
Kernelization Complexity of Solution Discovery
Problems
Mario Grobler #

University of Bremen, Germany

Stephanie Maaz #

University of Waterloo, Canada

Amer E. Mouawad #

American University of Beirut, Lebanon

Naomi Nishimura #

University of Waterloo, Canada

Vijayaragunathan Ramamoorthi #

University of Bremen, Germany

Sebastian Siebertz #

University of Bremen, Germany

Abstract
In the solution discovery variant of a vertex (edge) subset problem Π on graphs, we are given an
initial configuration of tokens on the vertices (edges) of an input graph G together with a budget b.
The question is whether we can transform this configuration into a feasible solution of Π on G

with at most b modification steps. We consider the token sliding variant of the solution discovery
framework, where each modification step consists of sliding a token to an adjacent vertex (edge).
The framework of solution discovery was recently introduced by Fellows et al. [ECAI 2023] and for
many solution discovery problems the classical as well as the parameterized complexity has been
established. In this work, we study the kernelization complexity of the solution discovery variants of
Vertex Cover, Independent Set, Dominating Set, Shortest Path, Matching, and Vertex
Cut with respect to the parameters number of tokens k, discovery budget b, as well as structural
parameters such as pathwidth.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Fixed parameter tractability; Mathematics of computing → Combinatorics

Keywords and phrases solution discovery, kernelization, cut, independent set, vertex cover, domin-
ating set

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.36

Related Version Full Version: https://arxiv.org/abs/2409.17250

Funding Naomi Nishimura, Stephanie Maaz: Research supported by the Natural Sciences and
Engineering Research Council of Canada.
Vijayaragunathan Ramamoorthi: Funded by the “Mind, Media, Machines” high-profile area at the
University of Bremen.

1 Introduction

In the realm of optimization, traditional approaches revolve around computing optimal
solutions to problem instances from scratch. However, many practical scenarios can be
formulated as the construction of a feasible solution from an infeasible starting state. Examples
of such scenarios include reactive systems involving human interactions. The inherent
dynamics of such a system is likely to lead to an infeasible state. However, computing a

© Mario Grobler, Stephanie Maaz, Amer E. Mouawad, Naomi Nishimura,
Vijayaragunathan Ramamoorthi, and Sebastian Siebertz;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 36; pp. 36:1–36:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:grobler@uni-bremen.de
https://orcid.org/0000-0001-8103-6440
mailto:smaaz@uwaterloo.ca
https://orcid.org/0000-0001-7188-8834
mailto:aa368@aub.edu.lb
https://orcid.org/0000-0003-2481-4968
mailto:nishi@uwaterloo.ca
https://orcid.org/0000-0001-7893-4813
mailto:vira@uni-bremen.de
https://orcid.org/0000-0001-8554-6392
mailto:siebertz@uni-bremen.de
https://orcid.org/0000-0002-6347-1198
https://doi.org/10.4230/LIPIcs.ISAAC.2024.36
https://arxiv.org/abs/2409.17250
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Kernelization Complexity of Solution Discovery

solution from scratch may lead to a solution that may differ arbitrarily from the starting
state. The modifications required to reach such a solution from the starting state may be
costly, difficult to implement, or sometimes unacceptable.

Let us examine a specific example to illustrate. A set of workers is assigned tasks so
that every task is handled by a qualified worker. This scenario corresponds to the classical
matching problem in bipartite graphs. Suppose one of the workers is now no longer available
(e. g., due to illness); hence, the schedule has to be changed. An optimal new matching could
be efficiently recomputed from scratch, but it is desirable to find one that is as close to the
original one as possible, so that most of the workers keep working on the task that they were
initially assigned.

Such applications can be conveniently modeled using the solution discovery framework,
which is the central focus of this work. In this framework, rather than simply finding a
feasible solution to an instance I of a source problem Π, we investigate whether it is possible
to transform a given infeasible configuration into a feasible one by applying a limited number
of transformation steps. In this work we consider vertex (edge) subset problems Π on graphs,
where the configurations of the problem are sets of vertices (edges). These configurations
are represented by the placement of tokens on the vertices (edges) of the configuration. An
atomic modification step consists of moving one of the tokens and the question is whether
a feasible configuration is reachable after at most b modification steps. Inspired by the
well-established framework of combinatorial reconfiguration [4, 16, 15], commonly allowed
modification steps are the addition/removal of a single token, the jumping of a token to an
arbitrary vertex/edge, or the slide of a token to an adjacent vertex (edge).

Problems defined in the solution discovery framework are useful and have been appearing
in recent literature. Fellows et al. [11] introduced the term solution discovery, and along with
Grobler et al. [13] initiated the study of the (parameterized) complexity of solution discovery
problems for various NP-complete source problems including Vertex Cover (VC), Inde-
pendent Set (IS), Dominating Set (DS), and Coloring (Col) as well as various source
problems in P such as Spanning Tree (ST), Shortest Path (SP), Matching (Mat),
and Vertex Cut (VCut) / Edge Cut (ECut).

Fellows et al. [11] and Grobler et al. [13] provided a full classification of polynomial-
time solvability vs. NP-completeness of the above problems in all token movement models
(token addition/removal, token jumping, and token sliding). For the NP-complete solution
discovery problems, they provided a classification of fixed-parameter tractability vs. W[1]-
hardness. Recall that a fixed-parameter tractable algorithm for a problem Π with respect to
a parameter p is one that solves Π in time f(p) · nO(1), where n is the size of the instance
and f is a computable function dependent solely on p, while W[1]-hardness provides strong
evidence that the problem is likely not fixed-parameter tractable (i. e., does not admit a
fixed-parameter tractable algorithm) [9].

A classical result in parameterized complexity theory is that every problem Π that admits
a fixed-parameter tractable algorithm necessarily admits a kernelization algorithm as well [5].
A kernelization algorithm for a problem Π is a polynomial-time preprocessing algorithm
that, given an instance x of the problem Π with parameter p, produces a kernel – an
equivalent instance x′ of the problem Π with a parameter p′, where both the size of x′ and
the parameter p′ are bounded by a computable function depending only on p [9]. Typically,
kernelization algorithms generated using the techniques of Cai et al. [5] yield kernels of
exponential (or even worse) size. In contrast, designing problem-specific kernelization
algorithms frequently yields more efficiently-sized kernels, often quadratic or even linear
with respect to the parameter. Note that once a decidable problem Π with parameter p

M. Grobler et al. 36:3

admits a kernelization algorithm, it also admits a fixed-parameter tractable algorithm, as a
kernelization algorithm always produces a kernel of size that is simply a function of p. The
fixed-parameter tractable solution discovery algorithms of Fellows et al. [11] and Grobler et
al. [13] are not based on kernelization algorithms.

Unfortunately, it is unlikely that all fixed-parameter tractable problems admit polynomial
kernels. Bodlaender et al. [2, 3] developed the first framework for proving kernel lower bounds
and Fortnow and Santhanam [12] showed a connection to the hypothesis NP ̸⊆ coNP/poly.
Specifically, for several NP-hard problems, a kernel of polynomial size with respect to a
parameter would imply that NP ⊆ coNP/poly, and thus an unlikely collapse of the polynomial
hierarchy to its third level [18]. Driven by the practical benefits of kernelization algorithms,
we explore the size bounds on kernels for most of the above-mentioned solution discovery
problems in the token sliding model, particularly those identified as fixed-parameter tractable
in the works of Fellows et al. [11] and Grobler et al. [13].

1.1 Results Overview
We focus on the kernelization complexity of solution discovery in the token sliding model
for the following source problems: Vertex Cover, Independent Set, Dominating Set,
Shortest Path, Matching, and Vertex Cut. For a base problem Π we write Π-D for
the discovery version in the token sliding model.

