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Abstract
In this paper, we study a series of algorithmic problems related to the subsequences occurring in the
strings of a given language, under the assumption that this language is succinctly represented by
a grammar generating it, or an automaton accepting it. In particular, we focus on the following
problems: Given a string w and a language L, does there exist a word of L which has w as
subsequence? Do all words of L have w as a subsequence? Given an integer k alongside L, does
there exist a word of L which has all strings of length k, over the alphabet of L, as subsequences?
Do all words of L have all strings of length k as subsequences? For the last two problems, efficient
algorithms were already presented in [Adamson et al., ISAAC 2023] for the case when L is a regular
language, and efficient solutions can be easily obtained for the first two problems. We extend that
work as follows: we give sufficient conditions on the class of input-languages, under which these
problems are decidable; we provide efficient algorithms for all these problems in the case when
the input language is context-free; we show that all problems are undecidable for context-sensitive
languages. Finally, we provide a series of initial results related to a class of languages that strictly
includes the regular languages and is strictly included in the class of context-sensitive languages,
but is incomparable to the of class context-free languages; these results deviate significantly from
those reported for language-classes from the Chomsky hierarchy.
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1 Introduction

A string v is a subsequence of a string w, denoted v ≤ w in the following, if there exist (possibly
empty) strings x1, . . . , xℓ+1 and v1, . . . , vℓ such that v = v1 · · · vℓ and w = x1v1 · · ·xℓvℓxℓ+1.
In other words, v can be obtained from w by removing some of its letters.
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28:2 Subsequence Matching and Analysis Problems for Formal Languages

The concept of subsequence appears and plays important roles in many different areas
of theoretical computer science. Prime examples are the areas of combinatorics on words,
formal languages, automata theory, and logics, where subsequences are studied in connec-
tion to piecewise testable languages [71, 72, 37, 38], in connection to subword-order and
downward-closures [31, 46, 45, 76, 77, 6]), in connection to binomial equivalence, binomial
complexity, or to subword histories [66, 24, 49, 48, 69, 57, 67]. Subsequences are important
objects of study also in the area of algorithm-design and complexity; to this end, we mention
some classical algorithmic problems such as the computation of longest common subsequences
or of the shortest common supersequences [16, 34, 36, 54, 56, 62, 8, 10], the testing of the
Simon congruence of strings and the computation of the arch factorisation and universality
of strings [32, 26, 73, 74, 18, 9, 19, 21, 28, 42, 22]; see also [44] for a survey on combinatorial
pattern matching problems related to subsequences. Moreover, these algorithmic problems
and other closely related ones have recently regained interest in the context of fine-grained
complexity [12, 13, 3, 1, 2]. Nevertheless, subsequences appear also in more applied set-
tings: for modelling concurrency [65, 70, 14], in database theory (especially event stream
processing [7, 29, 78]), in data mining [50, 51], or in problems related to bioinformatics [11].
Interestingly, a new setting, motivated by database theory [39, 40, 25], considers subsequences
of strings, where the substrings occurring between the positions where the letters of the
subsequence are embedded are constrained by regular or length constraints; a series of
algorithmic results (both for upper and lower bounds) on matching and analysis problems
for the sets of such subsequences occurring in a string were obtained [20, 41, 5, 55].

The focus of this paper is the study of the subsequences of strings of a formal language,
the main idea behind it being to extend the fundamental problems related to matching
subsequences in a string and to the analysis of the sets of subsequences of a single string to
the case of sets of strings. To this end, grammars (or automata) are succinct representations
of (finite or infinite) sets of strings they generate (respectively, accept), so we are interested
in matching and analysis problems related to the set of subsequences of the strings of a
language, given by the grammar generating it (respectively, the automaton accepting it).
This research direction is, clearly, not new. To begin with, we recall the famous result of
Higman [33] which states that the downward closure of every language (i.e., the set of all
subsequences of the strings of the respective language) is regular. Clearly, it is not always
possible to compute an automaton accepting the downward closure of a given language, but
gaining a better understanding when it is computable is an important area of research, as
the set of subsequences of a language plays meaningful roles in practical applications (e.g.,
abstractions of complex systems, see [76, 77, 6] and the references therein). Computing
the downward closure of a language is a general (although, often inefficient) way to solve
subsequence-matching problems for languages; for instance, we can immediately check, using
a finite automaton for the downward closure, if a string occurs as subsequence of a string of
the respective language. However, it is often the case that more complex analysis problems
regarding the subsequences occurring in the strings of a language cannot be solved efficiently
(or, sometimes, at all) using the downward closure; such a problem is to check if a given
string occurs as subsequence in all the strings of a language (chosen from a complex enough
class, such as the class of context-free languages).

As a direct predecessor of this paper, motivated by similar questions, [4] approached
algorithmic matching and analysis problems related to the universality of regular languages
(for short, REG). More precisely, a string over Σ is called k-universal if its set of subsequences
includes all strings of length k over Σ; the study of these universal strings was the focus of
many recent works [9, 19, 68] and the motivation for studying universality properties in the
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context of subsequences is discussed in detail in, e.g., [19, 4]. The main problems addressed
in [4] are the following: for L ∈ REG, over the alphabet Σ, and a number k, decide if there
exists a k-universal string in L (respectively, if all strings of L are k-universal). The authors
of [4] discussed efficient algorithms solving these problems and complexity lower bounds. In
this paper, we extend the work of [4] firstly by proposing a more structured approach for the
algorithmic study of the subsequences occurring in strings of formal languages and secondly
by considering more general classes of languages, both from the Chomsky hierarchy (such as
the class of context-free languages or that of context-sensitive languages) and non-classical
(the class of languages accepted by deterministic finite automata with translucent letters).

Our work on subsequence-matching and analysis problems in languages defined by
context-free grammars (for short, CFG) also extends a series of results related to matching
subsequences in strings given as a straight line program (for short, SLP; a CFG generating a
single string), or checking whether a string given as an SLP is k-universal, for some given k,
e.g., see [52, 68]. In our paper, we consider the case when the input context-free languages
and the CFGs generating them are unrestricted.

The approached problems and an overview of our results. As mentioned above, we propose
a more structured approach for matching- and analysis-problems related to subsequences of
the strings of a formal language. More precisely, we define and investigate the following five
problems.

▶ Problem 1 (∃-Subsequence). Given a language L by a machine (grammar) M accepting
(respectively, generating) it and a string w, is there a string v ∈ L such that w ≤ v?

▶ Problem 2 (∀-Subsequence). Given a language L by a machine (grammar) M accepting
(respectively, generating) it and a string w, do we have for all strings v ∈ L that w ≤ v?

▶ Problem 3 (∃-k-universal). Given a language L by a machine (grammar) M accepting
(respectively, generating) it and integer k, check if there is a k-universal string in L.

▶ Problem 4 (∀-k-universal). Given a language L by a machine (grammar) M accepting
(respectively, generating) it and integer k, check if all strings of L(M) are k-universal.

Alternatively, strictly from the point of view of designing an algorithmic solution, the
problem above can be approached via its complement: that is, deciding if there exists at
least one string in L(M) which is not k-universal.

▶ Problem 5 (∞-universal). Given a language L by a machine (grammar) M accepting
(respectively, generating it) decide if there exist m-universal strings in L, for all positive
integers m.

To give some intuition on our terminology, Problems 1 and 3 can be seen as matching
problems (find a string which contains a certain subsequence or set of subsequences), while
the other three problems are analysis problems (decide properties concerning multiple strings
of the language).

