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Abstract
One approach to studying the Fréchet distance is to consider curves that satisfy realistic assumptions.
By now, the most popular realistic assumption for curves is c-packedness. Existing algorithms for
computing the Fréchet distance between c-packed curves require both curves to be c-packed. In
this paper, we only require one of the two curves to be c-packed. Our result is a nearly-linear time
algorithm that (1 + ε)-approximates the Fréchet distance between a c-packed curve and a general
curve in Rd, for constant values of ε, d and c.
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1 Introduction

The Fréchet distance [13] is a popular similarity measure between curves. The Fréchet
distance has a variety of applications, from geographic information science [23, 24, 26] to
computational biology [21, 29] and data mining [22, 28]. The Fréchet distance can be seen
as the minimum leash length of a dog walking problem.

Suppose a person and a dog walk along two polygonal curves P and Q, respectively. The
goal of both the person and the dog is to walk along the path, independently and at possibly
different speeds, but without leaving the path or going backwards. The leash length of a
given walk is defined to be the maximum distance attained between the person and the dog.
The Fréchet distance is the globally minimum leash length over all possible walks.

The Fréchet distance can be computed between a pair of polygonal curves in nearly-
quadratic time. Alt and Godau [1] provided an O(n2 log n) time exact algorithm for computing
the Fréchet distance. Buchin, Buchin, Meulemans and Mulzer [6] provided a randomised
exact algorithm that computes the Fréchet distance in time O(n2√

log n(log log n)3/2) on a
pointer machine, and in time O(n2(log log n)2)) on word RAM.

Conditional lower bounds imply that the Fréchet distance problem is unlikely to admit
a strongly subquadratic time algorithm. Bringmann [2] showed that, under the Strong
Exponential Time Hypothesis, the Fréchet distance cannot be computed in time O(n2−δ)
for any δ > 0, if we allow for approximation factors up to 1.001. Buchin, Ophelders and
Speckmann [7] showed the same conditional lower bound even if we allow for approximation
factors up to 3, and even if the curves are one dimensional.

One approach to circumvent the conditional lower bounds on the Fréchet distance is to
focus on curves that satisfy realistic assumptions. Realistic assumptions reflect the spatial
distribution of curves from real-world data sets [17]. The most popular realistic input
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37:2 Approximating the Fréchet Distance When Only One Curve Is c-Packed

assumption for curves under the Fréchet distance is c-packedness [12]. A curve π ∈ Rd

is c-packed if for all r > 0, the total length of π inside any ball of radius r is upper bounded
by cr.

Driemel, Har-Peled and Wenk [12] introduced the c-packedness assumption and presented
a (1 + ε)-approximation algorithm for the Fréchet distance between a pair of c-packed
curves. Their algorithm runs in O(cn/ε + cn log n) time for curves in Rd. Bringmann and
Künnemann [3] improved the running time of the algorithm to O( cn√

ε
log2(1/ε) + cn log n)

for curves in Rd. Assuming the Strong Exponential Time Hypothesis, Bringmann [2] showed
that (i) for sufficiently small constants ε > 0 there is no (1 + ε)-approximation in time
O((cn)1−δ) for any δ > 0, and (ii) in any dimension d ≥ 5 there is no (1 + ε)-approximation
in time O((cn/

√
ε)1−δ) for any δ > 0.

Existing algorithms [3, 12] for computing the Fréchet distance between c-packed curves
require that both curves are c-packed. An open problem is whether the Fréchet distance
can be approximated efficiently when only one curve is c-packed. This asymmetric case may
occur if the two curves come from two different data sets. For example, in error detection we
may want to match a curve containing errors to a curve close to the ground truth.

▶ Problem 1. Can the Fréchet distance be approximated efficiently if only one of the
two curves is c-packed? In particular, for constant values of ε, d and c, can we obtain a
subquadratic time (1 + ε)-approximation of the Fréchet distance between a c-packed curve and
a general curve in Rd?

We resolve Problem 1 in the affirmative. Our result is an O(c3(n + m) log2d+1(n) log m)
time algorithm that (1 + ε)-approximates the Fréchet distance between a c-packed curve
with n vertices in Rd and a general curve with m vertices in Rd, where ε is a constant. In
other words, to (1 + ε)-approximate the Fréchet distance in nearly-linear time, our result
implies that it suffices to assume that only one of the two curves is c-packed. Our result is
stated formally in Theorem 11. Note that for constant values of d, the running time is also
polynomial in c and ε.

