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—— Abstract

We show that all invertible n x n matrices over any finite field Fy can be generated in a Gray code
fashion. More specifically, there exists a listing such that (1) each matrix appears exactly once, and
(2) two consecutive matrices differ by adding or subtracting one row from a previous or subsequent
row, or by multiplying or dividing a row by the generator of the multiplicative group of F,. This
even holds in the more general setting where the pairs of rows that can be added or subtracted
are specified by an arbitrary transition tree that has to satisfy some mild constraints. Moreover,
we can prescribe the first and the last matrix if n > 3, or n = 2 and ¢ > 2. In other words, the
corresponding flip graph on all invertible n x n matrices over Fy is Hamilton connected if it is not a
cycle. This solves yet another special case of Lovasz conjecture on Hamiltonicity of vertex-transitive
graphs.
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1 Introduction

Combinatorial generation is one of the most basic tasks we can perform on combinatorial
objects and a key topic in Volume 4A of Knuth’s seminal series The Art of Computer
Programming [11]. In this task, we are given an implicit description of the objects and need
to produce a listing of all objects fitting the description, with each object appearing exactly
once. The goal is to develop an algorithm that can generate these objects at a fast rate.
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If consecutive objects produced by a generation algorithm differ by large changes, the
algorithm must spend a lot of time updating its data structures. Therefore, a natural first
step towards creating an efficient generation algorithm is to ensure that consecutive objects
differ by only a small change. Such a listing is known as a (combinatorial) Gray code;
see Miitze’s survey [13] for many Gray codes of various objects. In addition to combinatorial
generation, Gray codes are also relevant in the field of combinatorial reconfiguration, which
examines the relationships between combinatorial objects through their local changes; see,
e.g., Nishimura’s recent introduction on reconfiguration [14].

In this paper, we study Gray codes for invertible matrices over a finite field. A natural
attempt for enumerating all invertible n X n matrices over a finite field IFy, is to choose any
nonzero first row and then selecting the following rows to be independent to the previous
rows. However, this attempt is not efficient as it requires multiple checks for independence
to generate even a single matrix. Furthermore, consecutive matrices in this listing may differ
in multiple rows. Instead, we focus on generating matrices in a Gray code order, i.e., every
matrix is obtained from the previous one by a single elementary row operation. We note
that generating invertible matrices with specific properties has applications in cryptography,
e.g., in McEliece cryptosystems [7].

1.1 Strong Lovasz conjecture

All invertible n x n matrices over F, with matrix multiplication form the general linear
group GL(n,q). Each elementary row operation can be represented by multiplying on the
left by a matrix that corresponds to this row operation. Hence, we are interested in finding a
Hamilton path in an (undirected) Cayley graph on GL(n,q) generated by the allowed row
operations, which is in turn an instance of Lovasz conjecture [12] on the Hamiltonicity of
vertex-transitive graphs.!

Stronger versions of Lovasz conjecture have been considered in the literature. For example,
Dupuis and Wagon [6] asked which non-bipartite vertex-transitive graphs are not Hamilton
connected. A graph is Hamilton connected if there is a Hamilton path between any two
vertices. Similarly, they asked which bipartite vertex-transitive graphs are not Hamilton
laceable [6]. A bipartite graph is Hamilton laceable if there is a Hamilton path between
any two vertices from different bipartite sets. Note that the bipartite sets must be of equal
size, which is true for all vertex-transitive bipartite graphs except K.

» Conjecture 1 (Strong Lovész conjecture). For every finite connected vertex-transitive graph
G it holds that G is Hamilton connected, or Hamilton laceable, or a cycle, or one of the five
known counterexamples.

The five known counterexamples are the dodecahedron graph, the Petersen graph, the
Coxeter graph, and the graphs obtained from the latter two by replacing each vertex
with a triangle. The dodecahedron graph is a non-bipartite vertex-transitive graph that
has a Hamilton cycle, but it is not Hamilton connected [6]. The other four well-known
counterexamples are non-bipartite vertex-transitive graphs that do not admit a Hamilton
cycle. Note that except when G € {K7, Ka,C3,C4} the cases in the conjecture are mutually
exclusive.

There are many results in line with Conjecture 1. Particularly relevant to us is a result of
Tchuente [18] showing that the Cayley graph of the symmetric group Sy, generated by any
connected set of transpositions, is Hamilton laceable when n > 4. Another relevant example is

L A graph is vertex-transitive if its automorphism group acts transitively on the vertices.
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Chen and Quimpo’s Theorem [4] showing that all Abelian Cayley graphs satisfy Conjecture 1.

Nevertheless, Conjecture 1 remains open even for Cayley graphs of the symmetric group
with every generator an involution [16]. Note that none of the five counterexamples to

Conjecture 1 is a Cayley graph, leading to Cayley graph variants of Conjecture 1 (e.g., [15]).