Figure 1 summarizes our results. All graph classes and width parameters appearing in
this introduction are defined in the preliminaries. Fellows et al. [11] and Grobler et al. [13]
gave fixed-parameter tractable algorithms with respect to the parameter k for IS-D on
nowhere dense graphs, for VC-D, SP-D, Mat-D, and VCut-D on general graphs and for
DS-D on biclique-free graphs.

We show that IS-D, VC-D, DS-D, and Mat-D parameterized by k admit polynomial
size kernels (on the aforementioned classes), while VCut-D does not admit kernels of size
polynomial in k. For SP-D, we show that the problem does not admit a kernel of polynomial
size parameterized by k + b unless NP ⊆ coNP/poly.

As NP-hardness provides strong evidence that a problem admits no polynomial-time
algorithm, W[t]-hardness (for a positive integer t) with respect to a parameter p provides
strong evidence that a problem admits no fixed-parameter tractable algorithm with respect
to p. Fellows et al. [11] proved that VC-D, IS-D, and DS-D are W[1]-hard with respect
to parameter b on d-degenerate graphs but provided fixed-parameter tractable algorithms
on nowhere dense graphs. They also showed that these problems are slicewise polynomial
(XP) with respect to the parameter treewidth and left open the parameterized complexity of
these problems with respect to the parameter treewidth alone. We show that these problems
remain XNLP-hard (which implies W[t]-hardness for every positive integer t) for parameter
pathwidth (even if given a path decomposition realising the pathwidth), which is greater
than or equal to treewidth, and that they admit no polynomial kernels (even if given a path
decomposition realising the pathwidth) with respect to the parameter b + pw, where pw is
the pathwidth of the input graph, unless NP ⊆ coNP/poly.

Finally, we also consider the parameter feedback vertex set number (fvs), which is an
upper bound on the treewidth of a graph, but is incomparable to pathwidth. We complement
the parameterized complexity classification for the results of Fellows et al. [11] by showing
that IS-D, VC-D, and DS-D are W[1]-hard for the parameter fvs.

Several interesting questions remain open. For instance, while their parameterized
complexity was determined, the kernelization complexity of Col-D and ECut-D remains
unsettled. Similarly, the kernelization complexity of IS-D and DS-D with respect to
parameter k is unknown on d-degenerate and semi-ladder-free graphs, respectively, where

ISAAC 2024

36:4 Kernelization Complexity of Solution Discovery

polynomial size kernels

IS-D: (k)-nowhere dense (Thm. 11)

VC-D: (k)-general

DS-D: (k)-biclique-free

Mat-D: (k)-general
no poly kernels (assum-

ing NP ̸⊆ coNP/poly)

VCut-D: (k)-general (Thm. 18, [13])

SP-D: (k + b)-general

VC-D: (b + pw)-general

DS-D: (b + pw)-general

IS-D: (b + pw)-general (Thm. 17, [11])

W[1]-hard

IS-D: (fvs)-general,
(pw)-general (Thm. 14)

VC-D: (fvs)-general,
(pw)-general

DS-D: (fvs)-general,
(pw)-general

Figure 1 A classification of problems into three categories: (yellow, alternatively grid) problems
for which we obtain polynomial kernels, (white) those for which polynomial kernels are unlikely, and
(grey, alternatively lines) those for which fixed-parameter tractable algorithms are unlikely. Each
entry in a category mentions a solution discovery problem, one or more parameters (in parentheses
and followed by a dash), and the graph class with respect to which the problem falls into the category.
A reference in the parentheses indicates that the fixed-parameter tractability of that problem was
established in the cited work. pw denotes the pathwidth and fvs denotes the feedback vertex set
number of the input graph.

the problems are known to be fixed-parameter tractable. In addition, it remains open
whether VCut-D parameterized by k + b admits a polynomial kernel or whether Mat-D
parameterized by b admits polynomial kernels on restricted classes of graphs.

1.2 Paper Outline
Due to space constraints we cannot present all results in the conference version of the
paper. We have chosen to present some results for IS-D and VCut-D to give an overview
of some of our techniques. All other results can be found in the full version. We collect
necessary background in Section 2. We show that IS-D has a polynomial size kernel with
respect to parameter k on nowhere dense classes in Section 3. Then, in Section 4 we prove
XNLP-hardness with respect to pathwidth. In Section 5, we prove that polynomial kernels
with respect to k are unlikely for VCut-D.

2 Preliminaries

We use the symbol N for the set of non-negative integers (including 0), Z for the set of all
integers, and Z+ for the set of positive non-zero integers. For k ∈ N, we define [k] = {1, . . . , k}
with the convention that [0] = ∅.

2.1 Graphs
We consider finite and simple graphs only. We denote the vertex set and the edge set of a
graph G by V (G) and E(G), respectively, and denote an undirected edge between vertices u

and v by uv (or equivalently vu) and a directed edge from u to v by (u, v). We use N(v) to

M. Grobler et al. 36:5

denote the set of all neighbors of v and E(v) to denote the set of all edges incident with v.
Furthermore, we define the closed neighborhood of v as N [v] = N(v) ∪ {v}. For a set X of
vertices we write G[X] for the subgraph induced by X.

A sequence of edges e1 . . . eℓ for some ℓ ≥ 1 is a (simple) path of length ℓ if every two
consecutive edges in the sequence share exactly one endpoint and each other pair of edges
share no endpoints. For vertices u and v, we denote the length of a shortest path e1 . . . eℓ

that connects u to v by d(u, v), where d(v, v) = 0 for all v ∈ V (G). For a vertex v ∈ V (G)
and a non-negative integer i, we denote by V (v, i) = {u ∈ V (G) | d(u, v) = i}.

The complete graph (clique) on n vertices is denoted by Kn and a complete bipartite
graph (biclique) with parts of size m and n, respectively, by Km,n. We present other relevant
graph classes properties in what follows and refer the reader to the textbook by Diestel [7]
for an in-depth review of general graph theoretic definitions.

A tree decomposition of a graph G is a pair T = (T, (Xi)i∈V (T)) where T is a tree
and Xi ⊆ V (G) for each i ∈ V (T), such that
1.

⋃
i∈V (T) Xi = V (G),

2. for every edge uv = e ∈ E(G), there is an i ∈ V (T) such that u, v ∈ Xi, and
3. for every v ∈ V (G), the subgraph Tv of T induced by {i ∈ V (T) | v ∈ Xi} is connected,

i. e., Tv is a tree.
We refer to the vertices of T as the nodes of T . For a node i, we say that the corresponding
set Xi is the bag of i. The width of the tree decomposition (T, (Xi)i∈V (T)) is maxi∈V (T)|Xi|−1.
The treewidth of G, denoted tw(G), is the smallest width of any tree decomposition of G. A
path decomposition of a graph G is a tree decomposition P = (T, (Xi)i∈V (T)) in which T is a
path. We represent a path decomposition P by the sequence of its bags only. The pathwidth
of G, denoted pw(G), is the smallest width of any path decomposition of G.

▶ Definition 1. A class C of graphs has bounded treewidth (bounded pathwidth) if there
exists a constant t such that all G ∈ C have treewidth (pathwidth) at most t.

For a graph G, the feedback vertex set number of G (fvs(G)) is the minimum size of
a vertex set whose deletion leaves the graph acyclic. We say a graph H is a minor of a
graph G, denoted H ⪯ G, if there exists a mapping that associates each vertex v of H with
a non-empty connected subgraph Gv of G such that Gu and Gv are disjoint for u ̸= v and
whenever there is an edge between u and v in H, there is an edge between a vertex of Gu

and a vertex of Gv. The subgraph Gv is referred to as the branch set of v. We call H a
depth-r minor of G, denoted H ⪯r G, if each branch set of the mapping induces a graph of
radius at most r.

▶ Definition 2. A class C is nowhere dense if there exists a function t : N → N such
that Kt(r) ̸⪯r G for all r ∈ N and all G ∈ C.

