
Coordinated Motion Planning: Multi-Agent Path
Finding in a Densely Packed, Bounded Domain
Sándor P. Fekete #

Department of Computer Science, TU Braunschweig, Germany

Ramin Kosfeld #

Department of Computer Science, TU Braunschweig, Germany

Peter Kramer #

Department of Computer Science, TU Braunschweig, Germany

Jonas Neutzner #

Department of Computer Science, TU Braunschweig, Germany

Christian Rieck #

Department of Computer Science, TU Braunschweig, Germany

Christian Scheffer #

Department of Electrical Engineering and Computer Science,
Bochum University of Applied Sciences, Germany

Abstract
We study Multi-Agent Path Finding for arrangements of labeled agents in the interior of a simply
connected domain: Given a unique start and target position for each agent, the goal is to find a
sequence of parallel, collision-free agent motions that minimizes the overall time (the makespan) until
all agents have reached their respective targets. A natural case is that of a simply connected polygonal
domain with axis-parallel boundaries and integer coordinates, i.e., a simple polyomino, which amounts
to a simply connected union of lattice unit squares or cells. We focus on the particularly challenging
setting of densely packed agents, i.e., one per cell, which strongly restricts the mobility of agents,
and requires intricate coordination of motion.

We provide a variety of novel results for this problem, including (1) a characterization of
polyominoes in which a reconfiguration plan is guaranteed to exist; (2) a characterization of shape
parameters that induce worst-case bounds on the makespan; (3) a suite of algorithms to achieve
asymptotically worst-case optimal performance with respect to the achievable stretch for cases
with severely limited maneuverability. This corresponds to bounding the ratio between obtained
makespan and the lower bound provided by the max-min distance between the start and target
position of any agent and our shape parameters.

Our results extend findings by Demaine et al. [13, 14] who investigated the problem for solid
rectangular domains, and in the closely related field of Permutation Routing, as presented by
Alpert et al. [6] for convex pieces of grid graphs.

2012 ACM Subject Classification Theory of computation → Computational geometry; Computing
methodologies → Motion path planning

Keywords and phrases multi-agent path finding, coordinated motion planning, bounded stretch,
makespan, swarm robotics, reconfigurability, parallel sorting

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.29

Related Version Full Version: https://arxiv.org/abs/2409.06486 [18]

Funding This work was partially supported by the German Research Foundation (DFG), project
“Space Ants”, FE 407/22-1 and SCHE 1931/4-1.

© Sándor P. Fekete, Ramin Kosfeld, Peter Kramer, Jonas Neutzner, Christian Rieck, and
Christian Scheffer;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 29; pp. 29:1–29:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.fekete@tu-bs.de
https://orcid.org/0000-0002-9062-4241
mailto:kosfeld@ibr.cs.tu-bs.de
https://orcid.org/0000-0002-1081-2454
mailto:kramer@ibr.cs.tu-bs.de
https://orcid.org/0000-0001-9635-5890
mailto:j.neutzner@tu-bs.de
https://orcid.org/0009-0004-0198-2840
mailto:rieck@ibr.cs.tu-bs.de
https://orcid.org/0000-0003-0846-5163
mailto:christian.scheffer@hs-bochum.de
https://orcid.org/0000-0002-3471-2706
https://doi.org/10.4230/LIPIcs.ISAAC.2024.29
https://arxiv.org/abs/2409.06486
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


29:2 Multi-Agent Path Finding in a Densely Packed, Bounded Domain

1 Introduction

Problems of coordinating the motion of a set of objects occur in a wide range of applications,
such as warehouses [32], multi-agent motion planning [27, 28], and aerial swarm robotics [11].
In Multi-Agent Path Finding (MAPF) [31], we are given a set of agents, each with an
initial and a desired target position within a certain domain. The task is to determine a
coordinated motion plan: a sequence of parallel, collision-free movements such that the time
by which all agents have reached their destinations (the makespan) is minimized.

Theoretical aspects of MAPF have enjoyed significant attention. In the early days of
computational geometry, Schwartz and Sharir [29] developed methods for coordinating the
motion of disk-shaped objects between obstacles, with runtime polynomial in the complexity of
the obstacles, but exponential in the number of disks. The fundamental difficulty of geometric
MAPF was highlighted by Hopcroft et al. [21, 22], who showed that it is PSPACE-complete
to decide whether multiple agents can reach a given target configuration. In contrast, closely
related graph-based variants of the MAPF problem permit for linear time algorithms for the
same decision problem [35].

More recently, Demaine et al. [10, 13, 14] have provided methods to compute constant
stretch solutions for coordinated motion planning in unbounded environments in which
agents occupy distinct grid cells. The stretch of a solution is defined as the ratio between
its makespan and a trivial lower bound, the diameter d, which refers to maximum distance
between any agent’s origin and destination. Their work therefore obtains collision-free
motion schedules that move each agent to its target position in O(d) discrete moves, which
corresponds to a constant-factor approximation. However, their methods assume the absence
of a environmental boundary that may impose external constraints on the agents’ movements.

1.1 Our contributions

In this paper, we study Multi-Agent Path Finding for densely packed arrangements of
labeled agents that are required to remain within discrete grid domains, i.e., polyominoes.
This is a natural constraint that occurs in many important applications, but provides
considerable additional difficulties; in particular, a coordinated motion plan may no longer
exist for domains with narrow bottlenecks. We provide a variety of novel contributions:

We give a full characterization of simple polyominoes P that are universally reconfigurable.
These allow some feasible coordinated motion plan for any combination of initial and
desired target configurations, without regard for the makespan: We prove that this is the
case if and only if P has a cover by 2 × 2 squares with a connected intersection graph.
We model the shape parameters bottleneck length ζ(P ) (which is the minimum length of
a cut dividing the region into non-trivial pieces) and domain depth µ(P ) (which is the
maximum distance of any cell from the domain boundary). We provide refined upper
and lower bounds on the makespan and stretch factor based on these shape parameters.
For some instances, any applicable schedule may require a makespan of Ω(d + d2

/ζ(P )).
We show how to compute schedules of makespan linear in the ratio of domain area and
bottleneck, i.e., O(n/ζ(P )).
We characterize narrow instances, which feature very limited depth relative to the
diameter d, and provide an approach for asymptotically worst-case optimal schedules.

Note that (parts of) the proofs of statements marked with (⋆) have been omitted in the main
sections due to space constraints; we refer the reader to the full version [18] instead.



S. P. Fekete, R. Kosfeld, P. Kramer, J. Neutzner, C. Rieck, and C. Scheffer 29:3

1.2 Related work
Motion planning. Multi-Agent Path Finding is a widely studied problem. Due to space
constraints, we restrict our description to the most closely related work. For more detailed
references, refer to the extensive bibliography in [14] and the mentioned surveys [11, 28, 31].

