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Abstract
A well-studied continuous model of graphs, introduced by Dearing and Francis [Transportation
Science, 1974], considers each edge as a continuous unit-length interval of points. For δ ≥ 0, we
introduce the problem δ-Tour, where the objective is to find the shortest tour that comes within a
distance of δ of every point on every edge. It can be observed that 0-Tour is essentially equivalent
to the Chinese Postman Problem, which is solvable in polynomial time. In contrast, 1/2-Tour
is essentially equivalent to the graphic Traveling Salesman Problem (TSP), which is NP-hard but
admits a constant-factor approximation in polynomial time. We investigate δ-Tour for other values
of δ, noting that the problem’s behavior and the insights required to understand it differ significantly
across various δ regimes. On the one hand, we first examine the approximability of the problem for
every fixed δ > 0:
(1) For every fixed 0 < δ < 3/2, the problem δ-Tour admits a constant-factor approximation and

is APX-hard, while for every fixed δ ≥ 3/2, the problem admits an O(log n)-approximation in
polynomial time and has no polynomial-time o(log n)-approximation, unless P = NP.

Our techniques also yield a new APX-hardness result for graphic TSP on cubic bipartite graphs.
When parameterizing by the length of a shortest tour, it is relatively easy to show that 3/2 is the
threshold of fixed-parameter tractability:
(2) For every fixed 0 < δ < 3/2, the problem δ-Tour is fixed-parameter tractable (FPT) when

parameterized by the length of a shortest tour, while it is W[2]-hard for every fixed δ ≥ 3/2.
On the other hand, if δ is considered to be part of the input, then an interesting nontrivial
phenomenon appears when δ is a constant fraction of the number of vertices:
(3) If δ is part of the input, then the problem can be solved in time f(k)nO(k), where k = ⌈n/δ⌉;

however, assuming the Exponential-Time Hypothesis (ETH), there is no algorithm that solves
the problem and runs in time f(k)no(k/ log k).
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31:2 From Chinese Postman to Salesman and Beyond

1 Introduction

We consider a well-studied continuous model of graphs introduced by Dearing and Francis [4].
Each edge is seen as a continuous unit interval of points with its vertices as endpoints. For
any given graph G, this yields a compact metric space (P (G), d) with a point set P (G) and
a distance function d: P (G)2 → R≥0.

A prototypical problem in this setting is δ-Covering, introduced by Shier [28] for any
positive real δ. The task is to find in G a minimum set S of points that δ-covers the entire
graph, in the sense that each point in P (G) has distance at most δ to some point in S.
This problem, which is also often referred to as the continuous p-Center problem has been
extensively studied; we cite only a few examples: [14, 2, 24]. Observe that the problem differs
from typical discrete graph problems in two ways: the solution has to δ-cover every point of
every edge (not just the vertices) and the solution may (and for optimality sometimes must)
use points inside edges. How does the complexity of this problem depend on the distance
δ? First, the problem is polynomial-time solvable when δ is a unit fraction, i.e., a rational
with numerator 1, and NP-hard for all other rational and irrational δ [10, 13]. One can
show that VertexCover is reducible to 2/3-Covering and DominatingSet is reducible
to 3/2-Covering. Thus δ-Covering behaves very differently for different values of δ and
can express problems of different nature and complexity: for example, while vertex cover
is fixed-parameter tractable (FPT) when parameterized by the solution size, dominating
set is W[2]-hard. This is reflected also in the complexity of δ-Covering: at the threshold
of δ = 3/2, the parameterized complexity of the problem, parameterized by the size of the
solution, jumps from FPT to W[2]-hard [13]. Similarly, δ-Covering allows a constant factor
approximation for δ < 3/2 and becomes log-APX-hard for δ ≥ 3/2 [11]. The problem dual
to δ-Covering is δ-Dispersion, as studied for example by Shier and Tamir [28, 29]. The
task is to place a maximum number of points in the input graph such that they pairwise
have distance at least δ from each other. For this problem, δ = 2 marks the threshold where
the parameterized complexity for the solution size as the parameter jumps from FPT to
W[1]-hard [12]. Furthermore, the problem is polynomial-time solvable when δ is a rational
with numerator 1 or 2, and NP-hard for all other rational and irrational δ [9, 12]. With
δ-Covering being the continuous version of VertexCover and DominatingSet, and
δ-Dispersion being a continuous version of IndependentSet, we now turn to the natural
continuous variant of another famous problem.

We study the graphic Traveling Salesman Problem (TSP) with a positive real covering
range δ in the continuous model, which we call δ-Tour. A δ-tour T is a tour that may
make U-turns at arbitrary points of the graph, even inside edges, and is δ-covering, that
is, every point in the graph is within distance δ from a point T passes by. The task in our
problem δ-Tour is to find a shortest δ-tour. See Figure 1 for two examples of δ-tours that
cannot be described as graph-theoretic closed walks. Note that computing a shortest 0-tour
is equivalent to computing a shortest Chinese Postman tour (a closed walk going through
every edge), which is known to be polynomial-time solvable [26, Chapter 29]. Moreover, one
can observe that if every vertex of the input graph has degree at least two, then there is
a shortest 1/2-tour that visits every vertex and, conversely, any tour visiting every vertex
is a 1/2-tour. Thus, finding a shortest 1/2-tour is essentially equivalent to solving a TSP
problem on a graph, with some additional careful handling of degree-1 vertices.

