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Abstract
A geometric t-spanner G on a set S of n point sites in a metric space P is a subgraph of the complete
graph on S such that for every pair of sites p, q the distance in G is a most t times the distance d(p, q)
in P . We call a connection between two sites a link. In some settings, such as when P is a simple
polygon with m vertices and a link is a shortest path in P , links can consist of Θ(m) segments and
thus have non-constant complexity. The spanner complexity is a measure of how compact a spanner
is, which is equal to the sum of the complexities of all links in the spanner. In this paper, we study
what happens if we are allowed to introduce k Steiner points to reduce the spanner complexity. We
study such Steiner spanners in simple polygons, polygonal domains, and edge-weighted trees.

Surprisingly, we show that Steiner points have only limited utility. For a spanner that uses k

Steiner points, we provide an Ω(nm/k) lower bound on the worst-case complexity of any (3 − ε)-
spanner, and an Ω(mn1/(t+1)/k1/(t+1)) lower bound on the worst-case complexity of any (t − ε)-
spanner, for any constant ε ∈ (0, 1) and integer constant t ≥ 2. These lower bounds hold in all
settings. Additionally, we show NP-hardness for the problem of deciding whether a set of sites in a
polygonal domain admits a 3-spanner with a given maximum complexity using k Steiner points.

On the positive side, for trees we show how to build a 2t-spanner that uses k Steiner points
of complexity O(mn1/t/k1/t + n log(n/k)), for any integer t ≥ 1. We generalize this result
to forests, and apply it to obtain a 2

√
2t-spanner in a simple polygon with total complexity

O(mn1/t(log k)1+1/t/k1/t + n log2 n). When a link in the spanner can be any path between two
sites, we show how to improve the spanning ratio in a simple polygon to (2k + ε), for any constant
ε ∈ (0, 2k), and how to build a 6t-spanner in a polygonal domain with the same complexity.
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25:2 The Complexity of Geodesic Spanners Using Steiner Points

1 Introduction

Consider a set S of n point sites in a metric space P . In applications such as (wireless)
network design [3], regression analysis [19], vehicle routing [12, 26], and constructing TSP
tours [6], it is desirable to have a compact network that accurately captures the distances
between the sites in S. Spanners provide such a representation. Formally, a geometric
t-spanner G is a subgraph of the complete graph on S, so that for every pair of sites p, q

the distance dG(p, q) in G is at most t times the distance d(p, q) in P [24]. The quality of
a spanner can be expressed in terms of the spanning ratio t and a term to measure how
“compact” it is. Typical examples are the size of the spanner, that is, the number of edges
of G, its weight (the sum of the edge lengths), or its diameter. Such spanners are well
studied [4, 8, 10, 18]. For example, for point sites in Rd and any constant ε > 0 one can
construct a (1 + ε)-spanner of size O(n/εd−1) [25]. Similar results exist for more general
spaces [9, 20, 21]. Furthermore, there are various spanners with other desirable spanner
properties such as low maximum degree, or fault-tolerance [7, 22, 23, 25].

When the sites represent physical locations, there are often other objects (e.g. buildings,
lakes, roads, mountains) that influence the shortest path between the sites. In such settings, we
need to explicitly incorporate the environment. We consider the case where this environment
is modeled by a polygon P with m vertices, and possibly containing holes. The distance
between two points p, q ∈ P is then given by their geodesic distance: the length of a shortest
path between p and q that is fully contained in P . This setting has been considered before.
For example, Abam, Adeli, Homapou, and Asadollahpoor [1] present a (

√
10 + ε)-spanner of

size O(n log2 n) when P is a simple polygon, and a (5+ε)-spanner of size O(n
√

h log2 n) when
the polygon has h > 1 holes. Abam, de Berg, and Seraji [2] even obtain a (2 + ε)-spanner of
size O(n log n) when P is actually a terrain. To avoid confusion between the edges of P and
the edges of G, we will from hereon use the term links to refer to the edges of G.

As argued by de Berg, van Kreveld, and Staals [15], each link in a geodesic spanner may
correspond to a shortest path containing Ω(m) polygon vertices. Therefore, the spanner
complexity, defined as the total number of line segments that make up all links in the spanner,
more appropriate measures how compact a geodesic spanner is. In this definition, a line
segment that appears in multiple links is counted multiple times: once for each link it appears
in. The above spanners of [1, 2] all have worst-case complexity Ω(mn), hence de Berg, van
Kreveld, and Staals present an algorithm to construct a 2

√
2t-spanner in a simple polygon

with complexity O(mn1/t + n log2 n), for any integer t ≥ 1. By relaxing the restriction of
links being shortest paths to any path between two sites, they obtain, for any constant
ε ∈ (0, 2t), a relaxed geodesic (2t + ε)-spanner in a simple polygon, or a relaxed geodesic
6t-spanner in a polygon with holes, of the same complexity. These complexity bounds are
still relatively high. De Berg, van Kreveld, and Staals [15] also show that these results are
almost tight. In particular, for sites in a simple polygon, any geodesic (3 − ε)-spanner has
worst-case complexity Ω(nm), and for any constant ε ∈ (0, 1) and integer constant t ≥ 2, a
(t − ε)-spanner has worst-case complexity Ω(mn1/(t−1) + n).

