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Abstract
Given two sets R and B of n points in the plane, we present efficient algorithms to find a two-line
linear classifier that best separates the “red” points in R from the “blue” points in B and is robust
to outliers. More precisely, we find a region WB bounded by two lines, so either a halfplane, strip,
wedge, or double wedge, containing (most of) the blue points B, and few red points. Our running
times vary between optimal O(n log n) up to around O(n3), depending on the type of region WB

and whether we wish to minimize only red outliers, only blue outliers, or both.
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1 Introduction

Let R and B be two sets of at most n points in the plane. Our goal is to best separate the
“red” points R from the “blue” points B using at most two lines. That is, we wish to find a
region WB bounded by lines ℓ1 and ℓ2 containing (most of) the blue points B so that the
number of points kR from R in the interior int(WB) of WB and/or the number of points kB

from B in the interior of the region WR = R2 \ WB is minimized. We refer to these subsets
ER = R ∩ int(WB) and EB = B ∩ int(WR) as the red and blue outliers, respectively, and
define E = ER ∪ EB and k = kR + kB .

The region WB is either: (i) a halfplane, (ii) a strip bounded by two parallel lines ℓ1 and
ℓ2, (iii) a wedge, i.e., one of the four regions induced by a pair of intersecting lines ℓ1 and
ℓ2, or (iv) a double wedge, i.e., two opposing regions induced by a pair of intersecting lines
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Figure 1 We consider separating R and B by at most two lines. This gives rise to four types of
regions WB : halfplanes, strips, wedges, and two types of double wedges: hourglasses and bowties.
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33:2 Robust Bichromatic Classification Using Two Lines

ℓ1 and ℓ2 (we further distinguish hourglass double wedges, that contain a vertical line, and
the remaining bowtie double wedges), see Figure 1. We can reduce the case that WB would
consist of three regions to the single-wedge case by recoloring the points. For each of these
cases for the shape of WB we consider three problems: allowing only red outliers (kB = 0)
and minimizing kR, allowing only blue outliers (kR = 0) and minimizing kB, or allowing
both outliers and minimizing k = kR + kB . We present efficient algorithms for each of these
problems, as shown in Table 1.

Motivation and related work. Classification is a key problem in computer science. The
input is a labeled set of points and the goal is to obtain a procedure that, given an unlabeled
point, assigns it a label that “fits it best”, considering the labeled points. Classification has
many direct applications, e.g. identifying SPAM in email messages, or tagging fraudulent
transactions [20, 22], but is also the key subroutine in other problems such as clustering [1].

We restrict our attention to binary classification where our input is a set R of red points
and a set B of blue points. We can compute whether R and B can be perfectly separated by
a line (and compute such a line if it exists) in O(n) time using linear programming. This
extends to finding a separating hyperplane in case of points in Rd, for some constant d [19].

Clearly, it is not always possible to find a hyperplane that perfectly separates the red and
the blue points, see for example Figure 2, in which the blue points are actually all contained
in a wedge. Hurtato et al. [16, 17] consider separating R and B in R2 using at most two lines
ℓ1 and ℓ2. In this case, linear programming is unfortunately no longer applicable. Instead,
they present O(n log n) time algorithms to compute a perfect separator (i.e., a strip, wedge,
or double wedge containing all blue points but no red points), if it exists. These results
were shown to be optimal [5], and can be extended to the case where B and R contain other
geometric objects such as segments or circles, or to include constraints on the slopes [16].
Similarly, Hurtado et al. [18] considered similar strip and wedge separability problems for
points in R3. Arkin et al. [4] show how to compute a 2-level binary space partition (a line
ℓ and two rays starting on ℓ) separating R and B in O(n2) time, and a minimum height
h-level tree, with h ≤ log n, in nO(log n) time. Even today, computing perfect bichromatic
separators with particular geometric properties remains an active research topic [2].

Alternatively, one can consider separation with a (hyper-)plane but allow for outliers.
Chan [8] presented algorithms for linear programming in R2 and R3 that allow for up to k

violations –and thus solve hyperplane separation with up to k outliers– that run in O((n +
k2) log n) and O(n log n + k11/4n1/4 polylog n) time, respectively. In higher (but constant)
dimensions, only trivial solutions are known. For arbitrary (non-constant) dimensions the
problem is NP-hard [3]. There is also a fair amount of work that aims to find a halfplane
that minimizes some other error measure, e.g. the distance to the farthest misclassified point,
or the sum of the distances to misclassified points [7, 15].
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Figure 2 Perfectly separating R and B may require more than one line. When considering
outliers, we may allow ‘(and minimize) only red outliers, only blue outliers, or both.
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Table 1 An overview of our results. Results shown in the full version [14] are marked with “full”.
Expected running times are marked with a ‡.