Going a bit more into details, in the main part of this paper, we investigate these
problems for the case when the language L is chosen from the class of context-free languages
(for short, CFL; given by CFGs in Chomsky normal form), or from the class of context-
sensitive languages (for short, CSL; given by context-sensitive grammars), or from the class
of languages accepted by deterministic finite automata with translucent letters (given by
an automaton of the respective kind). The choice of presentation of the languages from
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given classes, unsurprisingly, makes a big difference w.r.t. hardness. For instance, certain
singleton languages can be encoded by SLPs (essentially CFGs) exponentially more succinctly
than by classical DFA, which of course introduces significant extra computation into solving
subsequence-related queries [52, 68]. But, before approaching these classes of languages, we
provide a series of general decidability results on these five problems, for which the choice of
grammar or automaton as the way of specifying the input language L is not consequential.

For short, our results are the following. We first give (in Section 3) a series of simple
sufficient conditions on a class C of languages (related to the computation of downward
closures as well as to decidability properties for the respective class) which immediately lead
to decision procedures for the considered problems; however, these procedures are inherently
inefficient, even for classes such as CFL. In this context, generalizing the work of [4], we
approach (in subsequent sections of this paper) each of the above problems for C being the
class CFL and, respectively, the class CSL. While all the problems are undecidable for CSLs,
we present efficient algorithms for the case of CFLs. In particular, the results obtained
for CFL are similar to the corresponding results obtained for REG (i.e., if a problem was
solvable in polynomial or FPT-time for REG, we obtain an algorithm from the same class
for CFL). In that regard, it seemed natural to search for a class of languages which does not
exhibit this behaviour, while retaining the decidability of (at least some of) these problems.
To this end, we identify the class of languages accepted by deterministic finite automata
with translucent letters (a class of automata which does not process the input in a sequential
fashion) and show (in the final section of this paper) a series of initial promising results
related to them.

2 Preliminaries

Let N = {1, 2, . . .} denote the natural numbers and set N0 = N∪{0} as well as [n] = {1, . . . , n}
and [i, n] = {i, i + 1, . . . , n}, for all i, n ∈ N0 with i ≤ n.

An alphabet Σ = {1, 2, . . . , σ} is a finite set of symbols, called letters. A string w is a
finite concatenation of letters from a given alphabet with the number of these letters giving
its length |w|. The string with no letters is the empty string ε of length 0. The set of all
finite strings over the alphabet Σ, denoted by Σ∗, is the free monoid generated by Σ with
concatenation as operation. A subset L ∈ Σ∗ is called a (formal) language. Let Σn denote
all strings in Σ∗ exactly of length n ∈ N0.

For 1 ≤ i ≤ j ≤ |w| denote the ith letter of w by w[i] and the factor of w starting at position
i and ending at position j as w[i, j] = w[i] · · ·w[j]. If i = 1 the factor is also called a prefix,
while if j = |w| it is called a suffix of w. For each a ∈ Σ set |w|a = |{i ∈ [|w|] | w[i] = a}|.

Let alph(w) denote the set of all letters of Σ occurring in w. A length n string u ∈ Σ∗

is called subsequence of w, denoted u ≤ w, if w = w1u[1]w2u[2] · · ·wnu[n]wn+1, for some
w1, . . . , wn+1 ∈ Σ∗. For k ∈ N0, a string w ∈ Σ∗ is called k-universal (w.r.t. Σ) if every
u ∈ Σk is a subsequence of w. The universality-index ι(w) is the largest k such that w is
k-universal.

▶ Definition 6. The arch factorization of a string w ∈ Σ∗ is given by w =
ar1(w) · · · arι(w)(w)r(w) with ι(ari(w)) = 1 and ari(w)[|ari(w)|] /∈ alph(ari(w)[1, |ari(w)| −
1]), for all i ∈ [1, ι(w)]. Furthermore, alph(r(w)) ⊊ Σ applies. The strings ari(w) are called
arches and r(w) is called the rest of w.
The modus m(w) of w is defined as the concatenation of the last letters of each arch:
m(w) = ar1(w)[|ar1(w)|] · · · arι(w)(w)[|arι(w)(w)|].
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As an example, in the arch factorisation w = (bca)·(accab)·(cab)·b of w ∈ {a, b, c}∗, the
parentheses denote the three arches and the rest r(w) = b. Further, we have ι(w) = 3 and
m(bcaaccabcabb) = abb. For more details about the arch factorization and the universality
index see [32, 9].

A string v is an absent subsequence of another string w if v is not a subsequence of
w [42, 43]. A shortest absent subsequence of a string w (for short, SAS(w)) is an absent
subsequence of w of minimal length, i.e., all subsequences of shorter length are found in
w. We note that, for a given word w and some letter a /∈ alph(r(w)), an SAS of w is
m(w)a [32, 42]. An immediate observation is that any string v which is an SAS(w) satisfies
|v| = ι(w) + 1.

In this paper, we work with absent subsequences of a word w which are the shortest
among all absent subsequences of w and, additionally, start with a and end with b, for some
a ∈ Σ ∪ {ε} and b ∈ Σ. Such a shortest string which starts with a and ends with b and
is an absent subsequence of w is denoted SASa,b(w). For instance, an SASε,b(w), for some
b /∈ alph(r(w)), is an SAS(w), such that its starting letter is not fixed, but the ending one
must be b.

▶ Definition 7. A grammar over an alphabet Σ is a 4-tuple G = (V, Σ, P, S) consisting of: a
set V = {A, B, C, . . . } of non-terminal symbols, a set Σ = {a, b, c, . . . } of terminal symbols
with V ∩Σ = ∅, a non-empty set P ⊆ (V ∪Σ)+× (V ∪Σ)∗ of productions and a start symbol
S ∈ V .

We represent productions (p, q) ∈ P by p→ q. In G, u = xpz with x, z ∈ (V ∪Σ)∗ is directly
derivable to v = xqz if a production (p, q) ∈ P exists; in this case, we write u ⇒G v; the
subscript G is omitted when no confusion arises. More generally, for m ∈ N, we say that u is
derivable to v in m steps (denoted w ⇒m

G v) if there exist strings w0, w1, . . . , wm ∈ (V ∪ Σ)∗

(called sentential forms) with u = w0 ⇒G w1 ∧ w1 ⇒G w2 ∧ · · · ∧ wm−1 ⇒G wm = v. If u

is derivable to v in m steps, for some m ∈ N0, we write u ⇒∗
G v, i.e., ⇒∗

G is the reflexive
and transitive closure of ⇒G. With L(G) = {w ∈ Σ∗ | S ⇒∗

G w} we denote the language
generated by G. We call a derivation a sequence S ⇒ · · · ⇒ w ∈ L(G). The number of steps
used in the derivation is the derivation’s length.

▶ Definition 8. A grammar G = (V, Σ, P, S) with P ⊆ V × (V ∪ Σ)+ is a context-free
grammar (for short, CFG). A language L is a context-free language (for short, CFL) if and
only if there is a CFG G with L(G) = L.
A grammar G = (V, Σ, P, S), where for all (p, q) ∈ P we have |p| ≤ |q|, is a context-sensitive
grammar (for short, CSG). A language L is a context-sensitive language (for short, CSL) if
and only if there is a CSG G with L(G) = L.

The definitions above tacitly assume that CFLs and CSLs do not contain the empty
string ε. Indeed, for the problems considered here, we can make this assumption. Whether
ε ∈ L or not plays no role in deciding Problems 1, 3, and 5, while ε ∈ L immediately leads
to a negative answer for Problem 2 (unless w = ε) and Problem 4 (unless k = 0). So, for
simplicity, we only address languages that, by definition, do not contain the empty string
(see also the discussions in [47, 35] about how the presence of ε in formal languages can be
handled).

