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Abstract
Let R ∪ B be a set of n points in R2, and let k ∈ 1..n. Our goal is to compute a line that “best”
separates the “red” points R from the “blue” points B with at most k outliers. We present an
efficient semi-online dynamic data structure that can maintain whether such a separator exists
(“semi-online” meaning that when a point is inserted, we know when it will be deleted). Furthermore,
we present efficient exact and approximation algorithms that compute a linear separator that is
guaranteed to misclassify at most k, points and minimizes the distance to the farthest outlier. Our
exact algorithm runs in O(nk + n log n) time, and our (1 + ε)-approximation algorithm runs in
O(ε−1/2((n + k2) log n)) time. Based on our (1 + ε)-approximation algorithm we then also obtain a
semi-online data structure to maintain such a separator efficiently.
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1 Introduction

Classification is a well known and well studied problem: given a training set of n data
items with known classes, decide which class to assign to a new query item. Support Vector
Machines (SVMs) [8] are a popular method for binary classification in which there are just
two classes: red and blue. An SVM maps the input data items to points in Rd, and constructs
a hyperplane s that separates the red points R from the blue points B “as well as possible”.
Intuitively, it tries to minimize the distance from s to the set X(s, B ∪ R) ⊆ R ∪ B of points
misclassified by s while maximizing the distance to the closest correctly classified points.
A red point r ∈ R is misclassified if it lies strictly inside the halfspace s+ above (left of) s,
whereas a blue point b ∈ B is misclassified if it lies strictly inside the halfspace s− below s. See
Figure 1 for an illustration. An SVM is typically modeled as a convex quadratic programming
problem with linear constraints. However, this cannot provide guarantees on the number of
misclassifications nor on the running time.1 In practice, solving such optimization problems
is possible, but it is computationally expensive as it involves n + d variables [17]. This
problem is magnified as training a high-quality classifier typically requires computing many

1 When we restrict the coefficients in the SVM formulation to be rational numbers with bounded bit
complexity such a problem can be solved in polynomial time [14, 23, 18]. However, it is unclear if they
can be extended to allow for arbitrary real valued costs.
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Figure 1 Red and blue points, and two optimal separators for Mmax with 1 and 3 misclassification.

classifiers, each trained on a large subset of the input data, during cross-validation. Similarly,
in streaming settings, the labeled input points arrive on the fly, and old data points should
be removed due to concept drift [25]. Each such update requires recomputing the classifier.
Hence, this limits the applicability of SVMs in these settings, even when the input data is
low-dimensional.

The goal. We aim to tackle both these problems. That is, we wish to develop an “SVM-like”
linear classifier that can provide guarantees on the number of misclassified points k, and can
be constructed and updated efficiently. As the problem of minimizing k is NP-complete in
general [1], we restrict our attention to the setting where the input points are low-dimensional.
As it turns out, even for points in the plane, this is a challenging problem.

For a separator s, let Mmis(s) = |X(s, B ∪ R)| be the number of points misclassified
by s. Let Sk(B ∪ R) = {s | Mmis(s) ≤ k} denote the set of hyperplanes that misclassify
at most k points from B ∪ R, and let dist(p, q) denote the Euclidean distance between
geometric objects p and q. When the point sets are linearly separable, we want to compute
a maximum-margin separator sstrip ∈ S0(R ∪ B) that correctly classifies all points and
maximizes the distance Mstrip(sstrip) = minp∈R∪B dist(sstrip, p) to the closest points, exactly
as in an SVM. Moreover, we would like to efficiently maintain such a separator when we
insert or delete a point from B ∪ R. The main challenge occurs when the point sets are not
linearly separable. In this case, given a maximum k on the number of misclassified points,
our aim is to find a separator sopt ∈ Sk(R ∪ B) that minimizes the (Euclidean) distance
Mmax(s) = maxp∈X(s,B∪R) dist(p, s) to the furthest misclassified point. This thus asks for
a minimum width strip containing the k outliers. We again would like to maintain such a
separator when points are inserted or deleted. Furthermore, we may want to compute the
smallest number kmin for which there exists a separator smin that misclassifies at most kmin
points. Note that decreasing the number of outliers may increase the value of Mmax, i.e.
when kmin < k we may have Mmax(smin) > Mmax(sopt), see Figure 1.