1.1 Related work
By now, the most popular realistic input assumption for curves under the Fréchet distance is
c-packedness. The c-packedness assumption has been applied to a wide variety of Fréchet
distance problems. Typically, these algorithms incur an approximation factor of (1 + ε), and
have a polynomial dependence on ε−1. Chen, Driemel, Guibas, Nguyen and Wenk [8] study
the map matching problem between a c-packed curve and realistic graph, that is, to compute
a path in the graph that is most similar to the c-packed curve. Har-Peled and Raichel [19]
compute the mean curve of a set of c-packed curves. The mean curve is a curve that minimises
its maximum weak Fréchet distance to the set of curves. Driemel and Har-Peled [11] consider
a variant of the Fréchet distance on c-packed curves, where any subcurve of the c-packed curve
can be replaced by a shortcut segment. Brüning, Conradi and Driemel [4] and Gudmundsson,
Huang, van Renssen and Wong [14] study two distinct variants of the subtrajectory clustering
problem on c-packed curves, that is, to detect trajectory patterns by computing clusters
of subcurves. Van der Hoog, Rotenberg and Wong [27] study data structures for c-packed
curves under the discrete Fréchet distance. Conradi, Driemel and Kolbe [9] consider the
approximate nearest neighbour problem for c-packed curves in doubling metrics. Conradi,
Driemel and Kolbe [10] compute the Fréchet distance between c-packed piecewise continuous
smooth curves.
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Given a polygonal curve, the problem of computing its packedness value c has been
considered. Gudmundsson, Sha and Wong [17] provide a 6.001-approximation algorithm that
runs in O(n4/3 log9 n) time for curves in R2. They also provided an implementation for a
2-approximation algorithm that runs in O(n2), and verified that c < 50 for a majority of data
sets that were tested. Har-Peled and Zhou [20] provide a randomised 288.001-approximation
algorithm that runs in O(n log2 n) time and succeeds with high probability.

The c-packedness assumption can be applied to any set of edges, as a result, c-packed
graphs have also been studied. Gudmundsson and Smid [18] study the map matching problem
between a curve with long edges and a c-packed graph with long edges. They consider the
data structure variant, where the graph is known in preprocessing time and the curve is only
known at query time. Gudmundsson, Seybold and Wong [16] generalise the result of [18]
and provide a map matching data structure for any c-packed graph and for any query curve.

1.2 Notation
Let ε > 0 be a positive real number. Without loss of generality, we can assume 0 < ε < 1

2 , as
providing a (1+ε)-approximation for smaller values of ε also provides a (1+ε)-approximation
for larger values of ε.

Let d be a fixed positive integer, and let Rd be d-dimensional Euclidean space. A polygonal
curve P = p1 . . . pn in Rd consists of n vertices {pi}n

i=1 connected by n − 1 straight line
segments {pipi+1}n−1

i=1 , where pi ∈ Rd and pipi+1 ⊂ Rd.
We define c-packedness. Let c be a positive real number. A polygonal curve P in Rd is

c-packed if, for any radius r > 0 and for any ball B(p, r) centred at p ∈ Rd with radius r,
the set of segments in P ∩ B(p, r) has total length upper bounded by cr.

Next, we define the Fréchet distance. Let P = p1 . . . pn. With slight abuse of notation,
define the function P : [1, n] → Rd so that P (i) = pi for all integers i ∈ {1, . . . , n}, and
P (i + x) = (1 − x)pi + xpi+1 for all reals x ∈ [0, 1]. Let Γ(n) be the space of all continuous,
non-decreasing, surjective functions from [0, 1] → [1, n]. For a pair of polygonal curves
P = p1, . . . , pn and Q = q1, . . . , qm, we define the Fréchet distance to be

dF (P, Q) = inf
α∈Γ(n)
β∈Γ(m)

max
µ∈[0,1]

d(P (α(µ)), Q(β(µ)))

where d(·, ·) denotes the Euclidean distance in Rd.

2 Decision algorithm

In this section, we solve the decision version of the Fréchet distance problem. We defer the
optimisation version of the Fréchet distance problem to Section 3. Both the decision and
optimisation versions will incur an approximation factor of (1 + ε).

We formally define the decision version. First we define the exact decision version.
Let r be a positive real number. Let P = p1p2 . . . pn be a c-packed curve in Rd and let
Q = q1q2 . . . qm be a general curve in Rd. Given P , Q and r, the exact decision problem is
to answer whether (i) dF (P, Q) ≤ r or (ii) dF (P, Q) > r, where dF (·, ·) denotes the Fréchet
distance. Unfortunately, in our case, we will not be able to decide between (i) and (ii)
exactly. Therefore, we instead solve the approximate decision version. In the approximate
decision problem, we are additionally allowed a third option, that is (iii) to provide a
(1 + ε)-approximation for dF (P, Q).

ISAAC 2024



37:4 Approximating the Fréchet Distance When Only One Curve Is c-Packed

We will build a decider for the approximate decision version, for any fixed 0 < ε < 1
2 .

Given any P , Q and r, the decider returns either (i), (ii) or (iii). The decider requires
the c-packed curve to be simplified. We will first describe the simplification procedure
(Section 2.1), then we will construct the fuzzy decider (Section 2.2), and finally we will
combine two fuzzy deciders into a complete approximate decider (Section 2.3).

2.1 Simplification
The first step in the decision algorithm is to simplify the c-packed curve P . We will use the
simplification algorithm in Driemel, Har-Peled and Wenk [12].

▶ Fact 2 ([12]). Given µ > 0 and a polygonal curve π = p1p2p3...pk in Rd, we can compute
in O(k) time a simplification simpl(π, µ) with the following properties:
a) for any vertex p ∈ π there exists a vertex q ∈ simpl(π, µ) such that d(p, q) ≤ µ,
b) dF (π, simpl(π, µ)) ≤ µ,
c) all segments in simpl(π, µ) have length at least µ (except the last),
d) if π is c-packed, then simpl(π, µ) is 6c-packed.

