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Abstract
We study Clustered Planarity with Linear Saturators, which is the problem of augmenting
an n-vertex planar graph whose vertices are partitioned into independent sets (called clusters) with
paths – one for each cluster – that connect all the vertices in each cluster while maintaining planarity.
We show that the problem can be solved in time 2O(n) for both the variable and fixed embedding case.
Moreover, we show that it can be solved in subexponential time 2O(

√
n log n) in the fixed embedding

case if additionally the input graph is connected. The latter time complexity is tight under the
Exponential-Time Hypothesis. We also show that n can be replaced with the vertex cover number
of the input graph by providing a linear (resp. polynomial) kernel for the variable-embedding (resp.
fixed-embedding) case; these results contrast the NP-hardness of the problem on graphs of bounded
treewidth (and even on trees). Finally, we complement known lower bounds for the problem by
showing that Clustered Planarity with Linear Saturators is NP-hard even when the number
of clusters is at most 3, thus excluding the algorithmic use of the number of clusters as a parameter.
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1 Introduction

The representation of graphs with a hierarchical structure has become an increasingly crucial
tool in the analysis of networked data across various domains. Indeed, by recursively grouping
vertices into clusters exhibiting semantic affinity, modern visualization tools allow for the
visualization of massive graphs whose entire visualization would otherwise be impossible.
Clustered graphs, where a graph’s vertex set is partitioned into distinctive subsets, natur-
ally originate in various and diverse fields such as knowledge representation [35], software
visualization [41], visual statistics [10], and data mining [40], only to name a few.

Formally, a flat clustered graph (for short, clustered graph or c-graph) is a pair C = (G,V)
where G is a graph and V = {V1, . . . , Vk} is a partition of the vertex set of G into sets Vi

called clusters. The graph G is the underlying graph of C. A pivotal criterion for a coherent
visualization of a clustered graph stems from the classical notion of graph planarity. A
c-planar drawing of a clustered graph C = (G,V) is defined as a planar drawing of G,
accompanied by a representation of each cluster Vi ∈ V as a region Di homeomorphic to a
closed disc, such that regions associated with different clusters are disjoint, the drawing of the
subgraph of G induced by the vertices of each cluster Vi lies in the interior of Di, and each
edge crosses the boundary of a region at most once. The problem of testing for the existence
of a c-planar drawing of a clustered graph, called C-Planarity Testing, was introduced
by Lengauer [37] (in an entirely different context) and then rediscovered by Feng, Cohen, and
Eades [23]. Determining the complexity of the problem has occupied the agenda of the Graph
Drawing community for almost three decades [2,6,7,9,11,14–16,18,19,21,26,29,30,32–34,43].
The seemingly elusive goal of settling the question regarding the computational complexity
of this problem has only been recently addressed by Fulek and Tóth [27], who presented a
polynomial-time algorithm running in O(n8) time (and in O(n16) time for the version of the
problem in which a recursive clustering of the vertices is allowed. It is worth pointing out
that, even before a polynomial-time solution for the C-Planarity problem was presented,
Cortese and Patrignani [17] established that the problem retains the same complexity on
both flat and general (i.e., recursively clustered) instances. Subsequently, a more efficient
algorithm running in quadratic time has been presented by Bläsius, Fink, and Rutter [8].

Patrignani and Cortese studied independent c-graphs, i.e., c-graphs where each of the
clusters induces an independent set [17]. A characterization given by Di Battista and Frati [21]
implies that an independent c-graph is c-planar if and only if the underlying graph can be
augmented by adding extra edges, called saturating edges, in such a way that the resulting
graph has a planar embedding and each cluster induces a tree in the resulting graph. Angelini
et al. [4] considered a constrained version of c-planarity, called Clustered Planarity
with Linear Saturators (for short, CPLS), which takes as input an independent c-graph
and requires that each cluster induces a path (instead of a tree) in the augmented graph.
They proved that the CPLS problem is NP-complete for c-graphs with an unbounded number
of clusters, regardless of whether the input graph is equipped with an embedding or not.
The problem fits the paradigm of augmenting planar graphs with edges in such a way that
the resulting graph remains planar, while achieving some other desired property, which is a
central question in Algorithmic Graph Theory [1, 12,13,24,36,42].

Although CPLS is a topological problem, it stems from a geometric setting within
intersection-link representations, a form of hybrid representations for locally-dense globally-
sparse graphs [4]. Specifically, see also [3], given a c-graph C = (G,V) whose every cluster
induces a clique, the Clique Planarity problem asks to compute a clique planar rep-
resentation of C, i.e., a drawing of C in which each vertex v ∈ V (G) is represented as a
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(a) (b) (c)

Figure 1 (a) A partial clique planar representation focused on a cluster. (b) Canonical represent-
ation of the cluster in (a). A linear saturation of the vertices of the cluster corresponding to (b).

translate R(v) of a given rectangle R, each intra-cluster edge (u, v) is represented by an inter-
section between R(u) and R(v), and each inter-cluster edge (u, v) is represented by a Jordan
arc connecting the boundaries of R(u) and R(v) that intersects neither the interior of any
rectangle nor the representation of any other inter-cluster edge. Notably, the authors showed
that a c-graph whose every cluster induces a clique admits a clique planar representation
if and only if it admits a so-called canonical representation, where the vertices are squares
arranged in a “linear fashion”; see Fig. 1. This allowed them to establish the equivalence
between CPLS and Clique Planarity. In particular, they proved that a c-graph C whose
every cluster induces a clique is a yes-instance of Clique Planarity if and only if the
c-graph obtained by removing all intra-cluster edges from C is a yes-instance of CPLS.