Also, note that every unary CFL is regular [64], so when discussing our problems for the
class of CFLs we assume that the input languages are over an alphabet with at least two
letters.
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28:6 Subsequence Matching and Analysis Problems for Formal Languages

▶ Definition 9. A CFG G = (V, Σ, P, S) is in Chomsky normal form (CNF) if and only if
P ⊆ V × (V 2 ∪Σ) and, for all A ∈ V , there exist some wA, w′

A, w′′
A ∈ Σ∗ such that A⇒∗ wA

and S ⇒∗ w′
AAw′′

A (these last two properties essentially say that every non-terminal of G is
useful).

When we discuss our problems in the case of CFLs, we assume our input is a CFG G in
CNF. This does not change our results since, according to [47] and the references therein,
we can transform any grammar G in polynomial time into a CFG G′ in CNF such that
|G′| ∈ O(|G|2) and L(G) = L(G′), where |G| refers to the size of a grammar determined in
terms of total size of its productions.

In some cases it may be easier to view derivations in a CFG G as a derivation (parse) tree.
These are rooted, ordered trees. The inner nodes of such trees are labeled with non-terminals
and the leaf-nodes are labeled with symbols X ∈ (V ∪ Σ). An inner node A has, from
left to right, the children X1, . . . , Xk, for some integer k ≥ 1, if the grammar contains the
production A → X1 · · ·Xk. As such, if we concatenate, from left to right, the leaves of a
derivation tree T with root A we get a string α (called in the following the border of T ) such
that A→∗ α. The depth of a derivation tree is the length of the longest simple-path starting
with the root and ending with a leaf (i.e., the number of edges on this path). If G is in CNF,
then all its derivation trees are binary.

▶ Definition 10. For any language L ⊂ Σ∗ the downward closure L↓ of L is defined as the
language containing all subsequences of strings of L, i.e., L↓= {v ∈ Σ∗ | ∃w ∈ L : v ≤ w}.
The complementary notion of the upward closure L↑ of a language L is the language containing
all supersequences of strings in L, i.e., L↑= {w ∈ Σ∗ | ∃v ∈ L : v ≤ w}.

Our problems focus on properties of formal languages, and Problems 3, 4 and 5 are
strongly connected to universality seen as a property of a language, therefore we extend the
concept of universality to formal languages. We distinguish between two different ways of
analyzing the universality of a language.

▶ Definition 11. Let L ⊆ Σ∗ be a language. We call L k-universal universal if for every
w ∈ L it holds that ι(w) ≥ k. The universal universality index ι∀(L) is the largest k, such
that L is k-universal universal. We call L k-existential universal if a string w ∈ L exists with
ι(w) ≥ k. The existential universality index ι∃(L) is the largest k, such that L is k-existential
universal. In all the definitions above, the universality index of words and, respectively,
languages is computed w.r.t. Σ.

In case of a singleton language L = {w} it holds that ι∃(L) = ι∀(L) = ι(w). In general
the universal universality index ι∀(L) is the infimum of the set of all universality indices of
strings in L and therefore is lower bounded by 0 and upper bounded by ι(w), for any w ∈ L

(so it is finite, for L ̸= ∅). The existential universality index ι∃(L) is the supremum of the
set of all universality indices of strings in L and, as such, can be infinite. In this setting
the answer to Problem 3 and, respectively, Problem 4, can be solved by computing ι∃(L)
and, respectively, ι∀(L), and then checking whether k ≤ ι∃(L) and, respectively, k ≤ ι∀(L).
Furthermore, Problem 5 asks whether ι∃(L) is infinite or not. The following two lemmas are
not hard to show.

▶ Lemma 12. Given a string w ∈ Σ∗, with |w| = n and |Σ| = σ, we can construct in time
O(nσ) a minimal DFA, with n + 1 states, accepting the set of strings which have w as a
subsequence.
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▶ Lemma 13. For k > 0 and an alphabet Σ with |Σ| = σ we can construct in time
O(2σk poly(σ)) a minimal DFA, with (2σ − 1)k + 1 states, accepting the set of k-universal
strings over Σ.

The computational model we use to state our algorithms is the standard unit-cost word
RAM with logarithmic word-size ω (meaning that each memory word can hold ω bits). It is
assumed that this model allows processing inputs of size n, where ω ≥ log n; in other words,
the size n of the data never exceeds (but, in the worst case, is equal to) 2ω. Intuitively,
the size of the memory word is determined by the processor, and larger inputs require a
stronger processor (which can, of course, deal with much smaller inputs as well). Indirect
addressing and basic arithmetical operations on such memory words are assumed to work
in constant time. Note that numbers with ℓ bits are represented in O(ℓ/ω) memory words,
and working with them takes time proportional to the number of memory words on which
they are represented. This is a standard computational model for the analysis of algorithms,
defined in [23].

Our algorithms have languages as input, that is sets of strings over some finite alphabet.
Therefore, we follow a standard stringology-assumption, namely that we work with an integer
alphabet: we assume that this alphabet is Σ = {1, 2, . . . , σ}, with |Σ| = σ, such that σ fits in
one memory word. For a more detailed general discussion on the integer alphabet model
see, e. g., [17]. In all problems discussed here, the input language is given as a grammar
generating it or as an automaton accepting it. We assume that all the sets defining these
generating/accepting devices (e.g., set of non-terminals, set of states, set of final states,
relation defining the transition function or derivation, etc.) have at most 2ω elements and
their elements are integers smaller or equal to 2ω (i.e., their cardinality and elements can be
represented as integers fitting in one memory word). In some of the problems discussed in
this paper, we assume that we are given a number k. Again, we assume that this integer fits
in one memory word.

One of our algorithms (for Problem 3 in the case of CFL, stated in Theorem 23) runs in
exponential time and uses exponential space w.r.t. the size of the input. In particular, both
the space and time complexities of the respective algorithm are exponential, with constant
base, in σ (the size of the input alphabet) but polynomial w.r.t. all the other components
of the input. To avoid clutter, we assume that our exponential-time and -space algorithm
runs on a RAM model where we can allocate as much memory as our algorithms needs (i.e.,
the size of the memory-word ω is big enough to allow addressing all the memory we need
in this algorithm in constant time); for the case of σ ∈ O(1), this additional assumption
becomes superfluous, and for non-constant σ we stress out that the big size of memory words
is only used for building large data structures, but not for speeding up our algorithms by,
e.g., allowing constant-time operations on big numbers (that is, numbers represented on
more than c log N bits, for some constant c and N being the size of the input).

3 General Results

We consider the problems introduced in Section 1, for the case when the language L is chosen
from a class C, and give a series of sufficient conditions for them to be decidable.

Consider a class G of grammars (respectively, a class A of automata) generating (respect-
ively, accepting) the languages of the class C. For simplicity, for the rest of this section, we
assume that in all the problems we take as input a grammar GL such that L(GL) = L, but
note that all the results hold for the case when we consider that the languages are given by
an automaton from the class A accepting them.

ISAAC 2024



28:8 Subsequence Matching and Analysis Problems for Formal Languages

Let C′ be the class of languages L∩R, where L ∈ C and R ∈ REG. We use two hypotheses:
H1. Given a grammar G of the class G we can algorithmically construct a non-deterministic

finite automaton A accepting the downward closure of L(G).
H2. Given a grammar G of the class G and a non-deterministic finite automaton A, we can

algorithmically decide whether the language L(G) ∩ L(A) is empty.

First we show that, under H1, Problems 1, 3, and 5 are decidable.

▶ Theorem 14. If H1 holds, then Problems 1, 3, and 5 are decidable.