By the above discussion we distinguish four general variations of the problem:
MaxStrip: find a separator sstrip = argmaxs∈S0(R∪B)Mstrip(s)
MinMax: find a separator smax = argminsMmax(s)
MinMis: find a separator smis = argminsMmis(s)
k-mis MinMax: given a value k, find a separator sopt = argmins∈Sk(B∪R)Mmax(s)

Related Work. It is well known that for points in Rd, for constant d, we can test if R and B

can be linearly separated in O(n) time by linear programming (LP) [22]. The problem becomes
much more challenging when we allow a limited number of misclassifications. Everett et
al. [12] show that for point sets R and B in the plane, one can find a line that separates R

and B while allowing for at most k misclassifications in O(n log n + nk) time. Matoušek [20]
shows how to solve LP-type problems while allowing at most k violated constraints. In
particular, for linear programming in R2, his algorithm runs in O(n log n + k3 log2 n) time.
Chan [3] improves this to O((n + k2) log n) time, and can compute the smallest number
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k for which the points can be separated (the MinMis problem) in the same time. Aronov
et al. [2] consider computing optimal separators with respect to other error measures as
well. In particular, they consider minimizing the distance Mmax(s) from s to the furthest
misclassified point, as well as minimizing the average (squared) distance to a misclassified
point Mβ

avg(s) =
∑

p∈X(s,B∪R)(dist(s, p))β . For n points in R2, their running times for
computing an optimal separator vary from O(n log n) for the Mmax measure (the MinMax
problem), to O(n4/3) for the M1

avg measure, to O(n2) for Mmis (the MinMis problem) and the
M2

avg measures. Some of their results extend to points in higher dimensions. Har-Peled and
Koltun [16] consider similar measures, and present both exact and approximation algorithms.
For example, they present an exact O(nkd+1 log n) time algorithm to find a hyperplane
that minimizes the number of outliers (for points in Rd), and an O(n(ε−2 log n)d+1) time
algorithm to compute a (1+ε)-approximation of that number.2 Their exact and approximation
algorithms for computing a hyperplane minimizing Mmax run in O(nd) and O(nε(d−1)/2)
time, respectively. Matheny and Phillips [19] consider computing a separating hyperplane s,
so that the discrepancy (the fraction of red points in s− minus the fraction of blue points
in s−) is maximized. They present an O(n + ε−d log4(ε−1)) time algorithm that makes an
additive error of at most ε (and thus misclassifies at most εn points more than an optimal
(with respect to discrepancy) classifier).

Results. We can show that for points in R1 we can achieve both our goals: minimizing
Mmax with a hard guarantee on the number of outliers and efficiently supporting updates.
In particular, in the full version [13] we present an optimal linear space solution:

▶ Theorem 1. Let B ∪ R be a set of n points in R1. There is an O(n) space data structure
that, given a query value k ∈ 1..n can compute an optimal separator sopt ∈ Sk(R ∪ B) with
respect to Mmax in O(log n) time, and supports inserting or deleting a point in O(log n) time.

The main focus of our paper is to establish whether we can achieve similar results for
points in R2. If the points are separable, we can maintain a maximum-margin separator –
essentially a maximum width strip – in O(log2 n) time per update.

The problem gets significantly more complicated when the point sets are not separable,
and we thus wish to compute, and maintain, a separator sopt ∈ Sk(B ∪ R) minimizing
the distance Mmax to the farthest misclassified point. We can test whether a separator
s ∈ Sk(B ∪ R) exists (and find the smallest k for which a separator exists) using LP with
violations. In Section 3 we show how to dynamize Chan’s approach [3] to maintain such
a separator when the set of points changes. In particular, given a static linear objective
function f : R2 → R and a dynamic set H of halfplanes that is given in a semi-online manner
(at the time we insert a halfplane h into H we are told when we will delete h), we show how
to efficiently maintain a point p minimizing f that lies outside at most k halfplanes from H:

▶ Theorem 2. Let H be a set of n halfplanes in R2, let f be a linear objective function, and
let k ∈ 1..n. There is an O(n + k2 log2 n) space data structure that maintains a point p that
violates at most k constraints of H (if it exists) and minimizes f , and supports semi-online
updates in expected amortized O(k log3 n) time.

This then also allows us to maintain whether a separator that misclassifies at most k

points exists in amortized O(k log3 n) time per (semi-online) update, as well as maintain
the minimum value k for which this is the case. Since linear programming queries have

2 Here and throughout the rest of the paper, ε > 0 is an arbitrarily small constant.
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many other applications, e.g. finding extremal points and tangents, we believe this result
to be of independent interest. For example, given a threshold δ, our data structure also
allows us to maintain a line ℓ that minimizes the number of points k at vertical distance
exceeding δ from ℓ in amortized O(k log3 n) time per update. Note that the best update
time we can reasonably expect with this approach is O((1 + k2/n) log n). For values of k

that are small (e.g. polylogarithmic) or very large (near linear) our approach is relatively
close to this bound.

In Section 4, we incorporate finding the best separator from Sk(B ∪ R); i.e. a separator
that minimizes Mmax. We first tackle the algorithmic problem of computing such an optimal
separator. Our main result here is:

▶ Theorem 3. Let B ∪ R be a set of n points in R2, and let k ∈ 1..n. We can compute a
separator sopt ∈ Sk(B ∪ R) minimizing Mmax in

O(nk + n log n) time,
O((n + |Sk(B ∪ R)| + k3) log2 n) time, or
when k = kmin in O(k4/3n2/3 log n + (n + k2) log n) time.