Our Contribution. In this paper, we study the CPLS problem from a computational
perspective, in both the fixed embedding as well as the variable embedding setting. In
the fixed embedding case, the underlying graph of the c-graph comes with a prescribed
combinatorial embedding, which must be preserved by the output drawing. Instead, in
the variable embedding setting, we are allowed to select the embedding of the underlying
graph. To distinguish these two settings, we refer to the former problem (i.e., where a fixed
embedding is provided as part of the input) as CPLSF. Our main results are as follows.
(1) In Section 3 we give exact single-exponential and sub-exponential algorithms for the
problems. In particular, both CPLS and CPLSF can be solved in 2O(n) time. Moreover,
we obtain a subexponential 2O(

√
n log n) algorithm for CPLSF when the underlying graph is

connected; this result is essentially tight under the Exponential Time Hypothesis [31]. In
both cases, the main idea behind the algorithms is to use a divide-and-conquer approach
that separates the instance according to a hypothetical separator in the solution graph.
(2) In Section 4 we obtain polynomial kernels (and thus establish fixed-parameter tractability)
for both CPLS and CPLSF with respect to the vertex cover number of the underlying graph.
Interestingly, while being provided with an embedding allowed us to design a more efficient
exact algorithm for CPLSF, in the parameterized setting the situation is reversed: we obtain
a linear kernel for CPLS, but for CPLSF the size of the kernel is cubic in the vertex cover
number. Combining the former result with our exact algorithm for CPLS allows us to obtain
an algorithm that runs in single-exponential time with respect to the vertex cover number.
(3) In Section 5 we observe that the CPLS problem is NP-complete on trees and even a
disjoint union of stars. Since stars have treedepth, pathwidth, and treewidth one, this charts
an intractability border between the vertex cover number parameterization used in Section 4
and other parameters. Then we prove that the problem is NP-complete even for c-graphs
having at most 3 clusters, thus strengthening the previously known hardness result for an
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24:4 Exact Algorithms for Clustered Planarity with Linear Saturators

unbounded number of clusters. This result combined with the equivalence between CPLS
and Clique Planarity shows that Clique Planarity is NP-complete for instances with
a bounded number of clusters, which solves an open problem posed in [3, OP 4.3].

Full proofs and further details for paragraphs marked with (⋆) can be found in the full
version of the paper [39].

2 Preliminaries

For a positive integer k, we denote by [k] the set {1, . . . , k}. We use standard terminology in
the context of graph theory [22] and graph drawing [20]. An embedded graph GE is a planar
graph G equipped with an embedding E . A noose N of an embedded graph GE is a simple
closed curve in some drawing Γ of GE that

(i) intersects G only at vertices and
(ii) traverses each face of Γ at most once.

Given a subgraph H of G, we denote by E(H) the embedding of H obtained from E by
restricting it to H. The vertex cover number of a graph G is the smallest size of a vertex
cover in G. We assume basic familiarity with the parameterized complexity framework, and
in particular with the notion of kernelization [25].

Clustered Planarity with Linear Saturators. Let C be a c-graph. We say that C has a fixed
embedding if the underlying graph of C is an embedded graph, and has a variable embedding
otherwise. We say that C is an embedded c-graph if C has a fixed embedding.

Let C = (G, {V1, . . . , Vk}) be an independent c-graph, i.e., for every i ∈ [k], Vi is an
independent set of G. We say that G can be linearly saturated if there exist sets Z1, . . . , Zk

of non-edges of G such that
(i) H = (V (G), E(G) ∪ Z) for Z =

⋃k
i=1 Zi is planar,

(ii) for every i ∈ [k], each edge in Zi connects two vertices of Vi in H, and
(iii) for every i ∈ [k], the graph H[Vi] is a path.
For i ∈ [k], the edges in Zi are the saturating edges of cluster Vi, and H is the linear
saturation of G via Z1, . . . , Zk. We now define the Clustered Planarity with Linear
Saturators (for short, CPLS) and the Fixed Embedding Clustered Planarity with
Linear Saturators (for short, CPLSF) problems.

▶ CPLS: Given an independent c-graph (G,V), does there exist a linear saturation of G?
▶ CPLSF: Given an independent embedded c-graph (GE ,V), does there exist a linear
saturation H of G that admits an embedding E ′ for which E ′(G) coincides with E?

