides with (ai+1

3 , ei+1
3), i+ 1 = 1 when i = k).

▶ Lemma 4 (⋆). In any simple realization of Vv together with the variable cycle of v in which
both ai

1 and ei
1 cross ev,ci

, for i = 1, . . . , k, the clockwise circular order of the edges crossing
the variable cycle of v in Vv is either a1

1, e1
1, a2

1, e2
1,. . . , ak

1 , ek
1 or e1

1, a1
1, e2

1, a2
1,. . . , ek

1 , ak
1 .

In the proof of Theorem 6, the two circular orders for the edges
⋃k

i=1{ai
1, e

i
1} of Vv

considered in Lemma 4 will correspond to the two possible truth assignment of the variable v.

Clause gadget. For each clause c in φ, the clause gadget Qc is the AT-graph, whose
construction is inspired by a similar gadget used in [19], defined as follows; see Fig. 3. The
underlying graph of Qc consists of six length-3 paths: For v ∈ {x, y, z}, we have a path formed
by the edges (av, bv, cv) (red paths in Fig. 3) and a path formed by the edges (ev, fv, gv)
(blue paths in Fig. 3). The crossing graph C(Qc) of Qc consists of one non-trivial connected
component formed by the triangles (cx, cy, cz) and (gx, gy, gz), and the edges (cx, gz), (cy, gx),
and (cz, gy).

▶ Lemma 5 (⋆). The clause gadget Qc admits a simple realization together with the clause
cycle of c in which, for v ∈ {x, y, z}, both bv and fv cross ec,v, and in which the edges ec,x, ec,y,
and ec,z appear in this order when traversing clockwise the clause cycle of c if and only
if for at least one pair fv, bv, with v ∈ {x, y, z}, we have that bv precedes fv along ec,v

when traversing the clause cycle of c clockwise.

G. Da Lozzo, W. Didimo, F. Montecchiani, M. Münch, M. Patrignani, and I. Rutter 23:7

Based on Lemma 5, we associate the True value with a literal of a variable v ∈ {x, y, z}
appearing in c when bv precedes fv along ec,v while traversing the clause cycle of c clockwise,
and False otherwise; see Fig. 3. We can finally prove the main result of the section.

▶ Theorem 6 (⋆). SATR is NP-complete for instances A with λ(A) = 6.

Proof Sketch. The membership in NP is obvious. We give a reduction from the NP-complete
problem 3-Connected Planar 3-SAT [17]. Let φ be an instance of 3-Connected
Planar 3-SAT. We construct an instance Aφ = (G′,X ′) of SATR that is simply realizable
if and only if φ is satisfiable. We initialize G′ = Hφ and X ′ = ∅. Then, for each variable v,
we extend Aφ to include Vv as follows: For each clause ci that contains a literal of v, add
to X ′ the pair of edges {ai

1, ev,ci
} and {ei

1, ev,ci
}, where ai

1 and ei
1 belong to Vv, and ev,ci

belongs to Hφ. Also, for each clause c, we extend Aφ to include Qc as follows: For each
variable v ∈ {x, y, z} whose literals belong to c, we add to X ′ the pair of edges {fv, ec,v}
and {bv, ec,v}, where fv and bv belong to Qc, and ec,v belongs to Hφ. Finally, for each
occurrence of a literal of a variable v to a clause ci, we identify edges of Vv with edges of Qv

as follows: If v appears as a positive (resp. negated) literal in ci, then we identify the edge
ai

1 of Vv with the edge ay (resp. ey) of Qv and we identify the edge ei
1 of Vv with the edge ey

(resp. ay) of Qv. Observe that we do not allow the edges ai
1 and ei

1 to cross. Clearly, Aφ can
be constructed in polynomial time. The equivalence between Aφ and φ immediately follows
from Lemmata 4 and 5, and from the fact that, by Lemma 2, in any simple realization of
Aφ, all the variable cycles and all the clause cycles maintain the same circular orientation.
Finally, note that the size of the largest connected component of C(Aφ) is six. ◀

We remark that the NP-hardness of Theorem 6 holds for instances whose crossing graph
is planar, and has maximum degree 3 and treewidth 3. Moreover, it implies that SATR is
NP-complete when λ(A) ≥ k, for any k ≥ 6. Finally, since our reduction yields instances
whose size is linear in the size of the input (planar) 3-SAT formula, we have the following.

▶ Corollary 7 (⋆). Unless ETH fails, SATR has no 2o(
√

n)-time algorithm, where n is the
number of vertices of the input AT-graph.