1.2 Row operations

Our aim when generating all invertible matrices by row operations is to restrict the allowed
operations as much as possible. Note that for ¢ > 2 we must allow row multiplications by
some scalar to be able to generate all 1 x 1 matrices. Thus, we allow row multiplications by
a fixed generator « of the multiplicative group of nonzero elements of F,. We will also allow
row multiplication by a~!; i.e., division by «, to have an inverse operation for an undirected
version of the problem. Furthermore, we specify allowed row additions and subtractions
by a directed transition graph T on the vertex set [n], where [n] := {1,...,n}. An edge
(i,7) € E(T) specifies that we can add to or subtract from the j-th row the i-th row. Then,
each allowed row operation above corresponds to the left multiplication by a corresponding
matrix from a set ops(T), formally defined by (2).

Observe that to generate all invertible matrices by the allowed operations, the transition
graph T' must be strongly connected; see Lemma 3 below. For our main result we require
the following stronger condition.

» Definition 1 (Bypass transition graph). A transition graph T on the vertex set [n] is a
bypass transition graph if either (i) n = 1, or (ii) n > 2 and

there exist an edge (i,n) and an edge (n,j) for some i,j € [n — 1], and

the graph T' — n obtained by removing n from T is also a bypass transition graph.

In other words, a bypass transition graph is obtained from a single vertex 1 by repeatedly

adding a directed path (a ‘bypass’) from some vertex ¢ to some vertex j via a new vertex n.

An example of a transition graph with the above property is the one comprised by edges
(i,i+ 1) and (¢ + 1,7) for all i € [n — 1]; i.e., a bidirectional path. In the language of row
operations, this corresponds to allowing row additions or subtractions between any two
consecutive rows. It can be easily seen by induction that a bypass transition graph is strongly
connected.

1.3 Our results

For any integer n > 1, a finite field F,;, and an n-vertex transition graph 7" we define the
(undirected) Cayley graph

G(n,q,T) := Cay(GL(n,q),0ps(T)),
where the set ops(7T) is given by (2). Our main result is as follows.

» Theorem 1. Letn > 2 be an integer and q be a prime power such that ¢ > 3 ifn =2. LetT
be an n-vertex bypass transition graph. Then the graph G(n,q,T) is Hamilton connected.

Note that for n = 1 the transition graph T has no edges, so G(1,q,T) for any ¢ >
3 is simply a (¢ — 1)-cycle and G(1,2,T) = K;. For n = ¢ = 2, we have that T =
({1,2},{(1,2),(2,1)}) is the only bypass transition graph, so G(n,q,T) is a 6-cycle, which is
not Hamilton connected. Thus, we may restate our result as follows.

» Corollary 2. Let n > 1 be an integer and q be a prime power, and let T be an n-vertex
bypass transition graph. Then the graph G(n,q,T) is Hamilton connected unless it is a cycle.
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Figure 1 The part (c) illustrates a Hamilton path in the graph G(2, 3, ([2],{(1,2),(2,1)})). Four
vertices around a matrix Z are those obtained from Z by multiplying or dividing a row by «a (which
is 2 for ¢ = 3); see the part (a). The part (b) shows the edges within a shaded component, where the
black solid edges are row multiplications/divisions, while the (directed) dashed edges are additions
from the first row to the second row. Note that the other directions of the latter edges indicate
subtractions of the first row from the second row. Furthermore, while these shaded components
exhibit a Cartesian product structure, the same does not hold for the whole graph.

This shows that the family of graphs G(n, q,T) where T is a bypass transition graph is
yet another example of a family of Cayley graphs satisfying Conjecture 1. A particularly
interesting example is when T is a bidirectional path. See Figure 1 for an illustration for
n=2and ¢ = 3.

Moreover, we discuss how to turn the proof of Theorem 1 algorithmic in Section 7.

1.4 Related work

Permutations of [n] can be represented as (invertible binary) permutation matrices forming
a subgroup of GL(n,2). Thus, all the vast results on generating permutations such as in
[17, 18] can be directly translated into the context of generating permutation matrices. In
particular, there is a general permutation framework developed in [10] that allows us to
generate many combinatorial classes by encoding them into permutations avoiding particular
patterns. However, the row operations that we consider here do not preserve the subgroup of
permutation matrices, so our results do not fall into this framework.

A related task to generation is random sampling. The construction of a random invertible
n x n matrix over F, is usually done by constructing a uniformly random matrix and
checking whether it is non-singular. The success probability is lower-bounded by a constant
independent of n but dependent on ¢ (e.g., see [5] and the citations therein). Hence, there is
only a constant factor overhead for random sampling of an invertible matrix over a finite
field compared to that of a matrix over the same field. The latter task can be achieved, for
example, by independently constructing each row (or column).



P. Gregor, H. P. Hoang, A. Merino, and O. Micka

2 Preliminaries

The (undirected) Cayley graph of a group I' with a generator set S is the graph
Cay(I',S) := (T, {{z, sz} : x € T', s € S}), assuming that S is closed under inverses and does
not contain the neutral element. Note that we apply generators on the left as it is more
natural for row operations on matrices.