To devise exact algorithms for the CPLS and CPLSF problem, it will be useful to consider
a more general setting. A c-graph is paths-independent if each of its clusters induces a
collection of paths; the notion of a linear saturator for a paths-independent c-graph is
the same as that of an independent c-graph. We now define the Clustered Planarity
with Linear Saturators Completion (for short, CPLS-Completion) and the Fixed
Embedding Clustered Planarity with Linear Saturators Completion (for short,
CPLSF-Completion) problem as the generalizations of CPLS and CPLSF, respectively, where
the input is a paths-independent c-graph. Observe that in case of CPLS (resp., CPLSF),
H[Vi] = H[Zi] as every cluster induces an independent set in G; this is, however, not
necessarily true in the case of CPLS-Completion (resp., CPLSF-Completion).
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3 Exact Algorithms for CPLS and CPLSF

This section details our exact single- and sub-exponential algorithms for CPLS and CPLSF.

Proof Ideas. We aim to solve the problem via a divide-and-conquer approach, where at
each iteration, we “split” the current instance of the problem into simpler (and, in particular,
substantially smaller) sub-instances of the problem. To understand how to perform the split,
consider an (unknown) solution Z, and the graph H = (V (G), E(G) ∪ Z). As this graph
is planar, there exists a noose N that intersects only O(

√
|V (G)|) vertices of H and does

not intersect any edges of H, such that both the interior and the exterior of N contain a
constant fraction (roughly between 1/3 to 2/3) of the vertices of G [38]. Thus, naturally, we
would like to split our problem instance into two instances, one corresponding to the interior
and boundary of N , and the other corresponding to the exterior and boundary of N (so, the
boundary is common to both). However, two issues arise, which we describe next.

The first (simpler) issue is that we do not know N since we do not know Z. However,
since N intersects only few vertices, we can simply “guess” N by guessing the set U of
intersected vertices, and the cyclic order ρ in which N intersects them. By guessing, we
mean that we iterate over all possible options, and aim to find at least one that yields a
solution (if a solution exists). Having U and ρ at hand, we still do not know the interior
and exterior of N , and therefore, we still do not know how to create the two simpler
sub-instances. Thus, we perform additional guesses: We guess the set I of vertices drawn
(with respect to the planar drawing of H) strictly inside N and thereby also the set O of
vertices drawn strictly outside N . Additionally, for the set of edges having both endpoints
in U , we guess a partition {Ein, Eout} that encodes which of them are drawn inside N

and which of them are drawn outside N . Specifically for the fixed embedding case, we
non-trivially exploit the given embedding to perform the guesses of I,O and {Ein, Eout} in a
more sophisticated manner that yields only subexponentially many guesses.

The second (more complicated) issue is that we cannot just create two instances: One for
the subgraph of G induced by I ∪ U (and without the edges in Eout) and the other for the
subgraph of G induced by O∪U (and without the edges in Ein) and solve them independently.
The two main concerns are the following: First, we need a single planar drawing for the entire
(unknown) graph H and so the drawings of the two graphs in the two sub-instances should be
“compatible”. Second, we may not need to (and in some cases, in fact, must not) add edges to a
graph in any of the two sub-instances to connect all vertices in the same cluster in that graph
into a single path. Instead, we need to create a collection of paths, so that the two collections
that we get, one for each of the two sub-instances, will together yield a single path.

To handle the second concern, we perform additional guesses. Specifically, we guess some
information on how the (solution) cluster paths in H “behave” when they are restricted to
the interior of N – we guess a triple (M,P,D) which encodes, roughly speaking, a pairing M
between some vertices in U that are connected by the cluster paths only using the interior
of N , the set of vertices P through which the cluster paths enter the interior of N and “do not
return”, and the set of vertices D that are incident to two edges in Z drawn in the interior.
Now, having such a guess at hand, we handle both concerns by defining a special graph that
augments the graph induced by G[U∪O] (with the edges in Ein removed) so that the solutions
returned for the corresponding sub-instance will have to be, in some sense, “compatible” with
(M,P,D) as well as draw O and Eout outside N while preserving the order ρ. The definition
of this augmented graph is, perhaps, the most technical definition required for the proof,
as it needs to handle both concerns simultaneously. Among other operations performed to
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obtain this augmented graph, for the first concern, we add extra edges between vertices in M ,
attach pendants on P , and treat vertices in D as if they belong to their own clusters, and for
the second concern, we triangulate the result in a careful manner.

The Variable-Embedding Case. Towards solving CPLS, we recursively solve the more
general problem mentioned earlier, namely, CPLS-Completion. Additionally, we suppose that
some of the vertices of the input graph can be marked, and that we are not allowed to add
edges incident to marked vertices. To avoid confusion, we will denote this annotated version
by CPLS-Completion*. The rest of this section is devoted to the proof of the following.

▶ Theorem 1. Let C = (G,V) be an n-vertex paths-independent c-graph. It can be tested
whether C is a positive instance of CPLS-Completion* in 8n+O(

√
n log n) = 2O(n) time.

We start with the following definition.