Of fundamental importance to our work are the results by Demaine et al. [14], who
achieved reconfiguration with constant stretch for the special case of rectangular domains.
A key idea is to consider a partition of the rectangle into tiles whose size is linear in diameter d.
These tiles can then be reconfigured in parallel. First, flow techniques are applied to shift
agents into their target tile; afterward, agents are moved to their respective target positions.
Furthermore, they showed that computing the optimal solution is strongly NP-complete.

Fekete et al. [16, 19] considered the unconstrained problem on the infinite grid with the
additional condition that the whole arrangement needs to be connected after every parallel
motion. They considered both the labeled and the unlabeled version of the problem, providing
polynomial-time algorithms for computing schedules with constant stretch for configurations
of sufficient scale. They also showed that deciding whether there is a reconfiguration schedule
with a makespan of 2 is already NP-complete, unlike deciding the same for a makespan of 1.

Eiben, Ganian, and Kanj [15] investigated the parameterized complexity of the problem
for the variants of minimizing the makespan and minimizing the total travel distance. They
analyzed the problems with respect to two parameters: the number of agents, and the
objective target. Both variants are FPT when parameterized by the number of agents, while
minimizing the makespan becomes para-NP-hard when parameterized by the objective target.

Further related work studies (unlabeled) multi-robot motion planning problems in poly-
gons. Solovey and Halperin [30] show that the unlabeled variant is PSPACE-hard, even for
the specific case of unit-square robots moving amidst polygonal obstacles. Even in simple
polygonal domains, a feasible motion-plan for unlabeled unit-disk robots does not always
exist, if, e.g., the robots and their targets are positioned too densely. However, if there is
some minimal distance separating start and target positions, Adler et al. [1] show that the
problem always has a solution that can be computed efficiently. Banyassady et al. [8] prove
tight separation bounds for this case. Agarwal et al. [2] consider the labeled variant with
revolving areas, i.e., empty areas around start and target positions. They prove that the
problem is APX-hard, even when restricting to weakly-monotone motion plans, i.e., motion
plans in which all robots stay within their revolving areas while an active robot moves to its
target. However, they also provide a constant-factor approximation algorithm.

The computational complexity of moving two distinguishable square-shaped robots in a
polygonal environment to minimize the sum of traveled distances is still open; Agarwal et al. [3]
gave the first polynomial-time (1 + ε)-approximation algorithm.

The problem was the subject of the 2021 CG:SHOP Challenge; see [17, 12, 24, 34] for an
overview and a variety of practical computational methods and results.

Token swapping and routing via matchings. The task in the Token Swapping Problem
is to transform two vertex labelings of a graph into one another by exchanging tokens between
adjacent vertices by sequentially selecting individual edges. This problem is NP-complete
even for trees [4], and APX-hard [26] in general. Several approximation algorithms exist for
different variants and classes of graphs [20, 26, 33]. The Permutation Routing variant
allows for parallelization, by selecting disjoint edge sets to perform swaps in parallel [5, 9, 23].
The routing number of a graph describes the maximal number of necessary parallel swaps
between any two labelings. Recently, Alpert et al. [6] presented an upper bound on the
routing number of convex pieces of grid graphs, which is very closely related to our setting.

ISAAC 2024



29:4 Multi-Agent Path Finding in a Densely Packed, Bounded Domain

1.3 Preliminaries
We define the considered motion of agents in a restricted environment (domain) as follows.

Domain. Consider the infinite integer grid graph, in which each 4-cycle bounds a face of
unit area, a cell. Every planar edge cycle in this grid graph bounds a finite set of cells,
which induces a domain that we call a (simple) polyomino, see Figure 1a. We exclusively
consider simple polyominoes, i.e., those without holes. For the sake of readability, we might
not state this for each individual polyomino in later sections. The area of a polyomino P

is equal to the number of contained cells n. The bounding edge cycle and its incident cells
are therefore called is the boundary and boundary cells of P , respectively. The dual graph
of P , denoted by G(P ) = (V, E), has a vertex for every cell, two of which are adjacent if
they share an edge in P , as shown in Figure 1b. The geodesic distance between two cells of a

(a) A boundary cycle. (b) A polyomino’s dual graph. (c) A cut through a polyomino.

Figure 1 A polyomino, its dual graph, and a cut. Subsequent illustrations will only show the
boundary and any relevant cuts, foregoing the underlying integer grid.

polyomino P corresponds to the length of a shortest path between the corresponding vertices
in G(P ). A cut through a polyomino P is defined by a planar path between two vertices on
the boundary of P , as shown in Figure 1c. Its cut set corresponds exactly to those edges
of G(P ) which cross the path. Geometrically, this induces two simple subpolyominoes Q, R

and write Q, R ⊂ P . We say that a cut is trivial if its endpoints on the boundary of P have
a connecting path on the boundary that is not longer than the cut itself.

Agents. We consider distinguishable agents that occupy the cells of polyominoes. A con-
figuration of a polyomino P with G(P ) = (V, E) is a bijective mapping C : V → {1, . . . , n}
between cells and agent labels. We denote the set of all configurations of P as C(P ).

In each discrete time step, an agent can either move, changing its position v to an adjacent
position w, or hold its current position. We denote this by v → w or v → v, respectively.
Two parallel moves v1 → w1 and v2 → w2 are collision-free if v1 ≠ v2 and w1 ̸= w2.
We assume that a swap, i.e., two moves v1 → v2 and v2 → v1, causes a collision, and is
therefore forbidden. Configurations can be transformed by sets of collision-free moves that are
performed in parallel. If a set of moves transforms a configuration C1 into a configuration C2,
this set is also called a transformation C1 → C2. For an illustrated example, see Figure 2.
A schedule with makespan M ∈ N is then a sequence of transformations C1 → · · · → CM+1,
also denoted by C1 ⇒ CM+1.

2 3 4

765

1

8

(a) A polyomino and a configuration.

2 3 4

765

1

8

(b) Four agents move along a cycle.

Figure 2 An illustration of an configurations and a transformations.



S. P. Fekete, R. Kosfeld, P. Kramer, J. Neutzner, C. Rieck, and C. Scheffer 29:5

Problem statement. We consider the Multi-Agent Path Finding Problem for agents
in a discrete environment bounded by a simple polyomino. Thus, an instance of the problem
is composed of two configurations C1, C2 ∈ C(P ) of a simple polyomino P . We say that a
schedule is applicable to the instance exactly if it transforms C1 into C2. The diameter of an
instance is the maximum geodesic distance d between an agents’ start and target positions,
and the stretch of an applicable schedule is the ratio between its makespan and the diameter.

