
On the Complexity of Establishing Hereditary
Graph Properties via Vertex Splitting
Alexander Firbas #

TU Wien, Austria

Manuel Sorge #

TU Wien, Austria

Abstract
Vertex splitting is a graph operation that replaces a vertex v with two nonadjacent new vertices
u, w and makes each neighbor of v adjacent with one or both of u or w. Vertex splitting has been
used in contexts from circuit design to statistical analysis. In this work, we generalize from specific
vertex-splitting problems and systematically explore the computational complexity of achieving
a given graph property Π by a limited number of vertex splits, formalized as the problem Π
Vertex Splitting (Π-VS). We focus on hereditary graph properties and contribute four groups of
results: First, we classify the classical complexity of Π-VS for graph properties characterized by
forbidden subgraphs of order at most 3. Second, we provide a framework that allows one to show
NP-completeness whenever one can construct a combination of a forbidden subgraph and prescribed
vertex splits that satisfy certain conditions. Using this framework we show NP-completeness when
Π is characterized by sufficiently well-connected forbidden subgraphs. In particular, we show that
F -Free-VS is NP-complete for each biconnected graph F . Third, we study infinite families of
forbidden subgraphs, obtaining NP-completeness for Bipartite-VS and Perfect-VS, contrasting
the known result that Π-VS is in P if Π is the set of all cycles. Finally, we contribute to the study
of the parameterized complexity of Π-VS with respect to the number of allowed splits. We show
para-NP-hardness for K3-Free-VS and derive an XP-algorithm when each vertex is only allowed to
be split at most once, showing that the ability to split a vertex more than once is a key driver of the
problems’ complexity.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases NP-completeness, polynomial-time solvability, graph theory, graph trans-
formation, graph modification

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.30

Related Version Full Version: https://arxiv.org/abs/2401.16296 [15]

Funding Alexander Firbas acknowledges support from the Vienna Science and Technology Fund
(WWTF) [10.47379/ICT22029]. Manuel Sorge acknowledges partial support from the Alexander
von Humboldt Foundation.

1 Introduction

Vertex splitting is the graph operation in which we take a vertex v, remove it from the graph,
add two descendants v1, v2 of v, and make each former neighbor of v adjacent with v1, v2, or
both. Vertex splitting has been used in circuit design [28, 31], the visualization of nonplanar
graphs in a planar way [2, 4, 11,12,24,30], improving force-based graph layouts [10], in graph
clustering with overlaps [1,3,5,14], in statistics [9,20] (see [14]), in subgraph counting [18,32],
and variants of vertex splitting in which we may make the copies adjacent play roles in graph
theory [25, 29], in particular in Fleischner’s Splitting Lemma [16] and in Tutte’s theorem
relating wheels and general three-connected graphs [33]. Such a variant of vertex splitting
can also be thought of as an inverse operation of vertex contraction, which is an underlying
operation of the graph parameters twinwidth (see, e.g., [6]) and fusion-width [7, 17].

© Alexander Firbas and Manuel Sorge;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 30; pp. 30:1–30:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alexander.firbas@tuwien.ac.at
https://orcid.org/0009-0007-2049-2144
mailto:manuel.sorge@tuwien.ac.at
https://orcid.org/0000-0001-7394-3147
https://doi.org/10.4230/LIPIcs.ISAAC.2024.30
https://arxiv.org/abs/2401.16296
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 On the Complexity of Establishing Hereditary Graph Properties via Vertex Splitting

In some of the above applications, we are given a graph and want to establish a graph
property by splitting the least number of times: In circuit design, we aim to bound the longest
path length [28, 31], when visualizing non-planar graphs we aim to establish planarity [2, 11,
12,30] or pathwidth one [4], and in statistics and when clustering with overlaps we want to
obtain a cluster graph (a disjoint union of cliques) [1, 3, 9, 14,20].

This motivates generalizing these problems by letting Π be any graph property (a family
of graphs) and studying the problem Π Vertex Splitting (Π-VS): Given a graph G and an
integer k, is it possible to apply at most k vertex split operations to G to obtain a graph in Π?
The above-mentioned graph properties are closed under taking induced subgraphs and thus we
mainly focus on this case. For graph operations different from vertex splitting the complexity
of establishing graph properties Π is well studied, such as for deleting vertices (e.g., [26, 27]),
adding or deleting edges (see the recent survey [8]), or edge contractions (e.g., [19,21–23]). In
this work, we aim to start this direction for vertex splitting, that is, how can we characterize
for which graph properties Π-VS is tractable? Our main focus here is the classical complexity,
that is, NP-hardness vs. polynomial-time solvability, but we also touch on the parameterized
complexity with respect to the number of allowed splits.

Our results are as follows. Each graph property Π that is closed under taking induced
subgraphs is characterized by a family F of forbidden induced subgraphs. We also write Π
as Free≺(F). It is thus natural to begin by considering small forbidden subgraphs. We
classify for each family F that contains graphs of order at most 3 whether Free≺(F)-VS is
polynomial-time solvable or NP-complete. Indeed, it is NP-complete precisely if F contains
only the path P3 on three vertices or a triangle K3:

▶ Theorem 1.1 (⋆). Let F be a set of graphs containing graphs of at most three vertices
each. Then, Free≺(F)-VS is NP-complete if F = {P3} or F = {K3} and is in P otherwise.

The polynomial-time results use a plethora of different approaches and also extend to
Threshold-VS and Split-VS. The NP-hardness for Π = Free≺({K3}) can be shown using
a reduction from the Vertex Cover problem. In this reduction, we replace each edge of
a graph by a K3. It is then not hard to show a correspondence between splitting a set of
at most k vertices to destroy all induced K3 and a vertex cover of size at most k for the
original graph. Together with our results below, we also obtain NP-completeness for each
connected forbidden subgraph F with four vertices except for P4s and claws K1,3, for which
the complexity remains open.

Second, the hardness construction for K3-free graphs indicates that high connectivity
in forbidden subgraphs makes Π-VS hard and thus we explored this direction further. As
the naïve approach breaks down in the general setting, we reduce from a special variant of
Vertex Cover and develop a framework for showing NP-hardness of Π-VS whenever one
can use forbidden induced subgraphs to construct certain splitting configurations (Section 3).
That is, a graph H together with a recipe specifying distinguished vertices that will be
connected to the outside of H and how to split them. Essentially, if one can provide a
splitting configuration that avoids introducing new forbidden subgraphs and that decreases
the connectivity to the outside well enough, then we can use such a configuration to give a
hardness construction. We then provide ways to obtain such splitting configurations, allowing
us to show the following hardness results, where we write Free⊆(F) to exclude the graphs
in F as subgraphs, rather than induced subgraphs:

▶ Theorem 1.2 (⋆). Let F be a family of graphs.
1. If F consists of a single biconnected graph, then Free≺(F)-VS and Free⊆(F)-VS are

NP-complete.

https://arxiv.org/abs/2401.16296
https://arxiv.org/abs/2401.16296

A. Firbas and M. Sorge 30:3

2. If all graphs in F are triconnected and the family has bounded diameter, then Free≺(F)-VS
and Free⊆(F)-VS are NP-hard.