Here |Sk(B ∪ R)| denotes the complexity of (the region in the dual plane representing)
Sk(B ∪ R). The key challenge is that this region Sk(B ∪ R) may consist of Θ(k2) connected
components, and each one has very little structure. While in the linear programming
approach we can efficiently find one local minimum per connected component, that is
no longer the case here. Instead, we explicitly construct the boundary of this region.
Unfortunately, the total complexity of Sk(B ∪ R) is rather large: Chan [4] gives an upper
bound of |Sk(B ∪ R)| = O(nk1/3 + n5/6−εk2/3+2ε + k2). We give two different algorithms
to construct Sk(B ∪ R), and then efficiently find an optimal separator. When we restrict
to the case where k = kmin, i.e. finding an separator that minimizes Mmax among all
lines that misclassify the least possible number of outliers, each connected component of
Sk(B ∪ R) is a single face in an arrangement of lines. This then gives us a slightly faster
O(k4/3n2/3 log2/3(n/k) + (n + k2) log n) time algorithm as well.

Unfortunately, even when k = kmin, dynamization appears very challenging. In the full
version we present an O((k4/3n2/3 + n) log5 n) space data structure that supports insertions
in amortized O(kn3/4+ε) time, provided that the convex hulls of R and B remain the same.
While the applicability of this result is limited, we use and develop an interesting combination
of techniques here. For example, we develop a near linear space data structure that stores
the the lower envelope of surfaces and allows for sub-linear time vertical ray shooting queries.

In Section 5, we slightly relax our goal and consider approximating the distance Mmax
instead. Our key idea is to replace the Euclidean distance by a convex distance function.
This avoids some algebraic issues, as the distance between a point and a line now no longer
has a quadratic dependency on the slope of the line. Instead the dependency becomes linear.
We now obtain a much more efficient algorithm for finding a good separator:

▶ Theorem 4. Let B ∪ R be a set of n points in R2, let k ∈ 1..n, and let ε > 0. We can
compute a separator s ∈ Sk(B ∪ R) that is a (1 + ε) approximation with respect to Mmax in
O(ε−1/2((n + k2) log n)) time.

We essentially “guess” the width δ of a strip “separating” the point sets, and show that
we can use the linear programming machinery to efficiently test whether there exists such a
strip containing at most k outliers . This involves extending the algorithm to deal with both
“soft constraints” that may be violated, as well as “hard constraints” that cannot be violated,
and using parametric search [21] to find the smallest δ for which such a strip exists.
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▶ Theorem 5. Let B ∪ R be a set of n points in R2, let k ∈ 1..n, and let ε > 0. There is
an O(ε−1/2(k2 log2 n + n)) space data structure that maintains a separator s ∈ Sk(B ∪ R)
that is a (1 + ε)-approximation with respect to Mmax, and supports semi-online updates in
expected amortized O(ε−1/2k log4 n) time.

Applications. Our data structure from Theorem 5 can reduce the total time in a leave-out-
one cross validation process by roughly a linear factor in comparison to Theorem 4. For
m-fold cross validation we gain a factor m. Similarly, in a streaming setting in which we
maintain a window of width w, we gain a factor of roughly w. Note that in both these
settings, the semi-online updates indeed suffice.

2 Preliminaries

General definitions. We use the standard point-line duality that maps any point p = (px, py)
in the primal plane to a line p∗ : y = pxx − py in the dual plane, and any line ℓ : y = mx + c

in the primal plane into a point (m, −c) in the dual plane.
Let A be a set of n lines, and let k ∈ 1..n. Let the lower ≤ k-level L≤k(A) ⊂ R2 of A

be the set of points for which there are at most k lines below it. Similarly let the upper
≤ k-level L′

≤k(A) be set of points for which there are at most k lines above it. Let Lk(A) be
the k-level, the boundary of L≤k(A). Note that a k-level lies exactly on existing lines in A.
Although these terms refer to a region in the plane, with a slight abuse of notation we will
also use them to refer to the part of the arrangement A of the lines in A that lies in this
region. The complexity of (A restricted to) L≤k(A) is O(nk), and it can be computed in
O(nk + n log n) time [12]. Note that the lower 0-level L0(A) and the upper 0-level L′

0(A)
denote the lower envelope and the upper envelope of the set of lines, respectively.

In O(n log k) time we can compute a concave chain decomposition [3, 6] of L≤k(A): a
set of O(k) concave chains of total complexity O(n) that together cover all edges of A in
L≤k(A). See Figure 2a. A convex chain decomposition is defined similarly for L′

≤k(A).
Throughout this paper we assume points above a separating line s should be blue, and

points below should be red. In the dual this means that lines above separating point s∗

should be red, and lines below should be blue. In particular, we describe algorithms for
finding the optimal separator that classifies in this way. We can then repeat the algorithm
to find the best separator that classifies the other way around, and finally output the best
of the two. For ease of description we assume all points in R ∪ B are in general position,
meaning that all coordinates are unique, and no three points lie on a line.