Problem Statement. A very natural question is then if we can reduce the total complexity
of a geodesic spanner by allowing Steiner points. That is, by adding an additional set S
of k vertices in G, each one corresponding to a (Steiner) point in P . For the original sites
p, q ∈ S we still require that their distance in G is at most t times their distance in P , but
the graph distance from a Steiner point p′ ∈ S to any other site is unrestrained. Allowing
for such Steiner points has proven to be useful in reducing the weight [5, 17] and size [22]
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Figure 1 A spanner in a simple polygon that uses two Steiner points (red squares). By adding
the two Steiner points, the spanner has a small spanning ratio and low complexity, as we no longer
need multiple links that pass through the middle section of P .

of spanners. In our setting, it allows us to create additional “junction” vertices, thereby
allowing us to share high-complexity subpaths. See Figure 1 for an illustration. Indeed, if
we are allowed to turn every polygon vertex into a Steiner point, Clarkson [11] shows that,
for any ε > 0, we can obtain a (1 + ε)-spanner of complexity O((n + m)/ε). However, the
number of polygon vertices m may be much larger than the number of Steiner points we can
afford. Hence, we focus on the scenario in which the number of Steiner points k is (much)
smaller than m and n.

Our Contributions. Surprisingly, we show that in this setting, Steiner points have only
limited utility. In some cases, even a single Steiner point allows us to improve the complexity
by a linear factor. However, we show that such improvements are not possible in general.
First of all, we show that computing a minimum cardinality set of Steiner points for sites in
a polygonal domain that allow for a 3-spanner of a certain complexity is NP-hard. Moreover,
we show that there is a set of n sites in a simple polygon with m = Ω(n) vertices for which
any (2 − ε)-spanner (with k < n/2 Steiner points) has complexity Ω(mn2/k2). Similarly, we
give a Ω(mn/k) and Ω(mn1/(1+t)/k1/(1+t)) lower bound on the complexity of a (3 − ε)- and
(t − ε)-spanner with k Steiner points. Hence, these results dash our hopes for a near linear
complexity spanner with “few” Steiner points and constant spanning ratio.

These lower bounds actually hold in a more restricted setting. Namely, when the metric
space is simply an edge-weighted tree that has m vertices, and the n sites are all placed in
leaves of the tree. In this setting, we show that we can efficiently construct a spanner whose
complexity is relatively close to optimal. In particular, our algorithm constructs a 2t-spanner
of complexity O(mn1/t/k1/t + n log(n/k)). The main idea is to partition the tree into k

subtrees of roughly equal size, construct a 2t-spanner without Steiner points on each subtree,
and connect the spanners of adjacent trees using Steiner points. The key challenge that we
tackle, and one of the main novelties of the paper, is to make sure that each subtree contains
only a constant number of Steiner points. We carefully argue that such a partition exists, and
that we can efficiently construct it. Constructing the spanner takes O(n log(n/k) + m + K)
time, where K is the output complexity. This output complexity is either the size of the
spanner (O(n log(n/k))), in case we only wish to report the endpoints of the links, or the
complexity, in case we wish to explicitly report the shortest paths making up the links. An
extension of this algorithm allows us to deal with a forest as well.

This algorithm for constructing a spanner on an edge-weighted tree turns out to be the
crucial ingredient for constructing low-complexity spanners for point sites in polygons. In
particular, given a set of sites in a simple polygon P , we use some of the techniques developed
by de Berg, van Kreveld, and Staals [15] to build a set of trees whose leaves are the sites,
and in which the distances in the trees are similar to the distances in the polygon. We then
construct a 2t-spanner with k Steiner points on this forest of trees using the above algorithm,
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and argue that this actually results into a 2
√

2t-spanner with respect to the distances in the
polygon. The main challenge here is to argue that the links used still have low complexity,
even when they are now embedded in the polygon. We prove that the spanner (with respect to
the polygon) has complexity O(mn1/t(log k)1+1/t/k1/t + n log2 n), and can be constructed in
time O(n log2 n + m log n + K). If we allow a link in the spanner to be any path between two
sites (or Steiner points), then we obtain for any constant ε ∈ (0, 2k) a relaxed (2t+ε)-spanner
of the same complexity. For k = O(1) our spanners thus match the results of de Berg, van
Kreveld, and Staals [15]. Finally, we extend these results to polygonal domains, where we
construct a similar complexity relaxed 6t-spanner in O(n log2 n + m log n log m + K) time.

Organization. We start with our results on edge-weighted trees in Section 2. To get a feel
for the problem, we first establish lower bounds on the spanner complexity in Section 2.1. In
Section 2.2 we present the algorithm for efficiently constructing a low complexity 2t-spanner,
in the full version [13] we extend it to a forest. In Section 3, we show how to use these results
to obtain a 2

√
2t-spanner for sites in a simple polygon P . In Section 4 we further extend our

algorithms to the most general case in which P may even have holes. In the full version of
the paper [13] we show that computing a minimum cardinality set of Steiner points with
which we can simultaneously achieve a particular spanning ratio and maximum complexity
is NP-hard. In Section 5 we pose some remaining open questions. Omitted proofs can be
found in the full version [13].

2 Steiner spanners for trees

In this section, we consider spanners on an edge-weighted rooted tree T . We allow only
positive weights. The goal is to construct a t-spanner on the leaves of the tree that uses k

Steiner points, i.e. the set of sites S is the set of leaves. We denote by n the number of leaves
and by m the number of vertices in T . The complexity of a link between two sites (or Steiner
points) p, q ∈ T is the number of edges in the shortest path π(p, q), and the distance d(p, q)
is equal to the sum of the weights on this (unique) path. We denote by T (v) the subtree of
T rooted at vertex v. For an edge e ∈ T with upper endpoint v1 (endpoint closest to the
root) and lower endpoint v2, we denote by T (e) := T (v2) ∪ {e} the subtree of T rooted at v1.