region WB minimize kR minimize kB minimize k

halfplane O(n log n) full O(n log n) full O((n + k2) log n) [8]

strip O(n log n) [21] O(n2 log n) full O(n2 log n) full

wedge O(n2) [21] O(n5/2 log n)‡ §5.2
O(n log n) §5.1 O(nk2

B log2 n log kB) §5.3 O(nk2 log3 n log k) §5.3

double bowtie O(n2) §6 O(n2 log n) §6 O(n2k log3 n log k) §6

Separating points using more general non-hyperplane separators and outliers while
incorporating guarantees on the number of outliers seems to be less well studied. Seara [21]
showed how to compute a strip containing all blue points, while minimizing the number of
red points in the strip in O(n log n) time. Similarly, he presented an O(n2) time algorithm for
computing a wedge with the same properties. Armaselu and Daescu [6] show how to compute
and maintain a smallest circle containing all red points and the minimum number of blue
points. In this paper, we take some further steps toward the fundamental but challenging
problem of computing a robust non-linear separator that provides performance guarantees.

Results. We present efficient algorithms for computing a region WB = WB(ℓ1, ℓ2) defined
by at most two lines ℓ1 and ℓ2 containing only the blue points, that are robust to outliers.
Our results depend on the type of region WB we are looking for, i.e., halfplane, strip, wedge,
or double wedge, as well as on the type of outliers we allow: red outliers (counted by kR),
blue outliers (counted by kB), or all outliers (counted by k). Refer to Table 1 for an overview.

Our main contributions are efficient algorithms for when WB is really bounded by two
lines. All these versions can be solved by a simple O(n4) time algorithm that explicitly
considers all candidate regions. However, we show that we can do significantly better in
every case.

In particular, in the versions where we minimize the number of red outliers kR we achieve
significant speedups. For example, we can compute an optimal wedge WB containing B and
minimizing kR in optimal Θ(n log n) time (which improves an earlier O(n2) time algorithm
from Seara [21]). We use two types of duality transformations that allow us to map each
point p ∈ R ∪ B into a forbidden region Ep in a low-dimensional parameter space, such that:
i) every point s in this parameter space corresponds to a region WB(s), and ii) this region
WB(s) misclassifies point p if and only if this point s lies in Ep. This allows us to solve the
problem by computing a point that lies in the minimum number of forbidden regions.

Surprisingly, the versions of the problem in which we minimize the number of blue outliers
kB are much more challenging. For none of these versions we can match our running times
for minimizing kR, while needing more advanced tools. For example, for the single wedge
version, we use dynamic lower envelopes to obtain a batched query problem that we solve
using spanning-trees with low stabbing number [10]. See Section 5.2.

For the case where both red and blue outliers are allowed and we minimize k, we present
output-sensitive algorithms whose running time depends on the optimal value of k. We
essentially fix one of the lines ℓ1, and use linear programming (LP) with violations [8, 13]
to compute an optimal line ℓ2 that together with ℓ1 defines WB. We show that by using
results on ≤ k-levels, a recent data structure for dynamic LP with violations [13], and binary
searching, we can achieve algorithms with running times around O(n2k polylog n).

ISAAC 2024



33:4 Robust Bichromatic Classification Using Two Lines

Outline. We give some additional definitions and notation in Section 2, and in Section 3 we
present a characterization of optimal solutions that lead to our simple O(n4) time algorithm
for any type of wedges. In Sections 4, 5, and 6 we discuss the case when WB is, respectively,
a strip, wedge, or double wedge. In each of these sections we separately go over minimizing
the number of red outliers kR, the number of blue outliers kB, and the total number of
outliers k. We wrap up with some concluding remarks and future work in Section 7. Omitted
proofs can be found in the full version [14].

2 Preliminaries

In this section we discuss some notation and concepts used throughout the paper. For ease
of exposition we assume B ∪ R contains at least three points and is in general position, i.e.,
that all coordinate values are unique, and that no three points are colinear.

Notation. Let ℓ− and ℓ+ be the two halfplanes bounded by line ℓ, with ℓ− below ℓ (or left
of ℓ if ℓ is vertical). Any pair of lines ℓ1 and ℓ2, with the slope of ℓ1 smaller than that of
ℓ2, subdivides the plane into at most four interior-disjoint regions: North(ℓ1, ℓ2) = ℓ+

1 ∩ ℓ+
2 ,

East(ℓ1, ℓ2) = ℓ+
1 ∩ ℓ−

2 , South(ℓ1, ℓ2) = ℓ−
1 ∩ ℓ−

2 and West(ℓ1, ℓ2) = ℓ−
1 ∩ ℓ+

2 . When ℓ1 and ℓ2
are clear from the context we may simply write North to mean North(ℓ1, ℓ2), etc. We assign
each of these regions to either B or R, so that WB = WB(ℓ1, ℓ2) and WR = WR(ℓ1, ℓ2) are
the union of some elements of {North, East, South, West}. In case ℓ1 and ℓ2 are parallel, we
assume that ℓ1 lies below ℓ2, and thus WB = East.

Duality. We make frequent use of the standard point-line duality [11], where we map objects
in primal space to objects in a dual space. In particular, a primal point p = (a, b) is mapped
to the dual line p∗ : y = ax − b and a primal line ℓ : y = ax + b is mapped to the dual point
ℓ∗ = (a, −b). If in the primal a point p lies above a line ℓ, then in the dual the line p∗ lies
below the point ℓ∗.