Proof. We state Algorithm 2.1 from [12], since we will use it in Section 3.1 to determine the
critical values of our algorithm. Mark the initial vertex p1 and set it as the current vertex.
Scan the polygonal curve from the current vertex until it reaches the first vertex pi that is at
least µ away from the current vertex. Mark pi and set it as the current vertex. Repeat this
until the final vertex, and mark the final vertex. Set the marked vertices to be the simplified
curve, and denote it as simpl(π, µ). See Figure 1. Fact 2a follows from Algorithm 2.1 in [12].
Facts 2b, 2c and 2d follow from Lemma 2.3, Remark 2.2 and Lemma 4.3 in [12]. ◀

start

end

Figure 1 A polygonal trajectory P (blue) and its µ-simplification (red dashed). The vertices
marked with blue squares are on P but not included in the simplification.

2.2 Fuzzy decider
The second step in the decision algorithm is to construct a fuzzy decider. Let ε′ = ε/30.
Given P , Q and r, the fuzzy decision problem is to answer whether (i) dF (P, Q) ≤ (1+ε′/2)r,
or (ii) dF (P, Q) > (1 − 2ε′)r. We call the decision problem fuzzy as there is a fuzzy region
((1 − 2ε′) r, (1 + ε′/2) r] where it would be acceptable to return either (i) or (ii). Note that
unlike the complete approximate decider, for the fuzzy decider, there is no option (iii).
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The overall approach in the fuzzy decider is to approximate the optimal walks along K

and Q, where K is the simplification of P from Fact 2. In particular, our approach is to
guess how far along K we are when we reach vertex qi on Q. We use a layered directed graph
to model the walk along K, where each layer corresponds to the walk reaching qi on Q.

The fuzzy decision algorithm constructs a layered directed graph and searches it for a
suitable walk. We divide the fuzzy decision algorithm into three steps. The first step is to query
a range searching data structure [25] to construct the vertices of the graph (Section 2.2.1).
The second step is to query an approximate Fréchet distance data structure [11] to construct
the directed edges of the graph (Section 2.2.2). The third step is to run a breadth first search
and then to return either (i) or (ii) (Section 2.2.3).

2.2.1 Constructing the vertices
The first step in the fuzzy decider is to construct the vertices of the layered directed graph.
Let δ = ε′/2 = ε/60. Construct the simplification K = simpl(P, δr) using Fact 2. Recall that
layer i corresponds to candidate positions on K when we reach qi on Q. Formally, define
layer i to be Wi = {wi,j}. All points wi,j ∈ Wi satisfy wi,j ∈ K and d(wi,j , qi) ≤ 2r. Note
that wi,j is not necessarily a vertex of P , but rather a point on an edge of K = simpl(P, δr).
To construct Wi, we require the data structure of Schwarzkopf and Vleugels [25], which is a
range searching data structure for low density environments.

▶ Definition 3. A set of objects Σ is k-low density if, for every box H, there are at most k

objects in H that intersect it and are larger than it. The size of an object is the size of its
smallest enclosing box.

▶ Fact 4 (Theorem 3 in [25]). A k-low density environment Σ of n objects in Rd can be
stored in a data structure of size O(n logd−1 n + kn), such that it takes O(logd−1 n + k) time
to report all E ∈ Σ that contains a given query point q ∈ Rd. The data structure can be
computed in O(n logd n + kn log n) time.

We apply Fact 4 to the curve K. In particular, we turn K into a low-environment in Rd+1

by using the trough construction of Gudmundsson, Seybold and Wong [16]. The same trough
construction was also used in [5].

▶ Lemma 5. Let δ > 0 be fixed. Let P be a c-packed curve with n vertices in Rd. Let K =
simpl(P, δr). We can preprocess K into a data structure of O(n logd n + cδ−1n) size, so
that given a query point q ∈ Rd, the data structure can return in O(logd n + cδ−1) time
all O(cδ−1) edges of K that are within a distance of 2r from q. The preprocessing time is
O(n logd+1 n + cδ−1n log n).

Proof. The curve K is 6c-packed by Fact 2d. Next, we generalise the trough construction of
Gudmundsson, Seybold and Wong [16] to (d + 1)-dimensions. We define a trough object in
Rd+1 for every segment e ∈ K by trough(e, δ) = {(x1, . . . , xd, z) : d ((x1, . . . , xd) , e) ≤ 4z ≤
8δ−1|e|}, where d(·, ·) and | · | are measured under the Euclidean metric in Rd. Let T be the
set of all trough objects. By Lemma 23 in [17], T is an O(cδ−1)-low-density environment.
We apply the data structure from Fact 4 on the environment T .

Given a query point q = (x1, . . . , xd), we query the data structure for all troughs that
contain the (d + 1)-dimensional point (x1, . . . , xd, r/2). Suppose the data structure returns
a set of k objects {trough(ei, δ)}k

i=1. Then k = O(cδ−1), since T is an O(cδ−1)-low-density
environment, and q has zero size. From the set of k troughs we extract the set of k edges
{ei}k

i=1.

