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Abstract
Given a graph G and two spanning trees T and T ′ in G, Spanning Tree Reconfiguration
asks whether there is a step-by-step transformation from T to T ′ such that all intermediates are
also spanning trees of G, by exchanging an edge in T with an edge outside T at a single step.
This problem is naturally related to matroid theory, which shows that there always exists such
a transformation for any pair of T and T ′. Motivated by this example, we study the problem of
transforming a sequence of spanning trees into another sequence of spanning trees. We formulate
this problem in the language of matroid theory: Given two sequences of bases of matroids, the goal
is to decide whether there is a transformation between these sequences. We design a polynomial-time
algorithm for this problem, even if the matroids are given as basis oracles. To complement this
algorithmic result, we show that the problem of finding a shortest transformation is NP-hard to
approximate within a factor of c log n for some constant c > 0, where n is the total size of the ground
sets of the input matroids.
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1 Introduction

In reconfiguration problems (see [8, 15] for introductory material), given two (feasible)
configurations in a certain system, the objective is to determine whether there exists a step-
by-step transformation between these configurations such that all intermediate configurations
are also feasible. Among numerous reconfiguration problems studied in the literature, one
of the first problems explicitly recognized as a reconfiguration problem is Spanning Tree
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38:2 Basis Sequence Reconfiguration in the Union of Matroids

Reconfiguration. In this problem, given two spanning trees T, T ′ in a (multi)graph G, one
is asked to find a transformation from one spanning tree T into the other spanning tree T ′ by
repeatedly exchanging a single edge (i.e., T−e+f for an edge e ∈ E(T ) and f ∈ E(G)\E(T )),
such that all intermediates are also spanning trees in G. Ito et al. [9]1 observed that one
can always find such a transformation with exactly |E(T ) \E(T ′)| exchanges by exploiting a
well-known property of matroids.

Let E be a finite set and let B ⊆ 2E be a nonempty collection of subsets of E that
satisfies the following basis exchange axiom: for distinct B, B′ ∈ B and x ∈ B \ B′, there
is y ∈ B′ \ B satisfying B − x + y ∈ B. Then, the pair M = (E,B) is called a matroid,
and each set in B is called a basis of M . For a connected graph G with edge set E(G), let
T be the collection of all edge subsets, each of which induces a spanning tree in G. Then
it is well known that T satisfies the basis exchange axiom: for each e ∈ E(T ) \ E(T ′),
there is an edge f ∈ E(T ′) \ E(T ) such that T − e + f is a spanning tree of G. Hence,
the pair (E(G), T ) is a matroid, called a graphic matroid. This also allows us to find a
transformation of |E(T ) \E(T ′)| exchanges for Spanning Tree Reconfiguration. Since
every transformation between T and T ′ requires at least |E(T ) \ E(T ′)| exchanges, this is a
shortest one among all transformations.

In this paper, we address a natural extension of Spanning Tree Reconfiguration. Let
G be a (multi)graph. We say that a sequence of k spanning trees (T1, . . . , Tk) of G is feasible
if the spanning trees are edge-disjoint. A pair of two feasible sequences of spanning trees
T = (T1, . . . , Tk) and T′ = (T ′

1, . . . , T ′
k) is said to be adjacent if there is an index 1 ≤ i ≤ k

such that Tj = T ′
j for 1 ≤ j ≤ k with i ≠ j and T ′

i = Ti − e + f for some e ∈ E(Ti) and
f ∈ E(G) \ E(Ti). Given two feasible sequences of k spanning trees T = (T1, . . . , Tk) and
T′ = (T ′

1, . . . , T ′
k) of a graph G = (V, E), Spanning Tree Sequence Reconfiguration

asks whether there are feasible sequences T0, . . . ,Tℓ such that T0 = T, Tℓ = T′, and Ti−1
and Ti are adjacent for all 1 ≤ i ≤ ℓ. This type of problem naturally extends conventional
reconfiguration problems by enabling a “simultaneous transformation” of multiple mutually
exclusive solutions.

To address Spanning Tree Sequence Reconfiguration, we consider a more general
problem, called Basis Sequence Reconfiguration. Let M = (M1, . . . , Mk) be a sequence
of matroids, where Mi = (Ei,Bi) for 1 ≤ i ≤ k. Let us note that Ei and Ej may not be
disjoint for distinct i and j. A basis sequence of M is a sequence B = (B1, . . . , Bk) such that
Bi is a basis of Mi (i.e., Bi ∈ Bi). A basis sequence B = (B1, . . . , Bk) is said to be feasible
for M if Bi ∩Bj = ∅ for 1 ≤ i < j ≤ k. A pair of feasible basis sequences B = (B1, . . . , Bk)
and B′ = (B′

1, . . . , B′
k) is said to be adjacent if there is an index 1 ≤ i ≤ k such that Bj = B′

j

for 1 ≤ j ≤ k with i ̸= j and B′
i = Bi − x + y for some x ∈ Bi and y ∈ Ei \Bi. A feasible

basis sequence B is reconfigurable to a feasible basis sequence B′ if there are feasible basis
sequences B0, . . . ,Bℓ of M such that B0 = B, Bℓ = B′, and Bi−1 and Bi are adjacent for all
1 ≤ i ≤ ℓ. We refer to such a sequence ⟨B0, . . . ,Bℓ⟩ as a reconfiguration sequence between B
and B′. Our problem is formally defined as follows.

Basis Sequence Reconfiguration
Input: A tuple M = (M1, . . . , Mk) of k matroids and feasible basis sequences B =

(B1, . . . , Bk) and B′ = (B′
1, . . . , B′

k).
Question: Determine if B is reconfigurable to B′.

1 More specifically, they considered a weighted version of this problem.
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(a) (b)

Figure 1 The figure illustrates an instance in which a pair of edge-disjoint spanning trees (a)
cannot be transformed into the other pair (b), where the spanning trees are indicated by dashed
blue lines and solid red lines.

Note that if Mi = (E(G), T ) for every i, B = T, and B′ = T′, Basis Sequence
Reconfiguration is equivalent to Spanning Tree Sequence Reconfiguration.

We also consider an optimization variant of Basis Sequence Reconfiguration:
Given an instance of Basis Sequence Reconfiguration, the goal is to find a shortest
reconfiguration sequence between B and B′. We refer to this problem as Shortest Basis
Sequence Reconfiguration.

We investigate the computational complexity of Basis Sequence Reconfiguration.
In this paper, matroids are sometimes given as basis oracles, that is, given a set X ⊆ E of a
matroid M = (E,B), the basis oracle (of M) returns true if and only if X ∈ B. In such a
case, we can access B through this oracle and assume that the basis oracle can be evaluated
in polynomial in |E|. Our main contribution is as follows.