An r-independent set in a graph G is a set of vertices I such that the distance between
any two vertices of I is at least r + 1. We make use of the fact that nowhere dense classes
are uniform quasi-wide, as clarified by the following theorem.

▶ Theorem 3 ([14, 17]). Let C be a nowhere dense class of graphs. For all r ∈ N, there
is a polynomial Nr : N → N and a constant xr ∈ N such that following holds. Let G ∈ C

and let A ⊆ V (G) be a vertex subset of size at least Nr(m), for a given m ∈ N. Then
there exists a set X ⊆ V (G) of size |X| ≤ xr and a set B ⊆ A \ X of size at least m that
is r-independent in G − X. Moreover, given G and A, such sets X and B can be computed
in time O(|A| · |E(G)|).

ISAAC 2024

36:6 Kernelization Complexity of Solution Discovery

A graph is said to be d-biclique-free it excludes the biclique Kd,d, as a subgraph.

▶ Definition 4. A class C of graphs is biclique-free if there exists a number d such that
all G ∈ C are d-biclique-free.

2.2 Solution Discovery
A vertex (edge) subset problem Π is a problem defined on graphs such that a solution consists
of a subset of vertices (edges) satisfying certain requirements. For a vertex (edge) subset
problem Π on an instance with an input graph G, a configuration C on G is a subset of
its vertices (edges). Alternatively, a configuration can be seen as the placement of tokens
on a subset of vertices (edges) in G. In the token sliding model, a configuration C ′ can be
obtained (in one step) from a configuration C, written C ⊢ C ′, if C ′ = (C \ {y}) ∪ {x} for
elements y ∈ C and x /∈ C such that x and y are neighbors in G, that is, if x, y ∈ V (G),
then xy ∈ E(G); and if x, y ∈ E(G), then they share an endpoint. Alternatively, when
a token slides from a vertex to an adjacent one or from an edge to an incident one, we
get C ⊢ C ′. A discovery sequence of length ℓ in G is a sequence of configurations C0C1 . . . Cℓ

of G such that Ci ⊢ Ci+1 for all 0 ≤ i < ℓ.
The Π-Discovery problem is defined as follows. We are given a graph G, a configura-

tion S ⊆ V (G) (resp. S ⊆ E(G)) of size k (which at this point is not necessarily a solution
for Π), and a budget b (a non-negative integer). We denote instances of Π-Discovery
by (G, S, b). The goal is to decide whether there exists a discovery sequence C0C1 . . . Cℓ in G

for some ℓ ≤ b such that S = C0 and Cℓ is a solution for Π. When a path decomposition is
given as part of the input, the instances are denoted by (G, PG, S, b) to highlight that the
path decomposition PG of G is provided.

2.3 Parameterized Complexity and Kernelization
Downey and Fellows [8] developed a framework for parameterized problems which include
a parameter p in their input. A parameterized problem Π has inputs of the form (x, p)
where |x| = n and p ∈ N. Fixed-parameter tractable problems belong to the complexity
class FPT. The class XNLP consists of the parameterized problems that can be solved with a
non-deterministic algorithm that uses f(p)·log n space and f(p)·nO(1) time. The W-hierarchy
is a collection of parameterized complexity classes FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ XNLP where
inclusions are conjectured to be strict.

For parameterized problems Π and Π′, an FPT-reduction from Π to Π′ is a reduction that
given an instance (x, p) of Π produces (x′, p′) of Π′ in time f(p)·|x|O(1) and such that p′ ≤ g(p)
where f, g are computable functions. A pl-reduction from Π to Π′ is one that additionally
computes (x′, p′) using O(h(p) + log |x|) working space where h is a computable function.
We write Π ≤FPT Π′ (resp. Π ≤pl Π′) if there is an FPT-reduction (resp. pl-reduction) from Π
to Π′. If Π is W[t]-hard for a positive integer t and Π ≤FPT Π′, then Π′ is also W[t]-hard.
If Π is XNLP-hard and Π ≤pl Π′, then Π′ is XNLP-hard and, in particular, W[t]-hard for
all t ≥ 1.

Every problem that is in FPT admits a kernel, although it may be of exponential size
or larger. Under the complexity-theoretic assumption that NP ̸⊆ coNP/poly, we can rule
out the existence of a polynomial kernel for certain fixed-parameter tractable problems Π.
The machinery for such kernel lower bounds heavily relies on composing instances that are
equivalent according to a polynomial equivalence relation [6].

M. Grobler et al. 36:7

▶ Definition 5. An equivalence relation R on the set of instances of a problem Π is called a
polynomial equivalence relation if the following two conditions hold.
1. There is an algorithm that given two instances x and y of Π decides whether x and y

belong to the same equivalence class in time polynomial in |x| + |y|.
2. For any finite set S of instances of Π, the equivalence relation R partitions the elements

of S into at most (maxx∈S |x|)O(1) classes.

We can compose equivalent instances in more than one way. We focus here on or-cross-
compositions.

▶ Definition 6 ([3]). Let Π′ be a problem and let Π be a parameterized problem. We say
that Π or-cross-composes into Π′ if there is a polynomial equivalence relation R on the
set of instances of Π and an algorithm that, given t instances (where t ∈ Z+) x1, x2, . . . , xt

belonging to the same equivalence class of R, computes an instance (x∗, p∗) in time polynomial
in Σt

i=1|xi| such that the following properties hold.
1. (x∗, p∗) ∈ Π if and only if there exists at least one i such that xi is a yes-instance of Π′.
2. p∗ is bounded above by a polynomial in maxt

i=1 |xi| + log t.

The inclusion NP ⊆ coNP/poly holds if an NP-hard problem or-cross-composes into a
parameterized problem Π having a polynomial kernel. As this inclusion is believed to be
false, we will constantly make use of the following theorem to show that the existence of a
polynomial kernel is unlikely.

▶ Theorem 7 ([3]). If a problem Π′ is NP-hard and Π′ or-cross-composes into the paramet-
erized problem Π, then there is no polynomial kernel for Π unless NP ⊆ coNP/poly.

We refer the reader to textbooks [6, 9] for more on parameterized complexity and
kernelization.

3 IS-D on Nowhere Dense Classes

Fellows et al. [11] showed that IS-D is in FPT with respect to parameters k and b on nowhere
dense classes of graphs. We show in this section that IS-D has a polynomial kernel with
respect to parameter k on the same.

▶ Definition 8. For any instance I = (G, S, b) of a Π-Discovery problem for some vertex
(resp. edge) selection problem Π, we call a vertex v ∈ V (G)\S (resp. e ∈ E(G)\S) irrelevant
with respect to s ∈ S if there exists a configuration Cℓ such that ℓ ≤ b, Cℓ is a solution for Π,
and the token on s is not on v (resp. e) in Cℓ.

The kernelization algorithm for nowhere dense graphs uses Theorem 3, along with other
structural properties of the input graph, to form a “sunflower” and find an irrelevant vertex.
It then removes from the graph some of the vertices that are irrelevant with respect to
every token. A sunflower with p petals and a core Y is a family of sets F1, . . ., Fp such
that Fi ∩ Fj = Y for all i ̸= j; the sets Fi \ Y are petals and we require none of them to be
empty [10].

▶ Lemma 9. Let (G, S, b) be an instance of IS-D where |S| = k, and let G′ be the subgraph
of G induced by the vertices of

⋃
s∈S,i∈[3k] V (s, i) ∪ S. Then (G′, S, b) is equivalent to

(G, S, b).

ISAAC 2024

36:8 Kernelization Complexity of Solution Discovery

Figure 2 An example of a sunflower (with beige, yellow and grey green petals) formed by the
closed neighborhoods of the vertices in Bj of Theorem 11. The vertices in Bj are 2-independent
in G − X and they have the same closed neighborhood in X (the white colored vertices).