Proof. We start by observing that the following straightforward properties hold:
for a string w, there exists v ∈ L such that w ≤ v if and only if w ∈ L↓.
for an integer k > 0, there exists v ∈ L such that v is k-universal if and only if there
exists v′ ∈ L↓ such that v′ is k-universal.

In each of Problems 1, 3, and 5, we are given a grammar G generating the language L.
According to H1, we construct a non-deterministic automaton A accepting L↓, the downward
closure of L.

For Problem 1, it is sufficient to check if L(A) = L↓ contains the string w, which is
clearly decidable. For Problem 3 we need to decide if L contains a k-universal string. By
our observations, it is enough to check if L↓ contains a k-universal string. This can be
decided, for the automaton A, according to [4]. For Problem 5 we need to decide if L contains
a k-universal string, for all k ≤ 0. This is also decidable, for A, according to the results
of [4]. ◀

Secondly, we show that, under H2, Problems 1, 2, 3, and 4 are decidable.

▶ Theorem 15. If H2 holds, then Problems 1, 2, 3, and 4 are decidable.

Proof. In all the inputs of Problems 1, 2, 3, and 4 when considering CFL and CSL, we are
given a grammar G, which generates the language L.

For Problems 1 and 2, by Lemma 12 we construct a DFA B accepting the regular language
w↑ of strings which have w as a subsequence. If the intersection of L (given as the grammar
G which generates it) and L(B) is empty, which is decidable, under H2, then the considered
instance of Problem 1 is answered negatively; otherwise, it is answered positively. By making
the final state of B non-final, and all the other states final, we obtain a DFA B′ which accepts
Σ∗ \ w↑. If the intersection of L and L(B′) is empty, then the answer to the considered
instance of Problem 2 is positive; otherwise, it is negative.

For Problems 3 and 4, by Lemma 13 we construct a DFA B accepting the regular language
of k-universal strings. If the intersection of L and L(B) is empty, then the answer to the
considered instance of Problem 3 is negative; otherwise, it is positive. By making the final
state of B non-final, and all the other states final, we obtain a DFA B′ which accepts exactly
all strings which are not k-universal. If the intersection of L and L(B′) is empty, then the
answer to the considered instance of Problem 4 is positive; otherwise, it is negative. ◀

It is worth noting that, even for classes which fulfill both hypotheses above (such as
the CFLs [75, 35]), there are several reasons why the algorithms resulting from the above
theorems are not efficient. On the one hand, constructing an automaton which accepts the
downward closure of a language is not always possible, and even when this construction is
possible (when the language is from a class for which H1 holds) it cannot always be done
efficiently. For instance, in the case of CFLs, this may take inherently exponential time w.r.t.
the size of the input grammar [30]; in this paper, we present more efficient algorithms for
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Problems 1, 2, 3, and 4 in the case of CFLs, which do not rely on Theorem 15. On the other
hand, the results of Theorem 15 rely, at least partly, on the construction of a DFA accepting
all k-universal strings, which takes exponential time in the worst case, as it may have an
exponential number of states (both w.r.t. the size of the input alphabet and w.r.t. the binary
representation of the number k, which is given as input for some of these problems).

Interestingly, the class CSL does not fulfil any of the above hypotheses. In fact, as our
last general result, we show that all five problems we consider here are undecidable for CSL.

▶ Theorem 16. Problems 1, 2, 3, 4, 5 are undecidable for the class of CSL, given as CSGs.

Proof. To obtain the undecidability of all the problems, we show reductions from the
emptiness problem for Context Sensitive Languages. Assume that we have a CSL L, specified
by a grammar G, as the input for the emptiness problem for CSL. Assume L is over the
alphabet Σ = {1, . . . , σ}, and that the CSG G, has the starting symbol S. Let 0 be a fresh
letter (i.e., 0 /∈ Σ).

To show the undecidability of Problems 1 and 2, we construct a new grammar G′ which
has all the non-terminals, terminals, and productions of G and, additionally, G′ has a new
starting symbol S′ and the productions S′ → σS and S′ → 0.

It is immediate that there exists a string w ∈ L(G′) which contains σ as a subsequence, if
and only if L(G) is not empty. Furthermore, all strings of L(G′) contain 0 as a subsequence
(that is, the production S′ → σS is not the first production in the derivation of any terminal
string) if and only if L(G) is empty. As the emptyness problem is undecidable for CSL
(given as grammars), it follows that Problems 1 and 2 are also undecidable for this class of
languages.

To show the undecidability of Problem 3, we construct a new grammar G′ which has all
the non-terminals, terminals, and productions of G and, additionally, G′ has a new starting
symbol S′ and the production S′ → (12 · · ·σ)S. Clearly, L(G′) contains a 1-universal string
(over Σ) if and only if L(G) ̸= ∅. Thus, it follows that Problem 3 is also undecidable for this
class of languages.

To show the undecidability of Problem 4, we construct a new grammar G′ which has all
the non-terminals, terminals, and productions of G and, additionally, G′ has a new starting
symbol S′ and the productions S′ → 012 · · ·σ and S′ → S. Clearly, all the strings of L(G′)
are 1-universal (over Σ ∪ {0}) if and only if L(G) = ∅ (as any string which would be derived
in G′ starting with the production S′ → S would not contain 0). Hence, Problem 4 is also
undecidable for CSL.

To show the undecidability of Problem 5, we construct a new grammar G′ which has
all the non-terminals, terminals, and productions of G and, additionally, G′ has a new
starting symbol S′ and a fresh non-terminal R and the productions S′ → 012 · · ·σ, S′ → RS,
R→ 01 · · ·σR, and R→ 01 · · ·σ. Clearly, L(G′) contains m-universal strings (over Σ ∪ {0}),
for all m ≥ 1, if and only if L(G) ̸= ∅ (as we can use R to pump arches in the strings of
L(G′) if and only if there exists at least one derivation where S can be derived to a terminal
string). Accordingly, Problem 5 is also undecidable for CSL. ◀

Given that all the problems become undecidable for C = CSL, we now focus our investig-
ation on classes of languages strictly contained in the class of CSLs.

4 Problems 1 and 2

For the rest of this section, assume that |w| = m and |Σ| = σ. Let us begin by noting that
Problems 1 and 2 can be solved in polynomial time for the class REG following the approach
of Theorem 15. Indeed, in this case, we assume that L is specified by the NFA A, with s
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states, with L(A) = L, and then we either have to check the emptiness of the intersection
of L = L(A) with the language accepted by the deterministic automaton constructed in
Lemma 12, or, respectively, with the complement of this language; both these tasks clearly
take polynomial time.

We now consider the two problems for the class of CFLs. We first recall the following
folklore lemma (see, e.g., [35]).

▶ Lemma 17. Let G = (V, Σ, P, S) be a CFG in CNF, and let A = (Q, Σ, q0, F, δ) be a DFA.
Then we can construct in polynomial time a CFG GA in CNF such that L(GA) = L(G)∩L(A).

We can now state the main result of this section. We can apply Lemma 17, for Problem
1, to the input CFG and the DFA constructed in Lemma 12, or, for Problem 2, to the input
CFG and the complement of the respective DFA. In both cases, we compute a CFG in CNF
generating the intersection of a CFL and a REG language, and we have to check whether
the language generated by that grammar is empty or not; all these can be implemented in
polynomial time.

▶ Theorem 18. Problems 1 and 2, for an input grammar with n non-terminals and an input
string of length m, are decidable in polynomial time for CFL.