Our Results. It turns out that finding a shortest δ-tour is NP-hard for all δ > 0; hence,
we present approximation algorithms. As is standard, an α-approximation algorithm is one
that runs in polynomial time and finds a solution of value within a factor α of the optimum.
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(a) A graph and a δ-tour for δ = 1. The tour δ-covers the inner part
of this graph by peeking into three edges up to the midpoint. These
three peek points are highlighted as the thick dots. The depicted
tour (the thick dashed line) has length 18, which is shortest.

uv

x

y z

(b) The depicted shortest δ-tour for
δ = 5/3 of length 2 · 1/6 travels be-
tween the two points on edge vx at
distances 1/3 and 1/6 from x.

Figure 1 Two examples of a δ-tour in a graph. On the right, see the special case of a tour fully
contained in an edge.

As our main approximation result, for every fixed δ ∈ (0, 3/2), we give constant-factor
approximation algorithms for finding a shortest δ-tour. We list our results in Table 1 and
plot the approximation ratio against δ in Figure 3. As the complementing lower bound,
we prove APX-hardness for every fixed δ ∈ (0, 3/2). Theorem 1.1 summarizes the general
behavior; more details follow.

▶ Theorem 1.1 (Constant-Factor Approximation). For every fixed δ ∈ (0, 3/2), the problem
δ-Tour admits a constant-factor approximation algorithm and is APX-hard.

The problem behaves very differently in the various regimes of δ, even within the range
of (0, 3/2), and we exploit connections to different problems for different values of δ:

Case δ ∈ (0, 1/6]. There is a close relation between our problem and the ChinesePostman-
Problem in this range, which gives a good approximation ratio. When δ approaches 0,
our approximation ratio approaches 1. See Theorem 3.3.

Case δ ∈ (1/6, 33/40). When 1/6 < δ < 1/2, the problem can be reduced to solving TSP
on metric instances, for which we can use Christofides’ 3/2-approximation algorithm [3]
to obtain the same approximation ratio for our problem. See Theorem 3.4.
A simplification of this approach for δ = 1/2 allows us to use the better 7/5-approximation
for Graphic TSP due to Sebő and Vygen [27]. See Theorem 3.5.
Finally, for 1/2 < δ < 33/40, it turns out that a 1/2-tour is a good approximation of a
δ-tour. See Theorem 3.6.

Case δ ∈ [33/40, 3/2). The problem here is closely related to a variation of the Vertex-
Cover problem, some results on which we exploit in our approximation algorithms [1, 21].
See Theorems thm:approx:ub:one:threehalves and 3.9.

The APX-hardness results are most challenging for small values of δ, where we first prove
a lower bound for a family of cycle-covering type of problems, which we call (α, β, γ, κ)-
CycleSubpartition; see Section 3.2. Our reduction developed for δ-Tour further directly
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implies a new result for graphic TSP, namely APX-hardness on cubic bipartite graphs. To
the best of our knowledge, even for graphic TSP restricted to cubic graphs without the added
restriction to bipartitness, there is only one APX-hardness result that unfortunately happens
to be flawed [19, Thm. 5.4]. In particular, the proposed tour reconfiguration argument
appears to split the original TSP tour into two disjoint ones. The issue seems to affect results
in a series of other papers [7, 8, 17, 18, 16, 15]. Fortunately, our separate approach closes
the gap and yields an even stronger hardness result.

▶ Theorem 1.2. TSP is APX-hard even on cubic bipartite graphs.

Once δ reaches 3/2, the problem δ-Tour suddenly changes character: it becomes similar
to DominatingSet, where only a logarithmic-factor approximation is possible, unless
P = NP; see Theorem 3.11 and Theorem 3.14.

▶ Theorem 1.3 (Logarithmic Approximation). For every fixed δ ≥ 3/2, the problem δ-Tour
admits an O(log n)-approximation algorithm and has no o(log n)-approximation algorithm
unless P = NP.

The above approximation ratio in fact depends on δ, which the big-O notation hides.
Thus, if δ is not fixed and is rather given as an input, this approximation guarantee can be
arbitrarily bad. We show that a polylogarithmic-factor approximation is fortunately still
possible in that setting.

▶ Theorem 1.4 (Polylogarithmic Approximation). There is a polynomial-time algorithm that,
given δ > 0 and a graph G of order n, computes a 64(log n)3-approximation of a shortest
δ-tour of G.

Furthermore, we study the problem parameterized by the solution size, which is the
length of the δ-tour. As mentioned above, when δ ≥ 3/2, then δ-Covering becomes similar
to DominatingSet and is W[2]-hard. Therefore, it is not very surprising that δ = 3/2
marks the threshold for the parameterized complexity of δ-tour as well; see Section 3.4.

▶ Theorem 1.5 (Natural Parameterization). Computing a shortest length δ-tour, parameterized
by the length of the tour, is FPT for every fixed 0 < δ < 3/2, and W[2]-hard for every fixed
δ ≥ 3/2.

It is much more surprising what happens when δ is really large, comparable to the number
of vertices. For this to make sense, we have to again consider the problem of computing a
shortest δ-tour when δ is part of the input. In this regime, the problem becomes somewhat
similar to covering the whole graph with k = ⌈ n

δ ⌉ balls of radius δ, suggesting the problem to
be solvable in large part by guessing k centers in nO(k) time. Indeed, we give an algorithm
for computing a shortest δ-tour in this runtime, and show the exponent to be essentially
optimal.

▶ Theorem 1.6 (XP Algorithm for Parameter n/δ). There is an algorithm, which, given
a connected n-vertex graph G, computes a shortest δ-tour of G in f(k) · nO(k) time where
k = ⌈n/δ⌉.

