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Abstract
In the NP-hard Weighted Cluster Deletion problem, the input is an undirected graph G = (V, E)
and an edge-weight function ω : E → N, and the task is to partition the vertex set V into cliques
so that the total weight of edges in the cliques is maximized. Recently, it has been shown that
Weighted Cluster Deletion is NP-hard on some graph classes where Cluster Deletion, the
special case where every edge has unit weight, can be solved in polynomial time. We study the
influence of the value t of the largest edge weight assigned by ω on the problem complexity for
such graph classes. Our main results are that Weighted Cluster Deletion is fixed-parameter
tractable with respect to t on graph classes whose graphs consist of well-separated clusters that are
connected by a sparse periphery. Concrete examples for such classes are split graphs and graphs that
are close to cluster graphs. We complement our results by strengthening previous hardness results
for Weighted Cluster Deletion. For example, we show that Weighted Cluster Deletion is
NP-hard on restricted subclasses of cographs even when every edge has weight 1 or 2.
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1 Introduction

Graph-based clustering is one of the core applications of graphs in computer science. This
has led to a vast number of different algorithms and problem formulations for this task. One
of the most fundamental problem formulations in this context is Cluster Deletion. In
this problem, we are given an undirected graph G and ask for a partition of its vertex set into
cliques that maximizes the total number of edges inside the cliques. Cluster Deletion
is NP-hard [26] which has motivated the application of algorithmic approaches for hard
problems to Cluster Deletion. In particular, the parameterized complexity of Cluster
Deletion has been intensively studied [3, 12, 14, 16, 19, 22, 28].

Another closely related line of research is to study the complexity of Cluster Deletion
on restricted classes of input graphs.1 On the positive side, it was shown, for example,
that Cluster Deletion can be solved in polynomial time on subcubic graphs [22], on
cographs [13], on the more general class of P4-sparse graphs [4], on interval graphs [23],
and on several classes that generalize split graphs [23]. On the negative side, it was shown,
for example, that Cluster Deletion remains NP-hard on planar graphs [15], on P5-free

1 For a definition of all considered graph classes, see Section 2.
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32:2 When Can Cluster Deletion with Bounded Weights Be Solved Efficiently?

chordal graphs [5], and on C4-free graphs with maximum degree 4 [22]. For graph classes
defined by a single forbidden induced subgraph with at most four vertices a dichotomy into
NP-hard and polynomial-time solvable cases is known [16].

All in all, the complexity of Cluster Deletion is fairly well-understood by now. In
many applications, however, we are interested in the edge-weighted version of the problem
where the aim is to maximize the total weight of the edges inside the clusters. This problem,
called Weighted Cluster Deletion, turns out to be NP-hard for many graph classes
where Cluster Deletion is polynomial-time solvable. For example, it has been shown that
Weighted Cluster Deletion is NP-hard on cographs [5] and on split graphs [5]. Perhaps
surprisingly, the problem is even NP-hard on split graphs where the independent set contains
three vertices and every vertex of the independent set is adjacent to every vertex of the
clique [19]. A closer inspection of the NP-hardness proofs shows, however, that the reductions
construct instances where the maximum edge weight is unbounded. For example, in the
above-mentioned reduction for the restricted class of split graphs with a periphery of constant
size, the maximum edge weight is n2 where n is the number of vertices in the constructed
instance. In the vein of the deconstruction of hardness proofs [21], this observation begs
the question of whether one can solve instances with bounded weights more efficiently.
In particular, we would like to either identify graph classes on which parameterizing the
maximum edge weight t in the input graph leads to FPT-algorithms or strengthen previous
NP-hardness results to also hold in the case when the maximum edge weight is constant.

Our Results. Our results are summarized in Table 1. In a nutshell, we show that we
obtain FPT-algorithms with respect to t on graph classes where large cliques are rather
well-separated from each other. The first example of such an FPT-algorithm for t is obtained
for the class of split graphs. Another class for which we can show fixed-parameter tractability
is the class of almost cluster graphs. More precisely, we provide an FPT-algorithm for the
combined parameter cvd + t, where cvd is the vertex deletion distance of the input graph
to cluster graphs. We then generalize these results to obtain algorithms for graphs with a
bounded treewidth modulator to cliques (this generalizes split graphs) and for graphs which
are almost split cluster graphs, that is, for the combined parameter scvd + t, where scvd is
the vertex deletion distance to graphs where every connected component is a split graph.

On the negative side, we show that even very restricted cases of Weighted Cluster
Deletion remain NP-hard when all edges have weight 1 or 2. More precisely, we show
this hardness for complete tripartite graphs and complete unipolar graphs, a subclass of the
previously considered stable-like and laminar-like graphs which allow for polynomial-time
algorithms in the unweighted case [23].

In addition, we show that it is presumably impossible to strengthen our FPT-algorithms
for the parameter t to polynomial-size problem kernels. Finally, we show that Weighted
Cluster Deletion is NP-hard on proper interval graphs, albeit with unbounded edge
weights.

Due to lack of space, some proofs, marked by (*), are deferred to a full version of this
work.

2 Preliminaries and Basic Observations

Notation. For a, b ∈ N with a ≤ b we write [a, b] for the set {i ∈ N | a ≤ i ≤ b}
and [n] := [1, n]. We consider undirected graphs G = (V, E) with vertex set V and edge set E.
The neighborhood of a vertex v ∈ V is defined as NG(v) := {u ∈ V | {u, v} ∈ E} and for a set
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Table 1 An overview over the (parameterized) complexity of WCD on the considered graph
classes. Here, nd denotes the neighborhood diversity of the input graph, and cvd denotes its cluster
vertex deletion number. For the first three classes, FPT refers to parameterization by maximum
edge weight t plus either nd or cvd, for the other classes FPT refers to parameterization by t.

Graph class Unweighted Weighted Bounded Max Weight
nd ≤ 2 P [19] NP-h [19] FPT Corollary 4.8
nd ≥ 3 FPT [19] NP-h [19] NP-h Theorem 3.6
bounded cvd FPT [14] NP-h (for cvd = 2) [19] FPT Theorem 5.3
interval P [23] NP-h [5] NP-h Proposition 3.4
proper interval P [5] NP-h Theorem 3.5 ?
complete unipolar P [23] NP-h [19] NP-h Proposition 3.4
co-graph P [13] NP-h [5] NP-h Proposition 3.4
split P [5] NP-h [5] FPT Theorem 4.6

of vertices S ⊆ V , we define NG(S) := (
⋃

v∈S NG(v)) \ S and N∩
G(S) := (

⋂
v∈S NG(v)). The

closed neighborhood of a vertex v ∈ V is defined as NG[v] := NG(v) ∪ {v} and for a set of
vertices S ⊆ V , we define NG[S] :=

⋃
v∈S NG[v]. When the graph G is clear from the context

we may omit the subscript. The degree of a vertex v is |N(v)|. For a vertex set S ⊆ V we
write E(S) := {{u, v} ∈ E | u, v ∈ S} and denote with G[S] := (S, E(S)) the subgraph of G

induced by S. Moreover, we define G − S := G[V \ S].