5 Problems 3 and 5

Let us begin by noting that in [4] it was shown that for a given NFA A with s states (with
input alphabet Σ, where |Σ| = σ) and an integer k ≥ 0, we can decide whether L(A) contains
a k-universal string (i.e., Problem 3 for the class REG) in time O(poly(s, σ)2σ); in other
words, Problem 3 is fixed parameter tractable (FPT) w.r.t. the parameter σ. A polynomial
time algorithm (running in O(poly(s, σ) time) was given for Problem 5, relying on the
observation that, given an NFA A, the language L(A) contains strings with arbitrarily large
universality if and only if A contains a state q, which is reachable from the initial state and
from which one can reach a final state, and a cycle which contains this state, whose label is
1-universal. Coming back to Problem 3 for REG, the same paper shows that it is actually
NP-complete. This is proved by a reduction from the Hamiltonian Path problem (HPP,
for short), in which a graph with n vertices, the input of HPP, is mapped to an input of
Problem 3 consisting in an automaton with O(n2) states over an alphabet of size n. This
reduction also implies that, assuming that the Exponential Time Hypothesis (ETH, for short)
holds, there is no 2o(σ)poly(s, σ) time algorithm solving Problem 3 (as this would imply the
existence of an 2o(n) time algorithm solving HPP); see [53] for more details related to the
ETH and HPP.

Further, we consider Problems 3 and 5 for the class CFL, and we assume that, in both
cases, we are given a CFL L by a CFG G = (V, Σ, P, S) in CNF, with n non-terminals, over
an alphabet Σ, with σ letters, and an integer k ≥ 1 (in binary representation).

To transfer the lower bound derived for Problem 3 in the case of REG (specified as
NFAs) to the larger class of CFLs, we recall the folklore result that a CFG in CNF can be
constructed in polynomial time from an NFA (by constructing a regular grammar from the
NFA, and then putting the grammar in CNF, see [35]). So, the same reduction from [4] can
be used to show that, assuming ETH holds, there is no 2o(σ)poly(n, σ) time algorithm solving
Problem 3. This reduction shows also that Problem 3 is NP-hard; whether this problem is in
NP remains open.
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We now focus on the design of a 2O(σ)poly(n, σ) time algorithm solving Problem 3 (which
would also show that this problem is FPT) and show that Problem 5 can be solved in
polynomial time. Let us recall that Problem 5 requires deciding whether ι∃(L) is finite, and,
if yes, Problem 3 requires checking whether ι∃(L) ≥ k.

We start by introducing a new concept which leads to a series of combinatorial observations.

▶ Definition 19. Let G = (V, Σ, P, S) be a CFG. A non-terminal A ∈ V generates a 1-
universal cycle if and only if there exists a derivation A⇒∗ w1Aw2 of the grammar G with
w1, w2 ∈ Σ∗ and max(ι(w1), ι(w2)) ≥ 1.

We can show the following result.

▶ Lemma 20. Let G = (V, Σ, P, S) be a CFG in CNF and L = L(G). Then ι∃(L) is infinite
if and only if there exists a non-terminal X ∈ V such that X generates a 1-universal cycle.

Proof. Assume we have a non-terminal A ∈ V which generates a 1-universal cycle. This
means that there exists a derivation A ⇒∗ w1Aw2 with w1, w2 ∈ Σ∗ and ι(w1) ≥ 1 or
ι(w2) ≥ 1. As G is in CNF, we have that there exist w′

A, w′′
A ∈ Σ∗ and the derivation

S ⇒∗ w′
AAw′′

A, and, also, that there exists wA ∈ Σ∗ such that A⇒∗ wA. We immediately
get that, for all n ≥ 1, the following derivation is valid: S ⇒∗ w′

AAw′′
A ⇒∗ w′

Aw1Aw2w′′
A ⇒∗

w′
A(w1)2A(w2)2w′′

A ⇒∗ w′
A(w1)nA(w2)nw′′

A ⇒∗ w′
A(w1)nwA(w2)nw′′

A = w. As ι(w1) ≥ 1 or
ι(w2) ≥ 1, it follows that ι(w) ≥ n. So, ι∃(L) is infinite.

We now show the converse implication. More precisely, we show by induction on the
number of non-terminals of G that if ι∃(L(G)) is infinite then G has at least one useful
non-terminal X ∈ V such that X has a 1-universal cycle. For this induction proof, we can
relax the restrictions on G: more precisely, we still assume that the set P of productions
of G fulfils P ⊆ V × (V 2 ∪ Σ) but do not require that every non-terminal of G is useful; it
suffices to require the starting symbol to be useful.

The result is immediate if G has a single non-terminal, i.e., the start symbol S. We
now assume that our statement holds for CFLs generated by grammars with at most m

non-terminals, and assume that L is a CFL generated by a CFG G with m + 1 non-terminals.
We want to show that G has at least one useful non-terminal X ∈ V such that X has a
1-universal cycle. We can assume, w.l.o.g., that S does not have a 1-universal cycle (otherwise,
the result already holds).

Now, consider for each useful A ∈ V \ {S} the CFG (which fulfills the requirements
of our statement) GA = (V \ {S}, Σ, A, P ′), where P ′ is obtained from P by removing all
productions involving S. Clearly, if there exists some A ∈ V such that ι∃(L(GA)) is infinite,
then, by induction, GA contains a useful non-terminal X ∈ V such that X has a 1-universal
cycle. As GA is obtained from G by removing some productions and one non-terminal, it is
clear that X also has a 1-universal cycle in G and is also useful in G, so our statement holds.
Let us now assume, for the sake of a contradiction, that, for each useful A ∈ V , there exists
an integer NA ≥ 1 such that ι∃(L(GA)) ≤ NA. Take N = 1 + max{NA | A ∈ V }. As ι∃(L) is
infinite, there exists a string w ∈ L(G) with ι(w) ≥ 2N + 3. Since w ∈ L(G), S ⇒∗ w holds.

Let TS be the derivation tree of w with root S and note that all non-terminals occurring
in TS are useful. Let p the longest simple path of TS starting in S and having the end-node
S (in the case when there are more such paths, we simply choose one of them). We denote
by T p

S the sub-tree of TS rooted in the end-node of p. If w′ is the string obtained by reading
the leaves of T p

S left-to-right, then we have the following derivation corresponding to TS :
S ⇒ vSSv′

S ⇒∗ vSw′v′
S = w, where vS , v′

S ∈ Σ∗. Since, by our assumption, S does not have
a 1-universal cycle, we get that ι(vS) = 0, ι(v′

S) = 0, and that ι(w′) ≥ 2N + 1.
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Further, we consider T p
S , and note that no other node of this tree, except the root, is

labelled with S. Assume that the first step in the derivation S ⇒∗ w′ is S ⇒ AB, for some
non-terminals A, B ∈ V and production S → AB, and that the children of the root S in the
tree T p

S are the sub-trees TA and TB . Let wA be the border of TA and wB be the border of
TB. Clearly, it follows that at least one of the strings wA and wB is N -universal. We can
assume, w.l.o.g., that ι(wA) ≥ N . But wA ∈ L(GA) and ι∃(L(GA)) < N (by the definition
of N). This is a contradiction with our assumption that ι(L(GX)) is finite, for all X ∈ V .
So, there exists X ∈ V for which ι∃(L(GX)) is infinite and, as we have seen, this means that
our statement holds. ◀

So, according to Lemma 20, if the CFG G, which is the input of our problem, contains
at least one non-terminal X ∈ V which has a 1-universal cycle, we answer positively the
instances of Problems 3 and 5 defined by G and, in the case of Problem 3, additionally by
an integer k ≥ 1. Next, we show that one can decide in polynomial time whether such a
non-terminal exists in a grammar. However, if G does not contain any non-terminal with a
1-universal cycle, while the instance of Problem 5 is already answered negatively, it is unclear
how to answer Problem 3. To address this, we try to find a way to efficiently construct a
string of maximal universality index, and, for that, we need another combinatorial result.