The Steiner points are not restricted to the vertices of T , but can lie anywhere on the
tree. To be precise, for any δ ∈ (0, 1) a Steiner point s can be placed on an edge (u, v) of
weight w. This edge is then replaced by two edges (u, s) and (s, v) of weight δw and (1 − δ)w.
Observe that this increases the complexity of a spanner on T by at most a constant factor as
long as there are at most a constant number of Steiner points placed on a single edge. The
next lemma states that it is indeed never useful to place more than one Steiner point on the
interior of an edge.

▶ Lemma 1. If a t-spanner G of a tree T has more than one Steiner point on the interior of
an edge e = (u, v), then we can modify G to obtain a t-spanner G′ that has no Steiner points
on the interior of e without increasing the complexity and number of Steiner points.

Proof. Let S denote the set of Steiner points of G and let S(e) ⊆ S the subset of Steiner
points that lie on e. We assume that each Steiner point is used by a path πG(p, q) for some
sites p, q, otherwise we can simply remove it. We define the set of Steiner points of G′ as
S ′ = (S \ S(e)) ∪ {u, v}. Observe that |S ′| ≤ |S|. To obtain G′, we replace each link (p, s)
with s ̸∈ S ′ by (p, u) if (p, s) intersects u and by (p, v) if (p, s) intersects v. Links between
Steiner points on e are simply removed. Finally, we add the link (u, v) to G′.



S. de Berg, T. Ophelders, I. Parada, F. Staals, and J. Wulms 25:5

1

2
Θ(m

k )

2k pitchforks

Θ(n
k ) sites

Θ(m
n )

h

w

(a) (b)

Θ(m
k ) 2k + 1 combs

Θ(n
k ) sites

(c)

Figure 2 (a) Our construction for an Ω(mn2/k2) lower bound on the complexity of any (2 − ε)-
spanner. (b) A more detailed version of the comb of a pitchfork highlighted in the orange disk, which
is also used for our Ω(mn1/(t+1)/k1/(t+1)) lower bound on the complexity of any (t − ε)-spanner.
(c) Our construction for an Ω(nm/k) lower bound on the complexity of any (3 − ε)-spanner.

We first argue that the spanning ratio of G′ is as most the spanning ratio of G. Consider
a path between two sites p, q in G. If this path still exists in G′, then dG(p, q) = dG′(p, q). If
not, then the path must visit e. Let (p1, s1) and (p2, s2) denote the first and last link in the
path that connect to a Steiner point in the interior of e (possibly s1 = s2). If π(p, q) does not
intersect the open edge e, then these links are replaced by (p1, u) and (p2, u) (or symmetrically
by (p1, v) and (p2, v)) in G′. This gives a path in G′ via u such that dG′(p, q) < dG(p, q). If
π(p, q) does intersect e, i.e. p and q lie on different sides of e, then, without loss of generality,
the links (p1, s1) and (p2, s2) are replaced by (p1, u), (u, v), and (p2, v). Again, this gives a
path in G′ such that dG′(p, q) ≤ dG(p, q).

Finally, what remains is to argue that the complexity of the spanner does not increase.
Each link that we replace intersects either u or v, thus replacing this link by a link up to u

or v reduces the complexity by one. Because each Steiner point on e occurs on at least one
path between sites in G, we replace at least two links. This decreases the total complexity by
at least two, while including the edge (u, v) increases the complexity by only one. ◀

▶ Corollary 2. Any spanner G on a tree T can be modified without increasing the spanning
ratio and complexity such that no edge contains more than one Steiner point in its interior.

2.1 Complexity lower bounds
In this section, we provide several lower bounds on the worst-case complexity of any (t − ε)-
spanner that uses k Steiner points, where t is an integer constant and ε ∈ (0, 1). When Steiner
points are not allowed, any (2 − ε)-spanner in a simple polygon requires Ω(n2) edges [1]
and Ω(mn2) complexity. If we allow a larger spanning ratio, say (3 − ε) or even (t − ε), the
worst-case complexity becomes Ω(mn) or Ω(mn1/(t−1)), respectively [15]. As the polygons
used for these lower bounds are very tree-like, these bounds also hold in our tree setting.
Next, we show how much each of these lower bounds is affected by the use of k Steiner points.

▶ Lemma 3. For any constant ε ∈ (0, 1), there exists an edge-weighted tree T for which any
(2 − ε)-spanner using k < n/2 Steiner points has complexity Ω(mn2/k2).

Proof sketch. The tree in Figure 2(a) is used to show this bound. Each of the k pitchforks
that does not contain a Steiner point contributes Ω(mn2/k3) complexity to the spanner. ◀

ISAAC 2024
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(a) (b)

s1 s2
p`

S1 S2S0

Figure 3 (a) The sets Si defined by the two (red square) Steiner points. (b) For any spanner
on S1, every link to a Steiner point can be replaced by a link of smaller complexity, while increasing
the spanning ratio by at most one. Here, the dashed links can be replaced by the green links.

▶ Lemma 4. For any constant ε ∈ (0, 1), there exists an edge-weighted tree T for which any
(3 − ε)-spanner using k < n/2 Steiner points has complexity Ω(mn/k).

Proof sketch. The tree in Figure 2(c) is used to show this lower bound. ◀

▶ Lemma 5. For any constant ε ∈ (0, 1) and integer constant t ≥ 2, there exists an edge-
weighted tree T for which any (t − ε)-spanner using k < n Steiner points has complexity
Ω(mn1/(t+1)/k1/(t+1)).