4 A Linear-Time Algorithm for AT-Graphs with λ(A) ≤ 3

In this section we show that the problem SATR can be solved in linear-time for AT-graphs A
with λ(A) ≤ 3; see Theorem 13. We first give a short high-level overview of the overall
strategy but note that proper definitions will only be given later in the detailed description
of the algorithm. The first step is to reduce SATR to a constrained embedding problem
where each vertex v may be equipped with alternation constraints that restrict the allowed
orders of its incident edges around v. Next, we further reduce to the biconnected variant of
the embedding problem which leads to new types of alternation constraints. It will turn out
that many of these constraints can be transformed into constraints that can be expressed in
terms of PQ-trees and are therefore easier to handle. Finally, we show that, when no further
such transformations are possible, all the remaining alternation constraints have a simple
structure that allows for an efficient test.

We now start with reducing SATR to a constrained embedding problem. Let A = (G,X)
be an n-vertex AT-graph such that λ(A) ≤ 3. We construct from G an auxiliary graph H

as follows. For each connected component X of C(A) that is not an isolated vertex, denote
by E(X) the set of edges of G corresponding to the vertices of X, and by V (X) the vertices
of G that are end-vertices of the edges in E(X). Remove from G the edges in E(X)

ISAAC 2024

23:8 Simple Realizability of Abstract Topological Graphs

1

1′

3 2′

2

3′

vX

(d)

1

1′

2 2′

3

3′

vX

(c)

vX vX

1

1′

2 3′

3

2′

(b)

1

1′

2 2′

3

3′

(a)

Figure 4 (a) A K3-crossing. (b) A P3-crossing. A circular order of the neighbors around a crossing
vertex vX satisfying (c) a K3-constraint but not a P3-constraint, (d) a P3- but not a K3-constraint.

and add a crossing vertex vX adjacent to all vertices in V (X); see Fig. 4. Since no two
crossing vertices are adjacent, the graph H does not depend on the order in which we apply
these operations. The edges incident to vX are partitioned into pairs of edges where two
edges (a, vX) and (b, vX) form a pair if (a, b) is an edge of G corresponding to a vertex
of X. We call (a, vX) and (b, vX) the portions of (a, b) and say that (a, vX) and (b, vX) stem
from (a, b) . Note that since λ(A) ≤ 3, a crossing vertex vX has either degree 4 or 6. In the
first case X is a K2 and in the latter case X is either an induced 3-path P3 or a triangle K3.
If X = K2, we color its two vertices red and blue, respectively. If X = K3 we color its three
vertices red, blue, and purple, respectively. If X = P3, its vertex of degree 2 is colored purple,
whereas we color red and blue the remaining two vertices, respectively. Based on Lemma 1,
we observe the following.

▶ Observation 8 (⋆). If A admits a simple realization, then H is planar.

Observation 8 gives an immediate necessary condition for the realizability of A, which
is, however, not sufficient. Indeed, a planar embedding of H obtained from contracting
edges in a realization of A satisfies an additional property: for each crossing vertex vX the
portions stemming from two distinct edges e, f of G alternate around vX if and only if the
two vertices corresponding to e, f in X are adjacent. To keep track of this requirement, we
equip every crossing vertex vX with an alternation constraint that (i) colors its incident
edges with colors r(ed), b(lue), p(urple) so that a portion of an edge in G gets the same
color as the corresponding vertex in X, and (ii) specifies which pairs of colors must alternate
around v; see Fig. 4 for an example. For a K2-constraint there are no purple edges, and
red and blue must alternate. For a K3-constraint all pairs of colors must alternate. For a
P3-constraint, red and purple as well as purple and blue must alternate, whereas red and blue
must not alternate. Each component X of C(A) with the coloring described above naturally
translates to a constraint for vX . For X = K2, we obtain a K2-constraint, for X = P3 we get
a P3-constraint, and for X = K3 we get a K3-constraint; see Fig. 4. The auxiliary graph H

with alternation constraints is feasible if it admits a planar embedding that satisfies the
alternation constraints of all vertices. Thus, we have the following.

▶ Lemma 9. An AT-graph A = (G,X) with λ(A) ≤ 3 is simply realizable if and only if the
corresponding auxiliary graph H with alternation constraints is feasible.