▶ Lemma 21. Let G = (V, Σ, P, S) be a CFG in CNF, with |V | = n, |Σ| = σ, and L = L(G).
Furthermore, assume ι∃(L) is finite. There exists a string w of L with ι(w) = ι∃(L) such
that the derivation tree of w has depth at most 4nσ.

Proof. Let w0 ∈ L be a string such that ι(w0) = ι∃(L), and let T0 be its derivation
tree. Assume that T0 has depth greater than 4nσ. Then there exists a simple-path p

in T0 from the root to a leaf of length at least 4nσ + 1 (i.e., contains 4nσ + 2 nodes
on it). By the pigeonhole-principle, there is one non-terminal A ∈ V which occurs at
least 4σ times on this path. Therefore, there exists the derivation S ⇒∗ v0Av′

0 ⇒∗

v0v1Av′
1v′

0 ⇒∗ . . . ⇒∗ v0v1 · · · v4σ−1Av′
4σ−1 · · · v′

1v′
0 ⇒∗ v0v1 · · · v4σ−1w′

0v′
4σ−1 · · · v′

1v′
0 = w0,

with v0, v′
0, . . . , v4σ−1, v′

4σ−1, w′
0 ∈ Σ∗.

As ι∃(L) is finite, by Lemma 20, A has no 1-universal cycle, so ι(v1 · · · v4σ−1) =
ι(v′

4σ−1 · · · v′
1) = 0.

We now go with i from 1 to 4σ− 1 and construct a set Mℓ as follows. For this we use the
rest of the arch factorization of a word r(·), which is the suffix not associated with any of the
arches of the respective word. We maintain a set U , which is initialized with alph(r(v0)); we
also initialize Mℓ = ∅. Then, when considering i, if alph(vi) ̸⊆ U , we let U ← U ∪ alph(vi)
and Mℓ ← Mℓ ∪ {i}; before moving on and repeating this procedure for i + 1, if U = Σ,
we set U ← ∅. Let us note that, during this process, because ι(v1 · · · v4σ−1) = 0, we set
U ← ∅ at most once. Also, since Mℓ is updated only when alph(vi) ̸⊆ U , it means that Mℓ

is updated at most 2σ − 2 times. So |Mℓ| ≤ 2σ − 2.
Similarly, to construct a set Mr, for i from 4σ − 1 downto 1, we maintain a set U ,

initialized with alph(r(v0v1 · · · v4σ−1w′
0)); we also initialize Mr = ∅. Then, when considering

i, if alph(v′
i) ̸⊆ U , we let U ← U ∪ alph(v′

i) and Mr ← Mr ∪ {i}; before moving on and
repeating this procedure for i − 1, if U = Σ, we set U ← ∅. As before, we get that Mr is
updated at most 2σ − 2 times, and |Mr| ≤ 2σ − 2.

It is worth noting that the indices stored in Mℓ and Mr indicate the strings vi and v′
i,

respectively, which contain letters that are relevant when computing the arch factorization
of w0. The indices not contained in these sets indicate strings vi or v′

i, respectively, which
are simply contained in an arch, and all the letters of these strings already appeared in that
arch before the start of vi and v′

i, respectively.
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As |Mℓ| + |Mr| ≤ 4σ − 4, we get that there exists i ∈ [1, 4σ] such that
i /∈ Mℓ ∪ Mr. It is now immediate that the derivation S ⇒∗ v0Av′

0 ⇒∗

v0v1Av′
1v′

0 ⇒∗ . . . ⇒∗ v0v1 · · · vi−1Av′
i−1 · · · v′

1v′
0 ⇒∗ v0 · · · vi−1vi+1Av′

i+1v′
i−1 · · · v′

0 ⇒∗

v0 · · · vi−1vi+1 · · · v4σ−1w′
0v′

4σ−1 · · · v′
i+1v′

i−1 · · · v′
0 = w1 produces a string w1 such that

ι(w1) = ι(w0); let T1 be the tree corresponding to this derivation. Clearly, the total
length of the simple-paths connecting the root to leaves in the derivation tree T1 is strictly
smaller than the total length of the simple-paths connecting the root to leaves in the tree T0.
If T1 still has root-to-leaf simple-paths of length at least 4nσ, we can repeat this process and
obtain a tree where the total length of the simple-paths connecting the root to leaves is even
smaller. This process is repeated as long as we obtain trees having at least one root-to-leaf
simple-path of length at least 4nσ. Clearly, this is a finite process, whose number of iterations
is bounded by, e.g., the sum of the length of root-to-leaf simple-paths of T0. When we obtain
a tree T where all root-to-leaf simple paths are of length at most 4nσ, we stop and note that
the border of this tree is a string w, with ι(w) = ι∃(L). This concludes our proof. ◀

We now come to the algorithmic consequences of our combinatorial lemmas. For both
considered problems the language given as input is in the form of a CFG G = (V, Σ, P, S)
in CNF with |Σ| = σ ≥ 2 and |V | = n. Firstly, we show that Problem 5 can be decided in
polynomial time.

▶ Theorem 22. Problem 5 can be solved in O(max(n3, n2σ)) time.

Proof Sketch. By Lemma 20, it is enough to check whether G contains a non-terminal
X ∈ V such that X has a 1-universal cycle. More precisely, we want to check if there exists a
non-terminal X such that X ⇒∗ wXw′, where alph(w) = Σ or alph(w′) = Σ. We only show
how to decide if there is a non-terminal X such that X ⇒∗ wXw′, where alph(w) = Σ (the
case when alph(w′) = Σ is similar). The main observation is that such a non-terminal X ∈ V

exists if and only if G contains, for some non-terminal X, derivations X ⇒∗ waXw′
a, with

wa ∈ Σ∗aΣ∗ and w′
a ∈ Σ∗, for all a ∈ Σ. Determining the existence of such a non-terminal is

done in several steps. Firstly, we identify in O(n3)-time all pairs of non-terminals A, B ∈ V

with A⇒∗ αBβ, for some α, β ∈ Σ∗. Then, using the previously computed pairs, in O(n2σ),
we identify all pairs A, a, with A ∈ V and a ∈ Σ, with A ⇒∗ αaβ, for some α, β ∈ Σ∗.
Now, in O(n3) time, we identify all pairs of non-terminals A, B ∈ V , such that there exist a
production A → BC in G and a derivation C ⇒∗ αAβ, with α, β ∈ Σ∗. Finally, using all
the sets of pairs that we have computed, we can identify all pairs of A, a, of non-terminals
and terminals of G, respectively, such that there exists a derivation A ⇒∗ αaβAγ, with
α, β, γ ∈ Σ∗. We conclude that there exists a non-terminal X ∈ V for which we have
derivations X ⇒∗ waXw′

a, with wa ∈ Σ∗aΣ∗ and w′
a ∈ Σ∗, for all a ∈ Σ, if and only if

there exists such a non-terminal X where the pairs X, a were found in the last step of our
approach, for all a ∈ Σ. ◀

Further, we show that Problem 3 is FPT w.r.t. the parameter σ; this also means that
the respective problem is solvable in polynomial time for constant-size alphabets. Recall
that there is an ETH-conditional lower bound of 2o(σ)poly(n, σ) for the time complexity of
algorithms solving this problem.

▶ Theorem 23. Problem 3 can be solved in O(24σn5σ2) time.

Proof Sketch. Recall that now we also get as input an integer k > 0 (given in binary
representation).
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To solve Problem 3, we check, using the algorithm from Theorem 22, whether ι∃(L) is
finite. If ι∃(L) is infinite, then we answer the given instance positively. Otherwise, we proceed
as follows.