▶ Theorem 1.7 (Hardness for Parameter n/δ). There are constants α > 0 and k0 such that,
unless ETH fails, for every k ≥ k0, there is no algorithm that, given an n-vertex graph,
computes a shortest δ-tour in O(nαk/ log k) time where k = ⌈n/δ⌉. Moreover, the problem is
W[1]-hard parameterized by k.

Section 2 begins with formal notions including a thorough definition of a δ-tour. Then
Section 3 gives an extended overview of our results.
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2 Formal Definitions

General Definitions. For a positive integer n, we denote the set {1, . . . , n} by [n]. All
graphs in this article are undirected, unweighted and do not contain parallel edges or loops.
Let G be a graph. For a subset of vertices V ′ ⊆ V (G), we denote by G[V ′] the subgraph
induced by V ′. The neighborhood of a vertex u is NG(u) := {v ∈ V (G) | uv ∈ E(G)}. We
write uv for an edge {u, v} ∈ E(G). We denote by ln the natural logarithm and by log the
binary logarithm.

Problem Related Definitions. For a graph G, we define a metric space whose point set
P (G) contains, somewhat informally speaking, all points on the continuum of each edge,
which has unit length. We use the word vertex for the elements in V (G), whereas we use the
word point to denote elements in P (G). Note however, that each vertex of G is also a point
of G.

The set P (G) is the set of points p(u, v, λ) for every edge uv ∈ E(G) and every λ ∈ [0, 1]
where p(u, v, λ) = p(v, u, 1 − λ); p(u, v, 0) coincides with u and p(u, v, 1) coincides with v.
The distance of points p, q on the same edge uv, say p = p(u, v, λp) and q = p(u, v, λq),
is d(p, q) = |λq − λp|. The edge segment P (pq) of p and q then is the subset of points
{p(u, v, µ) | min{λp, λq} ≤ µ ≤ max{λp, λq}}. A pq-walk T between points p0 := p and
pz := q is a finite sequence of points p0p1 . . . pz where every two consecutive points lie
on the same edge, that is, formally, for every i ∈ [z] there are an edge uivi ∈ E(G) and
λi, µi ∈ [0, 1] such that pi−1 = p(ui, vi, λi) and pi = p(ui, vi, µi). When p and q are not
specified, we may simply write walk instead of pq-walk. The length ℓ(T ) of a walk T is∑

i∈[z] d(pi−1, pi). A pq-walk T , whose length is minimum among all pq-walks, is called
shortest. The points in the sequence defining a walk are called its stopping points. The point
set of T is P (T ) =

⋃
i∈[z] P (pi−1, pi). For some p ∈ P (T ), we say that T passes p. The

distance between two points p, q ∈ P (G), denoted as d(p, q), is the length of a shortest pq-walk,
and ∞ if no such walk exists. Further, let d(p, Q) = min{d(p, q) | q ∈ Q} for p ∈ P (G) and
Q ⊆ P (G).

A tour T is a p0pz-walk with p0 = pz. For a real δ > 0, a δ-tour is a tour where
d(p, P (T )) ≤ δ for every point p ∈ P (G). We study the following minimization problem.

Optimization Problem δ-Tour, where δ ≥ 0.

Instance A connected simple graph G.

Solution Any δ-tour T .

Goal Minimize the length ℓ(T ).

Further, we use the following notions for a tour T = p0p1 . . . pz. A tour segment of T is a
walk given by a contiguous subsequence of p0p1 . . . pz. The tour T stops at a point p ∈ P (G)
if p ∈ {p0, p1, . . . , pz} and traverses an edge uv if uv or vu is a tour segment of T . The
discrete length of a tour is z, that is, the length of the finite sequence of points representing
it. We denote the discrete length of a tour T by α(T ).

A point p ∈ P (G) is integral if it coincides with a vertex. Similarly, p = p(u, v, λ) is
half-integral if λ ∈ {0, 1

2 , 1}.

ISAAC 2024
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(d) Traversing twice.

Figure 2 The four ways a nice δ-tour defined by at least 3 points can interact with an edge uv.

The extension of a tour T = p0p1 . . . pz, denoted as ⌈T ⌉, is the integral tour where, for
every edge uv ∈ E(G) and every λ < 1, every tour segment up(u, v, λ)u is replaced by uvu.
Fruther, the truncation of a tour T , denoted as ⌊T ⌋, is the integral tour where for every
edge uv ∈ E(G), λ < 1, every tour segment up(u, v, λ)u in T is replaced by u. We note that
P (⌊T ⌋) ⊆ P (T ) ⊆ P (⌈T ⌉).

3 Overview of Results

Section 3.1 provides key technical insights. We present our approximation algorithms in
Section 3.2 and our hardness results in Section 3.3. Finally we turn to the parameterized
complexity results in Section 3.4. All details are provided in the full version of this paper.

3.1 Structural Results
Because TSP in the continuous model of graphs is studied in this paper for the first time,
we need to lay a substantial amount of groundwork. Due to the continuous nature of the
problem, it is not clear a priori how to check if a solution is a valid δ-tour, or whether it is
possible to compute a shortest δ-tour by a brute force search over a finite set of plausible
tours. We clarify these issues in this section. While some of the arguments are intuitively
easy to accept, the formal proofs are delicate with many corner cases to consider; the reader
might want to skip these proofs at first reading.