Valid separators. Fix a value k ∈ 1..n. A separator s and its dual s∗ are valid with respect
to k if (and only if) s ∈ Sk(B ∪ R). Line s misclassifies all red points above s and all blue
points below s. In the dual, this means all red lines below s∗ and all blue lines above s∗ are
misclassified. Consider the dual arrangement of lines R∗ ∪ B∗. For any two separators s1
and s2 whose duals lie in the same face of the arrangement, Mmis(s1) = Mmis(s2). Let a face
containing valid points be a valid face, and note that points on the boundary of a valid face
are also valid. A valid region is the union of a maximal set of adjacent valid faces, and the
boundary of a valid region is composed of valid edges (note that we ignore edges that are
fully contained within a valid region). Now observe that Sk(B ∪ R) thus corresponds to the
union of these valid regions. With some abuse of notation we use Sk(B ∪ R) to refer to this
union of regions in the dual plane as well.

ISAAC 2024
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Figure 2 (a) A concave chain decomposition of L≤2(B∗). (b): Blue chains create intervals on a
red chain cr. The blue ply of a point p on cr is the number of endpoints (open) before p plus the
number of startpoints (closed) after p.

We observe the following useful properties (refer to the full version for omitted proofs):

▶ Lemma 6 (Chan [4]). The set Sk(B ∪ R) is contained in L≤k(R∗) ∩ L′
≤k(B∗), consists of

O(k2) valid regions, and its total complexity is O(nk1/3 + n5/6−εk2/3+2ε + k2).

▶ Lemma 7. There may be Ω(k2) valid regions of total complexity Ω(k2 + ne
√

log k).

▶ Lemma 8. There are O(k2) red-blue intersections in L≤k(R∗) ∩ L′
≤k(B∗).

▶ Lemma 9. A line ℓ has O(k) intersections with L≤k(R∗) ∩ L′
≤k(B∗).

▶ Lemma 10. A valid region V is bounded by red lines on the top and blue lines on the
bottom. The leftmost point of V is a red-blue intersection, or V is unbounded towards the
left. The rightmost point in V is a red-blue intersection, or V is unbounded to the right.

3 Dynamic linear programming with violations

In this section we consider the following problem: given a set of n constraints (halfplanes)
H in R2, an objective function f , and an integer k, find a point p that violates at most
k constraints and minimizes f(p). We assume without loss of generality that f(p) = px,
so we are looking for the leftmost valid point, that is, a point that violates at most k

constraints. Chan solves this problem in O((n + k2) log n) time [3]. In the same time bounds,
their approach can find the minimum number kmin of constraints violated by any point.
We give an overview of their techniques below, and then show how to make the approach
semi-dynamic. We maintain an optimal point p under semi-online insertions and deletions of
constraints. “Semi-online” means that when a constraint is inserted we are told when it will
be deleted. We first do so for a given value k, and then extend the result to maintain kmin.

The above linear programming problem is a generalization of (the dual of) our MinMis
problem. Point p violates a constraint h ∈ H if it lies outside of the halfplane. Let R be
the set of lines bounding lower halfplanes, and B be the set lines bounding upper halfplanes.
Point p violates all blue constraints above, and all red constraints below, and thus p violates
exactly the Mmis(p) lines in X(p, R ∪ B). This means we can solve the MinMis problem and
compute smis = argminsMmis(s) in O((n + k2) log n) time.

3.1 Chan’s algorithm
Chan considers the decision version of the problem: given an integer k, find the leftmost
point that violates at most k constraints. Their algorithm actually generates all local minima
that violate fewer than k constraints as well, so by guessing k =

√
n, 2

√
n, 4

√
n . . . we can

find the minimum value kmin for which a valid point exists in the same time bounds.
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We first assume that there are no valid regions that are unbounded towards the left. By
Lemma 10, the leftmost valid point in a valid region must then be a red-blue intersection, and
by Lemma 8 there are only O(k2) of them. We construct the concave chain decomposition
of L≤k(R) and the convex chain decomposition of L′

≤k(B) in O(n log n) time, and compute
their intersections in O(k2 log n) time; this gives us all candidate optima.

Consider a red chain cr, as in Figure 2b. Every blue chain cb defines a (possibly empty)
interval on cr, such that points inside the interval lie above cb and points outside the interval
lie below cb. The blue ply of a point p on cr is the number of blue chains above p (and thus
the number of violated blue constraints above p). This is the number of blue intervals not
containing p, and thus the number of intervals ending before p or starting after p. By storing
the start points and end points of all blue intervals in two balanced binary trees we can thus
find the blue ply of any point p on cr in O(log k) time. We call this the chromatic ply data
structure of cr. The chromatic ply data structure of a blue chain cb is defined symmetrically.