We use a dynamic programming approach to compute the maximal universality index of
a string of L. This essentially uses the result of Lemma 21 which states that such a string is
the border of a derivation tree of depth at most N = 4nσ. More precisely, we construct a
4-dimensional matrix M [·, ·, ·, ·], with elements M [i, A, SA

p , SA
s ] with A ∈ V , SA

p , SA
s ⊊ Σ and

i ≤ N . By definition, M [i, A, SA
p , SA

s ] = ℓ if ℓ is the maximum number with the property
that there exists a string w, which labels the border of a derivation tree of height at most i

rooted in A, so that w has a prefix x, with alph(x) = SA
p , followed by ℓ arches, and a suffix

y with alph(y) = SA
s .

To compute the elements M [i, ·, ·, ·] for i = 1 it is enough to consider the productions
of the form A → a. For each such production, we only have to set M [1, A, {a}, ∅] ←
0 and M [1, A, ∅, {a}]← 0.

To compute M [i, ·, ·, ·] for i > 1, we consider every production A → BC, and try to
combine derivation trees of height at most i− 1 and obtain derivation trees of height i. This
computation is structured in two phases (corresponding to two cases).

The first phase corresponds to first of the cases we need to consider. Namely, in this case,
we produce trees of height at most i whose borders have 0 arches, by combining trees of height
at most i− 1 with the same property. For that, we iterate over the productions A→ BC,
and sets S1, S2, S3, S4 ⊊ Σ such that M [i− 1, B, S1, S2] = 0 and M [i− 1, C, S3, S4] = 0. If
S1∪S2∪S3∪S4 ⊊ Σ, we set M [i, A, S1∪S2∪S3∪S4, ∅] = 0 and M [i, A, ∅, S1∪S2∪S3∪S4] = 0.
If S1∪S2∪S3 ⊊ Σ, we set M [i, A, S1∪S2∪S3, S4] = 0. If S1∪S2 ⊊ Σ and S3∪S4 ⊊ Σ, we set
M [i, A, S1∪S2, S3∪S4] = 0. Finally, if S2∪S3∪S4 ⊊ Σ, we set M [i, A, S1, S2∪S3∪S4] = 0.
Note that the elements of M [i, ·, ·, ·] set in this step might still be updated in the following.
Moreover, the case when we can join two trees of height at most i− 1 whose borders have
0 arches, and obtain a tree of height i whose border has one arch is also considered in the
following.

The second case (and corresponding phase of our computation) is, therefore, the one
where we produce trees of height at most i whose borders have at least one arch, by combining
trees of height at most i − 1. In this case, we iterate over the productions A → BC, and
sets SA

p , SA
s ⊊ Σ. Now, for every pair R, R′ ⊊ Σ, with R ∪ R′ = Σ, a possible candidate

for M [i, A, SA
p , SA

s ], corresponding to the production A → BC, is obtained by adding
M [i− 1, B, SA

p , R] and M [i− 1, C, R′, SA
s ], and add one for the new arch. We then take the

maximum over all these combinations of alphabets R and R′. We get

cA→BC ← max({−∞}∪{M [i−1, B, SA
p , R]+M [i−1, C, R′, SA

s ]+1 | R, R′ ⊊ Σ, R∪R′ = Σ}).

If A has t productions p1, . . . , pt we compute all values cp1 , . . . , cpt
. Then M [i, A, SA

p , SA
s ] is

set to be the maximum of the current value of M [i, A, SA
p , SA

s ] (as potentially computed in
the first phase), cp1 , . . . , cpt

, and M [i− 1, A, SA
p , SA

s ].
For each i, this process (covering both cases) requires O(n324σ) algorithm-steps, in

the worst case. So the entire matrix M is computed in O(24σn4σ) algorithm-steps, where
each algorithm-step might require O(nσ)-time (as it can involve arithmetical operations on
numbers with O(nσ) bits). We obtain, in the end, the complexity from the statement. Note
that the matrix M [·, ·, ·, ·] computed by our algorithm has O(22σn2) entries, so the space
used by our algorithm is exponential.

Then, ι∃(L) equals the maximum over the entries of M [4nσ, S, ∅, R], over all subsets
R ⊊ Σ, as we only consider strings w that lie in L, so strings that can be derived from S.
The answer of the given instance of Problem 3 is positive if and only if k ≤ ι∃(L). ◀
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The algorithm from Theorem 23 uses exponential space (due to the usage of the matrix
M). However, there is also a simple (non-deterministic) PSPACE-algorithm solving this
problem. Such an algorithm constructs non-deterministically the left derivation (where,
at each step, the leftmost non-terminal is rewritten) of a string w ∈ L with ι(w) ≥ k; w

is non-deterministically guessed, and it is never constructed or stored explicitly by our
algorithm. During this derivation of w the number of non-terminals in each sentential form
is upper bounded by the depth of its derivation tree [35]; due to Lemma 21, we thus can
have only 4nσ such non-terminals (if this number becomes larger, we stop and reject: the
derivation tree of the guessed derivation is too deep for our purposes). During the simulation
of the leftmost derivation, at step i, we also do not keep track of the maximal prefix w′

i

consisting only of terminals of the sentential form, but only of ι(w′
i), alph(r(w′

i)), and of the
maximal suffix w′′

i consisting of non-terminals only (i.e., the part we still need to process);
this is enough for computing the universality of the derived string. The information stored
by our algorithm clearly fits in polynomial space. If, and only if, at the end of the derivation,
the maintained universality index is at least k, we accept the input grammar and number k.

6 Problem 4

Let us note that deciding Problem 4 for some input language L and integer k is equivalent
to deciding whether ι∀(L) ≥ k. In [4], it was shown that for a regular language L over an
alphabet with σ letters, accepted by an NFA with s states, Problem 4 can be decided in
O(s3σ).

For the rest of this section, we consider Problem 4 for the class CFL, and we assume that
we are given a CFL L by a CFG G in CNF, with n non-terminals, over an alphabet Σ, with
σ ≥ 2 letters. Recall that our approach is to compute ι∀(L) and compare it with the input
integer k.

As before, we start with a combinatorial observation. Intuitively, when we try to find a
word with the lowest universality index, it is enough to consider words w, whose derivation
trees do not contain root-to-leaf paths which contain twice the same non-terminal (otherwise,
such a tree could be reduced, to a derivation tree of a word with potentially lower universality
index).

▶ Lemma 24. If w ∈ L is a string with ι(w) ≤ ι(w′), for all w′ ∈ L, then there exists a
string w′′ ∈ L with ι(w′′) = ι(w) and the derivation tree of w′′ has depth at most n.

We now show that we can compute ι∀(L) in polynomial time, when the input language is
a CFL.

▶ Theorem 25. Problem 4 can be solved in O(n4σ2) time.

Proof Sketch. In order to compute ι∀(L), it is enough to compute the smallest ℓ ∈ N for
which there exists w ∈ L having an absent subsequence of length ℓ (and then we conclude
that ι∀(L) = ℓ− 1).

Our approach to computing ι∀(L) is, therefore, to define a 4-dimensional matrix M whose
elements are M [i, A, a, b], with i ∈ [n], A ∈ V , a ∈ Σ∪ {ε}, b ∈ Σ. We define M [i, A, a, b] = ℓ

if and only if there exists a word w ∈ Σ∗ such that A ⇒∗ w and this derivation has an
associated tree of depth at most i, and any SASa,b(w) has length ℓ. Based on Lemma 24,
the elements of M can be computed by dynamic programming, by considering i from 1 to n,
in O(n4σ2).