Graph Classes and Graph Parameters. A vertex set K ⊆ V that induces a complete graph
is called a clique. A vertex set I ⊆ V that induces a graph with no edges is called an
independent set. A graph G = (V, E) is a cluster graph if each connected component of G

consists of a clique. A graph is a cograph if it does not contain the P4, the path on four vertices,
as an induced subgraph. A graph is an interval graph if it is the intersection graph of some
set of intervals on the real line. A graph is a proper interval graph if additionally, none of the
intervals is properly contained in another one of the intervals. A graph G = (V, E) is unipolar
if V can be partitioned into C and P such that C is a clique and G[P ] is a cluster graph [11].
We refer to C as the core and to P as the periphery of G. Furthermore, G is complete
unipolar if each vertex of C is adjacent to each vertex of P . A unipolar graph G = (V, E) is
a split graph if P is an independent set. Moreover, G is a dense split graph if each vertex
of C is adjacent to each vertex of P . A graph G is a split cluster graph if every connected
component is a split graph [6]. We note the following relations between these graph classes.
A complete unipolar graph is a cograph and an interval graph but not necessarily a proper
interval graph. Also, every cluster graph is a split cluster graph.

A vertex set S ⊆ V is a vertex cover for a graph G if the graph G − S does not contain
any edges. The vertex cover number vc(G) is the size of a smallest vertex cover for G. We
say that a vertex set M ⊆ V is a cluster modulator for G if G − M is a cluster graph.
The cluster vertex deletion number cvd(G) of G is defined as the size of the smallest cluster
modulator for G. The relation ∼ with u ∼ v if N(u) = N(v) or N [u] = N [v] is an equivalence
relation and the neighborhood diversity nd(G) is the number of equivalence classes of this
relation. The treewidth of a graph G, denoted tw(G), is a parameter that, informally speaking,
measures how close the graph is to a tree. For a formal definition of treewidth refer to [8].
We make use of the fact that vc(G) ≥ tw(G) for every graph G. If the graph G is clear from
context, we omit it from the parameter notation.

ISAAC 2024



32:4 When Can Cluster Deletion with Bounded Weights Be Solved Efficiently?

Parameterized Complexity. An algorithm for a parameterized problem L is an FPT-
algorithm, if there is a computable function f such that for every instance (I, k) the
algorithm decides in f(k) · |I|O(1) time whether (I, k) is a yes-instance of L. A polynomial
(many-one) kernel for L is an algorithm that computes for each instance (I, k) in polynomial
time an equivalent instance (I ′, k′) with (|I ′| + k′) ∈ kO(1). A polynomial Turing kernel
for L is an algorithm that decides whether a given instance (I, k) is a yes-instance of L in
time (|I| + k)O(1), when given access to an oracle that decides membership in L for any
instance (I ′, k′) with (|I ′| + k′) ∈ kO(1) in constant time.

A polynomial parameter transformation is a reduction from a parameterized problem A

to a parameterized problem B that transforms each instance (I, k) of A in polynomial time
into an equivalent instance (I ′, k′) of B with k′ ∈ kO(1). Note that polynomial parameter
transformations are transitive. Moreover, if there is a polynomial parameter transformation
from A to B, where the unparameterized versions of A and B are in NP, then A admits a
polynomial (many-one/Turing) kernel if B admits a polynomial (many-one/Turing) kernel.
The Exponential Time Hypothesis (ETH) conjectures that 3-SAT cannot be solved in
2o(|F |) time where F is the input formula. For further background on these definitions, we
refer the reader to the standard monographs [8, 10].

Clusterings and Formal Problem Definition. A clustering C of a graph G = (V, E) is
a partition of V into subsets C1, . . . , Cr such that each Ci is a clique. For a clustering C
of G = (V, E) we denote with E(C) the set of edges with both endpoints in the same
cluster of C. Let ω : E → N be an edge-weight function. For a set of edges E′ ⊆ E, we
define ω(E′) :=

∑
e∈E′ ω(e) and denote with ω(C) := ω(E(C)) the weight of a clustering C.

Weighted Cluster Deletion (WCD)
Input: A graph G = (V, E), a weight function ω : E → N and a nonnegative

integer k.
Question: Is there a clustering C for G such that ω(C) ≥ k?

Some of our algorithms use brute force to find a clustering for a small subgraph of the
input graph and then extend this clustering in an optimal way. This is formalized as follows.
Let G = (V, E) be a graph, let S ⊆ V and let C and CS be clusterings for G and G[S],
respectively. We say that C extends the clustering CS if for each cluster C of CS , there is a
cluster C ′ ∈ C such that C ′ ∩ S = C. That is, restricting the clustering C to the vertices of S

results in CS . Note that C may contain clusters that contain no vertex of S.

Basic Observations. A clique C in a graph G = (V, E) is called a critical clique if all
vertices of C have the same closed neighborhood. Furthermore, C is a closed critical clique if
additionally N [C] is a clique in G.

▶ Observation 2.1. Let G = (V, E) be a graph, let ω : E → [1, t] be an edge-weight function,
and let C be a closed critical clique in G. Then, each optimal clustering for G and ω

extends {C}.

This can be seen as follows. Let C be a clustering for G which contains two distinct clusters A

and B that both contain vertices of C. Note that A ∪ B is a clique in G, since A ∪ B ⊆ N [C]
and C is a closed critical clique. Hence, replacing the clusters A and B by A ∪ B yields a
better clustering.

Note that if we try to find a clustering C that extends a clustering CS of some subgraph G[S],
then no edges between vertices of distinct clusters of CS are contained in C, due to the definition
of extending clusterings.
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▶ Observation 2.2. Let G = (V, E) be a graph, let S ⊆ V , let CS be a clustering of G[S],
and let G′ be the graph obtained from G by removing all edges between vertices of distinct
clusters of CS. Then G and G′ share the same clusterings that extend CS.

Hence, in the following, whenever – for a WCD instance and a clustering CS for some
subgraph G[S] – we search for a clustering that extends CS , we may implicitly assume
that G[S] is a cluster graph. In the following, we show that we can further merge each cluster
of CS to a single vertex by increasing the largest assigned edge weight.