Sometimes, a δ-tour has to make U-turns inside edges to be shortest; see Figure 1a.
Indeed, it can be checked that an optimal 1-tour for the graph in Figure 1a must look exactly
as depicted. Except for a single case, it is unnecessary for a tour to make more than one
U-turn inside an edge. Indeed, the only case where a shortest tour is forced to make two
U-turns in an edge is when the tour remains entirely within a single edge; see Figure 1b for
an example. Note also that there exist degenerate cases in which a shortest δ-tour consists
of a single point.

However, unless a tour is completely contained in a single edge, we can see that there
are only four reasonable ways for a δ-tour to interact with the interior of any given edge,
illustrated in Figure 2:
(a) completely avoiding the interior,
(b) peeking into the edge from one side,
(c) fully traversing the edge exactly once from one vertex to the other, or
(d) traversing the edge exactly twice.
We call a tour that restricts itself to this reasonable behavior a nice tour. The following
result allows us to restrict our search space to nice tours.

▶ Lemma 3.1 (Nice Shortest Tours). Let G be a graph and δ a constant. Further, let a
δ-tour T in G be given. Then, in polynomial time, we can compute a δ-tour T ′ in G with
ℓ(T ′) ≤ ℓ(T ) and such that all stopping points of T ′ are stopping points of T and T ′ is either
nice or has at most two stopping points.
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Table 1 Approximation upper bounds (UB) and lower bound (LB) for δ-Tour.

δ (0, 1/6] (1/6, 1/2) 1/2 (1/2, 33/40) [33/40, 1) [1, 3/2) [3/2, ∞)
UB 1/(1−2δ) 1.5 1.4 1.4/(2 − 2δ) 4 3/(3−2δ) min{2δ, 64 log2 n} log n

Thm. 3.3 Thm. 3.4 Thm. 3.5 Thm. 3.6 Thm. 3.9 Thm. 3.8 Thms. 1.4 and 3.11
LB APX-hard APX-hard Ω(log n)

Thm. 3.12 Thm. 3.13 Thm. 3.14

Despite the continuous nature of δ-Tour, we show that we can actually study the problem
in a discrete setting instead. More precisely, we prove that there is a nice shortest δ-tour T

defined by points whose edge positions λ come from a small explicitly defined set. To show
this, the idea is that there are only three scenarios for the edge position of a non-vertex
stopping point p of T .
1. It has distance exactly δ to a vertex u. An example is that G is a long path with an end

vertex u, and p is the closest point of P (T ) to u. Then p has an edge position λ that is
the fractional part of δ.

2. It has distance exactly δ to a half-integral point p(u, v, 1
2 ). An example is that G is a

long ww′-path with a triangle uvw attached to w, and p is a closest point of P (T ) to
p(u, v, 1

2 ). Then p has an edge position λ which is the fractional part of δ + 1
2 .

3. It has distance exactly 2δ to a vertex u. An example is that G contains a long uv-path
P , p is the closest point of P (T ) − {u} on the path P to u, and T stops at u. Then p has
an edge position λ which is the fractional part of 2δ.

Any δ-tour can efficiently be modified into one that is nice and has only such edge
positions. Our technical proof uses some theory of linear programming, in particular some
results on the vertex cover polytope.

▶ Lemma 3.2 (Discretization Lemma). For every δ > 0 and every connected graph G, there
is a shortest δ-tour such that each stopping point of the tour can be described as p(u, v, λ)
with λ ∈ Sδ where Sδ =

{
0, δ − ⌊δ⌋, 1

2 + δ − ⌊ 1
2 + δ⌋, 2δ − ⌊2δ⌋

}
.

As a consequence, we can find a shortest δ-tour by a brute-force algorithm. Using some
related arguments, we can check whether a given tour actually is a δ-tour in polynomial time.

3.2 Approximation Algorithms

Here, we overview the approximation algorithms we design for different ranges of δ. Most
of our algorithms follow a general paradigm; our approach is to design a collection of core
approximation algorithms for certain key values of δ and rely on one of the following two ideas
to extrapolate the approximation ratios we get to previous and subsequent intervals. The
first main idea uses the simple fact that a δ-tour is also (δ + x)-tour where x > 0. Having an
approximation algorithm for δ-Tour, if we are able to reasonably bound the ratio between
the lengths of a shortest δ-tour and a shortest (δ + x)-tour, we obtain an approximation
algorithm for (δ + x)-Tour essentially for free. The second main idea is complementary to
the first. Namely, we show that we may also extend a given δ-tour to obtain a (δ − x)-tour
where x > 0. Again, having an approximation algorithm for the δ-Tour, if we have a good
bound on the total length of the extensions we add, we obtain an approximation algorithm
for (δ − x)-Tour.

ISAAC 2024
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Figure 3 The approximation ratio of our algorithms for δ-Tour plotted against δ.

Approximation for δ ∈ (0, 1/6]. The main idea is that a shortest Chinese Postman tour,
that is, a tour which traverses every edge, is a good approximation of a δ-tour. Let us denote
the length of a shortest δ-tour of a given graph by OPTδ-tour and the length of a shortest
Chinese Postman tour by OPTCP. To bound the ratio OPTCP/OPTδ-tour, we observe that
there is a shortest δ-tour that, for every edge uv, either traverses uv or contains the segment
of the form up(u, v, λ)u for some λ ∈ {1 − δ, 1 − 2δ}. We obtain a Chinese Postman tour
by replacing every such segment by a tour segment uvu. This bounds OPTCP/OPTδ-tour by
1/(1 − 2δ). Hence, outputting a shortest Chinese Postman tour, which can be computed in
polynomial time [5], yields an approximation ratio of 1/(1 − 2δ).

▶ Theorem 3.3. For every δ ∈ (0, 1/6], δ-Tour admits a 1/(1−2δ)-approximation algorithm.