Before we prove Lemma 5, we first discuss a related result in a simpler metric space.
Let ϑn be the 1-dimensional Euclidean metric space with n points v1, . . . , vn on the x-axis at
1, 2, . . . , n. A link (vi, vj) has complexity |i − j|. Dinitz, Elkin, and Solomon [16] give a lower
bound on the total complexity of any spanning subgraph of ϑn, given that the link-radius is
at most ρ. The link-radius (called hop-radius in [16]) ρ(G, r) of a graph G with respect to a
root r is defined as the maximum number of links needed to reach any vertex in G from r.
The link-radius of G is then minr∈V ρ(G, r). The link-radius is bounded by the link-diameter,
which is the minimum number of links that allow reachability between any two vertices.

▶ Lemma 6 (Dinitz et al. [16]). For any sufficiently large integer n and positive integer
ρ < log n, any spanning subgraph of ϑn with link-radius at most ρ has complexity Ω(ρ·n1+1/ρ).

Proof of Lemma 5. Consider the tree construction illustrated in Figure 2(b). This edge-
weighted tree T has the shape of a comb of width w and height h with n teeth separated by
corridors of complexity M = Θ(m/n) each. Each leaf at the bottom of a comb tooth is a site.

Any spanning subgraph of ϑn of complexity C and link-diameter ρ is in one-to-one
correspondence with a (ρ + 1 − ε)-spanner of complexity C · m/n in T [15]. Lemma 6 then
implies that any (t − ε)-spanner has worst-case complexity Ω(mn1/(t−1)).

When a set S of k Steiner points is introduced, we consider the at most k + 1 sets
S0, . . . , Sk of consecutive sites that have no Steiner point between them; see Figure 3(a).
We can replace any link (p, q) where p, q ∈ S ∪ S and π(p, q) intersects a Steiner point s

by the links (p, s) and (s, q). Corollary 2 implies that this increases the complexity by only
a constant factor. From now on, we thus assume there are no such links. We claim the
following for any (t − ε)-spanner G on S = S0 ∪ · · · ∪ Sk.

▷ Claim 7. Let Ci be the complexity of the subgraph of G induced by Si and the at most
two Steiner points sℓ and sr bounding Si from the left and right, respectively. Then, we can
construct a (t + 2 − ε)-spanner G′

i on Si that has complexity at most Ci.

Proof of Claim. Let pℓ and pr denote the leftmost and rightmost site in Si. We replace each
link (p, sℓ) (or (p, sr)), p ∈ Si, by the link (p, pℓ) (resp. (p, pr)). If there is a link (sℓ, sr),
it is replaced by (pℓ, pr). Any path in G between p, q ∈ Si that visits either sℓ and/or sr
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corresponds to a path via pr and/or pℓ in G′
i. The length of the path increases by 2h when

visiting pr or pℓ, so by at most 4h when visiting both. As d(p, q) ≥ 2h, the spanning ratio
increases by at most two. ◁

These changes in the spanner only decrease the complexity of the subspanner on Si.
Notice also that if we apply them to each of the sets Si, each link of G is changed by only
one of the subspanners G′

i. Thus, we consider the minimum complexity of any (t + 2 − ε)-
spanner on these sites. By applying Lemma 6, we find that the worst-case complexity of any
(t + 2 − ε)-spanner on these |Si| sites is Ω(m/n · |Si|1+1/(t+1)). The complexity of G is at least
the sum of the complexities of these G′

i spanners over all Si, so m
n

∑k
i=0 Ω

(
|Si|1+1/(t+1)),

where
∑k

i=0 |Si| = Θ(n). Using a logarithmic transformation and induction, we see that this
sum is minimized when |Si| = Θ(n/k) for all i ∈ 0, . . . , k. So,

m

n

k∑
i=0

Ω
(

|Si|1+1/(t+1)
)

≥ m

n

k∑
i=0

Ω
(

(n/k)1+1/(t+1)
)

= Ω
(

mn1/(t+1)/k1/(t+1)
)

. ◀

2.2 A low complexity Steiner spanner
In this section, we describe how to construct low complexity spanners for edge-weighted
trees. The goal is to construct a 2t-spanner of complexity O(mn1/t/k1/t + n log n) that uses
at most k Steiner points. We first show that the spanner construction for a simple polygon
of [15] can be used to obtain a low complexity spanner for a tree (without Steiner points).

▶ Lemma 8 (de Berg et al. [15]). For any integer t ≥ 1, we can build a 2t-spanner for an
edge-weighted tree T of size O(n log n) and complexity O(mn1/t + n log n) in O(n log n + m)
time.

Spanner construction. Given an edge-weighted tree T , to construct a Steiner spanner G
for T , we start by partitioning the sites in k sets S1, . . . Sk by an in-order traversal of the
tree. The first ⌈n/k⌉ sites encountered are in S1, the second ⌈n/k⌉ in S2, etc. After this, the
sites are reassigned into k new disjoint sets S′

1, . . . S′
k. For each of these sets, we consider a

subtree T ′
i ⊆ T whose leaves are the set S′

i. There are four properties that we desire of these
sets and their subtrees.
1. The size of S′

i is O(n/k).
2. The trees T ′

i cover T , i.e.
⋃

i T ′
i = T .

3. The trees T ′
i are disjoint apart from Steiner points.

4. Each tree T ′
i contains only O(1) Steiner points.

As we prove later, these properties ensure that we can construct a spanner on each subtree T ′
i

to obtain a spanner for T . We obtain such sets S′
i and the corresponding trees T ′

i as follows.
We color the vertices and edges of the tree T using k colors {1, . . . , k} in two steps. In

this coloring, an edge or vertex is allowed to have more than one color. First, for each set
Si, we color the smallest subtree that contains all sites in Si with color i. After this step,
all uncolored vertices have only uncolored incident descendant edges. Second, we color the
remaining uncolored edges and vertices. These edges and their (possibly already colored)
upper endpoints are colored in a bottom-up fashion. We assign each uncolored edge and its
upper endpoint the color with the lowest index i that is assigned also to its lower endpoint.