ISAAC 2024



37:6 Approximating the Fréchet Distance When Only One Curve Is c-Packed

The running times follow from Fact 4 and from T being an O(cδ−1)-low-density environ-
ment. It remains to prove the correctness of the query. Recall the definition of the trough
that (x1, . . . , xd, r/2) ∈ trough(e, δ) if and only if d ((x1, . . . , xd) , e) ≤ 4 · r

2 ≤ 8δ−1|e|. In
particular, d (q, e) ≤ 2r covers all edges in K that intersect a ball of radius 2r centred at q

and 4δ−1|e| ≥ r covers all edges of length at least δr/4. Since K is also (δr)-simplified, all
edges of K (except for the last edge) are at least of length δr by Fact 2c. We can check the
last edge of K separately. ◀

We use Lemma 5 to construct Wi for all 1 ≤ i ≤ m. Recall that Q = q1 . . . qm. Query
the data structure in Lemma 5 to obtain all edges in K = simpl(P, δr) that are within a
distance of 2r from qi. Let this set of edges be Ti. Note that |Ti| = O(cδ−1), since K is
6c-packed and each edge in Ti has length at least δr. For each edge ei,j ∈ Ti, we choose
O(δ−1) evenly spaced points on the chord ei,j ∩ B(qi, 2r), so that the distance between two
consecutive points on the chord is less than δr. We add these evenly spaced points to Wi for
each ei,j ∈ Ti, so that in total, |Wi| = O(cδ−2). See Figure 2.

qi

qi+1

2r

Wi

Wi+1

wi+1,k

wi+1,k′

wi,j

ai,j

bi,j

bi+1,k

ai+1,k

Figure 2 The general curve Q (black), the (δr)-simplification K (blue) and two candidate sets Wi

and Wi+1 (red dots). The coloured arrows indicate the order of vertices on the curve. A candidate
set Wi (red dots) contains evenly spaced points on K chords that are at most a distance 2r away
from qi, i.e., in the violet shading. The point wi,j is on the edge ai,jbi,j and the point wi+1,k is on
the edge ai+1,kbi+1,k.

This completes the construction of Wi for 1 ≤ i ≤ m. Since q1, qm must be matched to
p1, pn respectively, we can simplify the sets W1 = {p1} and Wm = {pn}. The vertices of our
graph are ∪m

i=1Wi, which completes the first step of the construction of the fuzzy decider.

2.2.2 Constructing the edges
The second step in the fuzzy decider is to construct the edges of the layered directed graph.
Each edge in the graph is a directed edge from Wi to Wi+1 for some 1 ≤ i ≤ m − 1. A
directed edge from wi,j ∈ Wi to wi+1,k ∈ Wi+1 models a simultaneous walk, from wi,j to
wi+1,k and from qi to qi+1, on K and Q respectively. We only add this directed edge into
the graph if its associated walk is feasible. To decide whether the walk is feasible, we check
two conditions. The first condition is that wi,j preceeds wi+1,k along the curve K. The
second condition is whether the Fréchet distance between the subcurve K⟨wi,j , wi+1,k⟩ and
the segment qiqi+1 is at most r. See Figure 3. To efficiently check the second condition, we
require the approximate Fréchet distance data structure of Driemel and Har-Peled [11].
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q

qi+1

wi,j

wi+1,k

K〈wi,j, wi+1,k〉

dF

Wi

Wi+1

Figure 3 The Fréchet distance (purple), between a segment (qi, qi+1) (black) and subcurve
K⟨wi,j , wi+1,k⟩ (blue). A candidate set Wi (red dots) contains evenly spaced points on K chords
that are at most a distance 2r away from qi, i.e., in the green shading.

▶ Fact 6 (Theorem 5.9 in [11]). Given δ > 0 and a polygonal curve Z with n vertices in Rd, one
can construct a data structure in O(δ−2d log2(1/δ)n log2 n) time that uses O(δ−2d log2(1/δ)n)
space, such that for a query segment pq, and any two points u and v on the curve, one can
(1 + δ)-approximate the distance dF (Z⟨u, v⟩, pq) in O(δ−2 log n log log n) query time.

We construct the data structure in Fact 6 on the curve K. Let 1 ≤ i ≤ m − 1, wi,j ∈ Wi

and wi+1,k ∈ Wi+1. We query the data structure in Fact 6 to compute a (1+δ)-approximation
of dF (K⟨wi,j , wi+1,k⟩, qiqi+1). If the reported value is at most r, then we insert the directed
edge from wi,j to wi+1,k. We repeat this for all 1 ≤ i ≤ m − 1, wi,j ∈ Wi and wi+1,k ∈ Wi+1.
This completes the construction of the edges in the directed graph, and completes the second
step of the fuzzy decider.