3. If all graphs in F are 4-connected, then Free≺(F)-VS and Free⊆(F)-VS are NP-hard.
NP-completeness in item 2 and 3 holds when Free≺/⊆(F) is decidable in polynomial time.

Third, the above results do not cover the case where F is the family of all cycles, and
this must be so because Forest-VS is polynomial-time solvable [4, 13]. However, we show
that if we forbid only cycles of at most a certain length, or all cycles of odd length, then
Π-VS becomes NP-complete again. This hardness extends also to perfect graphs:

▶ Theorem 1.3 (⋆). Bipartite-VS and Perfect-VS are NP-complete.

The hardness construction for Bipartite Vertex Splitting is similar to the one for
Free≺({K3})-VS mentioned above. The nontrivial part of the proof is, given a vertex cover,
how to split vertices such that the resulting graph is two-colorable. By carefully checking all
the possible configurations of vertices in the vertex cover and splitting them in the right way,
we obtain subconfigurations that are two-colorable and whose colorings can be combined
into a two-coloring for the whole graph. The reduction for Perfect Vertex Splitting
uses five-vertex cycles instead of K3’s and the correctness additionally uses a degree-based
argument to show that the graph after splitting is also odd-anti-hole-free and thereby perfect.

Finally, we contribute to the parameterized complexity of Π-VS with respect to the
number k of allowed vertex splits. Previously it was known that Π-VS is fixed-parameter
tractable when Π is closed under taking minors [30], when Π = Free≺({P3}) [13, 14], and
when Π consists of graphs of pathwidth one or when Π is MSO2-definable and of bounded
treewidth [4]. In contrast, we observe that Free≺({K3})-VS is NP-hard even for k = 2:

▶ Theorem 1.4 (⋆). Free≺({K3})-VS is NP-complete for two splits.

The idea behind this result is to reduce from 3-Coloring on K3-free graphs: Barring the
technical details, we add a universal vertex u to a graph G, and gadgets to ensure that
the vertex u must be split. Then, the constraint that two adjacent vertices v, w in G need
to be colored differently translates to the constraint that v and w need to be adjacent to
different descendants of u. The crux herein is that one can split a vertex multiple times: In
contrast, if we instead can split each vertex at most once, resulting in the problem Shallow
Triangle-Free Vertex Splitting, then we obtain an XP algorithm:

▶ Theorem 1.5 (⋆). Shallow Triangle-Free Vertex Splitting, parameterized by
the number k of splits, admits an O(

√
2k2

· nk+3)-time XP algorithm.

The basic idea is that we can guess which vertices are split and how they are split with
respect to each other. Formulating the condition that the guess was correct can then be
done using a 2-SAT formula.

Due to space constraints, we only provide details for the dichotomy result for small
forbidden subgraphs (Theorem 1.1) and the framework for proving Theorem 1.2. All remaining
results are marked with ⋆ and are proved in the full version of this paper [15].

1.1 Preliminaries
General (Graph) Notation. For a function f : A → B, we let Domain(f) := A and
Range(f) := {b | ∃a ∈ A : f(a) = b}. For a set X, we let P(X) be its power set. Unless
stated otherwise, all graphs are undirected and without parallel edges or self-loops. Let G

ISAAC 2024

https://arxiv.org/abs/2401.16296
https://arxiv.org/abs/2401.16296
https://arxiv.org/abs/2401.16296
https://arxiv.org/abs/2401.16296

30:4 On the Complexity of Establishing Hereditary Graph Properties via Vertex Splitting

be a graph with vertex set V (G) and edge set E(G). We denote the neighborhood of a
vertex v ∈ V (G) by NG(v). The graph induced by a vertex set V ′ ⊆ V (G) is written as
G[V ′]. For u, v ∈ V (G), we write uv as a shorthand for {u, v}, G − v for G[V (G) \ {v}],
degG(v) for |NG(v)|, dG(u, v) for the length of a shortest path from u to v if there is one
and ∞ otherwise, and diam(G) for the diameter of G, that is, maxu,v∈V (G) dG(u, v). We
denote the complement of G by G. The graph Kn is the complete graph on n vertices and
Cn the cycle graph of n vertices. If a graph G is isomorphic to a graph H, we write G ≃ H.
The circumference of a graph G is the length of a longest cycle of G if G it is not acyclic
and zero otherwise. A k-subdivision of a graph G is a graph obtained by replacing each of
G’s edges uv with a path u, puv

1 , puv
2 , . . . , puv

k , v, where puv
1 , puv

2 , . . . , puv
k are new vertices. We

mark directed graphs G⃗ with an arrow. For an arc uv ∈ E(G⃗), u is the source vertex and v

is the target vertex. All directed graphs are oriented, that is, for each uv ∈ E(G⃗), we have
vu ̸∈ E(G⃗). We denote the in-neighborhood by N−

G⃗
(·) and the out-neighborhood by N+

G⃗
(·).

A directed graph G⃗ is an orientation of G if the underlying undirected graph of G⃗ is G.

Vertex Splitting. Let G be a graph, v ∈ V (G), and V1, V2 subsets of NG(v) such that
V1 ∪ V2 = NG(v). Furthermore, let v1 and v2 denote two fresh vertices, that is, {v1, v2} ∩
V (G) = ∅. Consider the graph G′ that is obtained from G by deleting v, and adding v1
and v2 such that NG′(v1) = V1 and NG′(v2) = V2. Then, we say G′ was obtained from G

by splitting v (via a vertex split). If V1 ∩ V2 = ∅, we speak of a disjoint vertex split, and if
either V1 = ∅ or V2 = ∅, we say the split is trivial. Furthermore, we say v was split into v1
and v2, and call these vertices the descendants of v. Conversely, v is called the ancestor of v1
and v2. Finally, consider an edge v1w (resp. v2w) of G′. We say that the edge vw of G was
assigned to v1 (resp. v2) in the split, and call v1w (resp. v2w) a descendant edge of vw.

A splitting sequence of k splits is a sequence of graphs G0, G1, . . . , Gk, such that Gi+1 is
obtainable from Gi via a vertex split for i ∈ {0, . . . , k − 1}. The notion of descendant vertices
(resp. ancestor vertices) is extended in a transitive and reflexive way (that is, a vertex is its
own ancester and descendant) to splitting sequences.

Later, the following shorthand notation will be useful: Let H be a graph, v ∈ V (H),
X1, X2 ⊆ NH(v) with X1 ∪ X2 = NH(v), and v1, v2 two distinct vertices. Further, let H ′ be
the graph obtained by splitting v into v1 and v2 while setting NH′(v1) = X1, NH′(v2) = X2.
Then, we identify H ′ with the shorthand Split(H, v, X1, X2, v1, v2).