After coloring T , we for i ∈ {1, . . . , k} place a Steiner point si at the root of tree Ti

formed by all edges and vertices of color i. This may place multiple Steiner points at the same
vertex. We may abuse notation, and denote by si the vertex occupied by Steiner point si.

ISAAC 2024
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(a) (b)

T ′
1

T ′
3

T ′
2

T ′
1

T ′
2 T ′

3
T ′
4

Figure 4 The tree Ti is the subtree whose edges and vertices have color i. A Steiner point (square)
is placed at the root of Ti. The shaded areas show the trees T ′

i . The examples show the case when
the Steiner points are (a) at different vertices or (b) share a vertex.

For each Steiner point si, we define a subtree T ′
i ⊆ T . The sites in T ′

i will be the set S′
i.

The tree T ′
i is a subtree of T (si). When si is the only Steiner point at the vertex, then

T ′
i = T (si) \

⋃
j(T (sj) \ {sj}) for sj a descendant of si. In other words, we look at the tree

rooted at si up to and including the next Steiner points, see Figure 4(a). When si is not
the only Steiner point at the vertex, we include only subtrees T (e) of si (up to the next
Steiner points) that start with an edge e that has color i and no color j > i. See Figure 4(b).
Whenever si has the lowest or highest index of the Steiner points at si, we also include all
T (e′) that start with an edge e′ of color j < i or j > i, respectively. This generalizes the
scheme for when si is the only Steiner point at the vertex.

By creating T ′
i in this way, si is not a leaf of T ′

i . We therefore adapt T ′
i by adding an

edge of weight zero between the vertex at si and a new leaf corresponding to si. On each
subtree T ′

i , we construct a 2t-spanner using the algorithm of Lemma 8. These k spanners
connect at the Steiner points, which we formally prove in the spanner analysis.

Analysis. To prove that G is indeed a low complexity 2t-spanner for T , we first show that
the four properties stated before hold for S′

i and T ′
i . We often apply the following lemma,

that limits the number of colors an edge can be assigned by our coloring scheme.

▶ Lemma 9. An edge can have at most two colors.

Proof. First, observe that an edge can receive more than one color only in the first step of
the coloring. Suppose for contradiction that there is an edge e in T that has three colors
i < j < ℓ. Let v be the lower endpoint of e. Then there must be three sites pi ∈ Si, pj ∈ Sj ,
pℓ ∈ Sℓ in T (v). Because these sets are defined by an in-order traversal, pi must appear
before pj in the traversal. Similarly, pj appears before pℓ. Additionally, there must be a
site p′

j ∈ Sj in T \ T (v), otherwise the color j would not be assigned to e. The site p′
j must

appear before pi or after pℓ in the traversal. In the first case, pi must be in Sj as it appears
between two sites in Sj . In the second case, we find pℓ ∈ Sj , also giving a contradiction. ◀

We prove properties 1, 2, and 3 in the full version [13].

▶ Lemma 10. There are at most five Steiner points in T ′
i .

Proof sketch. By definition, si is in T ′
i , so we want to show that there are at most four

other Steiner points in T ′
i . Note that a Steiner point can occur in T ′

i only if its path to si

does not encounter any other Steiner point. In this proof sketch we show there are at most
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e

(a) (b)

sx sy

si

T ′
i

si

T ′
i

e′

sc
e

T ′
i [j]

Figure 5 Notation used in Lemma 10. In T ′
i [j] are all subtrees that start with an edge of color j.

two Steiner points in subtrees T (e) for which the edge e, which is incident to si in T ′
i , does

not have color i. In the full proof we use similar techniques to bound the number of Steiner
points in subtrees for which e does have color i by two as well.

Let T ′
i [j] be the subtree of T ′

i rooted at si that is the union of T (e) ∩ T ′
i for all edges e

incident to si of color j ̸= i and not of color i as well, see Figure 5(a). We argue that this
subtree is non-empty for at most two colors j. Consider such an edge e. Because e does not
have color i and e ∈ T ′

i , it must be that sj is above si in T . Thus, the parent edge of si in T

must also be colored j. By Lemma 9, the parent edge of si in T can be assigned at most two
colors, so T ′

i [j] is non-empty for at most two colors.
Next, we prove that T ′

i [j] contains at most one Steiner point other than si. We assume
that i < j, the proof for i > j is symmetric. Assume for contradiction that T ′

i [j] contains
two Steiner points sx and sy, x < y; see Figure 5(b). As shown before, there is a site of Sj

in T \ T (si). As i < j, this implies that i < x < y < j. Let e′ be the first edge on π(si, sx)
that is not on π(si, sy), i.e. the first edge after the paths diverge. Let c be a color of e′ and
let v and w be the upper and lower endpoint of e′. The tree T (w) does not contain any sites
of Sj , as these appear in the traversal after the sites of Sx. It follows that Sc is before Sj in
the in-order traversal, in other words i < c < j. The parent edge of si cannot be colored c,
as a site of Sc would then appear either before a site in Si or after a site in Sj in the in-order
traversal. It follows that sc is on the path π(v, si). If sc ̸= si, this contradicts the assumption
that this path does not contain a Steiner point. If sc = si, then i < c implies that the subtree
starting with an edge of color j is in not T ′

i , which is a contradiction. We conclude that
there are at most two Steiner points in the subtrees T ′

i [j] in total for all j ̸= i. ◀

We are now ready to prove that our algorithm computes a spanner with low complexity.