▶ Definition 2 (Non-Crossing Matchings and the Partition MatPenDel). Let C = (G,V) be
a paths-independent c-graph. Let ρ be a cyclic ordering of some subset U of V (G). A matching
M is a non-crossing matching of ρ if it is a matching in the graph H = (U, {{a, b} : a, b ∈ U})
such that for every pair of edges {a, b}, {c, d} ∈ M , when we traverse U in the cyclic order
ρ, starting with a, we either encounter b before both c and d, or we encounter both c and d
before b. Denote by MatPenDel(V, ρ) (which stands for Matching, Pendants and Deleted)
the set of all triples (M,P,D) such that:

M is a non-crossing matching of ρ such that each edge of M matches only vertices in the
same cluster, and
P,D ⊆ U \ V (M) are disjoint sets, where V (M) is the set of vertices matched by M .

Intuitively, ρ will represent a cyclic balanced separator of G, i.e., a noose in a drawing of
the solution graph that separates the solution graph into two almost equally sized subgraphs,
M will represent path segments between pairs of vertices on ρ, P (“pendants”) will represent
vertices through which the paths leave ρ never to return,1 and D will represent degree-2
vertices on the aforementioned path segments (which will be, in a sense, deleted when we
“complement” the triple). This will be formalized in Definition 5 ahead.

▶ Observation 3. Let C = (G,V) be a paths-independent c-graph. Let ρ be a cyclic or-
dering of some subset U of V (G). Then, |MatPenDel(V, ρ)| = 2O(|U |). Moreover, the set
MatPenDel(V, ρ) can be computed in time 2O(|U |).

We formalize the notion of a partial solution as follows.

▶ Definition 4 (Partial Solution). Let C = (G,V) be a paths-independent c-graph. A cluster
path is a path all of whose vertices belong to the same cluster in V. A partial solution for
C is a set S of vertex-disjoint cluster paths. Note that S can contain several cluster paths
whose vertices belong to the same cluster. We say that S is properly marked if every edge in
S incident to a marked vertex also belongs to G.

Next, we formalize how a triple in MatPenDel captures information on a partial solution
(see Fig. 2a). For intuition, think of S as if it consisted of paths that contain vertices only
from the exterior (or only from the interior) of a cyclic separator.

1 Thus, for a (non-partial) solution, P contains at most 2 vertices per cluster, though we do not need to
formally demand this already in Definition 5.
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Figure 2 (a) Example for Definition 5: The paths in S are drawn as black curves, and the
vertices in U are marked by disks. We have M = {{a, b}, {c, e}, {f, i}}, P = {m, o, r}, D =
{d, g, h, j, k, l, n, p, q} and U \ (V (M) ∪ P ∪ D) = {s, t}. (b) Example for Definition 7: The
vertices in U are marked by disks, and their association with the clusters is indicated by col-
ors. Suppose Min = {{a, b}, {c, e}, {f, i}}, Pin = {m, o, r}, Din = {d, g, h, j, k, l, n, p, q} and
U \ (V (Min) ∪ Pin ∪ Din) = {s, t}, and Mout = {{f, o}, {i, m}, {r, a}}, Pout = {c, e}, Dout = {s, t}
and U \ (V (Mout) ∪ Pout ∪ Dout) = {b, d, g, h, j, k, l, n, p, q}. Then, the triples Tin = (Min, Pin, Din)
and Tout = (Mout, Pout, Dout) are complementary, and GTin,Tout is a subgraph of the illustrated graph
induced by {a, b, c, e, f, i, m, o, r}. The pendants are the endpoints of the edges going inside or
outside the cycle (the vertex b, for example, is not adjacent to a pendant, while the vertex c is).

▶ Definition 5 (Extracting a Triple from a Partial Solution). Let C = (G,V) be
a paths-independent c-graph. Let U ⊆ V (G) and let S be a partial solution. Then,
ExtractTriple(U,S) = (M,P,D) is defined as follows:

M has an edge between the endpoints of every path in S that has both endpoints in U ,
P ⊆ U consists of the vertices of degree 1 in S belonging to U that are not in V (M),2 and
D ⊆ U consists of the vertices of degree 2 in S belonging to U .

Further, S is compatible with a cyclic ordering ρ of U if M is a non-crossing matching of ρ.

We have the following immediate observation, connecting Definitions 2 and 5.

▶ Observation 6. Let C = (G,V) be a paths-independent c-graph. Let ρ be a cyclic or-
dering of some subset U of V (G). Let S be a partial solution compatible with ρ. Then,
ExtractTriple(U,S) ∈ MatPenDel(V, ρ).