2.2.3 Returning either (i) or (ii)
The third step of the fuzzy decider is to run a breadth first search on the layered directed
graph. Recall that W1 = {p1} and Wm = {pn}. We use the breadth first search to decide
whether there is a directed path from p1 to pn. Recall that ε′ = ε/30 and δ = ε/60.
If there is a directed path, we return (i) dF (P, Q) ≤ (1 + ε′/2)r. Otherwise, we return
(ii) dF (P, Q) > (1 − 2ε′)r. Next, we prove the correctness of the fuzzy decider. We have two
cases.

There is a directed path from p1 to pn in the layered directed graph. Let the directed
path be c1 . . . cm. Then ci ∈ Wi for all 1 ≤ i ≤ m. We match the vertex qi to ci

for all 1 ≤ i ≤ m. We match the segment qiqi+1 to the subcurve K⟨ci, ci+1⟩ for all
1 ≤ i ≤ m − 1. Since there is a directed edge from ci to ci+1, we have that the estimated
Fréchet distance between the segment qiqi+1 and the subcurve dF (K⟨ci, ci+1⟩, qiqi+1) is
at most r. Formally, we have Ci ≤ r, where

dF (K⟨ci, ci+1⟩, qiqi+1) ≤ Ci ≤ (1 + δ) · dF (K⟨ci, ci+1⟩, qiqi+1).

In particular, we have dF (K⟨ci, ci+1⟩, qiqi+1) ≤ r. Taking the maximum over all 1 ≤ i ≤
m − 1, we get

dF (K, Q) ≤ max
i=1,...,m−1

dF (K⟨ci, ci+1⟩, qiqi+1) ≤ r.

ISAAC 2024



37:8 Approximating the Fréchet Distance When Only One Curve Is c-Packed

By Fact 2b, we have dF (P, K) ≤ δr. Since the Fréchet distance obeys the triangle
inequality, we have

dF (P, Q) ≤ dF (P, K) + dF (K, Q) ≤ r + δr ≤ (1 + ε′/2)r.

Therefore, it is correct to return (i) dF (P, Q) ≤ (1 + ε′/2)r in the case where there is a
directed path from p1 to pn.
There is no directed path from p1 to pn in the layered directed graph. Let r∗ = dF (P, Q).
Suppose that for the optimal Fréchet distance between P and Q, we match qi ∈ Q to
p∗

i ∈ P for all 1 ≤ i ≤ m. Therefore d(qi, p∗
i ) ≤ r∗. Let r′ = dF (K, Q). Suppose that

for the optimal Fréchet distance between K and Q, we match qi ∈ Q to k∗
i ∈ K for

all 1 ≤ i ≤ m. Therefore d(qi, k∗
i ) ≤ r′. Since the Fréchet distance obeys the triangle

inequality, we have r′ = dF (K, Q) ≤ dF (P, Q) + dF (K, P ) = r∗ + δr.
Assume for the sake of contradiction that r∗ ≤ (1 − 2ε′)r. Then, we have

r′ ≤ r∗ + δr ≤ (δ + 1 − 2ε′) r < r < 2r.

Therefore, d(qi, k∗
i ) ≤ r′ < 2r. Thus, there exists k∗

i ∈ K that is at most a distance 2r

away from qi and the edge that k∗
i resides on is also at most 2r away from qi. Hence,

Wi is non-empty, and there exists ui ∈ Wi such that ui and k∗
i share the same chord

(edge) in K and dK(ui, k∗
i ) ≤ δr. In particular, there exists ui, vi ∈ Wi where k∗

i is on
the subcurve K⟨ui, vi⟩, so that dK(ui, k∗

i ) ≤ δr, dK(vi, k∗
i ) ≤ δr, and dK(ui, vi) ≤ δr.

See Figure 4.

ui

k∗

i

vi

ui+1

k∗

i+1

vi+1

qi

qi+1

K

Figure 4 The point k∗
i marked with a green cross, and its immediate neighbour points ui and

vi, marked with blue dots. Note that k∗
i is on the subcurve K⟨ui, vi⟩, so that dK(ui, k∗

i ) ≤ δr,
dK(vi, k∗

i ) ≤ δr, and dK(ui, vi) ≤ δr.

Consider r′
i = dF (K⟨ui, ui+1⟩, qiqi+1) when qi ∈ Q is matched to ui ∈ Wi ⊂ K and

qi+1 ∈ Q is matched to ui+1 ∈ Wi+1 ⊂ K. Then

r′
i ≤ dF (K⟨k∗

i , k∗
i+1⟩, qiqi+1) + dF (K⟨k∗

i , k∗
i+1⟩, K⟨ui, ui+1⟩)