Embeddings and Hereditary Graph Properties. For graphs G and H, we write Emb≺(G, H)
(resp. Emb⊆(G, H)) to denote the set of all induced embeddings of G in H (resp. subgraph
embeddings), that is, the set of all injective f : V (G) → V (H) where ∀uv ∈ V (G)2 : uv ∈
E(G) ⇐⇒ f(u)f(v) ∈ E(H) (resp. ∀uv ∈ V (G)2 : uv ∈ E(G) =⇒ f(u)f(v) ∈ E(H)). In
case Emb≺(G, H) ̸= ∅ (resp. Emb⊆(G, H) ̸= ∅), we write G ≺ H (resp. G ⊆ H) and say G

is an induced subgraph (resp. a subgraph) of H.
For a set of graphs F , we write Free≺(F) (resp. Free⊆(F)) to denote the set of graphs

where G ∈ Free≺(F) (resp. G ∈ Free⊆(F)) iff Emb≺(F, G) = ∅ (resp. Emb⊆(F, G) = ∅) for
all F ∈ F . Set F is the set of forbidden induced subgraphs (resp. forbidden subgraphs) that
characterize the hereditary (graph) property Free≺(F) (resp. Free⊆(F)).

2 Properties Characterized by Small Forbidden Induced Subgraphs

We now give an outline of the characterization of Π-VS for Π characterized by families F of
forbidden induced subgraphs with at most three vertices. The full version of this section is
given in the full version of this paper [15]. First, we can make several simple observations: If

A. Firbas and M. Sorge 30:5

one of K0, K1, K2, or K2 is forbidden and it is present in the input graph, then there is no
way to destroy these forbidden subgraphs with vertex splitting and hence we can immediately
return a failure symbol. This gives a trivial algorithm if K0 ∈ F or K1 ∈ F . Moreover, if
K2 ∈ F , then the input graph is a clique or we can return failure. Since splitting introduces
a K2, instance (G, k) is positive if and only if (G, 0) is positive, which we can check in
polynomial time. Similarly, if K2 ∈ F , then the input graph is an independent set or we can
return failure. Through splitting, we can only introduce more independent vertices and thus
(G, k) is positive if and only if (G, 0) is positive.

It follows that we can focus on families F that contain subgraphs with exactly 3 vertices,
that is, F ⊆ {P3, P3, K3, K3}. If F contains P3 or K3 but neither P3 nor K3, then we have
a similar observation as above: P3 and K3 cannot be destroyed by vertex splits and thus
(G, k) is positive if and only if (G, 0) is, which is checkable in polynomial time.

It thus remains to classify families F ⊆ {P3, P3, K3, K3} that contain P3 or K3. If
F = {P3} then Free≺(F)-VS is NP-complete by a result of Firbas et al. [14, Theorem 4.4]. If
F = {K3} then NP-completeness follows from Theorem 1.2 or Theorem 1.4, which we prove
below. However, if we combine P3 and K3 or if we add P3 and/or K3 then the problems
once again become polynomial-time solvable for subtle and different reasons:

For F = {P3, K3} all solution graphs are the union of an independent set and a matching
and there is essentially only one minimal sequence of vertex splits. In the case where
{K3, K3} ⊆ F we can apply Ramsey-type arguments to show that an algorithm only needs
to check for a constant number of different yes-instances. If P3 ∈ F we can observe that
destroying any P3 or K3 necessarily introduces a P3, which cannot be removed afterwards.

This takes care of all cases for F except F = {P3, K3}. For this case we can observe that
the graphs resulting from a splitting solution are cluster graphs, disjoint unions of cliques,
with at most two clusters (cliques). As K3 cannot be destroyed by vertex splitting, the
input graph may only contain P3s. Furthermore, P3s can only be destroyed by splitting their
midpoints. It is thus intuitive that the input graph of a yes-instance must consist of two
cliques that may overlap and, furthermore, the overlap must not exceed the number k of
allowed splits. This is indeed what we can show and, moreover, such graphs can be recognized
in polynomial time. This finishes the outline of our characterization and we obtain:

▶ Theorem 1.1 (⋆). Let F be a set of graphs containing graphs of at most three vertices
each. Then, Free≺(F)-VS is NP-complete if F = {P3} or F = {K3} and is in P otherwise.

Our polynomial-time results for split- and threshold graphs (⋆) use the observation that
destroying some of their forbidden subgraphs by splitting, namely P4, C4, or C5, necessarily
creates another forbidden subgraph C4, reducing the problem to checking whether the input
graph has the respective property. This seems to be a general principle worthy of further
exploration.

3 A General Framework to Show NP-hardness

In this section, we introduce a reduction framework and employ it to show NP-hardness
of Π-VS characterized by a type of well-connected forbidden subgraphs. For each fixed
ℓ ∈ N, consider the 2ℓ-Subdivided Cubic Vertex Cover problem: Given a tuple (G∗, k),
where G∗ is a 2ℓ-subdivision of a cubic graph G and k ∈ N, is there a vertex cover C of
G∗ with |C| ≤ k? The NP-hardness of this problem for each ℓ ∈ N follows from a result by
Uehara [34] and “folklore” techniques. Nevertheless, we provide a formal proof in the the full
version of this paper [15].

ISAAC 2024

https://arxiv.org/abs/2401.16296
https://arxiv.org/abs/2401.16296

30:6 On the Complexity of Establishing Hereditary Graph Properties via Vertex Splitting

Informally, our reduction works as follows: For a given set of forbidden subgraphs F ,
to show the NP-hardness of either Free≺(F)-VS or Free⊆(F)-VS, we reduce from 2ℓ-
Subdivided Cubic Vertex Cover to the chosen problem. Here, ℓ will depend on
the choice of F .

Consider an instance (G, k) of the selected vertex cover problem. To build an instance of
the vertex-splitting problem in question, we select some H ∈ F and designate two “endpoint”
vertices of H. Then we replace each of G’s edges with a copy of H (we call this copy an edge
gadget) and keep k the same.

It is straightforward to see that, if one can split the constructed graph at most k times
while destroying all forbidden graphs F , one can find a corresponding vertex cover of G of
size at most k: Analogous to how a vertex cover needs to “hit” each edge of G, the splits
performed in the constructed graph need to destroy all the inserted forbidden copies of H.

The converse direction, that is, to show how a vertex cover of G can be used to destroy
all forbidden subgraphs in the construction, is substantially more involved. Essentially, for
each vertex in the vertex cover, we split in a particular way the corresponding vertex in the
construction where edge gadgets meet (which we call an attachment point). This way, we
can easily destroy all “original” embeddings of H. The hard part is to ensure that apart
from these embeddings of H, by performing the construction and then the splits, no new
embeddings of forbidden subgraphs of F are introduced.

To make the above outline precise, we first introduce the concept of a splitting configuration.
Intuitively, a splitting configuration consists of a graph H, a selection of two of its vertices a

and b, which we call H’s a-end and b-end, and an encoding of a specific strategy of how to
split a and b in H.

▶ Definition 3.1. Let H be a graph, a, b ∈ V (H) distinct vertices, A1, A2 ⊆ NH(a), and
B1, B2 ⊆ NH(b), such that A1 ∪ A2 = NH(a), B1 ∪ B2 = NH(b), and A1, A2, B1, B2 are
non-empty. Then, (H, a, A1, A2, b, B1, B2) is called a splitting configuration. If A1 ∩ A2 =
B1 ∩ B2 = ∅, we speak of a disjoint splitting configuration. Furthermore, we say the splitting
configuration is based on F if H ∈ F .