For a set of points P with duals P ∗ = {p∗ | p ∈ P}, we are often interested in the
arrangement A(P ∗), i.e., the vertices, edges, and faces formed by the lines in P ∗. Two
unbounded faces of A(P ∗) are antipodal if their unbounded edges have the same two
supporting lines. Since every line contributes to four unbounded faces, there are O(n) pairs
of antipodal faces. We denote the upper envelope of P ∗, i.e., the polygonal chain following
the highest line in A(P ∗), by U(P ∗), and the lower envelope by L(P ∗).

3 Properties of an optimal separator

Next, we prove some structural properties about the lines bounding the region WB containing
(most of) the blue points in B.

▶ Lemma 3.1. For the strip classification problem there exists an optimum where one line
goes through two points and the other through at least one point.

Proof. Clearly, we can shrink an optimal strip WB(ℓ1, ℓ2) so that both ℓ1 and ℓ2 contain
a (blue) point, say b1 and b2, respectively. Now rotate ℓ1 around b1 and ℓ2 around b2 in
counter-clockwise direction until either ℓ1 or ℓ2 contains a second point. ◀

▶ Lemma 3.2. For any wedge classification problem there exists an optimum where both
lines go through a blue and a red point.
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Figure 3 The four types of red lines and their forbidden region.

Proof sketch. Similar to the proof for strips, we show that any (double) wedge can be
adjusted until both its lines go through a blue and a red point, without misclassifying any
more points. Since this also holds for a given optimum, the lemma follows. ◀

A simple general algorithm. Lemma 3.2 tells us we only have to consider lines through red
and blue points. Hence, there is a simple brute-force O(n4) time algorithm that considers all
pairs of such lines, which works for both wedges and double wedges and any type of outliers.
Refer to the full version for details.

4 Separation with a strip

In this section we consider the case where lines ℓ1 and ℓ2 are parallel, with ℓ2 above ℓ1, and
thus WB(ℓ1, ℓ2) forms a strip. We want B to be inside the strip, and R outside. We work in
the dual, where we want to find two points ℓ∗

1 and ℓ∗
2 with the same x-coordinate such that

vertical segment ℓ∗
1ℓ∗

2 intersects the lines in B∗ but not the lines in R∗. We briefly summarize
our approach and our results.

Strip separation with red outliers. In this version, we wish to find a vertical line segment
ℓ∗

1ℓ∗
2 that intersects all lines in B∗ and minimizes the number of lines from R∗ it intersects.

So we can assume that ℓ∗
1 lies on the upper envelope U(B∗) of B∗ and ℓ∗

2 lies on the lower
envelope L(B∗), since shortening ℓ∗

1ℓ∗
2 can only decrease the number of red lines intersected.

There is only one degree of freedom for choosing our segment, its x-coordinate, so our
parameter space is R. We parameterize U(B∗) and L(B∗) over R, so that each point p ∈ R
in the parameter space corresponds to the vertical segment ℓ∗

1ℓ∗
2 on the line x = p. See

Figure 3. We map every red line r to a forbidden region (an interval) in this parameter space,
in which ℓ∗

1ℓ∗
2 would intersect r. Our goal is then to compute a point p that is contained in

the minimum number of such forbidden intervals. We can do so in O(n log n) time by sorting
and scanning. This matches an existing result by Seara [21].

Strip separation with blue outliers. In this version, the vertical segment ℓ∗
1ℓ∗

2 may intersect
no red lines and as many blue lines as possible. That means that there is a ℓ∗

1ℓ∗
2 that is a

maximal vertical segment in a face of A(R∗). We sweep a vertical line ℓ over A(R∗) while,
for each face F (defining a candidate segment F ∩ ℓ for ℓ∗

1ℓ∗
2) we maintain the number of

blue lines that intersect the candidate segment. This leads to an O(n2 log n) time algorithm
for computing an optimal segment, and thus an optimal strip.

Strip separation with both outliers. In this version, the vertical segment ℓ∗
1ℓ∗

2 may misclas-
sify both red and blue lines, but as few as possible. There is much less structure for where
an optimal segment can be than before, since an optimal segment can now intersect any

ISAAC 2024
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Figure 4 The arrangement of B∗ ∪ R∗ with its parameter space and forbidden regions.

number of blue or red lines. We sweep over the full arrangement A(R∗ ∪ B∗) with a vertical
line. We maintain a datastructure that, given a point ℓ∗

2 on the sweepline, can find a second
point ℓ∗

1 such that the number of outliers |E(ℓ1, ℓ2)| is minimized. Each time the sweepline
crosses a vertex of A(R∗ ∪ B∗) we update the datastructure and perform one query, both in
O(log n) time, resulting in an O(n2 log n) algorithm.