We will be interested, in particular, in triples which are complementary (see Fig. 2b),
which intuitively means that partial solutions for the inside and the outside described by the
two triples can be combined to a solution for the whole graph:

▶ Definition 7 (Complementary Triples in MatPenDel). Let C = (G,V) be a paths-
independent c-graph. Let ρ be a cyclic ordering of some subset U of V (G). Then, Tin =
(Min, Pin, Din), Tout = (Mout, Pout, Dout) ∈ MatPenDel(V, ρ) are complementary if:
1. Din ⊆ U \ (V (Mout) ∪ Pout ∪Dout), and Dout ⊆ U \ (V (Min) ∪ Pin ∪Din).3

2. Let GTin,Tout denote the graph on vertex set V (Mout) ∪ Pout ∪ V (Min) ∪ Pin and edge set
Min ∪Mout, such that for every vertex in Pin, and similarly, for every vertex in Pout, we

2 In other words, for every path in S having precisely one endpoint in U , P contains the endpoint in U .
3 The reason why we write ⊆ rather than = is that some vertices in, e.g., U \ (V (Mout) ∪ Pout ∪ Dout) can

be the endpoints of solution paths. For example, consider the vertex b in Fig. 2b.
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add a new vertex attached to it and belonging to the same cluster.4 Then, this graph is a
collection of paths, such that all vertices in its vertex set that belong to the same cluster
in V also belong to the same (single) path, and all vertices that belong to the same path
also belong to the same cluster.

The utility of complementary triples is in the following definition, which specifies when a
partial solution S for the inner part satisfying ExtractTriple(U,S) = Tout can be combined
with any partial solution S ′ for the outer part that satisfies ExtractTriple(U,S ′) = Tin.

▶ Definition 8 (Partial Solution Compatible with (Tin, I, Ein)). Consider (G,V), a cyclic
ordering ρ of some U ⊆ V (G), Tin = (Min, Pin, Din) ∈ MatPenDel(V, ρ), I ⊆ V (G) \ U , and
Ein ⊆ E(G[U ]). Then, a partial solution S is compatible with (Tin, I, Ein) if:
1. ExtractTriple(U,S) = Tout and Tin are complementary.
2. Let G′

in = G[I ∪ U ] − (E(G[U ]) \ Ein) and Gin = G′
in − Din. We have that S contains

all and only the vertices in Gin, and all (but not necessarily only)5 edges in Gin between
vertices in the same cluster.

3. There exists a planar drawing φin of G′
in ∪ E(S) with an inner-face whose boundary

contains U (with, possibly, other vertices) ordered as by ρ.
4. Each path in S satisfies one of the following conditions: (a) it consists of all vertices of a

cluster in V that belong to Gin, and has no endpoint in U , or (b) it has an endpoint in U .

Towards the statement that will show the utility of compatibility (in Lemma 10 ahead),
we need one more definition, which intuitively provides necessary conditions for obtaining a
solution for (G,V) from a partial solution that is compatible with (Tin, I, Ein).

▶ Definition 9 (Sensibility of (Tin, I, Ein)). Consider (G,V), a cyclic ordering ρ of some
U ⊆ V (G), Tin = (Min, Pin, Din) ∈ MatPenDel(V, ρ), I ⊆ V (G) \ U , and Ein ⊆ E(G[U ]).
Then, (Tin, I, Ein) is sensible if:
1. There is no edge {u, v} ∈ E(G) with v ∈ I and u ∈ O for O = V (G) \ (I ∪ U).
2. No vertex in Din is adjacent in G′

in = G[I ∪ U ] − (E(G[U ]) \ Ein) to a vertex in the
same cluster in V. Additionally, no vertex in U \ (V (Min) ∪ Pin ∪ Din) is adjacent in
G′

out = G[O ∪ U ] − Ein for O = V (G) \ (I ∪ U) to a vertex in the same cluster in V.
3. No cluster in V has non-empty intersection with both I ∪ (U \Din) and O ∪Din but not

with V (Min) ∪ Pin.

We show that compatible solutions yield solutions to CPLS-Completion* in MatPenDel.

▶ Lemma 10. Consider (G,V), a cyclic ordering ρ of some U ⊆ V (G), Tin = (Min, Pin, Din) ∈
MatPenDel(V, ρ), I ⊆ V (G) \ U , and Ein ⊆ E(G[U ]). Suppose that (Tin, I, Ein) is sensible.
Additionally, consider

a properly marked partial solution Sin compatible with (Tin, I, Ein), and
a properly marked partial solution Sout compatible with ExtractTriple(U,Sin) = (Tout, O,

Eout) where O = V (G) \ (I ∪ U) and Eout = E(G[U ]) \ Ein.
Then, Z = E(Sin ∪Sout)\E(G) is a solution to (G,V) as an instance of CPLS-Completion*.

The crucial tool used to partition an instance of CPLS-Completion* into two smaller
instances is the augmented graph (AugmentGraph((G,V), ρ, (M,P,D))), which is illustrated
in Fig. 3 and intuitively ensures that a solution for the given graph is compatible with the
triple (T, P,D). The central statement about augmented graphs is the following.