2 Reconfigurability

In this section, we provide a characterization of (simple) polyominoes for which any con-
figuration can be transformed into any other. We say that a polyomino P is universally
reconfigurable if there exists an applicable schedule for any two configurations C1, C2 ∈ C(P ).
We prove that this is the case if and only if P has a cover by cycles that have a connected
intersection graph, and show how to compute an applicable schedule of makespan O(n).

▶ Theorem 1. A polyomino P is universally reconfigurable if and only if it has a cover by
2×2 squares with a connected intersection graph. For any C1, C2 ∈ C(P ) of such a polyomino
with area n, an applicable schedule C1 ⇒ C2 of makespan O(n) can be computed efficiently.

Due to the cyclic nature of all movement, the edge connectivity of a polyomino’s dual graph
plays a significant role for universal reconfigurability. We start with a negative result.

▶ Lemma 2 (⋆). A polyomino P that does not have a cover by 2 × 2 squares with a connected
intersection graph is not universally reconfigurable.

Proof sketch. We observe that transformations are inherently cyclic, as the domain is fully
occupied and collisions (and thus, swaps) are forbidden. Using this fact, it is easy to show
that 2-edge-connectedness is necessary and sufficient for universal reconfigurability, provided
an area of at least 6 cells. From here, it is possible to show that a cover 2 × 2 square must
exist for any two adjacent cells, implying the property. ◀

Because direct swaps of adjacent agents are not possible, an important tool is the ability
to “simulate” a large number of adjacent swaps in parallel, using a constant number of
transformation steps. Polyominoes that are unions of two 2 × 2 squares form an important
primitive to achieve this. There exist two classes of such polyominoes; the squares can overlap
either in one or two cells. Clearly, either dual graph can be covered by two 4-cycles that
intersect in at least one vertex. In Figure 3, we illustrate schedules that perform adjacent
swaps at the intersection of these cycles, implying universal reconfigurability of both classes.
In fact, any instance of either class takes at most 7 or 14 transformations, respectively.

6

3

62

4

5 6

1

35

232

54

4

6

32 1

54

11

(a) A schedule that swaps the robots labeled as 1 and 2.

5

6 7

2

5

4

36

7

1

5

4

36

7

12

5

4

3

7

12 4

3

6 7

1

5 4

3

6 7

1

2

5

46

7

1

2

5

4

3

7

25

4

3

6 7

21

4

1

1

4

5

2

3

6 7

2

63

5

2

3

6

1

(b) A schedule that swaps the robots labeled as 1 and 4.

Figure 3 In polyominoes composed of two 2 × 2 squares, we can realize swaps in O(1) steps.

▶ Observation 3. Polyominoes of two overlapping 2×2 squares are universally reconfigurable.

ISAAC 2024



29:6 Multi-Agent Path Finding in a Densely Packed, Bounded Domain

Using this observation for a primitive local operation, we show the following.

▶ Lemma 4. For any matching in the dual graph of a universally reconfigurable polyomino,
we can compute a schedule of makespan O(1) which swaps the agents of all matched positions.

Proof. Let I refer to the connected intersection graph of a cover of a universally reconfigurable
polyomino P by 2 × 2 squares, which can be computed in O(n). Due to Lemma 2, the
vertices of each edge in the dual graph of P share a common 2 × 2 square in the cover.

We thus divide the edges E(I) of I into 36 classes based on each edge’s orientation and
xy-minimal coordinates mod 3. These can be represented by {↑, ↗, →, ↘} × [0, 2] × [0, 2].

For any intersection {u, v} ∈ E(I), let R({u, v}) now be the union of the vertices covered
by the squares u and v, which always corresponds exactly to one of the polyominoes outlined
in Observation 3. Such a region has a bounding box no larger than 3 × 3, which means that
the regions R(e) and R(f) are disjoint for any two edges e and f in a common class, allowing
us to apply RotateSort in parallel to all the regions within one class.

As there are constantly many classes, we can realize the adjacent swaps induced by a
matching of adjacent cells in O(1) transformations. ◀

Marberg and Gafni [25] propose an algorithm called RotateSort that sorts a two-
dimensional n×m array within O(n+m) parallel steps. Demaine et al. [14] demonstrate that
this algorithm can be applied geometrically, using the local swap mechanism illustrated in
Figure 3a. A geometric application of RotateSort is a sequence of sets of pairwise disjoint
adjacent swap operations, i.e., sets consisting of pairs of adjacent cells, where swaps can be
simulated by circular rotations. As our setting is not merely restricted to rectangular domains,
we extend their approach using Lemma 4. We give a constructive proof of Theorem 1 in the
shape of an algorithm, as follows.

Proof of Theorem 1. Our approach employs methods from Permutation Routing. In
this setting, the task is to transform two different vertex labelings of a graph into one
another by exchanging labels between adjacent vertices in parallel [5]. A solution (or routing
sequence) consists of a series of matchings, i.e., sets of independent edges, along which tokens
are exchanged. Such a routing sequence of length at most 3n can be computed in almost
linear time if the underlying graph is a tree [5]. Thus, we consider an arbitrary spanning
tree of a polyomino P ’s dual graph and compute such a routing sequence. Due to Lemma 4,
each parallel swap operation in the sequence can be realized by a schedule of makespan O(1).
We conclude that the schedule derived from the routing sequence has makespan O(n). ◀

3 The impact of the domain on the achievable makespan

Previous work has demonstrated that it is possible to achieve constant stretch for labeled
agents in a rectangular domain. However, in the presence of a non-convex boundary, such
stretch factors may not be achievable. We present the following worst-case bound.

▶ Proposition 5. For any d ≥ 5, there exist instances of diameter d in universally reconfig-
urable polyominoes, such that all applicable schedules have makespan Ω(d2).

Proof. We illustrate a class of such instances in Figure 4. In this class, agents located
on different sides of a narrow passage must trade places. Theorem 1 tells us that these
polyominoes are universally reconfigurable; however, any movement between the regions pass
through the narrow passage at the center, limiting the number of agents exchanged between
them to 2 per transformation. As the number of agents scales quadratically with d, any
schedule for this class of instances requires a makespan of Ω(d2). ◀



S. P. Fekete, R. Kosfeld, P. Kramer, J. Neutzner, C. Rieck, and C. Scheffer 29:7

d

(a) A polyomino with narrow passage.

d

(b) This class can be extended such that n > d2.

Figure 4 We illustrate a class of instances which require Ω(d2) transformations.

For a more refined characterization of features that affect the achievable makespan and to
formulate a precise lower bound, we introduce the following shape parameter for polyominoes.

Bottleneck. We say that the bottleneck of a polyomino P is the largest integer ζ(P ),
such that there is no non-trivial cut through P of length less than ζ(P ). This means no
interior “shortcut” of length less than ζ(P ) exists between any two points on the boundary
of P . A bottleneck cut through P is therefore a non-trivial cut of length ζ(P ).