The general linear group GL(n,q) is the group of all invertible n x n matrices over the
finite field F, with matrix multiplication. Note that for F, to be a field, ¢ has to be a prime
power. For example, GL(1,2) is the trivial group, GL(2,2) ~ S3, and GL(3,2) ~ PSL(2,7)
is also known as the group of automorphisms of the Fano plane. The number of elements in
GL(n,q) is a, := (¢" —1)(¢" — q) - - (¢" — ¢" '), which is obtained by counting choices for
(nonzero) rows that are not spanned by the previous rows. It also satisfies the recurrence

n

an = (¢" = 1)¢" " an-1, (1)

for n > 2, and a1 = ¢ — 1 (i.e., the number of nonzero elements of Fy).
By Gaussian elimination, the group GL(n,q) can be generated by row additions and
row multiplications by a scalar. As we consider the Cayley graph to be undirected, we also

consider the inverse operations, which we call row subtractions and row divisions by a scalar.

The formal definitions of these operations are as follows.

For i € [n] :={1,...,n}, let 7, = r;(A) denote the i-th row in A. For distinct z,y € [n],
we denote by A, = (a;;) the binary matrix with a;; = 1 if and only if ¢ = j, or (i = y and
j = ). Note that left multiplication by A, corresponds to adding the z-th row to the y-th
row; i.e., the operation r, + 7, — r,. Similarly, multiplication by A;yl then corresponds to
subtracting the z-th row to the y-th row; i.e., the operation —r; + ry — r,.

Let o be a generator of the multiplicative group of F,. For z € [n]|, we denote by

M, = (a;;) the matrix with a;; = aif i =j =1, a;; =1 if i = j # x, and a;; = 0 otherwise.

Left multiplication by M, corresponds to multiplying the x-th row by «; i.e., the operation
ary — 5, and multiplication by M ! corresponds to the inverse operation a~'r, — r, that
we call dividing the z-th row by a. Note that for ¢ = 2 the multiplicative group is trivial,
that is, M, = I, where I denotes the identity matrix.

A transition graph T is any directed graph on the vertex set [n] with the edge set
E(T). For a transition graph T and a field F, we define

ops(T) := {Aij, A;' « (i,4) € E(T)} U{M;, M; " : i € [n]}, (2)

for ¢ > 2, and ops(T) := {A4;j, A;jl : (4,7) € E(T)} for ¢ = 2. In other words, ops(T’) contains
the row additions and subtractions induced by the edges of T, and all row multiplications
and divisions by « if they are nontrivial. A directed graph is strongly connected if for any
two vertices i, j, there is a directed path from i to j. A (strongly connected) component of
a directed graph is a maximal induced subgraph that is strongly connected. We make the
following observation, whose proof can be found in [8].

» Lemma 3. For every transition graph T, the set ops(T) generates the group GL(n,q) if
and only if T is strongly connected.

We denote by Fy the vector space of all n-tuples over the field Fy. The span of us, ..., ux €
[y is denoted by (u1, ..., ux). Its orthogonal space (u, ..., ug)t
with rows uq, ..., ug.

For k > 3 we denote by C}, a cycle on k vertices, and for k € {1,2} we define C}, as the
complete graph Kj. We also denote the path on k vertices by Py for k > 1. The Cartesian
product G O H of two graphs G and H is the graph with the vertex set V(G) x V(H) and

is the kernel of the matrix
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the edge set {(u,v)(v/,v) : wv’ € E(G),v € V(H)}U{(u,v)(u,v’) : u e V(G),nw € E(H)}.
For a graph G and a subset U of vertices, we denote by G[U] the subgraph of G induced
by U. Similarly, for a graph G and two subsets of vertices Uy, Uy C V', we use E[Uy, Us] to
denote the set of edges between Uy and Us, i.e., E[Uy,Us] ={ay € E: 2z € Uy,y € Us}.

For an edge-colored graph, a trail in a graph is alternating if any two consecutive edges
on the trail differ in color.

3 Joining lemma for Hamilton connectivity

In this section, we present a lemma that joins many Hamilton connected graphs into a larger
one. This lemma seems quite versatile. Not only is it useful in our proof in the next section,
but it also allows us to easily reprove several classical results on Hamilton connectivity, for
example for the permutahedron [18].

» Lemma 4 (Joining lemma). Let G be a graph with the vertex set partitioned into k > 2
disjoint subsets V1, ..., Vi such that following conditions hold.

(1) G[Vi] is Hamilton connected for every i € [k];
(2) Every vertex in every set V; has a neighbor in some different set V;;

(3) There are at least three pairwise disjoint edges between every two sets V;, Vj.2

Then G is Hamilton connected.