▶ Lemma 11. The spanner G is a 2t-spanner for T of size O(n log(n/k)) and complexity
O(mn1/t/k1/t + n log(n/k)).

Proof. To bound the size and complexity of the spanner, we first consider the number of
leaves ni and vertices mi in each subtree T ′

i . As ni is equal to |S′
i| plus the number of

Steiner points in T ′
i , properties 1 and 4 (Lemma 10) imply that ni = O(n/k) + 5 = O(n/k).

Property 3 states the subtrees T ′
i are disjoint apart from their shared Steiner points, so∑

mi = O(m). By Lemma 8, G has size
∑k

i=1 O
(

n
k log

(
n
k

))
= O

(
n log

(
n
k

))
and complexity∑k

i=1 O
(

mi

(
n
k

)1/t + n
k log

(
n
k

))
= O

(
mn1/t

k1/t + n log
(

n
k

))
.

What remains is to show that G is a 2t-spanner. Let p, q ∈ S be two leaves in T . If p, q ∈ S′
i

for some i ∈ {1, . . . , k} then the shortest path π(p, q) is contained within T ′
i . The 2t-spanner

on T ′
i implies that dG(p, q) ≤ 2td(p, q). If there is no such set S′

i that contains both sites,
consider the sequence of vertices v1, . . . , vℓ where π(p, q) exits some subtree T ′

i . Let v, w be
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two consecutive vertices in this sequence. Without loss of generality, assume that w ∈ T (v),
and let sx be the Steiner point at v for which w ∈ T ′

x (properties 2 and 3 imply sx exists).
Then the 2t-spanner on T ′

x ensures that dG(v, w) ≤ 2td(v, w). It follows that dG(p, q) ≤
dG(p, v1) + dG(v1, v2) + · · · +dG(vℓ, q) ≤ 2t(d(p, v1) + d(v1, v2) + · · · +d(vℓ, q)) = 2td(p, q). ◀

▶ Theorem 12. Let T be a tree with n leaves and m vertices, and t ≤ 1 be any integer
constant. For any 1 ≤ k ≤ n, we can build a 2t-spanner G for T using at most k Steiner points
of size O(n log(n/k)) and complexity O(mn1/t/k1/t + n log(n/k)) in O(n log(n/k) + m + K)
time, where K is the output size.

A forest spanner. The tree spanner can be extended to a spanner for a forest F . As F
is disconnected, we cannot require all sites to have a path between them in the spanner.
Instead, we say that G is a t-spanner for F if G is a t-spanner for every tree in F .

▶ Theorem 13. Let F be a forest with n leaves and m vertices, and t ≤ 1 be any integer
constant. For any 1 ≤ k ≤ n, we can build a 2t-spanner G for F using at most k Steiner points
of size O(n log(n/k)) and complexity O(mn1/t/k1/t + n log(n/k)) in O(n log(n/k) + m + K)
time, where K is the output size.

3 Steiner spanners in simple polygons

We consider the problem of computing a t-spanner using k Steiner points for a set of n point
sites in a simple polygon P with m vertices. We measure the distance between two points in
p, q in P by their geodesic distance, i.e. the length of the shortest path π(p, q) fully contained
within P . A link (p, q) in the spanner is the shortest path π(p, q), and its complexity is
the number of segments in this path. Lower bounds for trees straightforwardly extend to
polygonal instances. Again, we aim to obtain a spanner of complexity close to the lower bound.

▶ Lemma 14. The lower bounds of Lemmata 3, 4, and 5 also hold for simple polygons.

Spanner construction. Next, we describe how to obtain a low-complexity spanner in a
simple polygon using at most k Steiner points. In our approach, we combine ideas from [2]
and [15] with the forest spanner of Theorem 13. We first give a short overview of the approach
to obtain a low complexity 2

√
2t-spanner [15], and then discuss how to combine these ideas

with the forest spanner to obtain a low complexity Steiner spanner.
We partition the polygon P into two subpolygons Pℓ and Pr by a vertical line segment λ

such that roughly half of the sites lie in either subpolygon. For the line segment λ, we then
consider the following weighted 1-dimensional space. For each site p ∈ S, let pλ be the
projection of p: the closest point on λ to p. The (weighted 1-dimensional distance) between
two sites pλ, qλ is defined as dw(pλ, qλ) := d(p, pλ) + d(pλ, qλ) + d(q, qλ). In other words,
the sites in the 1-dimensional space are weighted by the distance to their original site in P .
For this 1-dimensional space we construct a t-spanner Gλ, and for each link (pλ, qλ) in Gλ

we add the link (p, q) to the spanner G. Finally, we process the subpolygons Pℓ and Pr

recursively. De Berg, van Kreveld, and Staals [15] show that this gives a
√

2t-spanner in a
simple polygon. To obtain a spanner of complexity O(mn1/t + n log2 n), they construct a
1-dimensional 2t-spanner Gλ using the approach of Lemma 8, resulting in a 2

√
2t-spanner.

In our case, we require information on the paths from the sites to their projection instead
of only their distance to decide where to place the Steiner points. This information is
captured in the shortest path tree SPTλ of the segment λ, which is the union of all shortest
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λ

p

p

λ
SPT i,j

Figure 6 The shortest path tree of λ in P ′ and its SPT i,j . The grey nodes and edges are not
included in SPT i,j , but can be assigned to a T ′

i as indicated by the colored backgrounds. The
squares show the Steiner points in SPT i,j and P ′. The sites in P ′ are colored as the trees T ′

i .

paths from the vertices of P to their closest point on λ. Additionally, we include all sites in
S in the tree SPTλ. The segment λ is split into multiple edges at the projections of the sites,
see Figure 6. The tree SPTλ is rooted at the lower endpoint of λ and has O(m + n) vertices.