▶ Theorem 1. Basis Sequence Reconfiguration can be solved in polynomial time,
assuming that the input matroids are given as basis oracles. Moreover, if the answer is
affirmative, we can compute a reconfiguration sequence between given two feasible basis
sequences in polynomial time as well.

This result nontrivially generalizes the previous result of [9]. It would be worth mentioning
that, in contrast to Spanning Tree Reconfiguration, our problem Spanning Tree
Sequence Reconfiguration has infinitely many no-instances (see Figure 1 for an example).

A natural extension of Basis Sequence Reconfiguration is to find a shortest recon-
figuration sequence. Unfortunately, we show that it is hard to find it in polynomial time,
even for approximately shortest reconfiguration sequences.

▶ Theorem 2. Shortest Basis Sequence Reconfiguration is NP-hard even if the
input sequence M consists of two partition matroids. Furthermore, unless P = NP, Shortest
Basis Sequence Reconfiguration cannot be approximated in polynomial time within a
factor of c log n for some constant c > 0, where n is the total size of the ground sets of the
input matroids.

Related work

Due to the property of “one-by-one exchange” in combinatorial reconfiguration, various
reconfiguration problems are naturally related to matroids [1, 5, 9, 11, 12, 13]. As mentioned
above, Ito et al. [9] studied Spanning Tree Reconfiguration and showed that every
spanning tree can be transformed into any other spanning tree in a graph. Given this fact,
Ito et al. [12] further considered a directed analogue of this problem, in which the objective
is to determine whether two arborescences (i.e., directed spanning trees) in a directed graph
are transformed into each other. Contrary to the undirected counterpart, for a (weakly)
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38:4 Basis Sequence Reconfiguration in the Union of Matroids

connected directed graph D = (V, A), the pair (A,F) is not a matroid in general, where
F denotes the family of arc sets F ⊆ A, each of which forms an arborescence of D, while
it is the collection of common bases of two matroids, i.e., F = B1 ∩ B2 for some matroids
(A,B1) and (A,B2). They still showed that every arborescence can be transformed into any
other arborescence in a directed graph. As a generalization of [12], Kobayashi, Mahara, and
Schwarcz [13] studied the reconfiguration problem of (not the sequence of but) the union
of disjoint arborescences. Namely, in their setting, a feasible solution is the union

⋃k
i=1 Fi

of disjoint arborescences F1, F2, . . . , Fk, and two feasible solutions
⋃k

i=1 Fi and
⋃k

i=1 F ′
i are

adjacent if and only if there are x ∈
⋃k

i=1 Fi \
⋃k

i=1 F ′
i and y ∈

⋃k
i=1 F ′

i \
⋃k

i=1 Fi such that⋃k
i=1 Fi − x + y =

⋃k
i=1 F ′

i . We note that even if two feasible solutions
⋃k

i=1 Fi and
⋃k

i=1 F ′
i

are adjacent in the sense of [13], the corresponding tuples (F1, F2, . . . , Fk) and (F ′
1, F ′

2, . . . , F ′
k)

may not be adjacent in our sense. It is worth mentioning that the reconfiguration problem
of the union of disjoint bases is trivially solvable, since it is just the reconfiguration problem
of bases of the union of matroids; see Section 2 for the definition of the matroid union. For
other reconfiguration problems related to (common bases of) matroids, see [5, 12].

Our work is highly related to a recent work of Bérczi, Mátravölgyi, and Schwarcz [1].
They considered the symmetric exchange version of our problem, where two (not necessarily
feasible) basis sequences B = (B1, . . . , Bk) and B′ = (B′

1, . . . , B′
k) are adjacent if there are

x ∈ Bi \Bj and y ∈ Bj \Bi such that

B′ = (B1, . . . , Bi−1, Bi − x + y, Bi+1, . . . , Bj−1, Bj − y + x, Bj+1, . . . , Bk).

This reconfiguration problem has received considerable attention as its reconfigurability is
essentially equivalent to White’s conjecture [20]. (See [1] for a comprehensive overview of
White’s conjecture.) In particular, the conjecture states that for any pair of two feasible
basis sequences B = (B1, . . . , Bk) and B′ = (B′

1, . . . , B′
k), B is reconfigurable to B′ (by

symmetric exchanges) if and only if
⋃k

i=1 Bi =
⋃k

i=1 B′
i. The conjecture is confirmed for

graphic matroids [2, 6], which means that for every pair of sequences of edge-disjoint k

spanning trees (T1, . . . , Tk) and (T ′
1, . . . , T ′

k) in a graph, one is reconfigurable to the other by
symmetric exchanges if

⋃k
i=1 E(Ti) =

⋃k
i=1 E(T ′

i ). This is in contrast to our setting, having
an impossible case as seen in Figure 1.

We would like to emphasize that our setting is also quite natural as it can be seen as a
reconfiguration problem in the token jumping model, which is best studied in the context
of combinatorial reconfiguration [8, 15]. In particular, our problem can be regarded as a
reconfiguration problem for multiple solutions. One of the most well-studied problems in this
context is Coloring Reconfiguration [3, 4, 7], which can be seen as a multiple solution
variant of Independent Set Reconfiguration. There are several results working on recon-
figuration problems for multiple solutions, such as Disjoint Paths Reconfiguration [10]
and Disjoint Shortest Paths Reconfiguration [18].

2 Preliminaries

For a positive integer n, let [n] := {1, 2, . . . , n}. For integers p and q with p ≤ q, let
[p, q] := {p, p + 1, . . . , q − 1, q}. For sets X and Y , the symmetric difference of X and Y is
defined as X △ Y := (X \ Y ) ∪ (Y \X).

Let E be a finite set and let B ⊆ 2E be a nonempty collection of subsets of E. We
say that M = (E,B) is a matroid if for B, B′ ∈ B and x ∈ B \ B′, there is y ∈ B′ \ B

satisfying (B \ {x}) ∪ {y} ∈ B. For notational convenience, we may write B − x + y instead
of (B \ {x})∪ {y}. Each set in B is called a basis of M . It is easy to verify that each basis of
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M has the same cardinality, which is called the rank of M . In this paper, we may assume
that, unless explicitly stated otherwise, matroids are given as basis oracles. In this model, we
can access a matroid M = (E,B) through an oracle that decides whether X ∈ B for given
X ⊆ E.2 We also assume that we can evaluate this query in time |E|O(1).