For an intersection point p between red chain cr and blue chain cb we can now calculate
its Mmis(p) value: query cr for the blue ply and query cb for the red ply, both in O(log k)
time, and sum them up. For all O(k2) red-blue intersections this takes O(k2 log k) time.
Among them we then find the leftmost valid intersection and return it, if it exists.

If the optimum was unbounded, then part of the leftmost segment of one of the chains
must be valid. We can check this in O(k log k) time using the chromatic ply data structures.

3.2 A semi-dynamic data structure for a fixed k

We now make the above algorithm dynamic under semi-online insertions and deletions: given
a fixed value k, we maintain the leftmost point that violates at most k constraints.

We first show how to maintain the concave chain decomposition of L≤k(R) (and similarly
the convex chain decomposition of L′

≤k(B)) using an extension of the logarithmic method [10,
26], then show how to maintain the chromatic ply datastructures, and lastly use these chains
to actually maintain the leftmost valid separator.

Maintaining the concave chain decomposition. We maintain the concave chain decompos-
ition of L≤k(R) using Dobkin and Suri’s extension of the logarithmic method [10, 26]. We
maintain a partition of R into z = O(log n) subsets R0, R1..Rz, such that for each layer i:
(1) none of the lines in set Ri will be deleted for at least 2i updates after the set is created.
(2) |Ri| = O(2i).

For each set Ri we store the concave chain decomposition of L≤k(Ri). Since each such
structure contains O(k) chains, we have O(k log n) chains in total. The union of these chains
also covers L≤k(R): if a line ℓ is among the lowest k lines in R at some x-coordinate, it must
also be among the lowest k lines in any subset R′ ⊆ R, including the subset Ri containing ℓ.

The basic idea is the following. After set Ri is created, by condition (1) no items will be
deleted from it for at least 2i updates, so it remains fixed for 2i updates and gets rebuilt
after that. As such, the smaller data structures are rebuilt quite often, and the larger data
structures remain fixed for a long time. By construction, deletions happen only at layer 0
from set R0, which contains O(1) lines. Lines are inserted in layer 0, and gradually move to
higher layers where they remain fixed for an ever increasing number of updates. When a line
is to be deleted soon, it gradually moves down to layer 0 again.

▶ Lemma 11. We can maintain O(k log n) concave chains of total complexity O(n) that
cover L≤k(R) under semi-online insertions and deletions in O(log2 n) amortized time.

ISAAC 2024
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In fact, we can maintain a slightly altered version of the above data structure within the
same time and space bounds. Let 2x be the smallest power of two that is at least k log n, i.e.
2x−1 < k log n ≤ 2x. We store the 2x lines that are the first to be deleted in a separate list,
the leftover list. We do not build a chain data structure on the leftover lines, but instead we
let each leftover line forms a trivial chain, so we still have O(k log n) chains covering L≤k(R).
This way all sets Rj with j < x are empty. We can thus perform 2x cheap updates without
having to modify any of the sets Rj : we can simply insert directly in (or delete directly from)
the leftover list, without having to rebuild any data structure, in O(1) time. Once every 2x

updates we perform an expensive update, destroying all sets up to some layer i′ (the largest
set that no longer adheres to invariant (1)), and redistributing all the lines in them over the
layers 0 through i′ again. Each set Ri still has an amortized update time of O(i), and thus
the total amortized update time remains O(log2 n).

Maintaining intersections and chromatic ply data structures. Next, we show how to
maintain the chromatic ply data structures on the chains, which also gives us the set I≤k of
O(k2) red-blue intersections in L≤k(R∗) ∩ L′

≤k(B∗).
We maintain a concave chain decomposition of L≤k(R∗) and a convex chain decomposition

of L′
≤k(B∗) using Lemma 11, with O(k log n) leftover lines. Whenever we perform an

expensive update on one of the two (i.e. rebuilding the chains), we do so on the other as
well. On each red chain cr we maintain a blue chromatic ply data structure. Similarly on
each blue chain cb we maintain a red ply data structure. Additionally, we maintain a set I of
the O(k2 log2 n) red-blue intersections between the chains. This is a superset of I≤k.

Consider the insertion of a line r. Depending on the type of update, we do the following:
Cheap update: line r is added to the leftover list, and forms a trivial chain cr. We compute

all O(k log n) intersections between cr and the blue chains, insert them in I, and build
the blue ply data structure on cr. For each intersected blue chain cb we insert the interval
induced on cb by cr into the red ply data structure of cb. This takes O(k log2 n) time.

Expensive update: some number of chains are rebuilt. We rebuild the set I and the chromatic
ply data structures on all chains from scratch. Since we have O(k log n) red and blue
chains, this takes O(k2 log3 n) time.

Every 2x = O(k log n) updates we have 2x − 1 cheap updates, taking O(k log2 n) time
each, and one expensive update, taking O(k2 log3 n) time. This thus takes O(k2 log3 n) time
for 2x updates, making the amortized updates time O(k log2 n). We thus have:

▶ Lemma 12. We can maintain a set I ⊇ I≤k of O(k2 log2 n) bichromatic intersection points
under semi-online updates in amortized O(k log2 n) time. This uses O(n + k2 log2 n) space.