We now further refine the lower bound presented in Proposition 5, as follows.

▶ Proposition 6. For any d ≥ 4 and z ∈ [2, d], there exists a universally reconfigurable
polyomino P with ζ(P ) = z that has instances of diameter d, for which any applicable
schedule has a makespan of Ω(d2

/ζ(P )), i.e., a stretch factor of Ω(d/ζ(P )).

Proof. We formulate a generalized version of the instances from Proposition 5. By scaling
the boundary of the polyomino between the two regions by an arbitrary amount less or equal
to d, we can create universally reconfigurable polyominoes with the targeted bottleneck value.

The movement between the two regions must then still be realized over the narrow grey
region, limiting the number of robots exchanged between them to O(ζ(P )) per transformation.
As the number of robots that need to traverse the bottleneck cut scales quadratically with d,
any applicable schedule for this class of instances requires a makespan of Ω(d2

/ζ(P )). ◀

To further refine our understanding of the domain’s impact on achievable makespans, we
now characterize the size of widest passages, i.e., best case maneuverability. To this end, we
consider the maximum shortest distance to the boundary within the given domain, its depth.

Depth. We say that the depth of a polyomino P is the smallest integer µ(P ), such that
every cell in P has geodesic distance at most µ(P ) to the boundary of P .

The depth and bottleneck of a polyomino are very closely related, with depth implying a
bound on the bottleneck of any (sub-)polyomino such that ζ(P ′) ≤ 2µ(P ) for any P ′ ⊆ P .
We take particular notice of the following property of depth.

▶ Lemma 7 (⋆). From any cell in a polyomino P , the maximal geodesic distance to a
non-trivial geodesic cut of length at most 2µ(P ) is also at most 2µ(P ).

4 Bounded makespan for narrow instances

In this section, we consider algorithms for bounded makespan in specific families of instances.
Our central result is an approach for asymptotically worst-case optimal stretch in narrow
instances, which we define as follows. An instance of diameter d in a polyomino P is narrow,
if and only if π · d ≥ µ(P ) for some constant π ∈ N, i.e., µ(P ) ∈ O(d). Intuitively, these
correspond to instances of large diameter relative to the domain’s depth.

ISAAC 2024



29:8 Multi-Agent Path Finding in a Densely Packed, Bounded Domain

▶ Theorem 8 (⋆). Given an instance of diameter d in a universally reconfigurable
polyomino P , we can efficiently compute an applicable schedule of makespan O((d+µ(P ))2

/ζ(P )).
This is asymptotically worst-case optimal for narrow instances.

As our proof is fairly involved, we proceed with the special case of scaled polyominoes
in Section 4.1, which we extend to arbitrary polyominoes of limited depth in the sub-
sequent Section 4.2. In each section, we first establish bounds on the makespan relative to a
polyomino’s area and the corresponding shape parameter.

4.1 Bounded makespan and stretch based on scale
We now investigate scaled polyominoes, which we define as follows.

c(P )

(a) A 3-scaled polyomino P and its tiles.

c(P )

(b) The tile dual graph of P .

Figure 5 An illustration of a scaled polyomino P , its tiles, and their corresponding dual graph.

Scaled polyomino. For any c ∈ N, we say that a polyomino P is c-scaled exactly if it is
composed of c × c squares that are aligned with a corresponding c × c integer grid. We call
these grid-aligned squares tiles, which have a dual graph analogous to that of a polyomino.
Finally, the scale of a polyomino P is the largest integer c(P ) such that P is c-scaled. This
additionally represents a very natural lower bound on the bottleneck, ζ(P ) ≥ c(P ).

▶ Proposition 9. For any two configurations of a polyomino P with area n and c(P ) ≥ 3,
we can compute an applicable schedule of makespan O(n/c(P )) in polynomial time.

Proof. We model our problem as an instance of Permutation Routing, taking note of
two significant results regarding the routing number of specific graph classes. Recall that
the routing number rt(G) of a specific graph G refers to the maximum number of necessary
routing operations to transform one labeling of G into another. For the complete graph Kn

with n vertices, it was shown by Alon, Chung, and Graham [5] that rt(Kn) = 2. Furthermore,
we make use of a result by Banerjee and Richards [7] which states that for an h-connected
graph G and any connected h-vertex induced subgraph Gh of G, the routing number rt(G)
is in O(rt(Gh) · n/h). They also describe an algorithm that determines a routing sequence
that matches this bound.

Given a polyomino P and two configurations C1, C2 ∈ C(P ), our goal is to define a
secondary graph over the vertices of the dual graph G(P ) = (V, E) such that a routing
sequence over this graph can be transformed into a schedule C1 ⇒ C2 of makespan O(n/c(P )).

We define Gc = (V, Ec) such that {u, v} ∈ Ec exactly if the cells u and v are located in
the same c(P ) × c(P ) tile, or two adjacent tiles. As a result, the cells of each tile in P form
a clique, i.e., their induced subgraph is isomorphic to Kc(P )2 . Furthermore, the cliques of
cells in any two adjacent tiles are connected by a set of complete bipartite edges, so they
also form a clique. Hence, Gc is h-connected for h ≥ c(P )2 − 1 and contains n/c(P )2 cliques
of order at least c(P )2. Due to Banerjee and Richards [7], we conclude that rt(Gc) is in
O(rt(Kc2) · n/h) = O(n/c(P )2) and can therefore compute a sequence of O(n/c(P )2) matchings
to route between any two labelings of G(P ), which correspond to configurations of P .



S. P. Fekete, R. Kosfeld, P. Kramer, J. Neutzner, C. Rieck, and C. Scheffer 29:9

It remains to argue that we can realize the swaps induced by any matching in Gc by
means of O(c(P )) transformations. All pairwise swaps between cells within the same tile can
be realized by applying RotateSort to all tiles in parallel, taking O(c(P )) transformations.

We therefore turn our attention to swaps between adjacent tiles. Observe that the
dual graph of the tiles of P is a minor of Gc; contracting the vertices in each of the tile-
cliques defined above will give us a corresponding grid graph. Swaps between adjacent
tiles can therefore be realized in four phases by covering this grid graph by matchings, and
applying RotateSort to the union of matched tile pairs in parallel, again taking O(c(P ))
transformations. A cover by four matchings can be determined by first splitting the edges
of the dual graph into two sets of horizontal and vertical edges, respectively. Each of these
edge sets then induces a collection of paths in the tiling’s dual graph, and can therefore be
covered by two matchings.

We conclude that constantly many phases of parallel applications of RotateSort
suffice to realize any matching in Gc. As O(n/c(P )2) matchings can route between any two
configurations of P , we conclude that this method yields schedules of makespan O(n/c(P )). ◀

We now apply this intermediate result to compute schedules of bounded stretch in narrow
instances of scaled polyominoes. Our approach hinges on the ability to divide the instance
into subproblems that can be solved in parallel, which corresponds to cutting the polyomino
and performing a sequence of preliminary transformations such that each subpolyomino can
then be reconfigured locally, obtaining the target configuration.