Let M1 = (E1,B1), . . . , Mk = (Ek,Bk) be k matroids and let M = (M1, . . . , Mk). For
i ∈ [k], let Bi be a basis of Mi. A tuple B = (B1, . . . , Bk) of bases is called a basis sequence
of M. Since Ei and Ej may have an intersection for distinct i and j, Bi and Bj are not
necessarily disjoint. We say that B is feasible if Bi ∩ Bj = ∅ for distinct i, j ∈ [k]. For
two feasible basis sequences B = (B1, . . . , Bk) and B′ = (B′

1, . . . , B′
k) of M, we say that

B is adjacent to B′ if there is an index i ∈ [k] such that Bj = B′
j for j ∈ [k] \ {i} and

B′
i = Bi − x + y for some x ∈ Bi and y ∈ Ei \Bi. A reconfiguration sequence between B and

B′ is a tuple of feasible basis sequences ⟨B0,B1, . . . ,Bℓ⟩ such that B0 = B, Bℓ = B′, and Bi−1
and Bi are adjacent for all i ∈ [ℓ]. The length of the reconfiguration sequence is defined as ℓ.

Let M = (E,B) be a matroid. The dual of M is a pair M∗ = (E, {E \ B | B ∈ B}),
which also forms a matroid [16]. A coloop of a matroid M is an element e ∈ E that belongs
to all the bases of M , that is, e ∈ B for all B ∈ B. Let M = (E,B) and M ′ = (E′,B′) be
matroids and let B∗ be the family of maximal sets in {B ∪B′ | B ∈ B, B′ ∈ B′}. Then, the
pair (E ∪ E′,B∗) is the matroid union of M and M ′, which is denoted M ∨M ′. It is well
known that M ∨M ′ is also a matroid [16]. We can generalize this definition for more than
two matroids: For k matroids M1, . . . , Mk, the matroid union of M1, . . . , Mk is denoted by∨k

i=1 Mi. If the ground sets E and E′ of M and M ′ are disjoint, then M ∨M ′ is called the
direct sum of M and M ′, and we write M ⊕M ′ instead of M ∨M ′.

In our proofs, we use certain matroids. Let E be a finite set. For an integer r with
0 ≤ r ≤ |E|, the rank-r uniform matroid on E is the pair (E, {B ⊆ E | |B| = r}), that is,
the set of bases consists of all size-r subsets of E. Let {E1, . . . , Ek} be a partition of E (i.e.,
E =

⋃k
i=1 Ei and Ei ∩ Ej = ∅ for distinct i, j ∈ [k]). For each i ∈ [k], we set ri as an integer

with 0 ≤ ri ≤ |Ei|. If B ⊆ 2E consists of the sets B satisfying |B ∩Ei| = ri for each i ∈ [k],
then the pair (E,B) forms a matroid, called the partition matroid. We can construct such a
partition matroid by taking the direct sum of the rank-ri uniform matroids on Ei for i.

Let D = (V, A) be a directed graph. For an arc a ∈ A, we write head(a) to denote the
head of e and tail(a) to denote the tail of e. A matching of D is a set N ⊆ A of arcs such
that no pair of arcs in N share a vertex. A walk in D is a sequence (v0, a1, v1, a2, . . . , aℓ, vℓ)
such that tail(ai) = vi−1 and head(ai) = vi for all i ∈ [ℓ]. When no confusion is possible, we
may identify the directed graph with its arc set.

3 Polynomial-time algorithm

This section is devoted to a polynomial-time algorithm for Basis Sequence Reconfigu-
ration, implying Theorem 1. Let M1 = (E1,B1), M2 = (E2,B2), . . . , Mk = (Ek,Bk) be k

matroids that are given as basis oracles. We denote by M = (M1, M2, . . . , Mk) the tuple of
matroids M1, . . . , Mk.

Let B = (B1, . . . , Bk) and B′ = (B′
1, . . . , B′

k) be two feasible basis sequences of M. Take
any coloop x of the matroid union

∨k
i=1 Mi. Since all bases in B are mutually disjoint,⋃k

i=1 Bi is a basis of
∨k

i=1 Mi. This implies that x ∈ Bi for some i. Suppose that there
is a feasible basis sequence (B1, . . . , Bi−1, Bi − x + y, Bi+1, . . . , Bk) of M obtained from B

2 Our algorithm also runs in polynomial time even when the input matroids are given as independence or
rank oracles.

ISAAC 2024



38:6 Basis Sequence Reconfiguration in the Union of Matroids

by exchanging x ∈ Bi with y ∈ Ei \ Bi in Mi. As it is feasible,
⋃k

i=1 Bi − x + y is also a
basis of

∨k
i=1 Mi, contradicting the fact that x is a coloop. This implies that every coloop

in
∨k

i=1 Mi belongs to a basis in a feasible basis sequence that is reconfigurable from B.
More formally, let K denote the set of coloops in

∨k
i=1 Mi. If B is reconfigurable to B′, we

have (K ∩B1, . . . , K ∩Bk) = (K ∩B′
1, . . . , K ∩B′

k). The following theorem says that this
necessary condition is also sufficient.

▶ Theorem 3. Let K be the set of coloops of
∨k

i=1 Mi. For feasible basis sequences B =
(B1, . . . , Bk) and B′ = (B′

1, . . . , B′
k) of M, one is reconfigurable to the other if and only if

(K ∩B1, . . . , K ∩Bk) = (K ∩B′
1, . . . , K ∩B′

k).

The proof of Theorem 3 is given in Section 3.2 below. Before the proof, we introduce the
concept of exchangeability graphs and present its properties in Section 3.1.

3.1 Exchangeability graph
For a matroid M = (E,B) and a basis B ∈ B, the exchangeability graph of M with respect
to B, denoted as D(M, B), is a directed graph whose vertex set is the ground set E of M

and whose arc set A is

A := {(x, y) | x ∈ B and y ∈ E \B such that B − x + y ∈ B}.

Note that D(M, B) is bipartite; all arcs go from B to E \B.
Let N = {(x1, y1), (x2, y2), . . . , (xn, yn)} ⊆ A be a matching of D(M, B) and let B△N :=

B \{x1, x2, . . . , xn}∪{y1, y2, . . . , yn}. We say that N is unique if there is no perfect matching
N ′ other than N in the subgraph of D(M, B) induced by {x1, . . . , xn, y1, . . . , yn}. The
following is a well-known lemma in matroid theory, called the unique-matching lemma.

▶ Lemma 4 (e.g., [14, Lemma 2.3.18]). If N = {(x1, y1), (x2, y2), . . . , (xn, yn)} is a unique
matching in the subgraph of D(M, B) induced by {x1, . . . , xn, y1, . . . , yn}, then B △N ∈ B.