≤ r′ + dF (K⟨k∗
i , k∗

i+1⟩, K⟨ui, ui+1⟩)
≤ r′ + dF (k∗

i ◦ K⟨k∗
i , ui+1⟩ ◦ ui+1k∗

i+1, uik
∗
i ◦ K⟨k∗

i , ui+1⟩ ◦ ui+1)
≤ r′ + max

{
dF (k∗

i , uik
∗
i ), dF (K⟨k∗

i , ui+1⟩, K⟨k∗
i , ui+1⟩), dF (ui+1k∗

i+1, ui+1)
}

≤ r′ + max
{

dK(k∗
i , ui), 0, dK(k∗

i+1, ui+1)
}

≤ r′ + max {δr, 0, δr}
≤ r′ + δr

where ◦ denotes the concatenation of polygonal curves. Therefore,

r′
i ≤ r′ + δr ≤ (δ + 1 − 2ε′ + δ) r = (2δ + 1 − 2ε′) r ≤ (1 − ε′) r.
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Let Ci be the (1 + δ)-approximation of dF (K⟨ui, ui+1⟩, qiqi+1) returned by the data
structure in Fact 6. Then, r′

i ≤ Ci ≤ (1 + δ)r′
i. Therefore, Ci ≤ (1 + δ)r′

i < (1 + ε′)r′
i ≤

(1 + ε′)(1 − ε′)r < r for all 1 ≤ i ≤ m. Hence, there is a directed edge from ui to ui+1 in
the layered directed graph, for all 1 ≤ i ≤ m−1. In particular, u1 . . . um is a directed path
from p1 to pn, which is a contradiction. We conclude that our assumption r∗ ≤ (1 − 2ε′)r
cannot hold, and it is correct to return r∗ > (1 − 2ε′)r in the case where there is no
directed path from p1 to pn.

We obtain the following theorem.

▶ Theorem 7 (Fuzzy decider). Given a positive real number r, 0 < ε < 1
2 , and a c-

packed curve P with n vertices in Rd, one can construct a data structure in O(n logd+1 n +
cε−1n log n + ε−2d log2(1/ε)n log2 n) time that uses O(n logd n + cε−1n + ε−2d log2(1/ε)n)
space, so that given a query curve Q with m vertices, the data structure returns in O(logd n +
mc2ε−6 log n log log n) query time either (i) dF (P, Q) ≤ (1 + ε′/2)r or (ii) dF (P, Q) >

(1 − 2ε′)r.

Proof. First, we summarise the preprocessing procedure. Let δ = ε/60. We use Fact 2
to construct the simplification K = simpl(P, δr). We use Lemma 5 to construct a range
searching data structure on K, and we use Fact 6 to construct an approximate distance
data structure on K. Next, we summarise the query procedure. We query Lemma 5 to
construct Wi for 1 ≤ i ≤ m, we query Fact 6 to construct the edges between Wi and Wi+1
for 1 ≤ i ≤ m − 1, and finally we run a breadth first search. We argued correctness in
Section 2.2.3. It remains to analyse preprocessing time, space, and query time.

The preprocessing time of Fact 2, Lemma 5 and Fact 6 is O(n logd+1 n + cδ−1n log n +
δ−2d log2(1/δ)n log2 n). The space of the data structures in Lemma 5 and Fact 6 is O(n logd n+
cδ−1n + δ−2d log2(1/δ)n). Substituting δ−1 = O(ε−1) yields the stated preprocessing time
and space.

We analyse the query time. Constructing the set Wi for all 1 ≤ i ≤ m takes O(m(logd n +
cδ−2)) time, since using Lemma 5 to query the set of edges close to qi takes O(logd n + cδ−1)
time, and constructing evenly spaced points takes O(cδ−2) time. Since |Wi| = O(cδ−2), the
number of pairs ∪m−1

i=1 (Wi × Wi+1) is O(mc2δ−4). Querying Fact 6 to decide whether there
is a directed edge takes O(δ−2 log n log log n) time per pair. In total, constructing the edges
in the layered directed graph takes O(mc2δ−6 log n log log n) time. Running breadth first
search takes O(mc2δ−4) time. The total query time is O(logd n + c2δ−6m log n log log n).
Substituting δ−1 = O(ε−1) yields the stated query time. ◀

2.3 Complete approximate decider
The third step in the decision algorithm is to use the fuzzy decider to construct a complete
approximate decider. Recall that, given ε, P , Q and r, the complete approximate decider
returns either (i) dF (P, Q) ≤ r, (ii) dF (P, Q) > r, or (iii) a (1 + ε)-approximation for
dF (P, Q).

▶ Theorem 8 (Complete approximate decider). Given a positive real number r, 0 < ε < 1
2 , and

a c-packed curve P with n vertices in Rd, one can construct a data structure in O(n logd+1 n+
cε−1n log n + ε−2d log2(1/ε)n log2 n) time that uses O(n logd n + cε−1n + ε−2d log2(1/ε)n)
space, so that given a query curve Q with m vertices in Rd, the data structure returns in
O(logd n + mc2ε−6 log n log log n) query time either (i) dF (P, Q) ≤ r, (ii) dF (P, Q) > r, or
(iii) a (1 + ε)-approximation for dF (P, Q).
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Proof. Let r1 = 1
1+ε′/2 r and r2 = 1

1−2ε′ r, where ε′ = ε/30. First, given r1, ε, and P ,
construct the data structure in Theorem 7, and query the data structure on Q. Second, given
r2, ε, and P , construct the data structure in Theorem 7, and query the data structure on Q.
If the first query returns (i), we return (i). If both the first and second queries return (ii),
we return (ii). Otherwise, if the first query returns (ii) and the second query returns (i), we
return (iii). We prove correctness in three cases.