Domain partitions. A partition of a polyomino P corresponds to a set of disjoint
subpolyominoes that cover P . We observe that not every polyomino permits a partition
into disjoint universally reconfigurable subpolyominoes. However, any subpolyomino of a
universally reconfigurable polyomino P can be made universally reconfigurable by including
cells of geodesic distance at most 2 in P .

To efficiently determine such a partition, we employ breadth-first search as follows.

Breadth-first search. For any polyomino Q, let BFS(Q, v, r) refer to the subpolyomino
of Q that contains all cells reachable from some cell v in Q by geodesic paths of length at
most r. Further, let BFS(Q, v, r) refer to the set of connected components of Q \ BFS(Q, v, r).
We define the wavefront of BFS(Q, v, r) as the set of cuts through Q that define the components
of BFS(Q, v, r). Each connected component (cut) of the wavefront is called a wavelet.

▶ Lemma 10 (⋆). For any polyomino Q, the wavefront of BFS(Q, v, r) consists of wavelets
of length O(µ(Q)) each, i.e., the wavelet length is independent of the search radius r.

Having established all necessary tools, we prove the following statement.

▶ Proposition 11. Given an instance of diameter d in a polyomino P with c(P ) ≥ 3, we
can efficiently compute an applicable schedule with makespan O((d+µ(P ))2

/c(P )). This is
asymptotically worst-case optimal for narrow instances.

Proof. We consider an instance of diameter d in a simple polyomino P . We proceed in three
phases, which we briefly outline before giving an in-depth description of each.

(I) We partition P into c(P )-scaled patches of area O(d2), using non-trivial cuts of bounded
length such that the partition’s dual graph is a rooted tree T .

(II) We combine parent/child patches according to T into regions with c(P ) scale, allowing
us to apply Proposition 9 to reorder them in O((d+µ(P ))2

/c(P )).
(III) Finally, we exploit these combined regions to place all agents at their destination.

ISAAC 2024



29:10 Multi-Agent Path Finding in a Densely Packed, Bounded Domain

Phase (I). A step-by-step illustration of Phase (I) can be found in Figure 6. For this phase,
we consider the polyomino P ′ induced by the tile dual graph of P , recall Figure 5b. This
scales the shape parameters and geodesic distance by 1/c(P ):

c(P ′) = c(P )/c(P ) = 1, µ(P ′) ≊ µ(P )/c(P ), ζ(P ′) ≊ ζ(P )/c(P ).

Let δ = 3d/c(P ). We subdivide P ′ using a recursive breadth-first-search approach and
argue by induction. Given a boundary cell v0 in P ′, we determine a patch P ′

0 ⊆ P ′ based on
BFS(P ′, v0, δ) ⊆ P ′. We say that the components of BFS(P ′, v0, δ) are either small or large;
a component R is small exactly if R ⊂ BFS(P ′, v0, 2δ), and large otherwise, see Figure 6b.

We define P ′
0 as the union of the initial BFS and the small components of its complement,

meaning that for BFS(P ′, v0, δ) with large components R1, . . . , Rℓ, P ′
0 takes the shape

P ′
0 := P ′ \ (R1 ∪ . . . ∪ Rℓ).

Due to Lemma 10, the cut Γi that separates a component Ri of BFS(P ′, v0, δ) from P ′
0 has

length O(µ(P ′)). By definition, the geodesic distance from each cell in Ri to v0 is at least δ.
We now iteratively subdivide each component of P ′ \P ′

0 by simply increasing the maximal
depth of our BFS from v0 by another δ units and again considering large and small components
of the corresponding subdivision separately, as illustrated in Figures 6c and 6d.

To obtain a partition of P , we map each patch P ′
i to the tiles in P that its cells correspond

to. Since P is a simple polyomino, the dual graph of our patches forms a tree T rooted at P0.
Consider any patch P ′

i and recall that, due to Lemma 10, all cuts induced by BFS have
individual length O(µ(P ′)). Tracing along the boundaries of tiles, we conclude that the
corresponding cuts in P have individual length O(µ(P ′)c(P ))) = O(µ(P )). Due to triangle
inequality, it follows that any two cells in each patch Pi have geodesic distance O(d + µ(P )).
From this, we conclude that the area of Pi is bounded by O((d + µ(P ))2). It directly follows
that for any patch Pj with hop distance k ∈ N+ to Pi in T , the geodesic distance between
two cells in Pi and Pj is bounded by O(k(d + µ(P ))). The union of patches in a subtree T ′

of T with height k therefore has area O((k(d + µ(P )))2).

Phase (II). We use this partition of P into patches to subdivide the instance into disjoint
tasks that can be solved in parallel; recall that our target makespan is O((d+µ(P ))2

/ζ(P )). The
patches are spatially disjoint and all have scale at least c(P ), as well as area O((d + µ(P ))2).
Proposition 9 therefore implies that the patches can be locally reconfigured in parallel, by
schedules of makespan O((d+µ(P ))2

/ζ(P )). In order to solve the original instance, it therefore
remains to make each patch a subproblem that can be solved independently.

We argue that we can efficiently move robots into their target patches. In Phase (I), we
gave an upper bound of O(k(d + µ(P ))) on the geodesic distance between cells in patches
that have hop distance at most k ∈ N+ in T . We now provide a lower bound: The geodesic
distance between cells in patches that are not in a parent-child or sibling relationship in T is
at least d, as the distance between cells in any patch and its “grandparent” patch according
to T is at least d by construction, see Phase (I).

It follows that the target cell of each robot is either in the same patch as its initial cell,
or in a parent or sibling thereof. To realize the movement of agents between patches, we
thus simply form the spatial union Fi of each patch Pi and its children according to T . Each
of the resulting subpolyominoes Fi has area O((d + µ(P ))2). As T is bipartite, we can split
them into two sets FA and FB , each comprised of pairwise spatially disjoint subpolyominoes.



S. P. Fekete, R. Kosfeld, P. Kramer, J. Neutzner, C. Rieck, and C. Scheffer 29:11

v0 BFS(P, v0, δ)
BFS(P, v0, 2δ)

(a) We determine v0 and compute BFS(P ′, v0, δ).

R1

small

large

(b) BFS(P ′, v0, δ) has large and small components.

v0

P0 Γ1

(c) The patch P ′
0 is the union of BFS(P ′, v0, δ) and

the small components of BFS(P ′, v0, δ).

v0

P0 Γ1

BFS(P, v0, 3δ) \ P0

BFS(P, v0, 2δ) \ P0

(d) We continue the breadth-first-search in P \ P0.