The exchangeability graph of M with respect to B, denoted as D(M,B), is the union of
the exchangeability graphs D(Mi, Bi) = (Ei, Ai) of Mi with respect to Bi for all i ∈ [k]. In
the following, the vertex set of D(M,B) is denoted by E, that is, E =

⋃k
i=1 Ei. We note

that, for distinct i, j ∈ [k], the two arc sets Ai and Aj are disjoint, since Bi ∩Bj = ∅. A walk
W in D(M,B) is called a tadpole-walk if W is of the form

(x0, a1, x1, . . . , xm−1, am, xm = x0, am+1, xm+1, am+2, . . . , an, xn) (1)

for some 0 ≤ m < n such that the former part (x0, a1, x1, . . . , xm−1, am, xm = x0) forms
a directed cycle and the latter part (xm = x0, am+1, xm+1, . . . , xn) forms a directed path
with xn ∈ E \

⋃k
i=1 Bi, where x0, x1, . . . , xn are distinct except for x0 = xm if m > 0. See

Figure 2 for an illustration. The former part can be empty; in this case, W is just a directed
path ending at some vertex in E \

⋃k
i=1 Bi. We introduce a total order ≺ on the vertex set

of W as: The smallest vertex is x0(= xm) and xi ≺ xj if and only if i < j for other vertices
xi, xj . We say that W is shortcut-free if, for all i ∈ [k] and two arcs a, a′ ∈ W ∩ Ai with
tail(a) ≺ tail(a′), we have (tail(a), head(a′)) /∈ Ai. A subgraph W ′ of D(M,B) is said to be
valid if it is the disjoint union of a (possibly empty) directed path ending at some vertex
in E \

⋃k
i=1 Bi and a (possibly empty) directed cycle. For a valid subgraph W ′ of D(M,B),

we define B△W ′ := (B1 △ (W ′ ∩A1), B2 △ (W ′ ∩A2), . . . , Bk △ (W ′ ∩Ak)). Observe first
that W ′ ∩Ai forms a matching in D(Mi, Bi) for each i. To see this, suppose that there are
two arcs a and a′ in W ′ ∩ Ai that share a vertex x. Since each component of W ′ is either
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xm = x0

x1

x2

a1

a2

am

xm+1 xm+2

am+1

xn

am+2

Figure 2 A tadpole-walk starting from x0 and ending at xn.

a directed path or a directed cycle, we can assume that head(a) = tail(a′) = x. However,
x /∈ Bi as head(a) = x and x ∈ Bi as tail(a′) = x, a contradiction. Observe next that
|
⋃k

i=1 Bi| = |
⋃k

i=1(Bi △ (W ′ ∩ Ai))|. This follows from the fact that the path component
has a sink vertex in E \

⋃k
i=1 Bi (if it is nonempty).

The following two lemmas play important roles in the proof of Theorem 3.

▶ Lemma 5. Suppose that W is a shortcut-free tadpole-walk in D(M,B) and W ′ is a valid
subgraph of W . Then B△W ′ is a feasible basis sequence of M.

Proof. We first observe that Bi △ (W ′ ∩ Ai) and Bj △ (W ′ ∩ Aj) are disjoint for distinct
i, j ∈ [k]. This follows from the following facts: |Bi| = |Bi △ (W ′ ∩ Ai)| for each i and
|
⋃k

i=1 Bi| = |
⋃k

i=1(Bi△ (W ′ ∩Ai))|. Thus, it suffices to show that Bi△ (W ′ ∩Ai) ∈ Bi for
each i.

Let b1, b2, . . . , bℓ be the arcs in the matching W ′ ∩Ai; we may assume that i < j if and
only if tail(bi) ≺ tail(bj). Since W is shortcut-free, we have (tail(bi), head(bj)) /∈ Ai for any
distinct i, j ∈ [ℓ] with i < j. Observe that W ′ ∩Ai forms a unique matching in D(Mi, Bi).
This can be seen by considering the other case that W ′ ∩ Ai is not unique in D(Mi, Bi),
yielding that D(Mi, Bi) has an arc (tail(bi), head(bj)) for some i, j ∈ [ℓ] with i < j. Thus
Bi △ (W ′ ∩Ai) ∈ Bi by Lemma 4. ◀

▶ Lemma 6. Let B = (B1, . . . , Bk) be a feasible basis sequence of M and B :=
⋃k

i=1 Bi. For
y ∈ E \ B, we denote by Ty the set of vertices that are reachable to y in D(M,B), that is,
the set of vertices x in E such that there is a directed path from x to y in D(M,B). Then
the set of coloops of M :=

∨k
i=1 Mi is equal to B \

⋃
y∈E\B Ty.

Proof. Clearly B contains all coloops of M as B is a basis of M . By considering the basis
exchange axiom for the dual matroid M∗ of M , an element x ∈ B is not a coloop of M if and
only if there is y ∈ E \B such that B−x + y is a basis of M . Here, it easily follows from [19,
Theorem 42.4] that, for x ∈ B and y ∈ E \B, the set B − x + y is a basis of M if and only if
there is a directed path from x to y in D(M,B). Hence the existence of such y ∈ E \B can
be rephrased as the existence of a directed path from x to some vertex y ∈ E \B in D(M,B).
This implies that the set of coloops of M is equal to B \

⋃
y∈E\B Ty, where Ty denotes the

set of vertices that are reachable to y in D(M,B). ◀

Using Lemma 6, we can decide in polynomial time whether the condition (K∩B1, . . . , K∩
Bk) = (K∩B′

1, . . . , K∩B′
k) in Theorem 3 holds as follows. Let E =

⋃k
i=1 Ei. We can construct

the exchangeability graph D(M,B) with
∑k

i=1 |Ei|2 ≤ k|E|2 oracle calls. By Lemma 6, we
can compute the set K of coloops of M in time O(|E|2) using a standard graph search
algorithm.

ISAAC 2024



38:8 Basis Sequence Reconfiguration in the Union of Matroids

3.2 Proof of Theorem 3
In this subsection, we provide the proof of Theorem 3, and then we also see that Theorem 1
follows from our proof of Theorem 3.

We define the distance d(B,B′) between B and B′ by d(B,B′) :=
∑k

i=1 |Bi △B′
i|. As we

have already seen the only-if part of Theorem 3 in the previous subsection, in the following,
we show the if part by induction on d(B,B′).

It is easy to see that d(B,B′) = 0 if and only if B = B′. Suppose that d(B,B′) > 0. If
there is a feasible basis sequence B′′ = (B′′

1 , B′′
2 , . . . , B′′

k ) of M such that B is reconfigurable
to B′′ and d(B′′,B′) < d(B,B′), we have (B′

1 ∩K, . . . , B′
k ∩K) = (B1 ∩K, . . . , Bk ∩K) =

(B′′
1 ∩K, . . . , B′′

k ∩K). Hence B′′ is reconfigurable to B′ by induction, which implies that
B is reconfigurable to B′. Thus, our goal is to find such a feasible basis sequence B′′. To
this end, we first compute a shortcut-free tadpole-walk W in D(M,B) and then transform B
to B′′ one-by-one along this W . A crucial observation in this transformation is that each
intermediate basis sequence is of the form B△W ′ for some valid subgraph W ′ of W , meaning
that it is a feasible basis sequence of M by Lemma 5.