Let G = (V, E) be a graph and let C be a clique in G. Then, merging C in G results
in the graph G′ = (V ′, E′), where C is replaced by a single vertex vC ∈ C with neighbor-
hood NG′(vC) := N∩

G(C). In other words, the vertex vC keeps only the common neighborhood
of C as neighbors.

▶ Definition 2.3. Let G = (V, E) be a graph, let ω : E → [1, t] be an edge-weight function, and
let C be a clique in G. The weighted merge of C in G yields the graph G′ = (V ′, E′) obtained
from merging C in G with edge-weight function ω′ defined as follows: For each edge e ∈ E′

which is not incident with vC , set ω′(e) := ω(e), and for each edge e = {vC , w} ∈ E′, set
ω′({vC , w}) :=

∑
v∈C ω({v, w}).

Note that the largest edge weight assigned by ω′ is at most |C| · t and that each edge not
incident with vC is assigned a weight of at most t by ω′.

Similarly, for a vertex set S ⊆ V where G[S] is a cluster graph with collection of connected
components CS , we define the clustering-merge of CS for G and ω as the consecutive merges
of all clusters of CS in G and ω. Note that the largest edge weight in the resulting instance is
at most t · maxC∈CS

|C|, since G contains no edge with endpoints in distinct clusters of CS .

▶ Lemma 2.4 (*). Let G = (V, E) be a graph, let ω : E → [1, t] be an edge-weight function,
and let S ⊆ V such that G[S] is a cluster graph with collection of connected components CS.
Moreover, let (G′ = (V ′, E′), ω′) be the graph and edge-weight function obtained by the
clustering-merge of CS for G and ω. There is a bijection π between the clusterings of G′ and
the clusterings of G that extend CS, such that for every clustering C′ of G′

ω′(C′) = ω(π(C′)) − ω(CS) and
π(C′) extends C′.

The above lemma implies in particular, that we can obtain the optimal clustering of a
graph G that extends some clustering CS for some G[S] by performing the clustering-merge
and then computing the optimal clustering in the remaining instance.

3 Hardness Results

In this section, we present a reduction from Uniform Exact Cover to WCD on dense
split graphs which implies several hardness results for WCD.

Uniform Exact Cover
Input: A set X and a collection F of size-d subsets of X.
Question: Is there a subset F ′ ⊆ F such that every element of X occurs in

exactly one member of F ′?

Note that we can assume that |X| is divisible by d, as otherwise the instance at hand is a
trivial no-instance. Our reduction is a generalization of a known reduction from X3C [5],
that is, Uniform Exact Cover with d = 3.

ISAAC 2024



32:6 When Can Cluster Deletion with Bounded Weights Be Solved Efficiently?

Construction. Let I = (X, F) be an instance of Uniform Exact Cover, where d is
the size of each set of F and n := |X| is divisible by d. We construct from I an instance
I ′ = (G, ω, k) of WCD as follows. Starting from an empty graph, we add to G a vertex vx

for each element x ∈ X and make the set VX := {vx | x ∈ X} a clique with ω(e) = 1 for
each edge e between two vertices in VX . For each set F ∈ F , we add a vertex vF together
with an edge {vF , vx} with ω({vF , vx}) = 2n for each x ∈ F and an edge {vF , vx} with
ω({vF , vx}) = n for each x ∈ X \ F . We define VF := {vF | F ∈ F}. Note that VF is an
independent set. We finish the construction by setting k := n · (2n + 1

d ·
(

d
2
)
).

Observe that the graph G in the construction above is a dense split graph with core VX

and periphery VF . Moreover, t := 2n is the highest weight present in G and the core VX

consists of n vertices. Since the core of a split graph is a vertex cover, t+vc ∈ O(n), where vc
denotes the vertex cover number of G. Moreover, G contains exactly |X| + |F| vertices.

Next, we show the equivalence of the two instances I and I ′.

▶ Lemma 3.1. I is a yes-instance of Uniform Exact Cover if and only if I ′ is a
yes-instance of WCD.

Proof. (⇒) Let I be a yes-instance and let F ′ be a solution for I. For each F ∈ F ′ let CF =
{vx ∈ VX | x ∈ F} ∪ {vF }. Consider the clustering C := {CF | F ∈ F ′} ∪ {{vF } | F /∈ F ′}.
Since F ′ is a solution for I, each x ∈ X is covered by exactly one set F ∈ F ′ and thus each
vertex of VX is in exactly one set of C. Note that VX , and thus also each subset of VX , is
a clique and each vertex vF is adjacent to each vertex in VX . Therefore, each CF ∈ C is a
clique and C is a valid clustering. Moreover, we have ω(E(C)) = n · (2n + 1

d ·
(

d
2
)
). Hence, I ′

is a yes-instance.
(⇐) Let I ′ be a yes-instance and let C be an optimal solution for I ′. Let EC(X)

denote the edges that are preserved in C between vertices of VX and let EC(F) denote
the edges that are preserved in C between a vertex of VX and a vertex of VF . Clearly,
ω(E(C)) = ω(EC(X)) + ω(EC(F)).

We now show that each vx ∈ VX is part of a cluster containing a vertex vF ∈ VF such
that x ∈ F . Let x ∈ X and let Cx ∈ C be the cluster containing vx. Note that Cx can
contain at most one vertex of VF , since VF is an independent set. This implies that there is
at most one edge of EC(F) incident with vx. Suppose that Cx does not contain a vertex vF

such that x ∈ F . If an edge {vx, vF ′} ∈ EC(F) exists, it has weight at most n, since x /∈ F ′.
Let F ∈ F be an arbitrary set such that x ∈ F and let CF denote the cluster of C that
contains vF . Moreover, let C′ be the clustering obtained by moving vertex vx in the cluster CF .
Note that C′ is a valid clustering, since each vertex of VX is adjacent to every other vertex
of G, and that the weight of the edge {vx, vF } is 2n. Since x ∈ F and vx has at most n − 1
neighbors in Cx ∩ VX , we have

ω(C′) − ω(C) ≥ ω({vx, vF }) −
∑

w∈Cx\{vx}

ω({vx, w}) ≥ 2n − (n + |Cx ∩ VX |) > 0,

which is a contradiction to C being an optimal solution.
Thus, we can now assume that ω(EC(F)) = n · 2n. Furthermore, since each vx is part

of a cluster containing a vertex vF ∈ VF with x ∈ F , and each F ∈ F contains exactly d

elements, at most d vertices from VX can be in the same cluster in C. More precisely, for
each x ∈ X let Cx ∈ C be the cluster containing vx. We have |(Cx ∩ VX) \ {vx}| ≤ d − 1 for
each x ∈ X.