To find such an embedding, we decompose the graph into biconnected components. It
turns out that this may create additional types of alternation constraints that stem from
the constraints described above, but do not fall into the category of an existing class of
constraints. For the sake of exposition, we introduce these constraints now, even though they
will not be part of an instance obtained by the above reduction from SATR.

Let v be a vertex of degree 5 and let c be a color. For a C-constraint (C ∈ {K3, P3,K2})
as defined above, we define a corresponding C−c-constraint of v, which (i) colors the edges
incident to v such that each color occurs at most twice but color c occurs only once and

G. Da Lozzo, W. Didimo, F. Montecchiani, M. Münch, M. Patrignani, and I. Rutter 23:9

(c)(b)(a)

v v v

(d)

v

(e)

v

Figure 5 Circular orders of edges incident to a vertex v satisfying (a) a K−r
3 - and a P −r

3 -
constraint, (b) a P −p

3 - but not a K−p
3 -constraint, (c) a K−p

3 - but not a P −p
3 -constraint,(d) a P

−(p,r)
3 -

but not a K
−(p,r)
3 -constraint , (e) a P

−(b,r)
3 - and a K

−(b,r)
3 -constraint.

(c)(b)(a)

v v

(d)

v v

(e)

v

Figure 6 Circular orders of edges around a vertex v allowing to insert two edges of distinct colors
(dashed) so that every color occurs twice and a (a−b) K3-constraint, (c−e) P3-constraint is satisfied.

(ii) requires that in the rotation, it is possible to insert an edge of color c so that the
original C-constraint is satisfied; see Fig. 5. Observe that a K−c

2 -constraint is always satisfied
and is thus not needed. Since the colors of a K3-constraint are entirely symmetric, we
may assume without loss of generality that c = r in this case. For P3-constraints, only red
and blue are symmetric, i.e., we may assume without loss of generality that either c = p

or c = r. In particular, the K−r
3 -constraint and the P−r

3 -constraint both require that purple
and blue alternate around v, whereas the position of the red edge is arbitrary; see Fig. 5(a).
Thus the K−r

3 -constraint and the P−r
3 -constraint are equivalent. For a P−p

3 -constraint to be
fulfilled, red and blue must not alternate and the purple edge either has to be between the
two red edges or between the two blue edges; see Fig. 5(b).

Now let v be a vertex of degree 4 and let c, c′ be two colors. For a C-constraint, we define
a corresponding C−c,c′-constraint of v, which (i) colors the edges incident to v such that
the colors distinct from c and c′ occur twice but colors c and c′ occur only once if c ̸= c′, or
not at all if c = c′, and (ii) requires that in the rotation, it is possible to insert two edges of
color c and c′, respectively, so that the original C-constraint is satisfied. Since the colors
of a K3-constraint are entirely symmetric, we may assume w.l.o.g. that either c = c′ = r

or c = r, c′ = b in this case. For P3-constraints, only red and blue are symmetric, we may
hence assume without loss of generality that (c, c′) ∈ {(r, r), (p, p), (r, p), (r, b)}. Observe
that a K−c,c′

2 -constraint is always satisfied and is thus not needed. The same holds for
a K−r,b

3 -constraint, a P−r,b
3 -constraint and a P−r,p

3 -constraint; see Fig. 6. Also, note that
a K−r,r

3 -constraint and a P−r,r
3 -constraint are both equivalent to a K2-constraint, while

a P−p,p
3 -constraint requires that red and blue do not alternate around v.
Finally for a C-constraint, we define a corresponding C−(c,c′)-constraint of v, which (i)

colors the edges incident to v such that the colors distinct from c and c′ occur twice
but colors c and c′ occur only once if c ≠ c′, or not at all if c = c′, and (ii) requires
that in the rotation, it is possible to insert an edge of color c and an edge of color c′

consecutively, so that the C-constraint is satisfied; see Fig. 5(d), (e) for examples. This
type of constraints is motivated as follows. Let v be a cut vertex in a graph G. The cut
components of v in G are the subgraphs of G induced by v together with the maximal
subsets of the vertices of G that are not disconnected by the removal of v. Note that

ISAAC 2024

23:10 Simple Realizability of Abstract Topological Graphs

the edges belonging to two different cut components cannot alternate around v without
resulting in a crossing and observe that a K−(c,c′)

2 -constraint with c ̸= c′ is always satisfied
and is thus not needed. Also note that a C−(c,c)-constraint cannot be satisfied, since every
C-constraint requires that every color alternates with at least one of the remaining colors.
Since the colors of a K3-constraint are entirely symmetric, we may assume without loss
of generality that either c = c′ = r or c = r, c′ = b in this case. For P3-constraints, only
red and blue are symmetric, i.e., we may assume without loss of generality that (c, c′) ∈
{(r, r), (p, p), (r, p), (r, b)}. In particular, a K−(r,b)