Approximation for δ ∈ (1/6, 1/2). In this range, we rely on shortest δ-tours that satisfy
certain desirable discrete properties. In the following more precise description, we focus on
the case δ ≤ 1

4 , the construction needing to be slightly altered if 1
4 < δ ≤ 1

2 . Here, we prove
the existence of a nice shortest δ-tour T such that
(P1) T contains the tour segment up(u, v, 1 − δ)u for every edge uv ∈ E(G) incident to a

leaf vertex v (that is, degG(v) = 1) and
(P2) for every edge uv not incident to a leaf, either T traverses uv or the interaction of T

with uv consists of one of the segments up(u, v, 1 − 2δ)u or vp(v, u, 1 − 2δ)v.
We construct an auxiliary graph G′ on the above listed points with edge weights corresponding
to their distance in G. It turns out that TSP tours in G′ are in a one-to-one correspondence
with δ-tours in G satisfying properties (P1–P2). More precisely, we prove that an α-
approximate TSP tour T ′ of G′ can be efficiently turned into a δ-tour T of G of at most the
same length which yields ℓ(T ) ≤ ℓ(T ′) ≤ α · OPTTSP, where OPTTSP denotes the length of a
shortest TSP tour of G′. Then, noting that a given δ-tour of G satisfying properties (P1)
and (P2) can be converted to a TSP tour of G′ of at most the same length, we get that T is
a δ-tour with ℓ(T ) ≤ α · OPTδ-tour. The first part, that is, proving that a TSP tour T ′ of
G′ can be turned into a δ-tour of G of the same length, is based on the fact that there is a
limited number of ways a reasonable TSP tour interacts with the points corresponding to a
certain edge. More precisely, any TSP tour in G′ can easily be transformed into one which
is not longer and whose interaction with the points in any edge is in direct correspondence
with the interaction of a certain δ-tour with this edge in G.
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This lets us transfer known positive approximation results for metric TSP to δ-tour. We
may use the Christofides algorithm [3], yielding the following theorem.

▶ Theorem 3.4. For every δ ∈ (1/6, 1/2), δ-Tour admits a 3/2-approximation algorithm.

Approximation for δ = 1/2. Even though the idea from the previous section still applies
when δ = 1/2, interestingly, we obtain a better approximation ratio observing that the
problem further reduces to computing a graphic TSP tour on the non-leaf vertices, which
admits a 1.4-approximation algorithm due to Sebő and Vygen [27].

▶ Theorem 3.5. 1/2-Tour admits a 1.4-approximation algorithm.

Approximation for δ ∈ (1/2, 33/40). In this range, we show that computing a 1/2-tour
via Theorem 3.5 is a good approximation of a δ-tour. To that end, we characterize δ-tours
for δ ∈ [1/2, 1], showing that, in particular, the existence of a shortest δ-tour T such that
one of the following conditions hold for every edge uv.

(P1) T stops at both u and v, or
(P2) T stops at one of the endpoints, say u, and additionally stops at the point p(u, v, λ)

for some λ ∈ [1 − δ, 1], or T stops at the two points p(u, v, λ1) and p(x, v, λ2) for some
x ∈ NG(v) where λ1 + λ2 ≥ 2 − 2δ, or

(P3) T stops at neither u nor v but stops at two points p(x, v, λ1) and p(y, u, λ2) for some
x ∈ NG(v) and y ∈ NG(u) where λ1 + λ2 ≥ 3 − 2δ.

Let OPT1/2 and OPTδ-tour be the lengths of a shortest 1/2-tour and δ-tour in G, respec-
tively. To bound the ratio OPT1/2/OPTδ-tour, we observe that a given δ-tour Tδ can be
transformed into a 1/2-tour T1/2 by an appropriate replacement of every tour segment of Tδ

corresponding to one of the cases (P1-3).
It can be shown that these modifications then result in a tour T1/2 visiting every

non-leaf vertex of G and covering leaves by tour segments of length 1, so T1/2 is a 1/2-
tour. These modifications increase the tour length by at most a multiplicative factor of
max{ 1

2(1−δ) , 2
3−2δ } = 1/(2 − 2δ), so we have the following theorem.

▶ Theorem 3.6. For every δ ∈ (1/2, 33/40), δ-Tour admits a 1.4/(2 − 2δ)-approximation
algorithm.

Approximation for δ ∈ (33/40, 3/2). Here we show that a 1-tour provides constant-factor
approximations for δ-tours in this range. For δ > 1, as in the previous range, due to a
similar characterization of δ-tours, we can show an α-approximation algorithm for 1-Tour
to imply an α

3−2δ -approximation algorithm. For δ < 1, we show that starting from a 1-tour
and augmenting it with some tour segments results in a δ-tour of a bounded length. The
3-approximation algorithm for a 1-Tour works as follows. We exploit a connection to the
problem of computing a shortest vertex cover tour, which is a closed walk in a graph such
that the vertices this tour stops at form a vertex cover. This problem, introduced in [1],
admits a 3-approximation algorithm using linear programming (LP) techniques [21]. It is
easy to see that a vertex cover tour forms a 1-tour; however, a shortest 1-tour can be shorter
than a shortest vertex cover tour (e.g., this is the case in Figure 1a). Thus, the 1-tour we get
from an arbitrary 3-approximation for vertex cover tour is in general not a 3-approximate
1-tour. Instead, we closely examine the LP formulated by Könemann et al. [21], showing the
optimum for this LP to be a lower bound on the length of a 1-tour, which means that the
vertex cover tours we get using this approach yield 3-approximate 1-tours.
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Given a connected graph G, let F(G) be the set of subsets F of V (G) such that both
G[F ] and G[V (G) − F ] induce at least one edge. For a set F ∈ F(G), let CG(F ) denote the
set of edges in G with exactly one endpoint in F . The LP can then be formulated as follows:

Minimize
∑

e∈E(G)

ze

subject to
∑

e∈CG(F )

ze ≥ 2 for all F ∈ F(G) and

0 ≤ ze ≤ 2 for all e ∈ E(G).