Going forward, we aim to show how, depending on F , one can find a suitable ℓ and
a splitting configuration based on F such that the described reduction is guaranteed to
be correct. We now make precise how to perform the construction. To specify which way
(a-end, b-end) or (b-end, a-end) to insert the edge gadgets, we arbitrarily orient the graph G

from the Vertex Cover instance to obtain a directed graph G⃗ as the “skeleton” graph.
Furthermore, we also need a splitting configuration C (that also encodes the gadget-graph
H and its a/b-ends to use). To simplify the correctness proof later on, we explain a more
general construction than used in the reduction. That is, in addition, the construction takes
a subset S of G⃗’s vertices as input; this set S specifies that the corresponding attachment
points should be split in the construction according to the splitting configuration. When
computing the reduction, we simply set S = ∅. See Figure 1 for a concrete example.

Towards defining Constr(G⃗, C, S). Below, whenever we encounter a graph G′ that is a
copy of a graph G, we use vG′ to denote the vertex that corresponds to v ∈ V (G) in G′. We
also do likewise for sets of vertices. Let G⃗ be a directed, oriented graph without loops, C a
splitting configuration with C = (H, a, A1, A2, b, B1, B2), and S ⊆ V (G). We aim to define
the graph Constr(G⃗, C, S) and the map χConstr(G⃗,C,S) which we will use to refer to particular
subsets of vertices in the construction in the correctness proofs later on. For this we first
define how to obtain the edge gadget graphs (He for each e ∈ E(G⃗)), a map α that specifies

A. Firbas and M. Sorge 30:7

Hv2v1 ≃ Hv3v1

α(v2v1, 1, b)
α(v2v1, 2, b)

α(v2v1, 1, a)
α(v2v1, 2, a)

Hv3v4

α(v3v4, 2, b)
α(v3v4, 1, b)

α(v3v4, 1, a)
α(v3v4, 2, a)

Hv4v2

α(v4v2, 1, b)
α(v4v2, 2, b)

α(v4v2, 2, a)
α(v4v2, 1, a)

u3

H

u4

u1

u2

v1

v3

v2

v4

Constr(G⃗, C, S)

χ(v4)

χ(v1v2)

β(v4, 2)

β(v2, 1)β(v1, 1)

β(v3, 1)

β(v4, 1)

β(v1, 2) β(v2, 2) β(v3, 2)

G⃗

Figure 1 Example of Definition 3.2. The construction Constr(G⃗, C, S) is carried out for the
“skeleton” graph G⃗, the splitting configuration C given by (H, u2, {u1}, {u3}, u3, {u1}, {u2, u4}), and
the set of vertices S = {v4} marked in yellow. The edge gadget graph is H; its “a-end” is u2 and its
“b-end” is u3. The subscript of χ, Constr(G⃗, C, S), is dropped for brevity.

the attachment points inside the edge gadgets, and a map β that specifies which attachment
points stemming from distinct edge gadgets should be merged to form the final attachment
points where edge gadgets meet.

Towards defining He, with each arc e = vavb ∈ E(G⃗), we associate a fresh copy of H

and call it H ′
e. The vertices aH′

e , bH′
e and the sets of vertices A

H′
e

1 , A
H′

e
2 , B

H′
e

1 , B
H′

e
2 denote the

corresponding vertex (resp. set of vertices) of H in its copy, H ′
e. We obtain He by splitting a

subset of {aH′
e , bH′

e} in H ′
e. Whether we split zero, one, or two vertices is dictated by S (aH′

e

is split iff va ∈ S, bH′
e is split iff vb ∈ S); the precise manner vertices are split is dictated

by the splitting configuration C. More specifically, the neighborhoods of the descendant
vertices of aH′

e (resp. bH′
e) are given by A

H′
e

1 , A
H′

e
2 (resp. B

H′
e

1 , B
H′

e
2). With this, we can

specify formally how He is obtained from each e = vavb of E(G⃗):

He :=



H ′
e if va ̸∈ S, vb ̸∈ S,

Split(H ′
e, aH′

e , A
H′

e
1 , A

H′
e

2 , aHe
1 , aHe

2) if va ∈ S, vb ̸∈ S,

Split(H ′
e, bH′

e , B
H′

e
1 , B

H′
e

2 , bHe
1 , bHe

2) if va ̸∈ S, vb ∈ S, and
Split

(
Split(H ′

e, aH′
e , A

H′
e

1 , A
H′

e
2 , aHe

1 , aHe
2),

bH′
e , B∗

1 , B∗
2 , bHe

1 , bHe
2
)

otherwise,

where B∗
1 (resp. B∗

2) denote the descendant vertices of B
H′

e
1 (resp. B

H′
e

2) with respect to
the split described by Split(H ′

e, aH′
e , A

H′
e

1 , A
H′

e
2 , aHe

1 , aHe
2).1 The set {He | e ∈ E(G⃗)} of edge

gadgets provides the basic building blocks of Constr(G⃗, C, S). Note that the vertex sets of
all He with e ∈ E(G⃗) are disjoint; to construct the final graph Constr(G⃗, C, S), we join the
edge gadgets according to the structure of G⃗.

1 This additional care is required to cover the case when a and b are neighbors in H.

ISAAC 2024

30:8 On the Complexity of Establishing Hereditary Graph Properties via Vertex Splitting

For this purpose, we designate two numbered attachment points for the a-end, and two
numbered attachment points for the b-end of each He, where an attachment point is a
possibly empty subset of He’s vertices. We denote the attachment points with the map
α(·, ·, ·), defined as follows: For a given e ∈ E(G⃗), x ∈ {a, b}, i ∈ {1, 2} we set

α(e, i, x) :=


{xHe

i } if vx ∈ S,

{xHe} if vx ̸∈ S ∧ i = 1, and
∅ if vx ̸∈ S ∧ i = 2.

To join the edge gadgets, we define two equivalence classes for each v ∈ V (G⃗), stemming
from the circumstance that we have two attachment points per edge gadget end. The
set of equivalence classes is given by

⋃
v∈V (G⃗){β(v, 1), β(v, 2)}, where for each v ∈ V (G⃗)

and i ∈ {1, 2}, we define

β(v, i) :=
{(⋃

u∈N−
G⃗

(v)

α(uv, i, b)
)

∪

(⋃
u∈N+

G⃗
(v)

α(vu, i, a)
)}

.

See Figure 1 for a concrete example of α(·, ·, ·) and β(·, ·).

▶ Definition 3.2. The graph Constr(G⃗, C, S) is built by composing all (He)e∈E(G⃗) into a
single graph and merging all equivalent vertices into one representative vertex each.

Later on, we will need to refer to specific vertex-subsets of the construction: For G∗ =
Constr(G⃗, C, S) and a given edge e ∈ E(G⃗), we write χ(e)G∗ for the set of vertices in G∗ that
stem from e’s edge gadget (including the descendants of the gadgets “attachment”-vertices
which are in general not unique to e); For a given vertex v ∈ V (G⃗), we write χ(v)G∗ to refer
to either the set of the single “attachment”-vertex in G∗ corresponding to v if v ̸∈ S, and
the two descendants of said vertex otherwise. See Figure 1 for a concrete example of χ(·). A
formal definition of χ is provided in the full version of this paper [15].