Figure 6 Phase (I): We divide P ′ into patches of area O((δ + µ(P ′))2).

Phase (III). It remains to show that we can efficiently exchange agents between patches.
Note that, as P is simple, the number of agents that need to cross any cut in either direction
is equal to that for the opposite direction.

By construction, every pair of patches that needs to exchange agents between one
another is fully contained in some Fi ∈ (FA ∪ FB). We proceed in three iterations: By
applying Proposition 9 to each of the patches in FA in parallel, we swap agents across cuts by
swapping them with agents moving in the opposite direction. We repeat this process for FB

and finally perform a parallel reconfiguration of the individual patches, which allows us to
place every robot in its target cell. Each iteration takes O((d+µ(P ))2

/ζ(P )) transformations. ◀

4.2 Bounded makespan and stretch based on bottleneck
Finally, this section concerns itself with the transfer of results from Section 4.1 to arbitrary
polyominoes. As this requires significantly more intricate local mechanisms, we only provide
a high-level description of the necessary tools and modifications, and refer to the full version.

Skeleton. A skeleton of a polyomino P is a connected, λ-scaled subpolyomino S ⊆ P

with λ = ⌊ζ(P )/4⌋, as illustrated in Figure 7a. Such a skeleton can easily be determined as
the union of all λ × λ squares in P that are aligned with the same λ × λ integer grid.

Watershed. The watershed of a skeleton tile t corresponds to the union of all 2λ × 2λ

squares in P that fully contain t, see Figure 7b. We will show that at least one such square
always exists, and their union forms a convex polyomino with bottleneck at least λ.

To swap agents from P \ S into the skeleton S, we exploit the watersheds of its tiles. We
first prove the existence of a skeleton S ⊆ P as above, and that its watersheds fully cover P .
This allows us to apply techniques from Section 4.1 to arbitrary polyominoes.

▶ Lemma 12 (⋆). For any polyomino P with ζ(P ) ≥ 8, we can identify a skeleton S ⊆ P

in polynomial time. The skeleton S is λ-scaled for λ = ⌊ζ(P )/4⌋, and every 2λ × 2λ square
inside P contains at least one of its scaled tiles.

ISAAC 2024



29:12 Multi-Agent Path Finding in a Densely Packed, Bounded Domain

(a) A polyomino P and its skeleton S (cyan).

t

(b) An illustration of a skeleton tile t’s watershed.

Figure 7 The central tools used in our proof of Theorem 15.

We make use of the following result obtained by Alpert et al. [6] for the routing number of
convex grid graphs, where w(P ) and h(P ) refer to the width and height of P , respectively.

▶ Theorem 13 (Alpert et al. [6]). Let P be a connected convex grid piece. Then the routing
number of P satisfies the bound rt(P ) ≤ C(w(P ) + h(P )) for some universal constant C.

Finally, we demonstrate a method for efficient reconfiguration of an arbitrary skeleton tile’s
watershed in order to swap robots into and out of the skeleton.

▶ Lemma 14. Given two configurations of a skeleton tile’s watershed in a universally
reconfigurable polyomino, we can efficiently compute an applicable schedule of makespan O(λ).

Proof. Consider a λ × λ skeleton tile t ⊂ P of a universally reconfigurable polyomino P , and
let H refer to its watershed. Recall that we assume ζ(P ) ≥ 8, so λ = ⌊ζ(P )/4⌋ ≥ 2. As H

is the union of all 2λ × 2λ squares in P that contain t, it is thus universally reconfigurable
and orthoconvex. We apply Theorem 13: Alpert et al. [6] presented a constructive proof
in the form of an algorithm, which we can use to compute a routing sequence of length
O(w(H)+h(H)) = O(λ) between any two configurations of H, based on its dual graph. Such
a routing sequence corresponds to a series of matchings in the dual graph of H that exchange
tokens of adjacent vertices. Sequentially realizing these matchings by swapping adjacent
agents as outlined in Lemma 4, we can arbitrarily reorder H in O(λ) transformations. ◀

This provides us with all necessary tools to prove the following generalization of Proposi-
tion 9, which, in turn, is a central tool for our proof of Theorem 8.

▶ Theorem 15 (⋆). For any two configurations of a universally reconfigurable polyomino P

of area n, we can compute an applicable schedule of makespan O(n/ζ(P )) in polynomial time.

▶ Theorem 8 (⋆). Given an instance of diameter d in a universally reconfigurable
polyomino P , we can efficiently compute an applicable schedule of makespan O((d+µ(P ))2

/ζ(P )).
This is asymptotically worst-case optimal for narrow instances.

Proof sketch. Assuming that c(P ) < ζ(P ), our approach consists of three phases:
(I) We compute a skeleton S ⊂ P which we split into patches Si according to Phase (I)

of Proposition 11. To each of these patches, we add cells of its skeleton tile’s watersheds.
This partitions P into patches Pi, each with a skeleton patch Si ⊂ S such that Si ⊆ Pi.

(II) We use the rooted dual tree T of the skeleton patches Si and, for each patch Si with
children Sℓ, . . . , Sℓ+k according to T , we combine the patches Pi, Pℓ, . . . , Pℓ+k to a
(not necessarily connected) region Fi that can be reordered in O((d+µ(P ))2

/ζ(P )).
(III) Finally, we exploit these combined regions to place all agents at their destination.

These act analogously to Phases (I) – (III) of Proposition 11. ◀



S. P. Fekete, R. Kosfeld, P. Kramer, J. Neutzner, C. Rieck, and C. Scheffer 29:13

5 Conclusions and future work

We provide a number of novel contributions for Multi-Agent Path Finding in simple
polyominoes. We establish a characterization for the existence of reconfiguration schedules,
based on different shape parameters of the bounding polyomino. Furthermore, we establish
algorithmic methods that achieve worst-case optimal stretch for any instance in which the
polyomino’s bottleneck does not exceed the instance’s diameter by more than a constant
factor. There are a variety of directions in which these insights should give rise to further
generalizations and applications.

Non-simple polyominoes. Our results regarding universal reconfigurability are directly
applicable to non-simple polyominoes. As noted in Section 2, the geometric characterization
for simple polyominoes is formed as a special case based on the dual graph of a polyomino.

For any non-simple polyomino that is either 2-scaled or 2-square-connected, Theorem 1
and Proposition 9 are also directly applicable. The same is not true for Theorem 15, as
our definition of the bottleneck based on cuts does not work in this case. However, with a
separate definition that accounts for the minimal distance between inner and outer boundaries,
Theorem 15 may be applicable.

Permutation routing. Our results can be generalized to solid grid graph routing, which is
a generalization of the findings of Alpert et al. [6]. We provided results regarding bounded
stretch for this setting, therefore tackling a special case of their Open Question 2.