3 -constraint and a P−(r,b)
3 -constraint both

require the consecutivity of the two purple edges and are thus equivalent; see Fig. 5(e). For
a P

−(r,p)
3 -constraint to be fulfilled, the two blue edges must not occur consecutively (see

Fig. 5(d)); i.e., the two blue edges have to alternate with the two remaining edges. Thus
a P−(p,r)

3 -constraint is equivalent to a K2-constraint. By the above discussion we may assume
that only K3, P3, K−r

3 , P−p
3 , K2, P−p,p

3 and K
−(r,b)
3 constraints occur.

The Alternation-Constrained Planarity (ACP) problem has as input a graph H with
alternation constraints and asks whether H is feasible. By Lemma 9, there is a linear-time
reduction from SATR with λ(A) ≤ 3 to ACP. Next, we further reduce ACP to 2-connected
ACP, which is the restriction of ACP to instances for which H is 2-connected.

▶ Lemma 10 (⋆). There is a linear-time algorithm that either recognizes that an instance H
of ACP is a no-instance or computes a collection H1, . . . ,Hk of instances of 2-connected
ACP, such that H is a yes-instance if and only if Hi is a yes-instance for every 1 ≤ i ≤ k.

Proof Sketch. Our reduction strategy considers one cut vertex at a time and splits the
graph at that vertex into a collection of smaller connected components. The reduction
consists of applying this cut vertex split until all cut vertices are removed or we find out
that H is a no-instance. Consider an instance H of ACP and one of its cut vertices v
with cut components H1, . . . ,Hl. In the cut components, let every vertex except v preserve
its alternation constraint (if any). Now the goal is to find out which constraints have to
be assigned to the copies of v in the cut components such that H is a yes-instance if and
only if each Hi is a yes-instance. We denote by E(v) the edges incident to v in H and
by Ei(v) the edges incident to v in Hi, for 1 ≤ i ≤ l. Without loss of generality assume
that |Ei(v)| ≥ |Ej(v)| for 1 ≤ i < j ≤ l. We encode the distribution of edges from E(v)
among the cut components as a split-vector (|E1(v)|, |E2(v)|, . . . , |El(v)|).

If v has no alternation constraint, H is feasible if and only if each cut component Hi,
with i = 1, . . . , l, is and hence all copies of v remain unconstrained. Otherwise, v has an
alternation constraint C. This implies |E(v)| ≤ 6 and thus the edges in E(v) are distributed
among at least two and at most six cut components. Note that the edges belonging to two
different cut components cannot alternate around v without resulting in a crossing. Thus, H
is a no-instance if C ∈ {K3,K

−r
3 ,K2} and there are two cut components containing a pair

of edges of the same color from E(v), respectively. If C ∈ {P3, P
−p
3 }, the same holds if one

cut component contains both purple edges, whereas a distinct cut component contains both
red or both blue edges. In the following, we assume that the above does not apply.

Now we consider cases based on the split-vectors. If |E1(v)| ≤ 3, H is either a no-instance,
or we can always arrange the cut components around v such that C is satisfied. In all positive
cases, it suffices to leave each copy of v unconstrained. It remains to consider the remaining
split-vectors with |E1(v)| ≥ 4. Here we only describe the case (5, 1); the remaining cases can
be found in the full version [5].

G. Da Lozzo, W. Didimo, F. Montecchiani, M. Münch, M. Patrignani, and I. Rutter 23:11

(b)(a) (c)

Figure 7 The PQ-trees representing alternation constraints of degree-4 vertices. (a) K2-constraint,
(b) P −p,p

3 -constraint, and (c) K
−(r,b)
3 -constraint.