4 So, if a vertex belongs to both Pin and Pout, we attach two new vertices to it.
5 As the paths in S can contain edges that are not edges in G.
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Figure 3 Example of an augmented graph. The vertices in U are marked by disks,
and the clusters in V are {{a, b, p, q, r, s, t}, {c, d, e}, {f, g, h, i, l, m, n, o}, {j, k}}. Suppose M =
{{a, b}, {c, e}, {f, i}}, P = {m, o, r}, D = {d, g, h, j, k, l, n, p, q} and U \ (V (M) ∪ P ∪ D) = {s, t}.
Newly added vertices to the augmented graph are marked by squares, vertices belonging to their
own singleton clusters are yellow or purple, and the other clusters are: (i) a, b, r, s, t and the two
neighboring squares drawn inside the cycle (blue); (ii) {c, e} and the neighboring square drawn inside
the cycle (green); (iii) {f, i, m, o} and the three neighboring squares drawn inside the cycle (black).

▶ Lemma 11. Consider (G,V), a cyclic ordering ρ of some U ⊆ V (G), Tin = (Min, Pin, Din) ∈
MatPenDel(V, ρ), I ⊆ V (G) \ U , and Ein ⊆ E(G[U ]). Let Zin ̸=NULL6 be a solution
to the instance (GA,VA) =AugmentGraph(G′

in, ρ, Tin) of CPLS-Completion* (where
G′

in = G[I ∪ U ] − (E(G[U ]) \ Ein)). Then, in polynomial time, we can compute a partial
solution compatible with (Tin, I, Ein) that is marked properly.

Using the ideas outlined at the beginning of the section, we can now use Lemmas 10
and 11 to show Theorem 1.

Fixed Embedding. By building on the ideas for the variable-embedding case, we also provide
a single-exponential algorithm for CPLSF, which becomes subexponential if additionally the
input graph is connected. While the single-exponential algorithm is almost identical to our
algorithm for CPLS, the subexponential algorithm uses connectivity together with the fixed
embedding to reduce the number of guesses during the initial phase of the algorithm.

▶ Theorem 12. CPLSF-Completion (and thus also CPLSF) can be solved in time 2O(n).
Moreover, it can be solved in time 2O(

√
n log n) if the input graph is connected.

4 The Kernels

In this section we provide kernelization algorithms for CPLS and CPLSF parameterized by
the vertex cover number k of the input graph G. Assume that X is a vertex cover of G of
size k; we will deal with computing a suitable vertex cover in the proofs of the main theorems
of this section. As our first step, we construct the set Z consisting of the union of X with all
vertices of degree at least 3 in G. Since G can be assumed to be planar, we have:

▶ Lemma 13 ([25, Lemma 13.3]). |Z| ≤ 3k.

6 We use NULL to algorithmically represent the non-existence of a solution (particularly in pseudocode).
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Note that each vertex in V (G)\Z now has 0, 1 or 2 neighbors in Z. For each subset Q ⊆ Z

of size at most 2, let the neighborhood type TQ consist of all vertices in V (G) \ Z whose
neighborhood in Z is precisely Q. Moreover, for i ∈ {0, 1, 2} we let Ti =

⋃
Q⊆Z,|Q|=i TQ

contain all vertices outside of Z with degree i. At this point, our approach for dealing with
CPLS and CPLSF will diverge.

The Fixed-Embedding Case. We will begin by obtaining a handle on vertices with precisely
two neighbors in Z. However, to do so we first need some specialized terminology. To make
our arguments easier to present, we assume w.l.o.g. that the input instance I is equipped
with a drawing D of G that respects the given embedding.

Let G2 be the subgraph of G induced on Z ∪ T2, where T2 is the set of all vertices in
V (G) \ Z with precisely two neighbors in Z. Let D2 be the restriction of D to G2, and
observe that D2 only differs from D by omitting some pendant and isolated vertices. Let
a face in D2 be special if it is incident to more than 2 vertices of Z, and clean otherwise;
notice that the boundary of a clean face must be a C4 which has precisely two vertices of Z
that lie on opposite sides of the C4 and which contains only vertices in T0 ∪ T1 in its interior.

▶ Lemma 14. The number of special faces in D2 is upper-bounded by 9k, and the number of
vertices in T2 that are incident to at least one special face is upper-bounded by 36k.

For a pair {a, b} ⊆ Z, we say that a set P of clean faces is an (ab)-brick if (1) the only
vertices of Z they are incident to are a and b, and (2) P forms a connected region in D2,
and (3) P is maximal with the above properties. Since the boundaries of every clean face
in P consists of a, b, and two degree-2 vertices, this in particular implies that the clean faces
in P form a sequence where each pair of consecutive faces shares a single degree-2 vertex;
this sequence may either be cyclical (in the case of a and b not being incident to any special
faces; we call such bricks degenerate), or the first and last clean face in P are adjacent to
special faces. Observe that a degenerate brick may only occur if |Z| = 2.

▶ Observation 15. The total number of bricks in D2 is upper-bounded by 24k.

In the next lemma, we use Observation 15 to guarantee the existence of a brick with
sufficiently many clean faces to support a safe reduction rule.