▶ Lemma 10. Let (G, S, b) be an instance of IS-D where |S| = k, and let V = {v1, v2, . . . , vt}
be a set of vertices of G \ S such that for a given token on a vertex s ∈ S, d(s, vi) = d(s, vj)
for i ̸= j ∈ [t]. If A = {N [v1], . . . , N [vt]} contains a sunflower with k + 1 petals, then any
vertex whose closed neighborhood corresponds to one of those petals is irrelevant with respect
to s.

▶ Theorem 11. IS-D has a polynomial kernel with respect to parameter k on nowhere dense
graphs.

Proof. Let (G, S, b) be an instance of IS-D where G is nowhere dense. Without loss of
generality, we assume the graph G to be connected. For each vertex s ∈ S and integer i ∈ [3k],
we compute V (s, i). We maintain the invariant that we remove from V (s, i) for each s ∈ S

and i ∈ [3k], irrelevant vertices with respect to s (note that a vertex can appear in multiple
sets V (s, i)).

We remove an irrelevant vertex with respect to a vertex s ∈ S from V (s, i) for an
integer i ∈ [3k] as follows. If |V (s, i)| > N2(2x2 ·(k+1)), where N2 and x2 are as per Theorem 3
(here V (s, i) plays the role of the set A), we can compute sets X, B ⊆ V (s, i) such that |X| ≤
x2, |B| ≥ 2x2 · (k + 1) and B is 2-independent in G − X. Let B′ = {B′

1, B′
2, . . .} be a family

of sets that partitions the vertices in B such that for any two vertices u, v ∈ B, u, v ∈ B′
j

if and only if N [u] ∩ X = N [v] ∩ X. Since |B| ≥ 2x2 · (k + 1) and |X| ≤ x2, at least one
set Bj ∈ B, for a specific j, contains at least k + 1 vertices of B. All vertices in Bj have the
same neighborhood in X and they are 2-independent G−X (i. e., no vertex from outside of X

can be in the closed neighborhood of two vertices in Bj); thus their closed neighborhoods
form a sunflower with at least k + 1 petals and a core that is contained in X (Figure 2).
By Lemma 10, one vertex of Bj is irrelevant with respect to s and can be removed from V (s, i).
We can repeatedly apply Theorem 3 on the set V (s, i) until |V (s, i)| ≤ N2(2x2 · (k + 1)).

We form the kernel (G′, S, b) of the original instance (G, S, b) as follows. We set V (G′) =⋃
s∈S,i∈[3k] V (s, i) ∪ S. By Lemma 9, any vertex v ∈ V (G) such d(s, v) > 3k for every s ∈ S

is irrelevant with respect to every s ∈ S and not required in the kernel (G′, S, b). For each
vertex v ∈ V (s, i), for s ∈ S and i ∈ [3k], we add to V (G′) at most i vertices that are on
the shortest path from s to v, if such vertices are not already present in V (G′). G′ is the
subgraph of G induced by the vertices in V (G′). By the end of this process, |V (G′)| ≤
k + [9k3 · N2(2x2 · (k + 1))], as for each s ∈ S and i ∈ [3k], V (s, i) ≤ N2(2x2 · (k + 1)) and
for each vertex in the latter sets, we added to V (G′) at most 3k − 1 vertices that are on a
shortest path from that vertex to the vertex s. (G′, S, b) is a kernel as only vertices that are
irrelevant with respect to every token in S might not be in V (G′) and all vertices needed to
move tokens from vertices in S towards an independent set using only b slides are present
in V (G′). ◀

M. Grobler et al. 36:9

4 IS-D for Parameters b and Pathwidth

We now show that IS-D is XNLP-hard with respect to parameter pathwidth. By a small
modification of the proof we obtain that IS-D does not have a polynomial kernel with
respect to the parameter b + pw, where pw is the pathwidth of the input graph, unless NP ⊆
coNP/poly.

4.1 The Minimum Maximum Outdegree Problem and Foundational
Gadgets

An orientation of a graph H is a mapping λ : E(H) → V (H) × V (H) such that λ(uv) ∈
{(u, v), (v, u)}. Given an undirected weighted graph H, a path decomposition PH of H of
width pw, an edge weighting σ : E(H) → Z+ and a positive integer r (such that all integers
are given in unary), the Minimum Maximum Outdegree (MMO) asks whether there exists
an orientation of H such that for each v ∈ V (H), the total weight of the edges directed away
from v is at most r. We use the problem in the reductions that establish the XNLP-hardness
of IS-D, VC-D, and DS-D with respect to parameter pw and the or-cross-compositions
that render it unlikely for any of these problems to have a polynomial kernel with respect to
parameter b + pw. Bodlaender et al. [1] showed that MMO is XNLP-complete with respect
to pathwidth given a path decomposition realising the pathwidth.

For an instance (H, PH , σ, r) of MMO, we define σ =
∑

e∈E(H) σ(e), n = |V (H)|
and m = |E(H)|. We construct for an instance (H, PH , σ, r) of MMO, a graph G consisting
of disjoint subgraphs Ge for each e ∈ E(H) and Gv for each v ∈ V (H). We refer to the
edge-based and vertex-based subgraphs as MMO-edge-gadgets and MMO-vertex-gadgets,
respectively. For an edge e ∈ E(H) we refer to Ge as MMO-edge-e. Similarly, for a
vertex v ∈ V (H) we refer to Gv as MMO-vertex-v.

MMO-edge-e. For an edge e = uv ∈ E(H), an MMO-edge-e Ge contains σ(e) + 1 edges
with endpoints ai

e and bi
e for i ∈ [σ(e) + 1], and an edge euev such that b

σ(e)+1
e is adjacent

to each of eu and ev. We define Ae = ∪i∈[σ(e)] ai
e and Be = ∪i∈[σ(e)] bi

e. We refer to the
connected component inside Ge (or any subdivision of Ge) containing eu and ev by Gsel

e . ⌟

MMO-vertex-v. For a vertex v in V (H), an MMO-vertex-v Gv contains a representative
vertex of v denoted by wv, adjacent to r target vertices of v denoted by x1

v, x2
v, . . . , xr

v and one
extra vertex xr+1

v . Additionally, for each edge e ∈ E(H) incident to v, the MMO-vertex-v
contains σ(e) edges with endpoints y

v(i)
e and z

v(i)
e for i ∈ [σ(e)] such that y

v(i)
e is adjacent

to wv, the representative vertex of v. We define Xv = ∪i∈[r] xi
v, Y v

e = ∪i∈[σ(e)] y
v(i)
e , Zv

e =
∪i∈[σ(e)] z

v(i)
e , Y v = ∪e∈E(H) Y v

e , and Zv = ∪e∈E(H) Zv
e . ⌟

The Graph G. We let A = ∪e∈E(H) Ae, A+ = ∪e∈E(H) a
σ(e)+1
e , B = ∪e∈E(H) Be, B+ =

∪e∈E(H) b
σ(e)+1
e , X = ∪v∈V (H) Xv, X+ = ∪v∈V (H) xr+1

v , Y = ∪v∈V (H) Y v, and Z =
∪v∈V (H) Zv. We form G by connecting its MMO-edge-gadget vertices to its MMO-vertex-
gadget vertices as follows. For a vertex v ∈ V (H) and edge e ∈ E(H) incident to v, we
connect each vertex of Be to a corresponding distinct vertex in Zv

e (in other words, each bi
e

to z
v(i)
e for i ∈ [σ(e)]). Similarly, we connect ev to each vertex of Y v

e (see Figure 3 for an
example). ⌟

Our reductions must use at most O(h(pw) + log |x|) working space, for an input instance
of size |x| and parameter pw, and a computable function h. We show that our reductions/-
compositions can be performed on a log-space transducer and are pl-reductions. A log-space

ISAAC 2024

36:10 Kernelization Complexity of Solution Discovery

a1
e b1

e

a2
e b2

e

eu

ev

a3
e b3

e

wu
x1

u

x2
u

x3
u

x4
u

x5
u

y
u(1)
ez

u(1)
e

y
u(2)
ez

u(2)
e

y
u(2)
e′z

u(2)
e′

y
u(1)
e′z

u(1)
e′

wv
x1

v

x2
v

x3
v

x4
v

x5
v

y
v(1)
ez

v(1)
e1

y
v(2)
ez

v(2)
e

y
v(1)
e′′z

v(1)
e′′

Figure 3 Edges from one MMO-edge-e, for an edge e = uv for a graph H, edge weight function σ,
and integer r of an MMO instance, to the MMO-vertex-u and MMO-vertex-v subgraphs in G.
Brown is used for edges between vertices in B and Z and yellow is used for edges between vertices
in {eu, ev} and Y . σ(e) = 2 and r = 4.

transducer is a type of Turing machine with a read-only input tape, a read/write work tape
of logarithmic size and a write-only, write-once output tape. For the graph G, we show the
following lemma.