Recall that edges between vertices of VX have weight 1 and each edge in EC(X) has
two endpoints in VX . If for some x ∈ X we have |(Cx ∩ VX) \ {vx}| < d − 1, then

ω(EC(X)) =
∑

x∈X
|(Cx∩VX )\{vx}|

2 < n·(d−1)
2 and hence ω(E(C)) = ω(EC(X)) + ω(EC(F)) <

n·(d−1)
2 + n · 2n = k, a contradiction to C being a solution.
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Therefore, for each x ∈ X we have |(Cx ∩ VX) \ {vx}| = d − 1. Hence, each cluster C of C
that contains at least one vertex of VX fulfills C = {vF } ∪ {vx | x ∈ F} for some set F ∈ F .
Thus, the set F ′ := {F ∈ F | CF ∩ VX ̸= ∅, CF ∈ C, vF ∈ CF } contains all elements in X

exactly once and is a solution for I ′. ◀

Lemma 3.1 and the bound on t and the vertex cover number of G directly give the
following.

▶ Proposition 3.2. There is a polynomial parameter transformation from Uniform Ex-
act Cover with parameter n (size of the universe) to WCD on dense split graphs with
parameter t + vc, where vc denotes the vertex cover number of the input graph.

Due to Lemma 3.1 and the fact that Uniform Exact Cover cannot be solved in
2o(|X|+|F|) · |I|O(1) time, unless the ETH fails [20]2, we also derive the following.

▶ Corollary 3.3. Even on dense split graphs, WCD cannot be solved in 2o(n+t) · nO(1) time,
unless the ETH fails.

We can adapt the construction above in order to show that WCD is hard on a restricted
subclass of cographs even if all edges have weight 1 or 2.

▶ Proposition 3.4. On complete unipolar graphs WCD remains NP-hard even if t = 2 and
cannot be solved in 2o(cvd+t) · nO(1) time, unless the ETH fails.

Proof. To show the statement, we adapt the construction above so that we obtain from I ′ =
(G = (V, E), ω, k) an equivalent instance I ′′ = (G′ = (V ′, E′), ω′, k′) of WCD where G′

is a complete unipolar graph and all edges have weight 1 or 2. We obtain I ′′ from I ′ as
follows. Each vertex vF ∈ VF is replaced by a clique KF of size n with ω′({u, v}) = 1 for
each u, v ∈ KF . We add edges such that KF is fully connected to VX and set ω′({u, vx}) = 2
for each u ∈ KF and vx ∈ VX with ω({vF , vx}) = 2n as well as ω′({u, vy}) = 1 for
each u ∈ KF and vy ∈ VX with ω({vF , vy}) = n. Moreover, we set k′ = k + |F| ·

(
n
2
)
.

Note that in G′ the sets KF are disjoint cliques, each fully connected to the clique VX .
Therefore, G′ is a complete unipolar graph. Furthermore, each edge in G′ has weight either 1
or 2. Moreover, since G′ is unipolar, VX is a cluster modulator of size n. Hence, cvd(G′) ≤ n.

It remains to show that I ′ and I ′′ are equivalent instances. Observe that in G′ for
each F ∈ F the clique KF is a closed critical clique and thus in every optimal clustering for G′

each vertex of KF is part of the same cluster due to Observation 2.1. Since the edges within
these critical cliques all have weight 1, they have a total weight of |F|·

(
n
2
)
. Let S :=

⋃
F ∈F KF

and let CS :=
⋃

F ∈F {KF }. Per construction CS is a clustering for G′[S]. Observe that (G, ω)
can be obtained by the clustering-merge of CS for G′ and ω′. Clearly, G′[S] is a cluster graph
and each cluster KF of CS is merged into the vertex vF in G with NG(vF ) = VX = N∩

G′(KF ).
Moreover, we have ω({vF , vx}) =

∑
v∈KF

ω′({vF , v}).
By the above facts, Lemma 2.4 and Observation 2.1 imply that I ′ and I ′′ are equivalent

instances. ◀

In addition, we obtain the following hardness results on graph classes that are unrelated
to complete unipolar graphs.

▶ Theorem 3.5 (*). WCD is NP-hard on proper interval graphs.

2 Note that Theorem 3.1 in [20] shows an ETH lower bound for 3D-Matching, which is a special case of
Uniform Exact Cover.

ISAAC 2024
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▶ Theorem 3.6 (*). WCD is NP-hard on complete tripartite graphs even for t = 2.

Note that complete tripartite graphs are cographs with neighborhood diversity 3. Hence,
we obtain NP-hardness also for this class of graphs.

4 Split Graphs with Bounded Weights

We now show that WCD can be solved in FPT-time on split graphs when parameterized
by the largest edge weight t. The algorithm is based on several properties concerning the
interaction of the optimal clustering with the core of the split graphs. These properties will
also be helpful for our algorithms on generalizations of split graphs.

As an auxiliary result, we first present an algorithm for WCD on split graphs, when
parameterized by the size of the core of the split graph. The algorithm uses dynamic
programming over subsets of the core.

▶ Lemma 4.1. Let G = (V, E) be a split graph with core C and let ω be an edge-weight
function. One can find an optimal clustering for G and ω in 3|C| · nO(1) time.

Proof. Let P := {p1, . . . , p|P |} be the periphery of G. We describe a dynamic program that
finds an optimal clustering for G and ω in 3|C| · nO(1) time.

The dynamic programming table T has entries of type T [i, S] for each S ⊆ C and
each i ∈ [0, |P |] and stores the weight of an optimal clustering for G[S ∪ {pj | 1 ≤ j ≤ i}].
Hence, the base case for i = 0 and each S ⊆ C is defined as T [i, S] := ω(E(S)). This is
correct, since C is a clique in G. For each other entry of the dynamic programming table,
that is, for each i ∈ [1, |P |] and each S ⊆ C, the recurrence to compute the entry T [i, S] is

T [i, S] := max
S′⊆S

S′⊆N(pi)

ω(E(S′ ∪ {pi})) + T [i − 1, S \ S′].

Intuitively, we search for the best way to assign a subset S′ of S to the cluster with vertex pi

and combine this with an optimal clustering for G[(S \ S′) ∪ {pj | 1 ≤ j < i}] and ω. This
is correct, since P is an independent set in G, and thus, in each valid clustering for G, the
cluster containing pi contains no other vertex of P . The total weight of an optimal clustering
for G and ω is stored in T [|P |, C] and a corresponding clustering can be found via traceback.