▶ Lemma 16. Assume |T2| ≥ 420k + 1, where k is the size of a provided vertex cover of
G. Then we can, in polynomial time, either correctly determine that I is a no-instance or
find a vertex v ∈ T2 with the following property: I is a yes-instance if and only if so is the
instance I ′ obtained from I by removing v.

Our next goal will be to reduce the size of T1. To do so, we will first reduce the total
number of clusters occurring in the instance – in particular, while by now we have the tools
to reduce the size of G2 (and hence also the number of clusters intersecting V (G2) = T2 ∪Z),
there may be many other clusters that contain only vertices in T1 and T0. Let Vi be a cluster
which does not intersect V (G2) = T2 ∪Z. Observe that if Vi contains vertices in more than a
single face of D2, then I must be a no-instance; for the following, we shall hence assume that
this is not the case. In particular, for a cluster Vi such that all of its vertices are contained
in a face f of D, we define its type t(i) as follows. ti is the set which contains f as well as all
vertices v on the boundary of f fulfilling the following condition: each v ∈ t(i) is adjacent to
a pendant vertex a ∈ Vi where a is drawn in f . An illustration of types is provided in Fig. 4.

For the next lemma, let τ be the set of all types occurring in I.

▶ Lemma 17. If |V (G2)| = α and D2 has β faces, then |τ | ≤ 7α+ 8β or I is a no-instance.
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Figure 4 An illustration of cluster types in a depicted face f . In this example, individual clusters
are marked by colors and none of the vertices s1, . . . , s7 belong to any of the colored clusters. The
types of the red, blue, yellow and green clusters are {f, s5, s6, s7}, {f, s1, s3, s4, s5, s7}, {f, s2} and
{f, s1, s2, s4}, respectively. Note that the depicted example cannot occur in a yes-instance since the
curves for, e.g., the blue and red clusters would need to cross each other.

Lemma 17 allows us to bound the total number of cluster types in the instance via
Lemma 18 below. The proof relies on a careful case analysis that depends on the size of
the cluster types of the considered clusters; for cluster types of size at least 4 we directly
obtain a contradiction with planarity, but for cluster types of size 2 or 3 we identify “rainbow
patterns” that must be present and allow us to simplify the instance.

▶ Lemma 18. Assume there are three distinct clusters, say V1, V2 and V3, which do not
intersect V (G2) and all have the same type of size at least 2. Then we can, in polynomial
time, either correctly identify that I is a no-instance or find a non-empty set A ⊆ T1 with the
following property: I is a yes-instance iff so is the instance I ′ obtained from I by removing A.

Having bounded the number of cluster types (Lemma 17) and the number of clusters of
each type (Lemma 18), it remains to bound the number of vertices in each of the clusters.

▶ Lemma 19. Let a ∈ V (G2) and f be a face of D2 incident to a, and let k be the size of a
provided vertex cover of G. Assume a cluster Vi contains at least 2k + 3 vertices in T1 that
are adjacent to a and lie in f . Then we can, in polynomial time, either correctly identify
that I is a no-instance, or find a vertex q ∈ Vi ∩ T1 such that I is a yes-instance if and only
if so is the instance I ′ obtained by deleting q.

We now have all the ingredients required to obtain our polynomial kernel:

▶ Theorem 20. CPLSF has a cubic kernel when parameterized by the vertex cover number.

The Variable-Embedding Case. For CPLS, we establish the following result:

▶ Theorem 21 (⋆). CPLS has a linear kernel when parameterized by the vertex cover
number.

Proof Sketch. One can immediately observe that the vertices in T0 are irrelevant. On a
high level, we can then proceed by devising reduction rules that result in a new instance that
does not contain large clusters; however it may still happen that there are many clusters
occurring in the instance. To deal with this, we group all the clusters together depending
on the “neighborhood types” of the vertices they contain. A second level of analysis and
reduction then allows us to deal with each group of clusters; there, the most difficult case
surprisingly arises when dealing with instances containing many clusters, each consisting of
precisely two pendant vertices. ◀
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As an immediate consequence of Theorem 21 and Theorem 1, we can obtain an improved
asymptotic running time for solving CPLS:

▶ Corollary 22. CPLS can be solved in time 2O(k) · nO(1), where k and n are the vertex
cover number and the number of vertices of the input graph, respectively.

5 NP-completeness

The CPLS problem was shown NP-complete for instances with an unbounded number of
clusters, even when the underlying graph is a subdivision of a 3-connected planar graph [4].
It is a simple exercise to see that CPLS is NP-complete for trees and for forests of stars (see
the Full Version). We establish the NP-completeness of CPLS and CPLSF when restricted to
instances with up to three clusters, which we refer to as CPLS-3 and CPLSF-3, respectively.