The first query returns (i). Then by Theorem 7, dF (P, Q) ≤ (1 + ε′/2)r1 = r, so
returning (i) in the complete approximate decider is correct.
Both the first and second queries return (ii). Then by Theorem 7, dF (P, Q) > (1−2ε′)r2 =
r, so returning (ii) in the complete approximate decider is correct.
The first query returns (ii) and the second query returns (i). The first query implies
dF (P, Q) > (1 − 2ε′) · r1 = (1 − 2ε′) · 1

1+ε′/2 · r. The second query implies dF (P, Q) ≤
(1 + ε′/2) · r1 = (1 + ε′/2) · 1

1−2ε′ · r. Putting these together, we have

dF (P, Q) ∈
(

1 − 2ε′

1 + ε′/2r,
1 + ε′/2
1 − 2ε′ r

]
.

Note that
1+ε′/2
1−2ε′ r
1−2ε′

1+ε′/2 r
=

(
1 + ε′/2
1 − 2ε′

)2
< ((1 + ε′/2)(1 + 4ε′))2

< (1 + 6ε′)2 < 1 + 30ε′ = 1 + ε.

Hence, 1−2ε′

1+ε′/2 r is a (1 + ε)-approximation of dF (P, Q), so returning (iii) in the complete
approximate decider is correct.

Finally, the preprocessing time, space, and query time follow from Theorem 7. ◀

This completes the decision version of the approximate Fréchet distance problem. Next,
we consider the optimisation version of the approximate Fréchet distance problem.

3 Optimisation algorithm

In Section 3.1, we apply a binary search to compute the optimal simplification. In Section 3.2,
we apply parametric search to compute the Fréchet distance. In both steps, we use the
complete approximate decider in Theorem 8, which incurs an approximation factor of (1 + ε).

3.1 Approximating the optimal simplification
First, we provide an algorithm to compute the optimal simplification of P . In particular,
the optimal simplification is K∗ = simpl(P, δr∗), where δ = ε/60 and r∗ = dF (P, Q). Our
approach is to search over the critical values of the µ-simplification algorithm in Fact 2. A
critical value of the µ-simplification algorithm is a value of µ where the simplification changes.
Define the set of pairwise distances of P to be L(P ) = {d(pi, pj) : 1 ≤ i < j ≤ n}. We can
observe that the set of pairwise distances L breaks up the positive real line into

(
n
2
)

+ 1
intervals, such that within each interval the µ-simplification does not change. This observation
follows from the algorithm in Fact 2, and the same observation is made in Section 3.3.3 in [12].
Unfortunately, |L| = O(n2). To overcome this, we use approximate distance selection.

▶ Fact 9 (Lemma 3.9 in [12]). Given a set P of n points in Rd, one can compute in O(n log n)
time a set Z of O(n) numbers, such that for any y ∈ L(P ), there exists numbers x, x′ ∈ Z

such that x ≤ y ≤ x′ ≤ 2x.
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We can refine Fact 9 to obtain Corollary 10. We replace the 8-WSPD in Lemma 3.9
of [12] with an 8/ε-WSPD.

▶ Corollary 10. Given a set P of n points in Rd, one can compute in O(n/εd + n log n) time
a set Z of O(n/εd) numbers, such that for any y ∈ L(P ), there exists numbers x, x′ ∈ Z such
that x ≤ y ≤ x′ ≤ (1 + ε)x.

Next, we perform binary search on the set Z in Corollary 10. In particular, for x ∈ Z, we
decide whether δr∗ < x or δr∗ > x by running the complete approximate decider in Theorem 8
on r = x/δ, δ = ε/60, P and Q. After O(log n) applications of the complete approximate
decider, we obtain δr∗ ∈ [x, x′] for a consecutive pair of elements x, x′ ∈ Z. We have two cases.
In the first case, we compute the optimal simplification of P , that is, K∗ = simpl(P, δr∗). In
the second case, we compute a (1 + ε)-approximation of r∗ = dF (P, Q).

If x′ > (1 + ε)x. By the contrapositive of Corollary 10, there is no y ∈ L(P ) ∩ [x, x′]. In
other words, within the interval [x, x′] the simplification of P does not change. Therefore,
K∗ = simpl(P, x) = simpl(P, δr∗).
If x′ ≤ (1 + ε)x. Therefore, x′/δ is a (1 + ε)-approximation of r∗ = dF (P, Q), as required.

Therefore, we can compute K∗ = simpl(P, δr∗), as otherwise we would have a (1 + ε)-
approximation of r∗. The running time is dominated by the O(log n) applications of the
complete approximate decider.

3.2 Approximating the Fréchet distance
From Section 3.1, we computed the simplification K∗ = simpl(P, δr∗). Let r∗

1 =
1

1+ε′/2 r∗, r∗
2 = 1

1−2ε′ r∗. We can use the same procedure to compute the simplifica-
tions K∗

1 = simpl(P, δr∗
1) and K∗

2 = simpl(P, δr∗
2). If K∗

1 ≠ K∗, then there must be an
element x ∈ Z in the interval [δr∗

1 , δr∗], so x/δ would be a (1 + ε)-approxmation of r∗.
Therefore, K∗ = K∗

1 , and similarly, K∗ = K∗
2 .