Case: (5, 1). Let C ∈ {K3, P3} be the constraint of v and let c be the color of the edge
of E(v) in H2. To merge embeddings of H1 and H2 to a planar embedding of H such
that the C-constraint is satisfied, it is necessary that the embedding of H1 allows to insert
an edge of color c such that the C-constraint is satisfied. Thus, it is necessary that the
order of edges around v in H1 satisfies a C−c-constraint. Note that if the C−c-constraint is
satisfied, it is guaranteed that the embeddings of H1 and H2 can be merged such that the
original C-constraint is satisfied. Therefore, it is necessary and sufficient to equip the copy
of v in H1 with a C−c-constraint whereas the copy of v in H2 remains unconstrained.
Note that we may assume that after a linear-time preprocessing every edge in H is labeled with
the block it belongs to. Then, for a cut vertex v a split as described above takesO(deg(v))-time.
When no cut vertex is left, we return the resulting alternation-constrained blocks of H. ◀

Algorithm for the Embedding Problem. In the following we assume familiarity with the
PQ-tree [4, 3] and SPQR-tree data structures [7]. We define a more general problem General
Alternation-Constrained Planarity (GACP) whose input is a graph H where vertices
of degree 4, 5, or 6 may be equipped with an alternation constraint or with a (synchronized)
PQ-tree (but not both). The question is whether H admits a planar embedding such that
all alternation constraints are satisfied (i.e., H is feasible) and the order of edges around
a vertex with a PQ-tree B is compatible with B. The 2-connected GACP problem is
the restriction of GACP to input graphs that are 2-connected. Clearly, every instance of
(2-connected) ACP is an instance of (2-connected) GACP. For our purpose, however,
it will turn out that PQ-tree constraints are easier to handle. Thus, given an instance
of ACP we aim to construct an equivalent instance of GACP, where as many alternation
constraints as possible are replaced by PQ-trees. In particular, alternation constraints of
degree-4 vertices can be replaced by the PQ-trees shown in Fig. 7, see the full version [5] for
details. Hence we may assume from now on that no vertex with an alternation constraint in
H has degree 4; i.e., all these vertices have degree 5 or 6.

Let v be a vertex with alternation constraints. We call two edges e, f incident to v a
consecutive edge pair, if they are consecutive (around v) in every planar embedding of H
that satisfies all constraints. In the full version [5] we show that, with the exception of K−r

3 ,
an alternation constraint at a vertex incident to a consecutive edge pair can be replaced by a
PQ-tree. The overall strategy of the remaining section consists of three steps. In Step 1 we
identify consecutive edge pairs in H with the help of the SPQR-tree of H and replace the
corresponding alternation constraints by PQ-trees. By doing this exhaustively and using a
special operation described in [5] to remove the K−r

3 -constraints, we end up with an instance
whose alternation constraints are all K3-constraints and every vertex with such a constraint
appears in the skeletons of exactly two P -nodes and one S-node in the SPQR-tree. In Step 2,
we handle such constraints by considering them on a more global scale. We show that they
form cyclic structures, where either the constraints cannot be satisfied or can be dropped
and satisfied irrespective of the remaining solution. Eventually, we arrive at an instance with
only (synchronized) PQ-trees as constraints, which we solve with standard techniques in
Step 3.

ISAAC 2024

23:12 Simple Realizability of Abstract Topological Graphs

For the rest of this section let H be an instance of 2-connected GACP and let T be
the SPQR-tree of H. We begin with Step 1 and identify consecutive edge pairs.

▶ Lemma 11 (⋆). Let H be an instance of 2-connected GACP and let T be the SPQR-tree
of H. A vertex v with alternation constraint C in H is incident to a consecutive edge pair if

(i) there is a skeleton in T with a virtual edge containing exactly two edges from E(v) or
(ii) there is a skeleton in T with a virtual edge containing all but two edges from E(v) or
(iii) v appears in the skeleton of an R-node in T .

Since we immediately replace alternation constraints by PQ-trees whenever we find a
consecutive edge pair, we assume from now on that no vertex with alternation constraint
different from K−r

3 satisfies one of the conditions of Lemma 11. Let µ be a node of T and let
v be a vertex of its skeleton incident to the virtual edges e1, . . . , ek. Then the distribution
vector (d1, . . . , dk) of v, with di ≥ di+1 for every 1 ≤ i < k, contains for each virtual edge ei

the number di of edges from E(v) contained in ei.
Consider a vertex v with alternation constraint different from K−r

3 in H. Assume that v
appears in an S-node ν in T . Since the vertices in the skeleton of an S-node have degree 2, v
also appears in at least one other node µ adjacent to ν in T . Note that µ is a P -node since
there are no two adjacent S-nodes in an SPQR-tree. Hence, we may assume in the following
that every vertex with alternation constraint appears in a P -node µ. Recall that the vertices
in the skeleton of a P -node have degree at least 3; i.e., the edges of E(v) are distributed
among at least three virtual edges. Since by assumption no virtual edge contains exactly two
edges from E(v) or all but two edges from E(v), the only possible distributions without a
consecutive edge pair are (1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1) and (3, 1, 1, 1).