Take any x0 ∈
⋃k

i=1 Bi \B′
i, say, x0 ∈ Bi0 \B′

i0
. Then there is x1 ∈ B′

i0
\Bi0 such that

Bi0 − x0 + x1 ∈ Bi0 . Hence we have a1 = (x0, x1) ∈ Ai0 . If x1 ∈ E \
⋃k

i=1 B, we obtain a
tadpole-walk (x0, a1, x1); we are done. Otherwise, this vertex x1 belongs to Bi1 for some
i1 ( ̸= i0). In particular, by x1 ∈ B′

i0
, we have x1 ∈ Bi1 \B′

i1
. Hence there is x2 ∈ B′

i1
\Bi1

such that Bi1 − x1 + x2 ∈ Bi1 , implying a2 = (x1, x2) ∈ Ai1 . By repeating this argument, we
can find either of the following subgraphs of D(M,B):
Type I: a directed path (x0, a1, x1, . . . , an, xn) satisfying that xn ∈ E \

⋃k
i=1 Bi and that

xℓ ∈ Biℓ
\B′

iℓ
, xℓ+1 ∈ B′

iℓ
\Biℓ

, and aℓ+1 ∈ Aiℓ
for all ℓ ∈ [0, n− 1].

Type II: a directed cycle (xp, ap+1, xp+1, . . . , xq−1, aq, xq = xp) satisfying that xℓ ∈ Biℓ
\B′

iℓ
,

xℓ+1 ∈ B′
iℓ
\Biℓ

, and aℓ+1 ∈ Aiℓ
for all ℓ ∈ [p, q − 1].

In the former case (Type I), the resulting directed path is a tadpole-walk. Consider the latter
case (Type II). By the assumption that (B1 ∩K, . . . , Bk ∩K) = (B′

1 ∩K, . . . , B′
k ∩K), none

of the vertices xp, . . . , xq belongs to the set K of coloops. This implies that, by Lemma 6,
D(M,B) has a directed path from each vertex in the cycle to a vertex in E \

⋃k
i=1 Bi. We

can choose such a directed path (xr, b1, y1, . . . , bm, ym) from a vertex xr in the cycle to a
vertex ym in E \

⋃k
i=1 Bi so that the path is arc-disjoint from the cycle, by taking a shortest

one among all such paths. Then, the walk (xr, ar, xr+1, . . . , xr, b1, y1, . . . , bm, ym) forms a
tadpole-walk. We denote by W the tadpole-walk obtained in these ways (Type I and II). In
the following, by rearranging the indices, we may always assume that W is of the form (1),
where the former part C = (x0, a1, x1, . . . , xm−1, am, xm = x0) is a directed cycle and the
later part P = (xm = x0, am+1, xm+1, . . . , xn) is a directed path in D(M,B). Note that the
directed cycle C can be empty, which corresponds to Type I.

We next update the above W so that W becomes shortcut-free. Suppose that W is
not shortcut-free. Then there are arcs a, a′ ∈W ∩Ai such that tail(a) ≺ tail(a′) satisfying
a′′ := (tail(a), head(a′)) ∈ Ai. Let a = (xp, xp+1) and let a′ = (xq, xq+1). Since W ∩ Ai is
a matching in D(M,B), we have p + 1 ̸= q. We then execute one of the following update
procedure:

If a and a′ belong to the directed path P , then update W as

W ← (x0, . . . , xm−1, am, xm = x0, am+1, . . . , ap, xp, a′′, xq+1, . . . , xn).

If a and a′ belong to the directed cycle C, then update W as

W ← (x0, a1, . . . , ap, xp, a′′, xq+1, . . . , xm = x0, am+1, xm+1, . . . , xn).



T. Hanaka, Y. Iwamasa, Y. Kobayashi, Y. Okada, and R. Saito 38:9

xm = x0

x1

x2

xn

xp
xp+1

xq
xq+1

a′′

xm−1

xm = x0

x1

x2

xn

xp

xq+1

a′′

xm−1

xm = x0

x1

x2

xnxp xp+1 xq xq+1

a′′xm−1

xm = x0

x1

x2

xnxp xq+1

a′′xm−1

xm = x0

x1

x2

xn

xp
xp+1

xq xq+1

xm−1

xm = x0

x1

x2

xn

xp
xp+1

xq+1

xm−1
a′′ a′′

Figure 3 The figure depicts tadpole-walks (with shortcuts) and their updated tadpole-walks.

If a belongs to C and a′ belongs to P , then update W as

W ← (xp, ap+1, . . . , ap, xp, a′′, xq+1, . . . , xn).

See Figure 3 for illustrations.
Suppose that W is a tadpole-walk of Type I. In this case, the second and third cases

never occur. By the choice of a = (xp, xp+1), a′ = (xq, xq+1), and a′′ = (xp, xq+1), we have
xp ∈ Bi \B′

i, xq+1 ∈ B′
i \Bi, and (xp, xq+1) ∈ Ai. Moreover, the updated W is a directed

path ending at xn ∈ E \
⋃k

i=1 Bi, which implies that W is still a tadpole-walk of Type I.
Suppose next that W is of Type II. In the first and third cases, the cycle part does not
change; the updated W is still of a tadpole-walk Type II. In the second case, the cycle part
is shortened by a′′ but the updated W is still a tadpole-walk as well. By the choice of a, a′,
and a′′, we have xp ∈ Bi \B′

i, xq+1 ∈ B′
i \Bi, and (xp, xq+1) ∈ Ai. Hence the resulting W is

still a tadpole-walk of Type II. Since this update procedure strictly reduces the size of W ,
we can eventually obtain a shortcut-free tadpole-walk in polynomial time.

Finally, we construct a reconfiguration sequence based on a shortcut-free tadpole-walk W

of each type. Suppose that W is of Type I, i.e., W = (x0, a1, x1, . . . , xn) is a directed path
with n ≥ 1. For p ∈ [n− 1], let Wp denote the subgraph of W induced by {an−p+1, . . . , an}.
Then Wp forms a directed path (xn−p, an−p+1, xn−p+1, . . . , xn), which implies that Wp is
valid. By Lemma 5, B△Wp is a feasible basis sequence for each p. Furthermore, we have
B△Wp = (B△Wp−1)△ (xn−p+1, xn−p) (in which (xn−p+1, xn−p), the reverse of an−p+1,
can be viewed as an arc in D(M,B△Wp−1)). This implies that B△Wp−1 and B△Wp are
adjacent for all p ∈ [n− 1], where W0 := ∅. Hence

⟨B = B△W0,B△W1,B△W2, . . . ,B△Wn−1 = B△W ⟩

is a reconfiguration sequence from B to B △ W . In addition, since xℓ ∈ Biℓ
\ B′

iℓ
and

xℓ+1 ∈ B′
iℓ
\Biℓ

for each ℓ ∈ [0, n− 1], we have d(B△W,B′) = d(B,B′)− 2n < d(B,B′).
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xm = x0

x1

x2

a1

a2

am

xm+1 xm+2

am+1

xn

am+2

xm = x0

x1

x2

a1

a2

am

xm+1 xm+2

am+1

xn

am+2

Figure 4 The bold red walk in the upper digraph represents Wp for p = n − 1, and that in the
lower digraph for p = n.