▶ Theorem 4.1. Given two sets of n points B, R ⊂ R2, we can construct a strip WB

minimizing (i) the number of red outliers kR in O(n log n) time, (ii) the number of blue
outliers kB in O(n2 log n) time, or (iii) the number of outliers k in O(n2 log n) time.

5 Separation with a wedge

We consider the case where the region WB is a single wedge and WR is the other three
wedges. In Sections 5.1, 5.2, and 5.3 we show how to minimize kR, kB , and k, respectively.

5.1 Wedge separation with red outliers
We distinguish between WB being an East or West wedge, and a North or South wedge. In
either case we can compute optimal lines ℓ1 and ℓ2 defining WB in O(n log n) time.

Finding an East or West wedge. We wish to find two lines ℓ1 and ℓ2 such that every blue
point and as few red points as possible lie above ℓ1 and below ℓ2. In the dual this corresponds
to points ℓ∗

1 and ℓ∗
2 such that all blue lines and as few red lines as possible lie below ℓ∗

1 and
above ℓ∗

2, as in Figure 4.
Clearly ℓ∗

1 must lie above U(B∗), and ℓ∗
2 below L(B∗), and again we can assume they lie

on U(B∗) and L(B∗), respectively. We now have two degrees of freedom, one for choosing ℓ∗
1

and one for choosing ℓ∗
2. Again we parameterize U(B∗) and L(B∗), but this time over R2,

such that a point (p, q) in this parameter space corresponds to two dual points ℓ∗
1 and ℓ∗

2,
with ℓ∗

1 on U(B∗) at x = p and ℓ∗
2(y) on L(B∗) at x = q, as illustrated in Figure 4. We wish

to find a value in our parameter space whose corresponding segment minimizes the number
of red misclassifications. Recall the forbidden regions of a red line r are those regions in the
parameter space in which corresponding segments misclassify r. We distinguish between five
types of red lines, as in Figure 4:

Line a intersects U(B∗) in points a1 and a2, with a1 left of a2. Only segments with ℓ∗
1 left of

a1 or right of a2 misclassify a. This produces two forbidden regions: (−∞, a1) × (−∞, ∞)
and (a2, ∞) × (−∞, ∞).
Line b intersects L(B∗) in points b1 and b2, with b1 left of b2. Symmetric to line a this
produces forbidden regions (−∞, ∞) × (−∞, b1) and (−∞, ∞) × (b2, ∞).
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L(R+∗)

ℓ∗1b ℓ∗2

ℓ2

ℓ1

Figure 5 Left: in the primal we need to consider only the points above ℓ1. Right: in the dual we
need to consider only the lines below ℓ∗

1. In particular, ℓ∗
1 should lie below (on) L(R+∗).

Line c intersects U(B∗) in c1 and L(B∗) in c2, with c1 left of c2. Only segments with
endpoints after c1 and before c2 misclassify c. This produces the region (c1, ∞)×(−∞, c2).
(Segments with endpoints before c1 and after c2 do intersect c, but do not misclassify it.)
Line d intersects U(B∗) in d1 and L(B∗) in d2, with d1 right of d2. Symmetric to line c

it produces the forbidden region (−∞, d1) × (d2, ∞).
Line e intersects neither U(B∗) nor L(B∗). All segments misclassify e. In the primal this
corresponds to red points inside the blue convex hull. This produces one forbidden region;
the entire plane R2.

The forbidden regions generated by the red lines r∗ ∈ R∗ divide the parameter space in
axis-aligned orthogonal regions. Our goal is again to find a point with minimum ply, i.e. a
point that is contained in the minimum number of these forbidden regions.

▶ Lemma 5.1. Given a set R of n constant complexity, axis-aligned, orthogonal regions, we
can compute the point with minimum ply in O(n log n) time.

Proof sketch. We sweep through the plane with a vertical line z while maintaining a minimum
ply point on z. See Figure 4 (right) for an illustration. We maintain the regions intersected
by the sweep line in a slightly augmented segment tree [11]. In particular, each node v

in the tree stores the size s(v) of its canonical subset, the minimum ply ply(v) within the
subtree of v, and a point attaining this minimum ply. Since there are O(n) forbidden regions
(rectangles), each of which is added and removed once in O(log n) time, this leads to a
running time of O(n log n). ◀

We construct U(B∗) and L(B∗) in O(n log n) time. For every red line r, we calculate
its intersections with U(B∗) and L(B∗) in O(log n) time, determine its type (a − e), and
construct its forbidden regions. By Lemma 5.1 we can find a point with minimum ply in
these forbidden regions in O(n log n) time. We thus obtain an O(n log n) time algorithm for
finding an optimal East or West wedge. We can find an optimal North or South wedge in a
similar manner, and thus obtain:

▶ Theorem 5.2. Given two sets of n points B, R ⊂ R2, we can construct a wedge WB

containing all points of B and the fewest points of R in O(n log n) time.

5.2 Wedge separation with blue outliers
We now consider the case where all red points must be classified correctly, and we minimize
the number of blue outliers kB. We show how to find an optimal North wedge; finding
optimal South, East, or West wedges can be done analogously.