Maintaining the leftmost valid point. The last step is to maintain the leftmost valid point
s for a fixed value k. We know s is contained in the set I maintained by Lemma 12, but
simply iterating through the entire set each update would take too long. We store I in a data
structure that maintains Mmis(p) for each p ∈ I, and can handle the following operations:
Insertion/Deletion: Inserting or deleting a point (a red-blue intersection).
Halfplane update: Update Mmis(p) for each p ∈ I after the insertion or deletion of a

constraint, e.g. increment Mmis(p) by one for all points p in the halfplane above an
inserted line r (or in the halfplane below an inserted line b).

Query: Given a query value k′ ≤ k, return the leftmost point p ∈ I with Mmis(p) ≤ k′.

We can achieve the above using a binary search tree on I sorted by x-coordinate, and a
partition tree [5] on I where each node u stores (a point attaining) the minimum number of
constraints violated by a point in its canonical subset. We use the logarithmic method to
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handle insertions on the partition tree, and perform deletion of a point p ∈ I implicitly by
setting Mmis(p) = ∞. A halfplane update corresponds to one “query” in the partition tree,
where we only recurse on intersected triangles. Using the binary search tree and the partition
tree, we can then binary search for the leftmost point that violates at most k′ constraints.

▶ Lemma 13. We can build a data structure on a set of O(k2 log2 n) points I that can
perform insertions and deletions in O(log k log n) amortized time, halfplane updates in
expected O(k log2 n) time, and queries in expected O(k log3 n) time. The data structure uses
O(k2 log2 n) space.

We can now dynamically maintain the solution to an LP with at most k violations by using
Lemmas 11, 12 and 13 as follows. For each cheap update, e.g. the insertion of a line r, we find
the O(k log n) intersections between r and blue chains, and insert them in O(k log2 n log k)
total time. We then perform one halfplane update in O(k log2 n) time. For each expensive
update we discard the data structures from Lemmas 12 and 13 and rebuild them from scratch.
This takes O(k2 log3 n) time, and thus O(k log2 n) amortized time. After every update we
perform one query with k′ = k in O(k log3 n) time. This establishes Theorem 2. In the full
version, we extend the data structure to maintain the minimum number kmin of constraints
violated by any point as well.

4 Exact algorithms for k-mis MinMax

For the k-mis MinMax problem we are given point sets R and B and an integer k and wish to
compute a separator sopt = argmins∈Sk(R∪B)Mmax(s) that misclassifies at most k points and
minimizes the distance to the furthest misclassified point. In this section we present an exact
algorithm for this problem. In Section 4.1 we first discuss some useful geometric properties.
In Section 4.2 we then present algorithms to construct the valid regions Sk(R ∪ B). Finally,
in Section 4.3, we show how we can then compute an optimal separator.

4.1 Geometric properties

The MinMax problem. We first consider the MinMax problem. Here, we wish to compute
smax = argminsMmax(s), a separator with minimal distance to the farthest misclassified
point. Consider the dual plane. At a fixed x-coordinate, this point lies exactly in the middle
of the envelopes L0(R∗) and L′

0(B∗). Let the MinMax curve be the polygonal curve in the
middle of L0(R∗) and L′

0(B∗), and observe that it consists of O(n) segments. See Figure 3.

▶ Lemma 14. Let s be a point in the interior of an edge e of the MinMax curve. Moving s

left or moving s right along e decreases the error Mmax(s).

MinMax

m L0(R
∗)slope

L′
0(B

∗)

s∗1

s∗2

s1
s2

in
te
rc
ep

t

Figure 3 Some primal points (left) with their dual (right). Valid faces for k = 2 are green.
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Figure 4 Left: the cases a, b, c, d for s∗
opt in the dual plane; the red/blue regions represent some

number of correctly classified lines. Right: the cases a, b, c, d for sopt in the primal plane.

The k-min MinMax problem. For the k-mis MinMax problem, we wish to compute
sopt = argmins∈Sk(B∪R)Mmax(s), a valid separator with minimal Mmax(sopt). At a fixed
x-coordinate, this is the valid separator (if it exists) with the smallest vertical distance to
the MinMax curve. This fact and Lemma 14 lead to the following characterization:

▶ Lemma 15. A point s∗
opt dual to an optimal separator is one of the following:

a. A vertex of a valid face, vertically closest to MinMax.
b. A (valid) vertex of MinMax.
c. The first valid point directly above or below a vertex of MinMax.
d. The intersection of a MinMax edge e with a valid edge, closest to one of e’s endpoints.