▶ Lemma 12. Let (H, PH , w, r) be an instance of MMO. Then, there exists a log-space
transducer that transforms a path decomposition of H to one of G with width at most pw(H)+6.
Thus, pw(G) ≤ pw(H) + 6.

▶ Corollary 13. Given an MMO instance (H, PH , σ, r), one can build a log-space transducer
that outputs a path decomposition of G with width at most pw(H) + 6, along with a repres-
entation of the graph, any subset of its vertices, and an integer with at most a polynomial (in
the input size) number of bits.

4.2 Lower Bound Proofs
▶ Theorem 14. IS-D is XNLP-hard with respect to parameter pathwidth.

Proof. We present an fpt-reduction from MMO. Let (H, PH , σ, r) be an instance of MMO
where H is a bounded pathwidth graph, |V (H)| = n, |E(H)| = m, σ : E(H) → Z+
such that

∑
e∈E(H) σ(e) = σ and r ∈ Z+ (integers are given in unary). We construct an

instance (G, PG, S, b) of IS-D where G is exactly as described in Section 4.1. See Figure 4.
We set S = A ∪ A+ ∪ B ∪ B+ ∪ Y ∪ X+ and b = m + 3σ. Given that all integers
are given in unary, the construction of the graph G, or its path decomposition (as described
in Lemma 12), and as a consequence the reduction, take time polynomial in the size of the
input instance. Additionally, by Corollary 13, this reduction is a pl-reduction. We claim
that (H, PH , σ, r) is a yes-instance of MMO if and only if (G, PG, S, b) is a yes-instance of
IS-D.

▷ Claim 15. If (H, PH , σ, r) is a yes-instance of MMO, then (G, PG, S, b) is a yes-instance
of IS-D.

Proof. Let λ : E(H) → V (H) × V (H) be an orientation of the graph H such that for
each v ∈ V (H), the total weight of the edges directed out of v is at most r. In (H, PH , σ, r),
the vertices in A and B contain tokens. The same applies for the vertices in A+ and B+. To
fix that, for each edge e ∈ E(H) such that λ(e) = (v, u):

M. Grobler et al. 36:11

wu

ww

wv

x1
u

x2
u

x3
u

x1
w

x2
w

x3
w

x1
v

x2
v

x3
v

x4
u

x4
w

x4
v

y
w(1)
e2z

w(1)
e2

y
u(2)
e1z

u(2)
e1

y
u(1)
e1z

u(1)
e1

y
u(3)
e1z

v(3)
e1

y
v(2)
e1z

v(2)
e1

y
v(3)
e1z

v(3)
e1

y
v(1)
e1z

v(1)
e1

y
v(1)
e2z

v(1)
e2

a1
e1

b1
e1

a2
e1

b2
e1

a3
e1

b3
e1

ev
1

eu
1

a4
e1

b4
e1

a1
e2

b1
e2

ew
2

eu
2

a2
e2

b2
e2

Figure 4 Parts of the graph G constructed by the reduction of Theorem 14 given an in-
stance (H, PH , σ, r), where H has three vertices u, v and w, and two edges e1 = uv and e2 = uw,
and r = 3. Additionally, σ(e1) = 3 and σ(e2) = 1. For clarity, the edges between the vertices in Be1

and Zu
e1 are missing. The same applies for the edges between ev

1 and the vertices of Y v
e1 and the

edges between eu
1 and the vertices of Y u

e1 . Brown and yellow edges are used to highlight the different
types of edges used to connect the subgraphs Ge1 , Ge2 , Gu, Gv and Gw of G, vertices in black are
in S and those in white are not.

1. we slide, for each i ∈ [σ(e)], the token on bi
e to z

v(i)
e (this consumes σ(e) slides),

2. we move, for each i ∈ [σ(e)], the token on y
v(i)
e to any free vertex of Xv (this consumes 2σ(e)

slides),
3. we slide the token on b

σ(e)+1
e to ev (this consumes 1 slide).

This constitutes m + 3σ slides and we get an independent set in G. Step 2 above is
possible (i. e., a token-free vertex exists in Xv) since λ is an orientation of the graph H such
that for each v ∈ V (H), the total weight of the edges directed out of v is at most r. Step 3
is possible for each edge e ∈ E(H) since in Step 2 all tokens were removed from the vertices
in Y v

e . ◁

▷ Claim 16. If (G, PG, S, b) is a yes-instance of IS-D, then (H, PH , σ, r) is a yes-instance of
MMO.

Proof. The minimum number of slides used inside any induced subgraph Ge for an edge uv =
e ∈ E(H) is one and it can only be achieved by sliding the token on b

σ(e)+1
e to one of either eu

or ev. Thus, at least m slides are required inside the MMO-edge-gadgets and the budget
remaining is 3σ. Additionally, each token on a vertex bi

e in Be, for an edge uv = e ∈ E(H)
and an integer i ∈ [σ(e)] must slide to either z

u(i)
e or z

v(i)
e , consuming σ slides. Since a

solution that moves the token on a
σ(e)+1
e but not the token on b

σ(e)+1
e is not minimal, we

can safely assume that the described m + σ slides are executed in any minimal solution.
In the same solutions, each token on a vertex z

u(i)
e for an edge uv = e ∈ E(H) and an

integer i ∈ [σ(e)] requires the token on y
u(i)
e to slide to either eu or wu, utilizing as a result σ

other slides. A token that slides from y
u(i)
e to the vertex wu must slide again at least once,

since any independent set that is achieved through the minimal number of slides would never
require the sliding of the tokens on the vertices in X+ (the token that moves to the vertex wu

ISAAC 2024

36:12 Kernelization Complexity of Solution Discovery

can be moved, using one less slide, to the vertex the token on xr+1
u moves to). Since Gsel

e can
contain at most 2 tokens, a token on y

u(i)
e that slides to the vertex eu must either slide again

at least once to a vertex, denoted y
u(i1)
e (for an integer i1 ∈ [σ(e)]) in Y u

e , or require another
token on a vertex in Gsel

e to slide at least once to either a vertex, denoted y
u(i2)
e (for an

integer i2 ∈ [σ(e)]) in Y u
e , or a vertex, denoted y

v(i2)
e (for an integer i2 ∈ [σ(e)]) in Y v

e , while
the token initially on y

u(i)
e stays on eu. Given that at most σ slides remain in any minimal

solution, and that each of the σ tokens initially on vertices in Y that moved to either vertices
of the form e1

u1 or wu1 , for an edge e1 ∈ E(H) incident to a vertex u1 ∈ V (H), uses or
requires at least one additional slide, each one such token can use or require exactly one
additional slide. If the token on y

u(i)
e slides to wu, then either in exactly one more slide

it can move to a free vertex in Xu, or it can slide back to a vertex, denoted y
u(i3)
e2 (for an

edge e2 adjacent to u in H and an integer i3 ∈ [σ(e1)]) in Y u. However, either y
u(i3)
e2 (resp.