Abstracting from a single instantiation of our construction, we also introduce notation to
capture the class of all possible constructions based on a given splitting configuration and an
undirected graph together with all of its vertex covers.

▶ Definition 3.3. Let G be a simple graph and C a splitting configuration. Then, we write
AllConstr(G, C) to describe the set of all graphs Constr(G⃗, C, S), where G⃗ is an orientation
of G and S ⊆ V (G) is a vertex cover of G.

3.1 Proving the Correctness of the Reduction
In this subsection, we define the property of admissibility for a splitting configuration C

and show that, when using an admissible splitting configuration for the construction, the
reduction outlined above is correct. The next subsection then deals with finding admissible
splitting configurations for various classes of hereditary properties.

The backward direction of the correctness proof, that is, extracting a vertex cover from
a splitting sequence that destroys all forbidden subgraphs, is straightforward and works
independently of the choice of C and ℓ (⋆). However, the forward direction, where we
use a vertex cover to find a splitting sequence that destroys all forbidden subgraphs in the
construction, is more difficult. Here, the choice of C and ℓ will matter. We are given a vertex
cover of the “skeleton graph” G⃗ and split all of the attachment points in the construction
according to a corresponding splitting configuration. In the final graph of the splitting

https://arxiv.org/abs/2401.16296

A. Firbas and M. Sorge 30:9

sequence, the whole construction needs to be free of embeddings of forbidden (induced)
subgraphs. This can be rephrased as two separate properties that a splitting configuration
must guarantee when applying our construction to any conceivable instance of 2ℓ-Subdivided
Cubic Vertex Cover and splitting it according to a vertex cover:

There are no embeddings of forbidden (induced) subgraphs reaching from one edge gadget
to a neighboring edge gadget.
There are no embeddings of forbidden (induced) subgraphs contained entirely within any
individual edge gadget.

In Definition 3.4, we formalize both these requirements. Note that the requirement on F to
be of bounded diameter will serve to guarantee that a suitable L can be found.

▶ Definition 3.4. Let F be a family of graphs of bounded diameter with H ∈ F and C =
(H, a, A1, A2, b, B1, B2) a splitting configuration. Furthermore, let L := 2 · maxF ∈F diam(F).
Then, C is called separating for F if for all graphs G that are an L-subdivision of some cubic
graph, we have

∀G∗ ∈ AllConstr(G, C) : ∀F ∈ F : ∀π ∈ Emb⊆(F, G∗) : ∃e ∈ E(G) : Range(π) ⊆ χG∗(e).

Furthermore, if AllConstr(K2, C) ⊆ Free⊆(F), we say that C is intra-edge embedding-free
for F . Finally, the splitting configuration C is called admissible for F if it is both separating
for F as well as intra-edge embedding-free for F .

If such an admissible splitting configuration is known to exist, the converse direction
of the correctness proof is straightforward (⋆). The following NP-hardness result follows
directly by combining both directions:

▶ Lemma 3.5 (⋆). Let F be a family of graphs of bounded diameter and let C be a splitting
configuration admissible for F . Then, Free≺(F)-VS and Free⊆(F)-VS are NP-hard.

3.2 Biconnected Forbidden Subgraphs and Beyond

We just established a method for obtaining NP-hardness for vertex-splitting problems,
provided an appropriate admissible splitting configuration exists. This subsection addresses
how to find such splitting configurations for the case of biconnected, triconnected, and
4-connected forbidden (induced) subgraphs.

Towards this goal, we define a last piece of notation: the width of a splitting configuration,
denoted by wdt(·), represents the minimum distance between the two descendants of a split
endpoint, a and b, respectively, after H has been split according to the splitting configuration.

First, we deal with biconnectedness. To that end we show that, given a splitting
configuration of a certain width that is not separating (for some family of graphs F of
bounded diameter and circumference), we can derive a new splitting configuration of increased
width (Lemma 3.6). Since we cannot apply this process ad infinitum (when restricted to F
of bounded circumference), we will arrive at a separating splitting configuration (⋆).

▶ Lemma 3.6. Let F be a family of biconnected graphs of bounded diameter and let C0 =
(H0, a0, A0

1, A0
2, b0, B0

1 , B0
2) be a disjoint splitting configuration of finite width with H0 ∈ F

that is not separating for F . Then, there exists a disjoint splitting configuration C1 =
(H1, a1, A1

1, A1
2, b1, B1

1 , B1
2) with H1 ∈ F of finite width satisfying wdt(C1) > wdt(C0).

ISAAC 2024

https://arxiv.org/abs/2401.16296
https://arxiv.org/abs/2401.16296
https://arxiv.org/abs/2401.16296

30:10 On the Complexity of Establishing Hereditary Graph Properties via Vertex Splitting

a1 b1

≥L︷ ︸︸ ︷

χG∗(v)

: G′

: G

: P ∗

x y

χG∗(vw)χG∗(vw)χG∗(uv)

u v w

...

: Range(π)

: χG∗(e) in G∗ for e ∈ E(G)

...

Figure 2 Illustration accompanying Lemma 3.6. The black ovals denote the edge gadgets in G∗,
G is displayed in green, and the underlying graph G′ is rendered in blue. The gray area shows the
range of a hypothetical embedding π of F in G∗, that has to “go around” in the construction, since
it cannot span across the intersection of edge gadgets χG∗ (v). Additionally, in yellow, the path P ∗

traversing the embedding is shown.

Proof. As C0 is not separating for F , there is a graph G that is an L-subdivision of some
cubic graph G′, G∗ ∈ AllConstr(G, C0), F ∈ F with π ∈ Emb⊆(F, G∗), as well as

L := 2 · max
F ∈F

diam(F),

Range(π) ∩ (χG∗(uv) \ χG∗(v)) ̸= ∅, and
Range(π) ∩ (χG∗(vw) \ χG∗(v)) ̸= ∅.

In other words, G∗ is a graph constructed according to Definition 3.2 using a highly subdivided
cubic graph (G) as a basis, where its edges were replaced by some forbidden graph H ∈ F ,
and was split at the “attachment points” of edge gadgets according to some vertex cover of
G′ and the splitting configuration C0. For this graph, we are provided a witness certifying
that the splitting configuration C0 is not separating with respect to F in the form of an
embedding π of F ∈ F into G∗, where the embedding of F is not constrained to a single
edge gadget, but rather uses vertices of at least two neighboring edge gadgets (of edges
uv, vw ∈ E(G′)), χG∗(uv) and χG∗(vw), such that the embedding is not entirely contained
in the shared intersection χG∗(v). Notice that π(·)−1 refers to vertices of F , whereas π(·)
refers to vertices of G∗. See Figure 2 for an illustration.

We now show that π−1(χG∗(v) ∩ Range(π)) is a vertex separator of F , that is, if these
vertices are deleted from F , the resulting graph is disconnected. We show this basically by
observing that F can be embedded into G∗ in a particular way (as witnessed by π), and
since G∗ has certain structural features, these carry over to F , leading to a contradiction.