ISAAC 2024



33:8 Robust Bichromatic Classification Using Two Lines

Fix line ℓ1 and consider the problem of finding an optimal corresponding line ℓ2. All
points below ℓ1 lie outside the North wedge, regardless of our choice of ℓ2, and thus we have
to consider only the points B+ ⊆ B and R+ ⊆ R above ℓ1. See Figure 5. We do not allow
red points in the North wedge, so ℓ2 must lie above all red points R+ and below as many blue
points B+ as possible. This is exactly the halfplane separation problem with blue outliers
we solve in the full version in O(n log n) time. We can iterate through all O(n2) options for
ℓ1 (by walking through A(B∗ ∪ R∗)) and compute the corresponding line ℓ2 in O(n log n)
time, which would lead to an O(n3 log n) time algorithm. Below we describe an algorithm
that avoids recomputing ℓ2 from scratch every time, giving an O(n5/2 log n) time algorithm.

Let L be a set of lines, and let the level lL(p) of a point p (with respect to L) be the
number of lines of L that lie below p. We define the level lL(s) = maxp∈s lL(p) of a segment
s (with respect to L) as the maximum level of any point p on s.

Consider the dual, where we are looking for two points ℓ∗
1 and ℓ∗

2 such that no red line
and as many blue lines as possible lie below both ℓ∗

1 and ℓ∗
2. By Lemma 3.2 we can assume

both ℓ∗
1 and ℓ∗

2 lie on a red-blue intersection. For a fixed point ℓ∗
1 we are interested only

in the set of lines B+∗ and R+∗ below ℓ∗
1, and since ℓ∗

2 must lie below all of R+∗ we can
assume it lies on its lower envelope L(R+∗). See Figure 5. The wedge North(ℓ1, ℓ2) correctly
classifies exactly lB+∗(ℓ∗

2) points. We are thus looking for the pair of points ℓ∗
1 and ℓ∗

2 that
maximize the level lB+∗(ℓ∗

2).
We now show that we can compute ℓ∗

2 efficiently for every candidate point ℓ∗
1, provided

that there is an oracle that can answer (a batch of) the following queries: given a point ℓ∗
1

and a line segment s lying on a red line, compute the level lB+∗(s). We then show that we
can implement an oracle that answers all O(n2) queries in O(n5/2 log n) time. This yields an
O(n5/2 log n) time algorithm to compute an optimal north wedge.

Using an oracle to maintain ℓ∗
2. Consider any blue line b ∈ B∗ and assume w.l.o.g. that

it is horizontal. We will shift ℓ∗
1 from left to right along b, maintaining the set of red lines

R+∗ below ℓ∗
1. During this shift ℓ∗

1 crosses each of the other lines at most once. We wish to
maintain L(R+∗) and a point with maximum level w.r.t. B+∗ over all edges of L(R+∗). Such
a point corresponds to an optimal second point ℓ∗

2 for the current point ℓ∗
1. By repeating

this shift for every blue line b ∈ B∗ we consider all O(n2) candidate points for ℓ∗
1 and their

corresponding optimal point ℓ∗
2. This thus allows us to report an optimal solution.

We first show that we may keep an explicit representation of L(R+∗) while shifting ℓ∗
1

along b. We store the edges of L(R+∗) in the leaves of a binary tree (ordered on increasing
x-coordinate), which we refer to as the explicit tree of L(R+∗). We then augment this explicit
tree to additionally maintain the maximum level over all its edges. We show that we can
maintain this tree in near-linear time in total; see the full version for details.

▶ Lemma 5.3. While shifting ℓ∗
1 along b we can maintain an explicit tree of L(R+∗) in

O(n log n) total time.

With the explicit tree at hand, we require only O(n) queries to the oracle during the
entire shifting process to maintain an optimal point ℓ∗

2. Refer to the full version for details.

▶ Lemma 5.4. We can maintain an edge of L(R+∗) with maximum level w.r.t. B+∗ while
shifting ℓ∗

1 along b using O(n) queries to the oracle and O(n log n) additional time.

Collecting queries to the oracle. What remains is to describe how to implement the oracle
that answers the queries. Observe that the set of queries to the oracle is fixed. That is, the
answer to an oracle query is independent of the answers to earlier queries, and the answers of
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queries do not influence which future queries will be performed. Therefore, we can perform a
“dry”-run of the algorithm where we collect all queries, and then answer them in bulk. As we
will see, this allows us to answer these queries efficiently.

Since each blue line generates O(n) queries (Lemma 5.4), we have a total of O(n2) queries.
Once we have the answers to all these queries, we once again run the algorithm for each
blue line b. In this “real”-run of the algorithm we can answer queries in O(1) time, and thus
compute an optimal pair of points ℓ∗

1 and ℓ∗
2 with ℓ∗

1 on b in O(n log n) time (Lemma 5.4).
This then leads the following result.