It thus remains to show the running time. Since each entry T [i, S] can be computed in
2|S| · nO(1) time and there are

(|C|
ℓ

)
subsets S of C of size exactly ℓ, all entries of the dynamic

programming table T can be computed in
∑|C|

ℓ=0
(|C|

ℓ

)
· 2ℓ · nO(1) = 3|C| · nO(1) time. ◀

Next, we show the first property for optimal clusterings of split graphs. Roughly speaking,
the lemma shows that for each optimal clustering C and each subset C′ ⊆ C, at least one
of C′ and C \ C′ contains at most 2t vertices of the core. This for example implies that the
vertices of the core are only contained in O(t) clusters in any optimal clustering.

▶ Lemma 4.2. Let G = (V, E) be a split graph and let ω : E → [1, t] be an edge-weight
function. Moreover, let C be an optimal clustering for G and ω. Then, for each subset C′ ⊆ C,
C′ contains at most 2t vertices of the core of G or C \ C′ contains at most 2t vertices of the
core of G.

Proof. Let C and P denote the core and the periphery of G, respectively. We show the
contrapositive, that is, we show that C is not an optimal clustering for G and ω, if there
is a subset C′ ⊆ C, such that C′ and C \ C′ contain at least 2t + 1 vertices of the core C
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each. To this end, we show that keeping the whole core as a cluster yields a better clustering
than C. That is, we show that C∗ := {C} ∪ {{p} | p ∈ P} is a better clustering than C. Note
that C∗ is a valid clustering for G. It thus remains to show that ω(C∗) − ω(C) > 0. To
this end, we first analyze the edges of E(C) \ E(C∗). Since G is a split graph, each cluster
of C contains at most one vertex of the periphery P . Hence, E(C) \ E(C∗) contains for each
vertex v ∈ C at most one edge incident with v. Since each edge has weight at most t, this
implies that ω(E(C) \ E(C∗)) ≤ |C| · t. Next, we analyze the edges of E(C∗) \ E(C). Let C1
denote the vertices of C that are contained in C′ and let C2 denote the vertices of C that are
contained in C \ C′ and assume without loss of generality that |C1| ≥ |C2|. Hence, |C1| ≥ |C|

2 .
Moreover, note that all edges of E(C1, C2) are contained in E(C∗) \ E(C) which implies
that E(C∗) \ E(C) contains at least |E(C1, C2)| = |C1| · |C2| ≥ |C|

2 · (2t + 1) > |C| · t edges of
weight at least one each. Consequently,

ω(C∗) − ω(C) = ω(E(C∗) \ E(C)) − ω(E(C) \ E(C∗)) > |C| · t − |C| · t = 0.

This implies that C is not an optimal clustering for G and ω. ◀

This has the following implications for any optimal clustering C: There is at most one
cluster of size more than 2t in C and there are O(t) clusters of size more than one in C. We
also derive the following.

▶ Lemma 4.3. Let G = (V, E) be a split graph with core C and let ω : E → [1, t] be an
edge-weight function. Moreover, let C be an optimal clustering for G and ω. If |C| > 6t, then
there is a cluster C∗ ∈ C that misses at most 2t vertices of C, that is, |C∗ ∩ C| ≥ |C| − 2t.

Proof. Let C∗ be a cluster of C that contains the most vertices of C. First, we show that C∗

contains at least 2t + 1 vertices of C. Assume towards a contradiction that C∗ contains at
most 2t vertices of C, which then implies that every cluster of C contains at most 2t vertices
of C. Let C′ be an arbitrary subset of C such that C′ contains at least 2t + 1 vertices of C and
no proper subset of C′ contains at least 2t + 1 vertices of C. Note that this implies that C′

contains at most 4t vertices of C, since each cluster of C contains at most 2t vertices of C.
Since C has size at least 6t + 1, this implies that C \ C′ contains at least 2t + 1 vertices of C.
Due to Lemma 4.2, this contradicts the fact that C is an optimal clustering for G and ω.
Hence, C∗ contains at least 2t + 1 vertices of C.

Now, consider the subset of clusters C′ := {C∗}. Since C is an optimal clustering for G

and ω and C′ contains more than 2t vertices of C, Lemma 4.2 implies that C \ C′ contains at
most 2t vertices of C. Consequently, C∗ contains at least |C| − 2t vertices of C. ◀

Based on this lemma, we can now show that there are only linearly many options for the
largest cluster of any optimal clustering, if the core has size at least 2t2 + 4t + 1.

▶ Lemma 4.4. Let G = (V, E) be a split graph with core C and periphery P , let ω : E → [1, t]
be an edge-weight function, and let C be an optimal clustering for G and ω. If |C| ≥ 2t2+4t+1,
then either C contains the cluster C or there is some periphery vertex v ∈ P with degree at
least |C| − 2t such that C contains the cluster N [v].

Proof. Assume towards a contradiction that the statement does not hold. Then, C contains
neither the cluster C nor the cluster N [v] for any periphery vertex v ∈ P with degree at
least |C| − 2t. Let C∗ be a cluster of C with the most vertices of C. Since C has size at
least 6t + 1 and C is an optimal clustering for G and ω, Lemma 4.3 implies that C∗ contains
at least |C| − 2t ≥ 2t2 + 1 vertices of C.
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Let v∗ be the unique periphery vertex of C∗ if such a vertex exists and an arbitrary
vertex of C∗, otherwise. In both cases, there is a vertex v ∈ (N(v∗) ∩ C) \ C∗, since C is
not a cluster in C and for no periphery vertex w ∈ P with degree at least |C| − 2t, N [w] is a
cluster of C. We show that we can obtain a better clustering by moving vertex v to C∗. Note
that C∗ ∪ {v} is a clique in G, since v is adjacent to v∗ and all vertices of (C∗ \ {v∗}) ∪ {v}
are from C. Let C′ be the clustering for G obtained from C by moving vertex v to C∗. We
show that C′ is a better clustering for G and ω than C. To this end, we analyze the total
weight incident with vertex v under both C and C′. Let Cv be the cluster of C containing v.
Since C \ {C∗} contains at most 2t vertices of C, Cv has size at most 2t + 1. Hence, v is
incident with at most 2t edges in E(C), each of weight at most t. Moreover, v is incident
with |C∗| ≥ 2t2 + 1 edges of weight at least one each in E(C′). Hence, C′ is a better clustering
for G and ω than C. This contradicts the fact that C is an optimal clustering for G and ω. ◀

With this property at hand, we are now able to show that WCD can be solved in
2O(t) · nO(1) time on split graphs with a small or a very large core.

▶ Lemma 4.5. Let G = (V, E) be a split graph with core C and let ω : E → [1, t] be an
edge-weight function. One can find an optimal clustering for G and ω in 2O(t) · nO(1) time
if |C| ≤ 6t or |C| ≥ 2t2 + 4t + 1.

Proof. If |C| ≤ 6t, then we can find an optimal clustering for G and ω in 3|C| · nO(1) =
2O(t) · nO(1) time due to Lemma 4.1.