Suppose that π−1(χG∗(v) ∩ Range(π)) is not a vertex separator of F . Then, all neighbors
of π−1(χG∗(v)∩Range(π)) in V (F)\π−1(χG∗(v)∩Range(π)) are pairwise connected via some
path in F not using any of π−1(χG∗(v)∩Range(π)) each. Select any one of these paths and call

A. Firbas and M. Sorge 30:11

it P . Without loss of generality, P starts with a vertex of π−1((χG∗(uv) \ χG∗(v))∩Range(π))
and ends in a vertex of π−1((χG∗(vw) \ χG∗(v)) ∩ Range(π)). Due to the existence of π, we
know that P ∗ := π(P) gives an isomorphic path in G∗. Since P does not use vertices of
π−1(χG∗(v) ∩ Range(π)), P ∗ does not use vertices of χG∗(v).

By construction of G∗, all paths connecting the first and last vertex of P ∗ in G∗ that are
constrained to the union of the vertex sets of both edge gadgets, that is to χG∗(uv)∪χG∗(vw),
must traverse the intersection of both edge gadgets, that is, χG∗(uv) ∩ χG∗(vw) = χG∗(v).
But P ∗ does not intersect with χG∗(v), hence it is not one of these paths. Therefore, P ∗

must traverse G∗ using edge gadgets the “other way around”, that is, not use the direct
connection.

Observe that P ∗ induces a path corresponding to the edge gadgets it traverses in G,
which in turn induces a path of length at least three in the underlying cubic graph G′. At
least one of these edges in G′, say xy, must be fully traversed by P ∗ in the corresponding part
of G∗. Thus, there are x′, y′ ∈ V (P ∗) where x′ ∈ χG∗(x) ∩ V (P ∗) and y′ ∈ χG∗(y) ∩ V (P ∗).
The distance between x′ and y′ in G∗ is at least L = 2 · maxF ∈F diam(F), the number of
times xy is subdivided in G. But then π−1(x′) and π−1(y′), vertices of F , have distance of
at least L in F as well, a contradiction to the choice of L. Thus, π−1(χG∗(v) ∩ Range(π)) is
a vertex separator of F . Furthermore, since |χG∗(v)| ≤ 2 and F is biconnected, the vertex
separator contains exactly two vertices. We shall denote its two elements by a1 and b1.

We continue exploiting the structure of F to obtain a splitting configuration satisfying the
conditions of this lemma. Let D be any connected component of F \ {a1, b1}. Suppose there
is only one edge of the form dv with d ∈ V (D) and v ∈ {a1, b1} in E(F). Then, F could not
be biconnected, for the removal of a single vertex (either a1 or b1) would suffice to render
F disconnected. Thus, there is a path P 1 from a1 to b1 in F with P 1 ⊆ V (D) ∪ {a1, b1}.
Since G∗ was constructed with respect to the splitting configuration C0, we notice that
|P 1| ≥ wdt(C0).

Let X be the vertex set of some distinct connected component of F \ {a1, b1}, and
let Y := V (F) \ ({a1, b1} ∪ X). We notice that a1b1 ̸∈ E(F), since π(a1) and π(b1) are
descendants of the same split in the construction of G∗. Furthermore, X and Y form a
partition of V (F) \ {a1, b1}. Thus, we may define a new disjoint splitting configuration C1

as follows:

C1 := (F, a1, A1
1, A1

2, b1, B1
1 , B1

2), where
A1

1 := NF (a1) ∩ X,

A1
2 := NF (a1) ∩ Y,

B1
1 := NF (b1) ∩ X, and

B1
2 := NF (b1) ∩ Y.

Remember that by definition, the width of C1 is min{dF1(a1
1, a1

2), dF2(b1
1, b1

2)}, where F1 :=
Split(F, a1, A1

1, A1
2, a1

1, a1
2) and F2 := Split(F, b1, B1

1 , B1
2 , b1

1, b1
2), such that a1

1, a1
2, b1

1, and b1
2

are fresh vertices. Consider F1: By the argument above, we deduce that there is a shortest
path through the descendant vertices of X from a1

1 to b1 in F1. Furthermore, since F \{a1, b1}
is comprised of at least two connected components, there also exists a shortest path through
one of them (using descendant vertices of Y) from b1 to a1

2. Each of the considered shortest
paths must have length at least wdt(C0), as G∗ was constructed with respect to the splitting
configuration C0. Also, note that all paths connecting a1

1 and a1
2 in F must traverse b1. Thus,

combining these paths yields that dF1(a1
1, a1

2) ≥ 2 wdt(C0). See Figure 3 for an illustration.
We proceed symmetrically for F2. Hence, we obtain that wdt(C1) > wdt(C0), and

thus C1 is a splitting configuration satisfying the required conditions. ◀

ISAAC 2024

30:12 On the Complexity of Establishing Hereditary Graph Properties via Vertex Splitting

X

≥
w
d
t(
C

0
)

Y

≥
w
d
t(C

0)

a11 a12

b1

. . .

Figure 3 The derived splitting configuration C1 has width at least 2 wdt(C0).

It remains to ensure that the separating splitting configuration is additionally intra-edge
embedding-free and therefore admissible. This property is implied when restricting F such
that when any F ∈ F is destroyed by one or two non-trivial disjoint splits, the resulting
graph is free of forbidden (induced) subgraphs. For example, each finite set of cycles satisfies
this condition, or each set {F} where F is biconnected (⋆). Finally, we can apply Lemma 3.5
to obtain NP-hardness of the corresponding vertex-splitting problems (⋆). In total, this then
concludes the proof of the first part of Theorem 1.2, i.e., Free≺/⊆({F})-VS is NP-complete
when F is biconnected. For the other parts, as we progress onward from biconnected graphs
to higher degrees of connectedness, we can use similar techniques to show NP-hardness, but
the restrictions imposed on the forbidden subgraphs relax. For the 4-connected case, no
further restrictions are required.

4 Conclusion

In summary, for large families of graph classes Π, it is the case that Π-VS is NP-hard
and, so far, nontrivial polynomial-time solvable cases are sporadic, such as Forest-VS and
Free≺(K3, P3)-VS. Hence, the line of separation between tractability and intractability is
much more jagged than in the case of Π Vertex Deletion, where a classical result by
Lewis and Yannakakis shows the problem is NP-hard for hereditary Π if and only if Π is
nontrivial, that is, Π and Π are infinite [27]. In contrast, the “complexity boundary” of
Π-VS seems much more reminiscent of the classical Π Edge Deletion problem, for which
no such characterization is known, despite extensive study since the late seventies.

Since for well-connected forbidden subgraphs our results imply hardness, a natural
direction to further trace the line of separation between tractability and intractability would
be to study more fragile forbidden subgraphs, that is, for instance, determining the complexity
of Free≺({P4})-VS and Free≺({K1,3})-VS and seeing if patterns emerge in this regime. For
the former, we can show a relation to a cograph-covering problem which we tend to believe
is NP-hard. The latter we consider fully open. On the other hand, our results pave the way
for studying broader notions of tractability instead of polynomial-time solvability such as
approximating the optimal number of splits needed and further studying the parameterized
complexity with respect to the number of splits.