Proof. Let x,y € V be two vertices to be connected by a Hamilton path. First we consider
the case when they are in different sets V;. We can assume that x € V; and y € Vi, otherwise
we rename the sets. We select vertices x;,y; € V; for every i € [k] so that 1 = z, yr = ¥,
x; # y; for every i € [k], and y; is a neighbor of x,11 for every i € [k — 1]. Such vertices
exist since there are at least three edges between V; and V;; for every i € [k — 1] by the
condition (3). Then we concatenate Hamilton paths in G[V;] between z; and y; for each
i =1,...,k that exist by the condition (1) into a Hamilton zy-path in G. Note that in this
case we did not use the condition (2).

In the second case x and y are in the same set V;. We can assume that xz,y € V7. Let P
be a Hamilton path in G[V;] between x and y. If k = 2, let ab be an edge of P such that
the neighbors a’ and b’ of a and b in V3, respectively, are distinct. Such neighbors exist by
the condition (2), and such an edge ab exists, because otherwise all vertices in V; are only
adjacent to one vertex in V3, a contradiction to the condition (3). By replacing the edge ab
with the edge aa’, a Hamilton path of G[V2] between a’ and b, and the edge b'b we obtain a
Hamilton xy-path in G.

If k > 2, let ab be an edge of P such that a and b have neighbors o’ and ¥, respectively,
in different sets V; for ¢ > 1. Such an edge ab exists since every vertex of V; has a neighbor
in some other set V; by the condition (2), and they cannot be all from the same set, say
Vs, for otherwise, the condition (3) for the sets V; and V3 would not hold. By the same
argument as in the first case, there exists a Hamilton path R between o’ and b’ in the
subgraph G[V, U --- U Vy]. Finally, replacing the edge ab on P with the edge aa’, the path
R, and the edge b'b yields a Hamilton zy-path in G. <

2 We could weaken the condition (3) for k > 4 so that we only need two disjoint edges between all pairs
of sets except for two disjoint pairs.
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4 Proof of Theorem 1

We will prove the theorem by induction on n, and let Gy, := G(n, ¢, T). We say that an edge
{X,A;; X} of G, is labeled ij and an edge {X, M; X} of G,, is labeled i.

The proof of the base cases for ¢ = 2 and n = 3, and for ¢ > 3 and n = 2 is deferred to
Section 5; see Lemmas 5 and 6. Here, we prove the inductive step, so we assume that ¢ = 2

and n >4, or ¢ > 3 and n > 3, and that the statement holds for the graph G(n—1,¢,T —n).

Our main tool is the joining lemma from the previous section (Lemma 4).

Proof of the inductive step. We view rows of an invertible n x n matrix A as an ordered
basis (r1,...,7,) of the vector space Fy;. The first n — 1 rows span a subspace of dimension
n — 1 which is orthogonal to some subspace of dimension 1. That is,

(ri,... rp_1) = (u)t
for a nonzero u € F}! that satisfies Ru” = 0, where R is the (n — 1) x n matrix whose rows
are r1,. .., p_1-

We denote by S, the set of all the (n — 1) x n matrices whose rows form a basis of (u)=.

Observe that this operation gives a bijection between S, and GL(n — 1, ¢): Remove the i-th
column of every matrix in S, where ¢ is the index of the first nonzero element of « (which
exists, as u is not the zero vector). Furthermore, for every matrix X in S, we can add any
vector as the last row to form an n x n invertible matrix, as long as this added vector is
independent of the rows of X (i.e., any vector in F' \ (u)*).

Note that this tallies with the count in (1). Recall that a,_; denotes the number of
elements in GL(n —1,q). There are (¢" —1)/(g — 1) choices for the one-dimensional subspace
(u). For each subspace (with a representative basis u), S, has a,_1 elements, due to the
aforementioned bijection. Lastly, for each matrix X in S,, there are ¢"!(g — 1) possible last
rows, which can be obtained by adding a linear combination of the rows of X to an initial
last row and then multiplying the sum by a power of o. Together, we recover the recurrence
statement (1).

Following the above analysis, we prove the inductive step in four smaller steps.

First, given a one dimensional subspace with a basis u and a vector v independent of the
rows of any matrix in Sy, we denote by the tuple (S, v) the set of all matrices in GL(n, q)
formed by adding v as the last row to each of the matrices in S,,. Since the aforementioned
bijection is an isomorphism of G, [(Sy,v)] and G(n —1,¢,T — n), by inductive hypothesis we
conclude that G,[(Sy, v)] is Hamilton connected.

Before we proceed, we note that row multiplications, divisions, and row additions that do
not involve the last row only transform a matrix into another matrix in the same set (S, v)
for some u,v. Next, adding a row to the last row transforms a matrix in (S, v) into another
matrix in (S,,v") for v # v'. Lastly, adding the last row to another row transforms a matrix
in (S,,v) into another matrix in (S,/,v), where (u) # (u).