We adapt the algorithm to build a spanner in P as follows. Instead of computing a
1-dimensional spanner directly in each subproblem in the recursion, we first collect the
shortest path trees of all subproblems. Let SPT i,j denote the shortest path tree of the j-th
subproblem at the i-th level of the recursion. We exclude all vertices from SPT i,j that have
no site as a descendant. This ensures that all leaves of the tree are sites. Let F = ∪i,jSPT i,j

be the forest consisting of all trees. A site in S or vertex of P can occur in multiple trees
SPT i,j , but they are seen as distinct sites and vertices in the forest F . We call a tree SPT i,j

large if 0 ≤ i ≤ log k and small otherwise. In other words, the trees created in the recursion
up to level log k are large. We then partition F into two forests Fs and Fℓ containing the
small and large trees. For each tree in Fs we directly apply the 2t-spanner of Lemma 8 that
uses no Steiner points to obtain a spanner Gs. For the forest Fℓ we apply Theorem 13 to
obtain a 2t-spanner Gℓ for Fℓ. Let GF = Gs ∪ Gℓ. A Steiner point in GF corresponds to either
a vertex of P or a point on λ. Let S denote the set of Steiner points. To obtain a spanner G
in the simple polygon, we add a link (p, q), p, q ∈ S ∪ S, to G whenever there is a link in GF
between (a copy of) p and q.

▶ Lemma 15. The graph G is a 2
√

2t-spanner for the sites S in P of size O(n log2 n).

Complexity analysis. To bound the complexity of the links in G, we have to account for the
complexity of links generated by both Gs and Gℓ. Bounding the complexity of Gs is relatively
straightforward, but to bound the complexity of Gℓ we first prove a lemma on the structure
of a shortest path in P between sites in Fℓ.

Let T be a tree in Fℓ and let P ′ be the corresponding subpolygon of the subproblem. We
consider the shortest path between two sites that are assigned to the same subtree T ′

i of T by
the forest algorithm. It can be that this shortest path uses vertices of P ′ that were excluded
from T , as they had no site as a descendant. For the analysis, we do include these vertices
in T and assign them to subtrees T ′

j as in Section 2.2; see Figure 6. The following lemma
states that the complexity of a shortest path between two sites in the same subtree T ′

i is
bounded by the number of vertices in T ′

i . We use this to bound the complexity in Lemma 17.

▶ Lemma 16. A shortest path π(p, q) in P ′ between sites p, q ∈ T ′
i uses vertices in T ′

i only.
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(a) (b)
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Figure 7 (a) The extended path πr separates the polygon into P ′
r = A ∪ B and P ′

¬r. (b) Sites
p1...3 correspond to the respective subcases (i–iii) based on the structure of the polygon around r′.

Proof. Assume for contradiction that r is a highest vertex in T used by π(p, q) that is not
in T ′

i . First, consider the case that r is the root of T . Recall that this means r is the bottom
endpoint of λ, and thus lies on the boundary of P ′. As r is on π(p, q), it must be that p

and q lie in different subpolygons, and at least one of them lies below the horizontal line
through r. This implies that si = r, which is a contradiction.

Next, consider the case that r is not the root of T . Let r′ be the parent of r. If r′ is in T ′
i ,

then it must be a leaf. We consider the following partition of P ′. Recall that rλ denotes
the closest point on λ to r. We extend the shortest path π(r, rλ) to the boundary of P ′ by
extending the first and last line segments of the path to obtain a path πr, see Figure 7(a).
Let ∂P ′ denote the boundary of P ′. We define P ′

r to be the closed polygon bounded by ∂P ′

and πr that contains the polygon edges incident to r, and P ′
¬r := P ′ \ P ′

r. Because r is a
reflex vertex of P ′, P ′

r is well-defined. Without loss of generality, we assume that P ′
r contains

the part of λ above rλ, as in Figure 7(a). If both p and q are in P ′
¬r, then r /∈ π(p, q). It

follows that p and/or q are in P ′
r. Without loss of generality, assume that p ∈ P ′

r.
We distinguish two cases based on the location of p, see Figure 7(a). Either p ∈ A, where

A ⊂ P ′
r is bounded by the extension segment starting at r and ∂P ′, or p ∈ B, where B ⊂ P ′

r

is bounded by π(r, rλ), the extension segment starting at rλ, and ∂P ′.
If p ∈ A, then p is a descendant of r in T . As p and q are in T ′

i and r is not, it must be
that q is also a descendant of r. It follows that q ∈ A, but this means that r is not a reflex
vertex on π(p, q), which contradicts it being a shortest path.

If p ∈ B, the previous paragraph implies that q /∈ A. Additionally, q /∈ B as well, as r

would then not be a reflex vertex in π(p, q). It follows that q ∈ P ′
¬r. Next, we make a

distinction on whether r′ is a vertex of P ′ or not. First, assume that r′ is not a vertex of P ′,
and thus r′ ∈ λ. Because p ∈ B, pλ must be at or above r′. Because q ∈ P ′

¬r, qλ must be
below r′. This implies that the path in T from p to q visits r′, which contradicts p, q ∈ T ′

i .
Next, we assume that r′ is a vertex of P ′. We distinguish three different subcases based

on the shape of the polygon around r′, see Figure 7(b), and find a contradiction in each case:
(i) The edges of P ′ incident to r′ are in P ′

¬r. As r is on π(p, q), q must be a descendant
of r′. It follows that the Steiner point si is located on the path in T from q to r′, so p is
also a descendant of r′. It follows that p is on the segment rr′. However, for r to be on
π(p, q), q must then be in A, which is a contradiction.