Once all elements of M are computed, we note that ι∀(L) is obtained by subtracting 1
from the minimum element of the form M [n, S, a, b], with a ∈ Σ ∪ {ε} and b ∈ Σ. ◀
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7 What Next? Conclusions and First Steps Towards Future Work

A conclusion of this work is that the complexity of the approached problems is, to a certain
extent, similar when the input language is from the classes REG and CFL and they all
become undecidable for CSL. So, a natural question is whether there are classes of languages
(defined by corresponding classes of grammars or automata) between REG and CSL which
exhibit a different, interesting behaviour.

We commence here this investigation by considering the class of languages accepted by a
model of automata, namely, the deterministic finite automata with translucent letters (or,
for short, translucent (finite) automaton – TFA), which generalizes the classical DFA by
allowing the processing of the input string in an order which is not necessarily the usual
sequential left-to-right order (without the help of an explicit additional storage unit). These
automata, first considered in [60] (see also the survey [63] for a discussion on their properties
and motivations), are strictly more powerful than classical finite automata and are part of a
class of automata-models that are allowed to jump symbols in their processing, e.g., see [58]
or [15]. From our perspective, these automata and the class of languages they accept are
interesting because, on the one hand, they seem to be a generalization of regular languages
which is orthogonal to the classical generalization provided by context-free languages, and,
on the other hand, initial results suggest that the problems considered in this paper, not
only become harder for them, but also their decidability fills the gap between the polynomial
time solubility in the case of CFLs and that of undecidability for the class of CSL.

So, in what follows, we discuss some problems from Section 1 in relation to the TFA
model, following the formalization from [59].

▶ Definition 26. A TFA M is a tuple M = (Q, Σ, q0, F, δ), just as in the case of DFA.
However, the processing of inputs is not necessarily sequential. We define the partial relation ⟳
on the set Q×Σ∗ of configurations of M : (p, xay) ⟳M (q, xy) if δ(p, a) = q, and δ(p, b) is not
defined for any b ∈ alph(x), where p, q ∈ Q, a, b ∈ Σ, x, y ∈ Σ∗. The subscript M is omitted
when it is understood from the context. The reflexive and transitive closure of ⟳ is ⟳∗ and the
language accepted by M is defined as L(M) = {w ∈ Σ∗ | (q0, w) ⟳∗ (f, ε) for some f ∈ F}.

In this model, letters a such that δ(p, a) is not defined are called translucent for p, hence
the name of the model. The machine reads and erases from the tape the letters of the input
one-by-one. Note that the definition requires that every letter of the input is read before it
can be accepted. This is slightly different from the original definition [60], which did not
require all of the letters read, and used an unerasable endmarker on the tape. TFA by our
definition can be trivially simulated by a machine with the original definition, and our results
stand for the original model, too. We chose to follow the definitions in [59], because in our
opinion it is simpler (and simpler to argue), and illustrates the difficulty of the subsequence
matching problems for nonsequential machine models just as well.

A first observation is that, in terms of execution, in each step a TFA reads (and consumes)
the leftmost unconsumed symbol which allows a transition (i.e., that has not been previously
read, and there is a transition labeled with it from the current state). Therefore, for every
individual letter, the order of the processing of its occurrences in the TFA is that in which
they appear in a string. The non-deterministic version of this automata model accepts
all rational trace languages, and all accepted languages have semi-linear Parikh images.
Moreover, the class of languages accepted by this model is incomparable to the class of CFL,
while still being CS. The class of languages accepted by the more restrictive deterministic
finite automata with translucent letters, for short TFA, strictly includes the class REG and
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Figure 1 TFA that accepts the language w� h(w), where w ∈ {a, b}∗ and h is a morphism of
the form h(a) = c, h(b) = d.

is still incomparable with CFL and the above mentioned class of rational trace languages.
The recent survey [63] overviews the extensive literature regarding variations of these types
of machines.

▶ Example 27. The TFA in Figure 1 accepts the language L = w� h(w), where w ∈ {a, b}∗

and h : {a, b}∗ → {c, d}∗ is a morphism given by h(a) = c, h(b) = d. Here � denotes the
usual shuffle operation for words over some alphabet Σ, i.e., u� v = {u1v1 · · ·uℓvℓ | u =
u1 · · ·uℓ, v = v1 · · · vℓ, ui ∈ Σ∗ for i ∈ [ℓ], vi ∈ Σ∗ for i ∈ [ℓ]}; in our case, Σ = {a, b, c, d}.

Coming back to the TFA in Figure 1: in state q0, the machine can read only the first a

or b remaining on the tape and immediately matches it with the first c or d, respectively. If
it reads a and in the remaining input the first d comes before the first c, it goes into the
sink state. Similarly, if it reads b but the first remaining c is before the first remaining d,
it goes to sink, because the projection of the input to the {a, b} alphabet does not match
the projection to the {c, d} alphabet. The language L is not context-free. This can be,
indeed, seen by intersecting it with the regular language (a + b)∗(c + d)∗, which yields the
language {w · h(w) | w ∈ {a, b}∗}, a variant of the so called “copy language”. This language
is non-context-free, by an easy application of the Bar-Hillel pumping lemma, so L is not
context-free.

We first note that the class of languages accepted by TFA becomes incomparable to that
of CFLs only starting from the ternary alphabet case (see [61]), since, for a TFA over a
binary alphabet, one can construct a push-down automaton accepting the same language.

▶ Theorem 28. The languages accepted by TFA over binary alphabets are CF.

As a consequence of this and of the results shown in the previous sections we get the
following.

▶ Theorem 29. Over binary alphabets, all problems of Section 1 are decidable, and except
for Problem 3, all are decidable in polynomial time for a TFA A given as input.

Thus, our interest now shifts to languages accepted by TFAs, over alphabets Σ of size
σ ≥ 3. We report here a series of initial results, which suggest this to be a worthwhile
direction of investigation. We first note that we cannot apply the approach from the general
Theorem 15 to solve the problems considered, since one can encode the solution set of any
Post Correspondence Problem (for short, PCP) instance as the intersection of a regular
language and a language accepted by a TFA. This is a first significant difference w.r.t. the
status of the approached problems for the case of REG and CFL.
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▶ Theorem 30. The emptiness problem for languages defined as the intersection of the
language accepted by a TFA with a regular language (given as finite automaton) is undecidable.

The decidability of Problem 1 for larger alphabets in the case of TFA is settled by an
exponential time brute force algorithm, after establishing that if the input language contains
a supersequence of w, then it also contains one whose length is bounded by a polynomial
in the size of the input. By a reduction from the well-known NP-complete Hamiltonian
Cycle Problem [27], we can also show that Problem 1 for TFA is NP-hard over unbounded
alphabets (containment in NP follows from the same length upper bound mentioned earlier).
This is again a significant deviation w.r.t. the status of this problem for the case when the
input language is given by a finite automaton or by a CFG.

▶ Theorem 31. Problem 1 is NP-complete over unbounded alphabets.

Since our initial results deviate from the corresponding results obtained for CFL, without
suggesting that the considered problems become undecidable, completing this investigation
for all other problems seems worthwhile to us. While we have excluded the approach from
the general Theorem 15, we cannot yet say anything about the approach in Theorem 14. It
remains an interesting open problem (also of independent interest w.r.t. to our research) to
obtain an algorithm for computing the downward closure of a TFA-language, or show that
such an algorithm does not exist.

While studying the problems discussed in this paper for TFAs seems an interesting way to
understand their possible further intricacies, which cause the huge gap between their status
for CFL and CSL, respectively, another worthwhile research direction is to consider them in
the context of other well-motivated classes of languages, for which all these problems are
decidable, and try to obtain optimised algorithms in those cases.
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