We proceed with parametric search. Note that in Section 3.1, we did not apply parametric
search to compute K∗ due to efficiency reasons. It is not straightforward to parallelise Fact 2,
moreover, since the simplification K∗ = K∗

1 = K∗
2 does not change during the execution

of the parametric search, we can avoid reconstructing the data structures in Lemma 5 and
Fact 6. We obtain the following theorem.

▶ Theorem 11. Given ε > 0, a c-packed curve P in Rd, and a general curve Q in Rd, one
can compute a (1 + ε)-approximation of dF (P, Q) in O(TsTp log m) time, where

Ts = n logd+1 n + cε−1n log n + ε−2d log2(1/ε)n log2 n + mc2ε−6 log n log log n,

Tp = logd n + cε−1 + ε−2 log n log log n.

Proof. First, we summarise the preprocessing procedure. We compute the simplification
K∗ = simpl(P, δr∗) using the procedure described in Section 3.1. We build the data structures
in Lemma 5 and Fact 6 on the simplified curve K∗.

Second, we summarise the query procedure. Here, we use parametric search. We use
the algorithm in Theorem 8 as both the decision algorithm and the simulated algorithm.
We describe the simulated algorithm. Let r be the search parameter. Let r1 = 1

1+ε′/2 r

and r2 = 1
1−2ε′ r. We simulate the complete approximate decider by simulating the fuzzy

decider in Theorem 7 on r1 and r2. We divide the simulation of the fuzzy decider on r1 into
three steps. First, we compute Wi by querying the data structure in Lemma 5. We use
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parametric search and the decision algorithm (Theorem 8) to resolve the critical values in
the query. Second, we compute the directed edges from Wi to Wi+1 by querying the data
structure in Fact 6. We apply parametric search in the same way. Third, we run a breadth
first search on the layered directed graph. There are no critical values in this step, so we do
not need to apply parametric search. We repeat the simulation of the fuzzy decider on r2.
Finally, by parametric search, we return the optimal value r∗.

Third, we argue correctness. If Theorem 8 returns (iii) at any point, we obtain a (1 + ε)-
approximation of r∗, and we are done. If Theorem 8 never returns (iii) at any point, we will
show that the decision algorithm and the simulated algorithm are both correct. The decision
algorithm is correct since we either return r∗ ≤ r or r∗ > r. We show the preprocessing
and query procedures of the simulated algorithm are correct. In particular, we will show
that we correctly simulate the execution of Theorem 8 as though r = r∗. The preprocessing
procedure is correct, since K∗ = K∗

1 = K∗
2 , so our data structures are correct for r∗

1 and r∗
2 .

The query procedure is correct, since we can use the correct decision algorithm to resolve
all critical values, and simulate the correct execution path as though r = r∗. Moreover,
Theorem 8 (without (iii)) acts discontinuously at r = r∗, so r∗ is a critical value of the
simulated algorithm. Therefore, parametric search is able to locate r∗ and return it.

Fourth, we analyse the running time. The preprocessing time is dominated by O(log n)
calls to Theorem 8. The query time is dominated by parametric search. The running time of
parametric search is O(PpTp + TpTs log Pp), where Ts is the sequential running time of the
decision algorithm, Pp is the number of processors used in the simulated algorithm, and Tp

is the number of parallel steps used by the simulated algorithm. The sequential running
time is Ts = O(n logd+1 n + cε−1n log n + ε−2d log2(1/ε)n log2 n + mc2ε−6 log n log log n) by
Theorem 8. The simulated algorithm can be efficiently parallelised. In particular, the
simulated algorithm computes Wi by querying Lemma 5, and computes the directed edges
from Wi to Wi+1 by querying Lemma 6; these can be queried in parallel for all 1 ≤ i ≤ m.
Given Pp = m processors, we can perform all of these queries in in Tp = O(logd n + cδ−1 +
δ−2 log n log log n) parallel steps. The overall running time is dominated by O(TsTp log m),
which the stated running time. ◀

We can simplify the running time if ε is constant.

▶ Corollary 12. Given a constant ε > 0, a c-packed curve P with n vertices in Rd, and a
general curve Q with m vertices in Rd, one can (1 + ε)-approximate dF (P, Q) in O(c3(n +
m) log2d+1(n) log m) time.

4 Conclusion

In this paper, we provide an O(c3(n + m) log2d+1(n) log m) time algorithm to (1 + ε)-
approximate the Fréchet distance between two curves in Rd, in the case when only one curve
is c-packed and ε is constant. The running time is nearly-linear if c and d are also constant.
An open problem is whether the running time can be improved, in particular, whether the
dependence on ε, c, d, log n or log m can be reduced. Another open problem is whether we
can obtain results for related problems when only one of the two curves is c-packed. Yet
another open problem is whether similar results can be obtained for other realistic input
curves. In particular, can the Fréchet distance be (1 + ε)-approximated in subquadratic time
when only one of the curves is κ-bounded, or when only one of the curves is ϕ-low density?
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