Further questions. Our work is orthogonal to that of Demaine et al. [13, 14]: Their
setting considered domains of large depth in conjunction with large bottleneck, i.e., the
case that µ(P ) ∈ Ω(d) and ζ(P ) ∈ Ω(d). We establish asymptotically worst-case optimal
results for narrow domains, which implies that µ(P ) ∈ O(d) and ζ(P ) ∈ O(d). In particular,
instances where ζ(P ) ∈ O(d) while µ(P ) ∈ ω(d), i.e., instances in which the gap between
bottleneck and depth is unbounded relative to d, remain a challenge even for simple domains.
We conjecture that this question for simple domains is equivalent to that of bounded stretch
for non-simple domains with limited depth; considering an instance of large depth, we can
create an analogous non-simple instance that features regularly distributed, small holes based
on some grid graph. This may motivate research into the special case of instances in which
the diameter is less or equal to the circumference of the smallest hole in the domain.

References
1 Aviv Adler, Mark de Berg, Dan Halperin, and Kiril Solovey. Efficient multi-robot motion

planning for unlabeled discs in simple polygons. IEEE Transactions on Automation Science
and Engineering, 12(4):1309–1317, 2015. doi:10.1109/TASE.2015.2470096.

2 Pankaj K. Agarwal, Tzvika Geft, Dan Halperin, and Erin Taylor. Multi-robot motion planning
for unit discs with revolving areas. Computational Geometry: Theory and Applications,
114:102019, 2023. doi:10.1016/J.COMGEO.2023.102019.

3 Pankaj K. Agarwal, Dan Halperin, Micha Sharir, and Alex Steiger. Near-optimal min-sum
motion planning for two square robots in a polygonal environment. In Symposium on Discrete
Algorithms (SODA), pages 4942–4962, 2024. doi:10.1137/1.9781611977912.176.

4 Oswin Aichholzer, Erik D. Demaine, Matias Korman, Anna Lubiw, Jayson Lynch, Zuzana
Masárová, Mikhail Rudoy, Virginia Vassilevska Williams, and Nicole Wein. Hardness of
token swapping on trees. In European Symposium on Algorithms (ESA), pages 3:1–3:15, 2022.
doi:10.4230/LIPICS.ESA.2022.3.

ISAAC 2024

https://doi.org/10.1109/TASE.2015.2470096
https://doi.org/10.1016/J.COMGEO.2023.102019
https://doi.org/10.1137/1.9781611977912.176
https://doi.org/10.4230/LIPICS.ESA.2022.3


29:14 Multi-Agent Path Finding in a Densely Packed, Bounded Domain

5 Noga Alon, Fan R. K. Chung, and Ronald L. Graham. Routing permutations on graphs
via matchings. SIAM Journal on Discrete Mathematics, 7(3):513–530, 1994. doi:10.1137/
S0895480192236628.

6 H. Alpert, R. Barnes, S. Bell, A. Mauro, N. Nevo, N. Tucker, and H. Yang. Routing
by matching on convex pieces of grid graphs. Computational Geometry, 104:101862, 2022.
doi:10.1016/j.comgeo.2022.101862.

7 Indranil Banerjee and Dana Richards. New results on routing via matchings on graphs.
In Fundamentals of Computation Theory (FCT), pages 69–81, 2017. doi:10.1007/
978-3-662-55751-8_7.

8 Bahareh Banyassady, Mark de Berg, Karl Bringmann, Kevin Buchin, Henning Fernau, Dan
Halperin, Irina Kostitsyna, Yoshio Okamoto, and Stijn Slot. Unlabeled multi-robot motion
planning with tighter separation bounds. In Symposium on Computational Geometry (SoCG),
pages 12:1–12:16, 2022. doi:10.4230/LIPICS.SOCG.2022.12.

9 Marc Baumslag and Fred S. Annexstein. A unified framework for off-line permutation
routing in parallel networks. Mathematical Systems Theory, 24(4):233–251, 1991. doi:
10.1007/BF02090401.

10 Aaron T. Becker, Sándor P. Fekete, Phillip Keldenich, Matthias Konitzny, Lillian Lin, and
Christian Scheffer. Coordinated motion planning: The video. In Symposium on Computational
Geometry (SoCG), pages 74:1–74:6, 2018. doi:10.4230/LIPICS.SOCG.2018.74.

11 Soon-Jo Chung, Aditya Avinash Paranjape, Philip Dames, Shaojie Shen, and Vijay Kumar.
A survey on aerial swarm robotics. IEEE Transactions on Robotics, 34(4):837–855, 2018.
doi:10.1109/TRO.2018.2857475.

12 Loïc Crombez, Guilherme Dias da Fonseca, Yan Gerard, Aldo Gonzalez-Lorenzo, Pascal
Lafourcade, and Luc Libralesso. Shadoks approach to low-makespan coordinated motion
planning. ACM Journal of Experimental Algorithmics, 27:3.2:1–3.2:17, 2022. doi:10.1145/
3524133.

13 Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Henk Meijer, and Christian Scheffer.
Coordinated motion planning: Reconfiguring a swarm of labeled robots with bounded stretch.
In Symposium on Computational Geometry (SoCG), pages 29:1–29:15, 2018. doi:10.4230/
LIPICS.SOCG.2018.29.

14 Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Henk Meijer, and Christian Scheffer.
Coordinated motion planning: Reconfiguring a swarm of labeled robots with bounded stretch.
SIAM Journal on Computing, 48(6):1727–1762, 2019. doi:10.1137/18M1194341.

15 Eduard Eiben, Robert Ganian, and Iyad Kanj. The parameterized complexity of coordinated
motion planning. In Symposium on Computational Geometry (SoCG), pages 28:1–28:16, 2023.
doi:10.4230/LIPICS.SOCG.2023.28.

16 Sándor P. Fekete, Phillip Keldenich, Ramin Kosfeld, Christian Rieck, and Christian Scheffer.
Connected coordinated motion planning with bounded stretch. Autonomous Agents and
Multi-Agent Systems, 37(2):43, 2023. doi:10.1007/S10458-023-09626-5.

17 Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Joseph S. B. Mitchell. Computing
coordinated motion plans for robot swarms: The CG:SHOP challenge 2021. ACM Journal of
Experimental Algorithmics, 27:3.1:1–3.1:12, 2022. doi:10.1145/3532773.

18 Sándor P. Fekete, Ramin Kosfeld, Peter Kramer, Jonas Neutzner, Christian Rieck, and
Christian Scheffer. Coordinated motion planning: Multi-agent path finding in a densely
packed, bounded domain, 2024. doi:10.48550/arXiv.2409.06486.