(ii) The edges of P ′ incident to r′ are in P ′
r, and r′ is on π(p, pλ). In this case, p is a

descendant of r′. This again implies that q is a descendent of r′, which contradicts q ∈ P ′
¬r.

(iii) The edges of P ′ incident to r′ are in P ′
r, and r′ is not on π(p, pλ). The path

π(p, q) either intersects the boundary of B twice, which is not allowed as both are shortest
paths, or visits r′ as well. However, this implies that q ∈ A, which is a contradiction. ◀

▶ Lemma 17. The spanner G has complexity O(mn1/t(log k)1+1/t/k1/t + n log2 n).
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Proof. To bound the complexity of the links in G generated by Gs we apply Lemma 8 directly.
As Lemma 8 corresponds to the algorithm to construct a low complexity spanner in a polygon
using the shortest path tree, the complexity bound also holds in the simple polygon setting.
Using

∑2i

j=0 mi,j = O(m), where mi,j is the number of vertices in SPT i,j , the complexity is

O(log n)∑
i=log k

2i∑
j=0

O

(
mi,j

( n

2i

)1/t

+ n

2i
log

( n

2i

))
= O

(
mn1/t

k1/t
+ n log2 n

)
.

For Fℓ, the algorithm of Lemma 8 is used as a subroutine on every subtree T ′
i . Lemma 16

implies that the complexity bound of Theorem 13 also holds for links in P . Recall that the
number of sites in Fℓ is O(n log k). A vertex of P can occur in at most two subproblems at each
level of the recursion that partitions P , thus the number of vertices in Fℓ is O((m + n) log k).
As the n sites are equally divided over all subproblems at level i, the complexity of the links
in G generated by Gℓ given by Theorem 13 is improved to

O

(
m log k(n log k)1/t

k1/t
+ n log k log

(
n log k

k

))
= O

(
mn1/t(log k)1+1/t

k1/t
+ n log2 n

)
. ◀

▶ Theorem 18. Let S be a set of n point sites in a simple polygon P with m vertices, and t ≥ 1
be any integer constant. For any 1 ≤ k ≤ n, we can build a geodesic 2

√
2t-spanner with at

most k Steiner points, of size O(n log2 n) and complexity O(mn1/t(log k)1+1/t/k1/t +n log2 n)
in O(n log2 n + m log n + K) time, where K is the output size.

A relaxed geodesic (2k + ε)-spanner. In a more recent version of the paper by de Berg,
van Kreveld, and Staals [14, 15] they show how to apply the refinement proposed by Abam,
de Berg, and Seraji [2] to improve the spanning ratio to (2k + ε) for any constant ε ∈ (0, 2k).
They make two changes in their approach. First, instead of using the shortest path between
two sites as a link they allow a link to be any path between two sites. They call such a spanner
a relaxed geodesic spanner. Second, for each split of the polygon they construct spanners on
several sets of sites in the 1-dimensional weighted space. Using the same adaptations, we
obtain a relaxed (2k + ε)-spanner of complexity O(mn1/t(log k)1+1/t/k1/t + n log2 n).

4 Steiner spanners in polygonal domains

If the polygon contains holes, the spanner construction in the previous section no longer
suffices. In particular, we may need a different type of separator, and shortest paths in P

are no longer restricted to vertices in some subtree (Lemma 16 does not hold). De Berg, van
Kreveld, and Staals [15] run into similar problems when generalizing their low complexity
spanner, and solve them as follows. There are two main changes in their construction. First,
the separator is no longer a line segment, but a balanced separator that consists of at most
three shortest paths that partition the domain into two subdomains Pr and Pℓ. They then
construct a spanner Gλ on the 1-dimensional space containing the projections of the sites for
each shortest path in the separator. Second, the links that are included in the spanner are
no longer shortest paths, but consist of at most three shortest paths, resulting in a relaxed
geodesic spanner. In contrast to the simple polygon, using a 1-dimensional spanner with
spanning ratio t results in a spanning ratio in P of 3t [15].

To construct a low complexity spanner using k Steiner points, we use our simple polygon
approach with the adaptions of [15]. The number of trees, and thus the number of sites and
vertices in the trees, increases by a constant factor, as we create at most three shortest path
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trees at each level. To bound the complexity, we can no longer apply Lemma 16. However, the
links that are added to G are shortest paths in the shortest path tree. Therefore, the bound
on the complexity of GF directly translates to a bound on the complexity of G. As in the
simple polygon case, we obtain a spanner of complexity O(mn1/t(log k)1+1/t/k1/t + n log2 n).

▶ Theorem 19. Let S be a set of n point sites in a polygonal domain P with m ver-
tices, and t ≥ 1 be any integer constant. For any k ≤ n, we can build a relaxed
geodesic 6t-spanner with at most k Steiner points, of size O(n log n log(n/k)) and com-
plexity O(mn1/t(log k)1+1/t/k1/t + n log2 n) in O(n log2 n + m log n log m + K) time, where
K is the output size.

5 Future work

On the side of constructing low-complexity spanners, an interesting direction for future work
would be to close the gap between the upper and lower bounds, both with and without using
Steiner points. We believe it might be possible to increase the n1/(t+1) term to n1/t (or even
n1/(t−1)) in Lemma 5. On the side of the hardness, many interesting open questions remain,
such as: Is the problem still hard in a simple polygon? Can we show hardness for other
spanning ratios and/or a less restricted complexity requirement? Is the problem even in NP?
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