Second, we denote by (S, (v)) the set of all matrices in GL(n,q) formed by adding
any multiple of v as the last row to each of the matrices in S,,. Since multiplication by «
generates all nonzero elements of Iy, the edges of label n that multiply the last row form
a cycle of length ¢ — 1. Hence, the graph G,,[(Su, (v))] ~ Gy[(Su,v)] O Cy_1, which can be
easily showed to be Hamilton connected (see [8]).

Third, given a one dimensional subspace with a basis u, we denote by (Sy, *) the set of
all matrices in GL(n, q) whose first n — 1 rows form a matrix in S,. Here, we use Lemma 4
to join the subgraphs G,,[(Su, (v))] for all applicable v to prove the Hamilton connectivity of
G, [(Su,*)]. The joining edges between these subgraphs have label in for ¢ € [n — 1] (such
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an ¢ is guaranteed by the bypass property of T'). In order to use the lemma, we show that
all of its conditions hold. The condition (1) follows the second step above. The condition
(2) is satisfied, because for every u,v € Fy and a matrix X in (Sy,v) C (Sy, (v)), AinX
is a neighbor of X in G, and in (S, (v + r;(X))), a different set than (S, (v)). For the
condition (3), given u and two distinct v, v’ ¢ (u)* such that (v) # (v'), we have that v is a
linear combination of a basis of (u)® and v’, and consequently v = x + av’ for some nonzero
x € (u)* and a nonzero a € F,. As S, contains all matrices whose rows form a basis in (u)*,
there exist three matrices X, X, and X3 in S, such that their i-th row is z = v — av’. We
can guarantee three matrices in S,,, because in the inductive step, n >3 and ¢ > 3, or n > 4
and ¢ = 2, and hence, when we fix the n — 2 rows including the i-th row, there are at least
three different choices for the remaining row. Then the edges { X1, Ain X1}, {X2, Ain X2},
and {X3, 4;, X3} are the three distinct edges as required by the condition (3). We can now
apply Lemma 4 and conclude that G,,[(Sy, *)] is Hamilton connected.

Last, we again apply Lemma 4 to join the different subgraphs G,,[(Sy, *)] for all subspaces
(u) to complete the inductive step. Here, the joining edges have the label nj for some
j € [n — 1], which exist because T is a bypass transition graph. The condition (1) of the
lemma follows the previous step. The condition (2) is satisfied, because for any X in some
(Su,*), Ap; X is a neighbor of X in G,, and belongs to a different set (S,/,*). For the

L is a subspace of

condition (3), given u,u’ not in the same one-dimensional subspace, (u,u')
dimension n — 2.

If n >4, or n =3 and g > 3, there exist three distinct matrices B, B’, and B” whose
rows form bases of this (n — 2)-dimensional subspace. The remaining case n = 3 and g = 3 is
considered separately below. Let v, € (u)® \ (u/)* and v, € (u/)1\ (u)t. Clearly, we have
that v, — v, is independent of the rows of each matrix B, B’, and B”. Let B, B, and B”
be the n x n matrix obtained from B, B’, and B” respectively by inserting a new row v, at
the j-th position and v, — v,, as the last row.

If n = 3 and ¢ = 3 we have (u)* N (u/)* = (w) = {0, w, 2w} for some nonzero w € F3, so
there are only two distinct matrices whose rows form bases of this 1-dimensional subspace,
in particular B = (w) and B’ = (2w). In this case, we define B and B’ as in the previous
case, but for B we take the matrix obtained from B by inserting a new row 2v, at the j-th
position and 2v,, — 2v,, as the last row.

In both cases, {B, AnjB}, (B, AnjB’}, and {B", AnjE’”} are the three edges as required
by the condition (3). This completes all the conditions of Lemma 4 and completes the
inductive step. <

5 Base cases for the induction

We verify the case when n = 3 and ¢ = 2 by computer search in SageMath; see [8].
» Lemma 5. For every bypass transition graph T, the graph G(3,2,T) is Hamilton connected.

Since the only bypass transition graph T for n = 2 is the complete graph T =
(12],{(1,2),(2,1)}), the remaining base cases for ¢ > 3 and n = 2 are captured in the
following lemma.

» Lemma 6. For a prime power q > 3, G(2,q,([2],{(1,2),(2,1)})) is Hamilton connected.

To prove Lemma 6, we first consider the graph that arises by removing the edges that
add the second row to the first row; i.e., for a prime power ¢ € N, we define G'(q) :=
G(2,q,([2],{(1,2)})). The graph G’(q) is disconnected, and thus, we consider the connected
component in G’'(q) that contains the identity matrix and denote it by H(q). We will usually
write H and G’ for H(q) and G’(q) whenever there is no risk of confusion.
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It is easy to see that the vertices of H are of the form:

a0 .
V(H) = {(oﬂa aj) 11, € {07...,q—2},a€IE‘q}.
Furthermore, the graph H has a simple structure when analyzing the components by fixing
a € Fy, as described in the following. Let us define

a0 .
Va_{(aja a]) .z,jE{O,...,q—Q}}

and let H, be the graph induced by fixing a in H; i.e., H, := H[V,]. We have the following
simple observations regarding H and its decomposition by fixing a € F,.