Denoting the optimal objective value of the above LP defined for a fixed graph G by
OPTLP(G), the corollary below follows from [21].

▶ Theorem 3.7 (Consequence of [21, Thms. 2 and 3]). Given a connected graph G of order n,
in polynomial time, we can compute a vertex cover tour T of G with ℓ(T ) ≤ 3 · OPTLP(G).

It remains to show that OPTLP lower-bounds OPT1-tour, the length of a shortest 1-tour.
Let T1-tour = p0 . . . pk pk = p0 be a nice 1-tour of G. For every edge uv ∈ E(G), we
define Λuv :=

∑
i∈[k]:P (pi−1pi)⊆P (u,v)

dG(pi−1, pi), indicating how much the tour T1-tour spends

inside every edge uv. The vector (min(2, Λe))e∈E(G) can then be shown to be feasible
for the above LP. We observe the length of T1-tour to be at least

∑
e∈E(G) Λe, yielding

OPT1-tour ≥ OPTLP(G) and with Theorem 3.7, we obtain the following theorem.

▶ Theorem 3.8. For any δ ∈ [1, 3/2), δ-Tour admits a 3/(3 − 2δ)-approximation algorithm.

For the remaining range δ ∈ (33/40, 1), our algorithm first uses Theorem 3.8 to obtain a
3-approximate 1-tour T that is a vertex cover tour. Then, for every vertex v ̸∈ V (T ), we
choose an arbitrary neighbor u. Observe that u ∈ V (T ). Then we extend T into a tour T ′ by
replacing an arbitrary occurence of u in T by the segment up(u, v, 1 − δ)u if v is a leaf vertex
and by the segment up(u, v, (1 − δ))u, otherwise. As T ′ fulfills the characterizing properties
of a δ-tour, T ′ is a δ-tour. To bound its length, using our characterization, we observe that,
given an arbitrary δ-tour T ′′, each non-leaf vertex v of G can be associated to a segment of
T ′′ of cost at least 4(1 − δ) as T ′′ either stops at v by traversing an edge, incurring a cost of
at least 1, or makes two non-vertex stops that can be associated to v with a total cost of at
least 2(2 − δ). The previous observation can be used to show that the δ-tour we construct
achieves an approximation ratio of 4.

▶ Theorem 3.9. For any δ ∈ [33/40, 1), δ-Tour admits a 4-approximation algorithm.

Approximation for δ > 3/2. Here we design polylog(n)-approximation algorithms. We
consider two different settings: one where δ is fixed and another where δ is part of the input.
We show that each of the two problems can be reduced to an appropriate dominating set
problem in an auxiliary graph. Recall that the discretization lemma (Lemma 3.2) shows,
at a high-level, that there is a shortest δ-tour T of G whose stopping points on every edge
come from a constant-sized set. Let Pδ(G) be the set of all such points in G.

In order to define our auxiliary graph, we first describe a collection IG,δ of edge segments
of G. Namely, IG,δ is the collection of minimal edge segments each of whose whose endpoints
is either a vertex of V (G) or is of distance exactly δ to a point in Pδ(G) in G. This definition
is suitable due to three properties of IG,δ:
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(P1) If T is a δ-tour in G whose stopping points are all contained in Pδ(G), then every
I ∈ Iδ(G) is fully covered by one stopping point of T ,

(P2) every point in P (G) is contained in some I ∈ IG,δ, and
(P3) the number of segments in IG,δ is polynomial in n.
We are now ready to describe the auxiliary graph Γ(G, δ). We let V (Γ(G, δ)) consist of
Pδ(G) and a vertex xI for every I ∈ IG,δ. We further let E(Γ(G, δ)) contain edges such that
Γ(G, δ)[Pδ(G)] is a clique and let it contain an edge pxI for p ∈ Pδ(G) and I ∈ IG,δ whenever
p covers all the points in I. The main connection between δ-tours in G and dominating sets
in Γ(G, δ) is due to the following lemma, which we algorithmically exploit in both settings,
when δ ≥ 3/2 is fixed and when δ is part of the input.

▶ Lemma 3.10. Let G be a graph and δ > 1. Further, let T be a tour in G whose stopping
points are all in Pδ(G). Then T is a δ-tour in G if and only if the stopping points of T are
a dominating set in Γ(G, δ).

Approximation for fixed δ > 3/2. By computing a dominating set Y in the auxiliary
graph Γ(G, δ) using a standard log n-approximation algorithm and connecting it into a tour
of length O(δ|Y |), we obtain the main result in this setting.

▶ Theorem 3.11. For any δ ≥ 3/2, δ-Tour admits a O(log n)-approximation algorithm.

Approximation for δ as Part of the Input. The approach from the previous section does
not yield any non-trivial approximation guarantee in this setting mainly because we get an
additional factor of roughly δ when connecting the dominating set into a tour. However, we
are able to show that a polylog(n)-approximation is attainable when δ is part of the input.
The algorithm for this is based on a reduction to another problem related to dominating sets.
Namely, a dominating tree U of a given graph H is a subgraph of H which is a tree and such
that V (U) is a dominating set of H. Kutiel [22] proves that given an edge-weighted graph H,
we can compute a dominating tree of H of weight at most log3 n times the minimum weight
of a dominating tree of H.