19 Sándor P. Fekete, Peter Kramer, Christian Rieck, Christian Scheffer, and Arne Schmidt.
Efficiently reconfiguring a connected swarm of labeled robots. Autonomous Agents and
Multi-Agent Systems, 38(2):39, 2024. doi:10.1007/S10458-024-09668-3.

20 Lenwood S. Heath and John Paul C. Vergara. Sorting by short swaps. Journal of Computational
Biology, 10(5):775–789, 2003. doi:10.1089/106652703322539097.

https://doi.org/10.1137/S0895480192236628
https://doi.org/10.1137/S0895480192236628
https://doi.org/10.1016/j.comgeo.2022.101862
https://doi.org/10.1007/978-3-662-55751-8_7
https://doi.org/10.1007/978-3-662-55751-8_7
https://doi.org/10.4230/LIPICS.SOCG.2022.12
https://doi.org/10.1007/BF02090401
https://doi.org/10.1007/BF02090401
https://doi.org/10.4230/LIPICS.SOCG.2018.74
https://doi.org/10.1109/TRO.2018.2857475
https://doi.org/10.1145/3524133
https://doi.org/10.1145/3524133
https://doi.org/10.4230/LIPICS.SOCG.2018.29
https://doi.org/10.4230/LIPICS.SOCG.2018.29
https://doi.org/10.1137/18M1194341
https://doi.org/10.4230/LIPICS.SOCG.2023.28
https://doi.org/10.1007/S10458-023-09626-5
https://doi.org/10.1145/3532773
https://doi.org/10.48550/arXiv.2409.06486
https://doi.org/10.1007/S10458-024-09668-3
https://doi.org/10.1089/106652703322539097


S. P. Fekete, R. Kosfeld, P. Kramer, J. Neutzner, C. Rieck, and C. Scheffer 29:15

21 John E. Hopcroft, Jacob T. Schwartz, and Micha Sharir. On the complexity of motion planning
for multiple independent objects; PSPACE-hardness of the warehouseman’s problem. Interna-
tional Journal of Robotics Research, 3(4):76–88, 1984. doi:10.1177/027836498400300405.

22 John E. Hopcroft and Gordon T. Wilfong. Reducing multiple object motion planning to graph
searching. SIAM Journal on Computing, 15(3):768–785, 1986. doi:10.1137/0215055.

23 Jun Kawahara, Toshiki Saitoh, and Ryo Yoshinaka. The time complexity of permutation
routing via matching, token swapping and a variant. Journal of Graph Algorithms and
Applications, 23(1):29–70, 2019. doi:10.7155/jgaa.00483.

24 Paul Liu, Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng. Coordinated motion
planning through randomized k-opt. ACM Journal of Experimental Algorithmics, 27:3.4:1–3.4:9,
2022. doi:10.1145/3524134.

25 John M. Marberg and Eli Gafni. Sorting in constant number of row and column phases on a
mesh. Algorithmica, 3:561–572, 1988. doi:10.1007/BF01762132.

26 Tillmann Miltzow, Lothar Narins, Yoshio Okamoto, Günter Rote, Antonis Thomas, and
Takeaki Uno. Approximation and hardness of token swapping. In European Symposium on
Algorithms (ESA), pages 66:1–66:15, 2016. doi:10.4230/LIPICS.ESA.2016.66.

27 Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable self-assembly in
a thousand-robot swarm. Science, 345(6198):795–799, 2014. doi:10.1126/science.1254295.

28 Erol Şahin and Alan F. T. Winfield. Special issue on swarm robotics. Swarm Intelligence,
2(2-4):69–72, 2008. doi:10.1007/s11721-008-0020-6.

29 Jacob T. Schwartz and Micha Sharir. On the piano movers’ problem: III. Coordinating
the motion of several independent bodies: the special case of circular bodies moving amidst
polygonal barriers. International Journal of Robotics Research, 2(3):46–75, 1983. doi:10.
1177/027836498300200304.

30 Kiril Solovey and Dan Halperin. On the hardness of unlabeled multi-robot motion plan-
ning. International Journal of Robotics Research, 35(14):1750–1759, 2016. doi:10.1177/
0278364916672311.

31 Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T. Walker,
Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Roman Barták, and Eli
Boyarski. Multi-agent pathfinding: Definitions, variants, and benchmarks. In Symposium on
Combinatorial Search (SOCS), pages 151–158, 2019. doi:10.1609/SOCS.V10I1.18510.

32 Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating hundreds of
cooperative, autonomous vehicles in warehouses. AI Magazine, 29(1):9–19, 2008. doi:
10.1609/aimag.v29i1.2082.

33 Katsuhisa Yamanaka, Erik D. Demaine, Takehiro Ito, Jun Kawahara, Masashi Kiyomi, Yoshio
Okamoto, Toshiki Saitoh, Akira Suzuki, Kei Uchizawa, and Takeaki Uno. Swapping labeled
tokens on graphs. Theoretical Computer Science, 586:81–94, 2015. doi:10.1016/J.TCS.2015.
01.052.

34 Hyeyun Yang and Antoine Vigneron. Coordinated path planning through local search and
simulated annealing. ACM Journal of Experimental Algorithmics, 27:3.3:1–3.3:14, 2022.
doi:10.1145/3531224.

35 Jingjin Yu and Daniela Rus. Pebble motion on graphs with rotations: Efficient feasibility
tests and planning algorithms. In International Workshop on the Algorithmic Foundations of
Robotics (WAFR), pages 729–746, 2015. doi:10.1007/978-3-319-16595-0_42.

ISAAC 2024

https://doi.org/10.1177/027836498400300405
https://doi.org/10.1137/0215055
https://doi.org/10.7155/jgaa.00483
https://doi.org/10.1145/3524134
https://doi.org/10.1007/BF01762132
https://doi.org/10.4230/LIPICS.ESA.2016.66
https://doi.org/10.1126/science.1254295
https://doi.org/10.1007/s11721-008-0020-6
https://doi.org/10.1177/027836498300200304
https://doi.org/10.1177/027836498300200304
https://doi.org/10.1177/0278364916672311
https://doi.org/10.1177/0278364916672311
https://doi.org/10.1609/SOCS.V10I1.18510
https://doi.org/10.1609/aimag.v29i1.2082
https://doi.org/10.1609/aimag.v29i1.2082
https://doi.org/10.1016/J.TCS.2015.01.052
https://doi.org/10.1016/J.TCS.2015.01.052
https://doi.org/10.1145/3531224
https://doi.org/10.1007/978-3-319-16595-0_42

	1 Introduction
	1.1 Our contributions
	1.2 Related work
	1.3 Preliminaries

	2 Reconfigurability
	3 The impact of the domain on the achievable makespan
	4 Bounded makespan for narrow instances
	4.1 Bounded makespan and stretch based on scale
	4.2 Bounded makespan and stretch based on bottleneck

	5 Conclusions and future work