In terms of approximation, our reduction for Free≺({K3})-VS implies that minimizing
the number of splits cannot be polynomial-time approximated to within an arbitrary fixed
approximation factor, that is, there is no PTAS. However, constant-factor approximations may
still exist and it would be interesting to see whether Π-VS is constant-factor approximable
in polynomial-time if Π is characterized by a finite number of forbidden induced subgraphs
or some large subfamily of such Π.

https://arxiv.org/abs/2401.16296
https://arxiv.org/abs/2401.16296

A. Firbas and M. Sorge 30:13

The parameterized complexity of Π-VS with respect to the number of splits also offers
interesting contrasts and invites further investigation: Free≺({P3})-VS is fixed-parameter
tractable [14] but Free≺({K3})-VS is para-NP-hard (Theorem 1.4). This raises the question to
classify for which hereditary classes Π problem Π-VS is fixed-parameter tractable (analogous
to the vertex-deletion version [26]). On the intractability side, it seems worthwhile to explore
generalizations of the hardness construction for Free≺({K3})-VS and constant number
of splits per vertex (Theorem 1.4): The crucial property that we have exploited in the
construction is that all constraints imposed by K3s can only be solved by mapping edges
between copies of the single vertex that we can feasibly split. If we use larger graphs instead
of K3, it is not obvious how to maintain this property. To obtain NP-hardness for a constant
number of splits per vertex is it possible to replace K3 by K4, by Kℓ for any fixed ℓ ≥ 3, or
even a fixed graph of a more general graph class?

For tractability, it is tempting to exploit the connection to Hitting Set to try and obtain
fixed-parameter tractability for Π characterized by a finite number of forbidden induced
subgraphs. However, one has to work around two problems: First, the vertices to split are
not necessarily a minimal hitting set (consider Π = K3-free and the wheel graph of six
vertices: the center vertex hits all forbidden triangles, yet at least two splits are needed to
solve the instance). One thus has to efficiently find the additional split vertices that are not
contained in an underlying minimal hitting set. Second, even after determining the vertices
to split, one has to tackle interesting, often coloring-related problems such as in the case of
Free≺({K3})-VS.

Finally, it would be interesting to carry out a complexity classification program for
Π-VS when Π is characterized by forbidden minors instead. An interesting starting point
might be the contrast between the polynomial-time solvability of Forest-VS, that is,
vertex splitting to K3-minor free graphs, and NP-hardness of Planar-VS, that is, K5 and
K3,3-minor free graphs.

References
1 Faisal N. Abu-Khzam, Judith Egan, Serge Gaspers, Alexis Shaw, and Peter Shaw. Cluster

editing with vertex splitting. In Jon Lee, Giovanni Rinaldi, and Ali Ridha Mahjoub, editors,
Proceedings of the 5th International Symposium of Combinatorial Optimization (ISCO 2018),
volume 10856 of Lecture Notes in Computer Science, pages 1–13. Springer, 2018. doi:
10.1007/978-3-319-96151-4_1.

2 Abu Reyan Ahmed, Stephen G. Kobourov, and Myroslav Kryven. An FPT algorithm
for bipartite vertex splitting. In Patrizio Angelini and Reinhard von Hanxleden, editors,
Proceedings of the 30th International Symposium Graph Drawing and Network Visualization
(GD 2022), volume 13764 of Lecture Notes in Computer Science, pages 261–268. Springer,
2022. doi:10.1007/978-3-031-22203-0_19.

3 Emmanuel Arrighi, Matthias Bentert, Pål Grønås Drange, Blair D. Sullivan, and Petra
Wolf. Cluster editing with overlapping communities. In Neeldhara Misra and Magnus
Wahlström, editors, Proceedings of the 18th International Symposium on Parameterized and
Exact Computation (IPEC 2023), volume 285 of LIPIcs, pages 2:1–2:12. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.IPEC.2023.2.

4 Jakob Baumann, Matthias Pfretzschner, and Ignaz Rutter. Parameterized complexity of
vertex splitting to pathwidth at most 1. In Proceedings of the 49th International Workshop on
Graph-Theoretic Concepts in Computer Science (WG 2023), volume 14093 of Lecture Notes in
Computer Science, pages 30–43. Springer, 2023. doi:10.1007/978-3-031-43380-1_3.

5 Matthias Bentert, Alex Crane, Pål Grønås Drange, Felix Reidl, and Blair D. Sullivan. Cor-
relation clustering with vertex splitting. In Hans L. Bodlaender, editor, Proceedings of the
19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024), volume
294 of LIPIcs, pages 8:1–8:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024.
doi:10.4230/LIPICS.SWAT.2024.8.

ISAAC 2024

https://doi.org/10.1007/978-3-319-96151-4_1
https://doi.org/10.1007/978-3-319-96151-4_1
https://doi.org/10.1007/978-3-031-22203-0_19
https://doi.org/10.4230/LIPICS.IPEC.2023.2
https://doi.org/10.1007/978-3-031-43380-1_3
https://doi.org/10.4230/LIPICS.SWAT.2024.8

30:14 On the Complexity of Establishing Hereditary Graph Properties via Vertex Splitting

6 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. Journal of the ACM, 69(1):3:1–3:46, 2022. doi:10.1145/3486655.

7 Vera Chekan and Stefan Kratsch. Tight algorithmic applications of clique-width generalizations.
In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, Proceedings of the 48th
International Symposium on Mathematical Foundations of Computer Science (MFCS 2023),
volume 272 of LIPIcs, pages 35:1–35:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPICS.MFCS.2023.35.

8 Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, and Petr A. Golovach. A survey of
parameterized algorithms and the complexity of edge modification. Computer Science Review,
48:100556, 2023. doi:10.1016/j.cosrev.2023.100556.

9 A. Davoodi, R. Javadi, and B. Omoomi. Edge clique covering sum of graphs. Acta Mathematica
Hungarica, 149(1):82–91, 2016. doi:10.1007/s10474-016-0586-1.

10 Peter Eades and Candido Ferreira Xavier de Mendonça Neto. Vertex splitting and tension-
free layout. In Proceedings of the International Symposium on Graph Drawing (GD 1995),
volume 1027 of Lecture Notes in Computer Science, pages 202–211. Springer, 1995. doi:
10.1007/BFb0021804.

11 David Eppstein, Philipp Kindermann, Stephen Kobourov, Giuseppe Liotta, Anna Lubiw,
Aude Maignan, Debajyoti Mondal, Hamideh Vosoughpour, Sue Whitesides, and Stephen
Wismath. On the planar split thickness of graphs. Algorithmica, 80:977–994, 2018. doi:
10.1007/s00453-017-0328-y.

12 Luérbio Faria, Celina M. H. de Figueiredo, and Candido Ferreira Xavier de Mendonça Neto.
SPLITTING NUMBER is NP-complete. Discrete Applied Mathematics, 108(1-2):65–83, 2001.
doi:10.1016/S0166-218X(00)00220-1.

13 Alexander Firbas. Establishing hereditary graph properties via vertex splitting. Master’s
thesis, TU Wien, 2023. doi:10.34726/hss.2023.103864.

14 Alexander Firbas, Alexander Dobler, Fabian Holzer, Jakob Schafellner, Manuel Sorge, Anaïs
Villedieu, and Monika Wißmann. The complexity of cluster vertex splitting and company. In
Henning Fernau, Serge Gaspers, and Ralf Klasing, editors, Proceedings of the 49th International
Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM 2024),
volume 14519 of Lecture Notes in Computer Science, pages 226–239. Springer, 2024. doi:
10.1007/978-3-031-52113-3_16.