y
u(i1)
e , y

u(i2)
e , or y

v(i2)
e) or its adjacent vertex, denoted z

u(i3)
e2 in Zu (resp. z

u(i1)
e in Zu

e , z
u(i2)
e

in Zu
e , or z

v(i2)
e in Zv

e), contains a token, thus requiring at least one other additional slide,
which is impossible. As a result, it can only be the case that a token on y

u(i)
e slides to wu

and then in exactly one more slide it moves to a free vertex in Xu.
For any edge uv = e ∈ E(H), if ev ∈ Cℓ (resp. eu ∈ Cℓ), then no vertex of Y v

e (resp. Y u
e)

appears in Cℓ and the tokens on the vertices of Y v
e (resp. Y u

e) have been moved to some
of the free vertices of Xv (resp. Xu). Given the latter, we produce an orientation λ to H,
where λ(e) = (v, u) (resp. λ(e) = (u, v)) if ev ∈ Cℓ (resp. eu ∈ Cℓ). Since |Xv| = |Xu| ≤ r, λ

is such that the total weight directed out of any vertex v ∈ V (H) is at most r. ◁

This concludes the proof of the theorem. ◀

We compose multiple MMO instances utilizing the construction presented in Theorem 14,
and show the following.

▶ Theorem 17. IS-D does not admit a polynomial kernel with respect to b + pw, where pw

denotes the pathwidth of the input graphs, unless NP ⊆ coNP/poly.

5 VCut-D for Parameter k

Grobler et al. [13] showed that VCut-D is W[1]-hard with respect to parameter b on 2-
degenerate bipartite graphs but is in FPT with respect to the parameter k on general graphs.
We show that the problem admits no polynomial kernels unless NP ⊆ coNP/poly. We denote
an instance of VCut-D by (G, S, b, a1, b1) to emphasize that the solution must be a vertex
cut between the vertices a1 and b1 in V (G).

Given a graph H and an edge coloring ϕ : E(H) → [c], we say ϕ is proper if, for all
distinct edges e, e1 ∈ E(H), ϕ(e) ̸= ϕ(e1) whenever e and e1 share a vertex. We form our
or-cross-composition from the Rainbow Matching problem, which is NP-complete even
on properly colored 2-regular graphs and where every i ∈ [c] is used exactly twice in the
coloring [15]. Given a graph H, a proper edge coloring ϕ and an integer κ, the Rainbow
Matching problem asks whether (H, ϕ, κ) has a a rainbow matching of size κ, i. e., a
matching whose edges have distinct colors, with at least κ edges.

▶ Theorem 18. There exists an or-cross-composition from Rainbow Matching into
VCut-D where the parameter is the number of tokens, k. Consequently, VCut-D does not
admit a polynomial kernel with respect to k, unless NP ⊆ coNP/poly.

M. Grobler et al. 36:13

...

...

...

E2
1(1)

E2
2(1)

E2
3(1)

E1
1(2)

E1
2(2)

E1
3(2)

E1
1(1)

E1
2(1)

E1
3(1)

u(3, .) u(2, .) u(1, .)
a1

s8s7s6s5s4s3s2s1

v2

v1

v3

t1 t2 t3 t4 t5 t6 t7 t8

b1

Figure 5 An illustration of the graph G formed as per the composition of Theorem 18 given
input instances (Hr, ϕr, κr) for r ∈ [8], where κr = κ ≥ 3. For clarity, each graph Gr for r ∈ [8]
was replaced by a rectangle incident to two vertices sr and tr of Gr. Grey edges are used to
illustrate how the vertices vd for d ∈ [3] connect to the vertices of T . Dashed lines represent paths of
length m3 + log t between the vertices and thick edges are used to represent that a vertex is adjacent
to all vertices in a set of vertices. The yellow, grey, and beige rectangular areas on the left provide a
zoomed-in view of some of the content of G1, G2, and G3, respectively. Particularly, they show the
sets of vertices E1

1(1), E1
1(2), E2

1(1), E1
2(1), E1

2(2), E2
2(1), E1

3(1), E1
3(2), and E2

3(1). For clarity, not
all (dotted line) edges between vertices of the form u(i, j) for i ∈ [2(κ − 1)] and j ∈ [m − 1], and
both vertices sr and tr for r ∈ [8] are shown.

Proof. By choosing an appropriate polynomial equivalence relation R, we may assume that
we are given a family of t Rainbow Matching instances (Hr, ϕr, κr), where Hr is a 2-regular
graph, |V (Hr)| = n, |E(Hr)| = m, κr = κ ∈ N, and ϕr : E(Hr) → [c] is a mapping that
properly colors Hr and in which every i ∈ [c] is used exactly twice. We may duplicate some
input instances so that t = 2s for some integer s. Note that this step at most doubles the
number of input instances. The construction of the instance (G, S, b, a1, b1) of VCut-D is
twofold.

For each instance (Hr, ϕr, κr), we create Gr, formed of two vertices, sr and tr, as well
as κ − 1 sets {E1

r , . . . , Eκ−1
r } of 2m + 2 vertices each. A set Ep

r for p ∈ [κ − 1] contains 2m

vertices, denoted edge-vertices, that represent the edges in Hr twice and two other vertices
which are denoted by sp

r and tp
r (see Figure 6). We denote the edge-vertices in a set Ep

r

as vp,r
eh

(1) (vp,r
eh

(2)) to refer to the first (second) vertex representing the same edge eh

of E(Hr) in Ep
r . We denote by Ep

r (1) the set of all vertices vp,r
eh

(1), and by Ep
r (2) the set of

all vertices vp,r
eh

(2). In Gr, we connect through paths of length m3 + log t:
sr to each of sp

r for p ∈ [κ − 1] and tr to each of tp
r for p ∈ [κ − 1],

sp
r to all vertices vp,r

eh
(1) and tp

r to all vertices vp,r
eh

(2) for each eh ∈ E(Hr) and each p ∈
[κ − 1],
all vertices vp,r

eh
(1) and vq,r

eg
(2) such that ϕr(eh) = ϕr(eg) for each p ≤ q ∈ [κ − 1],

vp,r
eh

(1) and vq,r
eg

(2), for each p ≤ q ∈ [κ − 1], whenever eh and eg are incident in Hr,
vp,r

eh
(2) and vq,r

eg
(1), for each p ∈ [κ − 2], q = p + 1, whenever eh ̸= eg.

We form G of all Gr for r ∈ [t] as follows (see Figure 5). We create two global vertices a1
and b1 such that b1 is connected through paths of length m3 + log t to tr for r ∈ [t].
Additionally, we create a binary tree T rooted at a1, with log t + 1 levels, and whose leaves

ISAAC 2024

36:14 Kernelization Complexity of Solution Discovery

constitute sr for r ∈ [t]. For each depth d of T for d ∈ {1, . . . , log t}, we create a vertex vd that
contains a token and is connected through a single edge to each vertex of T that is at depth d.
The edges of T are all replaced by paths of length m3 + log t. Finally, we create 2(κ − 1)
sets {M1, . . . , M2(κ−1)}, of m−1 edges each. We connect each edge e(i,j) ∈ Mi for i ∈ [2(κ−1)]
and j ∈ [m − 1], from one of its endpoints, denoted u(i,j), to each vertex v

⌈i/2⌉,r
eh (1) for

each r ∈ [t] if i is odd, and to each vertex v
⌈i/2⌉,r
eh (2) for each r ∈ [t] if i is even. Additionally,

we connect through paths of length m3 + log t, each sr and tr for r ∈ [t] to all of u(i,j)

for i ∈ [2(κ − 1)] and j ∈ [m − 1]. All vertices in the sets {M1, . . . , M2(κ−1)} contain tokens.
Setting b = log t + 2(2κ − 2) · (m − 1) finalizes the construction of (G, S, b, a1, b1). Since we
perform only a polynomial number of operations per instance as well as some polynomial
in t other operations while creating the tree T and connecting some vertices, the reduction
is polynomial in Σt

i=1|xi|. Additionally, k is O(m2 + log t) since κ ≤ m.