▶ Lemma 5.5. Given two sets of n points B, R ⊂ R2, we can construct a wedge containing
as many points of B as possible and no points of R in O(T (n) + n2 log n) time, where T (n)
is the total time required to answer O(n2) oracle queries.

Implementing the oracle. We will now show how to implement the oracle that can answer
(a batch of) the following queries efficiently. Given a query (ℓ∗

1, s) consisting of a point ℓ∗
1

and a red segment s, we wish to find the maximum level of any point on s w.r.t. the set B+∗

of blue lines below ℓ∗
1. Maintaining the set B+∗ and answering queries fully dynamically is

difficult, so we will instead answer them in bulk.
We consider a red line r and assume w.l.o.g. that it is horizontal. Let Q be the set of

queries whose line segment s lies on r, let qr = |Q|, and let P be the set of query points ℓ∗
1

corresponding to the queries in Q. See Figure 6.
We pick an arbitrary query (ℓ∗

1, s) ∈ Q. Let b ∈ B+∗ be a blue line with negative slope;
the other case is analogous. Consider the intersection point i between b and r. For points
p ∈ s left of i, b lies above p and thus b does not add to the level of p. For points p ∈ s

right of i, b lies below i and thus b does add to the level of p. Consider all intersections
between r and lines in B+∗. We build a balanced binary tree on these intersections, ordered
by x-coordinate, augmented such that each node also stores the point with the highest level
in its subtree. Recall that s is a line segment on r, and thus represents an x-interval on
r. We can easily answer the query (s, ℓ∗

1) by finding the O(log n) nodes representing that
interval and returning the maximum level of any point inside their subtrees.

To answer the other queries we can shift the point ℓ∗
1 through the arrangement A(B∗).

When we cross into a different face, one blue line is inserted into or deleted from B+∗. We can
update the binary tree in O(log n) time, meaning that when we reach a point p ∈ P we can
answer the corresponding query, again in O(log n) time. So, if we can walk through A(B∗)
crossing s lines while visiting all points P , we can answer all queries Q in O((s + |P |) log n)
time.

Consider a spanning tree on P . The stabbing number of a spanning tree is the maximum
number of edges of the tree that can be intersected by a single line. With high probability
(whp; in particular with probability 1−1/qc

r for some arbitrarily large constant c) we can build
a spanning tree T on P with stabbing number O(√qr) in O(qr log qr) time [9]. Thus, each
blue line intersects T at most O(√qr) times, and therefore there are O(n√

qr) intersections
between T and B (whp).

If we follow the spanning tree while walking through A(B∗) we will thus cross O(n√
qr)

blue lines in total while visiting all points P , meaning we can answer all queries Q on r in
O(n√

qr log n) time (note that the O(qr log qr) time to build the spanning tree is dominated by
O(n√

qr log n) for any qr = O(n2)). Doing this for all lines r ∈ R takes O(
∑

r(n√
qr log n))

time. Recall we have O(n2) queries in total, so we have
∑

r qr = O(n2). Since
√

· is
a concave function, we have

√
a +

√
b ≤

√
2(a + b) for any non-negative values a and
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ℓ∗1

s

r
bi

Figure 6 A set of queries on a red line r, with
a spanning tree on P . Line b contributes to the
level of all points right of i.

ℓ2

ℓ1

Figure 7 All points above ℓ1 lie outside
the South wedge. After fixing ℓ1, we are
left with a halfplane separation problem.

b. More generally,
∑

i

√
xi ≤

√
n (

∑
i xi) for any n non-negative values xi. In particular,∑

r

√
qr ≤

√
n (

∑
r qr) = O(n3/2). Therefore, we have an O(

∑
r(n√

qr log n)) = O(n5/2 log n)
time algorithm to answer all queries over all red lines.

▶ Lemma 5.6. We can answer O(n2) queries in expected O(n5/2 log n) time.

Together with Lemma 5.5 this yields an expected O(n5/2 log n + n2 log n) = O(n5/2 log n)
time algorithm to find an optimal North wedge. We can symmetrically find an optimal South
wedge by assuming the wedge lies below both ℓ1 and ℓ2. Similarly by assuming the wedge
lies below ℓ1 and above ℓ2 we can find an optimal West or East wedge.

▶ Theorem 5.7. Given two sets of n points B, R ⊂ R2, we can construct a wedge containing
as many points of B as possible and no points of R in expected O(n5/2 log n) time.

5.3 Wedge separation with both outliers
We now consider the case where we allow and minimize both red and blue outliers. We show
how to find an optimal South wedge; finding an optimal West, North, or East wedge can be
done symmetrically. We first study the decision version of this problem: given an integer k′,
does there exist a South wedge WB with at most k′ outliers? We present an O(nk′2 log3 n)
time algorithm to solve this decision problem. Using exponential search to guess the optimal
value k (i.e. guessing k′ = 1, 2, 4, 8 . . . and binary searching in the remaining interval) then
leads to an O(nk2 log3 n log k) time algorithm to compute a wedge WB that minimizes k.