In the first two cases it can be shown that we can get rid of the alternation constraint C
of v as it is either always possible to reorder the children of µ according to C in a realization
of H without C or H without C (and thus H) is not realizable. Similar techniques allow us to
show that we can get rid of (i) P3-constraints, (ii) K−r

3 -constraints and of (iii) K3-constraints
of poles of P -nodes such that the other pole is either unconstrained or has a PQ-tree. The
proofs are deferred to the full version [5]. Hence, we may assume that only K3-constraints
occur and that every vertex v with K3-constraint appears in the skeleton of a P -node ν in T
with distribution vector (3, 1, 1, 1), whose pole distinct from v also has a K3-constraint. This
concludes Step 1.

Now move to Step 2. Let v be a vertex with K3-constraint. The three edges from E(v)
contained in the same virtual edge in the skeleton of ν must have pairwise distinct colors;
otherwise, H is a no-instance. Since there are no two adjacent P -nodes in an SPQR-tree and
by assumption no vertex with alternation constraint appears in an R-node, v also appears in
an S-node with distribution vector (3, 3). Let µ be an S-node in T that contains v. Since
there are no two adjacent S-nodes in an SPQR-tree, for each neighbor u of v in the skeleton
of µ, there is a P -node adjacent to µ in T with poles v, u. Thus, by assumption, the neighbors
of v in the skeleton of µ also have a K3-constraint. Iteratively, it follows that every vertex in
the skeleton of µ has a K3-constraint and shares a P -node with each of its two neighbors.

Consider an S-node µ in T that contains alternation-constrained vertices v0, . . . , vk−1
in this order; see Fig. 8. In the following, we consider the indices of the vertices and edges
in µ modulo k. For every 0 ≤ i < k, we denote the virtual edge between vi and vi+1 by ei

and let νi be the P -node adjacent to µ in T with poles vi, vi+1. Note that for every i, the
virtual edge e in the skeleton of νi that contains three edges from E(vi) also contains three
edges from E(vi+1), since e is the virtual edge representing µ. Thus, if we fix the order of
the three edges from E(vi) in ei, this fixes the order of the three edges from E(vi+1) in ei.

G. Da Lozzo, W. Didimo, F. Montecchiani, M. Münch, M. Patrignani, and I. Rutter 23:13

v1

v2

v1

v2
µ ν

v3

v0

e0

e2

e3 e1

v2

ν

Figure 8 An S-node µ and an adjacent P -node ν.

Since vi+1 has an alternation constraint, this also fixes the order of the edges from E(vi+1)
in ei+1. In this way, a fixed order of the three edges from E(v1) in e1 implies an order of the
edges from E(vk−1) in ek−1, which in turn implies an order on the three edges from E(v1)
in ek−1. If there exists an order of the three edges from E(v1) in e1 that implies an order of
the remaining edges from E(v1) in ek−1 such that the K3-constraint is satisfied, we obtain an
equivalent instance by removing all K3-constraints of vertices in the skeleton of µ, since we
can reorder the parallels adjacent to ν independently of the remaining graph. Otherwise, H
is a no-instance. By the discussion above, we have the following.

▶ Lemma 12. Let µ be an S-node in T that contains vertices with K3-constraint. There
is an O(deg(µ))-algorithm that either recognizes that H is a no-instance, or computes an
equivalent instance by removing all K3-constraints of vertices in the skeleton of µ.

Now we may assume that our graph H does not contain alternation constraints and start
with Step 3. To solve such an instance, we expand each vertex with its associated PQ-tree, if
any, into a gadget that allows the same circular orders of its incident edges as the PQ-tree
(essentially a P-node becomes a normal vertex, whereas a Q-node expands into a wheel as
described in [13]). Embedding the resulting graph H⋆ and then contracting the gadgets back
into single vertices already ensures that for each vertex of H the order of its incident edges
is represented by its PQ-tree. Since our synchronized PQ-trees only involve Q-nodes, it then
suffices to ensure that synchronized Q-nodes are flipped consistently. To this end, observe
that each wheel is 3-connected and hence its embedding is determined by a single R-node in
the SPQR-tree of H⋆. This allows us to express such constraints in a simple 2-SAT formula
of linear size, similar to, e.g., [1, 13]. Therefore, we obtain the following.