Suppose next that W is of Type II, i.e., W is of the form (1) with 0 < m < n,
where the (nonempty) former part C = (x0, a1, x1, . . . , xm−1, am, xm = x0) is a directed
cycle and the later part P = (xm = x0, am+1, xm+1, . . . , xn) is a directed path. For
p ∈ [n − 1], let Wp denote the subgraph of W induced by {an−p+1, . . . , an}, which forms
a directed path (xn−p, an−p+1, xn−p+1, . . . , xn) as in the case of Type I and is valid. For
p ∈ [n, 2n − m − 1], let Wp denote the subgraph of W induced by {a1, a2, . . . , am} ∪
{a(m−n+2)+p, a(m−n+2)+(p+1), . . . , an}, where W2n−m−1 is defined as C. In this case, Wp

forms the disjoint union of the directed cycle C and the subpath of P starting from xm−n+1+p

ending at xn ∈ E \
⋃k

i=1 Bi; the subpath is empty if p = 2n−m− 1. Thus Wp is also valid.
By Lemma 5, B△Wp is feasible for each p ∈ [2n−m− 1]. Furthermore, we have

B△Wp =


(B△Wp−1)△ (xn−p+1, xn−p) if p ∈ [n− 1],
(B△Wp−1)△ (xm+1, x1) if p = n,

(B△Wp−1)△ a(m−n+1)+p if p ∈ [n + 1, 2n−m− 1].

See Figure 4 for the case of p = n. This implies that B△Wp−1 and B△Wp are adjacent for
all p ∈ [2n−m− 1], where W0 := ∅. Hence

⟨B = B△W0,B△W1,B△W2, . . . ,B△W2n−m−1 = B△ C⟩

is a reconfiguration sequence from B to B △ C. In addition, since xℓ ∈ Biℓ
\ B′

iℓ
and

xℓ+1 ∈ B′
iℓ
\ Biℓ

for each ℓ ∈ [m], we have d(B△ C,B′) = d(B,B′) − 2m < d(B,B′). This
completes the proof of Theorem 3.

The above proof immediately turns into an algorithm for finding a feasible basis sequence
B′′ with d(B′′,B′) < d(B,B′) in polynomial time. As shown in the previous subsection, we
can construct the exchangeability graph D(M,B) using k|E|2 oracle calls. We can compute
a shortcut-free tadpole-walk in D(M,B) in O(|E|2) time. Thus, we can compute a feasible
basis sequence B′′ of M with d(B′′,B′) < d(B,B′) such that B is reconfigurable to B′′ in
O(|E|2) time and |E|2 oracle calls. Since d(B,B′) is at most 2|E|, we can obtain an entire
reconfiguration sequence from B to B′ in O(|E|3) time and |E|3 oracle calls in the case where
B is reconfigurable to B′. Note that the length of the above reconfiguration sequence is
O(|E|2). Therefore, Theorem 1 follows.
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4 Inapproximability of finding a shortest reconfiguration sequence

In this section, we prove Theorem 2, that is, Shortest Basis Sequence Reconfiguration
is hard to approximate in polynomial time under P ̸= NP. To show this inapproximability
result, we perform a reduction from Set Cover, which is notoriously hard to approximate.

Let S ⊆ 2U be a family of subsets of a finite set U where n = |U | and m = |S|. We say
that a subfamily S ′ ⊆ S covers U (or S ′ is a set cover of U) if U =

⋃
S∈S′ S. Set Cover is

the problem that, given a set U and a family S ⊆ 2U of subsets of U , asks to find a minimum
cardinality subfamily S ′ ⊆ S that covers U . Set Cover is known to be hard to approximate:
Raz and Safra [17] showed that there is a constant c∗ > 0 such that it is NP-hard to find
a c∗ log(n + m)-approximate solution of Set Cover. Throughout this section, we assume
that the whole family S covers U .

From an instance (U,S) of Set Cover, we construct two partition matroids M1 = (E1,B1)
and M2 = (E2,B2) such that there is a set cover of U of size at most k if and only if there
is a reconfiguration sequence between feasible basis sequences Bs and Bt of M = (M1, M2)
with length at most ℓ for some ℓ.

4.1 Construction

To construct the partition matroids M1 and M2, we use several uniform matroids and
combine them into M1 and M2. In the following, we assume that the sets in S are ordered
in an arbitrary total order ⪯. For each element u ∈ U , we define f(u) + 3 elements
e1

u, e2
u, e3

u, c1
u, . . . , c

f(u)
u and three sets:

E1
u := {e1

u, e2
u}, E2

u := {e1
u, e2

u, e3
u}, E3

u := {e3
u} ∪ {c1

u, c2
u, . . . , cf(u)

u },

where f(u) := |{S ∈ S | u ∈ S}| is the number of occurrences of u in S. We denote by M i
u

the rank-1 uniform matroid over Ei
u for 1 ≤ i ≤ 3, that is, each basis of M i

u contains exactly
one element in Ei

u. For each set S ∈ S, we denote by M0
S the uniform matroid of rank |S|

with ground set E0
S := {cf(u,S)

u | u ∈ S} ∪ {s1
S}, where f(u, S) = |{S′ | S′ ⪯ S, u ∈ S′}|.

Note that E0
S ∩ E0

S′ = ∅ for distinct S, S′ ∈ S. We let L := 2n2. For 1 ≤ i ≤ L, we denote
by M i

S the rank-1 matroid with ground set Ei
S := {si

S , si+1
S }. Then, we define two partition

matroids M1 and M2 as:

M1 :=
⊕
u∈U

M1
u ⊕

⊕
u∈U

M3
u ⊕

⊕
S∈S

n2⊕
i=1

M2i−1
S , M2 :=

⊕
u∈U

M2
u ⊕

⊕
S∈S

M0
S ⊕

⊕
S∈S

n2⊕
i=1

M2i
S .

The matroids M1 and M2 are illustrated in Figure 5. We denote by E1 and E2 the ground
sets and by B1 and B2 the collections of bases of M1 and M2, respectively. Each uniform
matroid constituting these partition matroids is called a block. Since M1 and M2 are partition
matroids, the following observation follows.