In Lemma 5.8 we construct a small candidate set of lines that contains a line ℓ1 that is
used by an optimal wedge. Then our algorithm considers each line in this set and constructs
an optimal wedge using it.

▶ Lemma 5.8. In O(nk′ log n) time, we can construct a set of O(nk′) lines that contains a
line ℓ1 used by an optimal wedge.

Proof. Consider any line ℓ and suppose it is used in a South wedge as the line ℓ1. Let B+ and
B− be the set of blue points above, respectively below, ℓ1. Since we are looking for a South
wedge, all k1 = |B+| blue points above ℓ1 are misclassified, regardless of line ℓ2 (see Figure 7).
Therefore, any line with k1 > k′ blue points above it is not a suitable candidate for ℓ1. In
the dual plane, this means ℓ∗

1 must lie in the (≤ k′)-level L≤k′(B∗) of B∗, the set of points
with at most k′ lines of B∗ below them. With a slight abuse of notation, we use L≤k′(B∗)
to refer to the sub-arrangement of A(B∗) that lies in the (≤ k′)-level. The complexity of
L≤k′(B∗) is O(nk′), and we can construct L≤k′(B∗) in O(nk′ + n log n) time [12].
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Consider any line r ∈ R∗, and observe that it intersects L≤k′(B∗) at most O(k′) times.
This follows from the fact that we can decompose L≤k′(B∗) into O(k′) concave chains [8],
and that r intersects each such chain at most twice. We can thus explicitly compute all
the O(nk′) red-blue intersections in L≤k′(B∗) in O(nk′ log n) time, and by Lemma 3.2 these
red-blue intersections contain the dual of a line used in an optimal wedge. ◀

Fix ℓ1 to be any candidate line from Lemma 5.8. We wish to find another line ℓ2 such
that the wedge South(ℓ1, ℓ2) misclassifies at most k′ blue points. Since all points above ℓ1
are outside the wedge regardless of the line ℓ2, we need to consider only the points B− and
R− below ℓ1. Recall that the choice of ℓ1 already misclassifies k1 blue points. Thus, we wish
to find a line ℓ2 that misclassifies at most k2 = k′ − k1 points from B− and R−. That is, a
line ℓ2 such that the number of points from R− below it plus the number of points from B−

above it is at most k2. This is exactly the halfplane separation problem with both outliers,
which we can solve using Chan’s algorithm in O((n + (k2)2) log n) time [8]. Doing this for
all O(nk′) candidate lines results in an O(nk′(n + k2) log n) = O((n2k′ + nk′3) log n) time
algorithm. Below we improve on this, by avoiding to recompute ℓ2 from scratch every time.

Solving the halfplane separation problem dynamically. Consider again the set of candidate
lines of Lemma 5.8, and in particular their dual points. By walking through the arrangement
L≤k′(B∗), we can visit all O(nk′) candidate points ℓ∗

1 in O(nk′) steps, such that at each step
we cross only one (red or blue) line. This means that only a single point is inserted in or
deleted from the sets B− and R− per step. Rather than computing ℓ2 from scratch after
every step now, we maintain it dynamically.

We build the data structure of [13] that, given a value k′, maintains a line ℓ2 that
misclassifies as few points from R− and B− as possible under insertions and deletions of red
and blue points; if no line misclassifying at most k′ points exists, the data structure reports
this. The updates for the data structure have to be given in a ’semi-online’ manner, which
means that whenever a point is inserted we have to know when it is going to be deleted. This
is not a problem in our case, since we can precompute all insertions and deletions on R− and
B− by completing the walk through L≤k′(B∗) before actually updating the data structure.

The data structure reports an optimal line ℓ2 that misclassifies k2 ≤ k′ points of R− and
B−, so the wedge South(ℓ1, ℓ2) then misclassifies k1 + k2 points. If k1 + k2 ≤ k′ then we have
found a wedge misclassifying at most k′ points, so we are done with the decision problem,
otherwise we move on to the next candidate for ℓ1. If the data structure reports that there
exists no line ℓ2 misclassifying at most k′ points, then we also move on to the next candidate.

The data structure has update time O(k′ log3 n) per insertion and deletion, and there
are O(nk′) updates. Therefore, given a value k′, we can find a South wedge with at most k′

outliers, if it exists, in O(nk′2 log3 n) time. Using exponential search for the optimal value k

then gives an optimal South wedge in O(nk2 log3 n log k) time. As in the previous section,
we can similarly find North, West, and East wedges.

▶ Theorem 5.9. Given two sets of n points B, R ⊂ R2, we can construct a wedge WB

minimizing the total number of outliers k in O(nk2 log3 n log k) time.

With similar techniques to the above, we can improve (for some values of kB) our
algorithm for allowing blue outliers only to have an output-sensitive running time, see the
full version for details.

▶ Theorem 5.10. Given two sets of n points B, R ⊂ R2, we can construct a wedge WB

minimizing the number of blue outliers kB in O(nk2
B log2 n log kB) time.

ISAAC 2024
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6 Separation with a double wedge

The final setting we study is that of finding a double wedge. We summarize our approach
and results for all three cases.