Proof sketch. In the primal plane, the optimal separator sopt has to be “bounded” by at
least three points, otherwise we can rotate or translate sopt slightly to decrease Mmax(sopt).
These bounding points can either be extremal points that we want the separator to be as
close to as possible, or points that the separator is not allowed to cross because that would
make it invalid. The four ways in which sopt can be bounded are shown in Figure 4. ◀

4.2 Constructing the valid regions
We present three algorithms for constructing the valid regions Sk(B ∪ R).

First, by Lemma 6 all valid points lie inside L≤k(R∗) ∩ L′
≤k(B∗), so we present a simple

algorithm that constructs this part of the arrangement, and prunes all invalid regions. Since
L≤k(R∗) and L′

≤k(B∗) have complexity O(nk), this gives an O(n log n + nk) time algorithm.
Second, we present a much more involved output sensitive O((nk1/3 + n5/6−εk2/3+2ε +

k3) log2 n) time algorithm, which is faster for k < n2/3. It is based on an approach sketched
by Chan [4] to compute the valid region in an output-sensitive manner, by first computing
the bichromatic intersection points of L≤k(R∗) ∩ L′

≤k(B∗), and then tracing Sk(B ∪ R),
starting from these bichromatic intersection points “as in a standard k-level algorithm”. They
claim this results in a running time of O(|Sk(B ∪ R)| polylog n) time, but do not provide
details. The k-level in an arrangement of lines is connected, whereas here Sk(B ∪ R) may
consist of Ω(k2) disconnected pieces (Lemma 7). This unfortunately provides some additional
difficulties in initializing the data structure used in the tracing process. Hence, it is not
clear that it can indeed be done in O(|Sk(B ∪ R)| polylog n) time. Instead, we present an
algorithm that runs in O((|Sk(B ∪ R)| + n + k3) log2 n) time, the stated time bound.

Finally, if we care only about the case where k = kmin = Mmis(smis), i.e. where we are
required to misclassify as few points as possible, we observe that each valid region is a single
face. By Lemma 6 there are O(k2) valid regions, so now there are O(k2) valid faces. Clarkson
et al. [7] show that m faces in an arrangement have a complexity of O(m2/3n2/3 + n), and
we can construct them in O(k4/3n2/3 log2/3(n/k) + (n + k2) log n) time [27].
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Figure 5 Two valid faces with their vertical decomposition and type b, c and d points.

4.3 An algorithm for solving the k-mis MinMax problem

We now show how, given the valid regions, we can compute an optimal separator sopt ∈
Sk(B ∪ R) efficiently. We start by constructing L0(R) and L′

0(B), and simultaneously scan
through them to construct the MinMax curve s∗

max. This takes O(n log n) time [9]. By
Lemma 15 an optimal separator is of type a, b, c, or d. So, we will now compute all these
candidate optima, and iterate through them to find the one with lowest error.

Type a points. Since we are given Sk(B ∪ R), we can simply scan through its vertices,
keeping track of the vertex with the smallest error. To calculate the error of a vertex, we
need to know which segment of s∗

max it lies above/below; then the error can be calculated
in O(1) time. We can compute this in O(log n) time per vertex using binary search (since
MinMax is x-monotone). Hence, this step takes O(|Sk(B ∪ R)| log n) time.

Type b and c points. Recall type b points are MinMax vertices, and type c points are the first
valid points above or below MinMax vertices. We construct the trapezoidal decomposition
of Sk(B ∪ R) in O(|Sk(B ∪ R)| log n) time, which supports O(log n) time point location
queries [24]. Each trapezoid has vertical left and right sides, see Figure 5.

For each vertex of MinMax we perform one point location query, which tells us what
trapezoid the vertex lies in. If this trapezoid is inside a valid region, the vertex is a type b

point. Otherwise the closest valid edges vertically above and below this vertex are simply
the edges bounding that trapezoid, giving us up to two type c points. Since MinMax has
O(n) vertices, this gives us all type b and c points in O(n log n) time. Including the time to
build the decomposition, this thus takes O(|Sk(B ∪ R)| + n) log n) time.

Type d points. Recall type d points are intersections between MinMax and edges bounding
Sk(B∪R). In particular, for every MinMax edge we care only about its outermost intersection
points. We walk along MinMax from left to right through the vertical decomposition until we
find the leftmost intersection on an edge; we then continue the walk from the next MinMax
vertex. We find the rightmost intersection symmetrically. After locating the MinMax vertices
in O(n log n) time, this takes O(n + |Sk(B ∪ R)|) time, since MinMax is x-monotone.

▶ Lemma 16. Given Sk(B∪R), we can compute a separator sopt = argmins∈Sk(B∪R)Mmax(s)
in O((|Sk(B ∪ R)| + n) log n) time.

By combining Lemma 16 with the three algorithms from Section 4.2 we thus obtain an
O((nk + n) log n) (which we can reduce to O(nk + n log n)) and an O((|Sk(B ∪ R)| + n +
k3) log2 n) time algorithm for the general problem, and an O(k4/3n2/3 log n + (n + k2) log n)
time algorithm for when k = kmin. These results together establish Theorem 3.
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Figure 6 (a) The Euclidean unit circle and convex unit 4-gon. (b) The convex and concave
δ-chain forming a δ-region. (c) A δ-region, with candidate red-blue intersections marked.