▶ Theorem 13 (⋆). Let A = (G,X) be an n-vertex AT-graph such that λ(A) ≤ 3. There
exists an O(n)-time algorithm that decides whether A is a positive instance of SATR and
that, in the positive case, computes a simple realization of A.

5 Conclusions and Open Problems

We proved that deciding whether an AT-graph A is simply realizable is NP-complete,
already when the size λ(A) of the largest connected components of the crossing graph C(A)
satisfies λ(A) ≤ 6. On the other hand, we described an optimal linear-time algorithm that
solves the problem when λ(A) ≤ 3. This is the first efficient algorithm for the Simple
AT-graph Realizability problem that works on general graphs.

An open problem that naturally arises from our findings is filling the gap between
tractability and intractability: What is the complexity of Simple AT-graph Realizability
if λ(A) is 4 or 5? A first issue is that Lemma 1 only allows to untangle cliques of size 3 and

ISAAC 2024

23:14 Simple Realizability of Abstract Topological Graphs

it is not clear whether a similar result can be proved for components of size 4. Furthermore,
contracting larger crossing structures yields more complicated alternation constraints and it
is not clear whether they can be turned into PQ-trees, similar to the case of components
of size 3. We therefore feel that different techniques may be necessary to tackle the cases
where 4 ≤ λ(A) ≤ 5.

Another interesting direction is to study alternative structural parameters under which
the problem can be tackled, and which are not ruled out by our hardness result, as discussed
in the introduction; for example the vertex cover number of C(A). Finally, one can try to
extend our approach to the “weak” setting (i.e., the Weak AT-graph Realizability
problem), still requiring a simple realization.

References
1 Thomas Bläsius, Simon D. Fink, and Ignaz Rutter. Synchronized planarity with applications

to constrained planarity problems. ACM Trans. Algorithms, 19(4):34:1–34:23, 2023. doi:
10.1145/3607474.

2 Thomas Bläsius and Ignaz Rutter. Simultaneous PQ-ordering with applications to constrained
embedding problems. ACM Trans. Algorithms, 12(2):16:1–16:46, 2016. doi:10.1145/2738054.

3 Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13(3):335–379,
1976. doi:10.1016/S0022-0000(76)80045-1.

4 Kellogg Speed Booth. PQ-tree algorithms. University of California, Berkeley, 1975.
5 Giordano Da Lozzo, Walter Didimo, Fabrizio Montecchiani, Miriam Münch, Maurizio Pat-

rignani, and Ignaz Rutter. Simple realizability of abstract topological graphs. CoRR,
abs/2409.20108, 2024. doi:10.48550/arXiv.2409.20108.

6 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

7 Giuseppe Di Battista and Roberto Tamassia. On-line maintenance of triconnected components
with SPQR-trees. Algorithmica, 15(4):302–318, 1996. doi:10.1007/BF01961541.

8 Giuseppe Di Battista and Roberto Tamassia. On-line planarity testing. SIAM J. Comput.,
25(5):956–997, 1996. doi:10.1137/S0097539794280736.

9 Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. A survey on graph drawing
beyond planarity. ACM Comput. Surv., 52(1):4:1–4:37, 2019. doi:10.1145/3301281.

10 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

11 Elisabeth Gassner, Michael Jünger, Merijam Percan, Marcus Schaefer, and Michael Schulz.
Simultaneous graph embeddings with fixed edges. In Fedor V. Fomin, editor, 32nd International
Workshop on Graph-Theoretic Concepts in Computer Science, WG 2006, volume 4271 of Lecture
Notes in Computer Science, pages 325–335. Springer, 2006. doi:10.1007/11917496_29.

12 Jacob E. Goodman and Joseph O’Rourke, editors. Handbook of Discrete and Computational
Geometry, Second Edition. Chapman and Hall/CRC, 2004. doi:10.1201/9781420035315.

13 Carsten Gutwenger, Karsten Klein, and Petra Mutzel. Planarity testing and optimal edge
insertion with embedding constraints. J. Graph Algorithms Appl., 12(1):73–95, 2008. doi:
10.7155/JGAA.00160.

14 Seok-Hee Hong. Beyond planar graphs: Introduction. In Seok-Hee Hong and Takeshi Tokuyama,
editors, Beyond Planar Graphs, Communications of NII Shonan Meetings, pages 1–9. Springer,
2020. doi:10.1007/978-981-15-6533-5_1.

15 John E. Hopcroft and Robert Endre Tarjan. Efficient planarity testing. J. ACM, 21(4):549–568,
1974. doi:10.1145/321850.321852.