Otherwise, if |C| ≥ 2t2 + 4t + 1, Lemma 4.4 implies that each optimal clustering for G

and ω contains a cluster C∗ such that C∗ = C or C∗ = N [v] for some periphery vertex v ∈ P

with degree at least |C| − 2t. Since these are at most |P | + 1 ∈ O(n) possibilities, we can
perform an initial branching for the choice of C∗. For each such choice for C∗, we find an
optimal clustering C∗ for G − C∗ and ω and return the best clustering C∗ ∪ {C∗} over all
choices of C∗. Note that this algorithm is correct due to Lemma 4.4. The initial branching
can be done in nO(1) time and for each branching-instance we can find an optimal solution
for G − C∗ and ω in 2O(t) · nO(1) time, since G − C∗ is a split graph with a core C \ C∗ of
size at most 2t.

Hence, in both cases, we find an optimal solution for I in the desired running time. ◀

Thus, to obtain an algorithm for WCD on split graphs, we now show how to solve the
case that the core has size at least 6t + 1 and at most 2t2 + 4t and use this to bound the
total running time.

▶ Theorem 4.6. WCD can be solved in tO(t) · nO(1) time on split graphs, where t denotes
the largest edge weight.

Proof. Let I = (G = (V, E), ω : E → [1, t], k) be an instance of WCD, where G is a split
graph with core C and periphery P . We show how to obtain an optimal clustering for G

and ω in time tO(t) · nO(1).
By Lemma 4.5, we can achieve this running time if |C| ≤ 6t or |C| ≥ 2t2 + 4t + 1. Hence,

in the following, we assume that 6t + 1 ≤ |C| ≤ 2t2 + 4t. Due to Lemma 4.3, this implies
that each optimal clustering for G and ω contains a cluster C∗ such that |C∗ ∩ C| ≥ |C| − 2t.
Based on this fact, we can find an optimal clustering for G and ω by iterating over all Ĉ ⊆ C

of size at least |C| − 2t and finding for each cluster C∗ ∈ {Ĉ} ∪ {Ĉ ∪ {v} | v ∈ P, Ĉ ⊆ N(v)}
an optimal clustering for G − C∗ and ω. Over all such choices of C∗, we return the best
clustering {C∗} ∪ C∗, where C∗ is an optimal clustering for G − C∗. Due to Lemma 4.3, this
algorithm finds an optimal clustering for G and ω.
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It remains to show the running time. Since there are at most |C|2t = (2t2 +4t+1)2t ∈ tO(t)

distinct subsets Ĉ of C with |Ĉ| ≥ |C| − 2t and for each such subset we consider at
most |P | + 1 ∈ O(n) possible clusters C∗, we have to find an optimal clustering for at
most tO(t) ·nO(1) subgraphs G−C∗ of G. For each choice for C∗, G−C∗ is a split graph with a
core of size |C\C∗| ≤ 2t. We can thus find an optimal clustering for G−C∗ in 2O(t) ·nO(1) time
due to Lemma 4.5. Hence, the total running time is tO(t) · 2O(t) · nO(1) = tO(t) · nO(1). ◀

On dense split graphs, we obtain an even faster algorithm.

▶ Theorem 4.7. WCD can be solved in 2O(t) · nO(1) time on dense split graphs, where t

denotes the largest edge weight.

Proof. Let I = (G = (V, E), ω : E → [1, t], k) be an instance of WCD, where G is a dense
split graph with core C and periphery P . We show how to obtain an optimal clustering
for G and ω in time 2O(t) · nO(1).

Due to Lemma 4.5, we can achieve this running time if |C| ≤ 6t. Hence, assume in the
following, that |C| > 6t. Let C be an optimal clustering for G and ω. Due to Lemma 4.3,
C contains a cluster C∗ such that |C∗∩C| ≥ |C|−2t > 4t. We show that C∗ := N [p] = {p}∪C

for some periphery vertex p. To this end, we first show that C∗ contains all core vertices.
Let C ′ := C \ C∗ denote the core vertices that are not in C∗. Since G is a dense split graph,
each vertex of C ′ is adjacent to each vertex of C∗. Hence, moving all vertices of C ′ to the
cluster C∗ yields a valid clustering C′. If C ′ ̸= ∅, this clustering improves over C, since each
vertex of C ′ was adjacent to at most one periphery vertex, which implies that

ω(E(C) \ E(C′)) ≤ |C ′| · t < |C ′| · 4t ≤ |C ′| · |C∗| ≤ ω(E(C′) \ E(C)).

Since C is an optimal clustering for G and ω, this implies that C ′ = ∅ and thus C∗ contains
all core vertices. Moreover, due to the optimality of C, C∗ contains one periphery vertex, as
otherwise adding an arbitrary periphery vertex to C∗ would yield a better valid clustering,
since G is a dense split graph. Hence, C∗ = N [p] = C ∪ {p} for some periphery vertex p ∈ P .
This implies that C∗ is the only cluster of C that contains any edges, which further implies
that ω(C) = ω(E(C∗)) = ω(E(N [p])).

Hence, to find an optimal clustering for G and ω it suffices to find a periphery vertex p ∈ P

that maximizes ω(E(N [p])). This can be done in polynomial time. ◀

The result also gives a dichotomy with respect to the neighborhood diversity: Theorem 3.6
showed NP-hardness for neighborhood diversity 3 and t = 2. We now show an FPT-algorithm
with respect to t for neighborhood diversity at most 2. Note that the graphs with neighborhood
diversity at most 2 are a subset of the cographs but not a subset of the split graphs, since
complete bipartite graphs have neighborhood diversity 2.

▶ Corollary 4.8. On graphs with neighborhood diversity at most 2, WCD can be solved in
2O(t) · nO(1) time.

Proof. Note that if a graph is already a cluster graph, an optimal clustering of that graph
simply contains all edges. The only graphs of neighborhood diversity at most 2 that are not
cluster graphs are complete bipartite graphs and dense split graphs. On bipartite graphs,
WCD asks simply for a maximum weight matching which can be solved in polynomial
time [24]. For dense split graphs, Theorem 4.7 implies that we can solve WCD in the stated
running time. ◀
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5 Further FPT-Algorithms

Bounded-Treewidth Modulators to Clique. In the following, we extend ideas of the FPT-
algorithm for split graphs to a generalization of split graphs. Namely, we show that WCD
can be solved in FPT-time when parameterized by t + r on graphs when a treewidth-r
clique modulator is provided. Here, a clique modulator in a graph G is a vertex set M such
that G − M is a complete graph. The treewidth of a clique modulator M is defined to be the
treewidth of G[M ]. We now consider the parameter treewidth r of a given clique modulator
of G and show that WCD admits an FPT-algorithm for this parameter.