15 Alexander Firbas and Manuel Sorge. On the complexity of establishing hereditary graph
properties via vertex splitting, 2024. arXiv:2401.16296, doi:10.48550/arXiv.2401.16296.

16 Herbert Fleischner. Eulerian graphs and related topics. North-Holland, 1990.
17 Martin Fürer. A natural generalization of bounded tree-width and bounded clique-width. In

Alberto Pardo and Alfredo Viola, editors, Proceedings of the 11th Latin American Symposium
on Theoretical Informatics (LATIN 2014), volume 8392 of Lecture Notes in Computer Science,
pages 72–83. Springer, 2014. doi:10.1007/978-3-642-54423-1_7.

18 Leslie Ann Goldberg and Marc Roth. Parameterised and fine-grained subgraph counting,
modulo 2. Algorithmica, 86(4):944–1005, 2024. doi:10.1007/S00453-023-01178-0.

19 Petr A. Golovach, Pim van ’t Hof, and Daniël Paulusma. Obtaining planarity by contracting
few edges. Theoretical Computer Science, 476:38–46, 2013. doi:10.1016/j.tcs.2012.12.041.

20 Jens Gramm, Jiong Guo, Falk Hüffner, Rolf Niedermeier, Hans-Peter Piepho, and Ramona
Schmid. Algorithms for compact letter displays: Comparison and evaluation. Computational
Statistics & Data Analysis, 52(2):725–736, 2007. doi:10.1016/j.csda.2006.09.035.

21 Sylvain Guillemot and Dániel Marx. A faster FPT algorithm for bipartite contraction.
Information Processing Letters, 113(22-24):906–912, 2013. doi:10.1016/j.ipl.2013.09.004.

22 Chengwei Guo and Leizhen Cai. Obtaining split graphs by edge contraction. Theoretical
Computer Science, 607:60–67, 2015. doi:10.1016/j.tcs.2015.01.056.

23 Pinar Heggernes, Pim van ’t Hof, Daniel Lokshtanov, and Christophe Paul. Obtaining a
bipartite graph by contracting few edges. SIAM Journal on Discrete Mathematics, 27(4):2143–
2156, 2013. doi:10.1137/130907392.

https://doi.org/10.1145/3486655
https://doi.org/10.4230/LIPICS.MFCS.2023.35
https://doi.org/10.1016/j.cosrev.2023.100556
https://doi.org/10.1007/s10474-016-0586-1
https://doi.org/10.1007/BFb0021804
https://doi.org/10.1007/BFb0021804
https://doi.org/10.1007/s00453-017-0328-y
https://doi.org/10.1007/s00453-017-0328-y
https://doi.org/10.1016/S0166-218X(00)00220-1
https://doi.org/10.34726/hss.2023.103864
https://doi.org/10.1007/978-3-031-52113-3_16
https://doi.org/10.1007/978-3-031-52113-3_16
https://arxiv.org/abs/2401.16296
https://doi.org/10.48550/arXiv.2401.16296
https://doi.org/10.1007/978-3-642-54423-1_7
https://doi.org/10.1007/S00453-023-01178-0
https://doi.org/10.1016/j.tcs.2012.12.041
https://doi.org/10.1016/j.csda.2006.09.035
https://doi.org/10.1016/j.ipl.2013.09.004
https://doi.org/10.1016/j.tcs.2015.01.056
https://doi.org/10.1137/130907392

A. Firbas and M. Sorge 30:15

24 Nathalie y Henr, Anastasia Bezerianos, and Jean-Daniel Fekete. Improving the readability of
clustered social networks using node duplication. IEEE Transactions on Visualization and
Computer Graphics, 14(6):1317–1324, 2008. doi:10.1109/TVCG.2008.141.

25 Anthony J. W. Hilton and C. Zhao. Vertex-splitting and chromatic index critical graphs.
Discrete Applied Mathematics, 76(1-3):205–211, 1997. doi:10.1016/S0166-218X(96)00125-4.

26 Subhash Khot and Venkatesh Raman. Parameterized complexity of finding subgraphs with
hereditary properties. Theoretical Computer Science, 289(2):997–1008, 2002. doi:10.1016/
S0304-3975(01)00414-5.

27 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980. doi:
10.1016/0022-0000(80)90060-4.

28 Matthias Mayer and Fikret Erçal. Genetic algorithms for vertex splitting in DAGs. In
Proceedings of the 5th International Conference on Genetic Algorithms (ICGA 1993), page 646.
Morgan Kaufmann, 1993. URL: https://scholarsmine.mst.edu/comsci_techreports/25/.

29 George B. Mertzios and Derek G. Corneil. Vertex splitting and the recognition of trapezoid
graphs. Discrete Applied Mathematics, 159(11):1131–1147, 2011. doi:10.1016/j.dam.2011.
03.023.

30 Martin Nöllenburg, Manuel Sorge, Soeren Terziadis, Anaïs Villedieu, Hsiang-Yun Wu, and Jules
Wulms. Planarizing graphs and their drawings by vertex splitting. In Proceedings of the 30th
International Symposium on Graph Drawing and Network Visualization (GD 2022), pages 232–
246, Cham, 2023. Springer International Publishing. doi:10.1007/978-3-031-22203-0_17.

31 Doowon Paik, Sudhakar M. Reddy, and Sartaj Sahni. Vertex splitting in dags and applications
to partial scan designs and lossy circuits. International Journal of Foundations of Computer
Science, 9(4):377–398, 1998. doi:10.1142/S0129054198000301.

32 Norbert Peyerimhoff, Marc Roth, Johannes Schmitt, Jakob Stix, Alina Vdovina, and Philip
Wellnitz. Parameterized counting and Cayley graph expanders. SIAM Journal on Discrete
Mathematics, 37(2):405–486, 2023. doi:10.1137/22M1479804.

33 W. T. Tutte. Connectivity in graphs. University of Toronto Press, 1966.
34 Ryuhei Uehara. NP-complete problems on a 3-connected cubic planar graph and their

applications. Tokyo Woman’s Christian University, Tokyo, Japan, Tech. Rep. TWCU-M-0004,
1996.

ISAAC 2024

https://doi.org/10.1109/TVCG.2008.141
https://doi.org/10.1016/S0166-218X(96)00125-4
https://doi.org/10.1016/S0304-3975(01)00414-5
https://doi.org/10.1016/S0304-3975(01)00414-5
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://scholarsmine.mst.edu/comsci_techreports/25/
https://doi.org/10.1016/j.dam.2011.03.023
https://doi.org/10.1016/j.dam.2011.03.023
https://doi.org/10.1007/978-3-031-22203-0_17
https://doi.org/10.1142/S0129054198000301
https://doi.org/10.1137/22M1479804

	1 Introduction
	1.1 Preliminaries

	2 Properties Characterized by Small Forbidden Induced Subgraphs
	3 A General Framework to Show NP-hardness
	3.1 A Generic Reduction Technique
	3.2 Biconnected Forbidden Subgraphs and Beyond

	4 Conclusion