In order to make use of this result, we now endow E(Γ(G, δ)) with a weight function w.
For all p, p′ ∈ Pδ(G), we set w(pp′) = dG(p, p′), and all other edges get a very large weight.
We now compute an approximate dominating tree U of Γ(G, δ) with respect to w. By the
definition of w, we obtain that U does not contain any vertex of V (Γ(G, δ)) − Pδ(G). It
follows that we can obtain a tour T from U that visits all points of V (U) and whose weight
is at most 2w(U). By Lemma 3.10, we obtain that T is a δ-tour in G.

Finally, in order to determine the quality of T , consider a shortest δ-tour T ∗ in G. It
follows from Lemma 3.10 that the set PT ∗ of points of Pδ(G) passed by T ∗ forms a dominating
set of Γ(G, δ). Further, we can easily find a tree in Γ(G, δ) spanning PT ∗ whose weight is at
most the length of T ∗. Hence, this tree is a dominating tree in Γ(G, δ), and Theorem 1.4
follows.

3.3 Inapproximability Results
Having presented our approximation algorithms providing a constant-factor approximation
for every δ > 0, we now rule out the existence of a PTAS by showing APX-hardness for
every δ > 0. The main challenge is to show the hardness for the range δ ∈ (0, 1/2]. A simple
subdivision argument then allows us to extend the hardness result to any δ > 0. Further, we
describe a stronger inapproximability result for δ ≥ 3/2.
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APX-Hardness for Covering Range δ ∈ (0, 1/2]. As the first step towards the APX-
hardness of δ-Tour in the range δ ∈ (0, 1/2], we introduce a new family of optimization
problems called (α, β, γ, κ)-CycleSubpartition, that is also interesting on its own.

Optimization Problem (α, β, γ, κ)-CycleSubpartition, where α, β, γ, κ ∈ R and α, β, γ > 0.

Instance A simple graph G.

Solution Any set C of pairwise vertex-disjoint cycles in G.

Goal Minimize α|C| + β|V (G) −
⋃

C∈C V (C)| + γ|V (G)| + κ.

This bi-objective problem asks us, roughly speaking, for any given graph, to cover as many
vertices as possible with a family of as few vertex disjoint cycles as possible. The precise
balance between the two opposed optimization goals is tuned by the problem parameters.
In particular, α specifies the cost for each cycle in the solution and β for each vertex left
uncovered. Disallowing uncovered vertices (or making them prohibitively expensive), yields
the classical APX-hard minimization problem CyclePartition [25, Thm 3.1, Prob. (iv)].

The two remaining parameters γ and κ may appear artificial since their only immediate
effect is to make any solution for a given graph G more expensive by the same cost γ|V (G)|+κ.
They will prove meaningful, however, for our main goal of this section. Namely, we first
establish APX-hardness for (α, β, γ, κ)-CycleSubpartition for cubic graphs in the entire
parameter range of α, β, γ, κ ∈ R, α, β, γ > 0 and then show that on cubic graphs, for every
δ ∈ (0, 1/2], we have that δ-Tour coincides with this problem for an appropriate choice of
the parameters α, β, γ, and κ. The proof uses a reduction from VertexCover on cubic
graphs, which is known to be APX-hard [19, Thm. 5.4].

For some fixed α, β, γ, κ ∈ R with α, β, γ > 0, given an instance G of cubic VertexCover,
we create a cubic graph H which we view as an instance of (α, β, γ, κ)-CycleSubpartition.
It is not difficult to obtain a packing of cycles in H with the appropriate properties from
a vertex cover in G. The other direction, that is, obtaining a vertex cover in G from a
cycle packing in H is significantly more delicate. A collection of careful reconfiguration
arguments is needed to transform an arbitrary cycle cover in H into one that is of a certain
particular shape and not more expensive. Having a cycle cover of this shape at hand, a
corresponding vertex cover in G can easily be found. As mentioned above, we now easily
obtain APX-hardness of δ-Tour for any δ ∈ (0, 1/2] and even the previously unknown
APX-hardness for cubic bipartite graphic TSP.

▶ Theorem 3.12. On cubic bipartite graphs, δ-Tour is APX-hard for δ ∈ (0, 1/2].

TSP is APX-hard even on cubic bipartite graphs.
With Theorem 3.12 at hand, we further easily obtain a hardness result for larger values

of δ. Namely, observe that for any nonnegative integer k, any constant δ and any connected
graph G, there is a direct correspondence between the δ-tours in G and the kδ-tours in the
graph obtained from G by subdividing every edge k − 1 times, yielding the following result.

▶ Theorem 3.13. The problem δ-Tour is APX-hard for any real δ > 0.

Stronger Inapproximability for Covering Range δ ≥ 3/2. For δ ≥ 3/2, we give a lower
bound of roughly ln n on the approximation ratio, asymptotically matching our upper bound.
Like for all our inapproximability results, we prove hardness for the decision version of the
problem.
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▶ Theorem 3.14. Unless P = NP, for every δ ≥ 3/2, there exists an absolute constant αδ

such that there is no P-time algorithm that, given a connected graph G and a constant K,
returns “yes” if G admits a δ-tour of length at most K and “no” if G does not admit a δ-tour
of length at most αδ log(|V (G)|)K.