(pl) (H splits into copies of H,.) Removing the edges that add the first row to the second
row in H disconnects H and splits it into the connected components {H, : a € Fy}.

(p2) (The graphs H, have good Hamiltonicity properties.) For every a € F,, we get that H,
is a toroidal grid of dimensions (¢ —1) x (¢g—1) where each dimension of the grid is given
by multiplication by « in the respective row; i.e., H, = Cy_1 OCy_;. In particular, H,
is isomorphic to Hj for every a,b € F,.

(p3) (The components H, are well-connected.) For every i € {0,...,q¢ — 2} and a,b € F,
such that a # b, we have that

a. o (a ; b (1)> €V, and o (a ; b (1)> € V, are connected by an edge,

1 b 1
and no other edges between V,, and V; exist. In particular, for every a,b € F, such that
a # b we have that |E[V,, V}]| = 2(¢ — 1) with all the edges being disjoint.

b. of (b ; “ O) €V, and o (b —a O> € V, are connected by an edge,

We exploit these properties as follows: We split H into the components H, for a € F,,
then since the graphs H, are either Hamilton laceable or connected and the components
H, are well-connected we can glue the corresponding Hamilton paths in each H, to form a
Hamilton path in H.

If ¢ is even, for every a € F, the graphs H, are Hamilton connected. This makes it
easier to lift the Hamilton paths from H, to a Hamilton path in H. However, when ¢ is
odd, the picture is much different. In particular, there are parity constraints given by the
fact that for every a € Fy the graph H, is now bipartite. To make this formal, we partition
Q@

0
. .| is blue whenever i + j is even, and it
ala o

V(H) into two colors. We say that = (
is red whenever i + j is odd. We denote the color of a vertex x € V(H) by col(z). Tt
is easy to show that if x € V,,, y € V}, for some a # b and there is an edge xy € E[V,, V3],
then col(z) = col(y). Thus, for every edge zy € E[V,, V4] we can define its (edge) color as
col(zy) := col(z) = col(y).

If ¢ = 3 (mod 4), a simple computation shows that whenever there is a red or blue edge
between V, and V}, for a,b € F, we also have an edge of the opposite color. Thus, the coloring
does not impose any extra restrictions.

The problematic case occurs whenever ¢ =1 (mod 4). In this case, all the edges between
Vo and Vj, have the same color for a,b € F,. Hence, it is natural to consider the graph where
we contract every V, for a € F,. Thus, we obtain a new graph I_{q with F, as vertices, and
for the edges zy € E[V,,V,] we put a new edge ab colored with col(zy). This graph is a
complete graph on Fy, where the coloring of the edges can be succinctly described as follows:
(*) For z and y in Fy, the edge xy has color red (blue) if there exists an odd (even) z € Z,

such that * — y = o®. (See Figure 2 for an example.)
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Figure 2 The graph K5 for oo = 2.

If we plan to have a Hamilton path of H that traverses each set V,, at a time for a € F,,
then for any a,b € F,, there is at most one edge of the Hamilton path that crosses between
V., and Vj,. Further, as each V, has even size, this means that as we traverse this Hamilton
path, any two consecutive such “crossing” edges have to differ in color. This translates to
the requirement that we should have an alternating Hamilton path in K ¢ We show in the
next lemma that this holds, even for Hamilton connectivity.

» Lemma 7. Let g be a prime power, ¢ =1 (mod 4). For any two distinct vertices a,b € Fy
and a color ¢ of either red or blue, there exists an alternating Hamilton ab-path of K, such
that a is incident to an edge of color ¢ on the path.

We defer the proof of Lemma 7 to Section 6. We can use Lemma 7 to prove Hamiltonicity
properties of subgraphs of H. To this end, we have the following definition.

» Definition 1. An induced subgraph H' of H is structured if and only if the following

holds:

1. For every a € Fy we have that H'[V,] is isomorphic to either Cqy_1 0 Cy—q or Cy—1 O P,
fort>(qg—1)/2, and

2. For every distinct a,b € Fy, there is at least one edge between H'[V,]| and H'[V;].

» Lemma 8. Let ¢ > 5 be an odd integer and H' be a structured induced subgraph of H(q).
Let x,y € V(H(q)) be two vertices of different colors such that x € V,,, y € V, with distinct
a,b €F,. Then there exists a Hamilton xy-path in H'.

The reader may notice similarities between Lemma 8 and the joining lemma (Lemma 4).
In particular, they may wonder why we require only one edge between components, instead
of the three needed in the joining lemma. Recall that the need for three edges in the joining
lemma was in the case where we want to have an xy-subpath that spans two consecutive
components, but the edges that cross between these two components are incident to either x
or y. However, this cannot happen for structured graphs, because the coloring conditions
force these endpoints not to be used in crossing edges. The proof of this lemma is presented
in [8].