5 An ε-approximation algorithm

Let sopt ∈ Sk(B ∪ R) be an optimal valid separator minimizing Mmax, and let ε ∈ (0, 1)
be some given threshold. Our goal is to compute a (1 + ε)-approximation of sopt: that is,
we want to find a valid separator ŝ with Mmax(ŝ) ≤ (1 + ε)Mmax(sopt). The main idea is
to replace the Euclidean distance function dist by some convex distance function d̂ that
approximates dist, and compute a separator ŝ that minimizes M̂(ŝ) = maxp∈X(ŝ,B∪R) d̂(p, ŝ).

Let p be a point and s be a line, let t = Θ(1/
√

ε), and let T be a convex regular
t-gon centered at the origin inscribed by a unit disk. See Figure 6a. We then define the
convex distance function d̂(p, s) = min{λ | s ∩ (p + λT ) ̸= ∅} to be the smallest scaling
factor for which a scaled copy of T centered at p intersects s. It can be shown that
dist(p, s) ≤ d̂(p, s) ≤ (1 + ε)dist(p, s) [11, 15], and thus Mmax(s) ≤ M̂(s) ≤ (1 + ε)Mmax(s).
It follows that the separator ŝ minimizing M̂ is a (1 + ε)-approximation of sopt.

Observe that this distance d̂(p, s) is realized in a corner v of the t-gon; i.e. the t-gon
scaled by a factor d̂(p, s) intersects s in a corner point v of the t-gon. We say v is a realizer
for the line s. More specifically, there is some interval of slopes Jv such that v is the realizer
for all lines with a slope in the interval Jv. For each slope interval Jv we will compute a valid
separator ŝv with slope in Jv minimizing M̂(ŝv), and finally ŝ = argminvMmax(ŝv).

We consider one such slope interval Jv. Assume w.l.o.g. that v is vertically below the
center point of the t-gon (we can rotate the plane to achieve this). This means interval Jv is
centered at slope 0, so Jv = (−π/t, π/t), and the distance d̂(p, s) between a point p and line
s is the vertical distance between p and s. Since vertical distance is preserved by dualizing,
this means that for all points s in the x-interval Jv, the value M̂(s) expresses the vertical –
and thus convex t-gon – distance from s to L0(R∗) or L′

0(B∗), whichever is larger.

The algorithmic problem. Extending Chan’s algorithm from Section 3.1, we build a data
structure that, for a given value δ, can find a valid separator s ∈ Jv × R with M̂(s) ≤ δ if it
exists. We then use parametric search [21] to find the optimal value δ, and a separator ŝv.

Fix a value δ, and observe that all points with error at most δ lie at most δ below L′
0(B).

This can be imagined as moving L′
0(B) down by δ. Let the resulting chain be the convex

δ-chain, see Figure 6(b). Similarly, let the concave δ-chain be L0(R) moved up by δ. All
points with error at most δ must thus lie above the convex δ-chain, and below the concave
δ-chain: the δ-region. The question now becomes: does a valid point exist in the δ-region?

In Section 3.1 we considered only red-blue intersections. Similarly, we can show that now
we need to consider only intersections between convex chains (a blue chain or the convex
δ-chain) and concave chains (a red chain or the concave δ-chain). There are O(k2) such
convex-concave intersections (see Figure 6(c)). We can compute them all during preprocessing,
find the valid point pmin among them with smallest error, and simply forget about all others.
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The data structure consists of three parts. First, a concave chain decomposition of
L≤k(R), and a convex chain decomposition of L′

≤k(B), with a chromatic ply data structure
for every chain. Second, the point pmin. Third, the envelopes L0(R) and L′

0(B). This can all
be built in O((n + k2) log n) time using Chan’s method, and uses O(n + k2) space.

We answer a query with value δ as follows. We check if M̂(pmin) ≤ δ, and if so, return
pmin. If not, we find the O(k) convex-concave intersections involving the δ-chains, and build
a red ply data structure for the convex δ-chain, and a blue ply data structure for the concave
δ-chain. For each intersection p we compute Mmis(p) using the chromatic ply data structures,
and compute Mmax(p) using the envelopes. Finally we return the valid intersection with
lowest error if its error is at most δ, otherwise there exists no point with error at most δ.

Using parametric search on the above data structure gives us a valid separator with slope
in Jv with the lowest error in O((n + k2) log n) time. Doing this for all t = Θ(1/

√
ε) slope

intervals Jv proves Theorem 4.

A dynamic data structure. Using the dynamic chain decomposition data structure from
Lemma 11, we can maintain the data structure under semi-online updates, and perform the
parametric search after every update to maintain an optimum ŝ, thus proving Theorem 5.
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