We start from the inapproximability of DominatingSet on split graphs, implicitly given
by Dinur and Steurer [6, Corollary 1.5]. Given a split graph G satisfying some nontriviality
condition, we can construct a graph G′ such that the minimum size of a dominating set of G

and the length of a shortest δ-tour in G′ are closely related.

3.4 Parameterized Complexity
We examine the problem’s parameterized complexity for two parameters: tour length and n/δ.

Parameterization by Tour Length. For δ ≥ 3/2, W[2]-hardness follows by a reduction from
DominatingSet on split graphs, namely the same as used to show inapproximability for
δ ≥ 3/2. We complement this result by giving an FPT-algorithm when δ < 3/2. In fact,
we give an algorithm which allows δ to be part of the input and that is fixed-parameter
tractable for δ and maximum allowed tour length α combined.

▶ Theorem 3.15. There is an algorithm that, given a graph G and reals δ ∈ (0, 3/2) and
α ≥ 0, decides whether G has a δ-tour of length at most α in f(α, δ) · nO(1) time, for some
computable function f .

Our algorithm is based on a kernelization: we either correctly conclude that G has no
δ-tour of length at most α, or output an equivalent instance of size at most f(α, δ) for a
computable function f . The key insight is a bound on the vertex cover size of f(α, δ) for
a computable function, assuming there exists a δ-tour of length at most α. Hence we may
compute an approximation C of a minimum vertex cover, and reject the instance if C is too
large. We partition the vertices in V (G) − C by their neighborhood in the vertex cover C.
Now if a set S of the partition has size larger than f(α, δ) for a computable function f , then
deleting a vertex of S yields an equivalent instance.

XP Algorithm for Large Covering Range. We here give an overview of the proof of
Theorem 1.6. The crucial idea is that, if T is a δ-tour, then, while the length of T can be
linear in n, there exists a set of points stopped at by this tour that covers all the points in
P (G) and whose size is bounded by a function depending only on k where k = n

δ . Intuitively
speaking, the remainder of the tour is needed to connect the points in this set, but not to
actually cover points in P (G). Therefore, these segments connecting the points in the set can
be chosen to be as short as possible. These observations can be subsumed in the following
lemma, crucial to the proof of Theorem 1.6.

▶ Lemma 3.16. Let G be a connected graph of order n, δ a positive real, k = ⌈ n
δ ⌉ and

suppose that n ≥ 12k. Further, let T be a shortest δ-tour in G. Then there exists a set
Z ⊆ P (G) of points stopped at by T with |Z| ≤ 12k such that for every point p ∈ P (G), we
have dG(p, Z) ≤ δ.

With Lemma 3.16 at hand, Theorem 1.6 follows easily. Assuming that the minimum
size requirement in Lemma 3.16 is met, due to the discretization lemma (Lemma 3.2), there
exists a shortest tour only stopping at points from a set of size O(n2). We then enumerate
all subsets of size at most 12k and for each of these sets, compute a shortest tour passing
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through its elements and check whether it is a δ-tour. It follows from Lemma 3.16 that the
shortest tour found during this procedure is a shortest δ-tour. In the proof of Lemma 3.16,
we define Z as the union of two sets Z1 and Z2. The set Z1 is an inclusion-wise minimal set
of points stopped at by T that covers all points in P (G) whose distance to T is at least n

2k .
For each z ∈ Z1, by definition, there exists such a point pz for which dG(pz, z′) > δ holds
for all z′ ∈ Z − z. Now for every z ∈ Z1, we choose a shortest walk from pz to z. It turns
out that these walks do pairwise not share vertices of V (G) and each of them contains O( n

k )
vertices of V (G). It follows that |Z1| = O(k). We now walk along ⌊T ⌋ and, roughly speaking,
create Z2 by adding every n

3k -th vertex stopped at by ⌊T ⌋. It turns out that Z2 covers all
points in P (G) whose distance to T is at most n

2k . Further, as the length of ⌊T ⌋ is bounded
by 2n, we have |Z2| = O(k).

W[1]-Hardness for Large Covering Range. Given the XP-time algorithm running in time
f(k) · nO(k) designed for the regime δ = Ω(n), it is natural to ask whether there is an
FPT-time algorithm for the same parameter k := ⌈ n

δ ⌉. The answer is no. We show W[1]-
hardness and the running time of our algorithm for Theorem 1.6 to be close to optimal
under the Exponential Time Hypothesis (ETH). The hardness is based on the fact that
BinaryCSP on cubic constraint graphs cannot be solved in time f(k) · no(k/ log k) under
ETH; see [20, 23]. (The exact formulation we use is stronger and gives a lower bound for
every fixed k.) An instance of BinaryCSP is a graph G with k edges, where the nodes
represent variables taking values from a domain Σ = [n], and every edge is associated with a
constraint relation Ci,j ⊆ Σ × Σ over the two variables i and j. The instance is satisfiable if
there is an assignment to the variables A : V (G) → Σ such that (A(i), A(j)) ∈ Ci,j for every
constraint relation Ci,j .

In our reduction, we construct k gadgets corresponding to the constraints, with each
gadget having some number of portals. Each gadget has multiple possible states corresponding
to the satisfying assignments of its two constrained variables. If two constraints share a
variable, then the corresponding gadgets are connected by paths between appropriate portals.
These connections ensure that the selected states of the two gadgets agree on the value of the
variable. It is now easy to find a tour in the auxiliary graph given a satisfying assignment
for the formula. On the other hand, the construction is designed so that all tours in the
auxiliary graph are in a certain shape, allowing to obtain an assignment from them.
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