▶ Observation 7. Let (B1, B2) be a feasible basis sequence of (M1, M2) and let x ∈ B1 be
arbitrary. Then, for any element y ∈ E1 \ (B1 ∪ B2) that belongs to the same block as x

in M1, (B1 − x + y, B2) is a feasible basis sequence of (M1, M2). Similarly, let x ∈ B2 be
arbitrary. Then, for any element y ∈ E2 \ (B1 ∪B2) that belongs to the same block as x in
M2, (B1, B2 − x + y) is a feasible basis sequence of (M1, M2).
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e1u
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e1v
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e3v

e1w
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e3w
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M 1
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M 1
v

M 1
w

M 3
u

M 3
v

M 3
w

· · ·M 1
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S ML
SM 2

S

M 2
u

M 2
v

M 2
w

M 0
S


c1u, . . . , c

f(u)
uc3u

c2v

c4w

Figure 5 The figure depicts (hypergraph representations of) two partition matroids M1 and M2.
A set S ∈ S contains three elements u, v, w ∈ U with f(u, S) = 3, f(v, S) = 2, and f(w, S) = 4.
Solid black circles represent elements in Bs

1, and solid red circles represent elements in Bs
2.

Let Bs = (Bs
1, Bs

2) be a feasible basis sequence such that

Bs
1 = {e1

u | u ∈ U} ∪ {e3
u | u ∈ U} ∪

⋃
S∈S
{s2i−1

S | i ∈ [n2]},

Bs
2 = {e2

u | u ∈ U} ∪
⋃

S∈S
{cf(u,S)

u | u ∈ S} ∪
⋃

S∈S
{s2i

S | i ∈ [n2]}.

It is easy to verify that Bs
1 and Bs

2 are bases of M1 and M2, respectively. Similarly, let
Bt = (Bt

1, Bt
2) be a feasible basis sequence such that

Bt
1 = {e2

u | u ∈ U} ∪ {e3
u | u ∈ U} ∪

⋃
S∈S
{s2i−1

S | i ∈ [n2]},

Bt
2 = {e1

u | u ∈ U} ∪
⋃

S∈S
{cf(u,S)

u | u ∈ S} ∪
⋃

S∈S
{s2i

S | i ∈ [n2]}.

Let us note that sL+1
S /∈ Bs

1 ∪ Bs
2 ∪ Bt

1 ∪ Bt
2 for all S ∈ S. Moreover, we have Bs

1 \ Bt
1 =

Bt
2 \Bs

2 = {e1
u | u ∈ U} and Bt

1 \Bs
1 = Bs

2 \Bt
2 = {e2

u | u ∈ U}.

4.2 Correctness
Before proceeding to our proof, we first give the intuition behind our construction. Suppose
that there are tokens on the elements in Bs

1 ∪Bs
2. As observed in the previous subsection, we

have e1
u ∈ Bs

1 \ Bt
1 and e1

u ∈ Bt
2 \ Bs

2 for u ∈ U . Moreover, e2
u ∈ Bt

1 \ Bs
1 and e2

u ∈ Bs
2 \ Bt

2
for u ∈ U . Thus, in order to transform Bs to Bt, we need to “swap” the tokens on e1

u

and e2
u. However, as all the elements except for sL+1

S for S ∈ S are occupied by tokens in
Bs

1 ∪ Bs
2, this requires to move an “empty space” initially placed on sL+1

S to e3
u for some

S ∈ S with u ∈ S, and then swap the tokens on e1
u and e2

u using the empty space on e3
u. By

the construction of M1 and M2, this can be done by (1) shifting the tokens along the path
between sL+1

S and s1
S one by one, (2) moving the empty space from s1

S to c
f(u,S)
u , and then

(3) moving the empty space from c
f(u,S)
u to e3

u, which requires at least L exchanges. As L is
sufficiently large, we need to cover the elements in U with a small number of sets in S for a
short reconfiguration sequence. The following lemma gives an upper bound on the length of
a shortest reconfiguration sequence.
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Algorithm 1 An algorithm for constructing a reconfiguration sequence between Bs and
Bt from a set cover S∗ ⊆ S of U .

Input: A set cover S∗ ⊆ S of U .
Output: A reconfiguration sequence between Bs and Bt.

1 Ũ ← ∅, B← Bs

2 foreach S ∈ S∗ do
3 for i = L, L− 1, . . . , 1 do
4 B← B△ (si

S , si+1
S )

5 foreach S ∈ S∗ do
6 if S \ Ũ ̸= ∅ then
7 foreach u ∈ S \ Ũ do
8 B← B△ (cf(u,S)

u , s1
S)

9 B← B△ (e3
u, c

f(u,S)
u )

10 B← B△ (e2
u, e3

u)
11 B← B△ (e1

u, e2
u)

12 B← B△ (e3
u, e1

u)
13 B← B△ (cf(u,S)

u , e3
u)

14 B← B△ (s1
S , c

f(u,S)
u )

15 Ũ ← Ũ ∪ S

16 foreach S ∈ S∗ do
17 for i = 1, 2, . . . , L do
18 B← B△ (si+1

S , si
S)

▶ Lemma 8. Let S∗ ⊆ S be a set cover of U of size at most k. Then, there is a reconfiguration
sequence between Bs and Bt with length at most 2kL + 7n.

Proof. Given a set cover S∗ ⊆ S, we construct a reconfiguration sequence between Bs and
Bt by applying the algorithm described in Algorithm 1. Let B = (B1, B2) be a feasible basis
sequence of (M1, M2). For x, y ∈ E1 ∪ E2, we call (x, y) a valid pair if either
(1) x ∈ B1 and y ∈ E1 \ (B1 ∪B2) belong to the same block in M1; or
(2) x ∈ B2 and y ∈ E2 \ (B1 ∪B2) belong to the same block in M2.
For a valid pair (x, y), we define

B△ (x, y) =
{

(B1 − x + y, B2) if (x, y) satisfies (1),
(B1, B2 − x + y) if (x, y) satisfies (2).

By Observation 7, B△ (x, y) is a feasible basis sequence of (M1, M2).
When we update a feasible basis sequence B = (B1, B2) with B △ (x, y) for some

x, y ∈ E1 ∪E2 in the algorithm, the pair (x, y) is always assured to be valid. Thus, all the
pairs B = (B1, B2) appearing in the execution of the algorithm are feasible basis sequences
of (M1, M2). Since S∗ is a set cover of U , we have Ũ = U when the algorithm terminates.
Thus, for each u ∈ U , the steps from line 8 to line 14 are executed exactly once. This implies
that the algorithm correctly computes a reconfiguration sequence between Bs and Bt with
length 2kL + 7n. ◀

▶ Lemma 9. Suppose that there is a reconfiguration sequence between Bs and Bt of length ℓ.
Then, there is a set cover S∗ ⊆ S of U with |S∗| ≤ ⌊ℓ/2L⌋.