Equipped with Lemmas 4 and 8, we can show the following lemma, whose full proof is
also presented in [8].

» Lemma 9. For every q > 3 the graph H(q) is Hamilton connected.

We are now ready to prove Lemma 6.
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Proof of Lemma 6. Let us denote S = {(a,1) : a € Fg} U{(1,0)} C F2. For any nonzero
vector u € S, let us define V* C V(G) to be the set of all matrices in G with the first row in
(u). Note that each V* corresponds to a unique component of G/, with V(19 = V(H).

We apply Lemma 4 with partitioning {V,, : u € S}.

We begin by simplifying our arguments using symmetry. Note that any two components
of G’ are isomorphic via f4 :  — zA for some A € GL(2,q). Moreover, for any A the
mapping f4 is an automorphism of G that preserves operations on the edges; i.e., if an edge
corresponds to the operation M7, then it will be mapped to some edge that also corresponds
to M;. In particular, H is isomorphic to every other component.

For the condition (1) of Lemma 4, we know that H is Hamilton connected by Lemma 9,
so by isomorphism the same holds for every G[V*]. The condition (2) is satisfied simply by
adding the second row to the first row. For the condition (3), we first observe that if there is
an edge between G[V*] and G[V*'], there are actually at least ¢ — 1 disjoint edges as we can
multiply both matrices by af. By isomorphism, it is enough to show that there is an edge
between H and any V* distinct from V9. Since u = (a, 1) for some a € F,, we can use

1 0 a 1
(a,1)
the edges between <a _q 1) € V(H) and (a _q 1) e Vied, <

6 Alternating path in two-edge-colored complete graph

In this section, we prove Lemma 7, which is needed in the proof of Lemma 8.

We start with a brief recap of the context needed for this lemma. Suppose ¢ is a prime
power and ¢ = 1 (mod 4). We remind the reader that « is a generator of the multiplicative
group of IF,. Recall that Kq is the complete graph on the vertex set F, with edges colored
by the following scheme:

(*) For z and y in F,, the edge xy has color red (blue) if there exists an odd (even) z € Z

such that x — y = o?.

Our goal is to find an alternating Hamilton path between two prescribed vertices a and b
with a prescribed color of the edge incident to a.

We begin by arguing that f(q is well-defined. Let 0 be the additive identity and 1 be the
multiplicative identity of ;. By the definition of «, the nonzero elements of F, are exactly
a,...,a972, Furthermore, o’ = a4~ !* for all integers i € Z. Since ¢ is odd, we conclude
that if «* = o for some z, 2/, then z and 2’ have the same parity. Thus, for z and y in Fy,
there exists a unique p € {0,1} such that if x — y = o* then z = p (mod 2). Further, since
ale=D/2 = 1 ifz —y=a theny— 2 = o for 2/ =z + (g—1)/2. Asg=1 (mod 4), z
and 2’ have the same parity. Therefore, the color of each edge of K'q is well-defined.

The problem of finding an alternating cycle/path in a graph has a long history and a wide
range of applications; see the survey by Bang-Jensen and Gutin [1]. However, the existing
results on alternating Hamilton cycles/paths in two-edge-colored complete graphs (e.g., [2, 3])
cannot be readily applied in our setting. Furthermore, we also specify the color of the first
edge of the path, which is not guaranteed by these results. Therefore, we provide a direct
and constructive proof of an alternating Hamilton path in our special complete graph.

In the following proof, we use the observation that the operation of adding a constant to
all vertex labels preserves edge colors since the difference between any two vertices remains
the same.

» Lemma 7. Let g be a prime power, ¢ =1 (mod 4). For any two distinct vertices a,b € Fy
and a color c of either red or blue, there exists an alternating Hamilton ab-path of K, such
that a is incident to an edge of color ¢ on the path.
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Proof. For i € {0,...,q — 1}, define v; := Z;ZO a’. Note that v,_2 =0, and vy = vy_1 = 1.

It is easy to see that (v, ...,v,_2) forms an alternating cycle C' in K,. The only missing
vertex in C is u := —(a — 1)7!. Indeed, if this vertex is on the cycle, then for some ¢, we
must have (!t — 1)(a —1)7! = —(a — 1)}, which implies a‘T! = 0, a contradiction with

the fact that a generates nonzero elements of F,.

For any i € {0,...,¢q—2} we have v; —u = (' —1)(a—1)"1+(a—1)"! = /T (a—1)"L.
By a similar argument, we have that v,y —u = a'™2(a — 1)~! = a(v; — u). Thus, by the
coloring scheme (*), uv; and wv;; have different colors.

> Claim. For any vertex v in C|, there exists an alternating Hamilton uv-path such that on
the path, u is incident to an edge whose color is different from that of uwv.

Figure 3 Illustration of the claim’s proof. The outer cycle is the cycle C', and the bold edges
indicate an alternating Hamilton path.