▷ Claim 19. If for some r ∈ [t], (Hr, ϕr, κr) is a yes-instance of Rainbow Matching, then
the constructed instance (G, S, b, a1, b1) is a yes-instance of VCut-D.

Proof. Let Mr be a solution to the instance (Hr, ϕr, κr). Mr ⊆ E(Hr) forms a matching in Hr

such that ϕr(eh) ̸= ϕr(eg), for all eh, eg ∈ Mr. We apply the following slides in (G, S, b, a1, b1)
to disconnect a1 from b1. First, we choose one edge eh of Mr and using m − 1 slides, we
slide the tokens on u(1,j) for j ∈ [m − 1] onto all vertices in E1

r (1) except v1,r
eh

(1). Then,
using (2κ − 1) · (m − 1) slides, for each i ∈ [κ − 1], we choose one other edge es ∈ Mr and
slide the tokens on u(2i,j) and u(2i+1,j) (when applicable) for j ∈ [m − 1] onto all vertices
in Ei

r(2) and Ei+1
r (1) except vi,r

es
(2) and vi+1,r

es
(1), respectively. We slide onto u(i,j) for

all i ∈ [2(κ − 1)] and j ∈ [m − 1] the tokens adjacent to the latter vertices, on the edges
in {M1, . . . , M2(κ−1)}, using (2κ − 2) · (m − 1) slides. Finally, in T , we use the tokens on
the vertices vd for d ∈ {1, . . . , log t}, to disconnect all paths from the root a1 to all of sr

for r ∈ [t] − {r}, using one slide per token. This ensures that, through at most log t slides,
all paths from a1 to b1 go through only both sr and tr. Following the described steps, we
have executed a total of b slides. To see that a1 and b1 are now disconnected, note that after
the slides of the tokens on vd for d ∈ {1, . . . , log t} are performed, all paths from a1 to b1
in G go through sr and tr. Thus it suffices to argue that the remaining 2(2κ − 2) · (m − 1)
slides disconnect sr and tr. First, if this is not the case, then no path between sr and tr
goes through any u(i,j) for all i ∈ [2(κ − 1)] and j ∈ [m − 1] since the tokens that left those
vertices have been replaced. Also, the last four vertices on any path between sr and tr must
be vp,r

eh
(1) for some p ∈ [κ − 1] and some eh ∈ E(Hr), vq,r

eg
(2) for some q ∈ {p, . . . , κ − 1}

and some eg ∈ E(Hr), tq
r and tr. However, by construction, there exists no paths between

all vertices vp,r
eh

(1) and vq,r
eg

(2) for each p ≤ q ∈ [κ − 1], such that ϕr(eh) ̸= ϕr(eg) and eh

and eg are non-adjacent. Thus, given our choice of the free vertices remaining in Ep
r (.) for

all p ∈ [κ − 1], no path exists between sr from tr and therefore between a1 and b1. ◁

▷ Claim 20. If (G, S, b, a1, b1) is a yes-instance of VCut-D, then there exists an integer r ∈ [t]
for which (Hr, ϕr, κr) is a yes-instance of Rainbow Matching.

Proof. Assume Cℓ for ℓ ≤ b, is a solution to (G, S, b, a1, b1) that is reached with only 2(2κ−2)·
(m − 1) + log t slides and disconnects a1 from b1, then any token that slides in G slides at
most once, given that everything except:

for d ∈ {1, . . . , log t}, the vertex vd and each vertex of T that is at level d,
u(i,j) for i ∈ [2(κ − 1)] and j ∈ [m − 1], to each vertex v

⌈i/2⌉,r
eh (1) for each r ∈ [t] if i is

odd, and to each vertex v
⌈i/2⌉,r
eh (2) for each r ∈ [t] if i is even,

the endpoints of each edge e(i,j) ∈ Mi for i ∈ [2(κ − 1)] and j ∈ [m − 1],

M. Grobler et al. 36:15

s1
1 t1

1

v
(1,1)
a (1)

v
(1,1)
b

(1)

v
(1,1)
c (1)

v
(1,1)
d

(1)

v
(1,1)
e (1)

v
(1,1)
f

(1)

v
(1,1)
g (1)

v
(1,1)
h

(1)

v
(1,1)
i

(1)

v
(1,1)
j

(1)

E1
1 (1) E1

1 (2)

v
(1,1)
a (2)

v
(1,1)
b

(2)

v
(1,1)
c (2)

v
(1,1)
d

(2)

v
(1,1)
e (2)

v
(1,1)
f

(2)

v
(1,1)
g (2)

v
(1,1)
h

(2)

v
(1,1)
i

(2)

v
(1,1)
j

(2)

s2
1 t2

1

v
(2,1)
a (1)

v
(2,1)
b

(1)

v
(2,1)
c (1)

v
(2,1)
d

(1)

v
(2,1)
e (1)

v
(2,1)
f

(1)

v
(2,1)
g (1)

v
(2,1)
h

(1)

v
(2,1)
i

(1)

v
(2,1)
j

(1)

v
(2,1)
a (2)

v
(2,1)
b

(2)

v
(2,1)
c (2)

v
(2,1)
d

(2)

v
(2,1)
e (2)

v
(2,1)
f

(2)

v
(2,1)
g (2)

v
(2,1)
h

(2)

v
(2,1)
i

(2)

v
(2,1)
j

(2)

Figure 6 An illustration of E1
1 , E2

1 , s1
1, t1

1, s2
1, and t2

1 of G1 of the or-cross-composition of
Theorem 18. In H1, the vertices are a, b, c, d, e, f , g, h, i, and j. For simplification purposes, the
figure illustrates the types of edges but does not contain all edges between the illustrated vertices.
Length m3 + log t paths are represented by the edges (regular, dotted or dashed). Vertices in
grey brackets are in E1

1(1) and those in brown brackets are in E1
1(2). Yellow edges are between

vertices representing edges of the same color in H1 and dotted ones between all vp,r
eh

(2) and vq,r
eg

(1)
for q = p + 1, whenever eh ̸= eg. Finally, the dashed edge shows that the edges, represented by the
edge-vertices incident to it in G1, are adjacent in H1. In G1, length m3 + log t paths exist between s1

and both of s1
1 and s2

1 and between t1 and both of t1
1 and t2

1. No vertex in this figure contains a
token (colored vertices display the colors of the edges in the instance (H1, ϕ1, r1)).

ISAAC 2024

36:16 Kernelization Complexity of Solution Discovery

is connected by paths of length (m3 + log t) > b. Thus, we know that the tokens on the
vertices vd for d ∈ {1, . . . , log t} will have to leave some paths that go from a1 to b1 at least
through one pair of vertices sr and tr for some r ∈ [t] and can use at most log t slides. We
know that in G \ Cℓ, no path exists between sr and tr. Since no token can reach sr and tr
in the allocated budget, the remaining slides can only disconnect sr from tr. Note also
that u(i,j) ∈ Cℓ, for i ∈ [2(κ − 1)] and j ∈ [m − 1] as otherwise, a path from a1 to b1 that
goes through sr, u(i,j) and tr will remain tokens-free. This implies that at most m − 1 tokens
can be slid into any one level {E1

r (·), . . . , Eκ−1
r (·)}. We show via an inductive argument that

the set of edges in Hr represented by the vertices in {E1
r (·), . . . , Eκ−1

r (·)} but not in Cℓ must
form a matching Mr in Hr of size κr = κ, such that for eh, eg ∈ Mr, ϕr(eh) ̸= ϕr(eg) and
the claim follows. Let P (q) be the proposition that the set Eq of edges represented by vertices
in {E1