▶ Lemma 5.1 (*). Let G be a graph with edge-weight function ω : E → [1, t] and let M be a
treewidth-r modulator in G to a clique C. Then, if |C| ≥ 2 · (t · (r + 1))2 + 4t · (r + 1) + 1, any
optimal clustering C for G and ω contains the cluster C or there is some clique K ⊆ M such
that C contains the cluster K ∪(N∩(K)∩C) and this cluster contains at least |C|−2(t ·(r+1))
vertices of C.

Note that this statement is a direct generalization of Lemma 4.4, since the periphery of a
split graph G is a treewidth-0 modulator to the core of G.

With this lemma at hand, we are now able to present an algorithm for WCD when
parameterized by t and the treewidth of a given clique modulator.

▶ Theorem 5.2. WCD can be solved in time 2O(t2·r2) · nO(1) when given a treewidth-r clique
modulator M for the input graph G.

Proof. First, assume that C := V \ M has size at most 2(t · (r + 1))2 + 4t · (r + 1) then
the input graph has treewidth O(t2 · r2) and we can solve WCD on this graph in time
2O(t2·r2) · nO(1) [25].3

Otherwise, C has size at least 2(t · (r + 1))2 + 4t · (r + 1) + 1. Then, by Lemma 5.1, for
each optimal clustering C, either (a) C contains C or (b) there is a clique K in G[M ] such
that C has a cluster consisting of K plus all of the (at least |C| − 2(t · (r + 1)) many) common
neighbors of K in C. Now observe that in Case (a) we may simply remove C from G and
compute an optimal clustering for G − C = G[M ] which has treewidth at most r. This
can be done in 2O(r) · nO(1) time [25]. Otherwise, in Case (b), since G[M ] has treewidth at
most r, we can enumerate all cliques K of G[M ] in 2O(r) · nO(1) time, for example using the
fact that G[M ] has degeneracy at most r. Now, for each clique K, we consider the case that
the optimal clustering contains a cluster C ′ consisting of K and of all common neighbors
of K in C. To compute the optimal clustering in that case, we may remove C ′ and find
an optimal clustering for the remaining graph G − C ′ = G[M ∪ C \ C ′]. This graph has
treewidth at most 2(t · (r + 1)) + r since |C \ C ′| ≤ 2(t · (r + 1)) and G[M ] has treewidth r.
Thus, an optimal clustering for this graph can be computed in time 2O(t·r) · nO(1). The total
running time for Case (b) is thus 2r · nO(1) · 2O(t·r) · nO(1). ◀

Parameterization by (Split) Cluster Vertex Deletion Number. Next, we focus on the
cluster vertex deletion number cvd of the input graph, that is, the minimum number of
vertices to remove from G to obtain a cluster graph. Recently, it was shown that Cluster
Deletion admits an FPT-algorithm when parameterized by cvd [14]. In contrast, WCD

3 The algorithm described in [25] solves the unweighted problem via dynamic programming on tree
decompositions; it can be easily adapted to the weighted case by summing up over edge weights instead
of counting edges inside clusters.
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is known to be NP-hard even on graphs with cvd = 2 [19]. This motivates the study of
the combined parameter cvd and the maximum edge weight t. We show an FPT-algorithm
for WCD parameterized by this combined parameter.

To this end, we first provide some additional notation. Let G = (V, E) be a graph. For a
cluster modulator M , let B(M) be the collection of connected components of G − M , that
is, the clusters of the cluster graph G − M . The individual clusters of B(M) are referred to
as bags. If the cluster modulator is clear from the context, we may also only write B.

▶ Theorem 5.3. WCD can be solved in (t · cvd)O(t·cvd) · nO(1) time.

Proof. Let I := (G := (V, E), ω, k) be an instance of WCD with ω : E → [1, t]. The
algorithm consists of two steps. First, we compute a minimum-size cluster modulator M

for G. Second, we iterate over all possible clusterings of G[M ] and compute for each such
clustering CM the best clustering of G that extends CM . To solve the latter task, we use
dynamic programming over subsets to find an optimal way to distribute the vertices of the
bags of B(M) among the clusters of CM .

Let M be a minimum-size cluster modulator for G with collection of bags B and let CM

be a fixed clustering of G[M ]. We fix an arbitrary ordering of the bags of B and let Bi denote
the ith bag according to this fixed ordering. The dynamic programming table T has entries
of type T [i, C′

M ] with i ∈ [0, |B|] and C′
M ⊆ CM and stores the total edge weight of an optimal

way to distribute the vertices of the first i bags among the clusters of C′
M . Hence, the base

case for i = 0 and each C′
M ⊆ CM is defined as T [0, C′

M ] := ω(C′
M ). The key observation

for the dynamic program is the fact that no cluster in any clustering for G can contain
vertices of more than one bag. Hence, to find an optimal way to distribute the vertices of the
first i bags among the clusters of C′

M it is sufficient to check for each subset C′′
M ⊆ C′

M for an
optimal distribution of the vertices of the ith bag among the clusters of C′′

M and combine
it with an optimal way to distribute the vertices of the first i − 1 bags among the clusters
of C′

M \ C′′
M . This leads to the following recurrence, where OPT(Bi, C′′

M ) denotes an optimal
way to distribute the vertices of the ith bag among the clusters of C′′

M :

T [i, C′
M ] := max

C′′
M

⊆C′
M

OPT(Bi, C′′
M ) + T [i − 1, C′

M \ C′′
M ].

By the above argumentation, this recurrence is correct. Hence, a total weight of a best
clustering for G that extends CM is stored in T [|B|, CM ]. Moreover, a corresponding clustering
can be found via trace back.

It thus remains to show the running time of the dynamic program. To this end, we first
need to show that the value OPT(Bi, C′′

M ) for each i ∈ [1, |B|] and each C′′
M ⊆ CM can be

computed in the desired running time with respect to cvd + t.
Let Gi := G[Bi ∪

⋃
C′∈C′′

M
]. Due to Observation 2.2, we can assume without loss of

generality that Gi[M ] is a cluster graph. Hence, Gi is unipolar, since Gi − M is a clique
on the vertices of Bi. Let (G′

i, k′) be the graph and edge-weight function obtained from
performing the clustering-merge of C′′

M for Gi and ω. Note that G′
i is a split graph and the

largest assigned weight by ω′ is at most |M | · t = cvd · t. Hence, we can find an optimal
clustering C′

i for G′
i and ω′ in time (cvd · t)O(cvd·t) · nO(1) due to Theorem 4.6. By Lemma 2.4,

we can then find a best clustering for Gi and ω that extends C′′
M in polynomial time.