Proof. Suppose v = v; for some i € {0,...,q — 2}. By the argument above, uv;,_; and uv; 1
have the same color. Further, since C' is an alternating cycle, v;_1v; and v;v;41 have different
colors. Hence, one of these two edges have the same color as uv; 1 and uv;41. Without loss of
generality, suppose this edge is v;v;41. Then we have (u, vit1, Vit ..., Vg—2, Vo, - ., Vi1, V;)
is the desired alternating Hamilton path. See Figure 3 for an illustration. <

Consider adding b — u to all vertex labels. The missing vertex from the cycle C' above
is now b. By the claim above, we obtain an alternating Hamilton ba-path such that the
incident edge to b has different color than that of ba. Since ¢ is odd, this implies that the
edge incident to a on this path has the same color as ba. Next, we add a — u to all original
vertex labels. The missing vertex from C' is now a. Again by the claim above, we obtain
another alternating Hamilton ab-path such that the incident edge to a has different color
than that of ab.

Since the two alternating Hamilton paths above have different colors for the edge incident
to a, the lemma follows. <

7 Algorithmization

The proof of Theorem 1 can be easily turned into an algorithm that computes a Hamilton
path in G(n,q,T) running in time polynomial in |GL(n,q)|. This can be obtained by a
straightforward recursion based on the joining lemma. More specifcally, the main idea of
the proof is to split the graph and proceed recursively. Close examination of the proof of
the joining lemma and its applications along our proof shows that such a recursion can be
computed in time polynomial in |GL(n, q)|; we omit the details.
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However, the typical goal from a generation perspective is to have an algorithm that
outputs objects one by one with a small delay and preprocessing time. Here, the delay
is the worst-case time the algorithm takes between consecutively generated objects and
the preprocessing time is the time before generating any objects. Thus, the natural
objective from generation perspective for invertible matrices is an enumeration algorithm
running in delay poly(n, q) := n®®¢®®) with poly(n, q) preprocessing. Note that such an
algorithm immediately gives a solution to computing Hamilton paths in G(n,q,T) in time
poly(n, q)|GL(n, q)|.

The naive implementation of our inductive proof uses a call stack that needs space

exponential in n and takes exponential time in n to put the recursive calls in the stack.

Despite that, it is still possible to obtain a polynomial delay algorithm by following the
recursive structure of the main proof. As highlighted in the stack approach, we cannot store
all the information given by the recursion. Instead, we only store information related to the
current path in the recursion tree. More specifically, if we are at a vertex z, we trace back
the ¢ recursive calls, each utilizing the joining lemma. The i-th call indicates a pair of a
source z; and a target y; for which we traverse a Hamilton path. For every ¢ € [¢] we store
x;, y; and a small amount of extra bits serving as a compressed history. It turns out that
this is enough information to reconstruct the path of z in the recursion tree and decide how
to proceed; more details are given in [8].

8 Open questions

We conclude with several remarks and open questions.

1. Non-bypass transition graphs. Does Theorem 1 hold for any strongly connected
(and not necessarily bypass) transition graph, in particular for the directed n-cycle? We
verified by computer that the result holds for the directed cycle if ¢ = 2 and n = 3.

2. Other generators. Does Theorem 1 hold for other generators of the group GL(n,q)?
For example, there is the generator {M3A; ,, Po.. 1} of size 2, where Py 1 refers to
the permutation matrix corresponding to the permutation 2...n1 [19]. This problem is
similar to the sigma-tau problem for permutations solved by Sawada and Williams [17].

3. Subgroups of GL(n,q). As an intermediate step, we show that Cayley graphs of certain
subgroups of GL(n,q) are Hamilton connected. Can we prove it for other subgroups that
correspond to given restrictions of matrices?

4. Symmetric Hamilton cycles. Instead of Hamilton connectivity we may ask for

Hamilton cycles that are preserved under a large cyclic subgroup of automorphisms.

This problem was recently studied by Gregor, Merino, and Miitze [9] for several highly
symmetric graphs. The graphs considered here are also highly symmetric.

5. Matrices over rings. Another natural extension is to explore if our results extend to
invertible matrices in the ring setting. This is particularly interesting for cyclic rings; i.e.,
checking Hamiltonicity of Cayley graphs of invertible matrices in Zj, for k£ € N. Naturally,
the methods will highly depend on the chosen generators for which there does not seem
to be an obvious choice.

6. Alternating Hamilton paths in 2-colored Ks,.1. Despite our efforts and many
existing results on properly colored Hamilton cycles in complete graphs (see a survey [1]),
we did not find an answer to the following question. Is it true that the complete graph
Ko7 with 2-colored edges so that every vertex is incident with exactly n edges of each
color contains an alternating Hamilton path between any two vertices?

7. Efficient algorithms. Is there a generating algorithm that achieves O(n) delay? Is
there a simple greedy algorithm?
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