The proof is based on a reduction from a specialized and still NP-complete version of the
Bipartite 2-Page Book Embedding (B2PBE) problem [5]. Let G = (Ub, Ur, E) be a
bipartite planar graph, where the vertices in Ub and Ur are called black and red, respectively.
A bipartite 2-page book embedding of G is a planar embedding E of G in which the vertices
are placed along a Jordan curve ℓE , called spine of E , the black vertices appear consecutively
along ℓE , and each edge lies entirely in one of the two regions of the plane, called pages,
bounded by ℓE . The B2PBE problem asks whether a given bipartite graph admits a bipartite
2-page book embedding. We will reduce from the B2PBE with Prescribed End-vertices
(B2PBE-PE) problem. Given a bipartite planar graph G = (Ub, Ur, E) and a quadruple
(bs, bt, rs, rt) ∈ Ub × Ub × Ur × Ur, B2PBE-PE asks whether G admits a bipartite 2-page
book embedding E in which the vertices bs, bt, rs, and rt appear in this counter-clockwise
order along the spine of E . Let G+ be a planar supergraph of G whose vertex set is Ub ∪ Ur

and whose edge set is E ∪ E(σ), where σ is a cycle that traverses all the vertices of Ub (and,
thus, also of Ur) consecutively. A cycle σ exhibiting the above properties is a connector of G.
By [5, Lemma 2.1] and the definition of connector, we have the following.

▶ Lemma 23. A bipartite graph G = (Ub, Ur, E) with distinct vertices bs, bt ∈ Ub and
rs, rt ∈ Ur is a positive instance of B2PBE-PE iff it admits a connector σ in which bt and rt

immediately precede rs and bs, respectively, counter-clockwise along σ.

Next, we sketch a reduction from B2PBE-PE, which is NP-complete even for 2-connected
graphs, to CPLS-3. As B2PBE-PE remains NP-complete even for instances with a fixed
embedding (see [5] for details), the reduction also works if the target problem is CPLSF-3.

▶ Lemma 24. B2PBE-PE ≤P
m CPLS-3.
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Figure 5 Illustrations for the gadget Q and P.
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Figure 6 Illustrations for the proof of Lemma 24. (a) A planar embedding Eσ of a bipartite graph
G together with a connector σ of G. The edges of σ are dashed. (b) A planar embedding of the
linear saturation of the underlying graph of the independent c-graph C, obtained from Eσ.

Proof Sketch. In our reduction from B2PBE-PE to CPLS-3, we will use the originating
gadget Q in Fig. 5a and the traversing gadget P in Fig. 5c. These are independent c-graphs
with three clusters: red, blue, and black. Let W be a graph with 4 labeled vertices bs, bt, rb,
and rt. The PQ-merge of W is the graph obtained by taking the union of W , GQ, and GP ,
identifying the vertices bt and rs of W with the vertices b′

t and r′
s of GQ, respectively, and

identifying the vertices bs and rt of W with the vertices b′
s and r′

t of GP , respectively.
Given a connected bipartite planar graph G = (Ub, Ur, E) and an ordered quadruple

(bs, bt, rs, rt) ∈ Ub ×Ub ×Ur ×Ur, we construct an independent c-graph C = (H, {Vb, Vr, Vc})
with three clusters (red, black, and blue) as follows. First, we initialize the underlying
graph H of C to be the PQ-merge of G (which is well-defined, since G contains the 4 distinct
vertices bs, bt, rs, and rt.). Also, we initialize Vb = Ub ∪ {b∗, b⋄}, Vr = Ur ∪ {r∗, r⋄}, and
Vc = {α, β, λ, µ, ν, χ, ψ, ω}. Second, we subdivide, in H, each edge e of E(G) with a dummy
vertex ce and assign the vertex ce to Vc.

Clearly, the above reduction can be carried out in polynomial time in the size of G. In the
Full Version, we show that C is a positive instance of CPLS-3 if and only if (G, bs, bt, rs, rt) is
a positive instance of B2PBE-PE. The crux of the proof relies on the property that, in any
planar embedding of a linear saturation of the underlying graph of C, the end-vertices of the
path saturating the red cluster must be r∗ and r⋄, the end-vertices of the path saturating the
blue cluster must be α and ω, and the end-vertices of the path saturating the black cluster
must be b∗ and b⋄. This allows us to turn an embedding of G together with its connector
(Fig. 6a) into a linear saturation of the underlying graph of C (Fig. 6b), and vice versa. ◀

Lemma 24 and the fact that CPLS and CPLSF clearly lie in NP imply the main result
of the section, which is summarized in the following and rules out the existence of FPT
algorithms for CPLS and CPLSF parameterized by the number of clusters, unless P = NP.

▶ Theorem 25. CPLS and CPLSF are NP-complete even when restricted to instances with
at most three clusters.

ISAAC 2024



24:14 Exact Algorithms for Clustered Planarity with Linear Saturators

6 Conclusions

This paper established upper and lower bounds that significantly expand our understanding
of the limits of tractability for finding linear saturators in the context of clustered planarity.

We remark that, prior to this research, the problem was not known to be NP-complete
for instances with O(1) clusters. Our NP-hardness result for instances of CPLS with three
clusters narrows the complexity gap to its extreme (while also solving the open problem posed
in [3, OP 4.3] about the complexity of Clique Planarity for instances with a bounded
number of clusters), and animates the interest for the remaining two cluster case.
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