Hence, for each i ∈ [1, |B|] and each C′′
M ⊆ CM , the value OPT(Bi, C′′

M ) can be computed in
(cvd · t)O(cvd·t) · nO(1) time.

Concluding, the whole algorithm runs in the desired running time, since (a) M can
be computed in 1.811cvd · nO(1) time [27], (b) all clusterings for G[M ] can be enumerated
in |M ||M | = cvdcvd time, (c) for each clustering CM for G[M ], the dynamic programming
table T has 2|CM | · n ≤ 2cvd · n entries, and (d) each such entry can be computed in
(cvd · t)O(cvd·t) · nO(1) time. ◀

ISAAC 2024



32:14 When Can Cluster Deletion with Bounded Weights Be Solved Efficiently?

We can extend the idea of the above algorithm to the even smaller parameter split cluster
vertex deletion number scvd, that is the minimum number of vertices to remove from G

such that in the remaining graph each connected component is a split graph. More formally,
let G = (V, E) be a graph. We say that a vertex set M ⊆ V is a split cluster modulator for G

if G−M is a split cluster graph. The split cluster vertex deletion number scvd of G is defined
as the size of the smallest split cluster modulator for G. For a split cluster modulator M ,
let B(M) be the collection of connected components of G − M , that is, the maximal induced
split graphs of the split cluster graph G − M . The individual maximal induced split graphs
of B(M) are referred to as bags. If the split cluster modulator is clear from the context, we
may also only write B.

Note that scvd is a smaller parameter than cvd, since each cluster graph is also a split
cluster graph. We now show that WCD can be solved in FPT-time on general graphs
when parameterized by the largest edge weight t and scvd. To this end, we first give an
algorithm for computing a clustering when given a vertex set S such that G − S is a split
graph with core C and periphery P . In that case, S ∪ P is a treewidth-|S| modulator to the
core of G − S which is a clique. Thus, Theorem 5.2 implies the following.

▶ Corollary 5.4. Let G = (V, E) be a graph and let ω : E → [1, t] be an edge-weight function.
Let S ⊆ V such that G − S is a split graph. One can find an optimal clustering for G and ω

in 2O((t·|S|)2) · nO(1) time.

We now use this algorithm as a subroutine in an algorithm similar to the one of Theorem 5.3.

▶ Theorem 5.5. WCD can be solved in 2O(scvd2·t2) · nO(1) time.

Proof. After computing a smallest split cluster modulator M in 2O(scvd) · nO(1) time [6], we
perform the same dynamic program as in the proof of Theorem 5.3 over the bags resulting
from the modulator M . Note that each bag is now a split graph instead of a clique. The only
difference then lies in computing the value OPT(Bi, C′′

M ) for each bag Bi and each C′′
M ⊆ CM .

Due to Corollary 5.4, this can be done in 2O((t·|M |)2) · nO(1) time. Hence, the whole algorithm
also runs in 2O((t·|M |)2) · nO(1) time. ◀

6 Kernelization lower bounds

Given the FPT-algorithms for parameter t presented in Section 4, a natural next question is to
ask for a polynomial kernel for t. In this section, we show that WCD on (dense) split graphs
does not admit a polynomial kernel when parameterized by t + vc, unless NP ⊆ coNP/poly.
Moreover, we show that even a polynomial Turing kernel for WCD on (dense) split graphs
when parameterized by t+vc is unlikely, by showing that the problem is WK[1]-hard. Roughly
speaking, WK[1]-hardness for a parameterized problem means that a polynomial Turing
kernel for this problem is unlikely [18].

To show our kernelization lower bounds, we present a chain of polynomial parameter
transformations starting from Set Cover when parameterized by the size of the universe.

Set Cover
Input: A set X, a collection F of subsets of X, and an integer k.
Question: Is there a subset F ′ ⊆ F of size at most k, such that every element of

X occurs in at least one set of F ′?

Since Set Cover when parameterized by the size of the universe, is WK[1]-hard [18] and
does not admit a polynomial kernel, unless NP ⊆ coNP/poly [9], this then implies that WCD
on (dense) split graphs when parameterized by t + vc is WK[1]-hard and does not admit a
polynomial kernel, unless NP ⊆ coNP/poly.
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▶ Lemma 6.1 ([18]). There is a polynomial parameter transformation from Set Cover
parameterized by the size of the universe to Exact Cover parameterized by the size of the
universe.

This statement follows, since both Set Cover and Exact Cover parameterized by the
size of the universe are WK[1]-complete, and the class of WK[1]-complete problems is closed
under polynomial parameter transformations [18].

We now present a polynomial parameter transformation from Exact Cover to Uniform
Exact Cover, both parameterized by size of the universe.

▶ Proposition 6.2 (*). There is a polynomial parameter transformation from Exact Cover
parameterized by the size of the universe to Uniform Exact Cover parameterized by the
size of the universe.

Based on the observed polynomial parameter transformation from Exact Cover param-
eterized by size of the universe to WCD on dense split graph when parameterized by t + vc
in Proposition 3.2, we conclude the following due to the chain of polynomial parameter
transformations (Lemma 6.1, Proposition 6.2, and Proposition 3.2) and the kernelization
lower bounds for Set Cover.

▶ Theorem 6.3. WCD on dense split graphs when parameterized by t + vc does not admit
a polynomial kernel, unless NP ⊆ coNP/poly. Moreover, WCD on dense split graphs
is WK[1]-hard when parameterized by t + vc.

Additionally, due to Lemma 6.1, Proposition 6.2, and the kernelization lower bounds for Set
Cover, we also derive the following.

▶ Corollary 6.4. Uniform Exact Cover when parameterized by the size of the universe
does not admit a polynomial kernel, unless NP ⊆ coNP/poly. Moreover, Uniform Exact
Cover is WK[1]-hard when parameterized by the size of the universe.

7 Conclusion

The most immediate open question is whether Weighted Cluster Deletion is polynomial-
time solvable for constant values of t when the input graph is a proper interval graph. Another
direction would be to improve the running time for the FPT-algorithm on split graphs to
close the gap between the upper and lower bound. Finally it would be interesting to consider
other NP-hard edge-weighted problems using the parameter t. A good candidate would
be Cluster Editing [1, 26] where the task is to obtain a cluster graph by modifying
as few edges as possible. The weighted version of this problem has also received a lot of
attention over the years [2, 7]. As for Weighted Cluster Deletion, such a study would
need to focus on graph classes where unweighted Cluster Editing is polynomial-time
solvable. Another direction could be to consider problems related to Cluster Deletion,
where each cluster is demanded to fulfill some relaxed cluster definition, for example being a
so-called s-plex [17].
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