16 Jan Kratochvíl. String graphs. II. Recognizing string graphs is NP-hard. J. Comb. Theory,
Ser. B, 52(1):67–78, 1991. doi:10.1016/0095-8956(91)90091-W.

https://doi.org/10.1145/3607474
https://doi.org/10.1145/3607474
https://doi.org/10.1145/2738054
https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.48550/arXiv.2409.20108
https://doi.org/10.1007/BF01961541
https://doi.org/10.1137/S0097539794280736
https://doi.org/10.1145/3301281
https://doi.org/10.1007/11917496_29
https://doi.org/10.1201/9781420035315
https://doi.org/10.7155/JGAA.00160
https://doi.org/10.7155/JGAA.00160
https://doi.org/10.1007/978-981-15-6533-5_1
https://doi.org/10.1145/321850.321852
https://doi.org/10.1016/0095-8956(91)90091-W

G. Da Lozzo, W. Didimo, F. Montecchiani, M. Münch, M. Patrignani, and I. Rutter 23:15

17 Jan Kratochvíl. A special planar satisfiability problem and a consequence of its
NP-completeness. Discrete Applied Mathematics, 52(3):233–252, 1994. doi:10.1016/
0166-218X(94)90143-0.

18 Jan Kratochvíl, Anna Lubiw, and Jaroslav Nesetril. Noncrossing subgraphs in topological
layouts. SIAM J. Discret. Math., 4(2):223–244, 1991. doi:10.1137/0404022.

19 Jan Kratochvíl and Jiří Matoušek. NP-hardness results for intersection graphs. Commentationes
Mathematicae Universitatis Carolinae, 30(4):761–773, 1989. URL: http://eudml.org/doc/
17790.

20 Jan Kratochvíl and Jirí Matousek. Intersection graphs of segments. J. Comb. Theory, Ser. B,
62(2):289–315, 1994. doi:10.1006/JCTB.1994.1071.

21 Jan Kyncl. Simple realizability of complete abstract topological graphs in P. Discret. Comput.
Geom., 45(3):383–399, 2011. doi:10.1007/S00454-010-9320-X.

22 Jan Kyncl. Simple realizability of complete abstract topological graphs simplified. Discret.
Comput. Geom., 64(1):1–27, 2020. doi:10.1007/S00454-020-00204-0.

23 Marcus Schaefer. Toward a theory of planarity: Hanani-tutte and planarity variants. J. Graph
Algorithms Appl., 17(4):367–440, 2013. doi:10.7155/JGAA.00298.

24 Marcus Schaefer, Eric Sedgwick, and Daniel Stefankovic. Recognizing string graphs in NP. J.
Comput. Syst. Sci., 67(2):365–380, 2003. doi:10.1016/S0022-0000(03)00045-X.

25 Marcus Schaefer and Daniel Stefankovic. Decidability of string graphs. J. Comput. Syst. Sci.,
68(2):319–334, 2004. doi:10.1016/J.JCSS.2003.07.002.

26 Ileana Streinu, Károly Bezdek, János Pach, Tamal K. Dey, Jianer Chen, Dina Kravets,
Nancy M. Amato, and W. Randolph Franklin. Discrete and computational geometry. In
Kenneth H. Rosen, John G. Michaels, Jonathan L. Gross, Jerrold W. Grossman, and Douglas R.
Shier, editors, Handbook of Discrete and Combinatorial Mathematics. CRC Press, 1999.
doi:10.1201/9781439832905.CH13.

ISAAC 2024

https://doi.org/10.1016/0166-218X(94)90143-0
https://doi.org/10.1016/0166-218X(94)90143-0
https://doi.org/10.1137/0404022
http://eudml.org/doc/17790
http://eudml.org/doc/17790
https://doi.org/10.1006/JCTB.1994.1071
https://doi.org/10.1007/S00454-010-9320-X
https://doi.org/10.1007/S00454-020-00204-0
https://doi.org/10.7155/JGAA.00298
https://doi.org/10.1016/S0022-0000(03)00045-X
https://doi.org/10.1016/J.JCSS.2003.07.002
https://doi.org/10.1201/9781439832905.CH13

	1 Introduction
	2 Basic Definitions and Tools
	3 NP-completeness for AT-Graphs with lcc(A) >= 6
	4 A Linear-Time Algorithm for AT-Graphs with lcc(A) <= 3
	5 Conclusions and Open Problems