Double wedge separation with red outliers. We consider finding a bowtie wedge WB while
minimizing red outliers, i.e. all of B and as little of R as possible lies in the West and East
wedge. In the dual this corresponds to a line segment intersecting all of B∗, and as little of
R∗ as possible.

Observe that a segment intersecting all lines of B∗ must have endpoints in antipodal
outer faces of A(B∗), i.e. two opposite outer faces sharing the same two infinite bounding
lines. For all O(n) pairs of antipodal faces, we could apply a very similar algorithm to the
wedge algorithm in Section 5.1, resulting in O(n · n log n) = O(n2 log n) time.

Alternatively, we construct the entire arrangement A(B∗ ∪ R∗) of all lines explicitly in
O(n2) time (see e.g. [11]). Consider a pair of faces P and Q that are antipodal in A(B∗),
and assume w.l.o.g. they are separated by the x-axis, with P above Q. There are two types
of red lines: splitting lines that intersect both P and Q once, and stabbing lines that intersect
at most one of P and Q, see Figure 8. A red line is a splitting line for exactly one pair of
antipodal faces, while it can be a stabbing line for multiple pairs. Recall that we wish to find
a segment from P to Q intersecting as few red lines as possible. The s splitting lines divide
the boundary of P and Q into s + 1 chains P0..Ps (Q0..Qs). Within one such chain Pi on P

we only need to consider the point pi with the most stabbing lines above it: a segment from
pi to Q will not intersect those lines, since Q is below Pi. Similarly, we only need to consider
point qj on chain Qj with the most stabbing lines below it. Using dynamic programming
we can then find the pair of chains Pi, Qj such that piqj intersects the fewest red lines in
O(n + s2) time. Doing so for all pairs of antipodal faces yields a total running time of O(n2).

P

Q

r1 r2

r3

r4

P2

P1

P0

Q0

Q1

Q2

p

q

Figure 8 Two antipodal faces P and Q, with
two splitting lines r1, r2 and two stabbing lines
r3, r4, and an optimal segment pq from P to Q.

ℓ2

ℓ1 B+

B−

R+R−

Figure 9 If we want B to lie in the
North and South wedges, then B+ and
R− should be above ℓ2, and B− and R+

should be below ℓ2.

▶ Theorem 6.1. Given two sets of n points B, R ⊂ R2, we can construct the bowtie double
wedge WB minimizing the number of red outliers kR in O(n2) time.

Double wedge separation with blue outliers. We wish to find a bowtie wedge WB while
minimizing blue outliers, i.e. none of R and as much of B as possible should lie in the West
and East wedge. In the dual this corresponds to a line segment intersecting none of R∗,
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and as much of B∗ as possible. This means the segment must lie in a single face of A(R∗).
For each face F of A(R∗) we thus wish to find a segment intersecting as many blue lines as
possible. Let B∗

F be the set of blue lines intersecting F . Then we can find such a segment in
O(|B∗

F | log |B∗
F |) time with a parameter space approach similar to Section 5.1. We do this

for each face F in A(R∗), yielding an O(n2 log n) algorithm.

Double wedge separation with both outliers. We show how to find an hourglass wedge
WB while minimizing both types of outliers; by recolouring we can also find an optimal
bowtie wedge. We use a similar approach as in Section 5.2, by considering a set of O(n2)
candidate lines ℓ1 and computing an optimal line ℓ2 for each. For a fixed line ℓ1, let B+ and
R+ be the points above ℓ1, and B− and R− be the points below ℓ1, and let P = B+ ∪ R−

and Q = B− ∪ R+. See Figure 9. Then we wish to find a line ℓ2 separating P and Q. Using
the same dynamic datastructure for halfplane separation as used in Section 5.3, we can
compute an optimal ℓ2 for each ℓ1 in O(n2k log3 n log k) time.

7 Concluding Remarks

We presented efficient algorithms for robust bichromatic classification of R ∪ B with at most
two lines. Our results depend on the shape of the region containing (most of the) blue points
B, and whether we wish to minimize the number of red outliers, blue outliers, or both. See
Table 1. Several of our algorithms reduce to the problem of computing a point with minimum
ply with respect to a set of regions. We can extend these algorithms to support weighted
regions, and thus we may support classifying weighted points (minimizing the weight of the
misclassified points). It is interesting to see if we can support other error measures as well.

There are also still many interesting open questions. Most prominently whether we
can obtain faster algorithms for minimizing the number of blue outliers kB or the total
number of outliers k. Alternatively, it would be interesting to establish lower bounds for the
various problems. In particular, are our algorithms for computing a halfplane minimizing kR

optimal, and in case of wedges (where the problem is asymmetric) is minimizing the number
of blue outliers kB really more difficult then minimizing kR? For the strip case, the running
time of our algorithm for minimizing k matches the worst case running time for halfplanes
(O((n + k2) log n), which is O(n2 log n) when k = O(n)), but it would be interesting to see if
we can also obtain algorithms sensitive to the number of outliers k.
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