ISAAC 2024



38:14 Basis Sequence Reconfiguration in the Union of Matroids

Proof. Let σ = ⟨B0, . . . ,Bℓ⟩ be a reconfiguration sequence between Bs and Bt of length ℓ.
For a feasible basis sequence B = (B1, B2), an element e ∈ E1 ∪ E2 is said to be free in B
if e /∈ B1 ∪ B2. We define S∗ := {S ∈ S | s1

S is free in Bi for some i}. Then the following
holds.

▷ Claim 10. The subfamily S∗ of S is a set cover of U .

Proof. Let Bi = (Bi
1, Bi

2) for i ∈ [0, ℓ]. We first observe that, for S ∈ S and i ∈ [0, ℓ], if
s1

S ∈ Bi
1, then {cf(u,S)

u | u ∈ S} ⊆ Bi
2. This can be seen as follows. Since s1

S ∈ Bi
1, we have

s1
S /∈ Bi

2. As Bi
2 must contain a basis B0

S of M0
S , which is the uniform matroid of rank |S|

with the ground set {cf(u,S)
u | u ∈ S} ∪ {s1

S}, the basis B0
S must be {cf(u,S)

u | u ∈ S}. That
is, we have {cf(u,S)

u | u ∈ S} ⊆ Bi
2.

We then show the assertion of Claim 10. Suppose for contradiction that there is an
element u∗ ∈ U that is not covered by S∗. Then, for S ∈ S with u∗ ∈ S, the element s1

S

is not free in Bi for any 0 ≤ i ≤ ℓ, which implies that s1
S belongs to Bi

1. Thus, for each
i, we have Bi

2 ⊇
⋃

S∈S:u∗∈S{c
f(u,S)
u | u ∈ S} ⊇ {c1

u∗ , . . . , c
f(u∗)
u∗ }, where the first inclusion

follows from the above observation. By this inclusion with the fact that M3
u∗ is the uniform

matroid of rank 1 with the ground set {e3
u∗} ∪ {c1

u∗ , . . . , c
f(u∗)
u∗ }, the basis Bi

1 must contain
e3

u∗ for each i. Hence, during the reconfiguration sequence σ = ⟨B0, . . . ,Bℓ⟩, we cannot move
any element in E1

u∗ = {e1
u∗ , e2

u∗} (or more precisely E1
u∗ ∪ E2

u∗ ∪ E3
u∗). This contradicts

that σ is a reconfiguration sequence from Bs to Bt; recall e1
u∗ ∈ Bs

1 \ Bt
1 = Bt

2 \ Bs
2 and

e2
u∗ ∈ Bt

1 \Bs
1 = Bs

2 \Bt
2. ◁

In the reconfiguration sequence σ = ⟨B0, . . . ,Bℓ⟩, for each S ∈ S∗, the element sL+1
S must

be free in B0 and Bℓ, and s1
S must be free at least once. Hence, the length ℓ of σ is at least

2L · |S∗|, where L is equal to the number of required steps to move from a feasible basis
sequence such that sL+1

S (resp. s1
S) is free to another feasible basis sequence such that s1

S

(resp. sL+1
S ) is free. Since S∗ is a set cover by Claim 10, we can conclude that there is a set

cover of size at most ⌊ℓ/2L⌋. ◀

Proof of Theorem 2. To prove the NP-hardness, we give a polynomial-time reduction from
Set Cover. We claim that I = (U,S) has a set cover of size at most k if and only if there
is a reconfiguration sequence between Bs and Bt of length at most (2k + 1) · L. We may
assume n ≥ 4.

Suppose that I has a set cover of size at most k. Then, by Lemma 8 and 7n ≤ 2n2 = L,
we can construct a reconfiguration sequence from Bs to Bt of length at most 2kL + 7n ≤
2kL + 2n2 = (2k + 1) · L, proving the forward implication.

Conversely, assume that there is a reconfiguration sequence between Bs and Bt of length
at most (2k + 1) · L. Then, by Lemma 9, we obtain a set cover for I of the size at most
⌊(2k + 1) · L/2L⌋ = ⌊k + 1/2⌋ = k.

To prove the inapproximability, let N =
∑k

i=1 |Ei| and suppose that there exists a
c′ log N -approximation algorithm A′ for Shortest Basis Sequence Reconfiguration for
some constant c′ > 0. Then we construct an algorithm A that, given an instance I = (U,S)
of Set Cover, outputs a set cover of I as follows.

1. Construct an instance I ′ = (M,Bs,Bt) of Shortest Basis Sequence Reconfigura-
tion from an instance I = (U,S) of Set Cover using the construction in Section 4.1.

2. Compute a reconfiguration sequence σ′ of I ′ by applying A′.
3. Compute a set cover S∗ for I from σ′ by Lemma 9.
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▷ Claim 11. For some constant c > 0, algorithm A produces a c log(n + m)-approximation
solution for Set Cover.

Proof. Since S covers U , by Lemma 8, there is a reconfiguration sequence between Bs and
Bt) of length at most 2L · OPT(I) + 7n, where OPT(I) is the minimum cardinality of a
set cover of U . Moreover, we have N ≤ (n + m)d for some constant d. Thus, A′ outputs
a reconfiguration sequence σ′ of length at most ℓ := c′ log N · (2L · OPT(I) + 7n) in time
(n + m)O(1). Finally, by Lemma 9, we can compute a set cover S∗ ⊆ S of U from σ′ with
size at most ℓ/2L = c′ log N · (OPT(I) + o(1)) ≤ 2c′ log N · OPT(I). Since N ≤ (n + m)d,
we have |A(I)| ≤ c log(n + m) ·OPT(I) for any constant c > 2c′d. ◁

By choosing the constant c′ as c′ < c∗/2d, we derive a polynomial-time c∗ log(n + m)-
approximation algorithm for Set Cover, completing the proof of Theorem 2. ◀

5 Conclusion

In this paper, we studied Basis Sequence Reconfiguration, which is a generalization of
Spanning Tree Sequence Reconfiguration. For this problem, we first showed that
Basis Sequence Reconfiguration can be solved in polynomial time, assuming that the
input matroids are given as basis oracles. Second, we showed that the shortest variant of
Basis Sequence Reconfiguration is hard to approximate within a factor of c log n for
some constant c > 0 unless P = NP.

For future work, it is interesting to investigate the computational complexity of the
special settings of Basis Sequence Reconfiguration. It would be interesting to design
faster or simpler algorithms for Basis Sequence Reconfiguration with graphic matroids,
that is, for Spanning Tree Sequence Reconfiguration. Our hardness result for the
shortest variant uses two distinct partition matroids. Thus, it would be worth considering
the case for two identical matroids. Finally, the computational complexity of Shortest
Spanning Tree Sequence Reconfiguration is another promising direction.
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