r (·), . . . , Eq
r (·)} but not in Cℓ form a matching such that for eh, eg ∈ Eq, ϕr(eh) ̸= ϕr(eg)

and that vertices that remain free in Eq+1
r (1) for q < κ − 1 represent the same edges as

the vertices that remain free in Eq
r (2). We show that P (q) holds by induction on the

levels q = {1, . . . , κ − 1}.
We prove the base case by contradiction and assume that a vertex v1,r

eg
(2) that remains

free in E1
r (2) either represents an edge eg that is incident to an edge eh represented by a

vertex v1,r
eh

(1) that remains free in E1
r (1) or it holds that ϕr(eg) = ϕr(eh). This implies that

there exists a path between sr and tr that goes from sr to s1
r , to v1,r

eh
(1), v1,r

eg
(2), t1

r and to tr
and thus Cℓ is not a solution to (G, S, b, a1, b1). As for the second part of the statement,
assume that a vertex v1,r

eh
(2) that remains free in E1

r (2) does not represent the same edge as
any of the vertices that remain free in E2

r (1), then there exists a path between sr and tr that
goes through, s2

r , then any of the latter vertices, followed by v1,r
eh

(2) and t1
r and thus Cℓ is

not a solution to (G, S, b, a1, b1). Note that the same arguments used in the base case apply
for the inductive step.

In other words, given the second part of the statement, we may assume (for contradiction
purposes) that a vertex vi,r

eg
(2) for i ≤ q (that remains free in Ei

r(2)) either represents an
edge eg that is incident to an edge eh represented by a vertex vi′,r

eh
(1) for i′ ≤ i (that remains

free in Ei′

r (1)) or it holds that ϕr(eg) = ϕr(eh). By construction, this implies that there
exists a path from sr and tr that goes from sr to si′

r , vi′,r
eh

(1), vi,r
eg

(2), ti
r, and to tr and thus Cℓ

is not a solution to (G, S, b, a1, b1). As for the second part of the statement, assume that a
vertex vq,r

eh
(2) (that remains free in Eq

r (2)) does not represent the same edge as any of the
vertices that remain free in Eq+1

r (1), then there exists a path between sr and tr that goes
through, sq+1

r , then any of the latter vertices, followed by vq,r
eh

(2) and tq
r and thus Cℓ is not a

solution to (G, S, b, a1, b1).
Thus, P (κ − 1) holds and the set Eκ−1 of edges represented by vertices

in {E1
r (·), . . . , Eκ−1

r (·)} but not Cℓ form a matching of size κ such that for eh, eg ∈
Eκ−1, ϕr(eh) ̸= ϕr(eg). ◁

This concludes the proof of the theorem. ◀

References
1 Hans L. Bodlaender, Gunther Cornelissen, and Marieke van der Wegen. Problems hard for

treewidth but easy for stable gonality. Computing Research Repository (CoRR), abs/2202.06838,
2022. arXiv:2202.06838.

2 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. Journal of Computer and System Sciences (J. Comput.
Syst. Sci.), 75(8):423–434, 2009. doi:10.1016/J.JCSS.2009.04.001.

https://arxiv.org/abs/2202.06838
https://doi.org/10.1016/J.JCSS.2009.04.001

M. Grobler et al. 36:17

3 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds
by cross-composition. SIAM Journal on Discrete Mathematics (SIAM J. Discret. Math.),
28(1):277–305, 2014. doi:10.1137/120880240.

4 Nicolas Bousquet, Amer E. Mouawad, Naomi Nishimura, and Sebastian Siebertz. A survey
on the parameterized complexity of the independent set and (connected) dominating set
reconfiguration problems. Computing Research Repository (CoRR), abs/2204.10526, 2022.
doi:10.48550/arXiv.2204.10526.

5 Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows. Advice classes
of parameterized tractability. Annals of Pure and Applied Logic (Ann. Pure Appl. Log.),
84(1):119–138, 1997. doi:10.1016/S0168-0072(95)00020-8.

6 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

7 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

8 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.

9 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

10 Paul Erdös and Richard Rado. Intersection theorems for systems of sets. Journal of the London
Mathematical Society (J. Lond. Math.), s1-35(1):85–90, 1960. doi:10.1112/jlms/s1-35.1.85.

11 Michael R. Fellows, Mario Grobler, Nicole Megow, Amer E. Mouawad, Vijayaragunathan
Ramamoorthi, Frances A. Rosamond, Daniel Schmand, and Sebastian Siebertz. On solution
discovery via reconfiguration. In Kobi Gal, Ann Nowé, Grzegorz J. Nalepa, Roy Fairstein, and
Roxana Radulescu, editors, ECAI 2023 - 26th European Conference on Artificial Intelligence,
September 30 - October 4, 2023, Kraków, Poland - Including 12th Conference on Prestigi-
ous Applications of Intelligent Systems (PAIS 2023), volume 372 of Frontiers in Artificial
Intelligence and Applications, pages 700–707. IOS Press, 2023. doi:10.3233/FAIA230334.

12 Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct pcps
for NP. Journal of Computer and System Sciences (J. Comput. Syst. Sci.), 77(1):91–106, 2011.
doi:10.1016/J.JCSS.2010.06.007.

13 Mario Grobler, Stephanie Maaz, Nicole Megow, Amer E. Mouawad, Vijayaragunathan
Ramamoorthi, Daniel Schmand, and Sebastian Siebertz. Solution discovery via reconfig-
uration for problems in P. In Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola
Svensson, editors, 51st International Colloquium on Automata, Languages, and Programming,
ICALP 2024, July 8-12, 2024, Tallinn, Estonia, volume 297 of LIPIcs, pages 76:1–76:20. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.ICALP.2024.76.

14 Stephan Kreutzer, Roman Rabinovich, and Sebastian Siebertz. Polynomial kernels and
wideness properties of nowhere dense graph classes. ACM Transactions on Algorithms (ACM
Trans. Algorithms), 15(2):24:1–24:19, 2019. doi:10.1145/3274652.

15 Van Bang Le and Florian Pfender. Complexity results for rainbow matchings. Theoretical
Computer Science (Theor. Comput. Sci.), 524:27–33, 2014. doi:10.1016/J.TCS.2013.12.013.

16 Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018. doi:10.3390/
A11040052.

17 Michal Pilipczuk, Sebastian Siebertz, and Szymon Torunczyk. On the number of types in
sparse graphs. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12,
2018, pages 799–808. ACM, 2018. doi:10.1145/3209108.3209178.

18 Chee-Keng Yap. Some consequences of non-uniform conditions on uniform classes. Theoretical
Computer Science (Theor. Comput. Sci.), 26:287–300, 1983. doi:10.1016/0304-3975(83)
90020-8.

ISAAC 2024

https://doi.org/10.1137/120880240
https://doi.org/10.48550/arXiv.2204.10526
https://doi.org/10.1016/S0168-0072(95)00020-8
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1112/jlms/s1-35.1.85
https://doi.org/10.3233/FAIA230334
https://doi.org/10.1016/J.JCSS.2010.06.007
https://doi.org/10.4230/LIPICS.ICALP.2024.76
https://doi.org/10.1145/3274652
https://doi.org/10.1016/J.TCS.2013.12.013
https://doi.org/10.3390/A11040052
https://doi.org/10.3390/A11040052
https://doi.org/10.1145/3209108.3209178
https://doi.org/10.1016/0304-3975(83)90020-8
https://doi.org/10.1016/0304-3975(83)90020-8

	1 Introduction
	1.1 Results Overview
	1.2 Paper Outline

	2 Preliminaries
	2.1 Graphs
	2.2 Solution Discovery
	2.3 Parameterized Complexity and Kernelization

	3 IS-D on Nowhere Dense Classes
	4 IS-D for Parameters b and Pathwidth
	4.1 The Minimum Maximum Outdegree Problem and Foundational Gadgets
	4.2 Lower Bound Proofs

	5 VCut-D for Parameter k

